
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
o f photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

ON COMPUTING RECIPROCALS OF POWER SERIES

H. T. Kung

Department of Computer Science
Carnegie-MelIon University

Pittsburgh, Pa.

September 1973

This research was supported in part by the National Science
Foundation under Grant GJ32111 and the Office of Naval Re­
search under Contract N00014-67-A-0314-0010, NR 044-422.

ABSTRACT

Root-finding iterations are used to compute reciprocals of power series.

We show that Sieveking's algorithm is just Newton iteration applied in the

field of power series. Let L^ denote the number of non-scalar multiplications

needed to compute the first rrH terms of the reciprocal. We show that

n+1 £ L £ 4n-log0n. n z

We conjecture that

L = 4n - lower order terms, n

1. INTRODUCTION

We consider the problem of computing reciprocals of power series. This

problem is closely related to the problems of polynomial division, evaluation

and interpolation. (For example, see Borodin (1973).) Let L denote the
n

number of non-scalar multiplications needed to compute the first n+1 terms of

the reciprocal of a power series. Recently Sieveking (1972) showed that

L ^ 5n-2, n

In this paper, we show:

(i) Root-finding iterations can be used in the field of power series,

Sieveking1s algorithm is just Newton iteration applied to the

function f(x) = x ^-a, a ^ 0, in the field of power series.

(ii) By modifying Sieveking1s algorithm and analysis, Sieveking1s

bound is improved to

L n ^ 4n-log2n.

(iii) We propose a new algorithm for computing reciprocals of power

series, which is competitive with Sievekingfs algorithm, and

which is based on a third order iteration. The bound in (ii)

can also be obtained by this new algorithm.

(iv) L ^ n+1 for all n £ 0.
n

In Section 2 we define some basic notation and also prove results (i)

and (ii). Results (iii) and (iv) are proven in Sections 3 and 4, respectively.

-2-

In Section 5 we give a general family of algorithms for computing reciprocals

of power series. Any algorithm in the family can compute the first n+1 terms

of the reciprocal of a power series in 0(n) non-scalar multiplications (and

can also compute them in 0(n log n) arithmetic operations if Fast Fourier

Transform is used for polynomial multiplication). We conjecture that Newton

iteration and the third order iteration are optimal among all algorithms in

the family.

-3-

2. NEWTON ITERATION

We will use notation of Sieveking (1972) and Strassen (1973). Let k be

an infinite field, a^, b^, i - 0,1,...,°°, indeterminates over k, A an exten­

sion field of k, and t an indeterminate over A. Suppose that E and F are

finite subsets of A and that we do computations in the field A. Let L(E mod F)

denote the number of multiplications or divisions by units which are necessary

to compute E starting from k U F not counting multiplications by scalars in k.

We shall prove the following theorem by using Newton iteration.

Theorem 2.1.

Suppose A = k(a^,a^,...), a^ is a unit in A and

n . n -
(2.1) E a.t 1 E b.t 1 = 1 (t n + 1) .

0 1 0 1

Then

L(bg,...,bn mod a^,... 9a^) £ 4n-log2n for any n ^ 1.

We first use a technique of Strassen (1973) to prove the following

Lemma 2.1.

Suppose A = k(a Q,b Q,a 1,b 1,...) and

E a t Sb.t - s c t + 2 c.t 1 .
0 1 0 1 0 1 I 1

Then

L(ej£,...,ctt+TO mod aQ,... .a^.bg,... ,b m,c Q,... ,c^_1) £ n+m - jj+1

-1
for any n,m s 0 and Z such that n+m J I i 0. (S is assumed to be zero.)

0

-4-

Proof of Lemma 2.1.

Let X., 1 £ j £ n+m - jif 1 , be any n-hn - ji+1 distinct nonzero elements

in k. Observe that

n-hn-ji . n m 1-1
(2.2) 2 c X = X (S a x S b X

i = 0 J J i-0 Ji=0 J

S c t)
0

for j = 1,...,n+m - &KI, and det(X^) £ 0. Hence cj^.^» 0 ^ i ^ n+m-j£, can

be obtained by solving the linear system (2.2). Therefore,

L (cA'--" Cn4m m o d a 0 " - - ' a n ' b 0 " * " b m ' C 0 C J H)

n . m
^ L(S a.X. 2 b.X., j = 1,...,nrhn - 4+1,mod an,...,a ,bn,...,b)

i=0 1 Ji«0 1 3 n m

= n-hn - jfrfl. •

Proof of Theorem 2 J .
Denote S a.t by a and Jb.t by b. Suppose that (2.1) holds for all n.

