
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A STABLE VARIANT OF
THE SECANT METHOD FOR SOLVING

NONLINEAR EQUATIONS

W. B. Gragg"
Department of Mathematics

University of California, San Diego
t

G. W. Stewart
Departments of Computer Science and Mathematics

Carnegie-Melion University
Pittsburgh, Pennsylvania

April 1974

Research sponsored by the Air Force Office of Scientific Research,
Air Force Systems Command, USAF, under Grant No. AFOSR 71-2006. The
United States Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright
notation hereon.

Supported in part by the Office of Naval Research under Contract
N00014-67-A-0128-0018.

ABSTRACT

The usual successive secant method for solving systems of nonlinear

equations suffers from two kinds of instabilities. First the formulas used

to update the current approximation to the inverse Jacobian are numerically

unstable. Second, the directions of search for a solution may collapse into

a proper affine subspace, resulting at best in slowed convergence and at

worst in complete failure of the algorithm. In this report it is shown how

the numerical instabilities can be avoided by working with factorizations of

matrices appearing in the algorithm. Moreover, these factorizations can be

used to detect and remedy degeneracies among the directions. A second part

of this report documents and lists a program implementing the algorithm

described in the first part.

PART I

1. Introduction

In this paper we shall be concerned with the successive secant method

for solving the system of nonlinear equations

(1.1) f(x) = 0,

where f is a mapping from some domain in real n-space into real n-space

(f: D c | R n -* f R n) . Given approximations x.,x0,...,x to a solution of
I Z n-r I

(1.1), a new approximation x Vc is generated as follows. Let i: ̂ n -» l K n be

the affine function that interpolates f at x^ ,x^,.. • > x
n +-| I that is

(1.2) f± := f(xj a jj(x) (i=1,2,...,n+1).

Then x^ is taken to be the zero of the function Z. If the points x-| >x2»• • • >x
n-f-i

are affinely independent then & is uniquely defined. The approximation x^

will be uniquely defined provided the vectors f^ 9f^y•••>^ n +i a r e affinely

independent (cf. (1.4) below). The method derives its name from the fact that

the i-th coordinate function of 1 represents the secant hyperplane interpolating

the i-th coordinate function of f.

Various formulas can be written for the approximation x y ? (see [2] for the

a detailed discussion of secant methods and their convergence theory). We

shall use the following representation. Let X be the n x (n+1) matrix

(X 6 (K n X (n + 1)) defined by

X :« (x-j » x2 > • • • >x
n_|_1) >

and let

< fl» f2»-*-» f
n + 1)-

-2-

Define the operator A by

AX 5 5 -x^, . . . jX -x^),

Then it Is easily verified that the function I defined by

(1.3) Jt(x) * f1 4- AF(AX) - 1(x-x 1)

satisfies (1.2). It follows from solving the equation i,(x) 3 3 0 that

(1.4) x = x] - AX(AF)""1ir

The existence of the inverses in (1.3) and (1.4) is guaranteed by the affine

independence of the columns of X and F.

The new approximation xVr will not in general be an exact zero of f, and

the process must be repeated iteratively. This may be done in several ways.

We shall be concerned with the successive variant in which xVc replaces one

of the points x^. Conventionally this is done in one of two ways. Either x^

replaces x
n +-| > o r x * replaces that column of X for which the corresponding

column of F has largest norm. In any case the iterative process generates

sequences of matrices XpX 2,.,. and a corresponding sequence F^F^,... with

X^i differing from X^ in only a single column (in practice it may be neces-
(k)

sary to permute the columns of X^ before inserting ; see Section 4.2 below)

When f is differentiable, the matrix AF(AX)" 1 in (1.4) may be regarded

as an approximation to the Jacobian f of f. Thus the secant formula (1.4)

is a discretization of Newton's method, a method that under appropriate

conditions converges quadratically to a zero of f. The convergence theory

for the successive secant method suggests that if the matrices AX^ remain

-3-

uniformly nonsingular, then n steps of the secant method will be roughly
comparable to one step of Newton's method (see [2] and [3]). This has im­
portant computational consequences. The ab initio calculation of (AF) ̂ f^

3
requires 0(n) operations (see, e.g., [5]), and therefore n steps of the

4

secant method will require 0(n) operations, which may be prohibitively large.

