
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
o f photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



OPTIMAL ORDER AND EFFICIENCY FOR ITERATIONS 
WITH TWO EVALUATIONS 

H. T. Kung and J. F. Traub 

Department of Computer Science 
Carnegie-MelIon University 

Pittsburgh, Pa. 

November 1973 

This research was supported in part by the National Science 
Foundation under Grant GJ32111 and the Office of Naval 
Research under Contract N0014-67-A-0314-0010, NR 044-422. 



ABSTRACT 

The problem is to calculate a simple zero of a non-linear function f. 

We consider rational iterations without memory which use two evaluations 

of f or its derivatives. It is shown that the optimal order is 2. This 

settles a conjecture of Kung and Traub that an iteration using n evaluations 

without memory is of order at most 2 n"^, for the case n = 2. 

Furthermore we show that any rational two-evaluation iteration of optimal 

order must use either two evaluations of f or one evaluation of f and one of f 1. 

From this result we completely settle the question of the optimal efficiency, 

in our efficiency measure, for any two-evaluation iteration without memory. 

Depending on the relative cost of evaluating f and f 1, the optimal efficiency 

is achieved by either Newton iteration or the iteration ^ defined by 

* ( f ) ( x ) = X - f(x+f(x)1-f(x) • 



1. INTRODUCTION 

We deal with optimal iteration for calculating a simple zero of a scalar 

function f of one variable, which is a prototypical problem of analytic compu­

tational complexity (Traub [72]). Early work on this problem appears in Traub 

[61,64] while recent results are due to Brent, Winograd and Wolfe [73], 

Hindmarsh [72], Rung and Traub [73a,73b], Rissanen [71] and Wozniakowski [73]. 

Surveys of recent advances are given by Traub [73a,73b]. In this paper we 

consider only iterations without memory. 

Kung and Traub [73b] observe that a reasonable efficiency measure of an 

iteration cp with respect to f should be defined as 

log 9p(cn) 

(l.D e(co,f) = v (co,f)+a (cD) 

where p(co) is the order of convergence of cp, v(cp,f) is the evaluation cost 

and a(co) is the combinatory cost. For a given f we are interested in find­

ing an upper bound on e(cp,f) and hopefully obtaining an iteration which 

attains this upper bound. To bound e(cp,f) we must know the dependence of 

p(cp) , v(cp,f), and a(cp) on n, the number of evaluations, 

Let denote the maximal order achievable by an iteration using n evaluations. 

Kung and Traub [73a] conjecture that, for iterations without memory, 

(1.2) P n ^ 2 n ~ \ n = 1,2,... . 

In this paper we study rational two-evaluation iterations without memory. 

We settle the conjecture for n = 2. We could define and analyze rational one-

evaluation iterations without memory and prove the conjecture for n = 1. Since 

the proof follows from straightforward modifications of our theorems, we shall 
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only indicate these modifications in passing. (This is done after Theorem 

4.2.) However, the techniques we use here are suitable for small values of n 

only. It seems to us that the proof of the conjecture for general n will re­

quire the development of new technqiues. 

Furthermore, we show (Theorem 4.1) that for any rational two-evaluation 

iteration cp(f)(x) one of the two evaluations must be of f at the point x. A 

straightforward modification of this theorem proves that any "locally" con­

vergent iteration requires the evaluation of f at x. In Theorem 4.3 we show 

that the second evaluation of a rational two-evaluation iteration of order 

£ 2 must be of either f or f at x + 0(f(x)). 

Let ^(f) denote the optimal efficiency achievable by a rational two-

evaluation iteration without memory. We show that in our efficiency measure, 

given by (1.1), 

E 2 ( f ) = m a x(c(f)+l(f ,)+2 ' 2c(f)+s) * 
Depending on the relative cost of evaluating f or f 1, this upper bound is  

achieved by either Newton iteration 

(1.3) v(f)(x) = x - | ^ } 

or the iteration %, 

(1.4) t(f)(x) - x - f ( ^ f f i . f ( x ) • 

The iteration is derived by Traub [64, Section 8-4],. It may also be derived 

as a special case of Steffensen iteration [33]. 
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Basic concepts are introduced in Section 2. In Section 3 we outline the 

proof of optimal order for n - 2, with the details given in the following 

section. Optimal efficiency is studied in the final section. 
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2. BASIC CONCEPTS 

Let D = (f|f is a real analytic function defined in an open interval 

I^cR (the set of real numbers) which contains a simple zero of f and 

ff does not vanish on I^.}. 

