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ABSTRACT 

The usual successive secant method for solving systems of nonlinear 

equations suffers from two kinds of instabilities. First the formulas used 

to update the current approximation to the inverse Jacobian are numerically 

unstable. Second, the directions of search for a solution may collapse into 

a proper affine subspace, resulting at best in slowed convergence and at 

worst in complete failure of the algorithm. In this report it is shown how 

the numerical instabilities can be avoided by working with factorizations of 

matrices appearing in the algorithm. Moreover, these factorizations can be 

used to detect and remedy degeneracies among the directions. A second part 

of this report documents and lists a program implementing the algorithm 

described in the first part. 



PART I 

1. Introduction 

In this paper we shall be concerned with the successive secant method 

for solving the system of nonlinear equations 

(1.1) f(x) = 0, 

where f is a mapping from some domain in real n-space into real n-space 

(f: D c | R n -* f R n ) . Given approximations x.,x0,...,x to a solution of 
I Z n-r I 

(1.1), a new approximation x Vc is generated as follows. Let i: ̂ n -» l K n be 

the affine function that interpolates f at x^ ,x^,.. • > x
n +-| I that is 

(1.2) f± := f(xj a jj(x ) (i=1,2,...,n+1). 

Then x^ is taken to be the zero of the function Z. If the points x-| >x2»• • • >x
n-f-i 

are affinely independent then & is uniquely defined. The approximation x^ 

will be uniquely defined provided the vectors f^ 9f^y•••>^ n +i a r e affinely 

independent (cf. (1.4) below). The method derives its name from the fact that 

the i-th coordinate function of 1 represents the secant hyperplane interpolating 

the i-th coordinate function of f. 

Various formulas can be written for the approximation x y ? (see [2] for the 

a detailed discussion of secant methods and their convergence theory). We 

shall use the following representation. Let X be the n x (n+1) matrix 

(X 6 ( K n X ( n + 1 ) ) defined by 

X :« (x-j » x2 > • • • >x
n_|_1) > 

and let 

< fl» f2»-*-» f
n + 1)-
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Define the operator A by 

AX 5 5 -x^, . . . jX -x^), 

Then it Is easily verified that the function I defined by 

(1.3) Jt(x) * f1 4- AF(AX) - 1(x-x 1) 

satisfies (1.2). It follows from solving the equation i,(x) 3 3 0 that 

(1.4) x = x ] - AX(AF)""1ir 

The existence of the inverses in (1.3) and (1.4) is guaranteed by the affine 

independence of the columns of X and F. 

The new approximation xVr will not in general be an exact zero of f, and 

the process must be repeated iteratively. This may be done in several ways. 

We shall be concerned with the successive variant in which xVc replaces one 

of the points x^. Conventionally this is done in one of two ways. Either x^ 

replaces x
n +-| > o r x * replaces that column of X for which the corresponding 

column of F has largest norm. In any case the iterative process generates 

sequences of matrices XpX 2,.,. and a corresponding sequence F^F^,... with 

X^i differing from X^ in only a single column (in practice it may be neces-
(k) 

sary to permute the columns of X^ before inserting ; see Section 4.2 below) 

When f is differentiable, the matrix AF(AX)" 1 in (1.4) may be regarded 

as an approximation to the Jacobian f of f. Thus the secant formula (1.4) 

is a discretization of Newton's method, a method that under appropriate 

conditions converges quadratically to a zero of f. The convergence theory 

for the successive secant method suggests that if the matrices AX^ remain 
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uniformly nonsingular, then n steps of the secant method will be roughly 
comparable to one step of Newton's method (see [2] and [3]). This has im­
portant computational consequences. The ab initio calculation of (AF) ̂ f^ 

3 
requires 0(n ) operations (see, e.g., [5]), and therefore n steps of the 

4 

secant method will require 0(n ) operations, which may be prohibitively large. 

The usual cure for this problem is to calculate (AF +̂-|) ^ directly from 

(AF^) ^ (actually the inverses of slightly different matrices are calculated). 
2 

Since F^ and F^+j are simply related, this can be done in 0(n ) operations, 
3 

giving a satisfactory 0(n ) operation count for n steps of the successive 

secant method (for the first such implementation see [4]). 

The method outlined above has two serious defects. First the scheme for 

updating (AF) ^ is numerically unstable. Second, the columns of the matrices 

may tend to collapse into proper affine subspaces of H\n, resulting in the 

prediction of wild points or at least in slowed convergence. The first problem 

arises whenever AF^ is ill-conditioned. In this case (AF^) ^ is computed in­

accurately and these inaccuracies transmit themselves to subsequent inverses, 

even though the corresponding AF's are well conditioned. The same problem 

occurs in linear programming (see, e.g., [1]), and one could adopt the usual 

solution of periodically reinverting AF. However, this entails extra work 

for the reinversion and extra storage to hold the matrix F. Moreover, one must 

face the tricky problem of deciding when to reinvert. 

The problem of degeneracy among the columns of X arises, among other oc­

casions, when one of the component functions of f is linear. Then the linear 

component and the corresponding component of SL9 call it j L , are identical. 

It follows that x lies in the proper affine subspace defined by ^(x) « 0. 
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Ultimately all the column of some must lie in this subspace, and AX^ 

will be singular. The matrix AF^ may not be singular, but it will almost 
(k) 

certainly be ill-conditioned, and the prediction xy<> will be spurious. 

Moreover, as noted above, the inaccuracies in (AF^) ^ will propogate them­

selves via the update formulas. 
The purpose of this paper is to show how the two problems mentioned above 

can be resolved by generating and updating QR factorizations of the matrices 
2 

X^ and F^. The factorization of F permits the 0(n ) solution of the equation 

AFz « f^, which is equivalent to forming (AF) ^f^. The factorization of X 

enables one to detect degeneracies in the columns of X. Moreover, the factor­

ization can be used to alter a column of X in such a way as to reduce or re­

move the degeneracy. The factorizations of and can be obtained 
2 

from those of X^ and F^ in 0(n ) operations. 

In the next section we shall introduce the factorizations, show how they 

may be used to execute a step of the secant method, and show how they may be 

updated. We shall also show that the updating method is numerically stable. 

In Section 3, we shall show how the factorization can be used to detect and 

remove degeneracies in X. In Section 4 some comments on the practicalities 

of implementing these methods are given, and in Section 5 some numerical ex­

amples. Part Two of this report consists of a documented program implementing 

the method presented in Part One. 

2. Factorization 

In this section we shall be concerned with the stable implementation of 
a single secant step. Suppose that at step k we are given nonsinguiar ma­
trices P, and Q, such that the matrices Y, and defined by 

k k K K 
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and 

(2.2) G k = Q k F k 

are upper trapezoidal, i.e. zero below the diagonal. (Numerically the matrices 

P and Q will be very nearly orthogonal, but we need not assume so.) Because k k 

premultiplication by a matrix acts column by column on the multiplicand, we 

have 

A \ - p k ( A V 

and 

Moreover, the matrices AY^ and AG^ are upper Hessenberg, i.e. zero below the 
first subdiagonal, 

(k) 
Now let x̂ . be the vector obtained from a single secant step: 

(2.3) x^ k ) = X l
( k ) - AX f c(AF k)" 1f 1

( k ). 

(k) -T (k) 
If we set y^ - Pfc x̂ . , then (2.3) can be written in the form 

(2.4) , « . , » . W - , , ! U
1 

(k) (k) 
where and gj are the first columns of Y f c and Gfc. Equation (2.4) sug­

gests the following algorithm. 

1. Solve the system AGfcz - g|k^ 
o (k) (k) 
2. y^ m Y} - AY kz 

(2.5) 3. ^ > - P ^ « 

4. f * > - £<**>) 
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(k) 
This algorithm produces not only the secant approximation x^ but 

(k) (k) also the function value fVc and its Q-transform gVc . Excepting step 4, the 

bulk of the work done by the algorithm is concentrated in step 1. Since AG^ 

is an upper Hessenberg matrix, step 1 can be accomplished by standard tech-
2 

niques in 0(n ) operations [5, p. 218]. Thus a knowledge of the factoriza-
2 

tions (2.1) and (2.2) allows us to compute a secant approximation in 0(n ) 

operations. 
(k) (k) 

Of course x^ must replace a column of and £, replace the corre­
sponding column of F^. This amounts to replacing the same columns of and (k) (k) * * 
Sc ^ v * a n ( * t o & i v e n e w m atrices and G^- In principle algorithm 
(2.5) can be applied to these new matrices to give another approximation. 

In practice, however, G^ will no longer be upper trapezoidal and step 1 of 
2 

(2.5) cannot be effected in 0(n") operations. To circumvent this difficulty 

we shall show how to construct orthogonal matrices and such that 

and 
k+1 k k 

G k + i : = S A 

are upper trapezoidal. If we then set 

and 

p
k + i : = V k 

then the relations (2,1) and (2.2) will be satisfied with k replaced by k+1, 

and algorithm (2.5) may be efficiently reapplied. 
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For definiteness we shall deal with the computation of and illustrate 

the general procedure by a specific example. For numerical reasons that will 

be discussed in Section 4, the order of the columns of Y and G cannot be as-
(k) 

signed arbitrarily. This means that although yVf may replace, say, column I 

of Y, it may have to be inserted at some other position, say in column m. In 

the specific case where n « 7, i « 1, and m = 3, we shift column 2 into column 
(k) 

1, shift column 3 into column 2 and overwrite column 3 with y^ . This gives 
•k 

a matrix Y^ whose nonzero elements have the distribution 

x x x x x x x x 

x x x x x x x x 
0 x x 

(2.6) 0 0 x 
X X X X 

X X X X 

3 3 
O O x O x x x x 

2 2 0 0 x 0 0 X X X 

0 0 x 1 0 0 o 1 

X X 

The matrix is computed as the product of 9 plane rotations or Householder 

transformations: R^ = H^Hg...H^H^. In the first stage, the transformations 

H.j, t^, and are chosen in the usual way (see [5, p. 47]) to introduce zeros 

into the elements of the "stalactite11 in column 3. These transformations will 

enter nonzero elements in the zero positions labled 1, 2, and 3, so that the 

matrix will be in Hessenberg form: 
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X X X X X X X X 

4 
X X X X X X X X 

0 5 
X X X X X X X 

0 0 6 
X X X X X X 

0 0 0 7 
X X X X X 

0 0 0 0 8 
X X X X 

0 0 0 0 0 9 
X 

X X 

Now the transformations H^,...,Hg are chosen to introduce zeros in the elements 

labeled 4,...,9, bringing the matrix to trapezoidal form. The matrix 

P k + i = H 9 # * # H t P i c
 c a n b e f o r m e c l directly by multiplying the transformations 

into P, as they are generated. The matrix C also has the form (2.6) and is 
K K 

updated similarly. 

