NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

COMPUTATIONAL COMPLEXITY OF ONE-POINT AND MULTIPOINT ITERATION
H. T. Kung and J. F. Traub

Department of Computer Science Carnegie-Mellon University Pittsburgh, Pa.

April 1973

This research was supported in part by the National Science

Let ω be an iteration for approximating the solution of a problem f. We define a new efficiency measure $e(\varphi, f)$. For a given problem f, we define the optimal efficiency $E(f)$ and establish lower and upper bounds for E(f) with respect to different families of iterations. We conjecture an upper bound on $E(f)$ for any iteration without memory.

TABLE OF CONTENTS
$\stackrel{\rightharpoonup}{*}$
ABSTRACT.page

1. INTRODUCTION 1
2. BASIC CONCEPTS 2
3. EFFICIENCY MEASURE FOR ITERATION 5
4. THEOREMS ON EFFICIENCY OF ONE-POINT ITERATION 10
5. THEOREMS ON EFFICIENCY OF MULTIPOINT ITERATION. 13
6. A CONJECTURE. 19
7. NUMERICAL EXAMPLE 20
BIBLIOGRAPHY 22
8. INTRODUCTION

Let φ be an iteration for approximating the solution of a problem f. We define a new efficiency measure $e(\varphi, f)$. The efficiency measure gives us a methodology for comparing iterations as well as permitting us to derive theoretical limits on iteration efficiency.

For a given problem f, we define the optimal efficiency $E(f)$ over all φ belonging to a family Φ. We establish lower and upper bounds for $E(f)$ with respect to different families of iterations. We conjecture an upper bound on $E(f)$ for any iteration without memory.

We summarize the results of this paper. Basic concepts are given in Section 2 and our efficiency measure is defined in Section 3. In the next two sections we establish lower and upper bounds on the optimal efficiency for solving a problem with respect to important families of algorithms. A conjecture on optimal efficiency is stated in Section 6 and a small numerical example is given in the last section.

2. BASIC CONCEPTS

We work over the field of real numbers. Let $\sigma(x)$ be a function and λ_{σ} be a procedure which computes the value of $\sigma(x)$ for any given x. (We write λ for λ_{σ} if there is no ambiguity.) Let α be any number. We say $\Sigma=(\sigma, \lambda)$ is an algorithm for approximating α if the sequence $\left\{x_{i}\right\}$, gen erated by $x_{i+1}=\sigma\left(x_{i}\right)$, converges to α whenever x_{0} is chosen near α; and if $\sigma\left(x_{i}\right)$ is computed by the procedure λ for all i. $\Sigma=(\sigma, \lambda)$ has order of convergence $p(\sigma)$ if

$$
\lim _{x \rightarrow \alpha} \frac{\sigma(x)-\alpha}{(x-\alpha)^{p(\sigma)}}
$$

exists and is non-zero. We measure the goodness of the algorithm $\Sigma=(\sigma, \lambda)$ by $\mathrm{p}(\sigma)$ and define the efficiency of the algorithm $\Sigma=(\sigma, \lambda)$ to be (2.1) $e(\Sigma)=\frac{\log p(\sigma)}{c(\lambda)}$,
where $c(\lambda)$ is the cost of performing the procedure λ. In this paper we consider only superlinear convergent algorithms, that is, $p(\sigma)>1$. A11 logarithms are to base 2.

For any fixed positive integer n, consider the algorithm $\Sigma_{n}=\left(\sigma_{n}, \lambda_{n}\right)$ where $\sigma_{n}=\underbrace{\sigma 0 \sigma 0 \ldots 0 \sigma}_{n \text { times }}$ ($\sigma 0 \sigma$ denotes composition) and λ_{n} is the procedure which computes $\sigma_{n}(x)$ by

$$
\begin{aligned}
& y_{0}=x, \\
& y_{i+1}=\sigma\left(y_{i}\right), i=0, \ldots, n-1 \\
& \sigma_{n}(x)=y_{n}
\end{aligned}
$$

with $\sigma\left(y_{i}\right)$ being computed by λ for all i. One can easily check that

$$
\begin{aligned}
\mathbf{p}\left(\sigma_{n}\right)=p^{n}(\sigma) \text { and } c\left(\lambda_{n}\right)= & \operatorname{nc}\left(\lambda_{n}\right) \\
& \frac{\log p(\sigma)}{c(\lambda)}=\frac{\log p^{n}(\sigma)}{\operatorname{nc}(\lambda)}
\end{aligned}
$$

Therefore,

$$
e(\Sigma)=e\left(\Sigma_{n}\right)
$$

for any n. This invariance is clearly desirable for any useful efficiency measure, since \sum_{n} is just the algorithm which repeats $\Sigma \mathrm{n}$ times and hence Σ and Σ_{n} must have the same efficiency. Gentleman [70] shows that if any efficiency measure satisfies this invariance property then it must be of the form (2.1) or a strictly increasing function of that form. Hence (2.1) is essentially the unique way to define an efficiency measure. Furthermore, Traub [64, Equation $C-11]$ shows that if the efficiency measure has the form (2.1) then efficiency is inversely proportional to the total cost of approximating α by the algorithm. More specifically, let Σ^{1}, Σ^{2} be two algorithms for approximating α and let $k\left(\Sigma^{1}\right), k\left(\Sigma^{2}\right)$ be the total costs for generating two sequences which start with the same initial approximation and terminate when some fixed number of correct digits of α have been calculated. Then (2.2) $\frac{k\left(\Sigma^{1}\right)}{k\left(\Sigma^{2}\right)} \sim \frac{\mathrm{e}\left(\Sigma^{2}\right)}{\mathrm{e}\left(\Sigma^{1}\right)}$. Therefore, it is desirable to have algorithms with high efficiency. An algorithm is called optimal in a certain class of algorithms if it has the highest efficiency among all algorithms in that class.

We now consider how to define the cost $c(\lambda)$. Paterson [72] defines $c(\lambda)$ as the number of multiplications or divisions, except by constants,

-4-

needed to perform the procedure λ. We call the associated efficiency the multiplicative efficiency. Kung [72] shows that unity is the sharp upper bound on the multiplicative efficiency, and Kung [73] uses the multiplicative efficiency to investigate the computational complexity of algebraic numbers. In this paper, we define $c(\lambda)$ to be the number of arithmetic operations needed to perform the procedure λ.

3. EFFICIENCY MEASURE FOR ITERATION

In the previous section we have defined the efficiency of an algorithm for approximating a number α. More specifically, we now study the efficiency of an algorithm for approximating a simple zero α_{f} of a function $f \in D$, where D is the set of analytic functions f which have simple zeros $\alpha_{f} \cdot$ We consider algorithms $\Sigma=(\sigma, \lambda)$ where $\sigma=\varphi(f), \varphi$ is a one-point or multipoint iteration and $f \in D$. (See Kung and Traub [73].) If φ is a k-point iteration, $k=1,2, \ldots$, then ∞ has the following property:

For $j=0, \ldots, k-1$ there exists a function $u_{j+1}\left(y_{0} ; y_{1}^{0}, \ldots, y_{d_{0}+1}^{0} ; \ldots\right.$; $y_{1}^{j}, \ldots, y_{d_{j}}^{j}+1$ of $1+\sum_{i=0}^{j}\left(d_{i}+1\right)$ variables such that for all $f \in D$, if
$\left\{\begin{array}{l}z_{0}(x)=x, x \text { belongs to the domain of } \varphi(f), \\ y_{i+1}^{j}(x)=f^{(i)}\left(z_{j}(x)\right),\end{array}\right.$ $z_{j+1}(x)=u_{j+1}\left(x ; y_{1}^{0}(x), \ldots, y_{d_{0}+1}^{0}(x) ; \ldots ; y_{1}^{j}(x), \ldots, y_{d_{j}+1}^{j}(x)\right)$, for $j=0, \ldots, k-1, i=0, \ldots, d_{j}$, then
(3.2) $\varphi(f)(x)=z_{k}(x)$.

In this paper we assume that
(3.3) all u_{j} are rational functions;
(3.4) if f is transcendental, we use a rational subroutine to approximate $f^{(i)}, i \geq 0$, whenever $f^{(i)}$ is transcendental; and
(3.5) all $f^{(i)}\left(z_{j}(x)\right)$ are algebraically independent.

Assumption (3.5) means that we are not allowed to use any special property of f. In other words, we consider "general" f.

Recall that $\lambda\left(=\lambda_{\varphi(f)}\right)$ is a procedure which computes the value of $\varphi(f)(x)$ for any x. Because of (3.5), λ must compute $\varphi(f)(x)$ according to (3.1) and (3.2). Let $a_{j}(\lambda), j=1, \ldots, k$, denote the number of arithmetic operations needed to compute $u_{j}\left(y_{0} ; y_{1}^{0}, \ldots, y_{d}^{j-1}{ }_{j-1}\right)$ for given $\left(y_{0} ; y_{1}^{0}, \ldots, y_{d}^{j-1}{ }_{j-1}^{j+1}\right)$ by the procedure λ. Moreover, if $f^{(i)}$ is rational, let $c\left(f^{(i)}\right)$ denote the number of arithmetic operations for one evaluation of $f^{(i)}$; otherwise let $c\left(f^{(i)}\right)$ denote the number of arithmetic operations used in the rational subroutine which approximates $f^{(i)}$. Then the total number of arithmetic operations needed to perform the procedure λ is

$$
c(\lambda)=\sum_{i \geq 0} v_{i}(\varphi) c\left(f^{(i)}\right)+\sum_{i=1}^{k} a_{i}(\lambda)
$$

where $v_{i}(\varphi)$ is the number of evaluations of $f^{(i)}$ required by φ.
If $p(\varphi)$ is the order of convergence of the iteration φ, then by definition (2.1) the efficiency of the algorithm ($\varphi(f), \lambda$) is

$$
e(\varphi(f), \lambda)=\frac{\log p(\varphi)}{c(\lambda)}=\frac{\log p(\varphi)}{\sum_{i \geq 0} v_{i}(\varphi) c\left(f^{(i)}\right)+\sum_{i=1}^{k} a_{i}(\lambda)}
$$

We define $e(\varphi, f)$, the efficiency of the iteration φ with respect to the problem f, by

$$
e(\varphi, f)=\sup _{\lambda} e(\varphi(f), \lambda)
$$

Let

$$
a(\varphi)=\min _{\lambda} \sum_{i=1}^{k} a_{i}(\lambda)
$$

Then

$$
\begin{equation*}
e(\varphi, f)=\frac{\log p(\varphi)}{\sum_{i \geq 0} v_{i}(\varphi) c\left(f^{(i)}\right)+a(\varphi)} \tag{3.6}
\end{equation*}
$$

This is the basic efficiency measure used in this paper.
Define

$$
\sum_{i \geq 0} v_{i}(\varphi) c\left(f^{(i)}\right)
$$

to be the evaluation cost of φ with respect to f and define $a(\varphi)$ to be the combinatory cost of φ. The total cost, which appears in the denominator of (3.6), is the sum of these two costs.

Let

$$
\text { (3.7) } \quad c_{f}=\min _{i \geq 0} c\left(f^{(i)}\right) .
$$

In this paper, we refer to f as the problem complexity. Let

$$
\text { (3.8) } \quad v(\varphi)=\sum_{i \geq 0} v_{i}(\varphi) .
$$

Then by (3.6),
(3.9) $e(\omega, f) \leq \frac{\log _{p(\varphi)}}{v(\omega) c_{f}+a(\varphi)}$.

This gives an upper bound on $e(\varphi, f)$.
The efficiency measure defined by (3.6) is the first one to include both evaluation and combinatory costs. Ostrowski [66, Chapter 3] defines efficiency as $p(\varphi)^{\overline{v(\varphi)}}$ where $v(\varphi)$ is defined by (3.8). This amounts to neglecting $a(\varphi)$ and taking $c\left(f^{(i)}\right.$) to be unity for all in (3.6). Our efficiency measure, defined by (3.6), does not take into account rounding errors or truncation errors caused by rational approximations for transcendental $f^{(i)}, i \geq 0$.

The following two examples illustrate the definitions.

Example 3.1. (Newton-Raphson Iteration)

$$
\varphi(f)(x)=x-\frac{f(x)}{f^{\prime}(x)} .
$$

This is a one-point iteration with $p(\varphi)=2, v_{0}(\varphi)=v_{1}(\varphi)=1$, and $a(\varphi)=2$. Hence

$$
\begin{aligned}
& e(\varphi, f)=\frac{1}{c(f)+c\left(f^{\prime}\right)+2}, \\
& e(\varphi, f) \leq \frac{1}{2 c_{f}+2} .
\end{aligned}
$$

Example 3.2.

$$
\begin{aligned}
& z_{0}=x, \\
& z_{1}=z_{0}-\frac{f\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}, \\
& \varphi(f)(x)=z_{1}-\frac{f\left(z_{1}\right) f\left(z_{0}\right)}{\left[f\left(z_{1}\right)-f\left(z_{0}\right)\right]^{2}} \cdot \frac{f\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)} .
\end{aligned}
$$

This is a two-point iteration with $p(\varphi)=4, v_{0}(\varphi)=2, v_{1}(\varphi)=1$ and $a(\varphi)=8$. (See Kung and Traub [73, Section 5].) Hence

$$
\begin{aligned}
& e(\varphi, f)=\frac{2}{2 c(f)+c\left(f^{\prime}\right)+8}, \\
& e(\varphi, f) \leq \frac{2}{3 c_{f}+8} .
\end{aligned}
$$

It is natural to ask for a given problem f what is the optimal value of $e(\varphi, f)$ for all φ belonging to some family Φ. Define

$$
E_{n}(\Phi, f)=\sup _{\varphi \in \Phi}\{e(\varphi, f) \mid v(\varphi)=n\} .
$$

Thus $E_{n}(\Phi, f)$ is the optimal efficiency over all $\emptyset \in \Phi$ which use n evaluations. Define

$$
E(\Phi, f)=\sup \left\{E_{n}(\Phi, f) \mid n=1,2, \ldots\right\} .
$$

Thus. $E(\Phi, f)$ is the optimal efficiency for all $\varphi \in \Phi$. We will establish lower and upper bounds for $E_{n}(\Phi, f)$ and $E(\Phi, f)$ with respect to different families of iterations. When there is no ambiguity, we write $E_{n}(\Phi, f)$ and $E(\Phi, f)$ as $E_{n}(f)$ and $E(f)$, respectively. Since in practice we are more concerned with efficiency for problems f with higher complexity, we are particularly interested in the asymptotic behavior of these bounds as $c_{f} \rightarrow \infty$.
4. THEOREMS ON EFFICIENCY OF ONE-POINT ITERATION

We consider first the family of one-point iteration $\left\{\gamma_{n}\right\}$. (See Kung and Traub [73, Section 3].) The important properties of $\left\{\gamma_{n}\right\}$ from our point of view are summarized in the following theorem proven by Traub [64, Section 5.1].

Theorem 4.1.

1. $v_{i}\left(\gamma_{n}\right)=1, i=0, \ldots, n-1, v_{i}\left(\gamma_{n}\right)=0, i>n-1 . \quad$ Hence $v\left(\gamma_{n}\right)=n$.
2. $\quad \underline{p}\left(\gamma_{n}\right)=n$.

We now turn to an upper bound for $a\left(\gamma_{n}\right)$. Suppose that we have already obtained $f^{(i)}(x), i=0, \ldots, n-1$ and we want to use them to form $\gamma_{n}(f)(x)$. This amounts to calculating the first $n-1$ derivatives of f^{-1} (the inverse function) at $f(x)$. This can be done in $O\left(n^{3}\right)$ arithmetic operations by the power series reversion technique reported in Knuth [1969, Section 4.7]. However if one uses the Fast Fourier Transform for polynomial multiplication then the power series reversion can be done in $0\left(n^{2} \log n\right)$ arithmetic operations, and this implies that
(4.1) $a\left(\gamma_{n}\right) \leq \rho n^{2} \log n$
for some positive constant p. Then by (4.1) and Theorem 4.1,

$$
(4.2) \quad e\left(\gamma_{n}, f\right) \geq \frac{\log n}{\sum_{i=0}^{n-1} c\left(f^{(i)}\right)+o n^{2} \log n}
$$

For n small, $a\left(\gamma_{n}\right)$ can be calculated by inspection. For instance, since

$$
\gamma_{3}(f)(x)=x-\frac{f(x)}{f^{\prime}(x)}-\frac{f^{\prime \prime}(x)}{2 f^{\prime}(x)}\left[\frac{f(x)}{f^{\prime}(x)}\right]^{2},
$$

one can easily observe that $a\left(\gamma_{3}\right)=7$. Hence
(4.3) $e\left(\gamma_{3}, f\right)=\frac{\log 3}{c(f)+c\left(f^{\prime}\right)+c\left(f^{\prime \prime}\right)+7}$.

Let φ be any one-point iteration, with $v(\varphi)=n$, which satisfies a mild smoothness condition. Then by Traub [64, Section 5.4], Kung and Traub [73, Theorem 6.1] $v_{i}(\varphi) \geq 1, i=0, \ldots, p(\varphi)-1$, and hence $p(\varphi) \leq n$. Clearly, $a(\varphi) \geq n-1$. Therefore, from (3.9),
(4.4) $e(\varphi, f) \leq \frac{\log n}{n c_{f}+n-7} \equiv h(n)$.

It is straightforward to verify that
(4.5) $h(n) \leq \frac{\log 3}{3 c_{f}+2}$, for $c_{f}>4$.

From (4.2), (4.3), (4.4) and (4.5) we have

Theorem 4.2.
For the family Φ of one-point iterations,
(4.6) $\frac{\log n}{\sum_{i=0} c\left(f^{(i)}\right)+\rho n^{2} \log n} \leq E_{n}(f) \leq \frac{\log n}{n c_{f}+n-1}$, for a constant $\rho>0, \forall n$, $i=0$
\cdot
(4.7) $\frac{\log 3}{c(f)+c\left(f^{\prime}\right)+c\left(f^{\prime \prime}\right)+7} \leq E(f) \leq \frac{\log 3}{3 c} f$, for $c_{f}>4$.

Remark 4.1.

1. In (4.6) both lower and upper bounds for $E_{n}(f)$ are tight for f such that $c\left(f^{(i)}\right) \sim c_{f}, i<n$, and c_{f} is large, since lower bound/upper

$$
-12-
$$

bound $\rightarrow 1$ as $c_{f} \rightarrow \infty$.
2. For f such that $c(f) \sim c\left(f^{\prime}\right) \sim c\left(f^{\prime \prime}\right) \sim c_{f}$, and c_{f} is large, both lower and upper bounds for $\mathrm{E}(\mathrm{f})$ in (4.7) are tight, since lower bound/upper bound $\rightarrow 1$ as $c_{f} \rightarrow \infty$. In this case, by (4.3), γ_{3} is close to optimal among all one-point iterations.

5. THEOREMS ON EFFICIENCY OF MULTIPOINT ITERATION

We consider first the family of iterations $\left\{\Psi_{n}\right\}$ defined by Kung and Traub [73, Section 4]. The important properties of $\left\{\psi_{n}\right\}$ from our point of view are summarized in

Theorem 5.1.

1. $v_{0}\left(\Psi_{n}\right)=n . \quad v_{i}\left(\Psi_{n}\right)=0, i>0$. Hence $v\left(\Psi_{n}\right)=n_{n}$
2. $p\left(\Psi_{n}\right)=2^{n-1}$.

Kung and Traub [73, Appendix I] give a procedure λ for computing $\Psi_{n}(f)(x)$. It can be shown that

$$
\sum_{j=1}^{n} a_{j}(\lambda)=\frac{3}{2} n^{2}+\frac{3}{2} n-7
$$

Hence

$$
a\left(\Psi_{n}\right) \leq \frac{3}{2} n^{2}+\frac{3}{2} n-7 .
$$

More generally, we assume that
(5.1) $a\left(\Psi_{n}\right) \leq r(n)$,
where $r(n)=r_{2} n^{2}+r_{1} n+r_{0}, r_{2}>0$.
Then by (5.1) and Theorem 5.1,
(5.2) $e\left(\Psi_{n}, f\right) \geq \frac{n-1}{n c(f)+r(n)}$.

We choose n so as to maximize the right hand side of (5.2). The maximum is achieved when $n=t$ where

$$
\mathrm{t}=1+\sqrt{\frac{(\mathrm{f})}{\mathrm{r}_{2}}}+\delta, \delta=\frac{\mathrm{r}_{0}+\mathrm{r}_{1}+\mathrm{r}_{2}}{\mathrm{r}_{2}} .
$$

Let
(5.3) $M=\operatorname{round}(t)$.

Then from (5.2) we can easily prove

Theorem 5.2.
There exists a constant $\zeta<0$ such that if $M=M(f)$ is chosen by
(5.3) then

$$
e\left(\Psi_{M}, f\right) \geq \frac{1}{c(f)}\left(1+\frac{6}{\sqrt{c(f)}}\right), \text { for } c(f) \text { large }
$$

From (5.2) and Theorem 5.2, we have

Corollary 5.1.

For the family Φ of one-point or multipoint iterations,
$E_{n}(f) \geq \frac{n-1}{n c(f)+r(n)}$, where $r(n)=r_{2} n^{2}+r_{1} n+r_{0}, r_{2}>0$; and
$E(f) \geq \frac{1}{c(f)}\left[1+\frac{\zeta}{\sqrt{c(f)}}\right]$, for a constant $\zeta<0$, for $c(f)$ large.

We turn to the family of iterations $\left\{\omega_{n}\right\}$ defined in Kung and Traub [73, Section 5]. The important properties of $\left\{\omega_{n}\right\}$ from our point of view are summarized in

Theorem 5.3.

1. $v_{0}\left(\omega_{n}\right)=n-1, v_{1}\left(\omega_{n}\right)=1, v_{i}\left(\omega_{n}\right)=0, i>1$. Hence $v\left(\omega_{n}\right)=n$.
2. $p\left(\omega_{n}\right)=2^{n-1}$.

Kung and Traub [73, Appendix I] give a procedure λ for computing $\omega_{n}(f)(x)$. It can be shown that

$$
\sum_{j=1}^{n} a_{j}(\lambda)=\frac{3}{2} n^{2}+\frac{3}{2} n-4 .
$$

Hence

$$
a\left(\omega_{n}\right) \leq \frac{3}{2} n^{2}+\frac{3}{2} n-4 .
$$

More generally, we assume that
(5.4) a($\left.w_{n}\right) \leq s(n)$
where $s(n)=s_{2} n^{2}+s_{1} n+s_{0}, s_{2}>0$. Then by (5.4) and Theorem 5.3,
(5.5) $e\left(\omega_{n}, f\right) \geq \frac{n-1}{(n-1) c(f)+c\left(f^{\prime}\right)+s(n)}$.

We choose n so as to maximize the right hand side of (5.5). Then the maximum is achieved when $n=u$, where

$$
u=1+\sqrt{\frac{\varepsilon\left(f^{\prime}\right)}{s_{2}}+\varepsilon}, \varepsilon=\frac{s_{0}+s_{1}+s_{2}}{r_{2}}
$$

Let
(5.6) $\mathrm{N}=\operatorname{round}(\mathrm{u})$.

Then from (5.5) we can easily prove

Theorem 5.4.
There exists a constant $\eta>0$ such that if $N=N(f)$ is chosen by (5.6)
then

$$
e\left(\omega_{N}, f\right) \geq \frac{1}{c(f)+\eta / c\left(f^{\top}\right)}, \text { for } c\left(f^{\prime}\right) \text { large. }
$$

From (5.5) and Theorem 5.4, we have

Corollary 5.2.

For the family Φ of one-point or multipoint iterations,
$E_{n}(f) \geq \frac{n-1}{(n-1) c(f)+c\left(f^{\prime}\right)+s(n)}$, where $s(n)=s_{2} n^{2}+s_{1} n+s_{0}, s_{2}>0$; and
$E(f) \geq \frac{1}{c(f)+\eta /\left(f^{\top}\right)}$, for a constant $\eta>0$, for $c\left(f^{\prime}\right)$ large.

We turn to more general families of multipoint iterations. Let φ be a Hermite interpolatory iteration with $v(\varphi)=n$. Then $p(\varphi) \leq 2^{n-1}$ (Kung and Traub [73, Corollary 7.1]). Clear1y, a(φ) $\geq \mathrm{n}-1$. Hence by (3.9),
(5.7) $\quad e(\varphi, f) \leq \frac{n-1}{n c_{f}+n-1} \leq \frac{1}{c_{f}+1}$.

Since Ψ_{n} and ω_{n} are Hermite interpolatory iterations, from (5.7) and Corollaries $5.1,5.2$, we have

Theorem 5.5.
For the family Φ of Hermite interpolatory iterations,

$$
\begin{aligned}
& \max \left(\frac{n-1}{n c(f)+r(n)}, \frac{n-1}{(n-1) c(f)+c\left(f^{\prime}\right)+s(n)}\right) \leq E_{n}(f) \leq \frac{n-1}{n c+n-1}, \forall n, \\
& \max \left(\frac{1}{c(f)}\left[1+\frac{5}{\sqrt{c(f)}]}\right] \frac{1}{c(f)+1 \sqrt{c(f)})} \leq E(f) \leq \frac{1}{c_{f}+1},\right.
\end{aligned}
$$

for c_{f} large, where $r(n)=r_{2} n^{2}+r_{1} n+r_{0}, r_{2}>0, s(n)=s_{2} n^{2}+s_{1} n+s_{0}, s_{2}>0$, $\zeta<0$ and $\eta>0$.

Remark 5.1.

The lower and upper bounds for $E_{n}(f)$ and $E(f)$ stated in Theorem 5.5 are tight for f such that $c(f) \sim c_{f}$ and c_{f} is large, since lower bound/upper bound $\rightarrow 1$ as $c_{f} \rightarrow \infty_{\text {. }}$ In this case, by Theorem $5.2, \Psi_{M}$ is close to optimal among all Hermite interpolatory iterations.

Now, let \mathcal{C} be any multipoint iteration which uses evaluations of f only. Let $v(\varphi)=n$. Then $p(\varphi) \leq 2^{n}$ (Kung and Traub [73, Theorem 7.2]). Clearly, $a(\varphi) \geq n-1$. Hence
(5.8) $e(\varphi, f) \leq \frac{n}{n c(f)+n-1} \leq \frac{1}{c(f)}$.

Since Ψ_{n} is a multipoint iteration which uses evaluations of f only, from (5.8) and Corollary 5.1, we have

Theorem 5.6.

For the family Φ of multipoint iterations using values of f only,

$$
\begin{aligned}
& \frac{n-1}{n c(f)+r(n)} \leq E_{n}(f) \leq \frac{n}{n c(f)+n-1}, \forall n \\
& \frac{1}{c(f)}\left[1+\frac{\zeta}{\sqrt{c(f)}}\right] \leq E(f) \leq \frac{1}{c(f)},
\end{aligned}
$$

for $c(f)$ large, where $r(n)=r_{2} n^{2}+r_{1} n+r_{0}, r_{2}>0$, and $\zeta<0$.

Remark 5.2.

The lower and upper bounds for $E_{n}(f)$ and $E(f)$ stated in Theorem 5.6 are tight for f such that $c(f)$ is large, since lower bound/upper bound $\rightarrow 1$ as $c(f) \rightarrow \infty$. In this case, by Theorem $5.2, \psi_{M}$ is close to optimal among all multipoint iterations using values of f only.

Remark 5.3.

For a given problem f let $E^{\prime}(f), E^{\prime \prime}(f)$ be the optimal efficiency achievable by one-point iteration and multipoint iteration, respectively. By Theorem 4.2 and Corollary 5.1,

$$
\begin{aligned}
& E^{\prime}(f) \leq \frac{\log 3}{3 c_{f}+2} \\
& E^{\prime \prime}(f) \geq \frac{1}{c(f)}\left[1+\frac{\zeta}{\sqrt{c(f)}}\right], \zeta<0, \text { for } c(f) \text { large. }
\end{aligned}
$$

Hence
-18-

$$
\frac{E^{\prime \prime}(f)}{E^{\prime}(f)} \geq \frac{3 c_{f}+2}{(\log 3) c(f)}\left[1+\frac{\zeta}{\sqrt{c(f)}}\right] \sim \frac{3}{\log 3} \cdot \frac{c_{f}}{c(f)}, \text { for } c(f) \text { large. }
$$

In particular, if f is a problem such that $c_{f}=c(f)$ and c_{f} is large, then the ratio between optimal efficiencies achievable by multipoint iteration and one-point iteration is at least $\frac{3}{\log 3} \sim 1.89$.
6. A CONJECTURE

Kung and Traub [73] conjecture that if φ is any multipoint iteration with $v(\varphi)=n$ then $p(\varphi) \leq 2^{n-1}$. Suppose that this conjecture is true. Then by (3.9), for any multipoint iteration $c o$ with $v(c o)=n$,

$$
e(\varphi, f) \leq \frac{n-1}{\mathrm{nc}_{\mathrm{f}}+\mathrm{a}(\varphi)} .
$$

Clearly, $a(\infty) \geq n-1$. Hence

$$
e(\varphi, f) \leq \frac{n-1}{n c_{f}+n-1} \equiv k(n)
$$

Observe that

$$
k(n) \leq \frac{1}{c_{f}+1}, \forall n, \forall c_{f}
$$

Therefore we propose the following conjecture. It states, essentially, that the optimal efficiency for solving the problem f with respect to all one-point or multipoint iterations is bounded by the reciprocal of the problem complexity.

Conjecture 6.1.
For the family Φ of one-point or multipoint iterations,
$E_{n}(f) \leq \frac{n-1}{n c_{f}+n-1}$,
$E(f) \leq \frac{1}{c_{f}+1}$.
7. NUMERICAL EXAMPLE

Let $f(x)=\sum^{50} i x^{i}-25$. We calculate its simple zero $\alpha=-1$. Calcula$i=1$
tions were done in double precision arithmetic on a DEC PDP-10 computer. About 16 digits are available in double precision. Numerical results show the following: Starting with $x_{0}=-1.01$, to bring the error to about 10^{-16}, five Newton-Raphson iterations are required while one ω_{6} iteration is required. (See Table 7.1.) We assume that we do not take advantage of the algebraic dependence of f and f^{\prime} (see the assumption of (3.5)) and that we use Horner's rule for the evaluation of f and f^{\prime}, treating each as an independent polynomial. Suppose that we use the procedure given by Kung and Traub [73, Appendix I] to compute $\omega_{6}(f)(x)$.

Let Σ^{1} and Σ^{2} be algorithms associated to Newton-Raphson iteration and ω_{6} respectively. Then the total costs are

$$
\begin{aligned}
& k\left(\Sigma^{1}\right)=5[2 \cdot 50+2 \cdot 49+2]=10^{3} \\
& k\left(\Sigma^{2}\right)=5 \cdot 2 \cdot 50+2 \cdot 49+\frac{3}{2} \cdot 6^{2}+\frac{3}{2} \cdot 6-4=657
\end{aligned}
$$

and the efficiencies are

$$
\begin{aligned}
& e\left(\Sigma^{1}\right)=1 /[2 \cdot 50+2 \cdot 49+2]=5 / 10^{3} \\
& e\left(\Sigma^{2}\right)=5 /\left[5 \cdot 2 \cdot 50+2 \cdot 49+\frac{3}{2} \cdot 6^{2}+\frac{3}{2} \cdot 6-4=5 / 657\right.
\end{aligned}
$$

Then

$$
\begin{aligned}
& \frac{k\left(\Sigma^{1}\right)}{k\left(\Sigma^{2}\right)}=\frac{10^{3}}{657} \\
& \frac{\mathrm{e}\left(\Sigma^{2}\right)}{\mathrm{e}\left(\Sigma^{7}\right)}=\frac{10^{3}}{657}
\end{aligned}
$$

as predicted by (2.2). (In general, approximate equality holds from (2.2).)

Let $x_{i+1}=\varphi\left(x_{i}\right)$. The errors when φ is Newton-Raphson and $\varphi=\omega_{6}$ are shown in Table 7.1.

Newton-Raphson	ω_{6}	
$x_{0}-\alpha$	-1.0×10^{-2}	-1.0×10^{-2}
$x_{1}-\alpha$	-2.1×10^{-3}	-2.2×10^{-16}
$x_{2}-\alpha$	-1.0×10^{-4}	
$x_{3}-\alpha$	-2.7×10^{-7}	
$x_{4}-\alpha$	-1.8×10^{-12}	
$x_{5}-\alpha$	-1.1×10^{-16}	

Table 7.1

ACKNOWLEDGEMENT

We want to thank G. W. Stewart for his comments on the work reported in this paper.

BIBLIOGRAPHY

Gentleman [70]
Knuth [69]

Kung [72]

Kung [73]

Kung and Traub [73] Kung, H. T. and Traub, J. F., Optimal Order of OnePoint and Multipoint Iteration, report, Department of Computer Science, Carnegie-Mellon University, 1973.

Ostrowski, A. M., Solution of Equations and Systems of Equations, 2nd ed., Academic Press, New York, 1966.

Paterson, M. S., Efficient Iterations for Algebraic Numbers, in Complexity of Computer Computations, R. Miller and J. W. Thatcher (eds.), Plenum Press, New York, 1972, 44-52.

Traub, J. F., Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.

Traub, J. F., Computational Complexity of Iterative Processes. SIAM Journal on Computing, vol. 1, no. 2, (1972), 167-179.