The usual cure for this problem is to calculate (AF +̂-|) ^ directly from

(AF^) ^ (actually the inverses of slightly different matrices are calculated).
2

Since F^ and F^+j are simply related, this can be done in 0(n) operations,
3

giving a satisfactory 0(n) operation count for n steps of the successive

secant method (for the first such implementation see [4]).

The method outlined above has two serious defects. First the scheme for

updating (AF) ^ is numerically unstable. Second, the columns of the matrices

may tend to collapse into proper affine subspaces of H\n, resulting in the

prediction of wild points or at least in slowed convergence. The first problem

arises whenever AF^ is ill-conditioned. In this case (AF^) ^ is computed in­

accurately and these inaccuracies transmit themselves to subsequent inverses,

even though the corresponding AF's are well conditioned. The same problem

occurs in linear programming (see, e.g., [1]), and one could adopt the usual

solution of periodically reinverting AF. However, this entails extra work

for the reinversion and extra storage to hold the matrix F. Moreover, one must

face the tricky problem of deciding when to reinvert.

The problem of degeneracy among the columns of X arises, among other oc­

casions, when one of the component functions of f is linear. Then the linear

component and the corresponding component of SL9 call it j L , are identical.

It follows that x lies in the proper affine subspace defined by ^(x) « 0.

-4-

Ultimately all the column of some must lie in this subspace, and AX^

will be singular. The matrix AF^ may not be singular, but it will almost
(k)

certainly be ill-conditioned, and the prediction xy<> will be spurious.

Moreover, as noted above, the inaccuracies in (AF^) ^ will propogate them­

selves via the update formulas.
The purpose of this paper is to show how the two problems mentioned above

can be resolved by generating and updating QR factorizations of the matrices
2

X^ and F^. The factorization of F permits the 0(n) solution of the equation

AFz « f^, which is equivalent to forming (AF) ^f^. The factorization of X

enables one to detect degeneracies in the columns of X. Moreover, the factor­

ization can be used to alter a column of X in such a way as to reduce or re­

move the degeneracy. The factorizations of and can be obtained
2

from those of X^ and F^ in 0(n) operations.

In the next section we shall introduce the factorizations, show how they

may be used to execute a step of the secant method, and show how they may be

updated. We shall also show that the updating method is numerically stable.

In Section 3, we shall show how the factorization can be used to detect and

remove degeneracies in X. In Section 4 some comments on the practicalities

of implementing these methods are given, and in Section 5 some numerical ex­

amples. Part Two of this report consists of a documented program implementing

the method presented in Part One.

2. Factorization

In this section we shall be concerned with the stable implementation of
a single secant step. Suppose that at step k we are given nonsinguiar ma­
trices P, and Q, such that the matrices Y, and defined by

k k K K

-5-

and

(2.2) G k = Q k F k

are upper trapezoidal, i.e. zero below the diagonal. (Numerically the matrices

P and Q will be very nearly orthogonal, but we need not assume so.) Because k k

premultiplication by a matrix acts column by column on the multiplicand, we

have

A \ - p k (A V

and

Moreover, the matrices AY^ and AG^ are upper Hessenberg, i.e. zero below the
first subdiagonal,

(k)
Now let x̂ . be the vector obtained from a single secant step:

(2.3) x^ k) = X l
(k) - AX f c(AF k)" 1f 1

(k).

(k) -T (k)
If we set y^ - Pfc x̂ . , then (2.3) can be written in the form

(2.4) , « . , » . W - , , ! U
1

(k) (k)
where and gj are the first columns of Y f c and Gfc. Equation (2.4) sug­

gests the following algorithm.

1. Solve the system AGfcz - g|k^
o (k) (k)
2. y^ m Y} - AY kz

(2.5) 3. ^ > - P ^ «

4. f * > - £<**>)

-6-

(k)
This algorithm produces not only the secant approximation x^ but

(k) (k) also the function value fVc and its Q-transform gVc . Excepting step 4, the

bulk of the work done by the algorithm is concentrated in step 1. Since AG^

is an upper Hessenberg matrix, step 1 can be accomplished by standard tech-
2

niques in 0(n) operations [5, p. 218]. Thus a knowledge of the factoriza-
2

tions (2.1) and (2.2) allows us to compute a secant approximation in 0(n)

operations.
(k) (k)

Of course x^ must replace a column of and £, replace the corre­
sponding column of F^. This amounts to replacing the same columns of and (k) (k) * *
Sc ^ v * a n (* t o & i v e n e w m atrices and G^- In principle algorithm
(2.5) can be applied to these new matrices to give another approximation.

