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ABSTRACT 

The problem is to calculate a simple zero of a non-linear function f 
n—1 

by iteration. We exhibit a family of iterations of order 2 which use n 

evaluations of f and no derivative evaluations, as well as a second family of 

iterations of order 2 n ^ based on n-1 evaluations of f and one of f f. In 

particular, with four evaluations we construct an iteration of eighth order. 
The best previous result for four evaluations was fifth order. 

We prove that the optimal order of one general class of multipoint 
n 1 

iterations is 2 and that an upper bound on the order of a multipoint iteration 

based on n evaluations of f (no derivatives) is 2 n . 

CONJECTURE. A multipoint iteration without memory based on n evalua

tions has optimal order 2 n \ 
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1. INTRODUCTION 

We deal with iterations for calculating simple zeros of a scalar 

function f. This problem is a prototype for many non-linear numerical 

problems (Traub [72]). Newton-Raphson iteration is probably the most 

widely used algorithm for dealing with such problems. It is of second 

order and requires the evaluation of f and f f, that is, it uses two 

evaluations. Consider an iteration consisting of two successive Newton-

Raphson iterates (composition of iterates). This iteration has fourth 

order and requires four evaluations, two of f and two of f. More gen

erally an iteration composed of n Newton iterates is of order 2 n and re

quires n evaluations of f and n evaluations of f 1, that is, 2n evaluations. 

We shall show that an iteration of order 2 n ^ may be constructed from 

just n evaluations of f. We exhibit a second type of iteration which re-
n — 1 

quires n-1 evaluations of f and one evaluation of f 1 to achieve order 2 ~ . 

In particular, with four evaluations we construct an iteration of 

eighth order. The best previous result (Traub [64, p. 196]) for four 

evaluations was fifth order. 

Newton-Raphson iteration is an example of a one-point iteration. 

The basic optimality theorem for one-point iteration states that an analytic 

one-point iteration which is based on n evaluations is of order at most n. 

(This theorem was first stated by Traub [61], [64, Section 5.4]; we give 

an improved proof here.) We conjecture that a multipoint iteration based 

on n evaluations has optimal order 2n \ We prove that the optimal order 

of one important family of multipoint iterations is 2 n ^ and that an upper 

bound on the order of multipoint iteration based on n evaluations of f is 
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2 . This upper bound is close to the conjectured optimal order of 

2 n - \ 

To compare various algorithms, we must define efficiency measures 

based on speed of convergence (order), cost of evaluating f and its 

derivatives (problem cost), and the cost of forming the iteration 

(algorithm cost). We analyze efficiency in another paper (Kung and Traub 

[73]). We confine ourselves here to iterations without memory deferring 

the analysis of iterations with memory to a future paper. 

We summarize the results of this paper. The class of problems and 

algorithms studied in this paper is defined in Section 2. Particular 

families of iterations are defined in the next three sections. The opti-

mality theorem for one-point iterations is proven in Section 6. An opti

mal order theorem for one general class of multipoint iterations and an 

upper bound for the order of a second class are proven in the following 

section. A general conjecture is stated in Section 8. Section 9 contains 

a small numerical example. 

Appendix I gives pseudo-Algol programs for forming two families of 

multipoint iterations. The last appendix proves a theorem on where evalu

ations of an iteration must be taken. 
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2. DEFINITIONS 

We define the ensemble of problems and algorithms. Let 

D = {f|f is a real analytic function defined on an open interval 1^ c r which con

tains a simple zero off of f and f 1 does not vanish on 1^.}. 

Let Q denote the set of functions $ which maps every f € D to j$(f) 

with the following properties: 

1. j$(f) is a function mapping 1^ ^ <z 1^ into I^ ^ for some open 

subinterval 1^ ^ containing oi^. 

2. 0(f)(a f) = af. 