The procedure sketched above is perfectly general. If column I is to be 

deleted and a vector inserted in column m the vectors between column I (exclu­

sive) and m (inclusive) are shifted one column toward column JL and the new 

vector is inserted. The matrix is then reduced to triangular form as illus­

trated above. From the standpoint of operations, the case i = m = 1 is the 

worst, requiring the introduction of 2n-3 zeros. In all cases the operation 
2 

count for the updating is 0(n ) . 
The method is extremely stable in the sense that there are small matrices 

T 
Z f c and such that P Yfc ~ + and Q k ( F

k
+ H

k ) = G
k * T h i s implies that if 

(k) 

no further rounding errors are made in algorithm (2.5), the value of xv, is 

the value that would have been obtained by taking a secant step with the 

slightly perturbed matrices + and -+ H^. 
The derivation of H, is typical. The errors for each column are indepen-

K. 
dent of one another, and it is sufficient to follow the history of a single 
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where 

(k) (k) 

column from its insertion as gVr . Now gVr is computed according to (2.5.5). 

It follows from standard rounding error assumptions [5] that the computed 

g,v satisfies 
g

( k ) = Q f ( k ) + e ( k ) 

\\>ik)\\*»3/2K\\ l l f J k ) H « -

Here ||«|| denotes the spectral norm [5, p. 57] and e is a small constant that 
(k) 

depends on the arithmetic used to compute gVc . It follows that 

(k) _ n , f(k) (k). 

where 

(2.7) | ^ k ) | | = I ^ V ^ I I ^ n ^ l h J I I i Q ^ I M I f ^ l l e . 

Now the matrices are computed as the product of orthogonal matrices (see 

Section 4.4 below) and will themselves be very nearly orthogonal (for detailed 

error analyses of orthogonal transformations see [5]). It follows that cer­

tainly 

(2.8) ^2n 3 / 2||ff )|| ,. 

(k) 
Thus when g^ is inserted in G^, the error bound for the corresponding column 

* 
of H^ is satisfactorily small. 

As the matrix G^ and the subsequent G fs are updated, the column of H cor-
(k) 

responding to the inserted g V c will grow, but very slowly as an elementary 

error analysis will show. Even this slow growth might be intolerable over a 

large number of iterations, but after about n iterations the column is discarded 

(this may be forced if necessary), and its replacement is born anew with little 
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error. It is true that the matrices P^ and will slowly deviate from ortho­

gonality, but orthogonality is not required in the above analysis. All that 

is needed is that P. and Q. be well conditioned so that in the case of Q, we 
k k x k 

may pass from (2.7) to (2.8). Since P^ and are computed as products of 

orthogonal matrices, their condition cannot deteriorate in any reasonable 

number of iterations. 

Two points in the above analysis bear stressing. First the matrices Z 

and are uniformly bounded, provided no column is retained longer than a 

fixed number of iterations and the matrices P^ and remain well conditioned. 

In effect we can use and update the factorizations as long as we like. This 

is especially important in parameterized problems in which the factorizations 

from the solution of one problem are used to start the solution of a nearby 

problem (cf. Section 4.5). The second point is that the analysis implies 

that the error in any column will be small compared with the norm of that 

column. Even if the columns vary widely in size (in the matrix G they will), 

the error associated with a large column cannot overwhelm a small column. 

3. Detecting and Correcting Degeneracy 

As was pointed out in Section 1, the columns of X will be affinely depen­

dent whenever AX is singular. In this section we shall show how the factor­

ization of X introduced in the last section can be used to tell when AX is 

singular and if necessary remove the singularity by altering a column of X. 

The method to be used cannot be justified with complete rigor, although a sug­

gestive theorem can be proved. 

Actually we shall work with the matrices Y and AY, which are the ones 

that are at hand. There is some ambiguity in speaking of the singularity of 
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AY, since its columns may vary widely in size. For the sake of uniformity 

we shall instead examine the matrix A obtained from AY by scaling its columns 

so they have 2-norm unity: 

/ y 2 ~ y l y 3" y1 y n + r y l 
< 3 - n A : = t ^ ' W ? ^ l F ^ l l , 

There is more than just convention in this choice. The convergence proofs for 

the secant method require a uniform upper bound on the condition of the matrices 

A generated by the iteration. 

The method for correcting degeneracies may be justified heuristically as 

follows. If A is nearly singular, then it has approximate left and right null 

vectors; that is there are vectors u and v wi th ||u|| = |(v|| = 1 such that ||Aujj 
T 

and |(v A|| are small; say they are less than some fixed tolerance a. Now to say 
T 

that ||v A|| is small is to say that v is almost orthogonal to each column of A. 

Thus the condition of A may be improved by replacing some column with the vec­

tor v. However, it is important that v not replace a column that is already 

independent of the other columns of A. The vector u may be used to find a 

suitable column. Let u^ be the component of u that is largest in absolute 

value: |u^| ̂  | | , 2 ,...,n). Then the v-th column of A is given by 
/o o\ Au „ 1 (3.2) a = — - E — a.. 

V U . / U 1 
V l f V v 

Since |u^| ̂  n ' , the vector Au/u i s negligible, and (3.2) effectively ex­

presses a^ as a linear combination of the other columns of A # Thus v should 

replace a to give a new matrix A,. 
v 1 

If A^ is nearly singular, the process may be reapplied to give a matrix 

A^, and so on. The following theorem shows that if a is not too large the 
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sequence of matrices so generated must terminate. We establish the result 

for rectangular matrices with an eye to applications to least squares problems. 

Theorem 3.1. Let A^ £ j l N
mX n ^ m ^ nj have columns of norm unity. Given 

a > 0, generate a sequence A^,A^,... of matrices as follows. Let A^ be given 

and suppose that there are vectors u^ and v^ satisfying 

(3.3) I I ^ H - | | v k | | = 1, 

and 

(3.4) H ^ u J I , | ^ v k | | < a 

Let be a maximal component of u^: I ^ l u ^ ^ I (i^l»2,...,n). The 

matrix fs then the matrix obtained by replacing the v-th column of A^ by 

v^. If there are no vectors u^ and v^ satisfying (3.3) and (3.4), end the 

sequence with A^. Then if 

(3-5) 8 ' JmmM 

the sequence terminates with some A^ where k < n. 

Proof. We shall show that in passing from A^ to , the column that 

was thrown out must be a column of A Q. This is clearly true for the matrix 

A Q itself. Assuming its truth for A $ > A y * w e c a n b Y rearranging the 

columns of A write A in the form 

(k) ( k ) , 
\ " ( V V 1 V k - 1 ' \ ••••»an } ' 

where a 5 k \ . . . . a ^ are columns of A A. Thus we must show that u^ k^ (i^l ,2,... ,k) k ' n 0 i 

cannot be maximal. 
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(k) 

The case i = 1 is typical. Write A^ in the form A^ = ^ v o , A2 Then 

it follows from (3.4) that 

| ^ A 2
( k ) || * V^l" a. 

/i \ T T 
But if we write u f c = (Uj ,wk> 

-> I T. I | T (k) , T.(k) | a * |v 0Au k| - |v 0v o U l + v QA 2 w j 

- l u ^ l - |^A 2
( k )||||w k H 

£ |u I -*/n-1 a . 

The inequality (3.5) then implies that | u ^ | < n and cannot be maximal. 

Now either the sequence terminates before k = n-1, or we must arrive at 

the matrix A . Since at this point all the columns of Art but one have been n-1 U 
T replaced, the matrix A . satisfies A _A - = (I + E ) , where |e..| < a. Thus ' n-1 n-1 n-1 9 ij 

IN II * na. 

For any vector u with ||u|| = 1, we have 

K-^f = l u T An-l An-1 u l = l u T ( I + E ) u l 

T 2 ^ 1 - u Eul :> 1 - na a > a 

and the sequence terminates with A
n -j • n 

So far as the secant method is concerned, the main problem is to compute 

the vectors u and v associated with the matrix A defined by (3.1). Since A 

is upper Hessenberg this can be done efficiently by a variant of the inverse 

power method. The motivation for the method is that if A is nearly singular then 
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A ^ will be large. Unless the elements of A ^ are specially distributed, 

the vector u 1 = A ^e will be large for almost any choice of e with ||e|| = 1. 

If we set u = u ' / H u 1 ||, then ||Au|| = ||e | | / lk II = V | k || is small. 

Because A is upper Hessenberg, it can be reduced by orthogonal transforma-
2 

tions to triangular form in 0(n ) operations; that is we can cheaply compute 

an orthogonal matrix R such that 
B = RA 

T 
is upper triangular. We then solve the system Bu' = e. Since |(Auf || = jJR Bu' |j 

T ** 1 "1 

= J|r e|| B ||e ||9 we can work with the vector u 1 8=5 B e rather than A e. The 

components of e are taken to be + l/v^ , where the signs are chosen to enhance 

the size of the solution. Specifically, 
1. «• - n - ^ / b 

n ' nn 
2. 

(3.6) 
For i = n-1,n-2,...,1 

1. a « - E n .,! b..u\ 
j=i+1 i j j 

l/2 
2. uf. = [a 4- sign(0)n" 1 l/b 

1 
ii 

T 

The vector v is obtained by solving the system B w = e in a manner analogous 

to (3.6) and setting v « RTw/||RTw|| . 

If |(uf || is large then a column of A, say the v-th, must be replaced. From 

the definition of A, this amounts to replacing the (v+1)-st column of Y by 

Y] + where \ is arbitrary. We are now in a position to describe our overall 

algorithm for detecting and removing degeneracies. 
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1. Form A according to (3.1) 

2. Calculate u 1 as described above 

3. If ||uf || * tol 

1. Find v so that |u | a |u i| (i«1,2,... ,n) 

(3.7) 2. Calculate v as described above 

3. y* « y i + minOly.-yJI i»2,...,n+l}v 

4. Insert y in Y, throwing out column v+1 

5. Go to 1 

4. ... 

As we mentioned at the beginning of this section, the above algorithm cannot 

be justified with complete rigor. Here we summarize the difficulties. 

Statement 1. In the formation of A, the vector y^ has been given a special 

role as a pivot. If another column of Y is used as a pivot, a different matrix 

A will be obtained. For example, if y^, y 2 , and y^ are situated as shown 

y 3 

yi y 2 

and ŷ  is the pivot, then the vectors may well be judged to be affinely depen­

dent. On the other hand if is the pivot, they will definitely be judged 

independent, since vi~ v2 a n d ^ 2 ^ 2 a r e o r t h o 6 o n a l * W e have chosen ŷ  as a 

pivot because the ordering imposed on the columns of Y and G creates the pre-
T 

sumption that • P is nearer the zero of f than are the other columns of 

X (see Section 4.2). 
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Statement 3. If ||uf || is large, then A is certainly nearly singular. 

However it is conceivable that A could be nearly singular and the algorithm 

for computing u' fail to give a large vector. We feel that this is extremely 

unlikely (it is equivalent to the failure of the widely used inverse power 

method for finding eigenvectors [5, p. 619]). 

