
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
o f photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

ITERATIVE SOLUTION OF TRIDIAGONAL SYSTEMS
ON PARALLEL OR VECTOR COMPUTERS

J. F. Traub

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

January, 1973
Revised May, 1973

To appear in Complexity of Sequential and Parallel Numerical Algorithms,
Academic Press, 1973.

Part of this work was performed under the auspices of the U.S. Atomic
Energy Commission while the author was a consultant at Lawrence
Livermore Laboratory. Part was performed while the author was a visit*-
ing scientist at the National Center for Atmospheric Research. The
work was also supported by the National Science Foundation under
Grant GJ-32111 and the Office of Naval Research under Contract N00Q14-
67-A-0314-0010, NR 044-422.

ABSTRACT

We study the iterative solution of a tridiagonal linear
system of size m on a parallel or vector computer. Such systems
arise commonly in the numerical solution of partial differential
equations.

The Gauss algorithm takes time linear in m. We intro­
duce a Parallel Gauss iteration and show it can be used to solve a
tridiagonal system in time independent of m. Furthermore, the
error norm is reduced at each iteration step. A Parallel LR
decomposition is also defined.

Parallel Gauss is based on "multiplicative splitting".
We introduce parallel algorithms based on "additive splitting".
These are Jacobi, JOR, Parallel Gauss-Seidel and Parallel SOR.

We compare these parallel algorithms on a model problem
and conclude that JOR, Gauss-Seidel, and SOR are not competitive.
If the matrix has only "limited" diagonal dominance, Parallel
Gauss is far superior to Jacobi. If the matrix is very diagonally
dominant, Jacobi is somewhat better than Parallel Gauss.

TABLE OF CONTENTS

1. Introduction
2. Parallel LR and Parallel Gauss Algorithms
3. Analysis of the Parallel Gauss Algorithm
4. Analysis of Parallel LR Algorithm
5. Parallel Algorithms Based on Additive Splittings
6. Comparison of Parallel Algorithms on a Model Problem
7. Numerical Experimentation
Acknowledgments
Bibliography

1. INTRODUCTION"

We study the solution of a tridiagonal linear system
Au = v on a parallel or vector computer. Tridiagonal and block
tridiagonal systems arise commonly in the numerical solution of
partial differential equations. We shall report on the exten­
sion of our results to block tridiagonal systems in a later
paper. Stronger results are achieved in the special case of
constant diagonals; we do not report these results here.

A substantial number of tridiagonal systems have to be
solved in the course of solving a partial differential equa­
tion. In regions where the coefficients of the partial dif­
ferential equations are not rapidly varying, the coefficient
matrices of successive tridiagonal systems will enjoy the same
property. This makes the iterative solution of the tridiagonal
systems attractive. Final iterates of the previous system can
be taken as initial iterates of the current system.

Alternatively, tridiagonal systems can be solved by paral­
lel direct methods (Stone [72], Kogge and S^one [72]). We ex­
pect that both parallel direct and parallel iterative methods
will prove useful.

Our interest in parallel algorithms is threefold.

1. Parallel algorithms are needed for some of the com­
puters now becoming available (Carnegie-Mellon C.mmp,

*Part of this paper was first presented at a Colloquium at the
National Center for Atmospheric Research in July, 1972.

Control Data Corporation STAR, ILLlAC IV, Texas In­
strument ASC).

2, Semiconductor technology is near the point where a
small processor can fit in a single integrated-cir-
cuit package. Already, large memory arrays and micro­
processors are being manufactured on a single chip.
Drastic cost reductions are accompanying this minia­
turization and computer systems with a very large num­
ber of processors are becoming practical.

3, Constructive mathematics has always been sequential.
The possibility of concurrent processing is opening up
new worlds of possible algorithms.

The parallel algorithms introduced here can be run on
single instruction stream multiple data stream (SIMD) or mul­
tiple instruction stream multiple data stream (MIMD) machines*
A model of a SIMD machine is given by Kogge and Stone [72].
ASC, ILLIAC IV, and STAR are examples of SIMD machines while
C.mmp is an example of a MIMD computer.

Let the size of the linear system be m. The time esti­
mates presented in this paper assume that the number of pro­
cessors (or the length of the vectors for a vector computer
such as STAR) is also m. If only p processors are available,
time estimates should be multiplied by [m/p]. We neglect the
overhead needed to load vectors or due to using m processors.
Such overhead should not be ignored in applying our conclusions
to a particular machine.

We summarize the results of this paper. For tridiagonal
systems, the Gauss algorithm takes time linear in m. We intro­
duce a Parallel Gauss iteration which permits us to solve a
tridiagonal system in time independent of m. The time depends
only on the diagonal dominance enjoyed by the matrix, the initi­
al errors, and the final accuracy desired. Furthermore, the
error norm is reduced at each iteration step.

