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ABSTRACT 

Let cp be an iteration for approximating the solution of a problem f. 

We define a new efficiency measure e(cp,f)« For a given problem f, we de

fine the optimal efficiency E(f) and establish lower and upper bounds for 

E(f) with respect to different families of iterations. We conjecture an 

upper bound on E(f) for any iteration without memory. 
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1. INTRODUCTION 

Let cp be an iteration for approximating the solution of a problem f. 

We define a new efficiency measure e(cp,f). The efficiency measure gives 

us a methodology for comparing iterations as well as permitting us to 

derive theoretical limits on iteration efficiency. 

For a given problem f, we define the optimal efficiency E(f) over 

all cp belonging to a family $. We establish lower and upper bounds for 

E(f) with respect to different families of iterations* We conjecture an 

upper bound on E(f) for any iteration without memory. 

We summarize the results of this paper. Basic concepts are given in 

Section 2 and our efficiency measure is defined in Section 3. In the next 

two sections we establish lower and upper bounds on the optimal efficiency 

for solving a problem with respect to important families of algorithms. A 

conjecture on optimal efficiency is stated in Section 6 and a small numeri

cal example is given in the last section. 
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2. BASIC CONCEPTS 

We work over the field of real numbers. Let cr(x) be a function and 

X^ be a procedure which computes the value of cr(x) for any given x. (We 

write X for X if there is no ambiguity.) Let a be any number. We say 

2 - (a,X) is an algorithm for approximating a if the sequence {x^}, gen

erated by = cr(x^), converges to a whenever x^ is chosen near a l and 

if cr(x̂ ) is computed by the procedure X for all i. £ = (<j,X) has order  

of convergence p(a) if 

lim CT(X)-^ , 

exists and is non-zero. We measure the goodness of the algorithm Z - (a, X) 

by p(a) and define the efficiency of the algorithm £ = (cr,X) to be 

(2.1) e(S) - , 

where c(X) is the cost of performing the procedure X. In this paper we 

consider only superlinear convergent algorithms, that is, p(cr) > 1. All 

logarithms are to base 2. 

For any fixed positive integer n, consider the algorithm 2 = (cr A n) 

where a n - <C7octô« »oo> (aoa denotes composition) and X n is the procedure 
n clmes 

which computes ̂ (x) by 
7 0 - x 9 

y i + 1 = a(y i), i=0,...,n-1, 'i+1 
a (x) = y , n n 

with a(yi) being computed by X for all i. One can easily check that 
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p(cr ) s pn(a) and c(\ ) = nc(\ ). Note that n n n 

log P(g) «. log Pn(cr) 
c(X) nc(\) 

Therefore, 

e(£) = e(Sn) 

for any n. This invariance is clearly desirable for any useful efficiency 

measure, since £^ is just the algorithm which repeats £ n times and hence £ and 

£ must have the same efficiency. Gentleman [70] shows that if any effici-n 
ency measure satisfies this invariance property then it must be of the form 

(2.1) or a strictly increasing function of that form. Hence (2.1) is essen

tially the unique way to define an efficiency measure. Furthermore, Traub 

[64, Equation C-l1] shows that if the efficiency measure has the form (2.1) 

then efficiency is inversely proportional to the total cost of approximating 
1 2 

a by the algorithm. More specifically, let £ , £ be two algorithms for ap

proximating a and let k(£ 1), kd^) be the total costs for generating two 

sequences which start with the same initial approximation and terminate 

when some fixed number of correct digits of a have been calculated. Then 

( 2 . 2 ) k ^ i ^ e ^ l . 
k(XT) e ( £ f ) 

Therefore, it is desirable to have algorithms with high efficiency. An  

algorithm is called optimal in a certain class of algorithms if it has the  

highest efficiency among all algorithms in that class. 

We now consider how to define the cost c(\). Paterson [72] defines 

c(X) as the number of multiplications or divisions, except by constants, 
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needed to perform the procedure \. We call the associated efficiency the 

multiplicative efficiency. Kung [72] shows that unity is the sharp upper 

bound on the multiplicative efficiency, and Kung [73] uses the multiplica

tive efficiency to investigate the computational complexity of algebraic 

numbers. In this paper, we define c(\) to be the number of arithmetic  

operations needed to perform the procedure \. 
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3. EFFICIENCY MEASURE FOR ITERATION 

In the previous section we have defined the efficiency of an algorithm 

for approximating a number More specifically, we now study the effici

ency of an algorithm for approximating a simple zero ot^ of a function 

f 6 D, where D is the set of analytic functions f which have simple zeros 

a^* We consider algorithms E = (cr,X) where a = cp(f), cp is a one-point or 

multipoint iteration and f € D. (See Kung and Traub [73].) If cp is a 

k-point iteration, k=l,2,..., then cp has the following property: 