The value of tol should not be too large, otherwise slow convergence or 

wild predictions may result. On the other hand, Theorem 3.1 below suggests 

that it should not be too small. We have used a value of 100 in our numerical 

experiments (for n - 100, the bound (3.5) gives a ^ 110). 

Statement 3.3. The form of y shows that our method for removing degen­

eracies amounts to taking a f,side step11 from ŷ  along the direction v. The 

length of the side step is arbitrary. We have chosen the distance between ŷ  

and y^ as the length, since x-j and x^ are presumed to be the points nearest 

the zero of f. 

Statement 3.5. With tol suitably chosen, the only way this statement 

could cause an infinite loop is for ||Av|| to be repeatedly smaller than tol. 

This is unlikely; however, the fastidious user might place an upper bound on 

the number of attempts to remove the degeneracy in A. Alternatively he can 

replace only previously untouched vectors. 

4. Practical Details 

In this section we shall consider some of the practical problems that 

will arise when the method is implemented., For more detail the reader is re­

ferred to the programs in Part Two of this report. 
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1. Economics. Since the matrices X and F are never used by the algorithm, 

it is necessary to store only the matrices Y, P, G, and Q. The number of non-
2 

zero elements in these matrices is about 3n ; however, if they are stored con-
2 

ventionally as separate arrays, they will require about 4n locations. Since 

the lower part of the array in which G (or Y) is stored is zero, this part of 

the array can be used as a workspace in which AG and AY are formed and manipulat­

ed. 

In assessing the amount of work involved, we assume that plane rotations 

are used for all reductions. We shall count the number of rotations and the 

number of multiplications, which multiplications corresponds roughly to the 

number of data accesses. The results are summarized below, where only the 

leading term of the count is given, 

a. Secant Step 

rot = n-1, mult = 3n . 

b. Function Evaluation 

rot = 0, mult = 

c. Insertion and Updating (worst case in which y is inserted in 

the first column replacing v
n + ^ ) 

2 
rot = n-1, mult = 12n . 

d. Insertion and Updating (typical case in which y* is inserted 

in the first column replacing y +-|) 
2 

rot « n-1, mult = 6n . 

e. Checking Degeneracy (computation of u) 
2 

rot = n-1, mult = 2.5n . 
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f• Fixing Degeneracy (computation of v, evaluation of g , insertion 

of y and g [typical case]) 

rot = 2n-2, mult =» 14.5n2. 

Thus a typical iteration without degeneracy will consist of a + b + 2d + e, 
2 

or 3n-3 rotations and 19.5n multiplications. With degeneracy, a typical itera-
2 

tion will require 5n-5 rotations and 34n^ multiplications. 

2. Order of the columns of Y and G. In forming AG preliminary to the 

computation of g , the vector ĝ  is subtracted from the other columns of G. 

If ||gj| is much larger than llgj), then the vector g^ will be overwhelmed by g 1 . 

To avoid this we order the columns of G so that ||ĝ  || ^ ||g2|| ̂  • • • - lfen+] !!• 

The matrix Y inherits this order, and since ||f̂ || a it m a Y be presumed 

that when the process is converging, the vector is nearer the solution than 
Xi+1 * T ^ e o r c * e r ^ n S n a s the advantage that it gives a favorable operation count 

for the updates in the case when y replaces the column for which the norm of 

g is largest. 

3. Communication with the user. The user must of course furnish code to 

evaluate the function f, which is customarily done in a subprogram provided 

by the user. After the secant prediction y has been calculated the user must 

decide whether the process has converged. If it has not, he must decide whether 

the predicted point is acceptable and if not what to do about it. Since no 

single strategy is likely to be effective in all cases, we have left a blank 

section in our implementation of the algorithm where the user may code his own 

decisions. 
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4. Obtaining initial factorizations. The updating algorithm can be used 

to obtain the factorizations (2.1) and (2.2) at the start of the algorithm. 

The user of course must furnish n+1 vectors x-| >x2> • • • , x
n + ] * n t* i e m atrix X. 

At the k-th (k^O,1,...,n) step of the initialization procedure, assume that 
Ik i k the factorizations of the matrices X « (x^,...,x^) and F = (f^,f2,...,f^) 

are known; i.e. 
x i k s pT y|k^ G k = Q F|k^ 

Ik Ik where Y = (y^>»«»>yk) and G* « (g^,...,gk) are upper trapezoidal. Calculate 
Ik Ik 

the vectors y k + 1 = I > x
k + 1

 a^d g f c + 1 = Q f k + 1 • Append a column to Y and G 1 and 

insert y^+i a n (* ^^+1 * m a ^ i n § s ure that the columns just appended are the ones 

to be discarded, and update as usual. After the n-th step all the vectors in 

X and F will have been incorporated into the factorization. 

5. Using an old Jacobian. When a sequence of closely related problems 

are being solved, the solution of one may be a good approximation to that of 

the next. Moreover the approximation to the old Jacobian implicitly contained 

in the matrices Y, P, G, and Q may also be a good approximation to the new 

Jacobian. Unfortunately the new iteration cannot simply be started with the 

old matrices Y, P, G, and Q, as the following hypothetical example shows. 

Consder the case illustrated below in which the numbers associated with 

the points give the norms of the function values. 

J O "*y * i o " 3 

x 1 0 - 6 

i o - 4 

The point labeled T O - 6 is the converged value for the old iteration. When the 
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process is restarted with the new function, the point will have a much higher 
-2 * function value, say the circled 10 • Consequently the prediction x will be 

far removed from the original points, and when y is inserted into Y, the array 

will be judged to be degenerate. Moreover the function value at x will have 
-3 

a norm (10 in the example) which is out of scale with the old values. Thus 

both the G and the Y arrays must rescaled before they can be used with the 

new function. 

Our method of scaling consists of two steps. First the columns of AY are 

scaled so that their norms are equal to |(y -y 1 ||. The modification is extended 

to G by linearity. Then, with gj denoting the new g value at y^, the columns 

of G are increased by g^-g^. This scaling technique is described below. The 

notation Insert(g,i,j) means insert g into column i of G, throwing out column 

j, then update as usual. 
1. Calculate the new value gj corresponding to ŷ  

2. y" = y, - AY(AG)~V 
1 1 

3.| For i=2,3,...,n+l 

2. y± - y± + uoi(yi-y1) 

3^ gt - g t + u)i(gi-g1) 

4. Tnsert(g|-g 1,1,1), multiplying the update transform­

ations into ĝ  
5. g± = g± + (gj-gp, (i=2,3,...,n41) 

6. Insert(gj,1,1) 

It should be noted that statements 3.2 and 3 U3 do not destroy the upper 

triangularity of the matrices Y and G, since only the first elements of y^ and 
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are nonzero. Statements 4, 5, and 6 are a circumlocution designed to avoid 

excessive updating. Statement 4 transforms the system so that SĴ S-j * s nonzero 

in only its first component, after which G may be altered without destroying 

its upper triangularity (statement 5). Statement 6 places g.j in its rightful 

position. 

The y predicted by the scaled Y and G will be the same as the y of state­

ment 1. The columns of G need no longer be in order of increasing norm; but 

since all but the first represent old data, they should be discarded as soon 

as possible. 

6, Incorporating linearities» As was mentioned in Section 1, degeneracies 

are certain to develop when some of the component {unctions are linear. Since 

the procedure for removing degeneracies is about as expensive as a secant step, 

it is important to be able to deal directly with such linearities. This may be 

done as follows. 

Assume that , and that the equation f(x) » 0 is supplemented 

by I linear equations of the form 

(4.1) Ax « b, 

where A £ fj^(n+i)xA ^ g ^ f u n rank. Suppose that we are given a unitary matrix 

U such that 

(4.2) AU « (0 T) 

where T is square. Set x = U Tx and partition x in the form x - ( x ^ x ^ ) 1 , where 

x 2 € \RA. Then from (4.1) and (4.2) 

(4.3) Tx 2 « btt 
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Since A is of full rank, T is nonsingular and any solution of the system 

(4.1) must have x = T ""b. 

Define the function i: \\\n -> \Kn by 

satisfies f(x) « 0 and Ax = b # The secant method may now be applied to f. 

The matrix U required by this process may be obtained in the usual way 

as the product of Householder transformations [5]. When this is done, the 

matrix T will be triangular, which makes the equation (4.3) easy to solve. 

5. Numerical Examples and Conclusions 

The algorithm described in the above sections has been tried on a variety 

of problems. Here we summarize the results of three tests that exhibit the 

typical behavior of the algorithm. 

The first example involves the function whose i-th component is given by 

is the lower triangular matrix whose nonzero elements are all -1, a nicely 

Then f(x.) = 0 if and only if 

This function has a solution at x = (1,1 1) , At the solution its Jacobian 

more or less nonlinear. 

ditioned matrix The numbers q i may be chosen ad libitum to make the function 

nlinear. Table one summarizes the results of applying the above 
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algorithm ot this function with n = 15 and = .3 (i=1,2,...,n). The initial 
T 

estimate was the point (0.8, 1.2, 0.8, 1.2,...,0.8) . The remaining 15 points 

required by the algorithm were obtained by adding alternately + .05 to the suc­

cessive components of the initial estimate. The results are summarized in 

Table 1, where ||e|| denotes the Euclidean norm of the error in the current iterate, 

||f || denotes the Euclidean norm of the current function value, and ||u|| denotes 

the norm of the vector u used to check degeneracies. Of the starting values 

only the central one is reported. At three points it was necessary to rectify 

a degeneracy; otherwise the convergence is routine (the iteration was terminated 

when ||f|| ^ 10~ 6). 

The second example uses the same function with n = 5, q̂  = = q^ = 8 8 «5 

and q^ - 0. The starting points are generated in the same way as for the first 

example. Since the fifth component of the function is linear, degeneracy can 

be expected in the iteration. It occurs at the seventh step (||u|| = 4.6*10 ) 

and is handled easily. 

The third example tests the algorithm for reusing old information. The 

function depends on a parameter s and is defined by 

i n 
f t(x) - i.s - E x, + q, S (s-x.) . 

j=1 1 Xj=i 1 

T 

With n = 5 and q^ « .3 the zero (s,s,s,s,s) was found for s = 1.0, 1.2, 1.4, 

1.6, 1.8, 2.0. The information from one solution was used to start the next. 

The results are summarized in Table three. The last three solutions are atypical 

in that they require effectively only a single iteration to converges. This is 

because the error vectors and the function values were the same at each new 
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starting point, and this information had been preserved from the last solu­

tion. 

These examples are given principally to illustrate the behavior of the 

algorithm. Additional experiments suggest that the local behavior of the 

method is quite good. Indeed if one believes that the algorithm for fixing 

degeneracies will work, one can apply the theory in [3] to give local conver 

gence proofs. However, we believe it is too early to make general claims 

about the algorithm. For example, we do not know if damping techniques can 

be used to make it effective on problems where it otherwise would not work. 