Let cp be a function which maps every f 6 D to cp(f) with the following 

properties: 

1. cp(f) is a function mapping I f c l f into 1^ f for some open 

subinterval I - containing a-. 
cp,r r 

2. cp(f)(af) - af. 

3. There exists an open subinterval - C I containing such 
cp,f cp,f ° f 

0 
that if x.^, = cp(f)(x.) then lim x. = ^ whenever x c i 

4. There exist functions U Q, ^ , U 2 and non-negative integers h, k 

such that 

(i) U Q: R -* R is a rational function, 

(ii) U 1: R 2 -> R is defined formally by 

A i 
(2.1) Un(x,y) = S a (x)y 

0 

where a ^ R -» R is a rational function and â ^ is not 

identically equal to zero for some i > 0, 

3 
(iii) U 2: R -* R is defined formally by 

m ± * 
S b. ,(x)yV 
0 1 , J 

(2.2) U2(x,y,z) = * + ~ ~ 
S c . .(x)y iz j 

0 1 , J 
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where b ., c .: R -» R are rational functions and either 

b or c. .is not identically eaual to zero for some 
1 9 J 1

 5 J 
with j > 0, 

(iv) for all f € D, 
( 2 ' 3 ) cp<f)(x) =U 2(x, f ( h ) ( z 0 ) , f ( k ) ( Z l ) ) , 

where 

(2-4) z Q = U Q(x), 

(2.5) Z l = U^x, f ( h ) ( z 0 ) ) . 

We say cp is a rational two-evaluation iteration without memory» and let CX, 

denote the set of all such cp fs. 

For cp € fi2
 i t : c a n b e s n o w n (Theorem 4.1) that U n(x) s x and h = 0. 

Hence by (2.3) and (2.4), 

m 
S b i J ( x ) f i ( x ) ( f ( k ) ( Z l ) ) j 

(2.6) q>(f)(x) - x + j| 
E c .(x)f 1(x)(f ( k )(z 1))-
0 , : I 1 

By (2.1) and (2.5), 

(2.7) f ( k )(z ) = f ( k )(x) + f ^ ^ x X E a . f 1 ^ ) - * ) + U(k+1) (x) (2 a.f i(x)-x) : 

0 1 z 0 1 

• • • . 

Substituting the righthand side of (2.7) for f ( k ) ( Z l ) in (2.6) we can ex­

press cp(f)(x) formally in terms of x, f(x), f ( k ) ( x ) , f ( k + 1 ) ( x ) , ... . 

Hence we can define functions X.: R -» R such that 
l 
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00 
(2.8) cp(f)(x) = S X.(x)fi(x) 

-00 

where X.(x) depend explicitly on x, f ( k ) ( x ) , f ( k + 1 } (x) ,..., but not on f(x). 

It is often desirable to express cp(f) (x) by (2.8). We call the righthand 

side of (2.8) the canonical form of cp(f)(x). 

By the Taylor series expansion of cp(f) (x) at af we can easily show that 

there exists a non-negative integer p(cp) such that for any f £ D , 

cp(f)(x) - a lim rr = s((p,f) 
~af (x- a f) p ( cP> 

exists for a constant S(cp,f) and S(cp,f) 4 0 f o r a t l e a s t o n e f € D. We 

define p(cp) as the order of convergence (order) of cp. 

We assume that one arithmetic operation takes one unit time. Let 

c ( f ^ ) denote the time needed to evaluate f ^ , i = h,k. Let a(cp) denote 

the time to compute cp(f)(x) from x not counting the time to evaluate f ^ 

and f ̂ . We define the efficiency of cp € Q 2 with respect to f f D as 

log2p(cp) 
e(cp,f) = 77T 7\?) # 

c(f W)+c(f W)+a(cp) 

(See Kung and Traub [73b].) 