For j«0,#..,k-l there exists a function u (y ;y!?,...,y*? 
j J 0 

y l , , , , , y H o f 1 + S variables such that for all f € D, if 
j i=0 i 

r 

Z Q ( X ) = x, x belongs to the domain of cp(f) , 

:<i>. (3.1) / yj + 1(«) - f U ,(z j(x)) ; 

^z J + 1(x) - Uj + 1(x; yj(x),...,y^+1(x);...;y^(x),...,y^ + 1(x)), 

for j=0,... ,k-l, i=0,...,dj, then 

(3.2) cp(f)(x) = zfc(x). 

In this paper we assume that 

(3.3) all Uj are rational functions; 

(3.4) if f is transcendental, we use a rational subroutine to approximate 

i ^ 0, whenever f ^ is transcendental; and 

(3.5) all f (z^(x)) are algebraically independent. 
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Assumption (3.5) means that we are hot allowed to use any special 

property of f. In other words, we consider "general11 f. 

Recall that \(S=SX , „v) is a procedure which computes the value of <p(f) 
cp(f)(x) for any x. Because of (3.5), X must compute cp(f)(x) according to 

(3.1) and (3.2). Let a^(\), j^l,...,^, denote the number of arithmetic 
^ ^ / 0 j-1 , - . , 0 j-1 operations needed to compute - *" " * *"ir <™ * v v J 

m j - 1 (i) j - 1 

•, if £ K ' is rational, let c(fv ') denote the by the procedure \. Moreover 

number of arithmetic operations for one evaluation of f^^; otherwise let 

c(f^^) denote the number of arithmetic operations used in the rational 

subroutine which approximates f . Then the total number of arithmetic 

operations needed to perform the procedure X is 
k 

c(X) = E v (cp)c(fU;) + E a (\) 
is:0 1 i=1 1 

where v.(cp) is the number of evaluations of f ^ required by cp. 

If p(cp) is the order of convergence of the iteration cp,then by defini

tion (2.1) the efficiency of the algorithm (cp(f),X) is 

, ( f , , x _ log P(cp) log P<<P)  
e(cp(f),X) - " k 

E v.(cp)c(fvi;)+ E a.(X) 
i£0 1 i=l L isO 

We define e(cp,f), the efficiency of the iteration cp with respect to the  

problem f s by 
e(cp,f) = sup e(cp(f),X). 

X 

Let k 
a(cp) = min E a. (X) . 

X i=1 1 
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Then 

(3.6) e(cp,f) « 
S v (cp)c(f(i))+a(co) 
î O 1 

This is the basic efficiency measure used in this paper. 

Define 
S v. (cp)c(f(i)) 

12:0 1 

to be the evaluation cost of cp with respect to f and define a(cp) to be the 

combinatory cost of co. The total cost, which appears in the denominator of 

(3.6), is the sum of these two costs. 

Let 

(3.7) c f = min c(f ( i )). 
12:0 

In this paper, we refer to c £ as t h * problem rnmplpyfi-y. Let 

(3.8) v(cp) = E v (cp). 
12:0 1 

Then by (3.6), 

(3 9) e(<o f) * l o 6 P<<P? U.y; e(co,t; * v(«>)cf+a(cp) • 

This gives an upper bound on e(cp,f). 

The efficiency measure defined by (3.6) is the first one to include both 

evaluation and^combinatory costs. Ostrowski [66, Chapter 3] defines effici

ency as p(cp) V^ where v(cp) is defined by (3.8). This amounts to neglecting 

a(cp) and taking c(f ) to be unity for all i in (3.6). Our efficiency mea

sure, defined by (3.6), does not take into account rounding errors or trunca

tion errors caused by rational approximations for transcendental f ^ , i ̂  0. 

The following two examples illustrate the definitions. 
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Example 3.1. (Newton-Raphson Iteration) 

cp(F)(x) = X 
f (x) * 

This is a one-point iteration with p(cp) = 2, vQ(cp) = (co) = T, and a(cp) = 2. 