It is hoped that the program described and listed in Part II of this report 

will help interested researchers to investigate the algorithm and compare it 

with others. 
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Table 1 

llfll Ml 

7 . 7 . 1 0 " 1 9 . 0 - 1 0 " 1 2 . 7 . 1 0 ° 

1 . 3 . 1 0 " 1 3 . L 1 0 " 1 1 . 2 . 1 0 2 

7 . 5 . 1 0 " 1 2 . 8 - 1 0 1 1 . 4 - 1 0 1 

1 . 2 . 1 0 - 2 1 . 3 . 1 0 " 2 5 . 7 . 1 0 1 

2 . 9 - 1 0 " 3 4 . 7 . 1 0 " 3 6 . 2 . 1 0 2 

9 . 8 . 1 0 " 3 4 . 3 - 1 0 " 1 1 . 3 . 1 0 1 

2 . 4 . 1 0 ' 4 2 . 8 . 1 0 " 4 1 . 5 - 1 0 2 

3 . 0 . 1 0 " 3 1 . 0 . 1 0 " 2 1 . 2 . 1 0 1 

i . i . i o " 5 3 . 3 . 1 0 " 5 2 . 4 . 1 0 1 

1 . 6 - 1 0 " 6 4 . 6 - 1 0 " 6 4 . 3 . 1 0 1 

4 . 3 . 1 0 " 7 1 . 5 . 1 0 " 6 2 . 5 . 1 0 1 

1 . 2 . 1 0 - 7 4 . 2 . 1 0 " 7 2 . 8 . 1 0 1 

Table 2 

llell llfll llull 

4 . 5 - 1 0 " 1 4 . 5 . 1 0 " 1 1 . 6 . 1 0 ° 

7 . 9 - i o " 2 1 . 1 . 1 0 " 1 2 . 6 . 1 0 1 

i . o . i o ~ 2 8 . 2 . 1 0 " 3 2 . 5 . 1 0 1 

3 . 6 . I O - 3 4 . 1 . 1 0 " 3 7 . 5 . 1 0 1 

3 . 2 . 1 0 " 4 2 . 6 . 1 0 - 4 7 . 2 . 1 0 1 

1 . 0 . 1 0 " 4 1 . 3 . 1 0 " 4 1 . 2 - 1 O 1 

2 . 9 . 1 0 " 6 2 . 3 . 1 0 - 6 4 . 6 . 1 0 3 

1 . 0 . 1 0 " 4 3 . 4 . 1 0 " 4 5 . 0 . 1 0 ° 

5 . 4 . 1 0 " 8 1 . 1 . 1 0 " 7 4 . 7 - 1 0 ° 
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Table 3 

lie II llfll Ikxll 

4.5-10"1 4.1.10"1 1.6.10° 
4.3.10"" 6.5-10~2 2.6.101 

4.7-10"3 3.1-10~3 2.3-101 

1.4-10'3 1.2.10"3 1.7.102 

3.7-10"3 1.1. io" 2 4.5.10° 
2.9.10"5 3.9-10'5 6.9.10° 
2.8-10"6 3.8-10"6 4.2-10° 
7.0-10"8 9.0-10"8 5.6.10° 
4.5-10"1 1.5-100 1.0-101 

6.6-10"2 9.1.10"2 6.4.10° 
2.5-10"3 2.1.10"3 9.6.IO1 

-4 
9.7-10 i .o . io" 3 1.5.101 

2.5-10"5 2.3.10~5 2 
1. U1 0 

1.0-io"3 8.1.10~4 2.8-102 

9.9.10"4 8.1.1O"4 2.4.10° 
2.7-10"7 4.2-10"7 1 .o . io 1 

4.5-10 _ 1 1.5.10° i . o . io 1 

5.L10" 2 6.7.10"2 3.3.10° 
2.3.10'3 2.5-10"3 7.1.10° 

-4 
1.7.10 

-4 
1.7-10 1.9-101 

1.0-io"6 7.2-10"7 6.8.IO1 

4.5-10"1 1.5.10° 1.4.102 

6.7.IO"1 1.5-10° 9.7.10° 
1.2.10 - 7 1.5-IO-7 1.5.101 

4.5.IO - 1 1.5.10° 1.5.101 

1.1.io"7 2.0.10"7 2.8.IO1 

4.5.10"1 1.5.10° 2.8.IO1 

8.0-IO"8 1.5.10"7 5.6-101 
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PART II 

1• Introduction 

In this second part of this report we shall describe and list a program 

implementing the method described in Part I. Since the program is quite com­

plex, the description is divided into two sections. The first section tells 

the casual user what he needs to know to use the program; the second section 

describes the program and its subroutines in greater detail and presupposes 

a familiarity with Part I. 

2. Usage 

SSM is a FORTRAN subroutine designed to solve the system of equations 

f(x) = 0 , 

Ax = b, 

where f: |K n + ^ ->lT\n and A £ J^Ax(iH-A) ( t n u g n ^ g t l i e n u m t > e r Q f nonlinear equa­

tions and I is the number of linear equations in the system). The user must 

supply to the program the matrix A, the vector b and a subroutine to evaluate 

the function f. The user must also supply a set of n+1 estimates of the solu­

tion; however if a sequence of closely related problems is being solved, the 

output from the solution of one problem can be used in place of the estimates 

for the next problem. The user must also supply a section of code in SSM to 

check convergence. 

Calling SSM. Information is transfered to SSM by the arguments in the 

subroutine call and by a common block. The calling sequence is 

CALL SSM(X,F,N,L,EVAL,NEWJAC,NEWA,NEWB,FAIL). 
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The parameters in the calling sequence are 

X(N-fL) a real array (of minimum dimension n) that on return 

contains the solution 

F(N) a real array that on return contains the value of f at X 

N n, which must be greaLer than one 

I. i, which may be zero 

EVAL the name of a user coded subroutine to evaluate f 

NEWJAC a logical variable which when true indicates that the 

user has provided a set of n+1 estimates in the common 

array Y. NEWJAC can be false only after SSM has been 

called at least once, in which case it tellsXSSM to use 

the results of the* last run to start the current run 

NEWA A logical variable, which if true indicates that the 

coefficients of the system Ax « b have just been placed 

in the common array A. If the same coefficients are to 

be used in subsequent runs, NEWA must he false. 

NEWB A logical variable, which if true indicates that the 

elements of the rlghthand side of the systeri Ax = b have 

been placed in the common array B, if the same right-

hand side is to be used in subsequent calls, NEWB must 

be false. if NKWA is true, SSrl assumes that NEWB is 

also true. 
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FAIL An integer which on return contains an error indicator. 

If FAIL is zero all has gone well. Otherwise FAIL contains 

an error trace (see §3 below). 

The common block is 

COMMON/SSMCCM/A(L,N+L+2) ,B(L) ,Y(N+L+2 ,N+1) 

where the dimensions given are the minimal ones. As explained above A and B 

contain the coefficients and righthand side of the linear system and the columns 

of Y contain n+1 estimates of the solution. All of this information is altered 

by the system. If it is desired to use it later then NEWJAC, NEWA, or NEWB, 

whichever are appropriate, must be set to false. 

The subroutine EVAL. The user must furnish a subroutine to evaluate the 

function. Its calling sequence is 

CALL EVAL(X,F,FAIL) , 

The arguments are 

X(N+L) an array containing the point x to be evaluated 

F(L) an array that on return contains f (x) 

FAIL an integer that is initially zero. If a failure occurs 

it should be set to any integer from 1 through 99. This 

will cause SSM to abort. The last two digits in FAIL 

will contain the number set in EVAL. 
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If further information must be communicated to EVAL, this may be done through 

common statements. 

Convergence and other tests. In its main loop, SSM produces a new approxi­

mation to the solution which must be tested for acceptability. Since no fixed 

strategy is likely to be satisfactory for all problems, the user is required 

to furnish his own tests in the section labled 500. This is also the place to 

insert aci hoc damping techniques and tests to insure that the iteration does 

not continue too long. Additional information can be communicated to this sec­

tion by extending the argument list of SSM or by a common block. 

In coding this section it is important to realize that SSM works in a co­

ordinate system different from the x-f coordinate system of the user: call it 

the y-g coordinate system. To each n-vector y there corresponds a n+£ vector 

x satisfying Ax = b, which can be retrieved by the statement 

CALL EVAL G(Y,X,F,G,GNRM,.TRUE.,EVAL,FAIL) 

The vector x corresponding to y is returned in the array X. The arguments 

F,G,GNRM, and FAIL are irrelevent in this context. To each function value f 

there corresponds a value g. Given y, the set of vectors x, f $ and g can be 

retrieved by the statement 

CALL EVAL G(Y,X,F,G,GNRM,.FALSEEVAL,FAIL) 

On return GNRM contains the Euclidean norm of g, which is approximately equal 

to the Euclidean norm of f. If FAIL is nonzero on return, it contains the value 

to which it was set in EVAL. The f value corresponding to a given g can be 

found by multiplying g by the transpose of the nxn matrix contained in the array 

Q. 
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When SSM enters the section labled 500, the arrays YY and GG contain the 

point from which the prediction was launched and its g-value,YS contains the 

predicted point, and DY contains the difference DY = YS - YY. The array 

element N0RM(1) contains the Euclidean norm of GG. The arrays X, F, SN, CS, 

and GS may be used for scratch. 

In this section the user must decide whether or not to continue the itera­

tion. If he decides to continue he must provide an acceptable prediction in 

YS and its corresponding g value in GS, then transfer control to statement 600. 

It should be stressed that the value of YS need not be the same as the value 

that was input to the section. For example, YS may he taken to be YY + \DY, 

where X is chosen so that the norm of GS is not too large. 

Either convergence or an error may make the user decide to terminate the 

iteration. On normal convergence the user should first execute the statement 

CALL EVAL G(YS ,X,F,GS ,GNRM, .FALSE . ,EVAL,FAIL) , 

in order to place the converged x and f in X and F, and then return. On an 

error the user should return after executing the statement 

FAIL « FAIL + k 

where k - 10000-i (i=8,9,...). 

Parameters set in SSM. Five parameters contained in the common block 

SECPRM are set at the beginning of SSM. The variable TOL contains a tolerance 

for detecting degeneracies (see §1.3). The variable NTRY contains an upper 

bound on the number of attempts to rectify degeneracies and is currently set 

to n. The variable SCL is set to .1 to handle a rather unlikely error in the 
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subroutine CHKFIX. The variable UTBND is set to N+3 and insures that any 

given point will not be used too long. The only parameter the user should 

have to fool with is MCHEPS, which contains the largest floating point number 

for which the computed value of 1 . + MCHEPS is equal to 1. (Only a rough esti­

mate of the value is needed; e.g. if the floating point fraction contains 27 
-8 

bits then MCHEPS may be taken to be 10*" .) 

