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ABSTRACT 

We study the iterative solution of a tridiagonal linear 
system of size m on a parallel or vector computer. Such systems 
arise commonly in the numerical solution of partial differential 
equations. 

The Gauss algorithm takes time linear in m. We intro­
duce a Parallel Gauss iteration and show it can be used to solve a 
tridiagonal system in time independent of m. Furthermore, the 
error norm is reduced at each iteration step. A Parallel LR 
decomposition is also defined. 

Parallel Gauss is based on "multiplicative splitting". 
We introduce parallel algorithms based on "additive splitting". 
These are Jacobi, JOR, Parallel Gauss-Seidel and Parallel SOR. 

We compare these parallel algorithms on a model problem 
and conclude that JOR, Gauss-Seidel, and SOR are not competitive. 
If the matrix has only "limited" diagonal dominance, Parallel 
Gauss is far superior to Jacobi. If the matrix is very diagonally 
dominant, Jacobi is somewhat better than Parallel Gauss. 
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1. INTRODUCTION" 

We study the solution of a tridiagonal linear system 
Au = v on a parallel or vector computer. Tridiagonal and block 
tridiagonal systems arise commonly in the numerical solution of 
partial differential equations. We shall report on the exten­
sion of our results to block tridiagonal systems in a later 
paper. Stronger results are achieved in the special case of 
constant diagonals; we do not report these results here. 

A substantial number of tridiagonal systems have to be 
solved in the course of solving a partial differential equa­
tion. In regions where the coefficients of the partial dif­
ferential equations are not rapidly varying, the coefficient 
matrices of successive tridiagonal systems will enjoy the same 
property. This makes the iterative solution of the tridiagonal 
systems attractive. Final iterates of the previous system can 
be taken as initial iterates of the current system. 

Alternatively, tridiagonal systems can be solved by paral­
lel direct methods (Stone [72], Kogge and S^one [72]). We ex­
pect that both parallel direct and parallel iterative methods 
will prove useful. 

Our interest in parallel algorithms is threefold. 

1. Parallel algorithms are needed for some of the com­
puters now becoming available (Carnegie-Mellon C.mmp, 

*Part of this paper was first presented at a Colloquium at the 
National Center for Atmospheric Research in July, 1972. 



Control Data Corporation STAR, ILLlAC IV, Texas In­
strument ASC). 

2, Semiconductor technology is near the point where a 
small processor can fit in a single integrated-cir-
cuit package. Already, large memory arrays and micro­
processors are being manufactured on a single chip. 
Drastic cost reductions are accompanying this minia­
turization and computer systems with a very large num­
ber of processors are becoming practical. 

3, Constructive mathematics has always been sequential. 
The possibility of concurrent processing is opening up 
new worlds of possible algorithms. 

The parallel algorithms introduced here can be run on 
single instruction stream multiple data stream (SIMD) or mul­
tiple instruction stream multiple data stream (MIMD) machines* 
A model of a SIMD machine is given by Kogge and Stone [72]. 
ASC, ILLIAC IV, and STAR are examples of SIMD machines while 
C.mmp is an example of a MIMD computer. 

Let the size of the linear system be m. The time esti­
mates presented in this paper assume that the number of pro­
cessors (or the length of the vectors for a vector computer 
such as STAR) is also m. If only p processors are available, 
time estimates should be multiplied by [m/p]. We neglect the  
overhead needed to load vectors or due to using m processors. 
Such overhead should not be ignored in applying our conclusions 
to a particular machine. 

We summarize the results of this paper. For tridiagonal 
systems, the Gauss algorithm takes time linear in m. We intro­ 
duce a Parallel Gauss iteration which permits us to solve a  
tridiagonal system in time independent of m. The time depends 
only on the diagonal dominance enjoyed by the matrix, the initi­
al errors, and the final accuracy desired. Furthermore, the 
error norm is reduced at each iteration step. 

Parallel LR decomposition and a Parallel Gauss algorithm 
are defined in Section 2. In Section 3 we show that the rate 
of convergence of Parallel Gauss depends on the zeros of a qua­
dratic polynomial which can be easily calculated from the given 
matrix A. Theorem 3,3 gives bounds on the quantities calculat­
ed during Parallel Gauss while Theorem 3.4 and Theorem 3.5 give 
bounds on the error norms. Corresponding results for the Par­
allel LR decomposition may be found in Section 4. 



Parallel Gauss is based on "multiplicative splitting11. 
In Section 5 we introduce parallel algorithms based on additive 
splitting. These are Jacobi (Jacobi is a parallel algorithm), 
JOR, Parallel Gauss-Seidel, and Parallel SOR. In Section 6 we 
compare these parallel algorithms on a two-parameter model 
problem and conclude that JOR, Gauss-Seidel, and SOR are not 
competitive. If the matrix has only "limited" diagonal domi­
nance, Parallel Gauss is far superior to Jacobi. If the matrix 
is very diagonally dominant, Jacobi is somewhat better than 
Parallel Gauss. Both are superior to Sequential Gauss under 
the assumptions of the paper. Numerical experimentation is 
reported in the concluding section. 