Parallel LR decomposition and a Parallel Gauss algorithm
are defined in Section 2. In Section 3 we show that the rate
of convergence of Parallel Gauss depends on the zeros of a qua­
dratic polynomial which can be easily calculated from the given
matrix A. Theorem 3,3 gives bounds on the quantities calculat­
ed during Parallel Gauss while Theorem 3.4 and Theorem 3.5 give
bounds on the error norms. Corresponding results for the Par­
allel LR decomposition may be found in Section 4.

Parallel Gauss is based on "multiplicative splitting11.
In Section 5 we introduce parallel algorithms based on additive
splitting. These are Jacobi (Jacobi is a parallel algorithm),
JOR, Parallel Gauss-Seidel, and Parallel SOR. In Section 6 we
compare these parallel algorithms on a two-parameter model
problem and conclude that JOR, Gauss-Seidel, and SOR are not
competitive. If the matrix has only "limited" diagonal domi­
nance, Parallel Gauss is far superior to Jacobi. If the matrix
is very diagonally dominant, Jacobi is somewhat better than
Parallel Gauss. Both are superior to Sequential Gauss under
the assumptions of the paper. Numerical experimentation is
reported in the concluding section.

2. PARALLEL LR AND PARALLEL GAUSS ALGORITHMS

We begin by deriving the Sequential LR and Sequential
Gauss algorithms in matrix form. We assume that the diagonal
elements of A are non-zero. It is no restriction to assume the
diagonal elements are normalized to unity. Let

(2.1) A = A L + I + A R = LR,

(2.2) L = A L + D, R = I + E,

where D is a diagonal matrix, A is a matrix whose only non­
zero elements are those on the first subdiagonal, A and E are
matrices whose only non-zero elements are those on the first
superdiagonal. Since A E is diagonal,

L

(2.3) D + A LE = I,

(2.4) DE - A R.

Hence

(2.5) (I - A LE)E = A R.

To solve Au = v, we write

(A L + D)(I + E)u = v.

Define jE by (A L + D)f_ = v. Hence

(2.6) (I + A L(I - E))f = v

and
(2.7) (I + E)u = f.

Let

1 s .

(2.8) A =

• • •

t I 1 S 1
m- l m- I

t 1
m

For convenience, define = s = 0. Let
m

(2.9) L

t 2 d 2

t . d . m-l m-l
t d
m m/

(2.10) R

1 e.

1 e
i
1
m-1,

The sequential LR decomposition is defined

Sequential LR

(I - A LE)E= A R ,

D = I - A L E .

In components,

e.
J

2, .. . ,m-l •

The Sequential Gauss algorithm for the solution of Au = v
is defined by equations (2.5) - (2.7). We repeat the defini­
tion here.

Sequential Gauss

(2.11) (I - A LE)E = A R >

(2.12) (I + A L(I - E))f = v,

(2.13) (I + E)u = f.

In components,

s .
e i = *v e i = i-t i. »J = 2>--->m-i>

J J J-1
v.-t.f

fi B v , f - , 3 I J " , j = 2,...,m,
' J j-1

u = f , u , = f . -e ,u , j = m-l,...,1.

The component representation is well-known (Young [71,
Section 14.2]). Clearly the LR and Gauss algorithms are se­
quential. We now define a Parallel LR and two Parallel Gauss
iterations.

Parallel LR

Let E ^ be given. Then

(2.14) (I - A L E (i " 1)) E (i) = A R , i = 1,...,M,
(M)

(2.15) D = I - A^E .
Let the non-zero elements of E ^ be labeled e | > • • • >em-i •
Then in components,

(0) . . 0 • e^ given, j = 2,...,m-l,

(2.16) e (i)
J 1-t.e

d 1 = i,

(2.17) d. = 1-t.e^>, j = 2,..., m.

The Parallel Gauss algorithm for the solution of Au = v is de­
fined by

Parallel Gauss

Let E (° \ f (° \ u (0) be given. Then

(2.18) (I - A L E (i _ 1)) E (i) = A R, i = 1,...,M, R'

(2.19) (I - A K (M >) f ^ = v . A f C i - D , i m } N

(2.20) u (i) - f<N> - E ^ V 1 - ^ , i - , p.

In components,
(0) .

e.. given, j = 2,...,m-l,

e l (l > = s
7 > i = 0,...,M, (i) S •

< 2' 2 1> e
i

1 " /JTjy, i = 1,...,M, j = 2,...,m-l.

given, j = 2\ ...,m,

/4\ v.-t.f. ,
(2.22) f < l } = -J 1 .1-1

f(i) .

(i-1)

1 vl = v i = 0,...,N,

(M) » * ~ 1»...,N, j = 2,...,m. 1-t.e. ;
J J - l

u . given, j = 1...... ,m-l ,

^ = fm> 1 " °. 1>-"> P>

(2.23) «<*> - f < N) - e ^ u ^ , i - 1.....P, j = l,...,m-1.

This is a parallel algorithm since all components of
may be computed in parallel from the components of E ^ ~ ^ . The
following variation of the Parallel Gauss algorithm can also be
defined. It differs from the algorithm defined above in that
the E, u iterations are done simultaneously.