We could easily define iteration without memory in a more general setting 

and some of our theorems would still hold. We have chosen here to limit our 

scope because we wish to focus on optimal efficiency. This is settled by 

Theorem 5.1 where the hypothesis of rational two-evaluation iteration is 

crucial. Furthermore, we wish to avoid complicating the proofs. Specifically, 

Theorem 4.1 holds for iterations satisfying properties 2 and 3. Theorem 4.2 
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can be proven for analytic iterations., (See Traub [64, Section 5.1] and Kung 

and Traub [73a, Theorem 6.1].) Furthermore, Theorem 4.4 can be proven for 

analytic two-evaluation iterations if infinite series are used in (2.1) and 

(2.2) . 
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3. OUTLINE OF THE PROOF OF OPTIMAL ORDER 

Since the proofs of the following section are rather detailed, we sum­

marize the ideas and results here. 

In our definition of rational two-evaluation iteration without memory, 

cp(f)(x), we permit any two evaluations of f or its derivatives at any two 

points. In Theorems 4.1 and 4.3 we cut down the "search space11 of evaluations. 

In Theorem 4.1 we show that one of the evaluations must be of f itself at the 

point x. In Theorem 4.3 we show that the second evaluation of a rational two-

evaluation iteration of order ^ 2 must be of either f or ff at the point 

x + 0(f(x)). Thus the only rational two-evaluation iterations of order ^ 2 are 

those using either 

(i) two evaluations of f, or 

(ii) one evaluation of f and one of f 1. 

In Theorem 4.2 we study the functions \^(x) occurring in the canonical form 

of the iteration c p , 
00 

cp(f)(x) = S X.(x) f X(x). 
i=-co 

It is easy to check that the iterations^ and ty, defined by (1.3) and (1.4) 

respectively, both have order 2 and canonical form 

(3.1) x - f(x) + 0(f 2(x)), 

In Theorem 4.2 we show that any iteration with order ^ 2 has canonical 

form of the type given in (3.1) and that any iteration of order ^ 3 has 

canonical form of type given by 
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(3.2) x - f'(x) 
1 f(x) -

2(ff 

f" 
(x)) 

3 f2(x) + 0(f 3(x)). 

(The formulas for X^(x) for iterations of arbitrary order were established 

by Traub [64, Section 5.1] in a somewhat different setting. See also Rung and 

Traub [73a, Theorem 6.1].) 

The main result on optimal order is given in Theorem 4.4 which states 

that a rational two-evaluation iteration without memory has order at most 

two. The proof uses a "comparison series" techique first exploited by Traub 

[61], [64, especially Theorems 5.2, 5.3 and Chapter 9] and also by Rung and 

Traub [73a, Theorem 6.1]. We compare the canonical form of a rational two-

evaluation iteration with the canonical form given by (3.2) and 

show these forms must be different. Hence the order is less than 3 and since 

order is an integer in our setting, this implies the order is at most 2. 
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4. OPTIMAL ORDER 

Theorem 4.1 If cp € t h e n u
0
 i s a n i d e n t i t y function and h • 0. 

Remark. Although in Section 2 it was assumed that U Q is rational, the proof 

of this theorem requires only that U Q be continuous. 

Proof 

Let CD € no, f 6 D and x € 1° Define I cp,r 

(4.1) 

rzQ(x) - U Q(x), 

yj(x) - f ( h )(z Q(x)), 

|^yk(x) = f ( k ) ( Z ] ( x ) ) . 

Then by (2.3), 
cp(f)(x) = U 2(x, yj}(x), y k(x)) 

Therefore 

(4.2) off = <p(f)(off) - U2(af> yJ(orf), jKaf)). 

Suppose that U Q(x) £ x, Then there exists w Q € R such that U Q ( W q ) / w Q. 