Minimal dimensions. SSM will of course not work if its arrays are too 

small for the problem. Here follows a list of subscripted variables in SSM 

with their minimal dimensions. 

X(N+L),F(N+L),A(L,N+L+2),B(L),Y(N+L+2,N+1) 

G(N+L+2,N+2),MARK(N+1),NORM(N+1), 

P(N,N) ,Q(N,N). 

In addition, the first dimensions of Y and G must be equal. The second argu­

ment in EVALG must be dimensioned at least N+L. All other arrays in the pro­

gram must be dimensioned at least N. 

3. Program Details 

General considerations. The program consists of eight subroutines: SSM, 

the controlling program; CHKFIX, which detects and rectifies degeneracies; 

INSERT, which modifies and updates the matrices Y and G; SECSTP, which makes 

secant prediction; EVALG, which calls the user coded function EVAL to get a 

function value; REDUCE, which accomplishes the reduction described in $1.2; 

HESRED, which triangularizes a Hessenberg matrix in G; and ROT which computes 

plane rotations. 
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These subroutines are linked by three common blocks. The block SECCOM 

contains variables that must be visible to the user. The block SECPRM contains 

parameters whose values should seldom have to be reset. The block SECVAR con­

tains the remaining variables that are shared by the program. 

The array names follow the nomenclature of Part I. In addition, the array 

NORM contains the Euclidean norms of the columns of G. The array MARK contains 

integers associated with the columns of Y and G that tell INSERT which columns 

must be thrown out (specifically if MARK(I) ^ 0UTBND, then CHKFIX and INSERT 

will attempt to discard column I before others with MARK < 0UTBND) • 

The program is provided with an error tracing feature that operates as 

follows. Each subroutine is assigned a power of ten, its failno. If an error 

occurs in a given subroutine, it executes the statement FAIL = FAIL + i*failno, 

where i - 1 , 2 , . . . , 9 . The calling subrouinte regards the return of a nonzero 

value in FAIL as an error and does the same thing. In this way the program 

is aborted with an integer in FAIL whose digits tell where an error occurred 

and how the program got there. 

We shall now give a brief description of each of the subroutines. 

SSM(X,F,NN,LL,EVAL,NEWJAC,NEWA,NEWB,FAIL); failno = 10 4. The calling se­

quence for this program has already been discussed. After some initialization, 

SSM checks for a new matrix of coefficients in A. If there is one, Householder 

transformations H-j ,H 2,... ,H^ are determined so that AH^,..H^ - (0 T) where T 

is upper triangular. The matrix A is overwritten in the array A by H.,...H. 

and by T (this requires two extra columns). If either NEWA or NEWB is true, 

the system Tx 2 = b is solved, the solution overwriting b. 

The iteration may be started either by using the Jacobian from a previous 

iteration or by building up a new Jacobian. The first alternative is effected 
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by a straightforward implementation of the technique described in Section 

1.4.5. If the Jacobian has to be built up, it is done by the technique de­

scribed in Section 1.4.4. 

In the main loop, the directions are checked for independence and a secant 

step is taken. After SSM emerges from the user coded testing section, the new 

point is inserted into the Y and G arrays (see the description of INSERT), the 

values in the array MARK are increased by unity to prevent a point from hang­

ing on too long, and the loop is begun again. 
3 

CHKFIX(EVAL,FA EL); failno « 10 . This is a fairly straightforward imple­

mentation of the algorithm described in (1.3.7), with some special features. 

The transpose of the Hessenberg matrix A is formed in the lower part of the 

array G starting in row three. If the columns of A are zero, the minimum in 

(1.3.7.3.3) is taken to be SCL-|(yJ|. The matrix A is reduced to triangular 

form by HESRED, and all diagonal elements of A that are too small are set equal 

to MA CHE PS. 

The column to be thrown out is restricted by the array MARK. If some 

MARK(I) ^ OUTBND) then the column K that is thrown out must satisfy 

MARK(K) ^ OUTBND; otherwise any column with MARK ^ 0 may be thrown out. The 

new column is given a MARK of zero and the elements of the array MARK are in­

creased by unity. 

INSERT(YS,GS,GNRM,OT,M). This subroutine inserts YS and GS in Y and G, 

treating Y and G as N by M arrays. The index of the column to be thrown out 

is specified by OT. If OT is zero, then the column of largest NORM is chosen, 

subject to the same MARK restrictions that govern CHKFIX. The new columns are 

inserted just before the first column of larger norm and are given a MARK of 

zero. The matrices Y, P, G, and Q are updated by REDUCE. 
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2 SECSTP(YY,GG,YS,DY,FAIL); failno = 10 . This subroutine calculates 

DY - - AY*(AG)-1*GG and the secant prediction YS « YY + DY. As in CHKFIX the 

lower part of G is used as a scratch array to contain the transpose of AG, 

which is reduced to triangular form by HESRED. 

EVALG(YP,XP,FV,GV,GNRM,ONLYX,EVAL,FAIL). Given the point YP, this subroutine 

finds the corresponding x-vector XP, calls EVAL to obtain a function value FV, 

and converts FV into a vector GV in the g-coordinate system. If ONLYX is true, 

the routine returns before calling EVAL. 

REDUCE(Y,P,IN,N,M). This subroutine reduces a matrix Y of dimension NxM 

with a stalactite to triangular form via the method described in §1.2. The 

stalactite is assumed to be in column IN. The transformations are accumulated 

in P. 

HESRED. This subroutine reduces a Hessenberg matrix to triangular form 

using plane rotations. The matrix is stored in the lower part of G starting 

in row three. The rotations are returned in the arrays CS and SN. 

R0T(A,B,CS,SN,R). This subroutine computes plane rotations for REDUCE and 

HESRED. 

4. Program 
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00100 
88208 
88388 
88488 
00500 
88G88 
08788 
00800 
80900 
01088 
01100 
81280 
01300 
81488 
01500 
81608 
01700 
01800 
01900 
02088 
82188 
82200 
82388 
02400 
82508 
02800 
82788 
02800 
82988 
03000 
83100 
03200 
03388 
03480 
03500 
03600 
03708 
03800 
83900 
04000 
04100 
04200 
04300 
04400 
04500 
04G00 
04700 
04880 
04980 
05000 
05100 
05200 
05380 
05408 
05500 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

c 
c 
c 

c 
c 
c 

c 
c 
c 

SUBROU TINE SSM(X,F,NN,LL,EVAL,NEUJAC,NEUA,NEWB,FA IL) 

PARAMETERS IN THE CALLING SEQUENCE. 

REAL F(20),X(20) 
INTEGER FAIL.LL.NN 
LOGICAL NEUA,NEWB,NEUJAC 
EXTERNAL EVAL 

GLOBAL VARIABLES. 

COMMON /SECCOM/A(20,22),B(20),Y(22,21) 
COMMON /SECVAR/CS(20),G(22,22),L,LM1,MARK(21),N,N1,N2, 
1 NL,NL1,NL2,NM1,NM2,NORM(21),P(20,20), 
2 Q(20,20),RSQN,SN(20) 
COMMON /SECPRM/MCHEPS,NTRY,OUTBND, SCL,TOL 
REAL A,B,CS,G,MCHEPS,NORM,P,Q,RSQN,SCL,SN,TOL,Y 
INTEGER L.LM1,MARK,N,Nl,N2,NL,NL1,NL2,NM1,NM2,NTRY,OUTBND 

VARIABLES INTERNAL TO SSM. 

REAL DY(20),GNRM,GG(20),GS(20),MAX,OMEGA,OMEGA1, 
1 S,T,YY(20),YS(20) 
INTEGER I,U,II,J,JJ,K,KK,KM1,NK 

SET UP VALUES IN SECPRM. 

TOL = 100. 
NTRY = NN 
MCHEPS = l.E-8 
SCL = .1 
OUTBND = N+3 

INITIALIZATION. 

L = LL 
LM1 - L-l 
N - NN 
Nl = N+l 
N2 = N+2 
NL •= N+L 
NL1 = NL+1 
NL2 = NL+2 
NM1 = N-1 
NM2 = N-2 
RSQN = l./SQRT(FLOAT(N)) 
FAIL = 0 

CHECK FOR LINEAR SYSTEMS, 

IF(L.EQ.B) GO TO 200 

PROCESS THE LINEAR SYSTEM. 

IF(.NOT.NEUA) GO TO 180 
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85608 
85788 
85888 
85988 
86888 
86188 
86288 
86388 
86488 
86588 
86688 
86708 
86888 
86388 
87888 
87188 
87288 
87388 
87488 
87588 
87600 
87788 
07808 
87988 
88888 
88188 
88288 
88388 
88488 
88588 
88688 
08700 
88888 
08900 
89800 
09100 
09200 
09300 
09400 
09500 
09600 
09700 
09800 
09900 
10800 
10100 
10200 
10380 
10400 
10508 
10600 
10700 
10808 
10900 
11000 

C 
C 
C 
C 

C 
C 
C 
C 

C 
C 

REDUCE THE MATRIX OF THE LINEAR SYSTEM BY 
HOUSEHOLDER TRANSFORMATIONS. 

DO 170 KK=1,L 
K = L-KK+1 
NK = N+K 
MAX = 0. 
DO 110 J-l.NK 

MAX = AMAX1(MAX,ABS(A(K,J))) 
110 CONTINUE 

IF(MAX .NE. 0.) GO TO 120 
FAIL = 18008 
RETURN 

120 S = 0. 
DO 130 J-l.NK 

A(K,J) = A(K,J)/MAX 
S = S + A(K,J)vnv2 

130 CONTINUE 
S = SQRT(S) 
IF(A(K,NK) ,LT. 0.) S = -S 
A(K,NK) = A(K,NK) + S 
A(K,NL1) = S*A(K,NK) 
A(K.NL2) = -MAX*S 
IF(K .EQ. 1) GO TO 170 
KM1 = K-l 
DO 168 I-1.KM1 

T = 0, 
DO 140 J=1,NK 

T = T + A(I,J)*A(K,J) 
CONTINUE 
T = T/A(K,NL1) 
DO 150 J-l.NK 

Ad,J) = Ad,J) - T>vA(K,J) 
CONTINUE 

CONTINUE 
CONTINUE 

IF(.NOT.(NEUA .OR. NEUB)) GO TO 200 

SOLVE THE TRIANGULAR SYSTEM FOR THE CONSTANT 
PART OF THE TRANSFORMED SYSTEM. 

B(L) = B(L)/A(L,NL2) 
IF(L.EQ.l) GO TO 200 
DO 195 II-1,LM1 

I = L-II 
II = 1+1 
DO 190 J-Il.L 

NJ = N+J 
B d ) = B d ) - A(I,NJ)*B(J) 

190 CONTINUE 
B d ) = B(I)/A(I,NL2) 

195 CONTINUE 

CHECK THE STATUS OF THE APPROXIMATE JACOBIAN. 