2. PARALLEL LR AND PARALLEL GAUSS ALGORITHMS 

We begin by deriving the Sequential LR and Sequential 
Gauss algorithms in matrix form. We assume that the diagonal 
elements of A are non-zero. It is no restriction to assume the 
diagonal elements are normalized to unity. Let 

(2.1) A = A L + I + A R = LR, 

(2.2) L = A L + D, R = I + E, 

where D is a diagonal matrix, A is a matrix whose only non­
zero elements are those on the first subdiagonal, A and E are 
matrices whose only non-zero elements are those on the first 
superdiagonal. Since A E is diagonal, 

L 

(2.3) D + A LE = I, 

(2.4) DE - A R. 

Hence 

(2.5) (I - A LE)E = A R. 

To solve Au = v, we write 

(A L + D)(I + E)u = v. 

Define jE by (A L + D)f_ = v. Hence 

(2.6) (I + A L(I - E))f = v 

and 
(2.7) (I + E)u = f. 
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The sequential LR decomposition is defined 

Sequential LR 

(I - A LE)E= A R , 

D = I - A L E . 

In components, 



e. 
J 

2, .. . ,m-l • 

The Sequential Gauss algorithm for the solution of Au = v 
is defined by equations (2.5) - (2.7). We repeat the defini­
tion here. 

Sequential Gauss 

(2.11) (I - A LE)E = A R > 

(2.12) (I + A L(I - E))f = v, 

(2.13) (I + E)u = f. 

In components, 

s . 
e i = *v e i = i-t i. »J = 2>--->m-i> 

J J J-1 
v.-t.f 

fi B v , f - , 3 I J " , j = 2,...,m, 
' J j-1 

u = f , u , = f . -e ,u , j = m-l,...,1. 

The component representation is well-known (Young [71, 
Section 14.2]). Clearly the LR and Gauss algorithms are se­
quential. We now define a Parallel LR and two Parallel Gauss 
iterations. 

Parallel LR 

Let E ^ be given. Then 

(2.14) (I - A L E ( i " 1 ) ) E ( i ) = A R , i = 1,...,M, 
(M) 

(2.15) D = I - A^E . 
Let the non-zero elements of E ^ be labeled e | > • • • >em-i • 
Then in components, 

(0) . . 0 • e^ given, j = 2,...,m-l, 



(2.16) e (i) 
J 1-t.e 

d 1 = i, 

(2.17) d. = 1-t.e^>, j = 2,..., m. 

The Parallel Gauss algorithm for the solution of Au = v is de­
fined by 

Parallel Gauss 

Let E ( ° \ f ( ° \ u ( 0 ) be given. Then 

(2.18) (I - A L E ( i _ 1 ) ) E ( i ) = A R, i = 1,...,M, R' 

(2.19) (I - A K ( M > ) f ^ = v . A f C i - D , i m } N 

(2.20) u ( i ) - f<N> - E ^ V 1 - ^ , i - , p. 

In components, 
(0) . 

e.. given, j = 2,...,m-l, 

e l ( l > = s
7 > i = 0,...,M, (i) S • 

< 2' 2 1> e
i

1 " /JTjy, i = 1,...,M, j = 2,...,m-l. 

given, j = 2\ ...,m, 

/4\ v.-t.f. , 
(2.22) f < l } = -J 1 .1-1 

f(i) . 

(i-1) 

1 vl = v i = 0,...,N, 

(M) » * ~ 1»...,N, j = 2,...,m. 1-t.e. ; 
J J - l 



u . given, j = 1...... ,m-l , 

^ = fm> 1 " °. 1>-"> P> 

(2.23) «<*> - f < N ) - e ^ u ^ , i - 1.....P, j = l,...,m-1. 

This is a parallel algorithm since all components of 
may be computed in parallel from the components of E ^ ~ ^ . The 
following variation of the Parallel Gauss algorithm can also be 
defined. It differs from the algorithm defined above in that 
the E, u iterations are done simultaneously. 

Parallel Gauss Variation 

Let E^°\ f}°\ u ^ be given. Then for i = 1,...,M, 

( I - A L E < l - ' > ) E ( i » - A , , 

a - o C ' i f ' 1 ' . , - . / - " , 
JLi Li 

„(i) = i ( i ) _ E(i)„(i-D. 

In this paper we shall not analyze this variation. 

3. ANALYSIS OF THE PARALLEL GAUSS ALGORITHM 

The rate of convergence of Parallel Gauss depends on the 
zeros of a quadratic polynomial. Properties of the zeros are 
given by Theorem 3.1. Sufficient conditions for Sequential 
and Parallel Gauss to be well-defined and bounds on quantities 
occurring in these algorithms are covered by Theorems 3.2 and 
3.3 while Theorems 3.4 and 3.5 give bounds on the error norms. 

At the end of the Section we analyze norm reduction, prove 
monotonicity properties of the iteration rates of convergence, 
briefly discuss stability, and simplify the main results for an 
interesting special case. 

