
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A NEW UPPER BOUND ON THE COMPLEXITY OF
DERIVATIVE EVALUATION

H. T. Kung

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pa.

September 1973

This research was supported in part by the National Science
Foundation under Grant GJ32111 and the Office of Naval Re
search under Contract N00014-67-A-0314-0010, NR 044-422. HUMT LIIRABY

U R N E I l t M E L L H UNIVERSITY

ABSTRACT

Let T(n) denote the number of arithmetic operations needed to evaluate

the normalized derivatives P ^ (t) / i ! , i = 0,...,n, for an nth degree poly

nomial p(t) over the field of complex numbers. We show

1 2

T(n) ^ — c n log n + lower order terms

where c may be taken as 12.

i

1. INTRODUCTION

Let k be the field of complex numbers, t an indeterminate over k, and

P(t) an nth degree polynomial over k. Let T(n) denote the number of arith

metic operations needed to evaluate the normalized derivatives P ^ (t) / i ! ,

i = 0,...,n, at an arbitrary point in k. We are interested in upper bounds

on T(n).

By using the standard algorithm (iterated Horner algorithm), we can

prove that
2

T(n) ^ n + n, Vn.

By using the special case of the Shaw-Traub family of algorithms with parameter

q=n+1.[4, Section 2] , referred to here for conciseness as the Shaw-Traub al

gorithm, we can prove that

T(n) £ ~ n 2 + ~ n-2, Vn.

These upper bounds have been further improved for large n. (However, the

Shaw-Traub algorithm is still the best known algorithm for small n.) Borodin

and Munro [2, Chapter 3, Problem 5] observed that

(1.1) T(n) £ T (n) + T.(n) e l

where T
e (n) i s the number of arithmetic operations needed to evaluate an nth

degree polynomial at n+1 points and T ^ n) is the number of arithmetic opera

tions needed to construct an nth degree interpolating polynomial from nH-1

pairs of points. (See also Kung [3].) Now, two nth degree polynomials can

be multiplied in (c n log n + lower order terms) arithmetic operations. (This

can be done with the Fast Fourier Transform with c = 12. All logarithms in

this note are to base 2.) A number of people showed independently that

-2-

T g(n) £ 0(n log 2 n) ,

T\(n) £ 0(n log 2 n) .

(See the survey paper written by Borodin [1] and Kung [3].) For simplicity,

in the following we assume that n = 2 -1 for some positive integer r. Kung fs

algorithm gives the best previously known asymptotic constants:

Hence by (1.1),

3 2
T^Cn) ^ — c n log n + lower order terms,

2
T\ (n) ^ 2 c n log n + lower order terms.

7 2
T(n) ^ - c n log n + lower order terms.

This is the best previously known upper bound on T(n) for large n. In this

note we show that
1 2

T(n) £ J c n n + l ° w e r order terms.

2. MAIN RESULTS

n
Let P(t) = 2 a^t and let t Q be any point in k. Suppose that we want

,x0
to evaluate P ^ (t) / i ! , i = 0,...,n, at t n. It is equivalent to compute (T
b n,...,b from a n,...,a and t A such that 0' n 0* ' n 0

n . n
(2.1) 2 b ^ 1 = 2 a Q (t + t ()) 1 .

Note that for j = 0,...,r-l,

2 j + 1 - 1 . 2 j-1 2 j 2 j-l
(2.2) 2 a.(t+t n) H 2 a,(t+tJ + (t+t n) 2 a (t+t) .

i=0 1 U i=0 1 U U i=*0 2 J+i

We first compute d. . , i = 0,...,2^, j = 0,...,r-1, such that

2^ 2 i (t+t n) = s d. . t \
0 i-0 J j l

It is easy to check that this can be done in (c n log n + lower order terms)

arithmetic operations. Then by (2.2) and by using Fast Fourier Transform for

polynomial multiplication, we have

T (2 ^ + 1) <> 2T(2 j) + c-j*2^ + lower order terms,

for j = 0,...,r-1. Therefore we have shown the following

Theorem 2.1
1 2

T(n) ^ 2 c n log n + lower order terms,

where n = 2 -1 for any positive integer r.

HMT L»MIY

1

-4-

Remarks,

The above algorithm is based on (2.2) which is obtained by the binary

splitting of the summation in the left hand side. It is easy to see that

the iterated Horner algorithm is based on the following splitting: for

j = n-1,n-2,...,0,

(2' 3) J 0 V i ^ V 1 a aj +
 (tfto>nJ0

1 Vi+i^'o^'

Furthermore, let b. = b.t* and a. = a.t* for i « 0,...,n. Then by (2.1)
1 1 O 1 1 O 9 9 J \ *

n . n
(2.4) S b.t 1 = s a.(t+1) 1

0 1 0 1

and by (2.3), for j = n-1,n-2,...,0,

n-j . n-j-1
(2.5) S a (t+1) 1 = a. + (t+1) S a 4 _ . (t + 1) .

1-0 J + 1 J i-0 j + 1 + 1

By (2.4) and (2.5) we know that b Q,...,b can be computed by the iterated
n n

Horner algorithm applied to the polynomial 2 a.t with t n-1• After b. has

been computed b± is computed by b i = t^tg . This algorithm for computing

bg,...,b n is exactly the Shaw-Traub algorithm.

ACKNOWLEDGMENTS

I would like to thank Professor J. F. Traub for his comments on this note.

-5-

References

[1] A. Borodin , "On the Number of Arithmetics Required to Compute Certain
Functions - Circa May 1973." Appears in Complexity of Sequential and
Parallel Numerical Algorithms a edited by J. F. Traub, Academic Press,
New York (1973).

[2] A . Borodin and I. Munro, Notes on Efficient and Optimal Algorithms,
University of Toronto and University of Waterloo (1972).

[3] H. T. Kung , Fast Evaluation and Interpolation, Computer Science Depart
ment Report, Carnegie-Mellon University (1973).

[4] M . S: iaw and J. F. Traub, "On the Number of Multiplications for the
Evaluation of a Polynomial and Some of its Derivatives," Computer Science
Department Report, Carnegie-MelIon University (1972), JACM (to appear).