Hence 

e(cp,f) - c( f) + c(f-)+2 » 

e(cp,f) * 2c^+2 * 

Example 3.2. 

z Q = x, 
f< Z0> , 

zi = zo " FT^) 
f( Z l)f(Z 0) f ( 2 Q ) 

cp(f)(x) - z 2 • p - 7 — N * 
1 [f(Zl)-f(z0)r f C V 

This is a two-point iteration with p(<p) = 4, vQ(cp) = 2, (cp) <= 1 and 

a(qj) = 8. (See Rung and Traub [73, Section 5].) Hence 

e ( c p' f ) = 2c(f)+c(f)+8' 

2 
e(co,f) * 

It is natural to ask for a given problem f what is the optimal value 

of e(co»f) for all cp belonging to some family $. Define 

E ($,f) - sup[e(cp,f) | v(cp) = n}. 
tp€f 

Thus E ($,f) is the optimal efficiency over all © € $ which use n evaluations, 
n 

Define 
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E($,f) - sup{En($,f) | n = 1,2,...}. 

Thus.E($,f) is the optimal efficiency for all cp 6 $« We will establish 

lower and upper bounds for E ($,f) and E($,f) with respect to different 
n 

families of iterations. When there is no ambiguity, we write E ($,f) and 
m n 

E($,f) as En(f) and E(f), respectively. Since in practice we are more con

cerned with efficiency for problems f with higher complexity, we are par

ticularly interested in the asymptotic behavior of these bounds as ĉ . -+ °°. 
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4. THEOREMS ON EFFICIENCY OF ONE-POINT ITERATION 

We consider first the family of one-point iteration [y }. (See 

Kung and Traub [73, Section 3].) The important properties of {y^} from 

our point of view are summarized in the following theorem proven by Traub 

[64, Section 5.1]. 

Theorem 4.1. 
1. v.(v ) = 1, i=0,...,n-l, v.(v ) « 0, i > n-1. Hence v(v ) - n. 

l Tn ' 7 7 I Tn Tn  
2. p(yn) = n. 

We now turn to an upper bound for a(Yn)» Suppose that we have already 

obtained f ^ ( x ) , i=0,...,n-1 and we want to use them to form yn(f)(x). 

This amounts to calculating the first n-1 derivatives of f ̂  (the inverse 
3 

function) at f(x). This can be done in 0(n ) arithmetic operations by 

the power series reversion technique reported in Knuth [1969, Section 4.7]. 

However if one uses the Fast Fourier Transform for polynomial multiplica-
2 

tion then the power series reversion can be done in 0(n log n) arithmetic 

operations, and this implies that 
2 

(4.1) a(Y n) * P n l o S n 

for some positive constant p. Then by (4.1) and Theorem 4.1, 

<4-2> e ( v f ) * n-i ^ g n
 2 — • 

2 c(f u ;)+pn log n 
i=0 

For n small, a(Yn) can be calculated by inspection. For instance, since 
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Y3(f)(x) - x f l ( x ) - 2 f ( x ) L f ( x ) | » 

one can easily observe that ^ 7 3 ) 8 5 Hence 

(4.3) e ( v 3 , f ) a s
c ( f ) + c ( f ? ) + c ( f . t ) + 7 • 

Let cp be any one-point iteration, with v(cp) = n, which satisfies a 

mild smoothness condition. Then by Traub [64, Section 5.4], Kung and Traub 

[73, Theorem 6.1] v.(cp) ^ 1, i=0,... ,p(cp)-1, and hence p(cp) ̂  n. Clearly, 

a(cp) ̂ n-1. Therefore, from (3.9), 

(4.4) e(cp,f) * ^ { n , , s h(n). 

It is straightforward to verify that 

(4.5) h(n) £ , for c f > 4. 

From (4.2), (4.3), (4.4) and (4.5) we have 

Theorem 4.2. 

For the family $ of one-point iterations. 

(4.6) n-1 ) ° ? n
 2 * E n ( f ) * n^fc?T> f o r a c o n s t a n t P > °> V n> 

S c(f W)+pn log n 
i=0 

( 4 ' 7 ) c(f) +c(^)'c(f"H7 * E ( f ) * gfftf» f o r cf > *• 

Remark 4.1. 

1. In (4.6) both lower and upper bounds for E (f.) are tight for f 
n 

such that c(f ̂ ) ~ c f, i < n, and c f is large, since lower bound/upper 
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bound 1 as °°. 
2. For f such that c(f) ~ c(ff) ~ c(ffl) ~ c f, and c f is large, 

both lower and upper bounds for E(f) in (4.7) are tight, since lower 

bound/upper bound -* 1 as c f -* 0 0 , In this case, by (4.3), y 3 is close to 

optimal among all one-point iterations. 
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5. THEOREMS ON EFFICIENCY OF MULTIPOINT ITERATION 

We consider first the family of iterations {Yn) defined by Kung and 

Traub [73, Section 4]. The important properties of {Yn) from our point 

of view are summarized in 

Theorem 5.1, 

1. v p ( V s n* v j ( V a °> i > Q> Hence v Q Q = n. 
2. P O f n ) = 2 n ~ \ 

Kung and Traub [73, Appendix I] give a procedure X for computing 

Y (f)(x). It can be shown that n 

n 3 2 3 
j=1 J 

Hence 
* < V ^ | » 2 + |'n - 7 . 