We use the vector norm 

11*11 B I k l L " m a x K l 
j=l,.,,,m 



and the matrix norm 
m 

I N I - I M L = max S |a |. 
i = l . . ,m j=l 

Note that for a matrix such as A R , which has only one non-zero 
diagonal, 

||AR|| = max |s | 
j=l,...,m 

which is the norm of a vector with components s-|>***> s
m* 

Let 

(3.1) s = ||AR|| = max | s | , 
j=l,...,m 

(3.2) t - ||AL|| » max |t.|. 
j=l,...,m J 

If s or t were zero, A would be bidiagonal rather than tridi-
agonal. Hence we assume throughout this paper that st > 0. 

Define 

(3.3) f(x) = tx 2 - x + s, 

The zeros of this quadratic play a key role in the analysis of 
the Parallel Gauss algorithm. Some of the properties of the 
zeros are covered by the following theorem, additional proper­
ties are given at the end of this Section and at the beginning 
of Section 4. 

2 
THEOREM 3.1. Let s+t < 1. Then F(x) « tx - x + s has two 
real distinct zeros 

l^f^st 1+A/l^4st 
a - * 2t ' a + = Tt ' 

and 

(3.4) 0 < s < a _ < s + t < 1 < a + , 

(3.5) t < a"1 < s + t < 1, 

a . 2 
(3.6) st < 5~ < (s+t) < 1. 



PROOF. Since 
1 > (s+t) ^ 4st, 

the zeros are real and distinct. The inequalities (3.4) follow 
from 

f(s) > 0, f(s+t) < 0, f(1) < 0, f(oo) > 0. 

The inequalities (3.5) follow from 

f(sTF> < °« f ( r } > °-

Finally, (3.6) follows from (3.4) and (3.5). 

In the following theorems we shall assume 

l|ALM + ||AR|| = s+t < 1. 

This is a stronger assumption than the usual (Young [71, Sec­
tion 14.2]) diagonal dominance condition. We could refine our 
assumption and obtain partial conclusions but this would ob­
scure our primary focus on the Parallel Gauss algorithm. How­
ever, in Section 4 we shall use the weaker condition 4st < 1 
in our study of the Parallel LR algorithm. We begin by estab­
lishing bounds on the quantities occurring in the Sequential 
Gauss algorithm. 

THEOREM 3.2. Let 
s+t < 1. 

Then 

(3.7) ||E|| < a_, 

Sequential Gauss algorithm is well-defined, 

(3.« ||f|| <rU$r>. 

(3-9) Ikl! < j ^ . 

PROOF. We establish the bound on ||E|| by showing |e.| < a , 
i = 1 ,... ,m-1 . Note that | e^ | = | ŝ  | £ s < a_ by definition 
and Theorem 3.1. Assume |e^ | < a . Then 



which completes the induction. 

To establish the second conclusion, note that the Sequen­
tial Gauss algorithm is well-defined if D = I - A^E is non-
singular, that is, if ||A EJ | < 1. Now 

||A LE|| £ ta_ < 1 

by Theorem 3.1. 

To establish the bound on f, from (2.12), 

l i l 1 S I-||A L(I-E)|| < T - t o + T T * 

To establish the bound on u, from (2.13), 

< JLLtl 

< 

1 f l 
1- 1 

(1-a )(1-t(1+a )) 1-s-t # 

The next theorem gives analogous results for the Parallel 
Gauss algorithm. 

THEOREM 3.3. Let 

s+t < 1, | | E ( 0 ) | | < a_. 

Then 

(3.10) | | E ( i ) j | < a_, i = 1,...,M, 

Parallel Gauss algorithm is well-defined, 

(3.12) | | u ( i ) | | < M l + Uf^hi + a i , | u ( 0 ) | | . i - 1 . . . . . P . 
a;(l-a ) 

PROOF. The bound on | J E ^ | | is established by induction. By 



hypothesis, | | E ^ | | < a . Assume ||e^"~''^|| < a . Then from 
(2.18), 

1-||A TE U n \ \ 1 t a -

To show that the algorithm is well-defined, observe that 
I - A^E^ 1' is non-singular since 

| | A E ( l ) | I < ta < 1. 

To establish the bound on | | f ^ | | , from (2.19), 

Mi ( i ) H ^ I M L + T^a-lli ( i" 1 )ll 

M L + ! _ 11fCi-i>, 
ta + a + M - I 

Hence 

£ < o „ . M L ( ^ V l j p 
+ \l-a / a^ 

, N * i i , I U< 0 ) " 
ta^l-a" 1) a 1 

I UN + l l f ( 0 ) 

l-t(1+a ) i 

To establish the bound on | | u ^ | | , from (2.20), 

Then 

| u W ) H s l | f ( K ) l l + l l E ^ I I • l l u * 1 - " ; 

|a<l)|| <UAi+ ||E«)||i.||u<°>||. 