140 

150 
160 
170 
180 
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11100 C 
11200 200 IF(NEUJAC) GO TO 388 
11300 C 
11400 C RESCALE THE OLD APPROXIMATE JACOBIAN. 
11500 C 
11608 MARK(1) = 0. 
11700 DO 205 I-l.N 
11800 YY(I) = 0. 
11900 MARKU+l) = OUTBND 
12000 205 CONTINUE 
12100 YY(1) = Y(l,l) 
12200 CALL EVALG(YY,X,F,GG,GNRM,.FALSE.,EVAL,FAIL) 
12300 IF(FAIL .EQ. 0) GO TO 210 
12480 FAIL = FAIL + 20000 
12500 RETURN 
12600 210 CALL SECSTP(YY,GG,YS.DY.FAIL) 
12700 IF(FAIL .EQ. 0) GO TO 215 
12800 FAIL = FAIL + 30000 
12980 RETURN 
13000 215 S = (YS(1) - Y(l,l))**2 
13100 DO 220 I=2.N 
13280 S = S + YS(I)**2 
13308 220 CONTINUE 
13400 S = SQRT(S) 
13500 DO 240 J-2.N1 
13600 T = (Yd,J) - YU,1))**2 
13780 DO 225 1=2,N 
13800 T = T + Y(I,J)**2 
13900 225 CONTINUE 
14000 IF(T .NE. 0) GO TO 230 
14100 FAIL = 40000 
14200 RETURN 
14300 230 OMEGA = S/SQRT(T) 
14400 OMEGA1 = 1. - OMEGA 
14500 NORM (J) = SQRT((0MEGAl*N0RMd)hv*2 + 
14600 1 2.*OMEGAl*OMEGA*G(1,1)*G(1, J) 
14780 2 (0MEGA>vN0RM(J)hv*2) 
14800 Yd, J) = OMEGAl*Y(l,l) + OMEGA*Y(l,J) 
14900 Gd.J) = OMEGAlrtGd.l) + OMEGA*G(l, J) 
15000 NJ = MIN0(N,J) 
15100 DO 235 1-2.NJ 
15200 Yd, J) = OMEGAftYd , J) 
15300 Gd.J) = OMEGAvvGd , J) 
15400 235 CONTINUE 
15500 240 CONTINUE 
15600 DO 245 I-l.N 
15700 G(I,N2) = GGd) 
15800 245 CONTINUE 
15900 GGd) = GGd) - Gd.l) 
16000 CALL INSERT(YY.GG,8.,1.N2) 
16100 DO 250 J-2.N1 
16200 NORM(J) = SQRT(G(1,1)**2 + 
16300 1 2.*G(1,1)*G(1,J) + 
16400 2 N0RM(Jhv*2) 
16500 Gd.J) = G(1,J) + G(l,l) 
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16600 
1G788 
1G888 
1G988 
17888 
17188 
17288 
17388 
17488 
17588 
17G88 
17708 
17888 
17988 
18888 
18188 
18288 
18300 
18488 
18500 
18G88 
18700 
18888 
18900 
19000 
19100 
19200 
19300 
19400 
19500 
19G88 
19700 
19888 
19900 
28888 
20100 
28200 
20300 
20400 
20500 
20G00 
20708 
20800 
20900 
21000 
21100 
21200 
21300 
21400 
21580 
21600 
21700 
21800 
21900 
22000 

250 CONTINUE 
DO 255 I=1,N 

GG(I) = G(I,N2) 
255 CONTINUE 

CALL INSERT(YY,GG,GNRM,1, Nl) 
GO TO 400 

300 CONTINUE 
C 
C 
C 
C 

C 
C 
C 
C 

305 

310 
315 
320 
325 

340 

350 

3G0 
370 

373 

380 

THE APPROXIMATE JACOBIAN IS TO BE FORMED FROM A 
NEW SET OF POINTS. BUILD UP THE MATRICES Y,P,G, AND Q. 

IF(L .EQ. 0) GO TO 325 

THERE ARE LINEAR EQUATIONS. TRANSFORM 
THE POINTS. 

DO 320 KK-l.L 
K - L-KK+1 
NK = N+K 
DO 315 J-l.Nl 

T = 0. 
DO 305 I=1,NK 

T = T + A(K,I)*Y(I,J) 
CONTINUE 
T = T/A(K,NL1) 
DO 310 1=1,NK 

Yd,J) = Yd,J) - T*A(K,I) 
CONTINUE 

CONTINUE 
CONTINUE 

DO 350 I=1,N 
DO 340 J-l.N 

Pd,J) = 0. 
Q(I,J) = 0. 

CONTINUE 
Pd.I) = 1. 
Qd.I) = 1. 

CONTINUE 
DO 380 K-l.Nl 

DO 370 I=1,N 
YY(I) = 0. 
DO 3G0 J-l.N 

YY(I) = YY(I) + P(I,J)*Y(J,K) 
CONTINUE 

CONTINUE 
CALL EVALG(YY,X,F,GG,GNRM,.FALSE.,EVAL,FAIL) 
IF(FAIL .EQ. 0) GO TO 373 
FAIL = FAIL + 50000 
RETURN 

NORM(K) = GNRM 
CALL INSERT(YY.GG,GNRM,K,K) 

CONTINUE 
C 
C MAIN LOOP. OBTAIN A SET OF AFFINELY INDEPENDENT 
C POINTS AND THEN TAKE A SECANT STEP. 
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22108 C 
22200 400 CALL CHKFIX(EVAL,FAIL) 
22380 IF(FAIL .EQ. 0) GO TO 405 
22400 FAIL = FAIL + 60000 
22500 RETURN 
22608 405 DO 410 I-l.N 
22708 YY(I) = 0 . 
22800 GG(I) = 0. 
22900 410 CONTINUE 
23000 YY(1) = Y(l,l) 
23100 GG(1) = G(l,l) 
23200 CALL SECSTP(YY,GG,YS.DY.FAIL) 
23300 IF(FAIL .EQ. 0) GO TO 500 
23400 FAIL = FAIL + 70000 
23500 RETURN 
23600 C 
23700 C ON ENTRY TO THIS PART OF THE PROGRAM, YS CONTAINS 
23800 C A NEU POINT. IT IS THE RESPONSIBILITY OF THE 
23900 C USER TO PROVIDE CODE THAT DETERMINES WHETHER YS IS 
24000 C ACCEPTABLE AND UHETHER THE ITERATION HAS CONVERGED. 
24100 C ON EXIT (OTHER THAN A RETURN), YS AND GS MUST 
24200 C CONTAIN AN ACCEPTABLE POINT AND ITS VALUE. 
24300 C THE SAMPLE SECTION BELOU RETURNS IF THE NORM 
24400 C OF THE FUNCTION IS LESS THAN OR EQUAL TO 1.0E-6. 
24500 C BEFORE RETURNING INSERT AND CHKFIX ARE CALLED TO 
24600 C INSURE THAT THE LATEST APPROXIMATION TO THE 
24700 C JACOBIAN IS CONTAINED IN THE ARRAYS Y.P.G, AND Q. 
24800 C 
24900 500 CALL EVALG(YS,X.F.GS,GNRM,.FALSE.,EVAL,FAIL) 
25000 IF(FAIL .EQ. 0) GO TO 510 
25100 FAIL = FAIL + 80000 
25200 RETURN 
25300 510 IF(GNRM .GT. l.E-G) GO TO G00 
25488 CALL INSERT(YS,GS,GNRM,0,N1) 
25500 CALL CHKFIX(EVAL,FAIL) 
25600 IF(FAIL .NE. 0) FAIL - FAIL + 90000 
25700 RETURN 
25800 C 
25900 C INSERT THE NEU POINT AND GO BACK FOR ANOTHER. 
26000 C 
26100 680 CALL INSERT(YS.GS,GNRM,0.N1) 
26200 DO G10 1-1,Nl 
26300 MARK (I) = MARK(I) + 1 
26400 610 CONTINUE 
26500 GO TO 400 
26600 END 
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801 ee SUBROUTINE CHKFIX(EVAL,FAIL) 
00200 C 
00300 C PARAMETERS IN THE CALLING SEQUENCE. 
00400 C 
00500 INTEGER FAIL 
00600 EXTERNAL EVAL 
00700 C 
00800 C GLOBAL VARIABLES. 
00900 CJ 

01888 COMMON /SECCOM/A(20,22),B(20),Y(22,21) 
01100 COMMON /SECVAR/CS(20),G(22,22),L, LM1,MARK(21),N,Nl, N2, 
81288 1 NL,NL1,NL2,NM1,NM2,NORM(21),P(20,20), 
01300 2 Q(20,20),RSQN,SN(20) 
81488 COMMON /SECPRM/MCHEPS,NTRY,OUTBND,SCL,TOL 
01500 REAL A,B,CS,G,MCHEPS,NORM,P,Q,RSQN,SCL,SN,TOL,Y 
01600 INTEGER L, LM1, MARK, N, Nl, N2, NL, NL1, NL2, NM1, NM2, NTRY, OUTBND 
01700 C 

INTEGER L, LM1, MARK, N, Nl, N2, NL, NL1, NL2, NM1, NM2, NTRY, OUTBND 

01800 C VARIABLES INTERNAL TO CHKFIX. 
01900 c 
02000 REAL F (20), GNRM, GS (20), MINNRM, NRM, S, T, U (20), UMAX, UNRM, V (20), 
02100 1 VNRM,X(20),YS(20) 
02200 I NTEGER 1,11,11,1Ml,J,Jl,JU,OUT,OUTSET, TRY 
02300 LOGICAL NRMSET 
02400 EQUIVALENCE (CS(1), YS(1)), (SN(1) ,GS(1)), (U(l) ,X(1)), 
02500 1 (V(1),F(D) 
02600 c 

1 (V(1),F(D) 

02700 c TRY NTRY TIMES TO OBTAIN AN AFFINELY INDEPENDENT 
02800 c SET OF DIRECTIONS. 
02900 c 
03000 DO 600 TRY=1,NTRY 
03100 c 
03200 c DETERMINE WHICH VECTORS MAY BE THROWN OUT. 
03300 c 
03400 OUTSET = 0 
03500 DO 10 1=1,Nl 
03600 OUTSET = MAX0(MARK(I),OUTSET) 
03700 10 CONTINUE 
03800 IF(OUTSET .LT. OUTBND) OUTSET = 0 
03900 c 
04000 c FORM THE TEST MATRIX IN THE SCRATCH AREA OF G. 
04100 c 

FORM THE TEST MATRIX IN THE SCRATCH AREA OF G. 