0 1 0 1

Then b is the reciprocal of a with respect to the field A(t).

Define the function f: A(t) - {0} A(t) by f(x) = x^-a. Thus b

just the root of f. Applying Newton iteration to f, we obtain the iterate-;,

function

(2.3) cp(x) = x - f,(x)"1f(x) = 2x-ax2.

(In this paper,derivatives of f are defined by purely algebraic methods with­

out employing any limit concept. For example, see van der Waerden (1953,

^65).) It follows from (2.3) that

(2.4) co(x)-b = a(x-b) 2.

-5-

For notational simplicity, let L denote L(b_,...,b mod a......a) .
r J* n 0' ' n O n

To prove the theorem it suffices to show that

(2.5) L„ £ L + 4n + 2 for n £ 0,
Zn+1 n

(2.6) L„ £ L + 4n - 1 f o r n i l .
zn n

Suppose that bg,...,b have already been computed. In (2.4) let x be taken
n

to be 2 b.t . Then
0 1

tp(S b.t 1) - b = 0 (t 2 l t f 2) ,
0 1

or
n . 2n+1 . n . 2 2n+l . . .

(2.7) 2 2 b t 1 - 2 a.t 1(2b.t 1) = 2 b.t 1 (t / n + Z) .
0 1 0 1 0 1 o 1

Note that

2 a t 1 s b.t 1 H i (t n + 1) ,
0 1 0 1

We define e n + 1,..., e ^ by

2n+1 . n . 3n+1
(2.8) 2 a t 1 2 b.t 1 = 1 + 2 e.t\

0 0 1 n+1 1

Then by (2.7) and (2.8),

Therefore

(2 * 9) L2n+1 ^ L n + L (en+1> •••'e2n+l m o d V ' ' • ' a2n+l'V''' ' V

+ L (b n + l ' " " b 2 n + 1 m o d e n + l - - - e 2 n + T b 0 ' - - " b n)

-6-

By Lemma 2.1,

L 0 ^ L + (2n+l) + (2n+l) = L + 4rrt-2,
I n+1 n n

We have shown (2.5). From (2.7) we also have

n 2n . n . ^ 2n . ?n4-i
(2.10) 2 S b.t 1 - Z a.tL(S b . t V = E b.t 1 (t: ') .

0 L o L o 1 o 1

(2.6) follows in the same as (2,5) by starting with (2.10) instead of (2.7).

One can easily check that the algorithm proposed by Sieveking (1972) is

just the Newton iteration stated above. However, because of (2.8), Lemma 2.1,

and careful estimation of L from (2.5) and (2.6) we are able to obtain
n

rather than

L < 4n-log0n for n ^ 1 n z

L £ 5n-2 for n ^ 1 n

which is obtained by Sieveking (1972). One should also note that the idea of

using Newton iteration to compute reciprocals has been known for a long

For example, Newton iteration is used to compute matrix inverses by

Schulz (1933), to compute reciprocals of real numbers by Rabinowitz (1 %

and to compute integer reciprocals by S. A. Cook (see Knuth (1969, ̂ 4.33) ,

In this section, we have shown that Newton iteration can be used successfully

in the field of power series, and hence can compute reciprocals of power

series. In fact, any root-finding iteration (Traub (1964)) can be used for

the problem of computing reciprocals (see Section 5). Newton iteration is a

second order iteration. In the next section we propose a new algorithm for

computing reciprocals of power series, which is based on a third order itera­

tion, and which, is competitive with Sieveking1s algorithm.

-7-

3. ANOTHER ALGORITHM FOR RECIPROCALS

We use notation defined in the previous section. Applying the third

order iteration (Traub (1964)),

£(x) = x - f'(x)-1f(x) - ̂ [f (x) ' 1] 3 f"(x)f(x)2,

to the function f(x) = x ^-a, we get

(3.1) ffi(x) = x(3-3ax + (ax) 2).

It is easy to show that

(3.2) i(x) - b = a 2(x-b) 3.