From (3.10), (3.11), 



13 

a;<1-a ) 

COMMENT. Since a+ < 1, a_ < 1, this shows that the bounds on 
L » H. a r e "close" to those on f, u. 

The next two theorems, which give upper bounds on the 
iterate errors, are the major results of this Section. 

THEOREM 3.4. Let 

Then 

s+t < 1, | | E ( 0 ) | | < a . 

(3.13) ||E ( i )-E|| < 

(3.14) ||f ( i )-f|| < 1-
a+ 

(a 

(i) 
(3.15) | I < a.l 

V H - I U W - £ | 

PROOF. From 

| E ( i - 1 ) - E | | , i = 1 M, 

f (i-D •f + 6^ i = 1,...,N , 

E ( M ) - E | 
-1)(l-ta_) * 

i. ( l _ 1 )-u| | + e M > N , i = 1,...,?, 

+ I k L I | , E ( M ) . E | U 

( I - A T E ( i - 1 ) ) E ( i ) = A R > L 
(I-A,E)E = A R, 

we have 

Hence 

0 = E ( i ) - E - A L ( E ( i - 1 ) E ( i ) - EE), 

( I - V ^ ^ E ^ - E) = A L ( E ( i - ] ) - E)E. 



14 

. „ J | A L | | . | | E | | . | [ E » - " - E | 
E v " - E £ 

1 - l|A T||-||E ( i" 1 ) 

Li 

+ 
which establishes (3.13). 

From 

( I - A ^ f ^ v - A ^ 1 - ^ , 

(I - A E)f = v - A f, 
we have 

(I - A T E ( M ) ) ( f ( i ) - f ) = -A T(f ( i _ 1 )-f) + A T ( E ( M ) - E)f. 

Hence 

From (3.8), 
r ( U ; l l f » - » - f l l , llvll-llE^-Ell 
i "ill < a^ + (a -1)(1-ta ) ' 

which establishes (3.14). 

From 

u<A> - f ( N ) - K ^ V 1 " ^ , 

u = f - E u, 

we have 

u ( i ) - u - - E W ( u ^ - u ) - ( E ( M ) - E)u + f ( N ) - f. 

Hence 



|u ( i )-ull < a l l u " " " ^ ! 

+ ||E<»-E|| + ||i ( N )-f|l, 

which establishes (3.15). 

The next theorem gives bounds on the iterate errors in 
terms of the initial errors. The bounds depend only on the  
diagonal dominance, the initial errors and the final accuracy  
desired. They are independent of the size of the system. 

THEOREM 3.5. Let 

Then 

s+t < 1, || E ^ | | < a . 

(3.16) ||E ( i )-E|| <( ̂  ||E ( 0 )-E||, i = 1,...,M, 

(3.17) Mf ( i ) -fn < ^ y ||l(0)-f|| 

M 
a \ /a +a \ 
. + A ( . > ) l M I - l l . - - . H . 

i = 1,...,N, 

(3.18) ||u ( i )-u|| < al_ ||u ( 0 )-u|| 

a 2 a 2 /a \ M 

+ Jh) IHI- IU ( , ) -!|I. 

(l-a+) (l-a_) \ +/ 

PROOF. Equation (3.16) follows easily from (3.13). To obtain 



(3.17), we use (3.14) to get 

i ( i ) - £ l i < " f 

d-a" 1) 
l l ^ ' - i l l ^ - A 

(1-a + ) 

< - l - l k < 0 ) - i l l + g f • 

Now 

and the result follows. 

To obtain (3.18), we use (3.15) to get 

Now 

I (i) I , ^ i j| (0) .. M,N |u -u j j < a_ I |u -u I J + i Ja 

!vl|.||E ( 0 )-E| 
(a +-D 

2 1-s-t 

and the result follows after some algebraic manipulation. 

The Parallel Gauss algorithm is finite in the following 
sense. Since 

e 1
( l ) = s 1 = e 1 , 

the first component of - E is zero. It can be shown that 
,this implies 

(3.19) E ( l ) - E « 0, 1 £ m-2. 

I f the iteration for E ^ is carried out until (3.19) holds, 



then 

implies that 

(3.20) f (i) - f = 0, i £ m-1. 

If the iteration for £ 
then 

(i) is carried out until (3.20) holds, 

u (i) « f = u m m m 
implies that 

(3.21) u ( l ) - u = 0, i :> m-1. 

Thus if each of the three iterations which comprise paral­
lel Gauss are carried to completion, the algorithm is finite. 
This fact is of course not of algorithmic interest. What is 
important is that P, M, N can be chosen so that each iteration 
is norm reducing. 

To see this consider the inequalities of Theorems 3.4 and 
3.5. The E iteration is always norm reducing. The u iteration 
is norm reducing while 

Fix P. Choose M, N so that (3.22) holds for i £ P. Equations 
(3.15) - (3.17) show this can always be done. The £ iteration 
is norm reducing while 

Choose M 1 £ M such that (3.23) holds for i * 1,...,N. With 
this choice of P, M 1 , N, all three iterations are norm reducing. 