3. There exists an open subinterval l| ̂  c 1 ^ containing 

such that if x.,- = 0(f)(x.) then lim x. = <y_ whenever x n 6 l5 
1+1 ^ v i . i f 0 0,f 

l-»oo ^» 

4. Let k, d0,...,dk_j be non-negative integersa For j=-l,... ,k-l , 

l e t u j + 1
 ( y o ; y r - # * , y d + i ; ' # # ; y i , - - - , y d +1^ b e a f u n c t i o n o f 

j 
1 + S (d.+l) variables. For j=0,...,k-l, let 

i=0 x 

z 0 = u 0 ( x ) > 
(2.1) 

( d 0 ) ( < V 
z

j + 1 - « j + 1(x;f(z 0),...,f ( z q ) ; . . . ^ ^ ) , - . . ^ j ( z » . 

0(fHx) is defined by 

(2.2) j6(f)(x) = z k. 
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The assumption that f 6 D is needed for theorems dealing with a class 

of iterations. Any particular 0 can be applied to f having only a certain 

number of derivatives. 

In Appendix II, we show that for any 0 £ Q, if the function Uq(x) in 

(2.1) is continuous, then Uq(x) - x for all x. To simplify proofs in this 

paper we assume that Uq(x) = x for all x. 

If 0 6 Q, 0 is called an iteration without memory, since if the sequence 

[x^} is generated by x +̂-j = 0(f)(x^)* x^+] ^ s computed using information only 

at the current point x.. In this paper we limit ourselves to iterations with

out memory. 

We classify iterations without memory. If k is the non-negative integer 

in (2.2), then we say 0 is a k-point iteration. In particular, if k-1, 

we call 0 a one-point iteration and if k > 1 and the value of k is not impor

tant, we call 0 a multipoint iteration. (Similar definitions of one-point 

and multipoint iteration are given in Traub [61], [64, Section 1.22].) 

If there exists p(0) such that for any f 6 D, 

lim ^ ( f ) ( x ) -«f 
X ^ f (x-tfJ 7^ 

- s o M ) 

exists for a constant S(0,f) and S(0,f) ̂  0 for at least one f (E D, then 

0 is said to have order of convergence (order) p(0) and asymptotic error 

constant S(0,f). 
Let v^(0) denote the number of evaluations of f ^ used to compute 

0(f)(x). Then v(0) = £ v . ( 0 ) is the total number of evaluations required 
i£0 1 

by 0(f) (x) per step. 
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To simplify notation, we often use a, /6, p, v^, v instead of a^> 

j6(f)(x), p , v^ifi), v($), if there is no ambiguity. 

The following two examples illustrate the definitions. 

Example 2.1. (Newton-Raphson Iteration) 

/6(f) (x) = x - | 4 f(x) 
f(x) • 

This is a one-point iteration with v q =1> v^=1,v=2, and p=2, 

Example 2.2. 

z 0 = X ' 
f U 0 ) 

z„ = z 1 0 f ( z 0 ) ' 

, , f W , f( Z l)f(z Q) f(z 0) p(f)(x) • z„ = z, 
2 1 [f( 2 l)-f(z 0)] 2 f ' < V • 

This is a two-point iteration with v Q=2, v^-l, v=3, and p=4. (See 

Section 5.) 
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3. A FAMILY OF ONE-POINT ITERATIONS 

For f 6 D, let F be the inverse function to f. For every n, define 

Yj(f): I f "* R. j=1>•••>", as follows: y1(f)(x) = x and for n > 1, 

(3.1) Y._u(f)(x) = Y,(f)(x) + ^TT- ' [ f < x ) 3 j * F ( j )(f(x)) 

for j=1,...,n-l. Note that F^(f(x)) can be expressed in terms of 

f ^ \ x ) for i=l,2,...,j. It is easy to show that 

Y, - x 
f(x) 

^2 = Yl " fU) 

f,f(x) f(x) 
V 3

 = ^2 " 2f ' (x)[f1 (x)J 

The family {y } has been thoroughly studied (Traub [64, Section 5.1]). 
n 

Its essential properties are summarized in 

Theorem 3,1, 

Let y be defined by (3.1) • Then for n > 1, 
n 
1. Y € 0 , and y is a one-point iteration, n n 
2. P<Y ) = n, 

3. v .(Y ) = 1, i=0,...,n-l, v (v ) - 0, i > n-1. Hence 
L n 1 n -— 

V(Y ) - n. 
Tn 

Thus y requires the evaluation of f and its first n-1 derivatives, 
n 

In Section 6 we shall show that, under a mild smoothness condition on 

the iteration, every one-point iteration of order n requires the evaluation 

of at least f and its first n-1 derivatives. 