Parallel Gauss Variation

Let E^°\ f}°\ u ^ be given. Then for i = 1,...,M,

(I - A L E < l - ' >) E (i » - A , ,

a - o C ' i f ' 1 ' . , - . / - " ,
JLi Li

„(i) = i (i) _ E(i)„(i-D.

In this paper we shall not analyze this variation.

3. ANALYSIS OF THE PARALLEL GAUSS ALGORITHM

The rate of convergence of Parallel Gauss depends on the
zeros of a quadratic polynomial. Properties of the zeros are
given by Theorem 3.1. Sufficient conditions for Sequential
and Parallel Gauss to be well-defined and bounds on quantities
occurring in these algorithms are covered by Theorems 3.2 and
3.3 while Theorems 3.4 and 3.5 give bounds on the error norms.

At the end of the Section we analyze norm reduction, prove
monotonicity properties of the iteration rates of convergence,
briefly discuss stability, and simplify the main results for an
interesting special case.

We use the vector norm

11*11 B I k l L " m a x K l
j=l,.,,,m

and the matrix norm
m

I N I - I M L = max S |a |.
i = l . . ,m j=l

Note that for a matrix such as A R , which has only one non-zero
diagonal,

||AR|| = max |s |
j=l,...,m

which is the norm of a vector with components s-|>***> s
m*

Let

(3.1) s = ||AR|| = max | s | ,
j=l,...,m

(3.2) t - ||AL|| » max |t.|.
j=l,...,m J

If s or t were zero, A would be bidiagonal rather than tridi-
agonal. Hence we assume throughout this paper that st > 0.

Define

(3.3) f(x) = tx 2 - x + s,

The zeros of this quadratic play a key role in the analysis of
the Parallel Gauss algorithm. Some of the properties of the
zeros are covered by the following theorem, additional proper­
ties are given at the end of this Section and at the beginning
of Section 4.

2
THEOREM 3.1. Let s+t < 1. Then F(x) « tx - x + s has two
real distinct zeros

l^f^st 1+A/l^4st
a - * 2t ' a + = Tt '

and

(3.4) 0 < s < a _ < s + t < 1 < a + ,

(3.5) t < a"1 < s + t < 1,

a . 2
(3.6) st < 5~ < (s+t) < 1.

PROOF. Since
1 > (s+t) ^ 4st,

the zeros are real and distinct. The inequalities (3.4) follow
from

f(s) > 0, f(s+t) < 0, f(1) < 0, f(oo) > 0.

The inequalities (3.5) follow from

f(sTF> < °« f (r } > °-

Finally, (3.6) follows from (3.4) and (3.5).

In the following theorems we shall assume

l|ALM + ||AR|| = s+t < 1.

This is a stronger assumption than the usual (Young [71, Sec­
tion 14.2]) diagonal dominance condition. We could refine our
assumption and obtain partial conclusions but this would ob­
scure our primary focus on the Parallel Gauss algorithm. How­
ever, in Section 4 we shall use the weaker condition 4st < 1
in our study of the Parallel LR algorithm. We begin by estab­
lishing bounds on the quantities occurring in the Sequential
Gauss algorithm.

THEOREM 3.2. Let
s+t < 1.

Then

(3.7) ||E|| < a_,

Sequential Gauss algorithm is well-defined,

(3.« ||f|| <rU$r>.

(3-9) Ikl! < j ^ .

PROOF. We establish the bound on ||E|| by showing |e.| < a ,
i = 1 ,... ,m-1 . Note that | e^ | = | ŝ | £ s < a_ by definition
and Theorem 3.1. Assume |e^ | < a . Then

which completes the induction.

To establish the second conclusion, note that the Sequen­
tial Gauss algorithm is well-defined if D = I - A^E is non-
singular, that is, if ||A EJ | < 1. Now

||A LE|| £ ta_ < 1

by Theorem 3.1.

To establish the bound on f, from (2.12),

l i l 1 S I-||A L(I-E)|| < T - t o + T T *

To establish the bound on u, from (2.13),

< JLLtl

<

1 f l
1- 1

(1-a)(1-t(1+a)) 1-s-t #

The next theorem gives analogous results for the Parallel
Gauss algorithm.

THEOREM 3.3. Let

s+t < 1, | | E (0) | | < a_.

Then

(3.10) | | E (i) j | < a_, i = 1,...,M,

Parallel Gauss algorithm is well-defined,

(3.12) | | u (i) | | < M l + Uf^hi + a i , | u (0) | | . i - 1 P .
a;(l-a)

PROOF. The bound on | J E ^ | | is established by induction. By

hypothesis, | | E ^ | | < a . Assume ||e^"~''^|| < a . Then from
(2.18),

1-||A TE U n \ \ 1 t a -

To show that the algorithm is well-defined, observe that
I - A^E^ 1' is non-singular since

| | A E (l) | I < ta < 1.