The rates of convergence are determined by a , a ^ . We 
expect these quantities to increase as s and t increase. That 
this is indeed the case is the content of the following theorem. 
Since the results are easily obtained from calculus, the proof 
is omitted. 

( 3 - 2 2 ) e M , N < M E 
(i-1) -u|| d - a ) . 

(3.23) 6 M, < ||f' (i-D 

THEOREM 3.6. Let 



s + t < 1. 

Then 
a 
— is a monotonically increasing function of st. 

For s fixed, a and a + are monotonically increasing func­
tions of t. 

For t fixed, a and are monotonically increasing func 
tions of s. 

To get some feel for the size of a , a +^, a a +^, take 

(3.24) s = t « .4, s+t = .8. 

Then 

Hence if the system has the diagonal dominance of (3.24), each 
E iteration gains two bits while each f or u iteration gains 
approximately one bit. 

A stability analysis of the Parallel Gauss algorithm has 
not yet been performed. We shall show that under our assump­
tions no pivoting is required for the Sequential Gauss algor­
ithm, which leads us to expect that Parallel Gauss also has 
desirable stability properties. 

THEOREM 3.7. Let 

s+t < 1. 

Then 

where for convenience we define e^ = 0. 

PROOF. 
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If 

(3.25) t = s 

our results simplify. In particular, (3.25) holds if s^ = t ^, 
which holds for symmetric matrices. One may easily verify tne 
following 

THEOREM 3.8. Let 

t = s, s < 

Then 
1 a - 2 

(3.26) 1- « a , — - a . 

+ " + 

Theorem 3.5 simplifies to 

THEOREM 3.9. Let 
t - s, s < l , | | E ( 0 ) | | < a _ . 

Then 

||E ( i )-E|| < a 2 i | | E ( 0 ) - E | | , i - 1 , . . „ M , 

2M+1 
M l ( i ) - l l l <ai||f ( 0 )-f|| +^ 2T-||v||.||E ( 0 )-E||, 

i = 1,•••,N« 

a N 1 a 4 

||u ( i )-u|| < at||u ( 0>-u|| +!= r||f(°).f|| + - ^ _ 4 a 2 J | v | | . 
( l - a _ ) 

| | e ( 0 ) - e | | , i = i , . . . , p . 

4. ANALYSIS OF PARALLEL LR ALGORITHM 

We turn to the problem of calculating only the LR decom­
position of A without solving the linear system Au - v. A 
Parallel LR decomposition was defined in Section 2. Our basic 
assumption in this section is 4st < 1. Since 

4st £ (s+t) , 



this is a weaker condition than s+t < 1 . The following theorem 
plays the analogous role that Theorem 3.1 played in the analysis 
of Parallel Gauss. 

THEOREM 4.1. Let 

4st < 1. 
2 

Then f(x) « tx - x + s has two real distinct zeros a and a 
and " + 

(4.1) 0 < s < a_ < 2s < a + , 

(4.2) t < ~— < 2t, 
a+ 
a 

(4.3) st < — < 4st < 1 # a + 
PROOF. The inequalities (4.1) follow from 

f(s) > 0, f(2s) < 0, f(«) > 0. 

The inequalities (4.2) follow from 

f^—) < 0, f(1) > 0, 2s < ]— . 

Finally, (4.3) follows from (4.1) and (4.2). 

COMMENT, As in Theorem 3.1, we conclude that a a ^ < 1. How 
ever, we cannot conclude a < 1, a^ 1 < 1. 

The following theorem is the counterpart of Theorem 3.2. 
Since the proof is the same as for Theorem 3.2, with Theorem 
4.1 replacing Theorem 3.1, it is omitted. 

THEOREM 4.2. Let 

4st < 1. 

Then 

||E||<a_, 

a n d Sequential LR is well-defined. 



The proofs of the next two theorems are analogous to the 
proofs of Theorems 3.3 and 3.4 and are therefore omitted. 

THEOREM 4.3. Let 

4st < 1, | | E ( 0 ) | | < a_. 

Then 

| | E ( 1 ) | | < a _ 

and Parallel LR is well-defined. 

THEOREM 4.4. Let 

4st < 1, | | E ( 0 ) | | < a_. 

Then 

l|E ( i )-E|| < ^ | | E ( i - 1 ) - E | | . 

From Theorem 4.1, a a^ < 1 # Hence the E iteration is 
norm-reducing. 

5. PARALLEL ALGORITHMS BASED ON ADDITIVE SPLITTINGS 

The Parallel LR and Parallel Gauss Algorithms are based on 
the "multiplicative splitting11 

A = LR • 

We now define parallel algorithms based on the "additive split­
ting" 

A = A L + I + A R, 

where A and A R are defined as in Section 2. We consider four 
parallel algorithms: Jacobi, JOR (Jacobi Ovter-Relaxation), 
Parallel Gauss-Seidel, Parallel SOR (Parallel Successive Over-
Relaxation). 