By the continuity of U^, there exists an open interval IQ containing w^ such 

that UQ(W) ^ w for all w € IQ. Choose f € D such that cyf = W Q « W e shall 

show that 
co(f)(w) - w 

for all w e IQ fl f , w / w Q. Define z Q(w), YQ(W), z^w) and y k(w) by 

setting x = w in (4.1). Then by (2.3), 
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(4.4) cp(f)(w).« U 2(w, yj(w), y k(w)), 

Since z Q(w) - U Q(w) ± w and it is without loss of generality in assuming w ^ Z ] (w) 

there exists a polynomial q such that 
f q(w) = 0, 
q'(w) « 1, 
(h) 
I 
(k-

(h) , h, N q (z0(w.)) = y Q(w), 

q ( k' ( Z ] (w;) = y k(w) . 

Obviously, q £ D and at = w« By (4.2) with f replaced by q, 

h k (4.5) w = U 2(w, y Q(w), y ^ w ; ) . 

Equations (4.4) and (4.5) imply that cp(f)(w) = w for all w £ L H 1° f. 
0 cp, f 

This is a contradiction since for any £ i ^ such that x^ / â , ^(f)(x^) 

which does not converge to o^. 

Next, we shall show that h = 0. Suppose that h £ 1. Consider any 

f € D and any w £ 1^ ^ Then if h = 1 we define a polynomial q such that 

q(w) = 0, 
00, , .(h), , q (w; = f (w), 

q ( k )( Z l(w)) = f ( k ) ( Z l ( w ) ) , 

and if h > 1 we define q such that 

v 

q(w) = 0, 

q'(w) = 1, 

q (wi = f (w), 

q ( k )( Z l(w)) = f ( k ) ( Z l ( w ) ! . 
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Clearly, in either case, q € D and # = W . Therefore we can again show 

that cp(f) (w) = w for all w € 1° This is a contradiction. • 
c p , r 

To simplify notation, in the rest of the paper we shall often write 

f ( i ) , \ a., b , c for f ( i ) ( x ) , X.(x), a (x), b (x), c .(x), 

respectively. 
Recall that for CD € we can express co(f)(x) by its canonical form, 

i.e., 

(4.6) cp(f)(x) - £ X i(x)f 1(x). 

Theorem 4.2 

1. If p(cp) * 2 then \± = 0 for i < 0, 

X Q = x and \ 1 = -j,. 

If p(co) * 3 then \± - 0 for i < 0, 

\ Q - x X 1 - -J, and X 2 • 
f" 
3 * 

2 f 

Proof 

We shall only prove the second part of the theorem. The first part 

may be proven analogously. 
Define an iteration Y such that for any f € D, 

(4.7) Y ( f M x > = x - f - f 2 -
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lt is well known that p(y) = 3. (For example, see Traub [64, Section 5.1].) 

Define 

(4.8) T(f)(x) = < p ( f W - v(fHx) > 

f 

Then by (4.6) and (4.7), 

(4.9) T(f)(x) = E X f 1" 3 + (X -x)f"3 + (X.+^Jf" 2 + ( X 9 + ^ T ) f " 1 + 2 X.f 1" 3. 
-oo 1 u 1 r z 2f f 3 1 

Suppose that p(co) ^ 3 . Then, since p(y) = 3, (4.8) implies that 

lim T(f) (x) < co 
x-*ryf 

for all f f D , Hence it follows from (4.9) that 

1 f M 

\ ± = 0 for i < 0, X Q = x, X 1 = - j , and X 2 = j . • 

From Theorems 4.1 and 4.2 we can immediately prove the conjecture (1.2) 

for n = 1 as follows: Let cp(f)(x) be a rational one-evaluation iteration 

without memory. Then by a straightforward modification of Theorem 4.1 the 

evaluation must be of f at x. Hence 

cp(f)(x) = H(x,f(x)) 

2 
for some rational function H: R -> R. It follows that the canonical of cp 
cannot be given by 

x - jT£fi- f(x) + 0(f2(x)) 

Therefore, by Theorem 4.2, p(cp) < 2. Since p(cp) is an integer, we have 

p(cp) ̂  1. This proves the conjecture (1.2) for n - 1. 
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Theorem 4.3. 

Let cp € n2

 and p^ ^ 2# Then 

1. k = 0 or 1, 

2. is an identity function. 

Proof 

1. Suppose that k £ 2. Then by (2.7) and (2.8) it is clear that 

\j (x) does not depend on f1 (x) explicitly. Hence by Theorem 4.2, p(co) < 2. 

Thus we have shown the first part of the theorem. 

2. Assume that a Q(x) ^ x. Then the set {x|a0(x)=x} has measure zero. 

Note that 

(4.10) f ( k ) ( Z l ) = f ( k )(a Q(x)) + f ( k + 1 )(a QU))(a 1(x)f(x) + a 2 (x) f 2 (x)+...) 

Suppose that p(cp) ̂  2. 

Case 1: (k = 0). 

Since cp(f) (orf) = 0 and f(o?f) « 0, by (4.10) we have 

a* = or* + 

lb (af)(a0(*f))j 

0 ' 
*f u f ' n . -f0fJ(«f>f<V«f>>J 

Therefore 
m 

rb 0 ) j( a f)f(a 0( a f))J = 0 

for all f 6 D. This implies that 
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1,4.11) b ,(x) = 0, j - 0,...,m. 
V 9 J 

Let r be the largest integer such that 

b . (x) == 0, j = 0,... ,m. r,J 

Then by (4.11) r ^ 0. Clearly, r < m. Note that 

m 
£ b. .(x)f L(x)f j( Z l) - f r + 1(x)B(f)(x) , 
0 ' J 1 

where B(f)(x) = £ b . (x", f 1 (x) f j (z ) . By Theorem 4.2, it is clear 
0<ij<m " " " ^ J 1 

0^ism-r-1 
that 

C P(f)'(FY F) = 0. 

This implies that 

(r+1)fr(a ) f (o-)B(f)((y-) 
(4.12) 1 + — f = 0. 

rc 0 ) j ( (, f)f(a 0( a f))J 

Hence r must be equal to 0. Note that 

Bvf)(arf) - Z b .<<* )f(a <« ) ) J . 
O^j^n ' J 1 U t 

Therefore (4.12) is reduced to 

( 4 , 1 3 > o^ V l'J ( a f ) f' (" f ) + co,j(af>]£(ao(«f»J - 0 

for all f g D. Since for any real number s such that s ̂  a^(s) and any 

real numbers u, v there exists f £ D such that 
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by (4.13), 

f(s) • 0, i.e., off = s, 

f'(s) = u, 
f(aQ(s)) = v, 

2 [b ,(s)u+cn .(s)]vJ = 0 

holds for any s,u,v such that s ̂  a n(s). Therefore 

br+l j ( x ) ' co j ( x ) s °» J B 0,...,m. 

This contradicts the definition of r. 

Case 2: ( k • 1) 
2 

In this case, we substitute f ,(a Q(x))+ f"(a0(x)) (a^x)f(x) + a£(x)f(x) + 

for f'(z^). Then following the same procedure used in Case 1, we obtain 

(4.14) E [b . (oOff 'CofJ + c .(af)]ff(aAct,))3 - 0 
O^j^n f f ° , J f ° f 

rather than (4.13) for all f £ D. By the same reasoning as used before we 

get a contradiction. • 

The main result on optimal order is given by 

Theorem 4.4 

If co is a rational two-evaluation iteration without memory then P(CD) ^ 2 , 

Proof 

Suppose that p(cp) ̂  3. By Theorem 4.3, k = 0 or 1 and ^ = x + a 1 f + 
2 

a„ f + ... . Hence 
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(4.15) f(Z]) = ( i + a i f . ) f + ( a f . A f „ ) f 2 + 

(4.16) f ( Z l ) - f + (a f+a_f2+...)f» + ( ? ^ - A ,2 f • ' • ( a if+a 2f +...)- ±___+ 

- f' + a. jff + (« f»4_Lf...)f2 + _ 

Hence if we substitute the righthand sides of (4.15) and (4.16) for f( 2 

and f'( 2 l ) , respectively, then we can define v. and ^ as follows: 

and 

m 

T.. v.f 1 W 5\jf £(«i> 
m 
S b .f lf o 1 , J 1 

if k = 0, 

if k = 1 

_ -i 

Then by (2.2), 

Hence by Theorem 4.2, 

S c fl£(« ) J 

0 ' J 1 

S c. . f i f ( Z l ) j 

c o(f ) ( x ) = x + 

S v.f 
0 1 

0 1 

if k = 0, 

if k = 1. 