04200 100 NRMSET = .FALSE. 
04300 DO 130 J=2,N1 
04400 Jl = J+l 
04500 G(Jl.l) = Yd,J) - Y(l,l) 
04600 NRM = G(J1,D**2 
04700 JU = MIN0U.N) 
04800 DO 110 I=2,JU 
04900 GUI,I) = Yd,J) 
05000 NRM = NRM + G(J1,I)**2 
05100 110 CONTINUE 
05200 IF(NRM .EQ. 0.) GO TO 130 
05300 NRM = SQRT(NRM) 
05400 IF(.NOT. NRMSET) MINNRM = NRM 
05500 NRMSET = .TRUE. 
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85G00 MINNRM - AMIN1 (NRM,MINNRM) 
05708 DO 120 1=1,JU 
05800 GUI, I) = G(Jl,I)/NRf1 
85900 128 CONTINUE 
06000 138 CONTINUE 
06108 IF(.NOT. NRMSET) MINNRM = SCUY(l.l) 
06200 IF(MINNRM ,NE. 0.) GO TO 200 
86308 FAIL = 1000 
06488 RETURN 
86588 C 
86600 C SOLVE FOR U AND TEST FOR U LARGE. 
86700 C 
06800 200 CALL HESRED 
06900 DO 210 1=1,N 
07000 IF(ABS(G(I+2,I)) .LT. MCHEPS) G(I+2,I) = MCHEPS 
07100 210 CONTINUE 
07200 U(N) = RSQN/G(N2,N) 
07300 UNRM = U(Nhv*2 
07400 DO 230 II=2,N 
07500 I = N-II+1 
07688 11 = 1+1 
07788 S = 0. 
87888 DO 220 J=U,N 
87988 S = S - G(J+2,IhvU(J) 
88888 220 CONTINUE 
88100 U(I) = RSQN 
88288 IF(S .LT. 0.) U(I) = -RSQN 
08300 U(I) = (U(I) + S)/G(I+2,I) 
88488 UNRM = UNRM + U(I)>w<2 
08500 230 CONTINUE 
88688 UNRM = SQRT(UNRM) 
08700 IF(UNRM .LE. TOL) RETURN 
88888 C 
08900 C THE DIRECTIONS ARE AFFINELY DEPENDENT. DETERMINE 
89888 C WHICH ONE TO THROW OUT. 
09100 C 
89288 300 UMAX = 0. 
89300 DO 310 I=2,N1 
89488 IF(MARK(I).LT.OUTSET .OR. UMAX.GT.ABS(Ud-l))) 
09508 1 GO TO 310 
89600 OUT = I 
89788 UMAX = ABS(Ud-D) 
09800 310 CONTINUE 
89900 C 
10000 C SOLVE FOR V. 
10100 C 
10200 400 V(l) = l./G(3,l) 
10300 VNRM = V(l)**2 
10400 DO 420 I=2,N 
10500 S = 0. 
10688 IM1 = 1-1 
10700 DO 418 J=1,IM1 
18888 S = S - G(I+2,J)*V(J) 
10900 410 CONTINUE 
11088 V d ) = 1. 
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11109 IF(S .LT. 0.) V(I) = -1. 
11200 V(I) = (V(I) + S)/G(I+2,I) 
11300 VNRM = VNRM + V(I)**2 
11400 420 CONTINUE 
11500 VNRM = SORT(VNRM) 
11600 DO 430 II-l.NMl 
11700 I = N-II 
11800 T = CSUhvVU) - SN(IhvV(I+l) 
11900 Vd+l) = (CS(I)>vV(I+l) + SN(I)*V(I))/VNRM 
12000 V(I) = T 
12100 430 CONTINUE 
12200 V(l) = V(1)/VNRM 
12300 C 
12400 C COMPUTE THE NEW POINT AND INSERT IT. 
12500 C 
12600 500 YS(1) = Y(l,l) + MINNRMftV(l) 
12700 DO 510 1=2,N 
12800 YS(I) = MINNRMftV(I) 
12900 510 CONTINUE 
13000 CALL EVALG(YS,X,F,GS,GNRM,.FALSE., EVAL,FAIL) 
13100 IF(FAIL .EQ. 0) GO TO 528 
13200 FAIL = FAIL + 2000 
13300 RETURN 
13400 520 CALL INSERT(YS,GS,GNRM,OUT,Nl) 
13500 DO 530 I=2,N1 
13600 MARK (I) = MARK(I) + 1 
13700 530 CONTINUE 
13800 600 CONTINUE 
13900 FAIL = 3000 
14000 RETURN 
14100 END 
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88198 SUBROUTINE INSERT(YS.GS,GNRM,OT,M) 
88288 C 
88388 C PARAMETERS IN THE CALLING SEQUENCE. 
00400 C 
88588 REAL GNRM,GS(20),YS(20) 
00G00 INTEGER M,OT 
00700 C 
00800 C GLOBAL VARIABLES. 
00900 C 
01000 COMMON /SECCOM/A(20,22),B(20),Y(22,21) 
01100 COMMON /SECVAR/CS(20),G(22,22),L,LM1,MARK(21),N,N1,N2, 
01200 1 NL,NL1,NL2,NM1,NM2,NORM(21),P(20,20), 
01300 2 Q(20,20),RSQN,SN(20) 
01488 COMMON /SECPRM/MCHEPS.NTRY,OUTBND,SCL,TOL 
81500 REAL A,B,CS,G,MCHEPS,NORM,P.Q.RSQN,SCL,SN,TOL,Y 
01688 INTEGER L,LM1,MARK,N,Nl,N2,NL,NL1,NL2,NM1,NM2,NTRY,OUTBND 
01700 C 
81888 C VARIABLES INTERNAL TO INSERT. 
01988 C 
02080 REAL MAXNRM 
02100 INTEGER I,IN,INI,INM1,JU,J,JJ,OUT,OUTSET 
02200 C 
02300 C INITIALIZE THE Y AND G ARRAYS. 
02400 C 
02500 IU = MIN0(M,NM1) 
02600 DO 10 1=1, IU 
02700 G(1+1,1) = 0. 
02888 GU+2,1) = 0. 
82988 Y (1+1,1) = 0. 
03000 Y (1+2,1) = 0. 
03100 10 CONTINUE 
03200 C 
03300 C DETERMINE WHICH COLUMN IS TO BE THROWN OUT. 
03400 C 
03500 100 OUT = OT 
03600 IF (OUT .NE. 0) GO TO 150 
03700 C 
03888 C AMONG THE POSSIBLE CANDIDATES CHOOSE THE COLUMN 
03900 C WITH LARGEST G NORM. 
04000 C 
04100 OUTSET = 1 
04200 DO 110 1=1,M 
04300 OUTSET = MAX0(MARK(I),OUTSET) 
04400 110 CONTINUE 
04500 IF(OUTSET .LT. OUTBND) OUTSET = 0 
04G00 OUT = M 
04700 MAXNRM = 0. 
04800 DO 120 I=1,M 
04988 IF(MAXNRM.GT.NORM(I) .OR. MARK(I) .LT.OUTSET) 
05000 1 GO TO 120 
05100 MAXNRM = NORM(I) 
05200 OUT = I 
05308 120 CONTINUE 
05400 150 CONTINUE 
05500 C 
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85888 C THE VECTORS ARE TO BE INSERTED JUST BEFORE THE 
85788 C FIRST COLUriN OF LARGER NORM. 
85888 (_> 

85988 DO 160 IN-l.M 
86888 IF(GNRM .LE. NORM(IN)) GO TO 200 
86188 160 CONTINUE 
86288 IN = M+l 
86388 C 
86488 C SHIFT THE COLUMNS AND INSERT THE NEW COLUMN. 
86588 C

J 

86688 200 IF(IN .EQ. OUT) GO TO 260 
86780 C 
86888 C SHIFT THE COLUMNS 
06900 o 

87800 IF(IN .GT. OUT) GO TO 230 
07100 C 
07200 C RIGHT SHIFT. 
07300 C 
07400 INI = IN+1 
07500 DO 220 JJ=INI,OUT 
07600 J = OUT-JJ+IN1 
07700 DO 210 I-l.N 
07880 Yd,J) = Y(I.J-l) 
07900 Gd.J) = G(I.J-l) 
08000 210 CONTINUE 
08100 MARK(J) = MARK(J-l) 
08200 NORM(J) = NORM(J-l) 
08300 220 CONTINUE 
08400 GO TO 260 
08500 230 CONTINUE 
08600 c 
08700 c LEFT SHIFT. 
08800 c 
08988 IN = IN-1 
09000 IF(IN .EQ. OUT) GO TO 260 
89100 INM1 = IN-1 
09200 DO 250 J=OUT,INMl 
09300 DO 240 I-l.N 
09400 Yd,J) = Y(I,J+1) 
09500 Gd.J) = Gd.J+l) 
09600 240 CONTINUE 
09700 MARK (J) = MARKU+l) 
09800 NORM (J) = NORMU+l) 
09900 250 CONTINUE 
10000 260 CONTINUE 
10100 C

J 

10200 C INSERT THE NEW COLUMNS. 
10300 C 
10400 DO 270 1=1,N 
10588 Yd,IN) = YSd) 
10600 Gd.IN) = GSd) 
18700 270 CONTINUE 
10800 NORM(IN) = GNRM 
10900 c 
11000 c REDUCE THE MATRICES. 
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11108 C 
11288 388 CALL REDUCE(Y,P,IN, N,M) 
11388 CALL REDUCE(G,Q,IN,N,M) 
11488 MARK(IN) = 8 
11588 RETURN 
11688 END 
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88108 SUBROU TINE SECS TP(YY,GG,YS,DY,FAIL) 
88288 C 
88388 C PARAMETERS IN THE CALLING SEQUENCE. 
88488 C 
88588 REAL DY(20),GG(20),YS(20),YY(20) 
88688 INTEGER FAIL 
88788 C 
88888 c GLOBAL VARIABLES. 
88988 c 
81888 COMMON /SECCOM/A(28,22),B(20),Y(22,21) 
81188 COMMON /SECVAR/CS(20),G(22,22),L,LM1,MARK(21),N,Nl,N2, 
81288 1 NL,NL1,NL2,NM1,NM2,NORM(21),P(20,28), 
81388 2 Q(20,20),RSQN,SN(20) 
81488 COMMON /SECPRM/MCHEPS,NTRY,OUTBND,SCL,TOL 
81588 REAL A,B,CS,G,MCHEPS,NORM,P,Q,RSQN,SCL,SN,TOL,Y 
81688 I NTEGER L, LM1, MARK, N, Nl, N2, NL, NL1, NL2, NM1, NM2, NTRY, OUTBND 
81788 c 

I NTEGER L, LM1, MARK, N, Nl, N2, NL, NL1, NL2, NM1, NM2, NTRY, OUTBND 

81888 c VARIABLES INTERNAL TO SECSTP. 
81988 c 
82888 REAL S 
82188 INTEGER I,I1,II,J,JL,JU 
82288 c 
82388 c FORM THE G-DIFFERENCE MATRIX IN THE LOUER PART OF G. 
82488 c 
82588 DO 20 J-l.N 
82688 JU = MIN0(N,J+1) 
82788 DO 10 I-l.JU 
82888 G(J+2,I) = GU.J+l) 
82988 18 CONTINUE 
83888 GU+2,1) = GU+2,1) - G(l,l) 
83188 YS(J) = GG(J) 
83288 28 CONTINUE 
83388 C