We shall now use 9 to prove Theorem 2.1 for n * 3. Let L denote
n

L(b Q,...,b n mod a0,...,an) as before. Note that L 1 £ 3 and L 2 <: 6. It is

not difficult to check that it suffices to prove that for n £ 1,

(3.3) L 3 n + 2 £ L n + 8 n + 5 ,

(3.4) L 3 n + 1 S L n + 8 n + 1,

(3.5) L 3 n ^ L n + 8n - 3.

Suppose that b 0,...,b n have already been computed. In (3.2) let x be taken
to be Ib.t 1 then

0 1 n
*<E b.t 1) - b = 0 (t 3 n + 3) ,

0 1

or
n

(3.6) « - 3 3 | . i t i J b t t l + I J , ™ t (^ 3)

u o n n *•

Note that

-8-

S a . t 1 S b . t 1 — 1 (t n + 1) .
0 1 0 1

We define e
n +i>•••» e4 n+2 b y

3n+2 . n 4n+2 ±

S a.t 1 s b.t 1 - 1 + L e t .
0 1 0 1 n+1 1

Moreover, define d Q,...,d n by

n i 2 n i / n+1,

Then

3n+2 n 3n+2 ± n . 2

(3.7) 3 - 3 S a t 1 S b t + (S a.t £b.t)
o 0 0 u

2 n + 1 i n+1 2 n + 1 „i j. ,- 2 n + 2 v d t 1 (t 3 n + 3)
S 3 t n + 1 J e n + 1 + i t ^ + 1 + 2 t n J e n + 1 + i t + t J d tt (t

d,f. . + tn+l 2 « £ f < f ci (t3n+3 } >

0 1

Define S 0'"*' 83n+1 b y

n . 2n+1 , 3n+1 i

(3.8) S b t 1 I f t = Z g.t .
o 1 o 1 o

Then by (3.6), (3.7) and (3.8),

2n+1 , 2n+1 L 2n+2 s

S g . t 1 - J b ^ . t (t).
0 0

Therefore

L3n+2 = L n + L (en+1'''*' 63n+2 m ° D V ''' ' a 3 n + 2 ' b 0 V

+ L(d Q,...,d n mod e n + 1,..•,e 2 n +])

+ L(g0.....g2n+1 m ° d e n + V " e 3 n + 2 , < i o ' - - " d - , b o ^

-9-

By Lemma 2.1,

L3n+2 * L n + (3 n + 2) + (2 n + 1) + (3 n + 2>
= L + 8n + 5.

n

We have shown (3.3). From (3.6) we also have

(3.4) and (3.5) follow in the same way as (3.3) by starting with (3.9) and

(3.10), respectively instead of (3.6).

-10-

4. A LOWER BOUND

Under the hypotheses of Theorem 2.1, we show that

(4.1) L(bg,...,t>n mod a^j...^^) ^ n+1.

Suppose that a^ = 0, i = 2,...,n. Then it is clear that * (a ^ a ^ ^ a ^ ,

i = 0,...,n. (4.1) follows from the following

Lemma 4.1.

Suppose A = k(a^,a^), a^ is unit in A and

t , -1 xi -1 A

i = (a 0 a l ^ a 0 9 1 = °>--*>n'
Then

L(bg,...,b mod a^,a^) ̂ n+1

Proof.

Consider an arbitrary algorithm which requires m non-scalar multiplica­

tions or divisions. Let R^,...,R denote the results of these multiplications

or divisions. Then there exist p^ € k, q^ 6 {k^aQ+k^a^ |k^k^ g k} U k,

i = 0,...,n, j = l,...,m such that

m
2 p. .R. + q. = b., i = 0,...,n.
j=l i»J J 1 1

Suppose that m < n+1. Then there exist r i 6 k, i « 0,,..,n, such that r ^ 0

for some i and
n
S r (b -q) = 0,
Q l i i

or n . . n , i i n-i \ n+i
I V i a o - (* r i q i) a o •

This clearly implies that r. = 0 for all i = 0....,n which is a contradiction.

-ii-

5. A FAMILY OF ALGORITHMS FOR RECIPROCALS AND A CONJECTURE

oo i 0 0 i
Suppose a « E a.t and b • J b t and that (2J) is satisfied for all n.