(4.17) 
E v.f 

0 1 

f" 2 -\ f + 0(f J) 
2f ,3 
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Suppose that p>n 1 0 and ^ - 0 for i < n. Then by (4.17) 

(4.18) v. = 0 f<>r 1 < 1 1 + 1 • 

(4.19) f v n + 1 = - V 

(4.20) 2 f 3 v ^ 2 = - V " 2t*2^ 

Case 1: (k - 0) 

It is easy to check that 

r H = c0,0' 

h = c l , o + C 0 , l ( 1 + a l f , ) ' 

»2 " C2,0 + C l , l ( 1 + a l f , ) + C 0 , 2 < 1 + a l f ' ) 2 + C 0 , l ( a 2 f ' + T f,,)> 
.x3 

1*3 " C3,0 + c 2 , l ( 1 + a l f , ) + C l , 2 ( 1 + a l f , ) + C 0 , 3 O + a l f , ) 

(4.21* 
+ c l , l ( a 2 f ' + J- ^ + 2 c 0 > 2 d + a 1 f ) ( a 2 f + f- f") 1 4=11> 

+ 'o,i< a3 f , +V2<" +<r f'" >-

Since p,n ̂  0 and p.. = 0 for i < n, by (4.21) one can easily see that 

(4.22) c. . = 0 whenever i + j < n. 

Hence, 

^ n = C n , 0 + C n - l , l ( 1 + a 1 f ' ) + - + C 0 , n ( 1 + a l f , ) • 

^n+1 = Cn+1,0 T "n.r'-l + c_ ,(l4.,f) + ... + ^ 0 , n + l ( 1 + a i f , ) 

^n+1 

2 
1 

+ ....yv-l1
 £ , , ) + 2 V 2 , 2 ( m i n ( V ' + - f , , ) 

n-1 + ... +nc0)n(Ha1f')u,(a2f'+rfl) 
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Similarly, by (4.18), we also have 

VH = bn+1,0 + ba,1^ 1 + ai f , ) + + b0,n +1 ( 1 + ai f' ) n + 1> 
n̂+2 = bn+2,0 + b

n +1,1 ( 1 + al f*> + — + b 0 , n + 2 ( 1 + a i f ' ^ 
2 a. 2 

+ b n , 1 ^ 2 f ' + r*"' + 2 b n - l , 2 ( 1 + a i f , ) ( a 2 f ' + F"^ 
2 a. 

+ ... + <«*-1)b 0 f l r i. 1(1+a 1f') n(a 2f. + f" 

From (4.19>, 

( 4 ' 2 3 ) b n + 1 , 0 f , + b n , 1 ° + a 1 f ' ) r 

= " [ c n , 0 + C n - 1 , 1 O + a 1 f , ) + + C 0 , n ( 1 + a l f ' ) n i -

dv (4.23) it is clear that 

(4.24) j- 0. 

Also comparing the coefficients of f , n + 2 , f , l l + \ f , n in (4.23), we get 

( 4 - 2 5 ) b0,n +l " b l , n " °< 

( 4 ' 2 6 ) b2,n-1 - -1 c0.n' 

Comparing the coefficients of f" in (4.20), we get 

(4.27) - [ b ^ a ^ f ^ b ^ ^ d + a ^ ' ^ f 3 +...+ (n-l)b2 n _ ] (1+ a ] f' ; n ' 2 a 2 f ' 3 ] 

= C n . O + W + ai a + " - - + C 0 , n ( 1 + a , f ' ) n + cn-1,1 al f' 2 + 2 c n - 2 , 2 ( 1 + a ] f ' ) al f 

+ ... + nc. (1+a.f , ) n " 1 a 2 f 2 . 0,n 1 I 

n~f" 1 
Comparing the coefficients of f1 in (4.27) we get 
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,4.28) ( n - D b ^ . , = - n c 0 > n a r 

(4.24), (4.26) and (4.28) imply that 

b. . = c n = 0 . 2,n-l 0,n 

(4.23) and (4.27) are reduced to 

( 4 ' 2 9 ) b n + l , 0 f ' + b n , l ( 1 + a l f ' ) f ' + - + b 3 , n - 2 < 1 + a l f , > n " 2 f ' 