To establish the bound on | | f ^ | | , from (2.19),

Mi (i) H ^ I M L + T^a-lli (i" 1)ll

M L + ! _ 11fCi-i>,
ta + a + M - I

Hence

£ < o „ . M L (^ V l j p
+ \l-a / a^

, N * i i , I U< 0) "
ta^l-a" 1) a 1

I UN + l l f (0)

l-t(1+a) i

To establish the bound on | | u ^ | | , from (2.20),

Then

| u W) H s l | f (K) l l + l l E ^ I I • l l u * 1 - " ;

|a<l)|| <UAi+ ||E«)||i.||u<°>||.

From (3.10), (3.11),

13

a;<1-a)

COMMENT. Since a+ < 1, a_ < 1, this shows that the bounds on
L » H. a r e "close" to those on f, u.

The next two theorems, which give upper bounds on the
iterate errors, are the major results of this Section.

THEOREM 3.4. Let

Then

s+t < 1, | | E (0) | | < a .

(3.13) ||E (i)-E|| <

(3.14) ||f (i)-f|| < 1-
a+

(a

(i)
(3.15) | I < a.l

V H - I U W - £ |

PROOF. From

| E (i - 1) - E | | , i = 1 M,

f (i-D •f + 6^ i = 1,...,N ,

E (M) - E |
-1)(l-ta_) *

i. (l _ 1)-u| | + e M > N , i = 1,...,?,

+ I k L I | , E (M) . E | U

(I - A T E (i - 1)) E (i) = A R > L
(I-A,E)E = A R,

we have

Hence

0 = E (i) - E - A L (E (i - 1) E (i) - EE),

(I - V ^ ^ E ^ - E) = A L (E (i -]) - E)E.

14

. „ J | A L | | . | | E | | . | [E » - " - E |
E v " - E £

1 - l|A T||-||E (i" 1)

Li

+
which establishes (3.13).

From

(I - A ^ f ^ v - A ^ 1 - ^ ,

(I - A E)f = v - A f,
we have

(I - A T E (M)) (f (i) - f) = -A T(f (i _ 1)-f) + A T (E (M) - E)f.

Hence

From (3.8),
r (U ; l l f » - » - f l l , llvll-llE^-Ell
i "ill < a^ + (a -1)(1-ta) '

which establishes (3.14).

From

u<A> - f (N) - K ^ V 1 " ^ ,

u = f - E u,

we have

u (i) - u - - E W (u ^ - u) - (E (M) - E)u + f (N) - f.

Hence

|u (i)-ull < a l l u " " " ^ !

+ ||E<»-E|| + ||i (N)-f|l,

which establishes (3.15).

The next theorem gives bounds on the iterate errors in
terms of the initial errors. The bounds depend only on the
diagonal dominance, the initial errors and the final accuracy
desired. They are independent of the size of the system.

THEOREM 3.5. Let

Then

s+t < 1, || E ^ | | < a .

(3.16) ||E (i)-E|| <(̂ ||E (0)-E||, i = 1,...,M,

(3.17) Mf (i) -fn < ^ y ||l(0)-f||

M
a \ /a +a \
. + A (. >) l M I - l l . - - . H .

i = 1,...,N,

(3.18) ||u (i)-u|| < al_ ||u (0)-u||

a 2 a 2 /a \ M

+ Jh) IHI- IU (,) -!|I.

(l-a+) (l-a_) \ +/

PROOF. Equation (3.16) follows easily from (3.13). To obtain

(3.17), we use (3.14) to get

i (i) - £ l i < " f

d-a" 1)
l l ^ ' - i l l ^ - A

(1-a +)

< - l - l k < 0) - i l l + g f •

Now

and the result follows.

To obtain (3.18), we use (3.15) to get

Now

I (i) I , ^ i j| (0) .. M,N |u -u j j < a_ I |u -u I J + i Ja

!vl|.||E (0)-E|
(a +-D

2 1-s-t

and the result follows after some algebraic manipulation.

The Parallel Gauss algorithm is finite in the following
sense. Since

e 1
(l) = s 1 = e 1 ,

the first component of - E is zero. It can be shown that
,this implies

(3.19) E (l) - E « 0, 1 £ m-2.

I f the iteration for E ^ is carried out until (3.19) holds,

then

implies that

(3.20) f (i) - f = 0, i £ m-1.

If the iteration for £
then

(i) is carried out until (3.20) holds,

u (i) « f = u m m m
implies that

(3.21) u (l) - u = 0, i :> m-1.

Thus if each of the three iterations which comprise paral­
lel Gauss are carried to completion, the algorithm is finite.
This fact is of course not of algorithmic interest. What is
important is that P, M, N can be chosen so that each iteration
is norm reducing.