More generally, we assume that 

(5.1) a(Yn) £ r(n), 

2 
where r(n) « r 2n + r̂ n + r Q, r 2 > 0. 

Then by (5.1) and Theorem 5.1, 

(5.2) e(Y ,f) * —TTTTTT-
n nc(f)+r(n) 

We choose n so as to maximize the right hand side of (5.2). The maximum is 
achieved when n=t where 

rn+r,+rfl 

Let •A r2 

mi WWY 
CARNEIIE-KUM HflVERSITY 
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(5.3) M = round(t). 

Then from (5.2) we can easily prove 

Theorem 5.2. 

There exists a constant £ < 0 such that if M = M(f) is chosen by 

(5.3) then 

e ( V f ) * Z T i T ( 1 + J&fi* f o r c ( f ) l a r g e * 

i From (5.2) and Theorem 5.2, we have 
Corollary 5.1. 

For the family $ of one-point or multipoint iterations, 

' E n ( f ) * nc(f)+r(n) » W h e r e r ( n ) ° r 2 n 2 + r 1 n + rQ> r2 > ° ; a n d  

E ^ ^ c ( f T ^ + Jctf^9 f ° r a c o n s t a n t C < °> f o r c( f) large. 

We turn to the family of iterations {u>n} defined in Kung and Traub 

[73, Section 5]. The important properties of [u)n} from our point of view 

are summarized in 

Theorem 5.3. 
1. vn(o) ) = n-1, v-(o) ) « 1, v . ( u o ) = 0, i > 1. Hence v(o) ) » n. 

U n i n i n n 

2. p(o)n) - 2 n - \ 

Kung and Traub [73, Appendix I] give a procedure \ for computing 

oj (f)(x). It can be shown that n 

n 3 2 3 • Sa.(\) « srn.+ r n - 4 , 
j - T 3 

Hence 
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) + 7 n - 4 , n Z / 

More generally, we assume that 

(5.4) a(tu ) £ s(n) 
n 

2 
where s(n) « s2n + + s Q, s 2 > 0. Then by (5.4) and Theorem 5.3, 

(5.5) e(o) ,f) 2> n - 1 

u n ^ ' fc (n-l)c(f)+c(f,)+s(n)# 

We choose n so as to maximize the right hand side of (5.5). Then the maximum 

is achieved when n = u, where 

vf1 s 0 + s l + s 2 u - 1 + r
 y + e, e -

Let 

(5.6) N - round(u). 

Then from (5.5) we can easily prove 

Theorem 5.4. 

There exists a constant T\ > 0 such that if N •= N(f) is chosen by (5.6) 

then 

e ( V f ) * c ( f ) + Ù / c < f ' > ' £ o r c ( f ' } l a r g e -

From (5.5) and Theorem 5.4, we have 

Corollary 5.2. 
For the family $ of one-point or multipoint iterations, 

n—1 2 
E n ( f ) * (n-1)c(f)+c(f')+s(n)' W h e r e s ( n ) " s 2 n

 + * , " * S q > * 2

> 0 > a n d 

E ( f ^ ^ c(f )+TvA|f 'V "» f o r a c o n s t a n t TÌ > °> f o r c(f') large. 
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We turn to more general families of multipoint iterations. Let cp be 

a Hermite interpolatory iteration with v(cp) - n. Then p(cp) £ 2 n~* (Kung 

and Traub [73, Corollary 7.1]). Clearly, a(cp) ̂  n-1. Hence by (3.9), 

( 5 ' 7 ) e ( ^ f > n c ^ T * c~4T* 

Since Y r and o>n are Hermite interpolatory iterations, from (5.7) and 

Corollaries 5.1, 5.2, we have 

Theorem 5.5. 

For the family $ of Hermite interpolatory iterations, 

for c f large, where r(n) - + r̂ n + r^, > 0, s(n) = s^*" + ŝ n + s Q, > 0, 

q < 0 and T\ > 0. 

Remark 5.1. 
The lower and upper bounds for ER(f) and E(f) stated in Theorem 5.5 

are tight for f such that c(f) ̂  c^ and c^ is large, since lower bound/upper 

bound -* 1 as Cj °°« In this case, by Theorem 5.2, is close to optimal 

among all Hermite interpolatory iterations. 