" " [ cn,0 + cn-1,l ( 1 + a 1 f ' > + + ^ . n - l 0 4 * ^ ^ " " 1 ^ 
and 

(4.30) - [ b . a * f 3 + ... + (n-2)b. 9(l+af 1) n" 3a*f , 3] n,I I J ,n-z 1 1 

" c n , 0 + - + c 0 , n - 1 ( l 4 * 1 f , ) n " 1 + V u ^ ' ^ - ^ ^ l . n . l 0 ^ ^ 1 1 " 2 ^ ' 2 ' 
n— 1 n 

Comparing the coefficients of ff and f in (4.29) and (4.30), respec­

tively, we get 
( 4 - 3 1 ) b3,n-2 = - V l . n - T 

(4.32) ( n . 2 ) b 3 j n - 2 = -(n-l)c l j n - 1a 1. 

(4.24), (4.31) and (4.32) imply that 

b Q = c = 0, 3,n-2 1 ,n-l 

By induction we can show that 

c. . = 0 for j = 0,1,...,n. 

Therefore, u = 0* T h i s i s a contradiction. 
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Case 2. (k 1) 

In this case it is easy to check that 

f ^0 = C0,0 + C
0 , l f ' + C 0 , 2 f ' 2 + — • 

(4.33) 

-1 = Cl,0 + C1,1 f' + C1,2 f' + - + c 0 f l a l f " + 2 c 0 f 2 - l 0,3-1 a,ff"+3c„ ,.a,f'2f"+.. 

.2 
" ( c 1 . 0 + c l i l f , + c l i 2 £ " + - > + a l f " ( c 0 , 1 + 2 c 0 , 2 f , + 3 c 0 , 3 f ' 

:,2 
*2 = ( c 2 , 0 + c 2 , l f ' + C 2 , 2 f " + " - > + a l £ " ( c l , 1 + 2 c l , 2 f , + 3 c 1 , 3 f , 2 + — > 

+ ( . 2 f » + r f " ' ) ( c 0 J + 2 c 0 f 2 f + 3 c 0 f 3 f 2
+ . . . ) , 

Since y, ^ 0 and = 0 for i <. n, by (4.33) one can easily see that 

c = 0 for i < n, j = 0,1,... . 
1 > J 

Hence 

^ n = Cn,0 + C n , l f ' + C n , 2 f " + — 

V l = ( C n + l , 0 + C n + l , r f , + - > + a i f " ( C n , 1 + 2 c n , 2 f , + 3 c n , 3 f ' 2 + - ) -

Similarly, by (4.18), we also have 

V H " ' W l . O + 'Wiy + b n + 1 , 2 f * + " " 

V 2 "
 (V2,0+bn+2,1f,+'--> + a i f , , < b n + 1 , l + 2 b

n + l , 2 f , + 3 b n + l , 3 f ' 

Comparing the coefficients of f'1, i = 0,1,... in (4.19), we get 

c = 0, 
(4.34) I n'° 

c . = b n,j n + l , j - T j = 1,2,... 

N e x t , comparing the coefficients of f" in (4.20), we get 
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(4.35) 2 a 1 f ' 3 ( b t t f n i + 2 b n + 2 > 2 f + 3 b i r f l > 3 f 2 + . . . ) 

" - < C n , 0 + c n , l f ' + C n , 2 f , 2 + - ) " 2', £' 2< c»,l + 2 C n , 2 f ' + " ' ) ' 

Hence, comparing coefficients of f'1, i - 0,1,... in (4.35), we get 

c n - c = 0 
(4.36) / n»° 

Cn, j +1 - 2 j a 1 C n , j = 2 ^ - 1 ) a l b r H - l , j - l ' J " 1 . 2 . -

From (4.34) and (4.36) it is trivial to see that 

c . = 0 for j - 0,1,2,, 

Therefore, p, = 0. This is a contradiction. 
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5. OPTIMAL EFFICIENCY 

Lemma 5.1 

If cp € ̂ 2 a n c* ^ u s e s evaluations of f and f1 then a(co) ̂  2. 