4. A FAMILY OF MULTIPOINT ITERATIONS 

We construct a family of multipoint iterations, ltn)> which require 

the evaluation of f at n points, no evaluation of derivatives of f, and 

for which P ^ n ) = 2 n \ 

For every n, define 

V f ) : Sj.f c lf - Sj.f »»• 

as follows: ^(f)(x) = x and for n > 0, 

^(f)(x) = x + 0f(x), (3 a non-zero constant 

(4.1) 

J r j + 1(f)(x) - Q.(0), 

for j=l,...,n-l, where Qj(y) is the inverse interpolatory polynomial for 

f at f (\|r (f) (x)), k=0,...,j. That is, Q.(y) is the polynomial of degree 
K J 

at most j such that 

Q.(f(tk(f)(x))) t k(f)(x), k«0,...,j, 

The tj(f)> J"1 are well defined if 

(4.2) V f ) ( V , f > C V , f J-1 — 
3 J 

That (4.2) holds for I f sufficiently small will be part of the proof 
j 

of Theorem 4.1.. 

It is easy to show that 
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p f ( t 0)f ( t 1 ) 

*2 = h ~ f(^) - f ( t Q ) f 

*3 " *2 " f(^) - f(t 0) ̂ f(^) - f ( t„ ) " f ( t 2 ) -

A short pseudo-Algol program (Program 1) is given in Appendix I for computing 

i|r for n ^ 4. Yn 
Our interest in the family of iterations [if } is due to the properties 

proved in 

Theorem 4.1. 

Let t|r be defined by (4.1). Then for n > 1, 

1 . t n € 0 , and ^ is an n-point iteration, 

2. p ( f n ) - 2 n " \ 

3 # V 0 ^ n ^ = n > V i ^ n ^ = °' 1 > ° # H e n c e v ^ n ^ = n # 

Proof. 

We want to show that, for f 6 D, 

(4.3) lim ^ a
 n^-| = S(t Q,f), n=1,2,... 

X"*tf / \2 (x-cy) 

for constants S(t ,f). The proof is by induction on n. 

Since 

lim — — = 1 + Pf f(a), 
X-Qf 

(4.3) holds for n-1. Assume that (4.3) holds for n«l,...,m-1. From general 

interpolatory iteration theory (Traub [64, Chapter 4]), we know that 
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(4.4) lim m,, r- = Y (f) 

where 

^ra+lpOn) 

m:[F'(0)] 
Y ( f ) = (-I)^'F^(O) 

and F is the inverse function of f. From (4.4) and the induction hypothesis, 

~n-l 
(x-ff) 

- y (f) • n s(t ,f). 
1*n<m n 

Hence S(* ,f) = Y (f) • II S(\|r ,f) and this completes the induction. 
l^rKm n 

From (4.3) one can easily show that ^ ( f ) , j=2,...,n, satisfies (4.2; 

for I, ^ sufficiently small and hence is well defined. Now we prove that 

\|rn 6 Q. It follows from (4.3) that ^ satisfies properties 1, 2, 3 of 

Section 2. Define 

z o = u o ( x ) = x ' 
z} = U ](x,f(x)) = x+gf(x), 
zj +l = u j + 1 (x;f (zQ),f (z^ f ( 2 j ) ) , 

for j=1,...,n-l, where u^+1(x;f(zQ),f(z^),...,f(z^)) = Q..(0) and Q..(y) is 

the inverse interpolatory polynomial for f at f(z ) , k=0,...,j. Then by 

*(4.1), if (f)(x) .= z for all f € D and x g I, r. Hence * (f) satisfies n n to ,r Tn Yn 
property 4 of Section 2. Therefore, tyn € 0. 