To see this consider the inequalities of Theorems 3.4 and
3.5. The E iteration is always norm reducing. The u iteration
is norm reducing while

Fix P. Choose M, N so that (3.22) holds for i £ P. Equations
(3.15) - (3.17) show this can always be done. The £ iteration
is norm reducing while

Choose M 1 £ M such that (3.23) holds for i * 1,...,N. With
this choice of P, M 1 , N, all three iterations are norm reducing.

The rates of convergence are determined by a , a ^ . We
expect these quantities to increase as s and t increase. That
this is indeed the case is the content of the following theorem.
Since the results are easily obtained from calculus, the proof
is omitted.

(3 - 2 2) e M , N < M E
(i-1) -u|| d - a) .

(3.23) 6 M, < ||f' (i-D

THEOREM 3.6. Let

s + t < 1.

Then
a
— is a monotonically increasing function of st.

For s fixed, a and a + are monotonically increasing func­
tions of t.

For t fixed, a and are monotonically increasing func
tions of s.

To get some feel for the size of a , a +^, a a +^, take

(3.24) s = t « .4, s+t = .8.

Then

Hence if the system has the diagonal dominance of (3.24), each
E iteration gains two bits while each f or u iteration gains
approximately one bit.

A stability analysis of the Parallel Gauss algorithm has
not yet been performed. We shall show that under our assump­
tions no pivoting is required for the Sequential Gauss algor­
ithm, which leads us to expect that Parallel Gauss also has
desirable stability properties.

THEOREM 3.7. Let

s+t < 1.

Then

where for convenience we define e^ = 0.

PROOF.

19

If

(3.25) t = s

our results simplify. In particular, (3.25) holds if s^ = t ^,
which holds for symmetric matrices. One may easily verify tne
following

THEOREM 3.8. Let

t = s, s <

Then
1 a - 2

(3.26) 1- « a , — - a .

+ " +

Theorem 3.5 simplifies to

THEOREM 3.9. Let
t - s, s < l , | | E (0) | | < a _ .

Then

||E (i)-E|| < a 2 i | | E (0) - E | | , i - 1 , . . „ M ,

2M+1
M l (i) - l l l <ai||f (0)-f|| +^ 2T-||v||.||E (0)-E||,

i = 1,•••,N«

a N 1 a 4

||u (i)-u|| < at||u (0>-u|| +!= r||f(°).f|| + - ^ _ 4 a 2 J | v | | .
(l - a _)

| | e (0) - e | | , i = i , . . . , p .

4. ANALYSIS OF PARALLEL LR ALGORITHM

We turn to the problem of calculating only the LR decom­
position of A without solving the linear system Au - v. A
Parallel LR decomposition was defined in Section 2. Our basic
assumption in this section is 4st < 1. Since

4st £ (s+t) ,

this is a weaker condition than s+t < 1 . The following theorem
plays the analogous role that Theorem 3.1 played in the analysis
of Parallel Gauss.

THEOREM 4.1. Let

4st < 1.
2

Then f(x) « tx - x + s has two real distinct zeros a and a
and " +

(4.1) 0 < s < a_ < 2s < a + ,

(4.2) t < ~— < 2t,
a+
a

(4.3) st < — < 4st < 1 # a +
PROOF. The inequalities (4.1) follow from

f(s) > 0, f(2s) < 0, f(«) > 0.

The inequalities (4.2) follow from

f^—) < 0, f(1) > 0, 2s <]— .

Finally, (4.3) follows from (4.1) and (4.2).

COMMENT, As in Theorem 3.1, we conclude that a a ^ < 1. How
ever, we cannot conclude a < 1, a^ 1 < 1.

The following theorem is the counterpart of Theorem 3.2.
Since the proof is the same as for Theorem 3.2, with Theorem
4.1 replacing Theorem 3.1, it is omitted.

THEOREM 4.2. Let

4st < 1.

Then

||E||<a_,

a n d Sequential LR is well-defined.

The proofs of the next two theorems are analogous to the
proofs of Theorems 3.3 and 3.4 and are therefore omitted.

THEOREM 4.3. Let

4st < 1, | | E (0) | | < a_.

Then

| | E (1) | | < a _

and Parallel LR is well-defined.

THEOREM 4.4. Let

4st < 1, | | E (0) | | < a_.

Then

l|E (i)-E|| < ^ | | E (i - 1) - E | | .

From Theorem 4.1, a a^ < 1 # Hence the E iteration is
norm-reducing.

5. PARALLEL ALGORITHMS BASED ON ADDITIVE SPLITTINGS

The Parallel LR and Parallel Gauss Algorithms are based on
the "multiplicative splitting11

A = LR •

We now define parallel algorithms based on the "additive split­
ting"

A = A L + I + A R,

where A and A R are defined as in Section 2. We consider four
parallel algorithms: Jacobi, JOR (Jacobi Ovter-Relaxation),
Parallel Gauss-Seidel, Parallel SOR (Parallel Successive Over-
Relaxation).

Jacobi

(5.1) u (i + 1) = -(A L + A R) u (i) + v.