Now, let cp be any multipoint iteration which uses evaluations of f 

only. Let v(cp) = n. Then p(co) ̂  2 n (Kung and Traub [73, Theorem 7.2]). 

Clearly, a(cp) ̂  n-1. Hence 
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( 5 - 8 ) e ( * > f ) 8 6 nc(f^-i « 7(E)-

Since Y n is a multipoint iteration which uses evaluations of f only, 
from (5.8) and Corollary 5.1, we have 

Theorem 5.6. 

For the family $ of multipoint iterations using values of f only, 

l 
— " £ E (f) <: — T T T T — T , Vn, nc(f)+r(n) n nc(f)+n-1* 9 

2 

for c(f) large, where r<n) « r2n + r̂ n + r Q, r 2 > 0, and Q < 0. 

Remark 5.2. 

The lower and upper bounds for E^(f) a n <* E(f) stated in Theorem 5.6 

are tight for f such that c(f) is large, since lower bound/upper bound -> 1 

as c(f) -» »• In this case, by Theorem 5.2, is close to optimal among 

all multipoint iterations using values of f only. 
Remark 5.3. 

For a given problem f let E F(f), E"(f) be the optimal efficiency 

achievable by one-point iteration and multipoint iteration, respectively. 

By Theorem 4.2 and Corollary 5.1, 

E " < £ > 2 J(i)C' + ijjfo]" C < 0. *»r c(£) large. 
Hence 
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* dog 3)c(f) 0 + ^ i y j ~ 1̂ -3 • 7(f) > f o r c ( f ) l a r g e * 

In particular, if f is a problem such that c f - c(f) and c f is large, then 

the ratio between optimal efficiencies achievable by multipoint iteration 
3 

and one-point iteration is at least ^ ^ ~ 1.89. 
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6. A CONJECTURE 

Kung and Traub [73] conjecture that if çp is any multipoint iteration 

with v(çp) = n then p(çp) £ 2 n~ 1. Suppose that this conjecture is true. 

Then by (3.9), for any multipoint iteration to with v(co) = n, 

e(co,f) ̂  n" 1 

ncf+a (çp) 

Clearly, a(çp) ̂ n-1. Hence 

Observe that 

k ( n > * 7^f> Vn, Vc f. 

Therefore we propose the following conjecture. It states, essentially, that  
the optimal efficiency for solving the problem f with respect to all  
one-point or multipoint iterations is bounded by the reciprocal of the 
problem complexity. 

Conjecture 6.1. 

For the family $ of one-point or multipoint iterations, 

E (f) <; — — — 
n v J nc£+n-1 9 

E(f) £ 1 

c f+T 
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7. NUMERICAL EXAMPLE 

50 
Let f(x) - S ix -25. We calculate its simple zero a - -1. Calcula-

i=1 
tions were done in double precision arithmetic on a DEC PDP-10 computer. 

About 16 digits are available in double precision. Numerical results show 

the following: Starting with x Q = -1.01, to bring the error to about 10 1 6 , 

five Newton-Raphson iterations are required while one 0 ) ^ iteration is re

quired. (See Table 7.1.) We assume that we do not take advantage of the 

algebraic dependence of f and ff (see the assumption of (3.5)) and that we 

use Horner's rule for the evaluation of f and f 1, treating each as an inde

pendent polynomial. Suppose that we use the procedure given by Kung and 

Traub [73, Appendix I] to compute u)g(f)(x). 
Let and 7? be algorithms associated to Newton-Raphson iteration and 

0 ) , respectively. Then the total costs are o 

kCS 1) - 5 [ 2.50 + 2.49 + 2 ] - 10 3, 

k(E2) - 5 - 2.50 + 2.49 + |.6 2 + |-6 - 4 = 657; 

and the efficiencies are 

e d 1 ) = l / [ 2 . 5 0 + 2.49 + 2] - 5/l0 3, 

e(S2) = 5 / O 2 . 5 0 + 2-49 + f-62 + f-6 - 4 = 5/657. 

Then 
M S 1 ) _ TO 3 

k( I?) " 6 5 7 ' 

/^^ 657 » 
e(S ) 

as predicted by ( 2 . 2 ) . (In general, approximate equality holds from ( 2 . 2 ) . ) 
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Let x i + 1 - cpCx^. The errors when cp is Newton-Raphson and cp = tw6 

are shown in Table 7.1. 

x0-or 

Newton-Raphson 

-1.0 x 10"2 •1.0 X 10 
- a -2.1 x 10 -2.2 x 10 -16 

x2-a •1.0 x 10 

x3~a -2.7 x 10 
x. - a 4 •1.8 x 10 •12 

x5~of •1.1 X 10 •16 

Table 7.1 
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