It is not difficult to show that S(t|fn>f) 4 0 for some f 6 D. 

Therefore, P(tn> » 2 n " 1 . The fact that v
0 ^ n ^ = n ' V±^n = °' ^ > ° 

follows from the definition of \|r . QED 
n 
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The iteration ^ ^ s s e c o n ( * order and is based on evaluations of f at 

x and x + 0f(x). This iteration is given by Traub [64, Section 8.4]. 

The iteration * uses n evaluations of f and is of order 2 n ^. For n > 2, 
n 

no iterations with these properties were previously known. 
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5. A SECOND FAMILY OF MULTIPOINT ITERATIONS 

We now construct a second family of multipoint iterations, i ^ ) * such 

that p(o) ) = 2 n ^ and V(<D ) = n. However, u) requires the evaluation of f n n n 
at n-1 points and the evaluation of f at one point. 

For every n, define 

u).(f): I - cz I -> I j=l,...,n, j U)̂ ,f f 

as follows: (f) (x) = x and for n > 1, 

(5.1) 
^ ( f ) W = x - f r f^)> 

0)j+1(f)(x) « R (0), 

for j=2,...,n-1, where R (y) is the inverse Hermite interpolatory polynomial 

of degree at most j such that 

R^f(x)) = x, 

(5.2) RUf(x)) 1 

Rj(f(a)k(f)(x))) = a^(x), k=2,...,j. 

One can prove that cu.(f), j=2,...,n, are well defined for I f sufficiently 
J u) j , t 

small. It is easy to show that 

®1 = x> 

f(o) 1) 
'2 wl f ^ ) ' 

* 3 = ^ ~ [ f ( a ) 1 ) - f ( a ) 2 ) ] 2 " £ ' ( V ' 

f(031)f(a)2) f(U)1) 



-11-

A short pseudo-Algol program (Program 2) is given in Appendix I for computing 

o)^ for n ^ 4. 

The basic properties of the family of iterations {u)n} is stated in the 

following theorem. The proof is omitted since it is similar to the proof 

of Theorem 4.1. 

Theorem 5.1. 

Let a) be defined by (5.1). Then for n ^ 2 n y  

1. a) € Q, and a) is an (n-1)-point iteration, n n ' 

3. vn(o) ) = n-1, v-(a) ) • 1, v.(u) ) = 0, i > 1. Hence 0 n I n i n * 
v(o) ) = n. n  

It is straightforward to show that 

S(* ,f) ~n-2 
( 5 - 3 ) s 7 ^ f T = n + P f < « > ] • 

If ^ is used, P should be chosen so that 1 + 0ff(of) is small. 

The iteration u)^ uses two evaluations of f and one of f 1 and p(u)g) = 4. 

Another iteration with these properties is defined by Ostrowski [66, Appendix 

G] and a geometrical interpretation is given by Traub [64, Section 8.5]. 

King [73] gives a family of fourth order methods based on two evaluations 

of f and one of f 1. Jarratt [69] constructs a fourth order iteration 

based on one evaluation of f and two of f 1. The iteration u) uses n-1 
n 

n—1 

evaluations of f and one of f 1 and p(cun) = 2 " . For n > 3, no iterations 

with these properties were previously known. 
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6. THE OPTIMAL ORDER OF ONE-POINT ITERATIONS 

By imposing a mild smoothness condition we can prove that one-point 

iterations of order n require the evaluation of f and at least its first n-1 

derivatives. No such requirement holds for multipoint iterations. 

For example, the multipoint iteration ^ defined in Section 4 has order 

2 n ^ but requires no derivative evaluation. 