Jacobi 

(5.1) u ( i + 1 ) = -(A L + A R) u ( i ) + v. 



JOR 
(5.2) u ( L + 1 ) = [(l-u))I-u)(AL + A R ) ] u ( i ) + u)v, o)> 0 

^ These two classic algorithms are both parallel since, when 
u is known, all components of u (i+D may be calculated in 
parallel. 

We now define parallel analogues of Gauss-Seidel and SOR 
iteration. 

Parallel Gauss-Seidel  

Outer iteration: 

(5.3) (I + A R ) u ( i ) = - A L u ( i , - 1 > + v, 

Let 
£ ~ -A_ u + v, ^ = u 

Note that the components of ẑ  can be formed in parallel. Then 

(I + A )y = z • R ^ -

We solve this bidiagonal system by the following parallel itera 
tion. 

Inner Iteration: 

(5.4) Z ( J ) - « - A ^ J " " . 

Observe that (5.4) is a Jacobi iteration for the solution 
of the bidiagonal system. Furthermore, this iteration has the 
same form as the third iteration of the Parallel Gauss Algor­
ithm defined by (2.20). 

Parallel SOR  

Outer Iteration: 

(5.5) (I + u A R ) u ( l ) = [(l-u))I - ttAj^1"1* + wv, o)> 0. 

Let 
z^ = [(1-03)1 - u)A L]u ( l - 1 ) + u o v, y^ = u ( l ) . 



Thus 

We solve this bidiagonal system by the following parallel itera­
tion. 

Inner Iteration: 

(5.6) 4 « - z - o)A y (j-D 

We now have defined parallel algorithms based on multipli­
cative and additive splittings. In the next section we give 
theoretical comparisons among these algorithms for a model prob­
lem. 

6. COMPARISON OF PARALLEL ALGORITHMS ON A MODEL PROBLEM 

We compare the parallel algorithms we have defined on the 
two parameter model problem 

s.m 

where A is an (m,m) matrix and 0 < s < ^• W e f i r s t dispose of 
JOR by proving that the optimal JOR iteration is Jacobi itera­
tion. We shall let p(B) denote the spectral radius of a matrix 
B. Let 

(6.1) J^ - (l-o>) I - 0)(AL + A R ) # 

THEOREM 6.1. For the model problem 

p(J^) * p(J ]), 0 < a). 

PROOF. Denote the eigenvalues of J, and J by u. and X. re-
i ^ i * 0 ) 1 i 

spectively. Then 



H = 2s cos(^~), i = 1,...,m. 

Let 

Then 

From (6.1), 

^ " c o s ^ ) . 

p(J ) = 2sT). 

Hence 

and 

Furthermore, 

and 

Xj, = 1 - a)(1-p,i). 

X ] « 1 - 0)(l-2sTl) 

| X11 ^ | Xj | » j = 2,... ,m, for 0 < uo < : 1. 

X = 1 - U)(l+2sTj) m 

|\J ^ |Xj|, j = 1,...,m-1, for 1 £ uu. 

It may be verified that for 0 < a) 

max(|xi|, |xj) * 2sT| = p(jp 
and the result follows. 

We compare the following four parallel algorithms: 

Parallel Gauss 
Jacobi 
Parallel Gauss-Seidel 
Parallel Optimal SOR 

We then compare the best of the parallel algorithms with the 
Sequential Gauss algorithm. 

We have two types of estimates for how the norm of the er­
ror decreases. For the three iterations which comprise the 
Parallel Gauss algorithm, the errors a satisfy relations of 
the form 

(6-2) * C || C T
( i )||. 

The error formulas for the remaining algorithms are typified 
by the error formula for Jacobi iteration, 



(6.3) o;<i+1> = j ff(i> 

where J = -(A + A ). 
u K 

After I iterations, assume the norm of the error has been 
reduced by 2~ b. Thus 

l | 2

( I ) M =2- b|| 2<°>||. 

For (/"^satisfying a relation of the form (6,2), we estimate the 
number of iterations to reduce the error norm by 2 - b as 

(6.4) I ~ " b 

log C ' 

(In this paper, log denotes logarithm to the base 2.) For 
satisfying a relation of the form (6,3), we estimate 

(6.5) I ~ ^ — . 
log p(J) 

Assume that all arithmetic operations take unit time and that z 
arithmetic operations must be done sequentially per iteration. 
Then the total time T is estimated by 

(6.6) T ~ zl. 

We define the rate of convergence R by either 

R = -log C or R = -log p(J). 

We take 

In 2 = .69 = 2/3. 

We deal with three values of s: s near s small, and 
s - .25. More precisely, 

1• s near Set 

2 2 
(6.7) 1 - 4s = c 

2 
and assume e is negligible compared to unity. 

2 
2 # s small. Neglect s relative to unity. 
3. s - .25. This is an intermediate value of s. 



