NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

> A STABLE VARIANT OF THE SECANT METHOD FOR SOLVING NONLINEAR EQUATIONS W. B. Gragg Department of Mathematics University of California, San Diego Departments of Computer Science and Mathematics Carnegie-Mellon University Pittsburgh, Pennsylvania

```
Apri1 1974
```

[^0]
ABSTRACT

The usual successive secant method for solving systems of nonlinear equations suffers from two kinds of instabilities. First the formulas used to update the current approximation to the inverse Jacobian are numerically unstable. Second, the directions of search for a solution may collapse into a proper affine subspace, resulting at best in slowed convergence and at worst in complete failure of the algorithm. In this report it is shown how the numerical instabilities can be avoided by working with factorizations of matrices appearing in the algorithm. Moreover, these factorizations can be used to detect and remedy degeneracies among the directions. A second part of this report documents and lists a program implementing the algorithm described in the first part.

1. Introduction

In this paper we shall be concerned with the successive secant method for solving the system of nonlinear equations

$$
\begin{equation*}
f(x)=0, \tag{1.1}
\end{equation*}
$$

where f is a mapping from some domain in real n-space into real n-space ($f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$). Given approximations $x_{1}, x_{2}, \ldots, x_{n+1}$ to a solution of (1.1), a new approximation $x_{\dot{*}}$ is generated as follows. Let $\ell: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ be the affine function that interpolates f at $x_{1}, x_{2}, \ldots, x_{n+1}$; that is

$$
\begin{equation*}
f_{i}:=f\left(x_{i}\right)=\ell\left(x_{i}\right) \quad(i=1,2, \ldots, n+1) \tag{1.2}
\end{equation*}
$$

Then x_{*} is taken to be the zero of the function l. If the points $x_{1}, x_{2}, \ldots, x_{n+1}$ are affinely independent then ℓ is uniquely defined. The approximation X_{*} will be uniquely defined provided the vectors $f_{1}, f_{2}, \ldots, f_{n+1}$ are affinely independent (cf. (1.4) below). The method derives its name from the fact that the $i-t h$ coordinate function of ℓ represents the secant hyperplane interpolating the $i-t h$ coordinate function of f.

Various formulas can be written for the approximation x_{*} (see [2] for the a detailed discussion of secant methods and their convergence theory). We shall use the following representation. Let X be the $n \times(n+1)$ matrix $\left(X \in \mathbb{R}^{n \times(n+1)}\right)$ defined by

$$
x:=\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)
$$

and let

$$
F:=\left(f_{1}, f_{2}, \ldots, f_{n+1}\right)
$$

Define the operator Δ by

$$
\Delta X=\left(x_{2}-x_{1}, x_{3}-x_{1}, \ldots, x_{n+1}-x_{1}\right) .
$$

Then it is easily verified that the function ℓ defined by

$$
\begin{equation*}
\ell(x)=f_{1}+\Delta F(A X)^{-1}\left(x-x_{1}\right) \tag{1.3}
\end{equation*}
$$

satisfies (1.2). It follows from solving the equation $\ell(x)=0$ that

$$
\begin{equation*}
x_{*}=x_{1}-\Delta x(\Delta F)^{-1} i_{1} . \tag{1.4}
\end{equation*}
$$

The existence of the inverses in (1.3) and (1.4) is guaranteed by the affine independence of the columns of X and F.

The new approximation x_{*} will not in general be an exact zero of f, and the process must be repeated iteratively. This may be done in several ways. We shall be concerned with the successive variant in which x_{*} replaces one of the points x_{i}. Conventionally this is done in one of two ways. Either x_{*} replaces x_{n+1}, or x_{*} replaces that column of X for which the corresponding column of F has largest norm. In any case the iterative process generates sequences of matrices X_{1}, X_{2}, \ldots and a corresponding sequence F_{1}, F_{2}, \ldots with X_{k+1} differing from X_{k} in only a single columin (in practice it may be necessary to permute the columns of X_{k} before inserting $x_{*}^{(k)}$; see Section 4.2 below).

When f is differentiable, the matrix $\Delta F(\Delta X)^{-1}$ in (1.4) may be regarded as an approximation to the Jacobian f^{\prime} of f. Thus the secant formula (1.4) is a discretization of Newton's method, a method that under appropriate conditions converges quadratically to a zero of f. The convergence theory for the successive secant method suggests that if the matrices ΔX_{k} remain
uniformly nonsingular, then n steps of the secant method will be roughly comparable to one step of Newton's method (see [2] and [3]). This has important computational consequences. The ab initio calculation of $(\Delta F)^{-1} f_{1}$ requires $O\left(n^{3}\right)$ operations (see, e.g., [5]), and therefore n steps of the secant method will require $O\left(n^{4}\right)$ operations, which may be prohibitively large. The usual cure for this problem is to calculate $\left(\Delta F_{k+1}\right)^{-1}$ directly from $\left(\Delta F_{k}\right)^{-1}$ (actually the inverses of slightly different matrices are calculated). Since F_{k} and F_{k+1} are simply related, this can be done in $O\left(n^{2}\right)$ operations, giving a satisfactory $O\left(n^{3}\right)$ operation count for n steps of the successive secant method (for the first such implementation see [4]).

The method outlined above has two serious defects. First the scheme for updating $(\Delta F)^{-1}$ is numerically unstable. Second, the columns of the matrices X_{k} may tend to collapse into proper affine subspaces of $H i^{n}$, resulting in the prediction of wild points or at least in slowed convergence. The first problem arises whenever ΔF_{k} is ill-conditioned. In this case $\left(\Delta F_{k}\right)^{-1}$ is computed inaccurately and these inaccuracies transmit themselves to subsequent inverses, even though the corresponding ΔF^{\prime} s are well conditioned. The same problem occurs in linear programming (see, e.g., [1]), and one could adopt the usual solution of periodically reinverting $\Delta \mathrm{F}$. However, this entails extra work for the reinversion and extra storage to hold the matrix F. Moreover, one must face the tricky problem of deciding when to reinvert.

The problem of degeneracy among the columns of X arises, among other occasions, when one of the component functions of f is linear. Then the linear component and the corresponding component of ℓ, call it l_{i}, are identical. It follows that x^{*} lies in the proper affine subspace defined by $\ell_{i}(x)=0$.

Ultimately all the column of some X_{k} must lie in this subspace, and ΔX_{k} will be singular. The matrix ΔF_{k} may not be singular, but it will almost certainly be ill-conditioned, and the prediction $x_{*}^{(k)}$ will be spurious. Moreover, as noted above, the inaccuracies in $\left(\Delta F_{k}\right)^{-1}$ will propogate themselves via the update formulas.

The purpose of this paper is to show how the two problems mentioned above can be resolved by generating and updating $Q R$ factorizations of the matrices X_{k} and F_{k}. The factorization of F permits the $O\left(n^{2}\right)$ solution of the equation $\Delta F z=f_{1}$, which is equivalent to forming $(\Delta F)^{-1} f_{1}$. The factorization of X enables one to detect degeneracies in the columns of X. Moreover, the factorization can be used to alter a column of X in such a way as to reduce or remove the degeneracy. The factorizations of X_{k+1} and F_{k+1} can be obtained from those of X_{k} and F_{k} in $O\left(n^{2}\right)$ operations.

In the next section we shall introduce the factorizations, show how they may be used to execute a step of the secant method, and show how they may be updated. We shall also show that the updating method is numerically stable. In Section 3, we shall show how the factorization can be used to detect and remove degeneracies in X. In Section 4 some comments on the practicalities of implementing these methods are given, and in Section 5 some numerical examples. Part Two of this report consists of a documented program implementing the method presented in Part one.

2. Factorization

In this section we shall be concerned with the stable implementation of a single secant step. Suppose that at step k we are given nonsingular matrices P_{k} and Q_{k} such that the matrices Y_{k} and G_{k} defined by
(2.1)

$$
X_{k}=P_{k}^{T} Y_{k}
$$

and

$$
\begin{equation*}
G_{k}=Q_{k} F_{k} \tag{2.2}
\end{equation*}
$$

are upper trapezoidal, i.e. zero below the diagonal. (Numerically the matrices P_{k} and Q_{k} will be very nearly orthogonal, but we need not assume so.) Because premultiplication by a matrix acts column by column on the multiplicand, we have

$$
\Delta X_{k}=P_{k}^{T}\left(\Delta Y_{k}\right)
$$

and

$$
\Delta G_{k}=Q_{k}\left(\Delta F_{k}\right)
$$

Moreover, the matrices ΔY_{k} and ΔG_{k} are upper Hessenberg, i.e. zero below the first subdiagonal.

Now let $x_{\star}^{(k)}$ be the vector obtained from a single secant step:
(2.3)

$$
x_{*}^{(k)}=x_{1}^{(k)}-\Delta x_{k}\left(\Delta F_{k}\right)^{-1} f_{1}^{(k)}
$$

If we set $y_{*}^{(k)}=P_{k}^{-T} x_{*}^{(k)}$, then (2.3) can be written in the form

$$
\begin{equation*}
y_{*}^{(k)}=y_{1}^{(k)}-\Delta Y_{k}\left(\Delta G_{k}\right)^{-1} g_{1}^{(k)} \tag{2.4}
\end{equation*}
$$

where $y_{1}^{(k)}$ and $g_{1}^{(k)}$ are the first columns of Y_{k} and G_{k}. Equation (2.4) suggests the following algorithm.

1. Solve the system $\Delta G_{k} z=g_{1}^{(k)}$
2. $y_{t}^{(k)}=y_{1}^{(k)}-\Delta Y_{k} z^{(k)}$
(2.5)
3. $x_{\dot{x}}^{(k)}=P_{k}^{T} y_{t}^{(k)}$
4. $f_{*}^{(k)}=f\left(x_{*}^{(k)}\right)$
5. $\mathrm{g}_{*}^{(\mathrm{k})}=\mathrm{Q}_{\mathrm{k}} \mathrm{f}_{*}^{(\mathrm{k})}$

This algorithm produces not only the secant approximation $x_{*}^{(k)}$ but also the function value $f_{*}^{(k)}$ and its Q-transform $g_{\dot{*}}^{(k)}$. Excepting step 4, the bulk of the work done by the algorithm is concentrated in step 1. Since ΔG_{k} is an upper Hessenberg matrix, step 1 can be accomplished by standard techniques in $O\left(n^{2}\right)$ operations [5, p. 218]. Thus a knowledge of the factorizations (2.1) and (2.2) allows us to compute a secant approximation in $O\left(n^{2}\right)$ operations.

Of course $X_{\%}^{(k)}$ must replace a column of X_{k} and $f_{\%}^{(k)}$ replace the corresponding column of F_{k}. This amounts to replacing the same columns of Y_{k} and G_{k} by $y_{t}^{(k)}$ and $g_{*}^{(k)}$ to give new matrices Y_{k}^{*} and G_{k}^{*} In principle algorithm (2.5) can be applied to these new matrices to give another approximation. In practice, however, G_{k}^{*} will no longer be upper trapezoidal and step 1 of (2.5) cannot be effected in $O\left(n^{2}\right)$ operations. To circumvent this difficulty we shall show how to construct orthogonal matrices R_{k} and S_{k} such that

$$
Y_{k+1}:=R_{k} Y_{k}^{*}
$$

and

$$
G_{k+1}:=S_{k} G_{k}^{*}
$$

are upper trapezoidal. If we then set

$$
P_{k+1}:=K_{k} P_{k}
$$

and

$$
Q_{k+1}:=S_{k} Q_{k},
$$

then the relations (2.1) and (2.2) will be satisfied with k replaced by $k+1$, and algorithm (2.5) may be efficiently reapplied.

For definiteness we shall deal with the computation of R_{k} and illustrate the general procedure by a specific example. For numerical reasons that will be discussed in Section 4, the order of the columns of Y and G cannot be assigned arbitrarily. This means that although $y_{*}^{(k)}$ may replace, say, column ℓ of Y, it may have to be inserted at some other position, say in column m. In the specific case where $n=7, \ell=1$, and $m=3$, we shift column 2 into column 1, shift column 3 into column 2 and overwrite column 3 with $y_{*}^{(k)}$. This gives a matrix Y_{k}^{*} whose nonzero elements have the distribution

x	x	x	x	x	x	x	x
x	x	x	x	x	x	x	x
0	x	x	x	x	x	x	x
0	0	x	x	x	x	x	x
0	0	x^{3}	0^{3}	x	x	x	x
0	0	x^{2}	0	0^{2}	x	x	x
0	0	x^{1}	0	0	0^{1}	x	x

The matrix R_{k} is computed as the product of 9 plane rotations or Householder transformations: $R_{k}=H_{9} H_{8} \ldots H_{2} H_{1}$. In the first stage, the transformations $\mathrm{H}_{1}, \mathrm{H}_{2}$, and H_{3} are chosen in the usual way (see [5, p. 47]) to introduce zeros into the elements of the "stalactite" in column 3. These transformations will enter nonzero elements in the zero positions labled 1,2 , and 3 , so that the matrix will be in Hessenberg form:

| x |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| x^{4} | x |
| 0 | x^{5} | x | x | x | x | x | x |
| 0 | 0 | x^{6} | x | x | x | x | x |
| 0 | 0 | 0 | x^{7} | x | x | x | x |
| 0 | 0 | 0 | 0 | x^{8} | x | x | x |
| 0 | 0 | 0 | 0 | 0 | x^{9} | x | x |

Now the transformations $\mathrm{H}_{4}, \ldots, \mathrm{H}_{9}$ are chosen to introduce zeros in the elements labeled 4,...,9, bringing the matrix to trapezoidal form. The matrix $P_{k+1}=H_{9} \ldots H_{1} P_{k}$ can be formed directly by multiplying the transformations into P_{k} as they are generated. The matrix G_{k}^{*} also has the form (2.6) and is updated similarly.

The procedure sketched above is perfectiy general. If column ℓ is to be deleted and a vector inserted in column the vectors between column ℓ (exclusive) and m (inclusive) are shifted one column toward column ℓ and the new vector is inserted. The matrix is then reduced to triangular form as illustrated above. From the standpoint of operations, the case $\ell=m=1$ is the worst, requiring the introduction of $2 n-3$ zeros. In all cases the operation count for the updating is $O\left(n^{2}\right)$.

The method is extremely stable in the sense that there are small matrices Z_{k} and H_{k} such that $P_{k}^{T} Y_{k}=X_{k}+Z_{k}$ and $Q_{k}\left(F_{k}+H_{k}\right)=G_{k}$. This implies that if no further rounding errors are made in algorithm (2.5), the value of $x_{*}^{(k)}$ is the value that would have been obtained by taking a secant step with the slightly perturbed matrices $X_{k}+Z_{k}$ and $F_{k}+H_{k}$.

The derivation of H_{k} is typical. The errors for each column are independent of one another, and it is sufficient to follow the history of a single
column from its insertion as $g_{*}^{(k)}$. Now $g_{*}^{(k)}$ is computed according to (2.5.5). It follows from standard rounding error assumptions [5] that the computed $g_{;-}^{(k)}$ satisfies

$$
g_{*}^{(k)}=Q_{k} f_{*}^{(k)}+e_{*}^{(k)},
$$

where

$$
\left\|e_{*}^{(k)}\right\| \leq n^{3 / 2}\left\|q_{k}\right\|\left\|f_{*}^{(k)}\right\| \varepsilon
$$

Here $\|\cdot\|$ denotes the spectral norm [5, p. 57] and ε is a small constant that depends on the arithmetic used to compute $g_{*}^{(k)}$. It follows that

$$
\mathrm{g}_{\%}^{(\mathrm{k})}=\mathrm{Q}_{\mathrm{k}}\left(\mathrm{f}_{\%}^{(\mathrm{k})}+\mathrm{h}_{*}^{(\mathrm{k})}\right)
$$

where

$$
\begin{equation*}
\left\|h_{*}^{(k)}\right\|=\left\|{Q_{k}^{-1}}_{*}^{(k)}\right\| \leq n^{3 / 2}\left\|q_{k}\right\|\left\|Q_{k}^{-1}\right\|\left\|f_{*}^{(k)}\right\| \varepsilon . \tag{2.7}
\end{equation*}
$$

Now the matrices Q_{k} are computed as the product of orthogonal matrices (see Section 4.4 below) and will themselves be very nearly orthogonal (for detailed error analyses of orthogonal transformations see [5]). It follows that certainly

$$
\begin{equation*}
\left\|h_{*}^{(\mathrm{k})}\right\| \leq 2 \mathrm{n}^{3 / 2}\left\|\mathrm{f}_{*}^{(\mathrm{k})}\right\| \varepsilon \tag{2.8}
\end{equation*}
$$

Thus when $g_{N}^{(k)}$ is inserted in G_{k}, the error bound for the corresponding column of H_{k}^{*} is satisfactorily small.

As the matrix G_{k}^{*} and the subsequent G^{\prime} 's are updated, the column of H corresponding to the inserted $g_{\%}^{(k)}$ will grow, but very slowly as an elementary error analysis will show. Even this slow growth might be intolerable over a large number of iterations, but after about n iterations the column is discarded (this may be forced if necessary), and its replacement is born anew with little
error. It is true that the matrices P_{k} and Q_{k} will slowly deviate from orthogonality, but orthogonality is not required in the above analysis. All that is needed is that P_{k} and Q_{k} be well conditioned so that in the case of Q_{k} we may pass from (2.7) to (2.8). Since P_{k} and Q_{k} are computed as products of orthogonal matrices, their condition cannot deteriorate in any reasonable number of iterations.

Two points in the above analysis bear stressing. First the matrices Z_{k} and H_{k} are uniformly bounded, provided no column is retained longer than a fixed number of iterations and the matrices P_{k} and Q_{k} remain well conditioned. In effect we can use and update the factorizations as long as we like. This is especially important in parameterized problems in which the factorizations from the solution of one problem are used to start the solution of a nearby problem (cf. Section 4.5). The second point is that the analysis implies that the error in any column will be small compared with the norm of that column. Even if the columns vary widely in size (in the matrix G they will), the error associated with a large column cannot overwhelm a small column.

3. Detecting and Correcting Degeneracy

As was pointed out in Section 1 , the columns of X will be affinely dependent whenever ΔX is singular. In this section we shall show how the factorization of X introduced in the last section can be used to tell when ΔX is singular and if necessary remove the singularity by altering a column of X. The method to be used cannot be justified with complete rigor, although a suggestive theorem can be proved.

Actually we shall work with the matrices Y and ΔY, which are the ones that are at hand. There is some ambiguity in speaking of the singularity of
ΔY, since its columns may vary widely in size. For the sake of uniformity we shall instead examine the matrix A obtained from ΔY by scaling its columns so they have 2-norm unity:

$$
\begin{equation*}
A:=\left(\frac{y_{2}-y_{1}}{\left\|y_{2}-y_{1}\right\|}\left\|\frac{y_{3}-y_{1}}{\| y_{3}-y_{1}}\right\|, \cdots, \frac{y_{n+1}-y_{1}}{\left\|y_{n+1}-y_{1}\right\|}\right) . \tag{3.1}
\end{equation*}
$$

There is more than just convention in this choice. The convergence proofs for the secant method require a uniform upper bound on the condition of the matrices A generated by the iteration.

The method for correcting degeneracies may be justified heuristically as follows. If A is nearly singular, then it has approximate left and right null vectors; that is there are vectors u and v with $\|u\|=\|v\|=1$ such that $\|A u\|$ and $\left\|V^{T} A\right\|$ are small; say they are less than some fixed tolerance α. Now to say that $\left\|v^{T} A\right\|$ is small is to say that v is almost orthogonal to each column of A. Thus the condition of A may be improved by replacing some column with the vector v. However, it is important that v not replace a column that is already independent of the other columns of A. The vector u may be used to find a suitable column. Let u_{v} be the component of u that is largest in absolute value: $\left|u_{v}\right| \geq\left|u_{i}\right|(i=1,2, \ldots, n)$. Then the $v-t h$ column of A is given by

$$
\begin{equation*}
a_{v}=\frac{A u}{u_{v}}-\sum_{i \neq v} \frac{u_{i}}{u_{v}} a_{i} . \tag{3.2}
\end{equation*}
$$

Since $\left|u_{v}\right| \geq n^{-1 / 2}$, the vector $A u / u_{v}$ is negligible, and (3.2) effectively expresses a_{V} as a linear combination of the other columns of A. Thus y should replace a_{v} to give a new matrix A_{1}.

If A_{1} is nearly singular, the process may be reapplied to give a matrix A_{2}, and so on. The following theorem shows that if α is not too large the
sequence of matrices A_{k} so generated must terminate. We establish the result for rectangular matrices with an eye to applications to least squares problems.

Theorem 3.1. Let $A_{0} \in i^{m \times n}(m \geq n)$ have columns of norm unity. Given $\alpha>0$, generate a sequence A_{0}, A_{1}, \ldots of matrices as follows. Let A_{k} be given and suppose that there are vectors ${ }^{11} k$ and v_{k} satisfying

$$
\begin{equation*}
\left\|u_{k}\right\|=\left\|v_{k}\right\|=1 \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|A_{k} u_{k}\right\|,\left\|A_{k}^{T} v_{k}\right\| \leq \alpha \tag{3.4}
\end{equation*}
$$

Let $u_{v}^{(k)}$ be a maximal component of $u_{k}:\left|u_{v}^{(k)}\right|<\left|u_{i}^{(k)}\right|(i=1,2, \ldots, n)$. The matrix A_{k+1} is then the matrix obtained by replacing the v-th column of A_{k} by v_{k}. If there are no vectors u_{k} and v_{k} satisfying (3.3) and (3.4), end the sequence with A_{k}. Then if

$$
\begin{equation*}
a \cdot \frac{1}{\sqrt{n(1+\sqrt{n})}} \tag{3.5}
\end{equation*}
$$

the sequence terminates with some A_{k} where $k<n$.

Proof. We shall show that in passing from A_{k} to A_{k+1}, the column that was thrown out must be a column of A_{0}. This is clearly true for the matrix A_{0} itself. Assuming its truth for $A_{0}, A_{1}, \ldots, A_{k-1}$, we can by rearranging the columns of A_{k} write A_{k} in the form

$$
A_{k}=\left(v_{0}, v_{1}, \ldots, v_{k-1}, a_{k}^{(k)}, \ldots, a_{n}^{(k)}\right)
$$

where $a_{k}^{(k)}, \ldots, a_{n}^{(k)}$ are columns of A_{0}. Thus we must show that $u_{i}^{(k)}(i=1,2, \ldots, k)$ cannot be maximal.

The case $i=1$ is typical. Write A_{k} in the form $A_{k}=\left(v_{0}, A_{2}^{(k)}\right)$. Then it follows from (3.4) that

$$
\left\|v_{0}^{\mathrm{T}}{ }_{2}^{(\mathrm{k})}\right\| \leq \sqrt{\mathrm{n}-1} \alpha .
$$

But if we write $u_{k}=\left(u_{1}^{(k)}, w_{k}^{T}\right)^{T}$

$$
\begin{aligned}
\alpha \geq\left|v_{0}^{\mathrm{T} A u_{k}}\right| & =\left|v_{0}^{\mathrm{T}} \mathrm{v}_{0} u_{1}^{(\mathrm{k})}+\mathrm{v}_{0}^{\mathrm{T}} \mathrm{~A}_{2}^{(\mathrm{k})} \mathrm{w}_{\mathrm{k}}\right| \\
& \geq\left|u_{1}^{(\mathrm{k})}\right|-\left\|v_{0}^{\mathrm{T}} \mathrm{~A}_{2}^{(\mathrm{k})}\right\|\left\|\mathrm{w}_{\mathrm{k}}\right\| \\
& \geq\left|u_{1}^{(\mathrm{k})}\right|-\sqrt{\mathrm{n}-1} \alpha .
\end{aligned}
$$

The inequality (3.5) then implies that $\left|u_{1}^{(k)}\right| \because n^{-1 / 2}$ and $u_{1}^{(k)}$ cannot be maximal.
Now either the sequence terminates before $k=n-1$, or we must arrive at the matrix A_{n-1}. Since at this point all the columns of A_{0} but one have been replaced, the matrix A_{n-1} satisfies $A_{n-1}^{T} A_{n-1}=(I+E)$, where $\left|e_{i j}\right| \leq \alpha$. Thus

$$
\|\mathbb{E}\| \leq \mathrm{n} \alpha .
$$

For any vector u with $\|u\|=1$, we have

$$
\begin{aligned}
\left|\mid A_{n-1} u \|^{2}\right. & =\left|u^{T_{n-1}^{T}} A_{n-1} u\right|=\left|u^{T}(I+E) u\right| \\
& \geq 1-\left|u^{T} E u\right| \geq 1-n \alpha \cdot \alpha>\alpha^{2}
\end{aligned}
$$

and the sequence terminates with A_{n-1}.
So far as the secant method is concerned, the main problem is to compute the vectors u and v associated with the matrix A defined by (3.1). Since A is upper Hessenberg this can be done efficiently by a variant of the inverse power method. The motivation for the method is that if A is nearly singular then
A^{-1} will be large. Unless the elements of A^{-1} are specially distributed, the vector $u^{\prime}=A^{-1} e$ will be large for almost any choice of e with $\|e\|=1$. If we set $u=u^{\prime} /\left\|u^{\prime}\right\|$, then $\|A u\|=\|e\| /\left\|u^{\prime}\right\|=1 /\left\|\mu^{\prime}\right\|$ is sma11.

Because A is upper Hessenberg, it can be reduced by orthogonal transformations to triangular form in $0\left(n^{2}\right)$ operations; that is we can cheaply compute an orthogonal matrix R such that

$$
B=R A
$$

is upper triangular. We then solve the system $B u^{\prime}=e$. Since $\left\|A u^{\prime}\right\|=\left\|R^{T} B u^{\prime}\right\|$ $=\left\|\mathbb{R}^{T} e\right\|=\|e\|$, we can work with the vector $\|^{\prime}=B^{-1}$ e rather than $A^{-1} e$. The components of are taken to be $\pm 1 / \sqrt{n}$, where the signs are chosen to enhance the size of the solution. Specifically,

$$
\begin{align*}
& \text { 1. } u_{n}^{\prime}=n^{-1 / 2} / b_{n n} \\
& \text { 2. } \left\lvert\, \begin{array}{l}
\text { For } i=n-1, n-2, \ldots, 1 \\
1 . \sigma=-\sum_{j=i+1}^{n} b_{i j} u_{j}^{\prime} \\
2 . u_{i}^{\prime}=\left[\sigma+\operatorname{sign}(\sigma) n^{-1 / 2}\right] / b_{i i^{\prime}}
\end{array}\right. \tag{3.6}
\end{align*}
$$

The vector v is obtained by solving the system $B T^{T}=$ e in a manner analogous to (3.6) and setting $v=R_{w}^{T} /\left\|R^{T} w\right\|$.

If $\left\|\mu^{\prime}\right\|$ is large then a column of A, say the v-th, must be replaced. From the definition of A, this amounts to replacing the ($v+1$)-st column of Y by $y_{1}+\lambda v$, where λ is arbitrary. We are now in a position to describe our overall algorithm for detecting and removing degeneracies.

> 1. Form A according to (3.1)
> 2. Calculate u^{\prime} as described above
> 3. If $\left\|u^{\prime}\right\| \geq$ tol
> 1. Find v so that $\left|u_{v}\right| \geq\left|u_{i}\right|(i=1,2, \ldots, n)$
> 2. Calculate v as described above
> 3. $y^{*}=y_{1}+\min \left\{| | y_{i}-y_{1} \| i=2, \ldots, n+1\right\} v$
> 4. Insert y^{*} in Y, throwing out column $v+1$
> 5. Go to 1
> 4. \ldots

As we mentioned at the beginning of this section, the above algorithm cannot be justified with complete rigor. Here we summarize the difficulties.

Statement 1. In the formation of A, the vector y_{1} has been given a special role as a pivot. If another column of Y is used as a pivot, a different matrix A will be obtained. For example, if y_{1}, y_{2}, and y_{3} are situated as shown

$$
\begin{array}{ll}
\dot{y}_{1} & \mathrm{y}_{3} \\
\dot{\mathrm{y}}_{2}
\end{array}
$$

and y_{1} is the pivot, then the vectors may well be judged to be affinely dependent. On the other hand if y_{2} is the pivot, they will definitely be judged independent, since $y_{1}-y_{2}$ and $y_{3}-y_{2}$ are orthogonal. We have chosen y_{1} as a pivot because the ordering imposed on the columns of Y and G creates the presumption that $x_{1}=P^{T} y_{1}$ is nearer the zero of f than are the other columns of X (see Section 4.2).

Statement 3. If $\left\|u^{\prime}\right\|$ is large, then A is certainly nearly singular. However it is conceivable that A could be nearly singular and the algorithm for computing u^{\prime} fail to give a large vector. We feel that this is extremely unlikely (it is equivalent to the failure of the widely used inverse power method for finding eigenvectors [5, p. 619]).

The value of tol should not be too large, otherwise slow convergence or wild predictions may result. On the other hand, Theorem 3.1 below suggests that it should not be too small. We have used a value of 100 in our numerical experiments (for $n=100$, the bound (3.5) gives $\alpha^{-1} \quad 110$).

Statement 3.3. The form of y^{*} shows that our method for removing degeneracies amounts to taking a "side step" from y_{1} along the direction v. The length of the side step is arbitrary. We have chosen the distance between y_{1} and y_{2} as the length, since x_{1} and x_{2} are presumed to be the points nearest the zero of f.

Statement 3.5. With tol suitably chosen, the only way this statement could cause an infinite loop is for $\|A v\|$ to be repeatedly smaller than tol. This is unlikely; however, the fastidious user might place an upper bound on the number of attempts to remove the degeneracy in A. Alternatively he can replace only previously untouched vectors.

4. Practical Details

In this section we shall consider some of the practical problems that will arise when the method is implemented. For more detail the reader is referred to the programs in Part Two of this report.

1. Economics. Since the matrices X and F are never used by the algorithm, it is necessary to store only the matrices Y, P, G, and Q. The number of nonzero elements in these matrices is about $3 n^{2}$; however, if they are stored conventionally as separate arrays, they will require about $4 n^{2}$ locations. Since the lower part of the array in which G (or Y) is stored is zero, this part of the array can be used as a workspace in which ΔG and ΔY are formed and manipulated.

In assessing the amount of work involved, we assume that plane rotations are used for all reductions. We shall count the number of rotations and the number of multiplications, which multiplications corresponds roughly to the number of data accesses. The results are summarized below, where only the leading term of the count is given.
a. Secant Step

$$
\operatorname{rot}=\mathrm{n}-1, \quad \text { mult }=3 \mathrm{n}^{2}
$$

b. Function Evaluation

$$
\operatorname{rot}=0, \quad \operatorname{mult}=2 n^{2}
$$

c. Insertion and Updating (worst case in which y* is inserted in the first column replacing y_{n+1})

$$
\text { rot }=\mathrm{n}-1, \quad \text { mult }=12 n^{2} .
$$

d. Insertion and Updating (typical case in which y^{*} is inserted in the first column replacing y_{n+1})

$$
\operatorname{rot}=\mathrm{n}-1, \quad \operatorname{mult}=6 \mathrm{n}^{2} .
$$

e. Checking Degeneracy (computation of u)

$$
\text { rot }=\mathrm{n}-1, \quad \operatorname{mult}=2.5 \mathrm{n}^{2} .
$$

f. Fixing Degeneracy (computation of v, evaluation of g^{*}, insertion of y^{*} and g^{*} [typical case])

$$
\operatorname{rot}=2 \mathrm{n}-2, \quad \text { mult }=14.5 \mathrm{n}^{2}
$$

Thus a typical iteration without degeneracy will consist of $a+b+2 d+e$, or $3 n-3$ rotations and $19.5 n^{2}$ multiplications. With degeneracy, a typical iteration will require $5 n-5$ rotations and $34 n^{2}$ multiplications.
2. Order of the columns of Y and G. In forming ΔG preliminary to the computation of g^{*}, the vector g_{1} is subtracted from the other columns of G. If $\left\|g_{j}\right\|$ is much larger than $\left\|g_{i}\right\|$, then the vector g_{i} will be overwhelmed by g_{1}. To avoid this we order the columns of G so that $\left\|g_{1}\right\| \leq\left\|g_{2}\right\| \leq \ldots \leq\left\|g_{n+1}\right\|$. The matrix Y inherits this order, and since $\left\|f_{i}\right\|=\left\|g_{i}\right\|$, it may be presumed that when the process is converging, the vector x_{i} is nearer the solution than x_{i+1}. The ordering has the advantage that it gives a favorable operation count for the updates in the case when y^{*} replaces the column for which the norm of g is largest.
3. Communication with the user. The user must of course furnish code to evaluate the function f, which is customarily done in a subprogram provided by the user. After the secant prediction y^{*} has been calculated the user must. decide whether the process has converged. If it has not, he must decide whether the predicted point is acceptable and if not what to do about it. Since no single strategy is likely to be effective in all cases, we have left a blank section in our implementation of the algorithm where the user may code his own decisions.
4. Obtaining initial factorizations. The updating algorithm can be used to obtain the factorizations (2.1) and (2.2) at the start of the algorithm. The user of course must furnish $n+1$ vectors $x_{1}, x_{2}, \ldots, x_{n+1}$ in the matrix X. At the $k-t h(k=0,1, \ldots, n)$ step of the initialization procedure, assume that the factorizations of the matrices $X^{l k}=\left(x_{1}, \ldots, x_{k}\right)$ and $F^{i \cdot k}=\left(f_{1}, f_{2}, \ldots, f_{k}\right)$ are known; i.e.

$$
X^{\mid k}=P^{T} Y^{\mid k}, G^{k}=Q^{\mid k}
$$

where $Y^{\mid k}=\left(y_{1}, \ldots, y_{k}\right)$ and $G^{\mid k}=\left(g_{1}, \ldots, g_{k}\right)$ are upper trapezoidal. Calculate the vectors $y_{k+1}=P x_{k+1}$ and $g_{k+1}=Q f_{k+1}$. Append a column to $Y^{l \cdot k}$ and $G^{\mid k}$ and insert y_{k+1} and g_{k+1}, making sure that the columns just appended are the ones to be discarded, and update as usual. After the $n-t h$ step all the vectors in X and F will have been incorporated into the factorization.
5. Using an old Jacobian. When a sequence of closely related problems are being solved, the solution of one may be a good approximation to that of the next. Moreover the approximation to the old Jacobian implicitly contained in the matrices Y, P, G, and Q may also be a good approximation to the new Jacobian. Unfortunately the new iteration cannot simply be started with the old matrices Y, P, G, and Q, as the following hypothetical example shows.

Consder the case illustrated below in which the numbers associated with the points give the norms of the function values.

The point labeled 10^{-6} is the converged value for the old iteration. When the
process is restarted with the new function, the point will have a much higher function value, say the circled 10^{-2}. Consequently the prediction x^{*} will be far removed from the original points, and when y^{*} is inserted into Y, the array will be judged to be degenerate. Moreover the function value at x^{*} will have a norm (10^{-3} in the example) which is out of scale with the old values. Thus both the G and the Y arrays must rescaled before they can be used with the new function.

Our method of scaling consists of two steps. First the columns of ΔY are scaled so that their norms are equal to $\left\|y^{*}-y_{1}\right\|$. The modification is extended to G by linearity. Then, with g_{j}^{\prime} denoting the new g value at y_{j}, the columns of G are increased by $g_{j}^{\prime}-g_{1}$. This scaling technique is described below. The notation Insert (g, i, j) means insert g into column i of G, throwing out column j, then update as usual.

1. Calculate the new value g_{j}^{\prime} corresponding to y_{1}
2. $y^{*}=y_{1}-\Delta Y(\Delta G)^{-1} g_{1}$
3. For $i=2,3, \ldots, n+1$
4. $w_{i}=\left\|y^{*}-y_{1} \mid V\right\| y_{i}-y_{1} \|$
5. $y_{i} \leftarrow y_{i}+w_{i}\left(y_{i}-y_{1}\right)$
6. $g_{i} \leftarrow g_{i}+w_{i}\left(g_{i}-g_{1}\right)$
7. Trasert $\left(g_{1}^{1}-g_{1}, 1,1\right)$, multiplying the update transformations into g_{1}
8. $g_{i}=g_{i}+\left(g_{j}^{\prime}-g_{1}\right), \quad(i=2,3, \ldots, n+1)$
9. Insert $\left(g_{1}^{\prime}, 1,1\right)$

It should be noted that statements 3.2 and 3.3 do not destroy the upper triangularity of the matrices Y and G, since only the first elements of y_{1} and
g_{1} are nonzero. Statements 4, 5, and 6 are a circumlocution designed to avoid excessive updating. Statement 4 transforms the system so that $g_{j}^{\prime}-g_{1}$ is nonzero in only its first component, after which G may be altered without destroying its upper triangularity (statement 5). Statement 6 places g_{j}^{\prime} in its rightful position.

The y^{*} predicted by the scaled Y and G will be the same as the y^{*} of statement 1. The columns of G need no longer be in order of increasing norm; but since all but the first represent old data, they should be discarded as soon as possible.
6. Incorporating linearities. As was mentioned in Section 1, degeneracies are certain to develop when some of the component functions are linear. Since the procedure for removing degeneracies is about as expensive as a secant step, it is important to be able to deal directly with such linearities. This may be done as follows.

Assume that $f: \mathbb{R}^{n+\ell} \rightarrow \mathbb{R}^{n}$, and that the equation $f(x)=0$ is supplemented by ℓ linear equations of the form

$$
\begin{equation*}
A x=b, \tag{4.1}
\end{equation*}
$$

where $A \in \mathbb{R}(n+\ell) \times \ell$ is of full rank. Suppose that we are given a unitary matrix U such that

$$
A U=\left(\begin{array}{ll}
0 & T \tag{4.2}
\end{array}\right)
$$

where T is square. Set $\hat{x}=U^{T} x$ and partition \hat{x} in the form $\hat{x}=\left(\hat{x}_{1}^{T}, \hat{x}_{2}^{T}\right)$, where $\hat{x}_{2} \in \mathbb{R}^{\ell}$. Then from (4.1) and (4.2)

$$
\begin{equation*}
\mathrm{T} \hat{x}_{2}=\mathrm{b} \tag{4.3}
\end{equation*}
$$

Since A is of full rank, T is nonsingular and any solution of the system (4.1) must have $\hat{x}_{2}=T^{-1} b$. Define the function $\dot{\mathbf{f}}: \mathbb{1}^{n} \rightarrow \mathbb{K}^{n}$ by

$$
\hat{f}\left(\hat{x}_{1}\right)=f\left[U\binom{\hat{x}_{1}}{T^{-}-1_{h}}\right] .
$$

Then $\hat{f}\left(\hat{x}_{1}\right)=0$ if and only if

$$
x=u\binom{\hat{x}_{1}}{r^{-1}}
$$

satisfies $f(x)=0$ and $A x=b$. The secant method may now be applied to \hat{f}. The matrix U required by this process may be obtained in the usual way as the product of Householder transformations [5]. When this is done, the matrix T will be triangular, which makes the equation (4.3) easy to solve.

5. Numerical Examples and Conclusions

The algorithm described in the above sections has been tried on a variety of problems. Here we summarize the results of three tests that exhibit the typical behavior of the algorithm.

The first example involves the function whose i-th component is given by

$$
f_{i}(x)=i-\sum_{j=1}^{i} x_{i}+q_{i} \sum_{j=i}^{n}\left(1-x_{i}\right)^{2}
$$

This function has a solution at $\hat{x}=(1,1, \ldots, 1)^{T}$. At the solution its Jacobian is the lower triangular matrix whose nonzero elements are all -1, a nicely conditioned matrix. The numbers q_{i} may be chosen ad libitum to make the function more or less nonlinear. Table one summarizes the results of applying the above
algorithm ot this function with $n=15$ and $q_{i}=3(i=1,2, \ldots, n)$. The initial estimate was the point $(0.8,1.2,0.8,1.2, \ldots, 0.8)^{\mathrm{T}}$. The remaining 15 points required by the algorithm were obtained by adding alternately $\pm .05$ to the successive components of the initial estimate. The results are summarized in Table 1, where $\|e\|$ denotes the Euclidean norm of the error in the current iterate, $\|f\|$ denotes the Euclidean norm of the current function value, and $\|\|\|$ denotes the norm of the vector u used to check degeneracies. Of the starting values only the central one is reported. At three points it was necessary to rectify a degeneracy; otherwise the convergence is routine (the iteration was terminated when $\|f\| \leq 10^{-6}$).

The second example uses the same function with $n=5, q_{1}=q_{2}=q_{3}=q_{4}=.5$ and $\mathrm{q}_{5}=0$. The starting points are generated in the same way as for the first example. Since the fifth component of the function is linear, degeneracy can be expected in the iteration. It occurs at the seventh step ($\left\|\left\|\|=4.6 .10^{3}\right.\right.$) and is handled easily.

The third example tests the algorithm for reusing old information. The function depends on a parameter s and is defined by

$$
f_{i}(x)=i \cdot s-\sum_{j=1}^{i} x_{i}+q_{i} \sum_{j=i}^{n}\left(s-x_{i}\right)^{2}
$$

With $n=5$ and $q_{i}=.3$ the zero $(s, s, s, s, s)^{T}$ was found for $s=1.0,1.2,1.4$, $1.6,1.8,2.0$. The information from one solution was used to start the next. The results are summarized in Table three. The last three solutions are atypical in that they require effectively only a single iteration to converges. This is because the error vectors and the function values were the same at each new
starting point, and this information had been preserved from the last solution.

These examples are given principally to illustrate the behavior of the algorithm. Additional experiments suggest that the local behavior of the method is quite good. Indeed if one believes that the algorithm for fixing degeneracies will work, one can apply the theory in [3] to give local convergence proofs. However, we believe it is too early to make general claims about the algorithm. For example, we do not know if damping techniques can be used to make it effective on problems where it otherwise would not work. It is hoped that the program described and listed in part II of this report will help interested researchers to investigate the algorithm and compare it with others.

Table 1

$\\|\mathrm{U}\\|$	$\\|f\\|$	$\\|u\\|$
$7.7 \cdot 10^{-1}$	$9.0 \cdot 10^{-1}$	$2.7 \cdot 10^{0}$
$1.3 \cdot 10^{-1}$	$3.1 \cdot 10^{-1}$	$1.2 \cdot 10^{2}$
$7.5 \cdot 10^{-1}$	$2.8 \cdot 10^{1}$	$1.4 \cdot 10^{1}$
$1.2 \cdot 10^{-2}$	$1.3 \cdot 10^{-2}$	$5.7 \cdot 10^{1}$
$2.9 \cdot 10^{-3}$	$4.7 \cdot 10^{-3}$	$6.2 .10^{2}$
$9.8 \cdot 10^{-3}$	$4.3 \cdot 10^{-1}$	$1.3 \cdot 10^{1}$
$2.4 \cdot 10^{-4}$	$2.8 \cdot 10^{-4}$	$1.5 \cdot 10^{2}$
$3.0 \cdot 10^{-3}$	$1.0 \cdot 10^{-2}$	$1.2 \cdot 10^{1}$
$1.1 \cdot 10^{-5}$	$3.3 \cdot 10^{-5}$	$2.4 \cdot 10^{1}$
$1.6 \cdot 10^{-6}$	$4.6 \cdot 10^{-6}$	$4.3 .10^{1}$
$4.3 \cdot 10^{-7}$	$1.5 \cdot 10^{-6}$	$2.5 .10^{1}$
$1.2 \cdot 10^{-7}$	$4.2 \cdot 10^{-7}$	$2.8 .10^{1}$

Table 2

$\\|\mathrm{e}\\|$	$\\|\mathrm{f}\\|$	$\\|\mathrm{l}\\|$
$4.5 \cdot 10^{-1}$	$4.5 \cdot 10^{-1}$	$1.6 \cdot 10^{0}$
$7.9 \cdot 10^{-2}$	$1.1 \cdot 10^{-1}$	$2.6 \cdot 10^{1}$
$1.0 \cdot 10^{-2}$	$8.2 \cdot 10^{-3}$	$2.5 \cdot 10^{1}$
$3.6 \cdot 10^{-3}$	$4.1 \cdot 10^{-3}$	$7.5 \cdot 10^{1}$
$3.2 \cdot 10^{-4}$	$2.6 \cdot 10^{-4}$	$7.2 \cdot 10^{1}$
$1.0 \cdot 10^{-4}$	$1.3 \cdot 10^{-4}$	$1.2 \cdot 10^{1}$
$2.9 \cdot 10^{-6}$	$2.3 \cdot 10^{-6}$	$4.6 \cdot 10^{3}$
$1.0 \cdot 10^{-4}$	$3.4 \cdot 10^{-4}$	$5.0 .10^{0}$
$5.4 \cdot 10^{-8}$	$1.1 \cdot 10^{-7}$	$4.7 \cdot 10^{0}$

Table 3

He H	$\\|f\\|$	$\\|\mathrm{h}\\|$
$4.5 \cdot 10^{-1}$	$4.1 \cdot 10^{-1}$	$1.6 \cdot 10^{0}$
$4.3 \cdot 10^{-2}$	$6.5 \cdot 10^{-2}$	$2.6 .10^{1}$
$4.7 \cdot 10^{-3}$	$3.1 \cdot 10^{-3}$	$2.3 \cdot 10^{1}$
$1.4 \cdot 10^{-3}$	$1.2 \cdot 10^{-3}$	$1.7 \cdot 10^{2}$
$3.7 \cdot 10^{-3}$	$1.1 .10^{-2}$	$4.5 \cdot 10^{0}$
$2.9 \cdot 10^{-5}$	$3.9 \cdot 10^{-5}$	$6.9 .10^{0}$
$2.8 \cdot 10^{-6}$	$3.8 \cdot 10^{-6}$	$4.2 \cdot 10^{0}$
$7.0 \cdot 10^{-8}$	$9.0 \cdot 10^{-8}$	$5.6 \cdot 10^{0}$
$4.5 \cdot 10^{-1}$	$1.5 \cdot 10^{0}$	$1.0 \cdot 10^{1}$
$6.6 \cdot 10^{-2}$	$9.1 \cdot 10^{-2}$	$6.4 .10^{0}$
$2.5 \cdot 10^{-3}$	$2.1 \cdot 10^{-3}$	9.6.10 ${ }^{1}$
$9.7 \cdot 10^{-4}$	$1.0 \cdot 10^{-3}$	1.5.10 ${ }^{1}$
$2.5 \cdot 10^{-5}$	$2 \cdot 3 \cdot 10^{-5}$	$1.1 .10^{2}$
$1.0 \cdot 10^{-3}$	$8.1 \cdot 10^{-4}$	$2.8 .10^{2}$
$9.9 \cdot 10^{-4}$	$8.1 \cdot 10^{-4}$	$2.4 \cdot 10^{0}$
$2.7 \cdot 10^{-7}$	$4.2 \cdot 10^{-7}$	$1.0 .10^{1}$
$4.5 \cdot 10^{-1}$	$1.5 \cdot 10^{0}$	$1.0 .10^{1}$
$5.1 \cdot 10^{-2}$	$6.7 \cdot 10^{-2}$	$3.3 \cdot 10^{0}$
$2.3 \cdot 10^{-3}$	$2.5 \cdot 10^{-3}$	7.1.10 ${ }^{0}$
$1.7 \cdot 10^{-4}$	$1.7 \cdot 10^{-4}$	1.9.10 ${ }^{1}$
$1.0 \cdot 10^{-6}$	$7.2 \cdot 10^{-7}$	6.8.10 ${ }^{1}$
$4.5 \cdot 10^{-1}$	1.5.10 ${ }^{0}$	$1.4 .10^{2}$
$6.7 \cdot 10^{-1}$	1.5.10 ${ }^{0}$	9.7.10 ${ }^{0}$
$1.2 \cdot 10^{-7}$	$1.5 \cdot 10^{-7}$	1.5.10 ${ }^{1}$
$4.5 \cdot 10^{-1}$	$1.5 \cdot 10^{0}$	1.5.10 ${ }^{1}$
$1.1 \cdot 10^{-7}$	$2.0 \cdot 10^{-7}$	$2.8 .10^{1}$
$4.5 \cdot 10^{-1}$	$1.5 .10^{0}$	$2.8 \cdot 10^{1}$
$8.0 .10^{-8}$	$1.5 \cdot 10^{-7}$	$5.6 \cdot 10^{1}$

PART II

1. Introduction

In this second part of this report we shall describe and $1 i s t$ a program implementing the method described in Part I. Since the program is quite complex, the description is divided into two sections. The first section tells the casual user what he needs to know to use the program; the second section describes the program and its subroutines in greater detail and presupposes a familiarity with Part I.

2. Usage

SSM is a FORTRAN subroutine designed to solve the system of equations

$$
\begin{aligned}
& f(x)=0 \\
& A x=b
\end{aligned}
$$

where $f: \mathbb{K}^{n+\ell} \rightarrow \bar{i}^{n}$ and $A \in \mathbb{R}^{\ell x(n+\ell)}$ (thus n is the number of nonlinear equations and ℓ is the number of linear equations in the system). The user must supply to the program the matrix A, the vector b and a subroutine to evaluate the function f. The user must also supply a set of $n+1$ estimates of the solution; however if a sequence of closely related problems is being solved, the output from the solution of one problem can be used in place of the estimates for the next problem. The user must also supply a section of code in SSM to check convergence.

Calling SSM. Information is transfered to SSM by the arguments in the subroutine call and by a common block. The calling sequence is

$$
\text { CALL } \operatorname{SSM}(X, F, N, L, E V A L, N E W J A C, N E W A, N E W B, Y A I L)
$$

The parameters in the calling sequence are
$X(N+L)$ a real array (of minimum dimension n) that on return contains the solution
$F(N) \quad$ a real array that on return contains the value of f at X
$N \quad n$, which must be greater than one
L. $\quad 2$, which may be zero

EVAL the name of a user coded subroutine to evaluate f

NEWJAC a logical variable which when true indicates that the user has provided a set of $n+1$ estimates in the common array Y. NEWJAC can be false only after SSS has been called at least once, in which case it tells'SSif to use the results of the last run to start the current run

NEWA A logical variable, which if true indicates that the coefficients of the system $A x=b$ have just been placed in the common array A. If the same coefficients are to be used in subsequent runs, NOWA must be false.

NEWB A logical variable, which if true indicates that the elements of the $r i g h t h a n d$ side of the syster. $i x=b$ have been placed in the common array B. If the same righthand side is to be used in subsequent calls, NEWB must be false. If NiWN is true, SSO assumen that NEWB is also true.

FAIL An integer which on return contains an error indicator. If FAIL is zero all has gone well. Otherwise FAIL contains an error trace (see $\S 3$ below).

The common block is

$$
\text { COMMON/SSMCOM/A }(\mathrm{L}, \mathrm{~N}+\mathrm{L}+2), \mathrm{B}(\mathrm{~L}), \mathrm{Y}(\mathrm{~N}+\mathrm{L}+2, \mathrm{~N}+1)
$$

where the dimensions given are the minimal ones. As explained above A and B contain the coefficients and righthand side of the linear system and the columns of Y contain $n+1$ estimates of the solution. All of this information is altered by the system. If it is desired to use it later then NEWJAC, NEWA, or NEWB, whichever are appropriate, must be set to false.

The subroutine EVAL. The user must furnish a subroutine to evaluate the function. Its calling sequence is

> CALL EVAL (X,F,FAIL),

The arguments are
$\mathrm{X}(\mathrm{N}+\mathrm{L})$ an array containing the point x to be evaluated
$F(L) \quad$ an array that on return contains $f(x)$

FAIL an integer that is initially zero. If a failure occurs it should be set to any integer from 1 through 99. This will cause SSM to abort. The last two digits in FAIL will contain the number set in EVAL.

If further information must be communicated to bVil, this may be done through common statements.

Convergence and other tests. In its main loop, SSM produces a new approximation to the solution which must be tested for acceptability. Since no fixed strategy is likely to be satisfactory for all problems, the user is required to furnish his own tests in the section labled 500. This is also the place to insert ad hoc damping techniques and tests to insure that the iteration does not continue too long. Additional information can be communcated to this section by extending the argument list of SSM or by a common block.

In coding this section it is important to realize that $S S M$ works in a coordinate system different from the $x-f$ coordinate system of the user: call it the $y-g$ coordinate system. To each n-vector y there corresponds a $n+l$ vector x satisfying $A x=b$, which can be retrieved by the statement

CALL EVAL $G(Y, X, F, G, G N K M$, , TRUE , ,EVAL, FA IL)

The vector x corresponding to y is returned in the array X. The arguments F,G,GNRM, and FAIL are irrelevent in this context. To each function value f there corresponds a value g. Given y, the set of vectors x, f, and g can be retrieved by the statement

CALL EVAL $G(Y, X, F, G,($ NRM, . FALSE. ,LVAL, FAIL $)$

On return GNRM contains the Euclidean norm of g, which is approximately equal to the Euclidean norm of f. If $F A L L$ is nonzero on return, it contains the value to which it was set in EVAL. The f value corresponding to a given g can be found by multiplying g by the transpose of the $n \times n$ matrix contained in the array Q.

When SSM enters the section labled 500 , the arrays Y Y and GG contain the point from which the prediction was launched and its g-value, YS contains the predicted point, and DY contains the difference $D Y=Y S$ - YY. The array element NORM(1) contains the Euclidean norm of GG. The arrays X, F, SN, CS, and GS may be used for scratch.

In this section the user must decide whether or not to continue the iteration. If he decides to continue he must provide an acceptable prediction in YS and its corresponding g value in GS, then transfer control to statement 600. It should be stressed that the value of $Y S$ need not be the same as the value that was input to the section. For example, YS may be taken to be $Y Y+\lambda D Y$, where λ is chosen so that the norm of $G S$ is not too large.

Either convergence or an error may make the user decide to terminate the iteration. On normal convergence the user should first execute the statement

> CALL EVAL G(YS ,X,F,GS ,GNRM,. FALSE. , EVAL, FAIL),
in order to place the converged x and f in X and F, and then return. On an error the user should return after executing the statement

FAIL $=$ FAIL $+k$
where $k=10000 \cdot i \quad(i=8,9, \ldots)$.

Parameters set in SSM. Five parameters contained in the common block SECPRM are set at the beginning of SSM. The variable TOL contains a tolerance for detecting degeneracies (see §I.3). The variable NTRY contains an upper bound on the number of attempts to rectify degeneracies and is currently set to n. The variable $S C L$ is set to . 1 to handle a rather unlikely error in the
subroutine CHKFIX. The variable UTBND is set to $N+3$ and insures that any given point will not be used too long. The only parameter the user should have to fool with is MCHEPS, which contains the largest floating point number for which the computed value of 1. + MCHEPS is equal to 1. (Only a rough estimate of the value is needed; e.g. if the floating point fraction contains 27 bits then MCHEPS may be taken to be 10^{-8}.)

Minimal dimensions. SSM will of course not work if its arrays are too small for the problem. Here follows a list of subscripted variables in SSM with their minimal dimensions.

$$
\begin{aligned}
& X(N+L), F(N+L), A(L, N+L+2), B(L), Y(N+L+2, N+1) \\
& G(N+L+2, N+2), \operatorname{MARK}(N+1), N O R M(N+1) \\
& P(N, N), Q(N, N) .
\end{aligned}
$$

In addition, the first dimensions of Y and G must be equal. The second argument in EVALG must be dimensioned at least $N+L$. All other arrays in the program must be dimensioned at least N.

3. Program Details

General considerations. The program consists of eight subroutines: $S S M$, the controlling program; CHKFIX, which detects and rectifies degeneracies; INSERT, which modifies and updates the matrices Y and G; SECSTP, which makes a secant prediction; EVALG, which calls the user coded function EVAL to get a function value; REDUCE, which accomplishes the reduction described in SI. 2 ; HESRED, which triangularizes a Hessenberg matrix in G; and ROT which computes plane rotations.

These subroutines are linked by three common blocks. The block SECCOM contains variables that must be visible to the user. The block SECPRM contains parameters whose values should seldom have to be reset. The block SECVAR contains the remaining variables that are shared by the program.

The array names follow the nomenclature of Part I. In addition, the array NORM contains the Euclidean norms of the columns of G. The array MARK contains integers associated with the columns of Y and G that tell INSERT which columns must be thrown out (specifically if MARK (I) \geq OUTBND, then CHKFIX and INSERT will attempt to discard column I before others with MARK < OUTBND).

The program is provided with an error tracing feature that operates as follows. Each subroutine is assigned a power of ten, its failno. If an error occurs in a given subroutine, it executes the statement FAIL = FAIL $+\mathrm{i} *$ failno, where $i=1,2, \ldots, 9$. The calling subrouinte regards the return of a nonzero value in FAIL as an error and does the same thing. In this way the program is aborted with an integer in FAIL whose digits tell where an error occurred and how the program got there.

We shall now give a brief description of each of the subroutines.
$\operatorname{SSM}(X, F, N N, L L, E V A L, N E W J A C, N E W A, N E W B, F A I L) ;$ failno $=10^{4}$. The calling sequence for this program has already been discussed. After some initialization, SSM checks for a new matrix of coefficients in A. If there is one, Householder transformations $H_{1}, H_{2}, \ldots, H_{\ell}$ are determined so that $A_{1} \ldots H_{\ell}=(0 \mathrm{~T})$ where T is upper triangular. The matrix A is overwritten in the array A by $H_{1}, \ldots H_{\ell}$ and by T (this requires two extra columns). If either NEWA or NEWB is true, the system $\mathrm{T} \hat{\mathrm{x}}_{2}=\mathrm{b}$ is solved, the solution overwriting b .

The iteration may be started either by using the Jacobian from a previous iteration or by building up a new Jacobian. The first alternative is effected
by a straightforward implementation of the technique described in Section I.4.5. If the Jacobian has to be built up, it is done by the technique described in Section I.4.4.

In the main loop, the directions are checked for independence and a secant step is taken. After SSM emerges from the user coded testing section, the new point is inserted into the Y and G arrays (see the description of INSERT), the values in the array $M A R K$ are increased by unity to prevent a point from hanging on too long, and the loop is begun again.

CHKFIX (EVAL, FA[I) ; £ailno $=10^{3}$. This is a fairly straightforward implementation of the algorithm described in (1.3.7), with some special features. The transpose of the Hessenberg matrix A is formed in the lower part of the array G starting in row three. If the columns of A are zero, the minimum in (1.3.7.3.3) is taken to be $S C L *\|y\|_{j} \|$. The matrix A is reduced to triangular form by HESRED, and all diagonal elements of A that are too small are set equal to MACHEPS.

The column to be thrown out is restricted by the array MARK. If some $\operatorname{MARK}(\mathrm{I}) \geq$ OUTBND) then the column K that is thrown out must satisfy MARK $(K) \geq$ OUTBND; otherwise any column with MARK ≥ 0 may be thrown out. The new column is given a MARK of zero and the elements of the array MARK are increased by unity.

INSERT(YS,GS,GNRM,OT,M). This subroutine inserts $Y S$ and GS in Y and G, treating Y and G as N by M arrays. The index of the column to be thrown out is specified by OT. If OT is zero, then the column of largest NORM is chosen, subject to the same MARK restrictions that govern CHKFIX. The new columns are inserted just before the first column of larger norm and are given a MARK of zero. The matrices Y, P, G, and Q are updated by REDUCE.
$\operatorname{SECSTP}(\mathrm{YY}, \mathrm{GG}, \mathrm{YS}, \mathrm{DY}, \mathrm{FAIL}) ;$ failno $=10^{2}$. This subroutine calculates $D Y=-\Delta Y^{*}(\Delta G)^{-1} \approx G G$ and the secant prediction $Y S=Y Y+D Y$. As in CHKFIX the lower part of G is used as a scratch array to contain the transpose of ΔG, which is reduced to triangular form by HESRED.

EVALG(YP, XP,FV,GV,GNRM, ONLYX,EVAL,FAIL). Given the point YP, this subroutine finds the corresponding x-vector $X P$, calls EVAL to obtain a function value $F V$, and converts FV into a vector GV in the g -coordinate system. If ONLYX is true, the routine returns before calling EVAL.

REDUCE ($\mathrm{Y}, \mathrm{P}, \mathrm{IN}, \mathrm{N}, \mathrm{M}$). This subroutine reduces a matrix Y of dimension NXM with a stalactite to triangular form via the method described in 81.2. The stalactite is assumed to be in column IN. The transformations are accumulated in P.

HESRED. This subroutine reduces a Hessenberg matrix to triangular form using plane rotations. The matrix is stored in the lower part of G starting in row three. The rotations are returned in the arrays CS and SN.

ROT($A, B, C S, S N, R$). This subroutine computes plane rotations for REDUCE and HESRED.
4. Program

```
00108
    SUBROUTINE SSM(X,F,NN,LL,EVAL,NEWJAC,NEWA,NEWB,FAIL)
00280
C
00300
80480
00500
00680
00700
00808
8980
01008
01100
81200
01300
01480
01500
81600
01700
01888
81908
82000
02100
82208
02300
02400
02500
02600
82700
02800
82980
03800
03100
03280
03308
03480
83508
03680
03700
83800
03900
84800
84100
04200
04300
84480
04580
04680
04700
84800
04900
85008
05100
85280
05300
85480 C
05508
```

```
C
```

C

```
C
```

C
C
C
C
C
C
C
REAL F(20),X(20)
REAL F(20),X(20)
INTEGER FAIL,LL,NN
INTEGER FAIL,LL,NN
LOGICAL NEWA,NEWB,NEWJAC
LOGICAL NEWA,NEWB,NEWJAC
EXTERNAL EVAL
EXTERNAL EVAL
GLOBAL VARIABLES.
GLOBAL VARIABLES.
COMMON /SECCOM/A (20,22),B(20),Y(22,21)
COMMON /SECCOM/A (20,22),B(20),Y(22,21)
COMMON /SECVAR/CS (28),G(22,22),L,LM1,MARK (21),N,N1,N2,
COMMON /SECVAR/CS (28),G(22,22),L,LM1,MARK (21),N,N1,N2,
1 NL,NL1,NL2,NM1,NM2,NORM(21),P(20,20),
1 NL,NL1,NL2,NM1,NM2,NORM(21),P(20,20),
2 Q(20,20),RSQN,SN(20)
2 Q(20,20),RSQN,SN(20)
COMMON /SECPRM/MCHEPS,NTRY,OUTBND,SCL,TOL
COMMON /SECPRM/MCHEPS,NTRY,OUTBND,SCL,TOL
REAL A,B,CS,G,MCHEPS,NORM,P,Q,RSQN,SCL,SN,TOL,Y
REAL A,B,CS,G,MCHEPS,NORM,P,Q,RSQN,SCL,SN,TOL,Y
INTEGER L,LM1,MARK,N,N1,N2,NL,NL1,NL2,NM1,NM2,NTRY,OUTBND
INTEGER L,LM1,MARK,N,N1,N2,NL,NL1,NL2,NM1,NM2,NTRY,OUTBND
C
C
C VARIABLES INTERNAL TO SSM.
C VARIABLES INTERNAL TO SSM.
REAL DY(20),GNRM,GG (20),GS (20),MAX, OMEGA, OMEGA1,
REAL DY(20),GNRM,GG (20),GS (20),MAX, OMEGA, OMEGA1,
1 S,T,YY(20),YS(20)
1 S,T,YY(20),YS(20)
INTEGER I,I1,II,J,JJ,K,KK,KM1,NK
INTEGER I,I1,II,J,JJ,K,KK,KM1,NK
C
C
C
C
C
C
TOL = 100.
TOL = 100.
NTRY = NN
NTRY = NN
MCHEPS = 1.E-8
MCHEPS = 1.E-8
SCL = . }
SCL = . }
OUTBND = N+3
OUTBND = N+3
INITIALIZATION.
INITIALIZATION.
L=LL
L=LL
LM1 = L-1
LM1 = L-1
N=NN
N=NN
N1 = N+1
N1 = N+1
N2=N+2
N2=N+2
NL=N+L
NL=N+L
NLL = NL+1
NLL = NL+1
NL2 = NL+2
NL2 = NL+2
NM1 = N-1
NM1 = N-1
NM2 = N-2
NM2 = N-2
RSQN = 1./SQRT (FLOAT (N))
RSQN = 1./SQRT (FLOAT (N))
FAIL = 0
FAIL = 0
CHECK FOR LINEAR SYSTEMS.
CHECK FOR LINEAR SYSTEMS.
IF(L.EQ.0) GO TO 200
IF(L.EQ.0) GO TO 200
PROCESS THE LINEAR SYSTEM.
PROCESS THE LINEAR SYSTEM.
IF(.NDT.NEWA) GO TO 188

```
    IF(.NDT.NEWA) GO TO 188
```

05600	C	
85788	C	Reduce the matrix of the linear system by
85880	C	HOUSEHOLDER TRANSFORMATIONS.
05980	C	
86808		DO $170 \mathrm{KK}=1, \mathrm{~L}$
06180		$K=L-K K+1$
86280		$N K=N+K$
06380		MAX $=0$.
06480		DO $110 \mathrm{~J}=1$, NK
86580		MAX $=\operatorname{AMAX1}(\mathrm{MAX}, \operatorname{ABS}(\mathrm{A}(\mathrm{K}, \mathrm{J}))$)
86688	110	CONTINUE
06700		IF (MAX .NE. O.) GO TO 120
06880		FAIL $=18888$
86980		RETURN
07800	128	$S=0$.
07188		$00130 \mathrm{~J}=1, \mathrm{NK}$
07200		$A(K, J)=A(K, J) / M A X$
07300		$S=S+A(K, J) * x^{2}$
87400	138	CONTINUE
07508		$5=$ SQRT (S)
07600		IF (A K, NK) .LT. D.) $S=-S$
87700		$A(K, N K)=A(K, N K)+S$
87800		$A(K, N L 1)=5 * A(K, N K)$
07900		$A(K, N L 2)=-M^{\prime} X_{3} \times S$
08880		IF (K. EQ. 1) GO TO 170
88188		$K M 1=K-1$
08200		$00160 \mathrm{I}=1, \mathrm{KMI}$
08300		$T=8$.
88488		DO $148 \mathrm{~J}=1$, NK
08500		$T=T+A(1, J) * A(K, J)$
08680	148	CONTINUE
88708		$T=T / A(K, N L 1)$
08800		DO $150 \mathrm{~J}=1$, NK
08908		$A(I, J)=A(I, J)-T_{x} A(K, J)$
89800	150	CONTINUE ALI
09180	168	CONTINUE
89288	178	CONTINUE
89300	188	IF (.NOT. (NEWA .OR. NEWB)) GO TO 280
89480	C	IFl.NOT. ${ }^{\text {a }}$
89580	C	SOLVE THE TRIANGLLAR SYSTEM FOR THE CONSTANT
09608	C	PART OF THE TRANSFORMED SYSTEM.
89780	C	
89880		$B(L)=B(L) / A(L, N L 2)$
89980		IF (L.EQ.1) GO TO 280
18880		DO 195 II =1, LM1
18180		$I=L-11$
18280		$11=1+1$
10380		DO $190 \mathrm{~J}=11, \mathrm{~L}$
18480		$\mathrm{NJ}=\mathrm{N}+\mathrm{J}$
10500		$B(I)=B(I)-A(I, N J) * B(J)$
18600	198	CONTINUE
18780		$B(1)=B(1) / A(1, N L 2)$
18880	195	CONTINUE
10908	C	
11808	C	EECK THE STATUS OF THE APPROXIMATE JACOBIAN.

11100	C	
11288	208 IF (NEWJAC) GO TO 308	
11300	C	
11400	C	RESCALE THE OLD APPROXIMATE JACOBIAN.
11500	C	
11680		$\operatorname{MARK}(1)=0$.
11700		DO $2051=1, N$
11800		$Y Y(1)=8$.
11980		$\operatorname{MARK}(I+1)=$ OUTBND
12800	205	CONTINUE
12100		$Y Y(1)=Y(1,1)$
12280		CALL EVALG(YY, X,F,GG,GNRM, .FALSE, EVAL,FAIL)
12380		IF (FAIL .EQ. B) GO TO 210
12480		FAIL $=$ FAIL + 20000
12580		RETURN
12680	210	CALL SECSTP (YY, GC, YS, OY, FAIL)
12788		IF (FAIL . EQ. 0) GO TO 215
12880		FAIL $=$ FAIL + 30008
12980		RETURN
13000	215	$S=(Y S(1)-Y(1,1)) * * 2$
13100		DO $220 \mathrm{l}=2, \mathrm{~N}$
13200		$S=S+Y S(1) * * 2$
13300	228	CONTINUE
13400		$\mathrm{S}=\mathrm{SQRT}(\mathrm{S})$
13500		$00240 \mathrm{~J}=2, \mathrm{~N} 1$
13600		$T=(Y(1, J)-Y(1,1)) * * 2$
13700		DO $225 \mathrm{l}=2, \mathrm{~N}$
13808		$T=T+Y(1, J) * \dot{H}^{2}$
13900	225	CONTINUE
14000		IF (T . NE. 8) GO TO 230
14180		FAIL $=48000$
14200		RETURN
14300	230	OMEGA $=$ S/SQRT (T)
14400		OMEGA1 $=1 .-$ OMEGA
14500		$\operatorname{NORM}(\mathrm{J})=$ SQRT ($(0 M E G A 1 * N O R M(1)) * * 2+$
14600	1	2. $\%$ OMEGA $1 \times$ MMEGA*G $(1,1) \% G(1, J)$
14708	2	(OMEGA*NORM (J)) $\% * 2$)
14800		
14908		$G(1, J)=$ DMEGA1 $\div G(1,1)+$ OMEGAirG $(1, j)$
15000		$\mathrm{NJ}=\mathrm{MIND}(\mathrm{N}, \mathrm{J})$
15100		OO $235 \mathrm{l}=2, \mathrm{NJ}$
15200		$Y(I, J)=\operatorname{OMEGA} \underset{\sim}{ } \mathrm{Y}(\mathrm{I}, \mathrm{J})$
15300		$G(I, J)=$ DMEGAirG(I, J)
15400	235	CONTINUE
15580	240	CONTINUE
15600		DO $2451=1, N$
15700		$G(1, N 2)=G G(1)$
15800	245	CONTINUE
15900		$G G(1)=G G(1)-G(1,1)$
16000		CALL INSERT (YY,GG, 0, ,1,N2)
16100		OO $250 \mathrm{~J}=2, \mathrm{~N} 1$
16200		$\operatorname{NORM}(\mathrm{J})=\operatorname{SQRT}(\mathrm{G}(1,1) * * 2+$
16380	1	2. $\%$ G (1, 1) $\% \mathrm{G}(1, \mathrm{~J})+$
16480	2	NORM (J) $\% \times 2$)
16580		$G(1, J)=G(1, J)+G(1,1)$

```
    16600
    16700
    16800
    16908
    17008
    17180
    17200
    17308
    17400
    17508
    17600
    17700
    17800
    17980
    18000
    18100
    18280
    18380
    18400
    18508
    18600
    18700
    18880
    18900
    19000
    19100
    19200
    19300
    19400
    19500
    19600
    19700
    19808
    19980
    20000
    20100
    20200
    28308
    20400
    28580
    20608
    20700
    20808
    20980
    21000
    21100
    21200
    21300
    21400
    21500
    21600
    21780
    21888
    21900 C
22000 C
    250 CONTINUE
        DO 255 I=1,N
            GG(I)=G(I,N2)
    255 CONTINUE
        CALL INSERT (YY,GG,GNRM,1,N1)
        CO TO 480
    300 CONTINUE
C
C THE APPROXIMATE JACOBIAN IS TO BE FORMED FROM A
C NEW SET OF POINTS. BUILD UP THE MATRICES Y,P,G, AND Q.
IF (L .EQ. 0) GO TO 325
C
C
C
C
    THERE ARE LINEAR EQUATIONS. TRANSFORM
    THE POINTS.
    DO 320 KK=1,L
        K=L-KK+1
        NK = N+K
        DO 315 J=1,N1
            T=0.
                DO 305 I=1,NK
                T=T+A(K,I):Y(I,J)
            CONTINUE
                T=T/A(K,NL1)
                DO 318 I=1,NK
                    Y(I,J) = Y(I,J) - T&A(K,I)
            CONTINUE
            CONTINUE
        CONTINUE
        DO 350 1=1,N
            DO 348 J=1,N
            P(I,J)=0.
            Q(I,J)= B.
    348 CONTINUE
    P(I,I) = 1.
    Q(1,1) = 1.
    350 CONTINUE
            DO 380 K=1,N1
            DO 370 I=1,N
            YY(1) = 0.
            DO 360 J=1,N
                YY(I) = YY(I) + P(I,J):Y (J,K)
    360 CONTINUE
    370 CONTINUE
            CALL EVALG(YY,X,F,GG,GNRM,.FALSE.,EVAL,FAIL)
            IF(FAIL .EQ. 0) GO TO 373
                FAIL = FAIL + 50000
                    RETURN
    373 NORM (K) = GNRM
            CALL INSERT (YY,GG,GNRM,K,K)
        CONTINUE
C
C MAIN LOOP. OBTAIN A SET OF AFFINELY INDEPENDENT
C POINTS AND THEN TAKE a SECANT STEP.
```

22180
22200
22308
22480
22500
22600
22780
22808
22900
23880
23180
23208
23300
23408
23508
23680
23700
23800
23908
24080
24100
24200
24308
24408
24500
24680
24700
24800
24900
25000
25100
25200
25308
25480
25508
25600
25780
25808
25908
26800
26100
26208
26300
26480
26588
26600

```
C
    480 CALL. CHKFIX(EVAL,FAIL)
        IF(FAIL .EQ. B) GO TO 405
            FAIL = FAIL + 60080
            RETURN
    485 D0 410 I=1,N
        YY(I) = 0.
        GG(I)=0.
    4 1 8 \text { CONTINUE}
        YY(1) = Y(1,1)
        GG(1) = G(1,1)
        CALL SECSTP(YY,GG,YS,DY,FAIL)
        IF(FAIL .EQ. 0) GO TO 580
            FAIL = FAIL + 70000
            RETURN
C
C DN ENTRY TO THIS PART OF THE PROGRAM, YS CONTAINS
    A NEW POINT. IT IS THE RESPONSIBILITY OF THE
    USER TO PROVIDE CODE THAT DETERMINES WHETHER YS IS
    ACCEPTABLE AND WHETHER THE ITERATION HAS CONVERGED.
    ON EXIT (OTHER THAN A RETURNI, YS AND GS MUST
    CONTAIN AN ACCEPTABLE POINT AND ITS VALUE.
    THE SAMPLE SECTION BELOW RETURNS IF THE NORM
    OF THE FUNCTION IS LESS THAN OR EQUAL TO 1.BE-G.
    BEFORE RETURNING INSERT AND CHKFIX ARE CALLED TO
        INSURE THAT THE LATEST APPROXIMATION TO THE
        Jacobian IS CONTAINED IN THE ARRAYS Y,P,G, AND Q.
    5 8 0 ~ C A L L ~ E V A L G ( Y S , X , F , G S , G N R M , . F A L S E . , E V A L , F A I L ) ~
        IF(FAIL .EQ. 8) GO TO 510
            FAIL = FAIL + 88080
            RETURN
    510 IF(GNRM .GT. 1.E-6) GO TO 600
        CALL INSERT (YS,GS,GNRM, 0,N1)
        CALL CHKFIX(EVAL,FAIL)
        IF(FAIL .NE, 0) FAIL = FAIL + 90008
        RETURN
        C
        C
    C
    6 0 0 ~ C A L L ~ I N S E R T ~ ( Y S , G S , G N R M , 8 , N 1 )
        DO 610 I=1,N1
        MARK (I) = MARK (I) + 1
    6 1 0 ~ C O N T I N L E ~
        GO TO 488
        END
```

00100
80200
80380
00480
00580
00600
80780
08800
00980
01800
01188
81200
01380
01488
01580
01600
81700
01800
01908
02000
02100
82280
82300
82400
02500
02600
02780
82800
82980
83080
83100
03200
83300
83488
03580
83680
03780
83880
83980
04000
04100
84200
04388
04400
84580
04600
04790
04880
04900
05880
05108
05280
85308
85480
05508

SUBROUTINE CHKFIX(EVAL,FAIL)
C
C
C
parameters in the calling sequence.
INTEGER FAIL
EXTERNAL EVAL
C
C GLOBAL VARIABLES.
C
COMMON /SECCOM/A $(20,22), B(20), Y(22,21)$
COMMON /SECVAR/CS (28),G(22,22),L,LM1, MARK (21),N,N1,N2,
1 NL, NL1, NL2, NM1, NM2, NORM (21) , P $(28,28)$,
$2 \quad \mathrm{Q}(20,20), \operatorname{RSQN}, \mathrm{SN}(20)$
COMMON /SECPRM/MCHEPS, NTRY, OUTBND, SCL, TOL
REAL A, B, CS, G, MCHEPS, NORM, P, Q, RSQN, SCL, SN, TOL , Y
INTEGER L,LM1,MARK,N,N1,N2,NL,NL1,NL2,NM1,NM2,NTRY, OUTBND
C
C VARIABLES INTERNAL TO CHKFIX.
C
REAL $F(28)$, GNRM, GS (28) , MINNRM, NRM, $S, T, U(28)$, UMAX, UNRM, V (28),
1 VNRM, X (20), YS (20)
INTEGER 1, 11, II, IM1, J, J1, JU, OUT, OUTSET, TRY
LOGICAL NRMSET
EQUIVALENCE (CS(1),YS(1)), (SN(1), GS(1)), (U(1),X(1)),
1
(V(1), F(1))
C
C TRY NTRY times to obtain an affinely independent
C SET OF DIRECTIONS.
C
DO 600 TRY $=1$,NTRY

C
DETERMINE WHICH VECTORS MAY BE THROWN OUT.
OUTSET =
$0010 \mathrm{I}=1$, N1
OUTSET = MAXE (MARK (1), OUTSET)
18 CONTINUE
IF (OUTSET .LT. OUTBND) OUTSET = 0
C
FORM THE TEST MATRIX IN THE SCRATCH AREA OF G.
NRMSET $=$.FALSE.
DO $138 \mathrm{~J}=2, \mathrm{~N} 1$
$\mathrm{J} 1=\mathrm{J}+1$
$G(\mathrm{~J} 1,1)=Y(1, \mathrm{~J})-Y(1,1)$
$N R M=G(J 1,1) \times 2$
$\mathrm{JU}=\mathrm{MIND}(\mathrm{J}, \mathrm{N})$
DO $110 \mathrm{l}=2, \mathrm{JU}$
$G(J 1,1)=Y(I, J)$
NRM $=$ NRM $+G(J 1, I) \% * 2$
118
CONTINUE
IF (NRM .EQ. O.) GO TO 130
NRM $=$ SQRT (NRM)
IF (. NOT. NRMSET) MINNRM $=$ NRM NRMSET $=$. TRUE.

05600
05780
05880
05900
86808
06100
86208
06300
86480
06500
06608
86788
06800
06900
07808
07180
07200
87308
87408
07500
07608
07700
07800
07900
88080
08100
08200
08300
08400
08500
08600
08708
88888
88980
99008
89100
89280
09300
09400
09500
09608
89708
89880
09980
18008
10100
10280
10380
10400
18500
10600
10780

MINNRM = AMIN1 (NRM, MINNRM)
DO $128 \mathrm{I}=1$, JU
$G(\mathrm{~J}, \mathrm{I})=\mathrm{G}(\mathrm{J}, \mathrm{I}) /$ NRM
CONTINUE
CONTINUE
IF (.NOT. NRMSET) MINNRM $=\operatorname{SCL} \approx Y(1,1)$
IF (MINNRM .NE. B.) GO TO 200
FAIL $=1008$
RETURN
C
C SOLVE FOR U AND TEST FOR u LARGE.
C
208 CALL HESRED
DO $210 \quad 1=1, N$
$\operatorname{IF}(\operatorname{ABS}(\mathrm{G}(1+2, \mathrm{I})) \cdot \operatorname{LT} . \operatorname{MCHEPS}) \quad G(I+2,1)=$ MCHEPS
218 CONTINUE
$U(N)=\operatorname{RSQN} / G(N 2, N)$
$U N R M=U(N) m x^{2}$
DO 238 II $=2, N$
$1=\mathrm{N}-11+1$
$11=1+1$
$5=0$.
DO $220 \mathrm{~J}=11, \mathrm{~N}$
$S=S-G(J+2, I) x U(J)$
220
CDNTINUE
$\mathrm{U}(\mathrm{I})=\mathrm{RSQN}$
$\operatorname{IF}(S . L T$. O.) U(I) $=-\operatorname{RSQN}$
$U(I)=(U(I)+S) / G(I+2, I)$
UNRM $=$ UNRM $+U(1) w * 2$
230 CONTINUE
UNRM $=$ SQRT (UNRM)
IF (UNRM .LE. TOL) RETURN
C THE DIRECTIONS ARE AFFINELY DEPENDENT. DETERMINE
WHICH ONE TO THROW OUT.

308 UMAX = 8 .
$00310 \mathrm{I}=2, \mathrm{~N} 1$
IF (MARK (I).LT.OUTSET .OR. UMAX.GT.ABS (U(I-1)))
GO TO 318
OUT = 1
UMAX $=\operatorname{ABS}(U(I-1))$
318 CONTINUE
C
C SOLVE FOR V.
$400 \quad V(1)=1 . / G(3,1)$
VNRM $=V(1) ; * x^{2}$
DO 420 I $=2, N$
$S=0$.
$1 M 1=1-1$
DO $410 \mathrm{~J}=1, \mathrm{IM} 1$
$S=S-G(I+2, J) i \gamma(J)$
$410 \quad$ CONTINUE
$V(I)=1$.

11100
11200
11308
11480
11500
11600
11708
11808
11980
12008
12100
12208 12308 12480 12580 12600 12708 12808 12908 13000 13180 13280 13308 13480 13508 13600 13780 13880 13980 14800 14188
$\mathrm{IF}(\mathrm{S}$.LT. ©.) $V(1)=-1$.
$V(I)=(V(I)+S) / G(I+2, I)$
VNRM $=$ VNRM $+V(1) * * * 2$
420 CONTINUE
VNRM $=$ SQRT (VNRM)
DO 430 11=1, NM1
$1=N-11$
$T=C S(I) * V(I)-S N(I) * V(I+1)$
$V(I+1)=(C S(I) * V(I+1)+\operatorname{SN}(I) \approx V(I)) /$ VNRM
$V(I)=T$
430 CONTINUE
$V(1)=V(1) /$ VNRM
C
C COMPUTE THE NEW POINT AND INSERT IT.
C
$500 \quad Y S(1)=Y(1,1)+\operatorname{MINNRM}_{*} V(1)$
DO $518 \mathrm{I}=2, \mathrm{~N}$
$Y S(I)=M I N N R M * V(I)$
510 CONTINUE
CALL EVALG (YS, X,F,GS,GNRM,. FALSE. ,EVAL,FAIL)
IF (FAIL .EQ. B) GO TO 520
FAIL $=$ FAIL +2000 RETURN
520 CALL INSERT (YS, GS, GNRM, OUT, N1) DO $530 \mathrm{I}=2, \mathrm{~N} 1$
$\operatorname{MARK}(1)=\operatorname{MARK}(1)+1$
530 CONTINUE
600 CONTINUE
FAIL $=3808$
RETURN
END

00100 80208 80380 00400 08500 00600 80780 80800 00900 01800 01100 01280 01300 01408 01508 81680 01708 01800 01908 82000 02100 82280 02300 02480 92500
02608
82780
02800
02908
03880
03108
83288
83300
83408
03500
83600
83708
03800
83900
84000
84108
04200
04388
04400
04508
84600
04708
84800
04900
05800
85108
05280
05308
05480
85508

```
SUBROUTINE INSERT (YS, GS, GNRM, OT,M)
C C PARAMETERS IN THE CALLING SEQUENCE.
C
REAL GNRM, GS (20) , YS (20)
INTEGER M,OT
C
C
GLOBAL VARIABLES.
COMMON /SECCOM/A \((20,22), B(20), Y(22,21)\)
COMMON /SECVAR/CS (28),G(22,22),L,LM1,MARK (21),N,N1,N2, 1 NL, NLI,NL2,NM1,NM2,NORM (21), P(20, 20), 2 Q(28,28), RSQN, SN (28)
COMMON /SECPRM/MCHEPS, NTRY, OUTBND, SCL, TOL
REAL A, B, CS, G, MCHEPS, NORM, P, Q, RSQN, SCL, SN, TOL, Y
INTEGER L,LM1, MARK,N,N1,N2,NL,NL1,NL2,NM1,NM2,NTRY, OUTBND
```

C
C VARIABLES INTERNAL TO INSERT.
C
C
REAL MAXNRM
INTEGER I,IN,IN1,INMI,IU, J, JJ, OUT,OUTSET
C
C INITIALIZE THE Y AND G ARRAYS.
C
$1 U=\operatorname{MINE}(\mathrm{M}, \mathrm{NM1})$
DO $18 \mathrm{I}=1, \mathrm{IU}$
$G(1+1,1)=0$.
$G(I+2, I)=8$.
$Y(I+1, I)=0$.
$Y(I+2, I)=0$.
10 CONTINUE
C
C
108 DUT $=0 T$
IF (OUT .NE. 8) GO TO 158
C
C
C
C

110 CONTINUE
IF (OUTSET .LT. OUTBND) OUTSET $=0$
DUT $=M$
MAXNRM $=0$.
DO $120 \mathrm{I}=1, \mathrm{M}$
IF (MAXNRM.GT.NORM(I) .OR. MARK (I).LT.OUTSET)
1
GO TO 128
MAXNRM $=$ NORM(I)
OUT $=1$
120 CONTINUE
150 CONTINUE
C

85680	C	THE VECTORS ARE TO BE INSERTED JUST BEFORE THE
85780	C	FIRST COLUMN OF LAREER NORM.
85888	C	
85980		$00160 \mathrm{IN}=1, \mathrm{M}$
86800		IF (GNRM .LE. NORM(IN)) GO TO 280
061 00	160	CONTINUE
86208		$\mathrm{IN}=\mathrm{M}+1$
86308	C	
06480	C	SHIFT THE COLUMNS AND INSERT THE NEW COLUMN.
86580	C	
86680	280	IF (IN .EQ. OUT) GO TO 268
86708	C	
06880	C	SHIFT THE COLUMNS
86998	C	
07800		IF(IN .GT. OUT) CO TO 230
07100	C	
07200	C	RIGHT SHIFT.
07380	C	
07480		$\mathrm{IN1}=1 \mathrm{~N}+1$
07508		DO $228 \mathrm{JJ}=1 \mathrm{NL}$, OUT
07680		$J=$ OUT-JJ+INI
07708		$00210 \mathrm{I}=1, \mathrm{~N}$
07808		$Y(1, J)=Y(1, J-1)$
87908		$G(1, J)=G(1, J-1)$
88800	210	CONTINUE
08100		$\operatorname{MARK}(\mathrm{J})=\operatorname{MARK}(\mathrm{J}-1)$
08200		$\operatorname{NORM}(\mathrm{J})=\operatorname{NORM}(\mathrm{J}-1)$
88380	220	CONTINUE
08480		G0 TO 268
08580	230	CONTINUE
08680	C	
08700	C	LEFT SHIFT.
88800	C	
88980		$\mathrm{IN}=\mathrm{IN}-1$
89800		IF (IN .EQ. OUT) GO TO 268
09180		INM $1=1 \mathrm{~N}-1$
09208		DO $250 \mathrm{~J}=0 \mathrm{UT}, \mathrm{INMI}$
09308		DO $240 \mathrm{I}=1, \mathrm{~N}$
09480		$Y(1, J)=Y(1, J+1)$
89500		$G(I, J)=G(1, J+1)$
89608	240	CONTINUE
89700		$\operatorname{MARK}(\mathrm{J})=\operatorname{MARK}(\mathrm{J}+1)$
09800		$\operatorname{NORM}(\mathrm{J})=\operatorname{NORM}(\mathrm{J}+1)$
89980	250	CONTINUE
18800	268	CONTINUE
10188	C	
18200	C	INSERT THE NEW COLUMNS.
10300	C	
18488		$00270 \mathrm{I}=1, \mathrm{~N}$
10500		$Y(I, I N)=Y S(I)$
18680		$G(1, I N)=$ GS(1)
18780	278	CONTINUE
18800		NORM (IN) = GNRM
18908	C	
11800	C	REDUCE the Matrices.

```
11100 C
11200 308 CALL REDUCE (Y,P,IN,N,M)
11380
11408
11500
11680
CALL REDUCE (G,Q,IN,N,M)
MARK(IN) = 0
RETURN
END
```

00108 00200 08380 08408 88588 80680 08780 80880 00980 01808 01180 01280 01380 01480 81580 01600 01708 01888 01908 02008 82100 02200 82308 02400 82580 82600 02700 02800 82900 83008 03100 03280 83380 83480 83508 03680 03700 83880 03908 04808 04100 04200 84308 84480 84508 04680 04708 04800 04908 05800 85100 05208 85380 85400 85500

SUBROUTINE SECSTP (YY,GG,YS,DY,FAIL)
C
C
C
REAL DY(20), GG (20) , YS (20) , YY(20)
INTEGER FAIL
C
C GLOBAL VARIABLES.
C
COMMON /SECCOM/A $(20,22), B(20), Y(22,21)$
COMMON /SECVAR/CS (20) , G(22,22),L,LM1, MARK (21) , N, N1, N2,
1
NL, NL1, NL2, NM1, NM2, NORM (21) , P(20, 20) ,
2 Q 20,28), RSQN, SN (20)
COMMON /SECPRM/MCHEPS, NTRY, OUTBND, SCL, TOL
REAL A,B,CS,G,MCHEPS, NORM, P, Q, RSQN, SCL, SN, TOL, Y
INTEGER L,LM1,MARK,N,N1,N2,NL,NL1,NL2,NM1, NM2, NTRY, OUTBND
C
C VARIABLES INTERNAL TO SECSTP.
REAL S
INTEGER I, II, II, J, JL, JU
C
C
FORM THE G-DIFFERENCE MATRIX IN THE LOWER PART OF G.
DO $20 \mathrm{~J}=1, \mathrm{~N}$
$\mathrm{JU}=\mathrm{MINQ}(\mathrm{N}, \mathrm{J}+1)$
DO 18 I=1, JU
$G(J+2,1)=G(I, J+1)$
10 CONTINUE
$G(J+2,1)=G(J+2,1)-G(1,1)$
$Y S(J)=G G(J)$
20 CONTINUE
C
C SOLVE THE G-DIFFERENCE SYSTEM.
C
108 CALL HESRED
DO $118[=1, N M 1$
$11=I+1$
$T=Y S(1) * C S(1)+Y S(I 1) * S N(1)$
$Y S(11)=Y S(11) * C S(1)-Y S(1) * S N(1)$
$Y S(I)=T$
110 CONTINUE
IF (G(N2,N) .NE. D.) GO TO 115
FAIL $=180$
RETURN
$115 \mathrm{YS}(\mathrm{N})=\mathrm{YS}(\mathrm{N}) / \mathrm{G}(\mathrm{N} 2, \mathrm{~N})$
DO 138 II =2,N
$I=\mathrm{N}-\mathrm{II}+1$
$11=1+1$
DO $120 \mathrm{Jx} 11 . \mathrm{N}$
$Y S(1)=Y S(I)-G(J+2,1) * Y S(J)$
120 CONTINUE
IF(G(I+2,I) .NE. O.) GO TO 125
FAIL $=200$
RETURN
-48-

```
85680
```

85680
05708
05708
05808
05808
05908
05908
06008
06008
86180
86180
06208
06208
06300
06300
06480
06480
06500
06500
06608
06608
86708
86708
06880
06880
86900
86900
07080
07080
07180
07180
87200
87200
07380
07380
87488
87488
87500
87500
07600
07600
87780
87780
07880
07880
125 YS(I) = YS(I)/G(I+2,I)
125 YS(I) = YS(I)/G(I+2,I)
125 YS(I) = YS(I)/G(I+2,I)
130 CONTINUE
130 CONTINUE
130 CONTINUE
C
C
C
C CALCULATE DY.
C CALCULATE DY.
C CALCULATE DY.
C
C
C
208 S = 0.
208 S = 0.
208 S = 0.
OO 220 I=1,N
OO 220 I=1,N
OO 220 I=1,N
S=S + YS(I)
S=S + YS(I)
S=S + YS(I)
JL=MAXB(I,2)
JL=MAXB(I,2)
JL=MAXB(I,2)
DY(I) = B .
DY(I) = B .
DY(I) = B .
DO 218 J=JL,N1
DO 218 J=JL,N1
DO 218 J=JL,N1
DY(I)=DY(I) - Y(I,J)%YS(J-1)
DY(I)=DY(I) - Y(I,J)%YS(J-1)
DY(I)=DY(I) - Y(I,J)%YS(J-1)
210 CONTINUE
210 CONTINUE
210 CONTINUE
2 2 0 CONTINUE
2 2 0 CONTINUE
2 2 0 CONTINUE
DY(1) = DY(1) + Sry (1,1)
DY(1) = DY(1) + Sry (1,1)
DY(1) = DY(1) + Sry (1,1)
C
C
C
C CALCULATE YS.
C CALCULATE YS.
C CALCULATE YS.
C
C
C
380 DO 310 I=1,N
380 DO 310 I=1,N
380 DO 310 I=1,N
YS(I) = YY(I) + DY(I)
YS(I) = YY(I) + DY(I)
YS(I) = YY(I) + DY(I)
318 CONTINUE
318 CONTINUE
318 CONTINUE
RETURN
RETURN
RETURN
END

```
        END
```

 END
    ```

00180
88200
08300
08400
80500
00608
00798
80808
80900
01808
01100
01200
81300
01480
01500
01600
01700
01800
01900
02808
02100
02200
82308
02480
02580
82608
82780
02800
02900
03088
03100
83280
83380
83408
83500
83600
03708
83880
83900
04008
04108
84200
84308
04400
04500
04680
84780
04880
04980
85808
85180
85208
85380
85400
05580

SUBROUTINE EVALG(YP, XP,FV,GV,GNRM, ONLYX,EVAL,FAIL)

C

INTEGER L,LM1,MARK,N,N1,N2,NL,NL1,NL2,NM1,NM2,NTRY, OUTBND

C
C
REAL GNRM, FV (20), GV (28) , XP (20) , YP (28)
INTEGER FAIL
LOGICAL ONLYX
EXTERNAL EVAL
C
C GLOBAL VARIABLES.
C
COMMON /SECCOM/A \((20,22), B(20), Y(22,21)\)
COMMON /SECVAR/CS (20),G(22,22),L,LM1,MARK (21),N,N1,N2,
1 NL,NL1,NL2,NM1,NM2,NORM(21), P(20,28),
2 Q 20,28\(),\) RSQN, SN (28)
COMMON /SECPRM/MCHEPS, NTRY, OUTBND,SCL, TOL
REAL A,B,CS,G,MCHEPS,NORM, P, Q, RSQN, SCL, SN, TOL, Y
C
C VARIABLES LOCAL TO EVALG.
REAL T
INTEGER I,J,K,NI,NK
TRANSFORM YP INTO THE X COORDINATE SYSTEM.
DO \(20 \mathrm{I}=1, \mathrm{~N}\)
\(X P(1)=0\).
DO \(10 \mathrm{~J}=1, \mathrm{~N}\)
\(X P(I)=X P(I)+P(J, I) * Y P(J)\)
18 CONTINUE
28 CONTINUE
C
C
C
C
C
If THERE ARE LINEAR EQUATIONS, SET THE LAST OF Xp
TO THE CONSTANT PART AND TRANSFORM INTO THE INITIAL
\(X\) COORDINATE SYSTEM.
IF (L .EQ. 8) GO TO 180
DO \(301=1, L\)
\(\mathrm{NI}=\mathrm{N}+\mathrm{I}\)
\(X P(N I)=B(I)\)
30 CONTINUE
DO \(60 \mathrm{~K}=1, \mathrm{~L}\)
\(N K=N+K\)
\(T=0\).
DO \(48 \quad \mathrm{I}=1\), NK
\(T=T+A(K, 1) ; K P(I)\)
48 CONTINUE
\(T=T / A(K, N L 1)\)
DO \(50 \quad \mathrm{I}=1, \mathrm{NK}\)
\(X P(I)=X P(I)-T * A(K, I)\)
CONTINUE
CONTINUE
C
C
PARAMETERS IN THE CALLING SEQUENCE.

C
C

X Coordinaie syster.

ONTINUE A

IF ONLY XP IS REQUIRED, RETURN.
-50-

85608 05780 05800 85900 86088 86100 06200 06300 86400 06500 86600 06708 06800 06980
07800 07100
07200
87308
07488
87500
07600

C
180 IF (ONLYX) RETURN
C
C EVALUATE THE FUNCTION
C
CALL EVAL (XP, FV,FAIL)
IF (FAIL .NE. 8) RETURN
C
C TRANSFORM FV INTO THE G COORDINATE SYSTEM.
C
200 GNRM \(=0\).
\(00220 \mathrm{l}=1, \mathrm{~N}\)
\(\operatorname{GV}(I)=0\).
\(00210 \mathrm{~J}=1, \mathrm{~N}\)
\(G V(I)=G V(I)+Q(I, J) \div F V(J)\)
210 CONTINUE
GNRM \(=\) GNRM \(+\operatorname{GV}(1) * * 2\)
220 CONTINUE
GNRM \(=\) SQRT (GNRM)
RETURN
END

08100
08200
08300
00400
08508
08608
98780
80888
08980
81000
01108
01200
01300
01480
01500
01608
81708
01800
01980
82800
02108
02208
82308
02400
82500
02600
02780
82800
02988
03080
83180
83280
83308
03480
83580
83680
83708
83800
83980
84080
04108
04280
84380
04480
04580
84680
84780
04880
84980
85008
85180
85200
05388
05400
85508

SUBROUTINE REDUCE (Y, P, IN,N,M)
\(C\)
\(C\)
\(C\)

C
C
REAL CS,R,SN,T
INTEGER 1,11,11,IN2,IU,」
IN2 \(=1 N+2\)
IF (IN+1.GE.N) GO TO 50
REDUCE THE STALAGTITE.
\(004811=1 N 2, N\)
\(\mathrm{I} 1=\mathrm{N}-11+\mathrm{IN} 2\)
\(1=11-1\)
IF (Y(I1,IN) .EQ. O.) GO TO 40
CALL ROT (Y(I,IN),Y(I1,IN),CS,SN,R)
\(Y(I 1, I N)=0\).
\(Y(I, I N)=R\)
IF(I.GT.M) GO TO 28
DO \(10 \mathrm{~J}=1, \mathrm{M}\)
\(T=C S_{i Y} Y(I, J)+S N * Y(I 1, J)\)
\(Y(I 1, J)=\operatorname{CS} ; Y(I 1, j)-\operatorname{SN}_{*} Y(1, J)\)
\(Y(I, J)=T\)
CONTINUE
CONTINUE
DO \(30 \mathrm{~J}=1, \mathrm{~N}\)
\(T=\operatorname{CS*P}(I, J)+S N_{* i} P(I 1, J)\)
\(P(I 1, J)=\operatorname{CS*P}\left([1, J)-S N_{i} P(I, J)\right.\)
\(P(1, J)=T\)
CONTINUE
40 CONTINUE
50 CONTINUE
C
C REDUCE FROM HESSENBERG TO TRAPEZIODAL FORM.
\(I U=M I N E(M, N-1)\)
\(00180 \mathrm{l}=1\),IU
\(11=1+1\)
IF (Y(I1, I) .EQ. 日.) GO TO 180
CALL ROT (Y(1, I), Y(I1, 1\(), C S, S N, R)\)
\(Y(I, I)=R\)
\(Y(I 1,1)=0\).
IF (I1 .GT. M) CO TO 88
DO 70 J=11,M
\(T=\operatorname{CSir} Y(I, J)+S N_{x} Y(I 1, J)\)
\(Y(I 1, J)=\operatorname{CS} ; Y(I 1, J)-\operatorname{SNiK} Y(I, J)\)
\(Y(I, J)=T\)
CONTINUE
80 CONTINUE
DO \(90 \mathrm{~J}=1, \mathrm{~N}\)

05680
05780
85808
85900
06800
06180 86280
```

-52-
$T=C S_{*} P(I, J)+S N_{*} P(I 1, J)$
$P(I 1, J)=C S_{*} P(I 1, J)-S N_{x} P(I, J)$
$P(I, J)=T$
90 CONTINUE
180 CONTINUE
RETURN
END

```
```

00180
00280
00380
80400
80500
80600
80780
00800
09900
81800
01100
01280
01300
81480
81580
01600
01700
01800
81900
02008
02100
02200
02300
82408
02508
02680
82700
02800
02900
83080

| | SUBROUTINE HESRED |
| :---: | :---: |
| C | |
| GLOBAL VARIABLES. | |
| | |
| | COMMON /SECCOM/A $(20,22), \mathrm{B}(20), Y(22,21)$ |
| | COMMON /SECVAR/CS (28), G (22,22), L, LM1, MARK (21) , N, N1, N2, |
| | 1 NL, NL1, NL2 , NM1, NM2, NORM (21) , P (20,20) , |
| | $2 \quad \mathrm{Q}(20,20)$, RSQN, SN (28) |
| | COMMON /SECPRM/MCHEPS, NTRY,OUTBND, SCL, TOL |
| | REAL A,B,CS,G,MCHEPS, NORM, P, Q, RSQN, SCL, SN, TOL, Y |
| | INTEGER L,LM1, MARK, N, N1, N2, NL, NL1, NL2, NM1, NM2, NTRY, OUTBND |
| C | |
| C | VARIABLES INTERNAL TO HESRED. |
| Variables lnternal to hesked. | |
| | REAL R,T |
| | INTEGER I, K, K1, K3 |
| | DO $20 \mathrm{~K}=1$, NM1 |
| | $\mathrm{K} 1=\mathrm{K}+1$ |
| | CALL. ROT ($G(K+2, K), G(K+2, K 1), C S(K), S N(K), R)$ |
| | $G(K+2, K)=R$ |
| | $G(K+2, K 1)=0$. |
| | $K 3=K+3$ |
| | DO $10 \mathrm{l}=\mathrm{K} 3, \mathrm{~N} 2$ |
| | $T=C S(K) * G(I, K)+S N(K) * G(I, K 1)$ |
| | $G(1, K 1)=C S(K) * G(I, K 1)-S N(K) * G(I, K)$ |
| | $G(1, K)=T$ |
| 10 | CONTINUE |
| 20 | CONTINUE |
| | RETURN |
| | END |

```
-54-

00108
00280
80300
00400
08500
00608
80788
00880
00980
01800
81180
01288
81388
81480
01580
01608
01780

SUBROUTINE ROT (A,B,CS,SN,R)
REAL A, \(B, C S, S N, R, A A, B B, E T A\)
\(E T A=\operatorname{AMAX1}(\operatorname{ABS}(A), \operatorname{ABS}(B))\)
IF (ETA .NE. B.) GO TO 18
\(R=0\).
\(C S=1\).
\(S N=0\).
RETURN
10 CONTINUE
\(A A=A / E T A\)
\(B B=B / E T A\)
\(R=\operatorname{SQRT}\) (AA**2 \(+B B_{*} \times 2\) )
\(C S=A A / R\)
\(S N=B B / R\)
\(R=\) REETA
RETURN
END

\section*{References}
1. R. H. Bartels, J. Stoer, and Ch. Zenger, A realization of the simplex method based on triangular decomposition, in Handbook for Automatic Computation II. Linear Algebra (J. H. Wilkinson and C. Reinsch, eds.), 152-190, Springer, New York, 1971.
2. R. P. Brent, On maximizing the efficiency of algorithms for solving systems of nonlinear equations, IBM Research RC 3725, Yorktown Heights, 1972.
3. J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
4. P. Wolfe, The secant method for simultaneous nonlinear equations, Comm. ACM 2 (1959) 12-13.
5. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon, Oxford, 1965.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
```


[^0]: *

 Research sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant No. AFOSR 71-2006. The United States Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation hereon.
 $\dagger_{\text {Supported }}$ in part by the Office of Naval Research under Contract N00014-67-A-0128-0018.