Let ft be a one-point iteration. Then from (2.1), (2.2) 

0(f)(x) = u1(x,f(x),...,f (x)), 

0 0 

where u^ (VQ ,y.j,... ,y^ +j) is a multivariate function of ^+2 variables. 

In this section we drop the superscript on y^. 

The following theorem was first given by Traub [61], [64, Section 5.4]. 

We regard the proof given here as an improvement of Traub's proof. 
Theorem 6.1. 

Let f& be a one-point iteration of order p()6) and let u^ (y^,y^ , • •. ,y^ +^) 

be analytic with respect to ŷ  at y^=0. Then v^(jb) ^ 1, i=0,... ,p(j#)-l , 

and hence p()rt) ̂  v(1&) • 

Proof. 

For f 6 D, define 

Y n(f)(x)-0(f)(x) 
(6.1) T(f)(x) = -E. 

f P(x) 

where v is a member of the family of iterations defined in Section 3. To P 
simplify notation, we write f for f(x). 

mi vsan 
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Define a. by 1 J 

p-i i 
Y n - S a.f 1  

p i-0 1 

where o\ depends explicitly on f 1(x),...,f^(x) (Traub [64, Section 

5.1]). By the analyticity condition on 0 , 

/6 = E X . f 1 . 
1-0 1 

Therefore from (6.1), 

p-1 . 0 0 

(6.2) T = £ (a.-Xjf 1^ - S X.f X" P. 

1=0 l==p 

Since 0 and Yp a r e °f order p, (6.1) implies that 

S(Y n f) - S(0,f) 
lim T(f)(x) = « < « 

**xf [f(<z f)] P 

for all f € D. Hence it follows from (6.2) that 
(6.3) a = X , i=0,...,p-1, Vf € D. 

Consider 

p-1 p-1 

We know that a , depends explicitly on f 1(x),...,f^ p - 1^(x) and that the p-1 
same must be true for X Assume v . ( 0 ) « 0, for some j, 0 < j ^ p-1. 

p-1 j 
Then u 1 (yQ>y-| > • •. ,y d + 1 ) d<>es not depend on y^ + 1. This implies that 

7 ~ T T u i ( y o , y i , # * # , y d n + i ) 

a y ^ 0 

is independent of and that 
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£ 1 , ( d o > 
p _ 7 V x , 0 ' f ' W ' " " £ < x>) 

is independent of f ^ ( x ) . Hence 

i ftP"1 <dn> 
P-i ( p - d : ^ p - i 

:(j) 

u(x,0,f(X),...,f (X)) 

is independent of f (x), which is a contradiction. Therefore v̂ (j#) ̂  1, 

Next we show Vg(J$) ̂  1. Suppose this is false. Then X^=0, i > 0 and 

from (6.2) 

G± = 0, i=1,...,p-l, 

which is a contradiction. QED 

Corollary 6.1. 

Let Y n b e defined by (3.1). Then y n achieves the optimal order of any 

one-point iteration 0 for which v(^) = n and which satisfies the analyticity 

condition of the theorem. 

Remark 

The analyticity condition is not restrictive. For example, it includes 

all rational iterations and all iterations defined by simple zeros of poly

nomials with analytic coefficients. 
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7. TWO OPTIMAL ORDER THEOREMS FOR MULTIPOINT ITERATIONS 

We prove an optimal order theorem for one important class of itera 

tions and prove a fairly tight upper bound for the maximal order of a 

second class of iterations. 

Our first class consists of all iterations such that for j=0,...,k-1, 
Zj +1 appearing in (2.1) is given by a Hermite interpolatory iteration based 

on the points Z Q , . . . , Z ^ . If f& belongs to this family, we say it is a 

Hermite interpolatory k-point iteration. The order of ]b may be computed 

as follows. From Traub [64, Section 4.2], 

d.+1 d Q+1 
- OR = 0[(z -A) J ...(Z 0-OF) ] 

where the d. are as in (2.1). Hence 

JA(f)(x)-OF = z K-CF = 0[(x-cy)P] 

where 
k-1 

P(J*> = ( dn + 1> n < di + 2>-
U 4 = 1 J 

It is easily verified that 

k-1 
v(fi) = S (d +1). 

j-0. J 

We wish to choose k, d 0 9 • • • 9 
d such that for v()6) fixed, p(j6) is k-1 

maximized. The choice of k and the d i are given by 

Theorem 7.1. 

Let d. £ 0, k 2> 1 be integers. Let 

k-1 
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be fixed. Then 

k-1 
p(0)= (d +1) n (d.+2) 

j°1 i__ 
is maximized exactly when 

(7.1) k=n, d.=0, j=0,...,n-l 
3 

or 

(7.2) k-n-1, d Q=l, d y O , j-1,...,n-2. 

Proof. 

Since ^ n, k ^ n, there are only finitely many cases and the 

maximum exists. Let the maximum of p be achieved at d , j=0,...,k-l. We 

show first that cL=0, j 8 8! , • •. .k-1. Assume that d r=m, m ^ 1, for some r, 

r=l,...,k-1. Define d , j=0,... ,k+m-l as 

d = 0, r ' 
3^ = 0, j=k,... ,k+m-1. 

Then we can verify that 

k-hn-1 = k-1 
S (d.+l) = S ( d . + l ) = n 
j=0 J j-0 J 

and 
. _ k+m-1 = k-1 
(d Q+l) n (d +2) > ( d 0 + l ) n (d +2). 

j=l J j»l J 

This contradiction proves that d_.=0, j=l,...,k-1. A similar argument may 

be used to prove d Q <: 1. If d Q=0, k=n while if d Q=l , k=n-1 which completes 

the proof. QED 
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Corollary 7.1. 

Let j be a Hermite interpolatory iteration with v(#) = n. Then 

Note that to , defined in Section 4, is an instance of (7.1) while OJ , Tn n 
defined in Section 5, is an instance of (7.2). (Both {i|r^} and {u^} a^e 

based on inverse interpolation. There are two other families of iterations 

based on direct interpolation.) Thus we have 

Corollary 7.2. 

Let and u) be defined by (4.1) and (5.1), respectively. Then i|f n n n 

and a) n have optimal order for Hermite interpolatory interation with n 

evaluations. 

The second theorem of this section gives an upper bound on the order 

achievable for any multipoint iteration uses values of f only (and no deriva

tives) . 

Theorem 7.2. 

Let J?) be a multipoint iteration with v Q ( 0 ) « n, v (0) - 0, i > 0. 

Then p(j6) ^ 2 n . 

Proof. 

For f € D, let x Q be a starting point such that if = cp(f) (x^) 

then lira x. » rv f . From (2.1), for each i, denote 

z i n = V 
Zin+j+l = ujtl ^ i n ^ ^ i ^ - ' - ' ^ i n + j ^ 
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for j=0,...,n-1. Then 

(7.3) lim Z ( 1 + 1 ) n 7 • S(/6,f). 
i-*00 ( Z # -Q/)P 

in 

Suppose that p > 2 n . Choose q such that p > q > 2 n . Then (7.3) implies 

i • Z(i+1)n" ( y _ n lim —- = 0. 

i-00 ( z
i n " ^ ) q 

Let m be sufficiently large so that for i ^ m 

^ ± ^ < i . i . . . - . i < i . q ' ' in z. - a in 
Then 

( 7 ' 4 ) l Z( m + j)n " a l < l Zmn"«| q J' ^ ' 

However, there exists a f 6 D, a sequence [z ] and a constant A, 0 < A < 1, 

such that 

,t 
(7.5) |zt-of| > A 2 , Vt, 

(see Winograd and Wolfe [71, Theorem 3]) # From (7.4) and (7.5), 

j ?(m+j)n 9mn ?nj 

Hence 

mn 
or 

* n' ^ qJ|log|z -cy| < 2 n j|log A |, 
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Since the left side is unbounded as j -* 0 0 while the right side is indepen 

dent of j, we have a contradiction. Hence p(fi) ^ 2 n . QED 

In Section 4, we constructed an iteration to such that v ) = n, 
n u n 

v̂ (t|rn) = 0, i > 0 and p(i|rn) - 2 n ^. Hence the upper bound of Theorem 7.3 

is within a factor of two of the order of that iteration. We conjecture 

in the next section that p = 2 n ^ is optimal. 
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8. A CONJECTURE 

Conjecture 8,1. 

Let )6 be an iteration (with no memory) with v(#) = n. Then 

(8.1) p(jd) £ 2 n ~ 1 . 

This extends a conjecture of Traub [72] which states (8.1) for n=2,3. 
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9. NUMERICAL EXAMPLE 

3 
Let f(x) - x + ln(l+x) where In denotes the logarithm to the natural 

-1 -2 
base. Hence o*=0. Starting at XQ=10 and 10 , we compute x^ by iterations 
^ and cun, n=3,4,5. For comparison we also use as many steps of the Newton-

-16 

Raphson iteration as necessary to bring the error to about 10 . Calcula

tions were done in double precision arithmetic on a DEC PDP-10 computer. 

About 16 digits are available in double precision. 

Results are summarized in Examples 1-3. The parameter (3 that appears 

in t|rn was chosen 0 = -.2 which makes the asymptotic error constant of ^ 

for this problem near unity. The asymptotic error constants of tan, n=3,4,5 

and the Newton-Raphson iteration are also near unity for this problem. Re

call that P(+ ) = P ^ Q ) S 2 n ^ and that for Newton-Raphson iteration, p=2. 

We expect x^ = x P to hold and this is numerically verified in the examples. 

From (5.3), we expect 

n u 

-2 
and (9.1) is numerically verified in the examples for x^ = 10 

The examples illustrate the advantage of J and u>n over the repeated 

use of Newton-Raphson iteration. Starting with x Q = 10 \ w 5(x Q) calculates 

the zero to "full accuracy" at a cost of four evaluations of f and one of f f. 

Four Newton-Raphson iterations are required with a cost of four evaluations 

of f and four of f 1. The difference is significant when the evaluation of 

f1 is expensive. This observation takes only the cost of ff into account. 

A more complete analysis based on efficiency measure considerations is given 

by Kung and Traub [73]. 
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EXAMPLE 1 

EXAMPLE 2 

10 
-1 

10 

x l " w .21x10 
-4 

.27X10 
-8 

x l = W - .80x10 - .47x10 
-16 

x1 " W -.27X10 
-16 

EXAMPLE 3 

Let x. + 1 

x o 1 0 " 1 lO" 2 

x l = W . 3 0 X 1 0 " 4 . 4 2 X 1 0 ' 8 

x 1 = U3 4(x 0) - . 1 5 X 1 0 " 8 - . 1 2 X 1 0 " 1 5 

x l = ( U 5 ( X 0 ) - . 2 4 X 1 0 " 1 6 

, where fi denotes Newton-Raphson iteration. 

x o lO" 1 lO" 2 

X l - . 2 6 X 1 0 " 2 - . 4 8 X 1 0 " 4 

x 2 - . 3 3 X 1 0 " 5 - . 1 1 X 1 0 ' 8 

x 3 - . 5 4 X 1 0 " 1 1 . 4 6 X 1 0 " 1 7 

x 4 - . 3 1 X 1 0 " 1 6 
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Program 1 and Program 2 which are adapted from a result of Krogh [70] 

compute lr (f)(x) (with the parameter 0) and u>n(f)(x) for n ^ 4. 

Program 1. 

vo,o : X 

h : 0 X f(x) 

vo,i : v o , o + h 

V1,1 1 
h/(f(v 0 f l) - f(v Q > 0)) 

r vi,i x f ( v o , o } 

V0,2 = vo,o ' r 

V1,2 .= r/(f(v 0 f 0) - f(v 0 f 2)) 

n 2 ; = f(v Q j 0) X f(v Q j 1) 

V2,2 ; = ( vi,i - ^ ^ ^ O , ^ 
psi : = V0,2 + n2 X V2,2 
for k= =3 step 1 until n-1 do 

, ) ) 

begin 

vo,k = p s l 

for i=0 step 1 until k-1 do 

begin 

.k : " ( » i , r v i , k
, / ( f ( v o , i > 

end 

\ : a " f < v o , k - i > x V i 
psi:- psi + 1^ X v k > k 

end 
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Program 2, 

v 
0,0 

X 

v o , i 
I = X 

n l,1 : = £ < v o .o> / f , < v o ,o> 
V0,2 : = V0,0 " n1 , l 
d : = f ( v o V - f ( v0,2> 
Vl,2 : = n 1 } 1/d 

V2,2 : = V l,2 X f ( v 0 , 2 ) / d 

omega : = V0,2 " f ( v 0 , 0 } X V2,2 
v i , i : = n i , i / f ( v o , o ) 

V2,2 : = V 2 , 2 / f ( v 0 , 0 ) 

n 2 : = f ( v o , o } x f ( v o , o } 

for k=3 step 1 until n-1 do  

begin 

v 0 > k := omega 

for i=0 step 1 until k-1 do  

begin 

v i + i , k : = < v i f i - v i , k > / ( : 

end 

n k : = - f < v o,k- i> x \.1 
omega := omega + x ^ 

end 
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APPENDIX II 

Theorem 

Let € 0. If the function u Q appearing in the definition of the set 

0 (property 4) is continuous, then u Q(x) = x, for all x. 

Proof 

Consider the functions u Q,...,u k in (2.1). Let f € D, x € I ^ f . Let 

y? + 1(x), Zj(x) be defined as follows: 

z Q(x) - u Q(x), 

(A.D y| + 1C*) - £ ( l ) ( « j W ) : 

z - u
i + 1

( x ; yj( x)»-"»yd + 1 (x); — (x),...,y^ + 1 

J -I 0 j 

for j=0,...,k-1, i=0,...,d^. Then 
0 0 k-1 k-1 

(A.2) ff(f)(x) = u k(x; y1(x),...,yd + 1(x);...;y 1 (x),...,yd + 1 0 0 > . 0 k — 1 

Since ff)(£)(af) = af by Property 2 (Section 2 ) , 

0 k-1 
(A.3) af = u k( Qf f;y 1 (orf),...,yd + 1 (off)). k—1 

Suppose that u Q(x) £ T h e n there exists u)Q such that u Q(m 0) ^ o) Q. 

By the continuity of u Q , uQ(u)) ^ CD in an open interval I Q containing u) Q. 

We shall show that jfl(f)(u)) = u) for all w in I Q H I ^ f . For any fixed 

f 6 D and u) U g fl l| f define y| + ] (a)) , zj(^) b Y setting x = u) in (A.I). 

Then by (A.2) 

(x)), 
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0 k-1 (A.4) j6(f)(a)) « uk(u>; y-,(u)),...,yd + 1(o))). 
k-1 

Since u Q ( ^ ) £ there exists a polynomial q such that 

q(u)) = 0, q'(tt)) = 1, 
q ( l )( Z j(o))) = y|+1(«>>> j=0,...,k-1, i»0,...,djB 

Certainly, q 6 D and <y = a). By (A.3) 

0 k-1 (A.5) a) = uk(o); y1(uj),...,yd + 1(u>)). 
k-1 

Equations (A.4) and (A.5) imply that J$(f)(u)) = u) for all f 6 D and for all 

(jo 6 I Q fl 1^ f. There exists a g 6 D such that a g = u)Q. Since 0 € Q , 

there exists an open interval 1^ ̂  containing O)Q such that if $(g)(x^), 

then lim x^ = ODQ whenever 6 l| ̂  . This is a contradiction since for all 

x Q € I Q n Î j (x Q ^ O)Q), J#(g )(x Q) = x Q, which does not converge to u) Q. QED 
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