In the analysis that follows, we assume that the E and £ 
iterations are performed long enough so that the quantities 
and N which occur in Theorem 3.4 are negligible. This is 
equivalent to assuming that (3.16) - (3.18) are replaced by 

M I R E M ||E®-E||, 

We remind the reader of the assumption, stated in the Introduc 
tion, that no overhead is assessed for using m processors or 
for loading vectors of length m. 

We estimate the total time required for our four algor­
ithms over the three values of s. Results are summarized in 
Table 6.1. 

1.1 Parallel Gauss Algorithm, s near 
2 2 Let 1 - 4s = G . Then 

1 V 1-4s2 1 

and 
i 2e 

1 - e
 a - -2e 

— e , — e 4 

a+ a+ 
Assume for simplicity that b is the same in each of the three 
iterations which comprise the algorithm. (NThis would be the 
case if each iteration is done until full machine accuracy is 
achieved and if the initial relative errors are all around 
unity.) 

For the model problem, the Parallel Gauss iterations 
simplify to 

x -1 
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J 8 
:(I-1)X/_S_\ 

u ( i ) . £ ( N ) - e ( M ) u(I.l) 
j J J . J+1 

Since vj/s is independent of i, we shall not count it in our 
iteration costs. 

We have: 

T -b b 0 e iteration: I ~ •= z — 7 — 7 ^ , z = z, l o g ( a y a + ) 3e' 

-b 2 b f iteration: I ~ - / 1 ; r ~ T -> z = 2, - log(l/a ) 3 e' 

T -b 2 b 0 u iteration: I ̂  ~ zr —, z = 2. - log a_ 3 c 

Hence for the Parallel Gauss algorithm, 

T ~ ~~(2 + 2-2 + 2-2) = ̂  K 
1.2 Jacobi algorithm, s near jr. 

For the matrix A , s,m 

p(J) = 2s c o s ( ~ ) 

with s near j and m large, 
3 2 

log p(J) ~ a , 
where 

(6.8) a 2 = e 2 + ( ^ ) 2 . 

For the model problem, Jacobi iteration simplifies to 
(i) , (1-1) 1 (i-IK u. = v. - s(u. ' + u: ' ) . 

J J 3-1 J+l 

Hence 

log p(J) 3 2 a 
4 b _ 
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a n d 4b 
T ~ -j • 

a 
1.3 Parallel Gauss-Seidel algorithm, s near jr. 

A is irreducible and weakly diagonally dominant. Hence, 
if G dlftotes the Gauss-Seidel matrix, 

p(G) = p 2(J). 

The number of outer iterations is then given by 

-b 2 b 
L ~ log p(G) ~ 3 2 • a 

We next estimate how many inner iterations we must perform for 
each outer iteration. We estimate the rate of convergence of 
the inner iteration by 

R = -log ||AR| J = -log s . 

Hence the number of inner iterations per outer iteration is 

I r+* D 
log S 

and the total number of inner iterations is estimated by 

1 ~ 3 ( a } * 
Since z = 2 for the inner iteration, the total time spent on 
inner iterations is 

T ^ N 2 

T ~ 3 ( a } * 
This dominates the total time required. 
1.4 Parallel Optimal SOR Algorithm, s near j . 

Let Q denote the optimal value of the over-relaxation 
parameter uu. Then (Young [71]), 

n 1 . 

Let G^ denote the optimal SOR matrix. Then 



n ( c x « (J) p(G ) « / 2 # 

" 1-h/l-p (J) 

Note that Q is the optimal parameter for the outer itera 
tion only. (There is no inner iteration for sequential SOR.) 
Numerical experimentation indicates that adjusting u) so as to 
optimize over outer and inner iterations does not significant 
ly affect the results. 

Now, 

The number of outer iterations is given by 

-b b I ~ log p(G n) 3 a
 # 

The rate of convergence of the inner iteration is 

R = -log ||n A || = -log Qs. 

Hence 

where as before 

3 

a - € + (jjpp) . 

The total number of inner iterations per outer iteration is 

T 2 b 
3 a 

and the total number of inner iterations is 

Since z = 2, the total time for inner iterations is 

2.1 Parallel Gauss algorithm, s small. 

For s small, 

1 a - 2 a _ ~ s , — ~ s , — ~ s . 



Let 

(6.9) [i = -log s. 
Then we have: 

e iteration: I ~ ~-, 2 = 2, 

b 
f iteration: I ~ —, z = 2, 

u iteration: I ~ ~, z = 2• b 

Hence 

T ~ 5^ . 

2.2 Jacobi algorithm, s small. 

Since 

p(J) = 2s cos(-~) ~ 2s, m-r1 

The analysis of Parallel Gauss-Seidel and Parallel SOR for 
the case of s small introduces no new ideas and is omitted. 

The analysis of the four algorithms for s =.25 is straight­
forward and is also omitted. 

The results are summarized in Table 6.1. We repeat the 
definitions of the quantities appearing in the Table. 

b : I 1 ^ I = 2 " b I IsP̂  I » w h e r e denotes error at ith 
stage and I is the total number 
of iterations. 

e: e = 1 - 4s . 

cr: - + (jj^f^« Since m is large, a ~ e unless c is 
" » ~ T 

very small (s very close to j:). 

|jt = -log s. 