J
 

83488 C SOLVE THE G-DIFFERENCE SYSTEM. 
83588 C 
83688 188 CALL HESRED 
83788 DO 110 I=1,NM1 
83888 11 = 1+1 
83988 T = YSdhvCSd) + YSdlhvSN(I) 
84888 YS(Il) = YSdl)ftCS(I) - YSdhvSN(I) 
84188 YSd) = T 
84288 118 CONTINUE 
84388 IF(G(N2,N) .NE. 0.) GO TO 115 
84488 FAIL = 100 
84588 RETURN 
84688 115 YS(N) = YS(N)/G(N2,N) 
84788 DO 130 II=2,N 
84888 I = N-II+1 
84988 11 = 1+1 
85888 DO 120 J=U,N 
85188 YSd) = YSd) - G(J+2,I)*YS(J) 
85288 128 CONTINUE 
85388 IF(G(1+2,I) .NE. 0.) GO TO 125 
85488 FAIL = 200 
85588 RETURN 
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85688 125 YS(I) - YS(I)/G(I+2,1 
85788 130 CONTINUE 
05800 C 
85980 C CALCULATE DY. 
06000 C 
06100 200 S - 0. 
06200 DO 220 I-l.N 
06300 S - S + YSU) 
86408 JL « HAX0U.2) 
06500 DYU) = 0. 
06600 DO 210 J-JL,N1 
06700 DYU) - DYU) -
06800 210 CONTINUE 
06900 220 CONTINUE 
07000 OY(l) = DY(1) + S*Y(1,1) 
07188 C 
07200 C CALCULATE YS. 
87388 C 
07400 300 DO 310 I-l.N 
87588 YSU) - YYU) + DYU) 
07600 310 CONTINUE 
07788 RETURN 
07888 END 
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88188 SUBROUTINE EVALG(YP,XP,FV,GV,GNRM,ONLYX,EVAL.FAIL) 
88288 C 
88388 C PARAMETERS IN THE CALLING SEQUENCE. 
88488 C 
88588 REAL GNRM.FV(20),GV(20),XP(20),YP(20) 
00G00 INTEGER FAIL 
00700 LOGICAL ONLYX 
00800 EXTERNAL EVAL 
00900 C 
81888 C GLOBAL VARIABLES. 
01100 C 
81288 COMMON /SECCOM/A(20,22),B(20),Y(22,21) 
01300 COMMON /SECVAR/CS(20),G(22,22),L,LM1,MARK(21),N,N1,N2, 
01400 1 NL,NL1,NL2,NM1,NM2,NORM(21),P(20,20), 
01500 2 Q(20,20),RSQN,SN(20) 
01G00 COMMON /SECPRM/MCHEPS.NTRY,OUTBND,SCL,TOL 
01700 REAL A,B,CS,G,MCHEPS,NORM,P,Q,RSQN,SCL,SN,TOL,Y 
01888 INTEGER L, LM1, MARK, N, Nl, N2, NL, NL1, NL2, NM1, NM2, NTRY, OUTBND 
01980 C 
82888 C VARIABLES LOCAL TO EVALG. 
02100 C 
82288 REAL T 
02300 INTEGER I,J,K,NI,NK 
82488 C 
02500 C TRANSFORM YP INTO THE X COORDINATE SYSTEM. 
82G88 C 
02700 DO 20 I-l.N 
02800 XP(I) = 0 . 
02900 DO 10 J-l.N 
03000 XP(I) = XP(I) + P(J,I)*YP(J) 
03100 10 CONTINUE 
03200 20 CONTINUE 
03300 C 
03400 C IF THERE ARE LINEAR EQUATIONS, SET THE LAST OF XP 
03588 C TO THE CONSTANT PART AND TRANSFORM INTO THE INITIAL 
03G00 C X COORDINATE SYSTEM. 
83780 C 
03800 IF0. .EQ. 0) GO TO 100 
03980 DO 30 I-l.L 
04000 NI = N+I 
04100 XP(NI) = B U ) 
04200 30 CONTINUE 
04300 DO G0 K-l.L 
04488 NK - N+K 
04588 T = 8. 
84G88 DO 48 I-l.NK 
84788 T = T + A(K,I)*XP(I) 
04800 40 CONTINUE 
04900 T = T/A(K,NL1) 
05000 DO 50 I-l.NK 
85180 XP(I) = XPU) - T*A(K,I) 
05200 50 CONTINUE 
05300 G0 CONTINUE 
05400 C 
05500 C IF ONLY XP IS REQUIRED, RETURN. 
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05600 C 
05788 100 IF(ONLYX) RETURN 
85888 C 
85988 

C
J EVALUATE THE FUNCTION 

86888 C 
86188 CALL EVAL(XP.FV,FAIL) 
86288 IF(FAIL .NE. 0) RETURN 
86388 C 
86488 C TRANSFORM FV INTO THE G COORDINATE 
86588 C 
86688 200 GNRM = 0. 
86788 DO 220 I-l.N 
86888 GV(I) = 0. 
86900 DO 210 J-l.N 
87888 GV(I) = GV(I) + QU.JhvFVU) 
07100 210 CONTINUE 
87288 GNRM = GNRM + GV(I)#*2 
07300 220 CONTINUE 
87400 GNRM = SORT(GNRM) 
07500 RETURN 
07600 END 
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0 0 1 0 0 SUBROUTINE REDUCE(Y,P, IN,N,(1) 
88288 C 
88388 C PARAMETERS IN THE CALLING SEQUENCE. 
08488 C 
00500 REAL Y(22,21),P(20,20) 
08680 INTEGER IN,M,N 
00700 C 
00800 C VARIABLES INTERNAL TO REDUCE. 
00900 C

J 

01000 REAL CS,R,SN,T 
01100 INTEGER 1,11,11,IN2,IU,J 
01200 IN2 = IN+2 
01300 IFUN+l.GE.N) GO TO 50 
01400 C 
01508 C REDUCE THE STALAGTITE. 
01688 C 
81788 DO 40 11=IN2,N 
81800 11 = N-II+IN2 
81988 I = 11-1 
02000 IF(Ydl.IN) .EQ. 0.) GO TO 40 
82188 CALL ROT(Y(I,IN),Y(Il,IN),CS,SN,R) 
82200 Yd 1, IN) = 0. 
82388 Yd,IN) = R 
02400 IFd.GT.M) GO TO 20 
82588 DO 10 J=I,M 
02600 T = CS*Yd,J) + SN>vY(Il,J) 
82788 Ydl.J) = CS>vYdl,J) - SN>vYd,J) 
02800 Yd,J) = T 
82900 10 CONTINUE 
03000 20 CONTINUE 
03100 DO 30 J-l.N 
03200 T = CSvcPd.J) + SN*Pdl,J) 
03300 P(U.J) = CS*Pdl,J) - SN*Pd,J) 
03400 PCI,J) = T 
03500 30 CONTINUE 
03600 40 CONTINUE 
03700 50 CONTINUE 
03800 C

J 

03900 C REDUCE FROM HESSENBERG TO TRAPEZIODAL FORM. 
04000 

REDUCE FROM HESSENBERG TO TRAPEZIODAL FORM. 

04100 IU = MIN0(M,N-1) 
04200 DO 100 1=1,IU 
04300 11 = 1+1 
04400 IF(Y(11,1) .EQ. 0.) GO TO 100 
04500 CALL ROT(Y(I,I),Y(Il,I),CS,SN,R) 
04600 Yd,I) = R 
04700 Y(I1,I) = 0. 
04800 IFdl .GT. M) GO TO 80 
04900 DO 70 J=U,M 
05000 T = CS>vYd,J) + SN>vY(Il,J) 
05100 Ydl.J) - CS>vY(Il,J) - SN*Yd,J) 
05200 Yd,J) = T 
05300 70 CONTINUE 
05400 80 CONTINUE 
05500 DO 90 J-l.N 
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85688 T = CS*Pd,J) + SN*P(U,J) 
85788 P(I1,J) - CS*Pdl,J) - SN*Pd, 
85888 Pd,J) - T 
85388 90 CONTINUE 
86888 108 CONTINUE 
86188 RETURN 
06280 END 
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88108 SUBROUTINE HESRED 
88288 C 
88388 C GLOBAL VARIABLES. 
88488 C 
88588 COMMON /SECCOM/A (20,22),B(20),Y(22,21) 
88888 COMMON /SECVAR/CS(20),G(22,22),L,LM1,MARK(21),N,Nl,N2, 
88788 1 NL,NL1,NL2,NM1,NM2,NORM(21),P(20,20), 
88888 2 Q(20,20),RSQN,SN(20) 
00900 COMMON /SECPRM/MCHEPS,NTRY,OUTBND,SCL,TOL 
81888 REAL A,B,CS,G,MCHEPS,NORM,P,Q,RSQN,SCL,SN,TOL,Y 
81188 I NTEGER L, LM1, MARK, N, Nl, N2, NL, NL1, NL2, NM1, NM2, NTRY, OUTBND 
81288 C

J 

I NTEGER L, LM1, MARK, N, Nl, N2, NL, NL1, NL2, NM1, NM2, NTRY, OUTBND 

81388 C
J VARIABLES INTERNAL TO HESRED. 

81488 C 
81588 REAL R,T 
81688 INTEGER I,K,K1,K3 
81788 DO 20 K=1,NM1 
81888 Kl = K+l 
81988 CALL ROT(G(K+2.K),G(K+2,Kl),CS(K),SN(K),R) 
82888 G(K+2,K) = R 
82188 G(K+2,K1) = 0. 
82200 K3 = K+3 
82388 DO 10 I=K3,N2 
02488 T = CS(K)*G(I,K) + SN(KhvG(I,Kl) 
82588 G(I,K1) = CS(K)*G(I,K1) - SN(K)*G(I,K) 
82688 G(I,K) - T 
82788 10 CONTINUE 
82888 20 CONTINUE 
82988 RETURN 
83880 END 
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0016Q SUBROUTINE ROT(A,B,CS,SN,R) 
00200 REAL A,B,CS,SN,R,AA,BB,ETA 
00300 ETA = AMAX1(ABS(A),ABS(B)) 
00400 IF(ETA .NE. 0.) GO TO 10 
00500 R = 0. 
00500 CS = 1 . 

00700 SN - 0. 
00800 RETURN 
00300 10 CONTINUE 
01000 AA = A/ETA 
01100 BB = B/ETA 
01200 R = SQRT(AA**2 + BB**2) 
01300 CS = AA/R 
01400 SN = BB/R 
01500 R = RftETA 
01800 RETURN 
01700 END 
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