Proof 

It suffices to show that cp(f)(x) depends explicitly on x, f(x) and 

f f(z^). Suppose that c9(f)(x; does not depend explicitly on x. Then 

co(f)(x) = G(f(x), f'Cz^) 

2 

for some rational function G: R*~ -» R. Since cn(f) (c^) = 

(5.1) G(0, f(cyf)) = af 

for all f £ D, Clearly for any real numbers s, t (t ̂  0), there exists 

f e D such that 

= s, 

f (t*f) - t. 
By (5.1) we have 

G(0,t) = s 

for all (t,s) with t ̂  0. This is a contradiction. • 

Lemma 5.2 

If co 6 P(&) ^ ^ and co uses evaluations of f only then a(rx>) ̂  5. 

Proof 

We assume notation used in Case 1 pf the proof of Theorem 4.4. 
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Suppose U <f> 0 and |i . = 0 for i < n. From (4.23) we can easily see that n l J 

n > 0. Note that, by (4.24), a ] / 0. 

Case 1: (n = 1) 

By (4.23) 

c i , o + c o , i 0 + a f , ) + °» 

cl,o = " C0,T 
b 1 , 1 = b 0 , 2 = 0 ' 
b 2 , o = " a i c o , r 

Hence 2 
a^f (x) 

* ( f ) ( x ) B X " f(« 1)-£(x)+... ' 

Since the higher order terms in f(x) cannot cancel the terms shown, the 

theorem is proven for this case. 

Case 2: (n = 2) 

By (4.23) 

C2,0 
4- C l , 1 < l 4 * l f , ) + C 0 . 2 ( l 4 * l f , ) 

C 2 , 0 C l , 1 + C 0 , 2 = ° ' 

b3 , 0 b 2 , l = - C 1 , l V 2 c 0 , 2 V 

b 2 , 1 
C 0 , 2 a i = °> 

b 0,3 b l , 2 = °« 

b3,0 a l C 2 , 0 ' 

b 2 , . ~ V o , 2 ' 

" 2 , 1 b 3 , o = a i c i , r 
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Therefore, 

b nf 3(x)+b f2(x)f(z )+... 
(5.2) co(f)(x) - x + ^ £ j J 2 • 

c2 0 f ( x ) + ° 1 ! f ( x > f ( z
1 ) + c

0 2 f ( z 1 ) + * - * 

2 
Since c2 0 + C1 i ( 1 + ai £ , ) + co 2

( 1 + a i f , ) / °» b
3 0

 a n d b 2 1 c a n n o t b o t h b e 

zero. Then one can easily check from (5.2) that a(ro) ̂  5. 

Case 3: (n ^ 3) 

One of b - . ., j = 0,...,n-l must be non-zero. But to compute n+l-j,j 
b . . .f(x) n " Jf(z,) J from f(x) and f(z,) requires at least two arithmetic n+ 1 -J * J • 1 

operations. The argument of f(z^) requires at least one arithmetic opera­

tion. The division takes one arithmetic operation. Also, to combine with 

x requires another arithmetic operation. Therefore a (to) ̂ 5 . • 

For any f £ D, define 

E 2 (f) = sup e(cp,f) , 

Then EjCf) * s t* i e °P t^ r a al efficiency achievable by a rational two-evaluation 

iteration without memory with respect to f. By Theorem 4.4 and Lemmas 

5.1 and 5.2, we have 

(5.3) E2(f) *«*<c(£)+i(£.)+2 . ŝ W-
Consider Newton iteration y and the iteration \|r defined by (1.2) and (1.3), 

respectively. We have 

( 5 * 4 ) e ( V ' f ) = c(f) +c 1(f) +2 ' 
and 
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(5.5) e(t,f) = 2cTfH5 ' 

From (5.3), (5.4) and (5.5) we have the main result on optimal efficiency. 

Theorem 5.1 

1. If c(f') <. c(f) + 3 then 

E 2 ( £ ) =c(f)+c(f')+2 » 

i.e., Newton iteration is optimal. 

2. If c(f') £ c(f)+3 then 

E 2 ( f ) " 2c(f)+5 ' 

'i»e.T the iteration ft defined by (1.3) is optimal. 
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