The following conclusions concerning the model problem may 
be drawn from Table 6.1. 



1. Parallel SOR is superior to Parallel Gauss-Seidel. 

2. Neither of these algorithms is competitive with Jacobi 
or Parallel Gauss, (Note that we draw this conclusion 
only for the particular Parallel Gauss-Seidel and Par­
allel SOR defined in this paper. It need not of course 
apply to other parallel SOR algorithms which might be 
defined.) 

3. For s small (the matrix very diagonally dominant), 
Jacobi is somewhat superior to Parallel Gauss. 

4. For moderate values of s (s -^.25), Parallel Gauss is 
about equal to Jacobi. 

5. For s close to |* (very little diagonal dominance), 
Parallel Gauss is far superior to Jacobi. 

Table 6.1. Estimates of Total Time 

1 
s - j s small s = .25 

Parallel Gauss 10 b 
3 e 5 * 

Jacobi 4 
* 2 

a 

3 b 

Parallel Gauss-Seidel b 2 

MX^-I ) 

Parallel Optimal SOR H' 2 
b 2 

4 

The switch-over point between Jacobi and Parallel Gauss 
is determined by 

(6.10) 5 3b 
TT log a_ 

For m large, equality holds for s = .19. 

log(2s cos(j^y)) 



Thus for s ^ .19 Jacobi is the best of our parallel al­
gorithms while for s ^ .19 Parallel Gauss is best. This result 
agrees with our intuition since multiplicative splitting is 
"more implicit11 than additive splitting and is therefore super­
ior for matrices with little dominance. 

Finally we compare the best parallel algorithm with the 
Sequential Gauss. For the model problem Sequential Gauss re­
quires total time 

(6.11) T ~ 7m. 

For s small, Jacobi is clearly superior to Sequential Gauss 
since 

3 b s 7 — T < 7m, 

for reasonable b and almost all m. For s near ^, we compare 
Parallel and Sequential Gauss. The times are equal when 

(6.12) ~ - « 7m. 

If m is large, this will only hold when s is very close to l/2. 
For example, if m = 1000, b = 27, then s * .499959. Thus, 
under the assumptions of this paper, Parallel Gauss is faster 
than Sequential Gauss until s is very close to l/2. 

7. NUMERICAL EXPERIMENTATION 

Extensive testing on the Jacobi and Parallel Gauss algor­
ithms was performed for the model problem with m = 100 and 1000 
and a wide range of values of s. All testing was carried out 
on the CMU Computer Science Department's PDP-10 in APL. On 
this sequential machine, the vectors are generated one compon­
ent at a time. Iteration counts for a parallel or vector com­
puter are obtained by counting the generation of a vector as 
one iteration. 

The numerical results are consistent with the theoretical 
estimates developed in this paper. We limit ourselves here to 
reporting several examples. 

According to (3.13) 

\\lP-z\\ <a 2_ M E ^ - E H . 

In Table 7.1, we exhibit 



I I ^ - E I I / M ^ - E I I , i = 1 IO 
2 

for m = 100, s = .48. Then a = .75, a = .5625. 

Table 7.1. Reduction of ||EP-E|| 

i 1 LL^-ELL/H^-ELL 
1 .47 

CM .51 
3 .54 
4 .55 
5 .55 
6 .56 
7 .56 
8 .56 
9 .56 

10 .56 

The system Au = v is solved by Jacobi and Parallel Gauss 
for m = 100. v. = 1, i = l,...,m. The initial estimate for 
Jacobi is tr = v. The initial estimates for Parallel Gauss 
are ef?)=s s, f$) = v, u(°)= j^O To obtain the "true" solution, 
the system is solved by Sequential Gauss. Iterations are 
terminated when the initial error is reduced by 2 " \ b = 27, 
The total time on a parallel machine is estimated by multiply­
ing the number of iterations by the number of sequential arith­
metic operations per iteration. Results for selected s are 
given in Table 7.2. Total times are underlined. 

Since Parallel Gauss terminates in m iterations, the data 
for Parallel Gauss when s = .49 is obtained with m = 1000. The 
number of iterations is essentially independent of m as long as 
that number is less than m. 



Table 7.2. Total Time for Parallel Gauss and Jacobi 

E Itera­
tions 

f Itera­
tions 

u Itera­
tions 

Total Time 
Parallel 
Gauss 

Jacobi 
Itera­
tions 

Total 
Time 
Jacobi 

s 
.10 3 8 9 40 11 33 

.20 6 11 13 60 20 60 

.24 6 13 13 64 25 75 

.40 13 26 26 130 82 246 

.49 41 79 82 404 705 2115 

These numerical results agree with the theoretical pre­
dictions. For s very small, Jacobi is slightly faster. They 
are equal at s 5 .20, close to the predicted value of s « .19. 
By s = .40 Parallel Gauss is substantially faster and its ad­
vantage increases sharply as s s I is approached. 
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