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ABSTRACT 

Let T(n) denote the number of arithmetic operations needed to evaluate 

the normalized derivatives P ^ ( t ) / i ! , i = 0,...,n, for an nth degree poly­

nomial p(t) over the field of complex numbers. We show 

1 2 

T(n) ^ — c n log n + lower order terms 

where c may be taken as 12. 

i 



1. INTRODUCTION 

Let k be the field of complex numbers, t an indeterminate over k, and 

P(t) an nth degree polynomial over k. Let T(n) denote the number of arith­

metic operations needed to evaluate the normalized derivatives P ^ ( t ) / i ! , 

i = 0,...,n, at an arbitrary point in k. We are interested in upper bounds 

on T(n). 

By using the standard algorithm (iterated Horner algorithm), we can 

prove that 
2 

T(n) ^ n + n, Vn. 

By using the special case of the Shaw-Traub family of algorithms with parameter 

q=n+1.[4, Section 2 ] , referred to here for conciseness as the Shaw-Traub al­

gorithm, we can prove that 

T(n) £ ~ n 2 + ~ n-2, Vn. 

These upper bounds have been further improved for large n. (However, the 

Shaw-Traub algorithm is still the best known algorithm for small n.) Borodin 

and Munro [2, Chapter 3, Problem 5] observed that 

(1.1) T(n) £ T (n) + T.(n) e l 

where T
e ( n ) i s the number of arithmetic operations needed to evaluate an nth 

degree polynomial at n+1 points and T ^ n ) is the number of arithmetic opera­

tions needed to construct an nth degree interpolating polynomial from nH-1 

pairs of points. (See also Kung [3].) Now, two nth degree polynomials can 

be multiplied in (c n log n + lower order terms) arithmetic operations. (This 

can be done with the Fast Fourier Transform with c = 12. All logarithms in 

this note are to base 2.) A number of people showed independently that 
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T g(n) £ 0(n log 2 n ) , 

T\(n) £ 0(n log 2 n ) . 

(See the survey paper written by Borodin [1] and Kung [3].) For simplicity, 

in the following we assume that n = 2 -1 for some positive integer r. Kung fs 

algorithm gives the best previously known asymptotic constants: 

Hence by (1.1), 

3 2 
T^Cn) ^ — c n log n + lower order terms, 

2 
T\ (n) ^ 2 c n log n + lower order terms. 

7 2 
T(n) ^ - c n log n + lower order terms. 

This is the best previously known upper bound on T(n) for large n. In this 

note we show that 
1 2 

T(n) £ J c n n + l ° w e r order terms. 



2. MAIN RESULTS 

n 
Let P(t) = 2 a^t and let t Q be any point in k. Suppose that we want 

,x0 
to evaluate P ^ ( t ) / i ! , i = 0,...,n, at t n. It is equivalent to compute (T 
b n,...,b from a n,...,a and t A such that 0' n 0* ' n 0 

n . n 
(2.1) 2 b ^ 1 = 2 a Q ( t + t ( ) ) 1 . 

Note that for j = 0,...,r-l, 

2 j + 1 - 1 . 2 j-1 2 j 2 j-l 
(2.2) 2 a.(t+t n) H 2 a,(t+tJ + (t+t n) 2 a (t+t ) . 

i=0 1 U i=0 1 U U i=*0 2 J+i 

We first compute d. . , i = 0,...,2^, j = 0,...,r-1, such that 

2^ 2 i (t+t n) = s d. . t \ 
0 i-0 J j l 

It is easy to check that this can be done in (c n log n + lower order terms) 

arithmetic operations. Then by (2.2) and by using Fast Fourier Transform for 

polynomial multiplication, we have 

T ( 2 ^ + 1 ) <> 2T(2 j) + c-j*2^ + lower order terms, 

for j = 0,...,r-1. Therefore we have shown the following 

Theorem 2.1 
1 2 

T(n) ^ 2 c n log n + lower order terms, 

where n = 2 -1 for any positive integer r. 

HMT L»MIY 
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Remarks, 

The above algorithm is based on (2.2) which is obtained by the binary 

splitting of the summation in the left hand side. It is easy to see that 

the iterated Horner algorithm is based on the following splitting: for 

j = n-1,n-2,...,0, 

( 2' 3 ) J 0 V i ^ V 1 a aj +
 (tfto>nJ0

1 Vi+i^'o^' 

Furthermore, let b. = b.t* and a. = a.t* for i « 0,...,n. Then by (2.1) 
1 1 O 1 1 O 9 9 J \ * 

n . n 
(2.4) S b.t 1 = s a.(t+1) 1 

0 1 0 1 

and by (2.3), for j = n-1,n-2,...,0, 

n-j . n-j-1 
(2.5) S a (t+1) 1 = a. + (t+1) S a 4 _ . ( t + 1 ) . 

1-0 J + 1 J i-0 j + 1 + 1 

By (2.4) and (2.5) we know that b Q,...,b can be computed by the iterated 
n n 

Horner algorithm applied to the polynomial 2 a.t with t n-1• After b. has 

been computed b± is computed by b i = t^tg . This algorithm for computing 

bg,...,b n is exactly the Shaw-Traub algorithm. 
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