In practice, however, G^ will no longer be upper trapezoidal and step 1 of
2

(2.5) cannot be effected in 0(n") operations. To circumvent this difficulty

we shall show how to construct orthogonal matrices and such that

and
k+1 k k

G k + i : = S A

are upper trapezoidal. If we then set

and

p
k + i : = V k

then the relations (2,1) and (2.2) will be satisfied with k replaced by k+1,

and algorithm (2.5) may be efficiently reapplied.

-7-

For definiteness we shall deal with the computation of and illustrate

the general procedure by a specific example. For numerical reasons that will

be discussed in Section 4, the order of the columns of Y and G cannot be as-
(k)

signed arbitrarily. This means that although yVf may replace, say, column I

of Y, it may have to be inserted at some other position, say in column m. In

the specific case where n « 7, i « 1, and m = 3, we shift column 2 into column
(k)

1, shift column 3 into column 2 and overwrite column 3 with y^ . This gives
•k

a matrix Y^ whose nonzero elements have the distribution

x x x x x x x x

x x x x x x x x
0 x x

(2.6) 0 0 x
X X X X

X X X X

3 3
O O x O x x x x

2 2 0 0 x 0 0 X X X

0 0 x 1 0 0 o 1

X X

The matrix is computed as the product of 9 plane rotations or Householder

transformations: R^ = H^Hg...H^H^. In the first stage, the transformations

H.j, t^, and are chosen in the usual way (see [5, p. 47]) to introduce zeros

into the elements of the "stalactite11 in column 3. These transformations will

enter nonzero elements in the zero positions labled 1, 2, and 3, so that the

matrix will be in Hessenberg form:

-8-

X X X X X X X X

4
X X X X X X X X

0 5
X X X X X X X

0 0 6
X X X X X X

0 0 0 7
X X X X X

0 0 0 0 8
X X X X

0 0 0 0 0 9
X

X X

Now the transformations H^,...,Hg are chosen to introduce zeros in the elements

labeled 4,...,9, bringing the matrix to trapezoidal form. The matrix

P k + i = H 9 # * # H t P i c
 c a n b e f o r m e c l directly by multiplying the transformations

into P, as they are generated. The matrix C also has the form (2.6) and is
K K

updated similarly.

The procedure sketched above is perfectly general. If column I is to be

deleted and a vector inserted in column m the vectors between column I (exclu­

sive) and m (inclusive) are shifted one column toward column JL and the new

vector is inserted. The matrix is then reduced to triangular form as illus­

trated above. From the standpoint of operations, the case i = m = 1 is the

worst, requiring the introduction of 2n-3 zeros. In all cases the operation
2

count for the updating is 0(n) .
The method is extremely stable in the sense that there are small matrices

T
Z f c and such that P Yfc ~ + and Q k (F

k
+ H

k) = G
k * T h i s implies that if

(k)

no further rounding errors are made in algorithm (2.5), the value of xv, is

the value that would have been obtained by taking a secant step with the

slightly perturbed matrices + and -+ H^.
The derivation of H, is typical. The errors for each column are indepen-

K.
dent of one another, and it is sufficient to follow the history of a single

-9-

where

(k) (k)

column from its insertion as gVr . Now gVr is computed according to (2.5.5).

It follows from standard rounding error assumptions [5] that the computed

g,v satisfies
g

(k) = Q f (k) + e (k)

\\>ik)*»3/2K\\ l l f J k) H « -

Here ||«|| denotes the spectral norm [5, p. 57] and e is a small constant that
(k)

depends on the arithmetic used to compute gVc . It follows that

(k) _ n , f(k) (k).

where

(2.7) | ^ k) | | = I ^ V ^ I I ^ n ^ l h J I I i Q ^ I M I f ^ l l e .

Now the matrices are computed as the product of orthogonal matrices (see

Section 4.4 below) and will themselves be very nearly orthogonal (for detailed

error analyses of orthogonal transformations see [5]). It follows that cer­

tainly

(2.8) ^2n 3 / 2||ff)|| ,.

(k)
Thus when g^ is inserted in G^, the error bound for the corresponding column

*
of H^ is satisfactorily small.

As the matrix G^ and the subsequent G fs are updated, the column of H cor-
(k)

responding to the inserted g V c will grow, but very slowly as an elementary

error analysis will show. Even this slow growth might be intolerable over a

large number of iterations, but after about n iterations the column is discarded

(this may be forced if necessary), and its replacement is born anew with little

-10-

error. It is true that the matrices P^ and will slowly deviate from ortho­

gonality, but orthogonality is not required in the above analysis. All that

is needed is that P. and Q. be well conditioned so that in the case of Q, we
k k x k

may pass from (2.7) to (2.8). Since P^ and are computed as products of

orthogonal matrices, their condition cannot deteriorate in any reasonable

number of iterations.

Two points in the above analysis bear stressing. First the matrices Z

and are uniformly bounded, provided no column is retained longer than a

fixed number of iterations and the matrices P^ and remain well conditioned.

In effect we can use and update the factorizations as long as we like. This

is especially important in parameterized problems in which the factorizations

from the solution of one problem are used to start the solution of a nearby

problem (cf. Section 4.5). The second point is that the analysis implies

that the error in any column will be small compared with the norm of that

column. Even if the columns vary widely in size (in the matrix G they will),

the error associated with a large column cannot overwhelm a small column.

3. Detecting and Correcting Degeneracy

As was pointed out in Section 1, the columns of X will be affinely depen­

dent whenever AX is singular. In this section we shall show how the factor­

ization of X introduced in the last section can be used to tell when AX is

singular and if necessary remove the singularity by altering a column of X.

The method to be used cannot be justified with complete rigor, although a sug­

gestive theorem can be proved.

Actually we shall work with the matrices Y and AY, which are the ones

that are at hand. There is some ambiguity in speaking of the singularity of

-11-

AY, since its columns may vary widely in size. For the sake of uniformity

we shall instead examine the matrix A obtained from AY by scaling its columns

so they have 2-norm unity:

/ y 2 ~ y l y 3" y1 y n + r y l
< 3 - n A : = t ^ ' W ? ^ l F ^ l l ,

There is more than just convention in this choice. The convergence proofs for

the secant method require a uniform upper bound on the condition of the matrices

A generated by the iteration.

The method for correcting degeneracies may be justified heuristically as

follows. If A is nearly singular, then it has approximate left and right null

vectors; that is there are vectors u and v wi th ||u|| = |(v|| = 1 such that ||Aujj
T

and |(v A|| are small; say they are less than some fixed tolerance a. Now to say
T

that ||v A|| is small is to say that v is almost orthogonal to each column of A.

Thus the condition of A may be improved by replacing some column with the vec­

tor v. However, it is important that v not replace a column that is already

independent of the other columns of A. The vector u may be used to find a

suitable column. Let u^ be the component of u that is largest in absolute

value: |u^| ̂ | | , 2 ,...,n). Then the v-th column of A is given by
/o o\ Au „ 1 (3.2) a = — - E — a..

V U . / U 1
V l f V v

Since |u^| ̂ n ' , the vector Au/u i s negligible, and (3.2) effectively ex­

presses a^ as a linear combination of the other columns of A # Thus v should

replace a to give a new matrix A,.
v 1

If A^ is nearly singular, the process may be reapplied to give a matrix

A^, and so on. The following theorem shows that if a is not too large the

-12-

sequence of matrices so generated must terminate. We establish the result

for rectangular matrices with an eye to applications to least squares problems.

Theorem 3.1. Let A^ £ j l N
mX n ^ m ^ nj have columns of norm unity. Given

a > 0, generate a sequence A^,A^,... of matrices as follows. Let A^ be given

and suppose that there are vectors u^ and v^ satisfying

(3.3) I I ^ H - | | v k | | = 1,

and

(3.4) H ^ u J I , | ^ v k | | < a

Let be a maximal component of u^: I ^ l u ^ ^ I (i^l»2,...,n). The

matrix fs then the matrix obtained by replacing the v-th column of A^ by

v^. If there are no vectors u^ and v^ satisfying (3.3) and (3.4), end the

sequence with A^. Then if

(3-5) 8 ' JmmM

the sequence terminates with some A^ where k < n.

Proof. We shall show that in passing from A^ to , the column that

was thrown out must be a column of A Q. This is clearly true for the matrix

A Q itself. Assuming its truth for A $ > A y * w e c a n b Y rearranging the

columns of A write A in the form

(k) (k) ,
\ " (V V 1 V k - 1 ' \ ••••»an } '

where a 5 k \ a ^ are columns of A A. Thus we must show that u^ k^ (i^l ,2,... ,k) k ' n 0 i

cannot be maximal.

-13-

(k)

The case i = 1 is typical. Write A^ in the form A^ = ^ v o , A2 Then

it follows from (3.4) that

| ^ A 2
(k) || * V^l" a.

/i \ T T
But if we write u f c = (Uj ,wk>

-> I T. I | T (k) , T.(k) | a * |v 0Au k| - |v 0v o U l + v QA 2 w j

- l u ^ l - |^A 2
(k)||||w k H

£ |u I -*/n-1 a .

The inequality (3.5) then implies that | u ^ | < n and cannot be maximal.

Now either the sequence terminates before k = n-1, or we must arrive at

the matrix A . Since at this point all the columns of Art but one have been n-1 U
T replaced, the matrix A . satisfies A _A - = (I + E) , where |e..| < a. Thus ' n-1 n-1 n-1 9 ij

IN II * na.

For any vector u with ||u|| = 1, we have

K-^f = l u T An-l An-1 u l = l u T (I + E) u l

T 2 ^ 1 - u Eul :> 1 - na a > a

and the sequence terminates with A
n -j • n

So far as the secant method is concerned, the main problem is to compute

the vectors u and v associated with the matrix A defined by (3.1). Since A

is upper Hessenberg this can be done efficiently by a variant of the inverse

power method. The motivation for the method is that if A is nearly singular then

-14-

A ^ will be large. Unless the elements of A ^ are specially distributed,

the vector u 1 = A ^e will be large for almost any choice of e with ||e|| = 1.

If we set u = u ' / H u 1 ||, then ||Au|| = ||e | | / lk II = V | k || is small.

Because A is upper Hessenberg, it can be reduced by orthogonal transforma-
2

tions to triangular form in 0(n) operations; that is we can cheaply compute

an orthogonal matrix R such that
B = RA

T
is upper triangular. We then solve the system Bu' = e. Since |(Auf || = jJR Bu' |j

T ** 1 "1

= J|r e|| B ||e ||9 we can work with the vector u 1 8=5 B e rather than A e. The

components of e are taken to be + l/v^ , where the signs are chosen to enhance

the size of the solution. Specifically,
1. «• - n - ^ / b

n ' nn
2.

(3.6)
For i = n-1,n-2,...,1

1. a « - E n .,! b..u\
j=i+1 i j j

l/2
2. uf. = [a 4- sign(0)n" 1 l/b

1
ii

T

The vector v is obtained by solving the system B w = e in a manner analogous

to (3.6) and setting v « RTw/||RTw|| .

If |(uf || is large then a column of A, say the v-th, must be replaced. From

the definition of A, this amounts to replacing the (v+1)-st column of Y by

Y] + where \ is arbitrary. We are now in a position to describe our overall

algorithm for detecting and removing degeneracies.

-15-

1. Form A according to (3.1)

2. Calculate u 1 as described above

3. If ||uf || * tol

1. Find v so that |u | a |u i| (i«1,2,... ,n)

(3.7) 2. Calculate v as described above

3. y* « y i + minOly.-yJI i»2,...,n+l}v

4. Insert y in Y, throwing out column v+1

5. Go to 1

4. ...

As we mentioned at the beginning of this section, the above algorithm cannot

be justified with complete rigor. Here we summarize the difficulties.

Statement 1. In the formation of A, the vector y^ has been given a special

role as a pivot. If another column of Y is used as a pivot, a different matrix

A will be obtained. For example, if y^, y 2 , and y^ are situated as shown

y 3

yi y 2

and ŷ is the pivot, then the vectors may well be judged to be affinely depen­

dent. On the other hand if is the pivot, they will definitely be judged

independent, since vi~ v2 a n d ^ 2 ^ 2 a r e o r t h o 6 o n a l * W e have chosen ŷ as a

pivot because the ordering imposed on the columns of Y and G creates the pre-
T

sumption that • P is nearer the zero of f than are the other columns of

X (see Section 4.2).

-16-

Statement 3. If ||uf || is large, then A is certainly nearly singular.

However it is conceivable that A could be nearly singular and the algorithm

for computing u' fail to give a large vector. We feel that this is extremely

unlikely (it is equivalent to the failure of the widely used inverse power

method for finding eigenvectors [5, p. 619]).

The value of tol should not be too large, otherwise slow convergence or

wild predictions may result. On the other hand, Theorem 3.1 below suggests

that it should not be too small. We have used a value of 100 in our numerical

experiments (for n - 100, the bound (3.5) gives a ^ 110).

Statement 3.3. The form of y shows that our method for removing degen­

eracies amounts to taking a f,side step11 from ŷ along the direction v. The

length of the side step is arbitrary. We have chosen the distance between ŷ

and y^ as the length, since x-j and x^ are presumed to be the points nearest

the zero of f.

Statement 3.5. With tol suitably chosen, the only way this statement

could cause an infinite loop is for ||Av|| to be repeatedly smaller than tol.

This is unlikely; however, the fastidious user might place an upper bound on

the number of attempts to remove the degeneracy in A. Alternatively he can

replace only previously untouched vectors.

4. Practical Details

In this section we shall consider some of the practical problems that

will arise when the method is implemented., For more detail the reader is re­

ferred to the programs in Part Two of this report.

-17-

1. Economics. Since the matrices X and F are never used by the algorithm,

it is necessary to store only the matrices Y, P, G, and Q. The number of non-
2

zero elements in these matrices is about 3n ; however, if they are stored con-
2

ventionally as separate arrays, they will require about 4n locations. Since

the lower part of the array in which G (or Y) is stored is zero, this part of

the array can be used as a workspace in which AG and AY are formed and manipulat­

ed.

In assessing the amount of work involved, we assume that plane rotations

are used for all reductions. We shall count the number of rotations and the

number of multiplications, which multiplications corresponds roughly to the

number of data accesses. The results are summarized below, where only the

leading term of the count is given,

a. Secant Step

rot = n-1, mult = 3n .

b. Function Evaluation

rot = 0, mult =

c. Insertion and Updating (worst case in which y is inserted in

the first column replacing v
n + ^)

2
rot = n-1, mult = 12n .

d. Insertion and Updating (typical case in which y* is inserted

in the first column replacing y +-|)
2

rot « n-1, mult = 6n .

e. Checking Degeneracy (computation of u)
2

rot = n-1, mult = 2.5n .

-18-

f• Fixing Degeneracy (computation of v, evaluation of g , insertion

of y and g [typical case])

rot = 2n-2, mult =» 14.5n2.

Thus a typical iteration without degeneracy will consist of a + b + 2d + e,
2

or 3n-3 rotations and 19.5n multiplications. With degeneracy, a typical itera-
2

tion will require 5n-5 rotations and 34n^ multiplications.

2. Order of the columns of Y and G. In forming AG preliminary to the

computation of g , the vector ĝ is subtracted from the other columns of G.

If ||gj| is much larger than llgj), then the vector g^ will be overwhelmed by g 1 .

To avoid this we order the columns of G so that ||ĝ || ^ ||g2|| ̂ • • • - lfen+] !!•

The matrix Y inherits this order, and since ||f̂ || a it m a Y be presumed

that when the process is converging, the vector is nearer the solution than
Xi+1 * T ^ e o r c * e r ^ n S n a s the advantage that it gives a favorable operation count

for the updates in the case when y replaces the column for which the norm of

g is largest.

3. Communication with the user. The user must of course furnish code to

evaluate the function f, which is customarily done in a subprogram provided

by the user. After the secant prediction y has been calculated the user must

decide whether the process has converged. If it has not, he must decide whether

the predicted point is acceptable and if not what to do about it. