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ABSTRACT

The usual successive secant method for solving systems of nonlinear
equations suffers from two kinds of instabilities, First the formulas used
to update the current approximation to the inverse Jacobian are numerically
unstable. Second, the directions of search for a solution may collapse into
a proper affine subspace, resulting at best in slowed convergence and at
worst in complete failure of the algorithm. In this report it is shown how
the numerical instabilities can be avoided by working with factorizations of
métrices appearing in the algorithm, Moreover, these factorizations can be
used to detect and remedy degeneracies among the directions. A second part
of this report documents and lists a program implementing the algorithm

described in the first part,



PART I

1. Introduction
In this paper we shall be concerned with the successive secant method

for solving the system of nonlinear equations
(1.1 f(x) = 0,

where f is a mapping from some domain in real n-space into real n-space
(f: D cR"® ﬂ»ﬂﬁn). Given approximations xT’XZ""’xn+1 to a solution of
(1.1), a new approximation x, is generated as follows, Let £: iK™ » iK™ pe
the affine function that interpolates f at x],xz,...,xn+1; that is
(1.2) £, = £(x.) = Ax.) (i=1,2,...,m1),

i i i
Then x, is taken to be the zero of the function 4. If the points x

19%gseees® g

are affinely independent then £ is uniquely defined. The approximation X,

will be uniquely defined provided the vectors f]’fZ"'°’fn+1 are affinely
independent (cf. (1.4) below). The method derives its name from the fact that
the i-th coordinate function of £ represents the secant hyperplane interpolating
the i-th coordinate function of f.

Various formulas can be written for the approximation x, (see [2] for the
a detailed discussion of secant methods and their convergence theory). We
shall use the following representation. Let X be the n ¥ (1) matrix

x € Ry yefined by

)y

X := (xT,xz,...,xn+]

and let

F := (f],fz,...,f ).

n+1



Define the operator A by

-%X.).

AN = (xsz‘l’x-j-x],---’xrﬂ_l 1

Then it is easily verified that the function £ defined by
(1.3) 000 = £+ 07 (o)
satisfies (1.2). It follows from solving the equation 2(x) = 0 that

(1.4) x = x, - AX(AF)"]f

. 1 1°
The existence of the inverses in (1.3) and (1.4) is guaranteed by the affine
independence of the columns of X and F,

The new approximation x, will not in general be an exact zero of f, and
the process must be repeated iteratively. This may be done in several ways.
We shall be concerned with the successive variant in which x, replaces one
e

of the points x.. Conventionally this is done in one of two ways. Either x,

replaces x or x,_ replaces that column of X for which the corresponding

n+l? ©

column of F has largest norm. In any case the iterative process generates

sequences of matrices Xl,Xz,... and a corresponding sequence F],Fz,... with

Xk+1 differing from Xk in only a single colunin (in practice it may be neces-

sary to permute the columns of Xk before inserting xik); see Section 4.2 below),
When f is differentiable, the matrix AF(AX)"I in (1.4) may be regarded

as an approximation to the Jacobian f' of f. Thus the secant formula (1.4)

is a discretization of Newton's method, a method that under appropriate

conditions converges quadratically to a zero of f. The convergence theory

for the successive secant method suggests that if the matrices Axk remain
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uniformly nonsingular, then n steps of the secant method will be roughly
comparable to one step of Newton's method (see [2] and [3]). This has im-
portant computational consequences. The ab initio calculation of (AF)-]f1
requires 0(n3) operations (see, e.g., [5]), and therefore n steps of the
secant method will require O(na) operations, which may be prohibitively large,

-1
The usual cure for this problem is to calculate (AF, . ) directly from

k+1
(AFk)—] (actually the inverses of slightly different matrices are calculated),
Since Fk and Fk+l are simply related, this can be done in O(n2) operations,
giving a satisfactory O(n3) operation count for n steps of the successive
secant method (for the first such implementation see [47).

The method outlined above has two serious defects. First the scheme for
updating (AF)-] is numerically unstable. Second, the columns of the matrices
Xk may tend to collapse into proper affine subspaces of u\n, resulting in the
prediction of wild points or at least in slowed convergence. The first problem
arises whenever AFk is ill-conditioned. 1n this case (AFk)—] is computed in-
accurately and these inaccuracies transmit themselves to subsequent inverses,
even though the corresponding AF's are well conditioned. The same problem
occurs in linear programming (see, e.g., [1]), and one could adopt the usual
solution of periodically reinverting AF, However, this entails extra work
for the reinversion and extra storage to hold the matrix ¥, Moreover, one must
face the tricky problem of deciding when to reinvert,

The problem of degeneracy among the columns of X arises, among other oc-
casions, when one of the component functions of f is linear. Then the linear
component and the corresponding component of 4, call it Ei, are identical,

-t

It follows that x 1lies in the proper affine subspace defined by zi(x) = 0.



Ultimately all the column of some Xk must lie in this subspace, and AXk
will be singular, The matrix AFk may not be singular, but it will almost

(k)

certainly be ill-conditioned, and the prediction x will be spurious.
Moreover, as noted above, the inaccuracies in (AFk)—] will propogate them-
selves via the update formulas,

The purpose of this paper is to show how the two problems mentioned above
can be resolved by generating and updating QR factorizations of the matrices
Xk and Fk' The factorization of T permits the 0(n2) solution of the equation
AFz = f], which is equivalent to forming (AF)“]f]. The factorization of X
enables one to detect degeneracies in the columns of X. Moreover, the factor-
ization can be used to alter a column of X in such a way as to reduce or re-
move the degeneracy. The factorizations of Xk+1 and Fk+1 can be obtained
from those of Xk and Fk in 0(n2) operations,

In the next section we shall introduce the factorizations, show how they
may be used to execute a step of the secant method, and show how they may be
updated. We shall also show that the updating method is numerically stable,
In Section 3, we shall show how the factorization can be used to detect and
remove degeneracies im X. In Section 4 some comments on the practicalities
of implementing these methods are given, and in Section 5 some numerical ex-

amples, Part Two of this report comnsists of a documented program implementing

the method presented in Part (ne,

2. Factorization

In this section we shall be concerned with the stable implementation of
a single secant step. Suppose that at step k we are given nonsingular ma-

trices Pk and Qk such that the matrices Yk and Gk defined by



(2.1 Xk= PkYk
and
(2.2) Gk = Qka

are upper trapezoidal, i,e. zero below the diagonal. (Numerically the matrices
P and Qk will be very nearly orthogonal, but we need not assume so.) Because
premultiplication by a matrix acts column by column on the multiplicand, we

have

I

T
Pk(AYk)

"

and

n

AGk Qk(AFk).

Moreover, the matrices AYk and AGk are upper Hessenberg, i.e. zero below the

first subdiagonal.

Now let xik) be the vector obtained from a single secant step:
&) _ (k) -1 (k)
(2.3) X, AXk(AFk) £,
-T (k
If we set yik) = Pkai ), then (2.3) can be written in the form
(k) (k) -1 (k)
(2.4) Y Yy - MY (86) gy,
(k) (k) ,
where Yy and g, are the first columns of Yk and Gk' Equation (2.4) sug-

gests the following algorithm,

1. Solve the system Asz = gik)

k
T
2.5) B R

4. fik) = f(xik))
8. = g

vh
.
i



-

(k)

This algorithm produces not only the secant approximation x, but
X (k) . (k) ‘ -
also the function value f, and its Q-transform g, ". Excepting step 4, the

bulk of the work done by the algorithm is concentrated in step 1. Since AGk
is an upper Hessenberg matrix, step 1 can be accomplished by standard tech-
niques in O(nz) operations [5, p. 218]. Thus a knowledge of the factoriza-
tions (2.1) and (2.2) allows us to compute 4 secant approximation in O(nz)

operations.

(k)

a
I

0f course xik) must replace a column of Xk and f replace the corre-

sponding column of Fk. This amounts to replacing the same columns of Yk and

(k) (k) *

G by v, ' and g, to give mew matrices Y and G, In principle algorithm

k k

(2.5) can be applied to these new matrices to give another approximation,

L

In practice, however, G£ will no longer be upper trapezoidal and step ! of

)
(2.5) cannot be effected in O(n ) operations. To circumvent this difficulty

we shall show how to construct orthogonal natrices Rk and Sk such that

o
G

Yerr T Ry

and

|
wn
o

S

are upper trapezoidal. If we then set

P+t T RePx

and

[}

Q 5.Q »

k+1 T TRk

then the relations (2.1) and (2.2) will be satisfied with k replaced by k+i,

and algorithm (2.5) may be efficiently reapplied,



For definiteness we shall deal with the computation of Rk and illustrate
the general procedure by a specific example. For numerical reasons that will

be discussed in Section 4, the order of the columns of Y and G cannot be as-

(k)

signed arbitrarily. This means that although Vi

may replace, say, column £
of Y, it may have to be inserted at some other position, say in column m. In
the specific case where n=7, £=1, and m = 3, we shift column 2 into column

1, shift column 3 into column 2 and overwrite column 3 with yik). This gives

*
a matrix Yk whose nonzero elements have the distribution

(2,6) 0 0 x x x x x x .

The matrix Rk is computed as the product of 9 plane rotations or Householder
transformations: Rk = H9H8"'H2HT‘ In the first stage, the transformations
H], H2, and H3 are chosen in the usual way (see [5, p. 471) to introduce zeros
into the elements of the "stalactite" in column 3., These transformations will
enter nonzero elements in the zero positions labled 1, 2, and 3, so that the

matrix will be in Hessenberg form:



4

X X x X X X X x

0 xs b4 X X X X X

0 0 x6 X X x X X .
7

0 0 0 X X X X X

0 0 0 0 xS X X X

Now the transformations H ,...,Hg are chosen to introduce zeros in the elements
labeled 4,...,9, bringing the matrix to trapezoidal form, The matrix
Pk+1 = H9°"H1Pk can be formed directly by multiplying the transformations

into Pk as they are generated, The matrix G; also has the form (2.6) and is
updated similarly,

The procedure sketched above is perfectly general, If column £ is to be
deleted and a vector inserted in column w the vectors between column £ (exclu-
sive) and m (inclusive) are shifted one column toward column £ and the new
vector is inserted., The matrix is then reduced to triangular form as illus-
trated above., From the standpoint of operations, the case £ =m = 1 is the
worst, requiring the introduction of 2n-3 zeros. In all cases the operation
count for the updating is O(nz).

The method is extremely stable in the sense that there are small matrices
Zk and Hk such that PEYk = Xk + Zk and Qk(Fk+Hk) = Gk' This implies that if
no further rounding errors are made in algorithm (2.5), the value of xik) is
the value that would have been obtained by taking a secant step with the
slightly perturbed matrices Xk + Zk and Fk + Hk'

The derivation of Hk is typical., The errors for each column are indepen-

dent of one another, and it is sufficient to follow the history of a single
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(k) (k)

column from its insertion as g, . Now g is computed according to (2.5.5).

It follows from standard rounding error assumptions {5] that the computed

(k)

g, satisfies
k k
ORISR S
where
k 3/2 k
1 = 0 2o, Il 1501 .
Here ]]-| denotes the spectral norm [5, p. 57] and ¢ is a small constant that

(k)

depends on the arithmetic used to compute g, *. It follows that

gik) = Qk(fik) + hik))
where
k -1 (k 3/2 =1 k
@2.7) 9= Jo e = ¥ 2l Il 1o 111 £ <.

Now the matrices Qk are computed as the product of orthogonal matrices (see
Section 4.4 below) and will themselves be very nearly orthogonal (for detailed

error analyses of orthogonal transformations see {5]). It follows that cer-

tainly
k 3/2_(k
2.9 1 1 = 202200 ) .
k
Thus when gi ) is inserted in Gk’ the error bound for the corresponding column

*
of Hk is satisfactorily small.
%
Ag the matrix Gk and the subsequent G's are updated, the column of H cor-
' (k)

responding to the inserted 8.

]

will grow, but very slowly as an elementary
error analysis will show. Even this slow growth might be intolerable over a
large number of iterations, but after about n iterations the column is discarded

(this may be forced if necessary), and its replacement is born anew with little
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error. It is true that the matrices Pk and Qk will slowly deviate from ortho-
gonality, but orthogonality is not required in the above analysis. All that
is needed is that Pk and Qk be well conditioned so that in the case of Qk we

may pass from (2.7) to (2.8). Since Pk and Qk are computed as products of
orthogonal matrices, their condition cannot deteriorate in any reasonable
number of iterations,

Two points in the above analysis bear stressing. First the matrices Zk
and Hk are uniformly bounded, provided no column is retained longer than a
fixed number of iterations and the matrices Pk and Qk remain well conditioned,
In effect we can use and update the factorizations as long as we like, This
is especially important in parameterized problems in which the factorizations
from the solution of one problem are used to start the solution of a nearby
problem (cf. Section 4.5). The second point is that the analysis implies
that the error in any column will be small compared with the norm of that

column. Even if the columns vary widely in size (in the matrix G they will),

the error associated with a large column cannot overwhelm a small column,

3. Detecting and Correcting Degeneracy

As was pointed out in Section 1, the columns of X will be affinely depen-
dent whenever AX is singular, In this section we shall show how the factor-
jzation of X introduced in the last section can be used to tell when AX is
singular and if necessary remove the singularity by altering a column of X.
The method to be used cannot be justified with complete rigor, although a sug-
gestive theorem can be proved,

Actually we shall work with the matrices Y and AY, which are the ones

that are at hand, There is some ambiguity in speaking of the singularity of
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AY, since its columns may vary widely in size. For the sake of uniformity
we shall instead examine the matrix A obtained from AY by scaling its columns

so they have 2-norm unity:

3.1) A o (Y2701 Y3y Yt~
| Sl Iy I by Il

There is more than just convention in this choice. The convergence proofs for
the secant method require a uniform upper bound on the condition of the matrices
A generated by the iteration,

The method for correcting degeneracies may be justified heuristically as
follows. 1If A is nearly singular, then it has approximate left and right null
vectors; that is there are vectors u and v with |h'|= ]h|’= 1 such that Ihuh
and IhTA” are small; say they are less than some fixed tolerance . Now to say
that INTAlfis small is to say that v is almost orthogonal to each column of A.
Thus the condition of A may be improved by replacing some column with the vec-
tor v. However, it is important that v not replace a column that is already
independent of the other columns of A, The vector u may be used to find a

suitable column, Let uv be the component of u that is largest in absolute

value: Iuvl = 'uil (i=1,2,...,n). Then the v-th column of A is given by
u.
(3.2) a =2y L,
v oou igy Uy 1
A ¢ SVERAY

. -1/2
Since luvl 2 n / s the vector Au/uv is negligible, and (3,2) effectively ex-
presses av as a linear combination of the other columns of A, Thus v should

replace av to give a new matrix AT'

1f A] is nearly singular, the process may be reapplied to give a matrix

A2’ and so on. The following theorem shows that if o is not too large the
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sequence of matrices Ak so generated must terminate, We establish the result

for rectangular matrices with an eye to applications to least squares problems,

Theorem 3.1. Let AO € “\mxn (m 2 n) have columns of norm unity. Given

« > 0, generate a sequence AO’AI"" of matrices as follows, Let Ak be given

and suppose that there are vectors u,_ and Vi satisfying

k
(3.3) el = vl =1,
and
(3.4) el Iyl s o
* kk"? Mk'k
Let uik) be a maximal component of U |u$k)| & Iuik)l (i=1,2,...,n). The
matrix Ak+l is then the matrix obtained by replacing the v-th column of Ak by
Vi 1f there are no vectors uy and Vi satisfying (3.3) and (3.4), end the
sequence with Ak. Then if
(3.5 a - L

nO+/0)

the sequence terminates with some Ak where k < n,

Proof. We shall show that in passing from Ak to Ak+T’ the column that
was thrown out must be a column of AO' This is clearly true for the matrix

A0 itself. Assuming its truth for AO’Al""’Ak-]’ we can by rearranging the

columns of Ak write Ak in the form

(k) (k)
A = VgaVyseesVi pd Taeenadn )

k
where aék),...,aék) are columns of A, , Thus we must show that “E )(i=1,2,...,k)

cannot be maximal,
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(k)

9 Y. Then

The case i = 1 is typical, Write Ak in the form Ak = (vO,A

it follows from (3.4) that

[ I =S

(k)

But if we write e (u , k)
T (k)
a = |v0Auk = ]vo o8 § ) + v0A2 kl
k T, (k)
2 ul ] vgas |, Il
. ] (k)l a1 e

The inequality (3.5) then implies that |ufk)| <l n']/2 and u(k) cannot be maximal,

1

Now either the sequence terminates before k = n-1, or we must arrive at

the matrix A Since at this point all the columns of A_ but one have been

n-1° 0
replaced, the matrix A satisfies AT A = (I + E), where Ie.,] < &. Thus
n-1l n-1 n-1 ij
[EIl < ne.

For any vector u with ]h,]= 1, we have

b _julf = lu(f + B)u]

n 1 n- l l

21 - IuTEuI 21 - noy - o> 02

and the sequence terminates with A 1

n-1°
So far as the secant method is concerned, the main problem is to compute
the vectors u and v associated with the matrix A defined by (3.1). Since A

is upper Hessenberg this can be done efficiently by a variant of the inverse

power method, The motivation for the method is that if A is nearly singular then
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A-1 will be large. Unless the elements of A_] are specially distributed,
the vector u' = A-1e will be large for almost any choice of e with |k]|= 1.
If we set u = u'/|p'||, then [l = llell/ ' 1] = /[l || is small.

Because A is upper Hessenberg, it can be reduced by orthogonal transforma-
. : . 2 . .
tions to triangular form in O(n") operations; that is we can cheaply compute

an orthogonal matrix R such that
B = RA

is upper triangular. We then solve the system Bu' = e. Since u']] = IBTBu'”
T . -1 -

= |R el|=lk|L we can work with the vector u' = B e rather than A ]e. The

components of e are taken to be + T/JE , where the signs are chosen to enhance

the size of the solution. Specifically,

_ =1/2
1. u'l =n /bnn

1
n

2, For 1 = n-1,n-2,...,1
(3.6)
n

5o - !
]. . Ej=i.+] bijuj

2, u'!
i

e eio -1/2
= [ + sign(g)n ]/biin

O

The vector v is obtained by solving the system Blw = @ in a manner analogous
to (3.6) and setting v = R w/|RTw]f .
If Ih‘[|is large then a column of A, say the v-th, must be replaced. From
the definition of A, this amounts to replacing the (vt1)-st column of Y by
Y4 + \v, where )\ is arbitrary. We are now in a position to describe our overall

algorithm for detecting and removing degeneriacies.
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1. Form A according to (3.1)
2, Calculate u' as described above
3. If |p']| 2 tol
1. Find v so that Iuvl 2 |ui' (i=1,2,...,n)
(3.7) 2. Calculate v as described above
3. y* =y, + min{lbi-y]” 1=2,,..,n+1}v
4, Insert y* in Y, throwing out column v+l

5, Go to 1

4- LR

As we mentioned at the beginning of this section, the above algorithm cannot

be justified with complete rigor. Here we summarize the difficulties.

Statement 1. In the formation of A, the vector ¥y has been given a special
role as a pivot, If another column of Y is used as a pivot, a different matrix

A will be obtained. For example, if Yis ¥y and ¥, are situated as shown

.Y3

4 7,
and Yy is the pivot, then the vectors may well be judged to be affinely depen-
dent, On the other hand if Yo is the pivot, they will definitely be judged
independent, since Y1775 and ¥3-Y, are orthogonal. We have chosen i as a
pivot because the ordering imposed on the columns of Y and G creates the pre-
sumption that X, = PTy] is nearer the zero of f than are the other columns of

X (see Section 4.2).
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Statement 3. If fh'lfis large, then A is certainly nearly singular.
However it is conceivable that A could be nearly singular and the algorithm
for computing u' fail to give a large vector. We feel that this is extremely
unlikely (it is equivalent to the failure of the widely used inverse power
method for finding eigenvectors [5, p, 619]).

The value of tel should not be too large, otherwise slow convergence or
wild predictions may result, On the other hand, Theorem 3.1 below suggests
that it should not be too small, We have used a value of 100 in our numerical

experiments (for n = 100, the bound (3,5) pgives a-1 110}).

Statement 3.3. The form of y* shows that our method for removing degen-
eracies amounts to taking a ''side step' from ¥4 along the direccion v. The
length of the side step is arbitrary. We have chosen the distance between Y,
and Y, as the length, since X, and x, are presumed to be the points nearest

the zero of f.

Statement 3.5. With tol suitably chosen, the only way this statement
could cause an infinite loop is for ihv“ to be repeatedly smaller than tol.
This is unlikely; however, the fastidious user might place an upper bound on
the number of attempts to remove the degeneracy in A. Alternatively he can

replace only previously untouched vectors.

4, DPractical Details

In this section we shall consider some of the practical problems that
will arise when the method is implemented, TFor more detail the reader is re-

ferred to the programs in Part Two of this report.
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1. Economics. Since the matrices X and F are never used by the algorithm,
it is necessary to store only the matrices Y, P, G, and Q, The number of non-
zero elements in these matrices is about 3n2; however, if they are stored con-
ventionally as separate arrays, they will require about 4n2 locations, Since
the lower part of the array in which G (or Y) is stored is zero, this part of
the array can be used as a workspace in which AG and AY are formed and manipulatc-
ed,

In assessing the amount of work involved, we assume that plane rotations
are used for all reductions., We shall count the number of rotations and the
number of multiplications, which multiplications corresponds roughly to the
number of data accesses. The results are summarized below, where only the

leading term of the count is given,

a, Secant Step

rot = n-1, mult = 3n",

b. Function Evaluation
2
rot = 0, mult = 2n .

c. Insertion and Updating (worst case in which y" is inserted in

the first column replacing yn+])

rot = n-1, mult = 12n2.

*
d. Insertion and Updating (typical case in which y 1is inserted

)

in the first column replacing Yot

rot = n-1, mult = 6n2.

e. Checking Degeneracy (computation of u)

2
rot = n-1, mult = 2,5n .
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A

f. Fixing Degeneracy (computation of v, evaluation of g“, insertion

wte

of y" and gd [typical casel)

2
rot = 2n.2, mult = 14.5n ,

Thus a typical iteration without degeneracy will consist of a + b + 2d + e,
. . 2
or 3n-3 rotations and 19.5n multiplications. With degeneracy, a typical itera-

i
tion will require 5n-5 rotations and 34n multiplications,

2, Order of the columns of Y and G. In forming AG preliminary to the

e

computation of g“, the vector g] is subtracted from the other columns of G.
if ]klllis much larger than IhiIL then the vector 8; will be overwhelmed by g
Jo

The matrix Y inherits this order, and since HfiH = Ibi]L it may be presumed

1°

To avoid this we order the columns of G so that ]h]]|£ |h2“ S ... € |hn+]

that when the process is converging, the vector Xy is nearer the solution than

X + The ordering has the advantage that it gives a favorable operation count

i+1

for the updates in the case when y“ replaces the column for which the norwm of

g is largest,

3. Communication with the user., The user must of course furnish code to

evaluate the function f, which is cusFomarily done in a subprogram provided

by the user, After the secant prediction y* has been calculated the user must
decide whether the process has converged. 1f it has not, he must decide whether
the predicted point is acceptable and if not what to do about it. Since no
single strategy is likely to be effective in all cases, we have left a blank
section in our implementation of the algorithm where the user may code his own

decisions,
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4, Obtaining initial factorizations. The updating algorithm can be used

to obtain the factorizatioms (2.1) and (2.2) at the start of the algorithm.
The user of course must furnish nt+l vectors Ky sXgyeaesX g in the matrix X,
At the k-th (k=0,7,...,n) step of the initialization procedure, assume that
the factorizations of the matrices Xlk = (xi,...,xk) and F.t'k = (f]’f2"“’fk)
are known; i.e,

\k T, |k k k

X" =PY, 6 =qF'S,

where YIk = (y],...,yk) and le = (g],...,gk) are upper trapezoidal., Calculate
. |k |k

the vectors Yi+1 ka+1 and Bl = ka+]. Append @ column to Y and G/ and

insert Y1 and Be1? making sure that the columns just appended are the ones

to be discarded, and update as usual. After the n-th step all the vectors in

X and F will have been incorporated into the factorization.

5. Using an old Jacobian. When a sequence of closely related problems

are being solved, the solution of one may be a good approximation to that of
the next. Moreover the approximation to the old Jacobian implicitly contained
in the matrices Y, P, G, and Q may also be a good approximation to the new
Jacobian., Unfortunately the new iteration cannot simply be started with the
old matrices Y, P, G, and Q, as the following hypothetical example shows,
Consder the case illustrated below in which the numbers associated with

the points give the norms of the function values.

“107%

The point labeled ]0"6 is the converged value for the old iteration. When the

-
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process is restarted with the new function, the point will have a much higher
- *
function value, say the circled 10 2. Consequently the prediction x will be

*
far removed from the original points, and when y is inserted into Y, the array

\.

will be judged to be degenerate. Moreover the function value at x will have

-3
a norm (10 7 in the example) which is out of scale with the old values, Thus

both the G and the Y arrays must rescaled before they can be used with the

new function,

Our method of scaling consists of two steps, First the columns of AY are
scaled so that their norms are equal to lb*-yllL The modification is extended
to G by linearity. Then, with g; denoting the new g value at Yi» the columns
of G are increased by 81-8). This scaling technique is described below, The
notation Insert(g,i,j) means insert g into column i of G, throwing out column

j, then update as usual,

1. <Calculate the new value gi corresponding to Yy
W -1 .
1
3.1 For i=2,3,...,mtl

Iy -y, IV b=, I

2, y, * Y + wi(yi-y])

=
i

&, quert(gi-g],1,l), multiplying the update transform-
ations into g4
5. 8; =8; * (8778, (i=2,3,...,mt1)

6. Insert(gi,1,])

It should be noted that statements 3.2 and 3.3 do not destroy the upper

triangularity of the matrices Y and G, since only the first elements of ¥, and
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g, 4w nonzero. Statements 4, 5, and 6 are a circumlocution designed to avoid
excessive updating. Statement 4 transforms the system so that g{-g] is nonzero
in only its first componment, after which G may be altered without destroying

its upper triangularity (statement 5)., Statement 6 places gi in its rightful
position,

The y* predicted by the scaled Y and G will be the same as the y-‘lr of state-

ment 1. The columns of G need no longer be in order of increasing norm; but
since all but the first represent old data, they should be discarded as soon

as possible,

6. Incorporating linearities. As was mentioned in Section 1, degeneracies

are certain to develop when some of the component functions are linear. Since

the procedure for removing degeneracies is about as expensive as a secant step,
it is important to be able to deal directly with such linearities. This may be
done as follows,

Assume that f: [Rnﬂ?. - ‘Rn’

and that the equation f£(x) = 0 is supplemented

by £ linear equations of the form

.1 Ax = b,

|R(n+£)x.e L

where A ¢ s of full rank. Suppose that we are given a unitary matrix

U such that
(4.2) AU = (0 T)

T M L3 ~ Lad
where T is square. Set X = U x and partition % in the form £ = (xf,xg)T, where

X, € \’R‘ﬂ. Then from (4.1) and (4,2)

X9
4.3 TX, = b,
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Since A is of full rank, T is nonsingular and any solution of the system

(4.1) must have £2 = T‘]b.

Define the function f£: IN™ - K" hy

Hhy
—
E3
1
sl
fo
/_"_“\
i "
— —
z___

Then f(§1) = 0 if and only il

[}

®
X U }
T b
gatisfies f(x) = 0 and Ax = b, The secant method may now be applied to f.
The matrix U required by this process may be obtained in the usual way
as the product of Householder transformations [5]. When this is done, the

matrix T will be triangular, which makes the equation (4.3) easy to solve,

5. Numerical Examples and Conclusions

The algorithm described in the above sections has been tried on & variety
of problems., Here we summarize the results of three tests that exhibit the
typical behavior of the algorithm,

The first example involves the function whose i-th component is given by

i n

fi(x) =1i- Ix;+ qi.Z‘(1—xi)
i=1 j=i

2
. . . ~ T . .
This function has a solution at £ = (1,1,...,1) . At the solution its Jacobian
is the lower triangular matrix whose nonzerc elements are all -1, a nicely con-
ditioned matrix. The numbers q, may be chosen ad libitum to make the function

more or less nonlinear. Table one summarizes the results of applying the above
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algorithm ot this function with n = 15 and q; = .3 (i=1,2,...,n). The initial
estimate was the point (0.8, 1.2, 0.8, T.2,...,O.8)T. The remaining 15 points
required by the algorithm were obtained by adding alternately + .05 to the suc-
cessive components of the initial estimate. The results are summarized in

Table 1, where |le|| denotes the Euclidean norm of the error in the current iterate,
”f” denotes the Euclidean norm of the current function value, and Ih“ denotes

the norm of the vector u used to check degeneracies. Of the starting values

only the central one is reported. At three points it was necessary to rectify

a degeneracy; otherwise the convergence is routine (the iteration was terminated
when [|£] < 107%).

The second example uses the same function with n = 5, 4 S 9 = 49 = g, = .3
and 95 = 0. The starting points are generated in the same way as for the first
example., Since the fifth component of the function is linear, degeneracy can
be expected in the iteration. It occurs at the seventh step (]| = 4.6-103)
and is handled easily.

The third example tests the algorithm for reusing old information. The

function depends on a parameter s and is defined by

i n 2
fi(x) = {.5 - 'E x; + qi.E.(s-xi) .
j=1 j=i

With n = 5 and q; = .3 the zero (s,s,s,s,s)T was found for s = 1,0, 1,2, 1.4,
1.6, 1.8, 2,0, The information from one solution was used to start the next,

The results are summarized in Table three. The last three solutions are atypical
in that they require effectively only a single iteration to converges, This is

because the error vectors and the function values were the same at each new
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starting point, and this information had been preserved from the last solu-
tion,

These examples are given principally to illustrate the behavior of the
algorithm, Additional experiments suggest that the local behavior of the
method is quite good. Indeed if one believes that the algorithm for fixing
degeneracies will work, one can apply the theory in {3] to give local conver-
gence proofs. However, we believe it is too early to make general claims
about the algorithm, For example, we do not konow if damping techniques can
be used to make it effective on problems where it otherwise would not work,
it is hoped that the program described and listed in Part Il of this report

will help interested researchers to investigate the algorithm and compare it

with others.
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Table 1
lle ] li]l Tl
7.7.107" | s.0.107" | 2.7.10°
133070 | ao1a07t  1.2.102
7.5-10'] 2.8.101 1.4.101
1.2.1072 | 1.3.1072 | s.7.10]
2.9.10'3 4.7.10'3 6.2.10°
9.8-10'3 4.3.10“1 1.3-101
2.4.10% | 2.8.107% | 1.5.10%
-3 -2 1
3.0.10 1.0.10 1.2.10
=5 -5 1
1.1.10 3.3.10 2.4.10
-6 -6 1
1.6-10 4.6-10 4.3.10
4.3.1077 | 1.5.107% | 2.5.10
z.10” | 4.2.1077 | 2.8.10"
Table 2
el llgl) (e ||
4.5.10"" | 4.5.10°7 | 1.6.10°
7.9.10°% | 1.1.107 | 2.6.10
.2 -3 1
1.0-10 8.2.10 2.5-10
-3 -3 1
3.6.10 4.1.10 7.5.10
3.2.10'“ 2.5.10'4 7.2.10'
1.0.107% | 1.3.107% | 1.2.10
2.9.10°% | 2.3.10°% | 4.6.10°
1.0.10"4 3.4.10'4 5.0-10°
5.4.10'8 1.1-10'7 4.7.100
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Table 3
lle f| el [ha ]l
.50 | 401077 | 1.6.10"
=7 -
4.3.10°° ] 6.5.102 | 2.6.10"
-3 . -3 1
4.7-10 3.1-10 2.3.10
1.4-10'3 1.2.10'3 1.7.102
3.7.107° | 1.1.107% | 4.s5.10°
2.9.10 | 3.9.107° | 6.9.10°
2.8.10°% 1 3.8-107% | 4.2.10°
7.0-10"° 9.0-10'8 5.6-10"
4.5-10'] 1.5-10° 1.0-101
6.6.10"° 9.1.10'2 6.4.10°
2.5.1073 | 2.1.107° | 9.6.10
9.7.10™* | 1.0.107 | 1.5.70'
2.5~10'5 2.3-10'5 1.19102
-3 A 2
1.0-10 8.1-10 2.8.10
9.9-10'4 8.1.10‘4 2.4-100
2,7,10‘7 4.2u10"7 1.0.101
4.5.10'] 1.5.100 1.0.10]
-2 ) -2 ) 0
5.1.10 6.7.10 3,3.10
2.3.10'3 2.5.10'3 7.1.100
1.7.10"4 1.7.10'4 1.9.10T
-6 -7 1
1.0.10 7.2.10 6.8.10
- 0 2
4.5.10 1.5.10 1.4.10
6.7-10—] 1.5.100 9.7.100
1.2.1077 | i.s.107' | 1.s.10!
4.5.100 | 1.5.10° 1.5.10
1,110 | 2.0.1077 ] 2.8.10"
4.5.10"" | 1.5.10° 2.8.10"
8.0-10'8 1.5.10"7 5.6-10]
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PART I1

1. Introduction

In this second part of this report we shall describe and list a program
implementing the method described in Parr I. Since the program is quite com~
plex, the description is divided into two sections, The first section tells
the casual user what he needs to know to use the program; the second section
describes the program and its subroutines in greater detail and presupposes

a familiarity with Part I,

2, JUsage

SSM is a FORTRAN subroutine designed to solve the system of equations

f(x) =0,

Ax = b,

where f: ”<n+2 *iFin and A ¢ WiEX(n+£) (thus n is the number of nonlinear equa-
tions and £ is the number of linear equations in the system), The user must
supply to the program the matrix A, the vector b and a subroutine to evaluate
the function f. The user must also supply a set of n+l estimates of the solu-
tion; however if a sequence of closely related problems is being solved, the
output from the solution of one problem can be used in place of the estimates
for the next problem. The user must also supply a section of code in SSM to

check convergence.

Calling 5SM, iInformation is transfered to SSM by the arguments in the

subroutine call and by a common block. The calling sequence 1is

CALL SSM(X,F,N,L,EVAL,NEWJAC ,NEWA ,NEWE ,VAIL) .



The parameters in the calling sequence are

X{N+L) a real array (of minimum dimension n) that on return

contains the solution

F( a real array that on return contains the value of f at X
N n, which must be greater than one

L i, which may be zero

EVAL the name of a user coded subroutine to evaluate f

NEWJAC a logical variable which when true indicates that the
uyser has provided a set of nt] estimates in the common
array Y. NEWJAC can be false only after S5 has been
called at least once, in which case it tells 584 to use

the results of the last run to start the current run

NEWA A logical variable, which if true indicates chat the
coafficients of the system Ax = b have just been placed
in the common array A, [{ the same coefficients are to

be used in subsequent runs, NOWA must be false,

NEWB A logical variable, which if true indicates that the
clements of Lhe righthand side of the syster Ax = b have
been placed in the common array B. 1f the same right-
hand side is to be used in subsequent calls, NEWB must
be false. 1f NEWA is true, S8 assumes that NEWR is

also true.
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FAIL An integer which on return contains an error indicator,
1f FAIL is zero all has gone well. Otherwise FAIL contains

an error trace (see 33 below).
The common block is
COMMON,/SSMCOM/A (L ,N+L+2) ,B(L) ,Y (N+L:2 ,N+1)

where the dimensions given are the minimal ones. As explained above A and B
contain the coefficients and righthand side of the linear system and the columns
of Y contain n+l estimates of the solution, All of this information is altered
by the system. If it is desired to use it later then NEWJAC, NEWA, or NEWB,

whichever are appropriate, must be set to false,

The subroutine EVAL. The user must furnish a subroutine to evaluate the

function, Its calling sequence is

CALL EVAL(X,F,FAIL),

The arguments are

X (N+L) an array containing the point x to be evaluated

F(L) an array that on return contains f(x)

FAIL an integer that is initially zero. If a failure occurs
it should be set to any integer from 1 through 99, This
will cause SSM to abort. The last two digits in FAIL

will contain the number set in EVAL,



-30-

If further intormation must be communicated to FVAl, this may be done through

common statements,

Convergence and other tests. 1In its main loop, SSM produces a new approxi-

mation to the solution which must be tested for acceptability. Since no fixed
strategy is likely to be satisfactory for all prohlems, the user is required
to furnish his own tests in the section labled 500, This is also the place to
insert ad hoc damping techniques and tests to insure that the iteration does
not continue too long, Additional information can be communicated to this sec-
tion by extending the argument list of 55M or by a common block.

In coding this section it is important to realize that SSM works in a co-
ordinate system different from the x-f coordinate system of the user: call it
the y-g coordinate system, To each n-vector y there corresponds a nt+f vector

x satisfying Ax = b, which can be retrieved by the statement

CALL EVAL G(Y,X,F,G,GNRM,,TRUE, ,EVAL,FAIL)

The vector x corresponding to y is returned in the array X. The arguments
F,G,GNRM, and FAIL are irrelevent in this context., To each function value f
there corresponds a value g. Given y, the set of vectors x, f, and g can be

retrieved by the statement

CALL EVAL G(Y,X,F,G,GNRM,.FALSE, ,LVAL,FALL)

On return GNRM contains the Euclidean norm of g, which is approximately equal
to the Euclidean norm of f. If FAIL is nonzero on return, it contains the value
to which it was set in EVAL, The f value corresponding to a given g can be

found by mulciplying g by the transpose of the nxn matrix contained in the array

Q.
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When SSM enters the section labled 500, the arrays YY and GG contain the
peint from which the prediction was launched and its g-value,YS contains the
predicted point, and DY contains the difference DY = YS - YY, The array
element NORM(1) contains the Euclidean norm of GG. The arrays X, F, SN, CS,
and GS may be used for scratch,

In this section the user must decide whether or not to continue the itera-
tion. If he decides to continue he must provide an acceptable prediction in
¥S and its corresponding g value in GS, then transfer control to statement 600,
It should be stressed that the value of YS need not be the same as the value
that was input to the section., For example, YS may he taken to be YY + ADY,
where X is chosen so that the norm of GS is not too large.

Either convergence or an error may make the user decide to terminate the

iteration. On normal convergence the user should first execute the statement

CALL EVAL G(YS,X,F,GS,GNRM, FALSE, ,EVAL,FAIL),

in order to place the converged x and f in X and F, and then return. On an

error the user should return after executing the statement

FAIL = FAIL + k

where k = 10000-i (i=8,9,...).

Parameters set in SSM. Five parameters contained in the common block

SECPRM are set at the beginning of SSM. The variable TOL contains a tolerance
for detecting degeneracies (see §I.3). The variable NTRY contains an upper
bound on the number of attempts to rectify degeneracies and is currently set

to n. The variable SCL is set to ,1 to handle a rather unlikely error in the
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subroutine CHKFIX, The variable UTBND is set to M+3 and insures that any
given point will not be used too long. The only parameter the user should
have to fool with is MCHEPS, which contains the largest floating point number
for which the computed value of 1. + MCHEPS is equal to 1, (Only a rough esti-
mate of the value is needed; e.g. if the floating point fraction contains 27

8

bits then MCHEPS may be taken to be 10 .)

Minimal dimensions. S5M will of course not work if its arrays are too

small for the problem. Here follows a list of subscripted variables in 35M

with their minimal dimensions.

X(N4L) ,F(N+L) ,A(L,N+L+2) ,B(L) ,Y (ML42 , N+ 1)
G(NHL42 ,NH2) ,MARK (N+1) , NORM (M+1)

P(N,N) ,Q(N,N).

In addition, the first dimensions of Y and G must be equal, The second argu-
ment in EVALG must be dimensioned at least N+L, All other arrays in the pro-

gram must be dimensioned at least N.

3, Program Details

General considerations. The program consists of eight subroutines: SSM,

the controlling program; CHKFIX, which detects and rectifies degeneracies;
INSERT, which modifies and updates the matrices Y and G; SECSTP, which makes a
secant prediction; EVALG, which calls the user coded function EVAL to get a
function value; REDUCE, which accomplishes the reduction described in $1.2;
HESRED, which triangularizes a Hessenberg matrix in G; and ROT which computes

plane rotations.
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These subroutines are linked by three common blocks. The block SECCOM
contains variables that must be visible to the user. The block SECPRM contains
parameters whose values should seldom have to be reset, The block SECVAR con-
tains the remaining variables that are shared by the program,

The array names follow the nomenclature of Part I. In addition, the array
NORM contains the Euclidean norms of the columns of G. The array MARK contains
integers associated with the columns of Y and G that tell INSERT which columns
must be thrown out (specifically if MARK(I) = (QUTBND, then CHKFIX and INSERT
will attempt to discard column I before others with MARK < oUTEND) .

The program is provided with an error tracing feature that operates as
follows, Each subroutine is assigned a power of ten, its failno, If an error
occurs in a given subroutine, it executes the statement FAIL = FAIL + i*failno,
where i=1,2,..,,9. The calling subrouinte regards the return of a nonzerc
value in FAIL as an error and does the same thing. In this way the program
is aborted with an integer in FAIL whose digits tell where an error occurred
and how the program got there,

We shall now give a brief description of each of the subroutines.

SSM(X,F,NN,LL,EVAL ,NEWJAC,NEWA ,NEWB ,FAIL) ; failno = 104. The calling se-
quence for this program has already been discussed, After some initialization,
S5M checks for a new matrix of coefficients in A, If there is one, Householder
transformations H]’H2""’Hz are determined so that AH,,,.H_ = (0 T) where T

1 b
is upper triangular. The matrix A is overwritten in the array A by H1’°"H£
and by T (this requires two extra columns). If either NEWA or NEWB is true,
the system Tﬁz = b is solved, the solution overwriting b.

The iteration may be started either by using the Jacobian from a previous

iteration or by building up a new Jacobian. The first alternative is effected
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by a straightforward implementation of the technique described in Section
1.4.5, If the Jacobian has to be built up, it is done by the technique de-
scribed in Section I.4.4.

In the main loop, the directions are checked for independence and a secant
step is taken., After SSM emerges from the user coded testing section, the new
point is inserted into the Y and G arrays (see the description of INSERT), the
values in the array MARK are increased by unity to prevent a point from hang-
ing on too long, and the loop is begun again.

CHKFIN(EVAL,FAIL); failno = 103. This is a fairly straightforward imple-
mentation of the algorithm described in (1.3.7), with some special features.
The transpose of the Hessenberg matrix A is formed in the lower part of the
array G starting in row three., 1f the columns of A are zero, the minimum in

(1.3.7.3.3) is taken to be SCL‘-'ny1

. The matrix A is reduced to triangular
form by HESRED, and all diagonal elements of A that are too small are set equal
to MACHEPS.

The column to be thrown out is vestricted by the array MARK. If some
MARK(I) = QUTBND) then the column K that is thrown out must satisfy
MARK(K) = OUTBND; otherwise any column with MARK = 0 may be thrown out. The
new column is given a MARK of zero and the elements of the array MARK are in-
creased by unity.

INSERT(YS,GS ,GNRM,0T,M), This subroutine inserts YS and GS in ¥ and G,
treating Y and G as N by M arrays. The index of the golumn to be thrown out
is specified by 0T, 1f OT is zero, then the column of largest NORM is chosen,
subject to the same MARK restrictions that govern CHKFIX. The new columns are
inserted just before the first column of larger norm and are given a MARK of

zero., The matrices Y, P, G, and Q are updated by REDUCE.
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SECSTP(YY,GG,YS,DY,FAIL); failno = 102. This subroutine calculates
DY = - AY*(AG)—1*GG and the secant prediction YS = YY + DY, As in CHKFIX the
lower part of G is used as a scratch array to contain the transpose of AG,
which is reduced to triangular form by HESRED,

EVALG(YP,XP,FV,GV,GNRM, ONLYX ,EVAL,FAIL), Given the point YP, this subroutine
finds the corresponding x-vector XP, calls EVAL to obtain a function value FV,
and converts FV into a vector GV in the g-coordinate system. If ONLYX is true,
the routine returns before calling EVAL,

REDUCE (Y,P,IN,N,M), This subroutine reduces a matrix Y of dimension NxM
with a stalactite to triangular form via the method described in $1.2. The
stalactite is assumed to be in column IN, The transformations are accumulated
in P.

HESRED, This subroutine reduces a Hessenberg matrix to triangular form
using plane rotations., The matrix is stored in the lower part of G starting
in row three. The rotations are returned in the arrays CS and SN.

ROT(A,B,CS,SN,R). This subroutine computes plane rotations for REDUCE and

HESRED,

4, Program
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SUBROUTINE SSM(X,F,NN,LL,EVAL,NEWJAC,NEWA,NEWB, FAIL)
PARAMETERS IN THE CALLING SEQUENCE.

REAL F(28),X{28)

INTEGER FAIL,LL,NN
LOGICAL NEWA,NEWB,NEWJAC
EXTERNAL EVAL

GLOBAL VARIABLES.

COMMON /SECCOM/A(20,22),B{(28},Y(22,21)

COMMON /SECVAR/CS (28),6G(22,22),L,LM1,MARK (21} ,N,N1,N2,
1 NL,NL1,NL2,NM1,NM2,NORM(21) ,P (28,20),
2 Q(28,208},RSAN, SN (28)

COMMON /SECPRM/MCHEPS, NTRY,OUTBND, SCL, TOL

REAL A,B,CS,G,HMCHEPS,NORM,P,Q,RSAN,SCL, SN, TOL, Y

INTEGER L,LM1,MARK,N,N1,N2,NL,NL1,NL2,NM1, NM2, NTRY, OUTBND

YARIABLES INTERNAL TO SSHM.

REAL DY (28),6NRM,GG (28),GS5 (28}, MAX, OMEGA, OMEGAL ,
1 S,T,YY{28),Y5(28)
INTEGER 1,11,11,d,4J,K,KK,KML,NK

SET UP YALUES [N SECPRM.

TOL = l@a@.
NTRY = NN
MCHEPS
SCL = .
OUTBND

1.E-8

Ho— B

N+3
INITIALIZATION,

L =LL

LMl = L-1
N = NN

N1l = N+l
NZ = N+2
NL = N+L
NL1 = NL+1
N.Z = NL+2
NMI = N-1
NMZ2 N-2
RSAN = 1./SORT(FLOAT(N))
FAIL = @

nn onou

[

CHECK FOR LINEAR SYSTEMS.
IF{L.EQ.8} GO TO 288
PROCESS THE LINEAR SYSTEM,

IF {.NDT.NEWA) GO TO 188
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REDUCE THE MATRIX OF THE LINEAR SYSTEM BY
HOUSEHOLDER TRANSFORMATIONS.

DO 178 KK=1,L
K = L-KK+1
NK = N+K
MAX = 8.
DO 1@ J=1,NK
MAX = AMAX1 (MAX,ABS(A(K,J)))
CONTINUE
IF(MAX .NE. 8.) GO 70 128
FAIL = 18008
RETURN
S = 0.
D0 138 J=1,NK
AlK,J) = ALK, J)/MAX
S =5 + AlK, D) yee2
CONTINUE
S = 50RT(S)
IF(A(K,NK) .LT. 8.} § = -S
AIK,NK) = A(K,NK} + S
A(K,NL1) = SsA(K,NK)
AK,NLZ) = -MAX=S
IF(K .EQ. 1) GO TQ 178
KML = K-1
D0 168 [=1,KM1
T = 8.
D0 148 J=1,NK
T=T4+ A“,J)a‘tA(K.J]
CONTINUE
T = T/A(K,NL1)
DO 158 J=1,NK
All, ) = A(l,J) - TrAIK,J)
CONTINUE
CONTINUE
CONTINUE
1F (. NOT, (NEWA .OR. NEWB}) GO TO 288

SOLVE THE TRIANGULAR SYSTEM FOR THE CONSTANT
PART OF THE TRANSFORMED SYSTEM.

B(L) = B(L}/A(L,NL2)
IF{L.EQ.1) GO TO 200
DO 195 Il=1,LM1
I = L-11
11 = I+1
D0 138 J=11,L
NJd = N+J
B{I} = B(1) - A{I,NJ)«B(D)
CONTINUE
B(I} = B{I}/A(],NL2)
CONTINUE

CHECK THE STATUS OF THE APPROXIMATE JACOBIAN.



l1lloa
11208
11368
11408
11508
licoe
11708
11800
11800
12068
12100
12208
12300
124008
12518
12688
12708
12808
12808
13008
13104
13268
13300
13400
135608
136080
137600
13888
13368
14008
141988
142088
14308
14408
14508
14608
14708
14808
14508
15p48
15108
15208
15380
154068
15560
15660
15768
15808
15908
16088
16188
162008
16308
16408
16508

C

C
C
C
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208 1F (NEWJAC) GO 1O 308

285

218

215

228

225

238

235
248

245

RESCALE THE OLD APPROXIMATE JACOBIAN.

MARK (1) = 8.
DO 205 1=1,N
YY (i) = @.
MARK (I+1) = OUTBND
CONTINUE
¥YY{1) = Y(1,1)
CALL EVALG(YY,X,F,GG,GNRM, .FALSE, ,EVAL,FAIL)
IF(FAIL .EQ. 8} GO 7O 214
FAIL = FAIL + 20000
RETURN
CALL SECSTP(YY,GG, YS,0Y,FAIL)
IF(FAIL .EQ. 8) GO TO 215
FAIL = FAIL + 38008
RETURN
S = (YS{1} - Y(1,1})eeee?
0o 228 1=2,N
S =5 + YS5(1)w?
CONTINUE
S = SORT(S)
DO 24B J=2,N1
T = (Y{l, ) - YU1,1))eee2
DO 225 1=2,N
T=T4+ Y(l.J)**Z
CONT ENUE
IF(T .NE. 8} GO TO 238
FAIL = 40808
RETURN
OMEGA = S/S0RT(T)
DOMEGAL = 1. - OMEGA
NORM(J) = SORT{ (OMEGAL+NCRM (1} ) w2 +
Z.ﬂD”EGAl*UNEGAﬂﬁfl.1)*G(1.J] +
(OMEGA=NORM {J) ) 522}
Y(l.J] DNEGAI*Y(I.l] + UNEGAﬂY(l,J]
G{1,J} DMEGAL%G{1,1}) + OMEGA=GI(1,4)
NJ = MINB(N,J)
DO 235 ]=2,NJ
Y{I,d) = OMEGA%Y(I,J)
GI,J) DMEGA=G {1,
CONTINUE
CONTINUE
DO 245 1=1,N
G(I,N2} = GG(I)
CONTINUE
GG(1} = GG{1) -~ G{1,1)
CALL INSERTI{YY,GG,d.,1,N2}
DO 258 J=2Z,Nl
NORM{J} = SARTIGI1,1) 2 +
2.4%6(1,1)sG{1,J) +
NORM () #exe2}
61, = G(1,4) + G(i,1)

K



le608
167688
16888
16900
17688
171889
172608
17308
17408
17588
17600
17708
17808
17380
18868
18108
182p8
18308
18408
18508
18688
187008
18888
18369
190@8
19108
19208
19380
19408
19588
19600
19788
19808
19368
2Beoee
20100
28208
28300
208488
28580
20688
28768
28868
28308
21808
21188
21280
21368
21498
215e8
2le6p8
217809
21808
21900
22880

o000 aOooaf

c
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258  CONTINUE
DO 255 1=1,N
GG(I) = G(I,N2)
255  CONTINUE
CALL INSERT (YY,GG,GNRM, 1,N1)
GO TO 4ee
382 CONTINUE

THE APPROXIMATE JACOBIAN IS TO BE FORMED FROM A
NEW SET OF POINTS. BUILD UP THE MATRICES Y,P,G, AND Q.

IF(L .EQ. B} GO 70 325

THERE ARE LINEAR EQUATIONS. TRANSFORM
THE POINTS.

DO 328 KK=1,L
K = [L-KK+1
NK = N+K
DO 315 J=1,Ni
T = 0.
GO 385 1=1,NK
T=T+ AWK, 1)Y(1,J)
385 CONTINUE
T = T/A(K,NL1)
DO 318 I=1,NK .
Y(,J = Y(I,d) - T#A(K, 1)
318 CONTINUE
315 CONTINUE
328 CONTINUE
325 DO 358 I=1,N
DO 348 J=1,
. P(I,J}
g,
348 CONTINUE
P(I,I) =
G{r,1y =1,
358 CONTINUE
D0 388 K=1,N}
DD 378 1=1,N
YY (1) = 8.
DD 368 J=1,N
YY{1} = YY({1) + P{1,D)%Y(Jd,K)
360 CONTINUE
378 CONTINUE
CALL EVALG(YY,X,F,GG,GNRM, .FALSE. ,EVAL,FAIL)
IF (FAIL .EQ. 8) GO 70O 373
FAIL = FAIL + 58088
RETURN
373 NORM(K} = GNRM
CALL INSERT(YY,GG,GNRM,K,K)
388 CONTINUE

N
Bl
8.

04

—
.

MAIN LOOP. OBTAIN A SET OF AFFINELY INDEPENDENT
POINTS AND THEN TAKE A SECANT STEP.



22108
22208
22388
22480
22568
22600
22788
22800
22908
23880
23168
23208
23300
23408
23508
23660
23780
23800
23308
248648
24100
242088
24368
24408
24500
24608
24788
24808
24308
25800
25108
25208
25388
254808
255808
25600
25788
25808
25368
268008
26100
26268
26308
26408
265048
26600

OO0 oO00n

00

490

485

419

568

518

65a8

618

40~

CALL CHKFIX{EVAL,FAIL}

IF(FAIL .EQ. 8) GO TO 485
FAIL = FAIL + 68088
RETURN

D0 418 1=1,N
YY{I} = 8.
GG(I1) = 8.

CONTINUE

YY(1} = v(1,1)

GG{1} = GI(1,1)

CALL SECSTP(YY,GG, YS,0Y,FAIL)

[F(FAIL .EQ. @} GO TO 568
FAIL = FAIL + 700600
RETURN

DN ENTRY TO THIS PART OF THE PROGRAM, YS CONTAINS
A NEW POINT. 1T IS THE RESPONSIBILITY OF THE

USER TO PROVIDE CODE THAT DETERMINES WHETHER YS IS
ACCEPTABLE AND WHETHER THE I[TERATION HAS CONVERGED.
ON EXIT (OTHER THAN A RETURN), YS AND GS MUST
CONTAIN AN ACCEPTABLE POINT AND ITS VALUE,

THE SAMPLE SECTION BELOW RETURNS IF THE NORM

OF THE FUNCTION IS LESS THAN OR EGUAL TO 1.B8E-B.
BEFORE RETURNING INSERT AND CHKFIX ARE CALLED TO
INSURE THAT THE LATEST APPROXIMATION TO THE
JACOBIAN 1S CONTAINED IN THE ARRAYS Y,P,G, AND Q.

CALL EVALG(YS,X,F,GS,GNRM, .FALSE. ,EVAL,FAIL}
IF(FAIL .EQ. 8) GO 70 514@
FAIL = FAIL + 88068
RETURN
IF (GNRM .GT. 1.E-B) GO TO 680
CALL INSERT(YS,GS,GNRM,8,N1)
CALL CHKFIX(EYAL,FAIL)
IF(FAIL .NE. @) FAIL = FAIL + 50008
RETURN

INSERT THE NEW POINT AND GO BACK FOR ANOTHER.

CALL INSERT(YS,GS,GNRM,8,N1}
DO 618 1=1,Nl

MARK (1) = MARKI(])} + 1
CONTINUE
GO TO 468
END



WA

oglpe SUBROUTINE CHKFIX (EVAL,FAIL)

88208 C

BB3B3 C PARAMETERS IN THE CALLING SEQUENCE.

Ba4BD C

pasa0e INTEGER FAIL

515y 4] EXTERNAL EVAL

Ba7eB C

g8saen C GLOBAL VARIABLES.

BR9YY C _

21808 COMMON /SECCOM/A(28,22),B(28),Y¢22,21)

21168 COMMON /SECVAR/CS(28),G(22,22),L,LM1,MARK (21),N,N1,N2,
81288 1 NL,NL1,NL2,NM1,NM2,NORM (21) ,P €28, 28),
B1388 2 0(28,28) ,RSAN, SN (28)

plaee COMMON /SECPRM/MCHEPS, NTRY, OUTBND, SCL, TOL

plses REAL A,B,CS,G,MCHEPS, NORM,P,Q,RSON, SCL, SN, TOL, Y
plepe INTEGER L,LM1,MARK,N,N1,N2,NL,NL1,NL2,NM1,NM2,NTRY, OUTBND
81708 C

81808 C VARIABLES INTERNAL TO CHKFIX.

81908 C

82008 REAL F (28}, GNRM, GS (28) , MINNRM,NRM, S, T, U{28) , UMAX, UNRM, V (28) ,
82120 1 VNRM, X (28}, YS (28)

82288 INTEGER 1,11,11,1M1,4,41,J4U,0UT,0UTSET, TRY
B2388 LOGICAL NRMSET

p2408 EQUIVALENCE (CS(1),YS(11), {SN(11,G5(1)), (U(1},X(1)),
82588 1 (Y(1},F(1}))

B2600 C

g2708 C TRY NTRY TIMES TO OBTAIN AN AFFINELY [NDEPENDENT
P28b0 C SET OF DIRECTIONS,

82988 C

83880 DO 688 TRY=1,NTRY

B3ieAa e

83288 C DETERMINE WHICH VECTORS MAY BE THROWN OUT.
83388 C

83408 CUTSET = @8

p3588 00 18 I=1,N]

83680 OUTSET = MAXB(MARK (1},0UTSET)

p3708 18 CONTINUE

83880 IF (OUTSET .LT. OUTBND) OUTSET = B

839889 C

049808 C FORM THE TEST MATRIX IN THE SCRATCH AREA OF G.
P4100 C

B4208 18@ NRMSET = .FALSE.

B4388 DO 138 J=2,N1

844P8 Ji = 441

B4SEB GeJi,1) = Y(1,J) - Y(1,1)

B46QA NRM = G{J1,1) w2

84708 JU = MINB(J,N)

P48E Do 118 1=2,JU

84988 GWJ1,1) = Y{I,h

858680 NRM = NRM + G{J1,1) =2

p5108 118 CONTINUE

p52680 [F{NRM ,EQ. 8.) GO TO 138

P5l3o8 NRM = SGRT (NRM)

85488 IF(.NOT. NRMSET} MINNRM = NRM

85588 NRMSET = . TRUE.



B5608
p576ee
B5808
B5oea8
pcpoe
p&108
Be208
863008
ee400
Be5e8
pE608
B6768
Be8be
B630e
87808
87108
87200
87308
87408
g75ee
87608
87708
87800
873008
B3pee
88100
88200
83308
83400
83508
B86ue
88700
B3800
B3940
839000
83108
89208
83300
834088
83588
89608
B37068
B3884a
83908
igboe
18108
182680
18308
18400
lg5ea
18688
18788
19888
183088
11068

aoo0

OO0

OOoo

42

MINNRM = AMINI (NRM, MINNRM)
DO 128 1=1,J4U
G(J1,1} = G(J1,1)/NRM
128 CONTINUE
138  CONTINUE
IF (.NOT. NRMSET) MINNRM = SCL%Y(1,1)
IF (MINNRM .NE. 8.) GO T0 280
FAIL = 10888
RETURN

SOLVE FOR U AND TEST FOR U LARGE.

288  CALL HESRED
00 218 I=1,N
IF(ABS{G(I+2,1}) .LT. MCHEPS) G(I+2,1) = MCHEPS
218  CONTINUE
U(N)} = RSON/G(N2,N)
UNRM = U{N}ww2
DO 238 11=2,N
I = N-11+1
I1 = 1+1
S = 8.
po 228 J=11,N
S =8 - G(J+2, 1)U
228 CONTINUE
U(l) = RSQON
IF(S .LT, 8.) U(I) = -RSQON
Ull)y = (U1 + S)/G(I+2,1)
UNRM = UNRM + U(L) w2
238  CONTINUE
UNRM = SQRT (UNRM)
IF (UNRM ,LE. TOL) RETURN

THE DIRECTIONS ARE AFFINELY DEPENDENT. DETERMINE
WHICH ONE TO THROW CUT.

388 UMAX = 8.
DO 318 1=2,N1
1F (MARK (1) ,LT.QUTSET .OR. UMAX.GT.ABS(U(I-1))}
1 (0 TO 318
OuT = I
UMAX = ABS{U(I-1))
318  CONTINUE

SOLVE FDR V.

408 V(1) 1./G{3,1)
VYNRM V{l)aen?2
00 428 1=2,N
S =8.
IM =1-1
0O 418 J=1,1M1
S =85 - G(I+2,JI%Y{J)
418 CONTINUE
Vi) = 1.

nofl



11108
11208
11308
11400
11508
116009
11768
11808
115e8
12008
12ie8
12208
12308
12408
12580
126088
12708
12808
12908
138088
13188
13288
13388
13408
13508
13608
13788
13888
13388
14889
14188

OO0

420

438

G080

518

520

538

432

IF(5 .LT. 8.) ¥{I) = -1,
Yl {(V{I) + S)/G(I+2,1}
YNRM YNRM + V(1)¢e2
CONTINUE
VNRM = SORT (VNRM)
DD 430 11=1,NMl
I = N-11
T = CS{I)wV{I} - SN(I)wV{l+1)
VII+1) = (€S wV(I+1) + SN(1}=V(I})/VYNRM
YII) = 7
CONTINUE
V(1) = V(1)/VNRM

COMPUTE THE NEW POINT AND INSERT IT.

YS{1} = Y(1,1) + MINNRMxV (1)

DO 518 1=2,N
YS{I) = MINNRM=V (])
CONTINUE

CALL EVALG(YS,X,F,GS,GNRM, .FALSE. ,EVAL,FAIL)
IF (FAIL .EQ. 8) GO TO S28
FAIL = FAIL + 2000
RETURN
CALL INSERT (YS, GS,GNRM,OUT,N1)
00 538 1=2,N1
MARK (1) = MARK(I) + 1
CONTINUE

680 CONTINUE

FAIL = 3888
RETURN
END



8a108
8B208
BB388
08408
8esoa
88608
88700
5517715
8e3ea
Blooe
plies
812808
p1308
81400
81508
B8lce8
a17ee
81808
a19ea
B2608
02160
82208
B23e8
82400
82508
B2608
82788
B2800
82908
93008
83108
83208
83308
83408
23508
p3600
83768
83800
ge39ee
840008
841068
- 84208
84388
84400
B4588
p4600a
847068
84800
B43908
85800
gs108
85288
25308
85480
855008

OO0

oo

OO0

a0 m

o000

YA
SUBROUTINE INSERT(YS,GS,GNRM,0T,M)
PARAMETERS IN THE CALLING SEQUENCE.

REAL GNRM,GS (20i,YS (28)
INTEGER M,0T

GLOBAL VARIABLES.

COMMON /SECCOM/A(20,22),B(28},Y(22,21)
COMMON /SECVAR/CS(28),G(22,22),L,LM1,MARK {21} ,N,N1,N2,
1 NL,NL1,NL2,NM1,NM2,NORM(21) P (28, 28],
2 Q{za, 28} ,RSON, SN (28)
COMMON /SECPRM/MCHEPS, NTRY, QUTBND, SCL, TOL
REAL A,B,CS,G,MCHEPS,NORM,P,0Q,RSON, SCL, SN, TOL, Y
INTEGER L,LM1,MARK,N,N1,N2,NL,NL1,NL2,NML,NM2, NTRY, QUTBND

YARIABLES INTERNAL TO INSERT.

REAL MAXNRM
INTEGER 1, IN,IN1,INML,1U,d, J,0UT,OUTSET

INITIALIZE THE Y AND G ARRAYS.

1U = MINB{M,NM1)
bo 18 1=1,1U
GiI+1,1)
GlI+2,1)
Y(I+1,1)
Y(I+2,1}
18 CONTINUE

i}

Honon
oo &

DETERMINE WHICH COLUMN IS TO BE THROWN OUT.

188 OUT = OT
IF(DUT .NE. 8) GO TO 158

AMONG THE POSSIBLE CANDIDATES CHOOSE THE COLUMN
WITH LARGEST G NORM.

OUTSET = 1
DO 118 1=1,M
OUTSET = MAX®(MARK(I),OUTSET)
118 CONTINUE
IF (OUTSET .LT. OUTBND) OUTSET = 8

DUt = M
MAXNRM = B.
DO 128 I=1,NM

IF (MAXNRM. GT.NORM{1) .OR. MARK(I}.LT.OUTSET)
1 60 TD 124
MAXNRM = NORM (1}
ouT = 1
128 CONTINUE
158 CONTINUE



B5680
@5740
85860
853904
gcBoae
gcl10d
86208
86388
p6404a
BE580
B6600
pE768
pegpe
B69ova
87808
87108
87208
873008
87400
87508
87608
877068
87808
87368
akya]als)
B3188
B82e8
B3368
8340a
63508
83608
88768
88308
88300
89060
B3l4a
B3208
B3348
B34p8
89500
83e6en
83788
83808
B33ea
18een
18168
16208
18308
18400
1050808
10600
18708
18808
18308
118008
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C THE VECTORS ARE TO BE INSERTED JUST BEFORE THE
C FIRST COLUMN DOF LARGER NORM.

DO 168 IN=1,H
IF{GNRM .LE. NORM(IN)) GO TO 28P
168 CONTINUE
IN = M+l

SHIFT THE COLUMNS AND INSERT THE NEW COLUMN.

[ N e Ny

288 IF(IN .EQ. OUT) GO TO 268

SHIFT THE COLUMNS

oReNw!

IF{IN .GT. OUT) GO TO 238

RIGHT SHIFT.

o000

INI = IN+1
DO 228 JJ=IN1,0UT
J = DUT-JJ+IN]
DO 2i@ 1=1,N
Y{I,4) = v(I,J-1)
G, = 6,4-1)
218 CONTINUE
MARK (J}
NORM{J)
228 CONTINUE
GO 70 268
238  CONTINUE

MARK (J-1)
NORM{J-1)

[

C LEFT SHIFT.

IN = IN-1
IF(IN .EQ. OUT) GO TO 268
INMI = IN-1
00 258 J=0UT, INM1
DB 248 I=1,N
Y(I,J} = Y{(I,J+])
G(I,J} = G(I,J+1)
240 CONTINUE
MARK (J) = MARK {J+1)
NORM(J) = NORM{J+1)}
258 CONTINUE
268 CONTINUE

€
C INSERT THE NEW COLUMNS.
C
D0 279 1=1,N
Y(I,IN} = YS(])
GUI,IN) = GS(])

278 CONTINUE
NORM(IN) = GNRM

C REDUCE THE MATRICES.



i1ie8 C

11208 388 CALL REDUCE(Y,P,IN,N,M}
113e8 CALL REDUCE (G,Q, IN,N, M}
11408 MARK(IN) = B

11568 RETURN

11688 END



28108
98208
ep308
20408
86500
20628
80700
202308
80998
#1008
gl1e8
91208
21308
P1480
81580
81628
91708
21308
91908
92008
82108
82200
A2308
82400
82594
82608
82708
22808
82900
23808
@31e8
83200
83388
83480
83528
93608
93708
83308
23908
24908
94108
84288
84308
84408
84588
B46RR
04708
4808
24908
asoee
es1ee
852080
85380
85488
85588

o Rw Ny

o RwNe

OO0

OO0

[ Moy ey

18

28

19e

118

115

128

T
SUBROUTINE SECSTPIYY,GG, YS,DY,FAIL)

PARAMETERS IN THE CALLING SEQUENCE.

REAL DY(28},GG{28),YS{281},YY(28)
INTEGER FAIL

GLOBAL VARIABLES.

COMMON /SECCOM/A (28,22) ,B{(28),Y(22,21)

COMMON /SECVAR/CS(28),G(22,22),L,LM1,MARK {21} ,N,N1,N2,
NL,NL1,NL2Z,NM1,NM2,NORM(21),P (20,208),
Q(28,28),RSON,SN (28}

COMMON /SECPRM/MCHEPS, NTRY, OUTBND, SCL, TOL

REAL A,B,CS,G,MCHEPS,NORM,P,Qd,RSON, SCL, SN, TOL, Y

INTEGER L,LM1,MARK,N,N1,N2,NL,NL1,NL2,NM1,NM2,NTRY, GUTBND

YARIABLES INTERNAL TO SECSTP.

REAL S
INTEGER I,11,11,d,JL,4U

FORM THE G-DIFFERENCE MATRIX IN THE LOWER PART OF G.

D0 28 J=1,N
JU = MINB(N, J+1}
00 18 1=1,JU
G(J+2,1) = G(I,d+1}
CONT INUE
G(J+2,1} = G(J+2,1) - G(1,1}
YS(J} = GG(J)
CONTINUE

SOLVE THE G-DIFFERENCE SYSTEM.

CALL HESRED
00 118 I=1,NM1
Il = 1+]
T = YS(I1}=CS(I) + YS{I1)%SN{(I)
YS{I1) = YS{I1)}%CS{I} - YS(1)#SN(I)
YS(I) = 7
CONTINUE
IF(G{N2,N} .NE. B.)} GO TO 115
FAIL = 188
RETURN
YS{N) = YSI(N)/G(N2,N)
00 138 11=2,N
I = N-11+1
I1 = 141
b0 128 J=I11,N
YS{I) = YS(I) - G(J+2,1)%YS{D)
CONTINUE
IF{G(I+2,1) .NE. B.) GO TO 125
FAIL = 288
RETURN



48~

856880 125 YS(1) = YS({1)/G(1+2,1)
p5708 1308 CONTINUE

85888 C

es3g8 C CALCULATE DY,

B8 C

Bc188 208 S = 0.

6208 DO 228 1=1,N

86308 S =5 + YS5(l)

@64008 Ju = MAXe(1,2)

as50e8 DY(l) = 8.

86600 00 218 J=JL,N1

pe7088 DY (1) = DY{I) - Y{I,J)=¥S(J-1)

B&800 218 CONTINUE
BE360 228 CONTINUE

g7688 DY(1) = DY(1) + S«¥(1,1}
87168 C

B7z2e8 C CALCULATE YS,

87388 C

87408 388 DO 318 l«1,N :
87508 YS(I) = YY{I} + DOY(D)
97608 318 CONTINUE

g77e8 RETURN

a73e8 END



©en100
88288
883088
peL40e
Baspee
vpces
Be7oe
5 ]5035]%)
883988
B100a
a1l1e6d
01200
81308
81400
81588
81608
01700
818809
81968
B28Be
821ee
822008
82308
B2400
B25ea
B2688
82708
92808
82308
a38ee
831048
83280
B3389
83408
83508
83600
a3708
B3808
83988
p4pe8
84100
84200
84308
B4408
B4588
B46p8e
84700
B4388
B43849
BS808
85180
85208
B5380
B54609
85508

OO0

OO0

aOO0O0n0

c

18
28

38

48

=Y
68
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SUBROUTINE EVALG(YP,XP,FVY,GY,GNRM,ONLYX,EVAL,FAIL)

PARAMETERS IN THE CALLING SEQUENCE.

REAL GNRM,FVY (208),GY{28),XP (28], YP (28)
INTEGER FAIL
LOGICAL ONLYX
EXTERNAL EVAL

GLOBAL VARIABLES,

COMMON /SECCOM/A(28,22),B(201,Y(22,21)

COMMON /SECYAR/CS (28),G(22,22),L,LM1,MARK (21) ,N,N1,N2,
NL,NL1,NL2,NM1,NM2,NORM (21}, P (28, 28},
Q(28,28) ,RSAN, SN (28)

COMMON /SECPRM/MCHEPS,NTRY, DUTBND, SCL, TOL

REAL A,B,CS,G,MCHEPS,NORM,P,Q,RSGN, SCL,SN, TOL, Y

INTEGER L,LM1,MARK,N,N1,N2,NL,NL1,NL2,NML,NM2,NTRY, OUTBND

VARIABLES LOCAL TO EVALG,

REAL T
INTEGER 1,d,K,NI,NK

TRANSFORM YP INTO THE X COORDINATE SYSTEM.

N
XP{I} = X
CONTINUE

CONTINUE

PO} + PUJ, 1) %YP(J)

IF THERE ARE LINEAR EQUATIONS, SET THE LAST OF XP
TO THE CONSTANT PART AND TRANSFORM INTO THE INITIAL
X COORDINATE SYSTEM.

IF(L .EQ. B} GO TO 1@8@
DO 38 I=1,L
NI = N+l
XP(NI) = B(I)
CONTINUE
DO 6B K=1,L
NK = N+K
T = 0.
D0 48 1=1,NK
T =T 4+ AWK, [IeXP(])
CONTINUE
T = T/AK,NL1)
DO S8 1=1,NK
XP{IY = XP(I)} - TrA(K,I)
CONTINUE
CONTINUE

IF ONLY XP 1S REQUIRED, RETURN.



85608
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IF {ONLYX) RETURN
EVALUATE THE FUNCTION

CALL EVAL {XP,FV,FAIL}
IF(FAIL .NE. B} RETURN

TRANSFORM FY INTO THE G COORDINATE SYSTEM.

GNRM = 8.
00 228 1=1,N
Gv(I) = 8.
00 2198 J=1,N
GY(I) = GVI(I) + Q(I,J)«FY(J)
CONTINUE
GNRM = GNRM + GY{I) w2
CONTINUE
GNRM = SQRT (GNRM)
RETURN
END
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SUBROUTINE REDUCE (Y,P, IN,N,M)
PARAMETERS IN THE CALLING SEQUENCE.

REAL Y(22,21),P(20,28)
INTEGER IN,M,N

VARIABLES INTERNAL 7O REDUCE.

REAL CS,R,SN,T

INTEGER 1,11,11,IN2Z,1U,d
IN2 = IN+2

IF (IN+1.GE.N) GO TO S8

REDUCE THE STALAGTITE.

D0 48 11=IN2,N
I1 = N-T11+IN2
1 = 11-1
IF(Y{I1,IN) .EQ. 8.} GO TO 4@
CALL ROT(Y{I,IN},Y(I1,IN),CS,SN,R}
Y{i1l,IN} = B.
Y(I,IN) =R
IF{I.GT.M) GO TO 28
DO 18 J=1,M
T = CS}':Y(I,J] + SN\':Y“I.J]
Y(I1,d) = CSwY(I1,J) - SNeY(I,J)
YiI,J) = T
CONTINUE
CONTINUE
DO 38 J=1,N
T = CSxP{1,J) + SN«P(I1,J)
P(I1,J) = CS«P(I11,J} - SN«P(I,J)
P,0) =T
CONTINUE
CONTINUE
CONTINUE

REDUCE FROM HESSENBERG TO TRAPEZIGDAL FORM,

IU = MINB(M,N-1)
0D 188 1=1,1U
Il = I+]
IF(Y(I1,1) .EG. B.) GO TO 198
CALL ROT(Y(i,I},Y(I1,1),CS,8N,R)
Y(I,I) =R
Y(I1,1) = B,
IF(I1 .GT. M) GO TO &9
DD 78 Jel1,M
T = CSwY(1,J) + SNxY(11,J)
Y{I1,J) = CSwY{I1,4) - SNwY{(l,J)
Yi{l,J} = T
CONTINUE
CONTINUE
DO 998 J=1,N
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T = CSwP(1,J} + SNeP(I1,J}
P{I1,J) = CS5+P(11,J) - SNxP(I,J)
P, = 7
98  CONTINUE
188 CONTINUE
RETURN
END



~53-

0180 SUBROUTINE HESRED

gezge C

gB388 C GLOBAL VARIABLES.

ge4a  C

BeR588 COMMON /SECCOM/A (28,22),B(28},Y(22,21)

BREoa COMMON /SECYAR/CS(28),G(22,22),L,LM1,MARK (21) ,N,N1,N2,
BB760 1 NL,NL1,NL2Z,NML,NMZ2,NORM(21),P (20, 28),
Bo86e 2 Q(2e,2@),RSON, SN (28)

88369 COMMON /SECPRM/MCHEPS, NTRY, QUTBND, SCL., TOL

gilgeae REAL A,B,CS,G,MCHEPS,NORM, P, Q,RSQN, SCL, SN, TOL, Y
81108 INTEGER L,LM1,MARK,N,N1,N2,NL,NL1,NL2,NM1,NM2,NTRY, DUTBND
gizes C ‘

Qi3e8 C VARIABLES INTERNAL TO HESRED.

Bi488 C

81598 REAL R, T

B1689 INTEGER I,K,K1,K3

81788 DO 28 K=1,NM1

01800 K1l = K+1

81388 CALL ROT{G(K+2,K},G(K+2,K1),CS{K},SN{K),R)

g2ees G{K+2,K} =R

B21ee G{K+2,K1) = @.

022808 K3 = K+3

82380 00 18 I=K3,N2

82468 T = CSKI%G(I,K) + SN(K)»G(I,K1)

82508 G(I,K1} = CS{K}«G(1,K1) - SN(K)«G(I,K)

82600 GII,K) = T

82708 18 CONTINUE

82808 28 CONTINUE

82900 RETURN

B3888 END
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SUBROUTINE ROT(A,B,CS,SN,R)
REAL. A,B,E5,5N,R,AA,BB,ETA
ETA = AMAX1 (ABS(A},ABS(B))
IF{ETA .NE. B8.) GO TO 18
R = 8. '
CS = 1.
SN = B.
RETURN
CONTINUE
AA = A/ETA
BB = B/ETA
R = SORT{AAws2 + BBuw2)
CS = AA/R
SN = BB/R
R = R+ETA
RETURN
END
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