JOR
(5.2) u (L + 1) = [(l-u))I-u)(AL + A R)] u (i) + u)v, o)> 0

^ These two classic algorithms are both parallel since, when
u is known, all components of u (i+D may be calculated in
parallel.

We now define parallel analogues of Gauss-Seidel and SOR
iteration.

Parallel Gauss-Seidel

Outer iteration:

(5.3) (I + A R) u (i) = - A L u (i , - 1 > + v,

Let
£ ~ -A_ u + v, ^ = u

Note that the components of ẑ can be formed in parallel. Then

(I + A)y = z • R ^ -

We solve this bidiagonal system by the following parallel itera
tion.

Inner Iteration:

(5.4) Z (J) - « - A ^ J " " .

Observe that (5.4) is a Jacobi iteration for the solution
of the bidiagonal system. Furthermore, this iteration has the
same form as the third iteration of the Parallel Gauss Algor­
ithm defined by (2.20).

Parallel SOR

Outer Iteration:

(5.5) (I + u A R) u (l) = [(l-u))I - ttAj^1"1* + wv, o)> 0.

Let
z^ = [(1-03)1 - u)A L]u (l - 1) + u o v, y^ = u (l) .

Thus

We solve this bidiagonal system by the following parallel itera­
tion.

Inner Iteration:

(5.6) 4 « - z - o)A y (j-D

We now have defined parallel algorithms based on multipli­
cative and additive splittings. In the next section we give
theoretical comparisons among these algorithms for a model prob­
lem.

6. COMPARISON OF PARALLEL ALGORITHMS ON A MODEL PROBLEM

We compare the parallel algorithms we have defined on the
two parameter model problem

s.m

where A is an (m,m) matrix and 0 < s < ^• W e f i r s t dispose of
JOR by proving that the optimal JOR iteration is Jacobi itera­
tion. We shall let p(B) denote the spectral radius of a matrix
B. Let

(6.1) J^ - (l-o>) I - 0)(AL + A R) #

THEOREM 6.1. For the model problem

p(J^) * p(J]), 0 < a).

PROOF. Denote the eigenvalues of J, and J by u. and X. re-
i ^ i * 0) 1 i

spectively. Then

H = 2s cos(^~), i = 1,...,m.

Let

Then

From (6.1),

^ " c o s ^) .

p(J) = 2sT).

Hence

and

Furthermore,

and

Xj, = 1 - a)(1-p,i).

X] « 1 - 0)(l-2sTl)

| X11 ^ | Xj | » j = 2,... ,m, for 0 < uo < : 1.

X = 1 - U)(l+2sTj) m

|\J ^ |Xj|, j = 1,...,m-1, for 1 £ uu.

It may be verified that for 0 < a)

max(|xi|, |xj) * 2sT| = p(jp
and the result follows.

We compare the following four parallel algorithms:

Parallel Gauss
Jacobi
Parallel Gauss-Seidel
Parallel Optimal SOR

We then compare the best of the parallel algorithms with the
Sequential Gauss algorithm.

We have two types of estimates for how the norm of the er­
ror decreases. For the three iterations which comprise the
Parallel Gauss algorithm, the errors a satisfy relations of
the form

(6-2) * C || C T
(i)||.

The error formulas for the remaining algorithms are typified
by the error formula for Jacobi iteration,

(6.3) o;<i+1> = j ff(i>

where J = -(A + A).
u K

After I iterations, assume the norm of the error has been
reduced by 2~ b. Thus

l | 2

(I) M =2- b|| 2<°>||.

For (/"^satisfying a relation of the form (6,2), we estimate the
number of iterations to reduce the error norm by 2 - b as

(6.4) I ~ " b

log C '

(In this paper, log denotes logarithm to the base 2.) For
satisfying a relation of the form (6,3), we estimate

(6.5) I ~ ^ — .
log p(J)

Assume that all arithmetic operations take unit time and that z
arithmetic operations must be done sequentially per iteration.
Then the total time T is estimated by

(6.6) T ~ zl.

We define the rate of convergence R by either

R = -log C or R = -log p(J).

We take

In 2 = .69 = 2/3.

We deal with three values of s: s near s small, and
s - .25. More precisely,

1• s near Set

2 2
(6.7) 1 - 4s = c

2
and assume e is negligible compared to unity.

2
2 # s small. Neglect s relative to unity.
3. s - .25. This is an intermediate value of s.

In the analysis that follows, we assume that the E and £
iterations are performed long enough so that the quantities
and N which occur in Theorem 3.4 are negligible. This is
equivalent to assuming that (3.16) - (3.18) are replaced by

M I R E M ||E®-E||,

We remind the reader of the assumption, stated in the Introduc
tion, that no overhead is assessed for using m processors or
for loading vectors of length m.

We estimate the total time required for our four algor­
ithms over the three values of s. Results are summarized in
Table 6.1.

1.1 Parallel Gauss Algorithm, s near
2 2 Let 1 - 4s = G . Then

1 V 1-4s2 1

and
i 2e

1 - e
 a - -2e

— e , — e 4

a+ a+
Assume for simplicity that b is the same in each of the three
iterations which comprise the algorithm. (NThis would be the
case if each iteration is done until full machine accuracy is
achieved and if the initial relative errors are all around
unity.)

For the model problem, the Parallel Gauss iterations
simplify to

x -1

27

J 8
:(I-1)X/_S_\

u (i) . £ (N) - e (M) u(I.l)
j J J . J+1

Since vj/s is independent of i, we shall not count it in our
iteration costs.

We have:

T -b b 0 e iteration: I ~ •= z — 7 — 7 ^ , z = z, l o g (a y a +) 3e'

-b 2 b f iteration: I ~ - / 1 ; r ~ T -> z = 2, - log(l/a) 3 e'

T -b 2 b 0 u iteration: I ̂ ~ zr —, z = 2. - log a_ 3 c

Hence for the Parallel Gauss algorithm,

T ~ ~~(2 + 2-2 + 2-2) = ̂ K
1.2 Jacobi algorithm, s near jr.

For the matrix A , s,m

p(J) = 2s c o s (~)

with s near j and m large,
3 2

log p(J) ~ a ,
where

(6.8) a 2 = e 2 + (^) 2 .

For the model problem, Jacobi iteration simplifies to
(i) , (1-1) 1 (i-IK u. = v. - s(u. ' + u: ') .

J J 3-1 J+l

Hence

log p(J) 3 2 a
4 b _

28

a n d 4b
T ~ -j •

a
1.3 Parallel Gauss-Seidel algorithm, s near jr.

A is irreducible and weakly diagonally dominant. Hence,
if G dlftotes the Gauss-Seidel matrix,

p(G) = p 2(J).

The number of outer iterations is then given by

-b 2 b
L ~ log p(G) ~ 3 2 • a

We next estimate how many inner iterations we must perform for
each outer iteration. We estimate the rate of convergence of
the inner iteration by

R = -log ||AR| J = -log s .

Hence the number of inner iterations per outer iteration is

I r+* D
log S

and the total number of inner iterations is estimated by

1 ~ 3 (a } *
Since z = 2 for the inner iteration, the total time spent on
inner iterations is

T ^ N 2

T ~ 3 (a } *
This dominates the total time required.
1.4 Parallel Optimal SOR Algorithm, s near j .

Let Q denote the optimal value of the over-relaxation
parameter uu. Then (Young [71]),

n 1 .

Let G^ denote the optimal SOR matrix. Then

n (c x « (J) p(G) « / 2 #

" 1-h/l-p (J)

Note that Q is the optimal parameter for the outer itera
tion only. (There is no inner iteration for sequential SOR.)
Numerical experimentation indicates that adjusting u) so as to
optimize over outer and inner iterations does not significant
ly affect the results.

Now,

The number of outer iterations is given by

-b b I ~ log p(G n) 3 a
 #

The rate of convergence of the inner iteration is

R = -log ||n A || = -log Qs.

Hence

where as before

3

a - € + (jjpp) .

The total number of inner iterations per outer iteration is

T 2 b
3 a

and the total number of inner iterations is

Since z = 2, the total time for inner iterations is

2.1 Parallel Gauss algorithm, s small.

For s small,

1 a - 2 a _ ~ s , — ~ s , — ~ s .

Let

(6.9) [i = -log s.
Then we have:

e iteration: I ~ ~-, 2 = 2,

b
f iteration: I ~ —, z = 2,

u iteration: I ~ ~, z = 2• b

Hence

T ~ 5^ .

2.2 Jacobi algorithm, s small.

Since

p(J) = 2s cos(-~) ~ 2s, m-r1

The analysis of Parallel Gauss-Seidel and Parallel SOR for
the case of s small introduces no new ideas and is omitted.

The analysis of the four algorithms for s =.25 is straight­
forward and is also omitted.

The results are summarized in Table 6.1. We repeat the
definitions of the quantities appearing in the Table.

b : I 1 ^ I = 2 " b I IsP̂ I » w h e r e denotes error at ith
stage and I is the total number
of iterations.

e: e = 1 - 4s .

cr: - + (jj^f^« Since m is large, a ~ e unless c is
" » ~ T

very small (s very close to j:).

|jt = -log s.

The following conclusions concerning the model problem may
be drawn from Table 6.1.

1. Parallel SOR is superior to Parallel Gauss-Seidel.

2. Neither of these algorithms is competitive with Jacobi
or Parallel Gauss, (Note that we draw this conclusion
only for the particular Parallel Gauss-Seidel and Par­
allel SOR defined in this paper. It need not of course
apply to other parallel SOR algorithms which might be
defined.)

3. For s small (the matrix very diagonally dominant),
Jacobi is somewhat superior to Parallel Gauss.

4. For moderate values of s (s -^.25), Parallel Gauss is
about equal to Jacobi.

5. For s close to |* (very little diagonal dominance),
Parallel Gauss is far superior to Jacobi.

Table 6.1. Estimates of Total Time

1
s - j s small s = .25

Parallel Gauss 10 b
3 e 5 *

Jacobi 4
* 2

a

3 b

Parallel Gauss-Seidel b 2

MX^-I)

Parallel Optimal SOR H' 2
b 2

4

The switch-over point between Jacobi and Parallel Gauss
is determined by

(6.10) 5 3b
TT log a_

For m large, equality holds for s = .19.

log(2s cos(j^y))

Thus for s ^ .19 Jacobi is the best of our parallel al­
gorithms while for s ^ .19 Parallel Gauss is best. This result
agrees with our intuition since multiplicative splitting is
"more implicit11 than additive splitting and is therefore super­
ior for matrices with little dominance.

Finally we compare the best parallel algorithm with the
Sequential Gauss. For the model problem Sequential Gauss re­
quires total time

(6.11) T ~ 7m.

For s small, Jacobi is clearly superior to Sequential Gauss
since

3 b s 7 — T < 7m,

for reasonable b and almost all m. For s near ^, we compare
Parallel and Sequential Gauss. The times are equal when

(6.12) ~ - « 7m.

If m is large, this will only hold when s is very close to l/2.
For example, if m = 1000, b = 27, then s * .499959. Thus,
under the assumptions of this paper, Parallel Gauss is faster
than Sequential Gauss until s is very close to l/2.

7. NUMERICAL EXPERIMENTATION

Extensive testing on the Jacobi and Parallel Gauss algor­
ithms was performed for the model problem with m = 100 and 1000
and a wide range of values of s. All testing was carried out
on the CMU Computer Science Department's PDP-10 in APL. On
this sequential machine, the vectors are generated one compon­
ent at a time. Iteration counts for a parallel or vector com­
puter are obtained by counting the generation of a vector as
one iteration.

The numerical results are consistent with the theoretical
estimates developed in this paper. We limit ourselves here to
reporting several examples.

According to (3.13)

\\lP-z\\ <a 2_ M E ^ - E H .

In Table 7.1, we exhibit

I I ^ - E I I / M ^ - E I I , i = 1 IO
2

for m = 100, s = .48. Then a = .75, a = .5625.

Table 7.1. Reduction of ||EP-E||

i 1 LL^-ELL/H^-ELL
1 .47

CM .51
3 .54
4 .55
5 .55
6 .56
7 .56
8 .56
9 .56

10 .56

The system Au = v is solved by Jacobi and Parallel Gauss
for m = 100. v. = 1, i = l,...,m. The initial estimate for
Jacobi is tr = v. The initial estimates for Parallel Gauss
are ef?)=s s, f$) = v, u(°)= j^O To obtain the "true" solution,
the system is solved by Sequential Gauss. Iterations are
terminated when the initial error is reduced by 2 " \ b = 27,
The total time on a parallel machine is estimated by multiply­
ing the number of iterations by the number of sequential arith­
metic operations per iteration. Results for selected s are
given in Table 7.2. Total times are underlined.

Since Parallel Gauss terminates in m iterations, the data
for Parallel Gauss when s = .49 is obtained with m = 1000. The
number of iterations is essentially independent of m as long as
that number is less than m.

Table 7.2. Total Time for Parallel Gauss and Jacobi

E Itera­
tions

f Itera­
tions

u Itera­
tions

Total Time
Parallel
Gauss

Jacobi
Itera­
tions

Total
Time
Jacobi

s
.10 3 8 9 40 11 33

.20 6 11 13 60 20 60

.24 6 13 13 64 25 75

.40 13 26 26 130 82 246

.49 41 79 82 404 705 2115

These numerical results agree with the theoretical pre­
dictions. For s very small, Jacobi is slightly faster. They
are equal at s 5 .20, close to the predicted value of s « .19.
By s = .40 Parallel Gauss is substantially faster and its ad­
vantage increases sharply as s s I is approached.

ACKNOWLEDGMENTS

I want to thank D. Heller, Carnegie-Mellon University,
for performing all numerical experimentation and for his help­
ful suggestions. I want to acknowledge Dr. F. N. Fritsch, Dr.
A. Hindmarsh and Dr. N. Madsen, LLL, Dr. P. Swartztrauber,
NCAR, D. Stevenson and Professor G. W. Stewart, Carnegie-
Mellon University, for their comments.

BIBLIOGRAPHY

Kogge and Stone [72]

Stone [73]

Young [71]

Kogge, P. M. and Stone, H. S., A Paral­
lel Algorithm for the Efficient Solu­
tion of a General Class of Recurrence
Equations. Report 25, Digital Systems
Laboratory, Stanford University, March
1972.

Stone, H. S., An Efficient Parallel Al­
gorithm for the Solution of a Tridiagon-
al Linear System of Equations. JACM, 2J0
(1973), 27-38.

Young, D., Iterative Solution of Large
Linear Systems, Academic Press, 1971.