0 1 0 1

Let A « k(a^,a^,...). For any nonnegative integers d, A g * ^ . . (n o t all
(k)

zero) we define an algorithm which generates the sequence of iterates {x }

in A(t) by t ^

x (k + 1) = x ^ d - a x ^ ^) " 1 . . ^ ! ^ ^) ^ i" (l.ax (k))J
j=0

4,-1
(5.1) + x (k - ,) (l ^ < k - 2 >) \ . . (, ^ ^))

1 * I o ^ C k - D j j
j=0 + . . .

V 1

; X < k " d > j (l - a x ^ V .
j-o

Then it can be shown that

(5.2) x< k + ,> . b - b(,-.K< k)) 1°(,.. 1 [< k-'>,''... (,. a i !(^))
id,

For all k define c R to be the greatest integer such that

Then from (5.2) it follows that

x (k + 1) H b (t V k + - " + V k - d K

Hence

(5.3) c k + 1 ^ j o V k _ t .

Using (5.3) we can estimate the number of iteration step s necessary to
compute b Q,...,b n from a Q,...,a n for any given n. Note that in computing

x (k + 1 ^ by (5.1) we should use ^ a . t 1 for a(= f a t 1) .
0 1 0 1

-12-

Example 5.1.

(i) if d = 0 and &Q = 2 we have

x (k + 1) = x (k) [1 + (1 _ a x (k))] = 2 x (k) . a x (w x < k) #

This is the Newton iteration (see (2.5)).

(ii) If d = 0 and &Q = 3 we have

x (k + 1) = x (k) [1 + (1 _ a x (k)) + (1 . a x (k)) 2]

- x (k) [3 - 3 a x (k)
 + (a x (k)) 2] .

This is the third order iteration cp in (3.1).

(iii) If d = 1 and JLQ = ^ = 1 we have

x(k +1) ^ x (k) (1 . a x (k - 1)) + x (k - D

- - a x ^ x ^ + x ^ + x 0 0 .

-1
One can check that this is the secant iteration applied to f(x) = x -

In fact, (5.1) represents the algorithm which is obtained by a general

Hermite interpolatory iteration (Traub (1964)) applied to the function

f(x) = x ^ - a 0 A special case of (5.1) (i.e., d = 0) was pointed out before

by Rabinowitz (1961) for computing reciprocals of numbers. By the same tech­

niques used in Sections 2 and 3 one could show that L(b^,...,b^ mod ag,...,a^)

is bounded by a linear function of n by using any algorithm defined by (5.1).

However, we believe that Newton iteration and the third order iteration are

optimal among all algorithms defined by (5.1). More precisely, we state the

following

- 1 3 -

Conjecture.

L(bA,...,b mod a.,...,a) = 4n - lower order terms, U n U n
for large n.

If we use the Fast Fourier Transform for polynomial multiplication, then

it can be easily shown by techniques similar to those used in this paper that

any algorithm defined by (5.1) is able to compute the first nH-1 terms of the

reciprocal of a power series in 0(n log n) arithmetic operations,

ACKNOWLEDGMENT

I would like to thank Professor J. F. Traub for his comments on this
paper.

-14-

References

Boroxlin, A. (1973), "On the Number of Arithmetics Required to Computer Certain
Functions - Circa May 1973.11 Appears in Complexity of Sequential and Parallel
Numerical Algorithms, edited by J. F. Traub, Academic Press, New York.

Knuth, D. E. (1969), The Art of Computer Programming. Vol. II, Seminumerical
Algorithms, Addison-Wesley, Reading, Mass.

Rabinowitz, P. (1961), "Multiple-Precision Division," Comm. ACM 4, p. 98.

Schulz, G. (1933), "Iterative Berechnung der reziproken Matrix," Z. Angew.
Math, and Mech., 13, pp. 57-59.

Sieveking, M. (1972), "An Algorithm for Division of Power Series," Computing
10, pp. 153-156.

Strassen, V. (1973), "Vermeidung von Divisionen." To appear in J.Reine Angew.Math.

Traub, J. F. (1964), Iterative Methods for the Solution of Equations, Prentice-
Hall .
van der Waerden, B. L. (1953), Modern Algebra, Vol. 1, Frederick Ungar Pub­
lishing Co.

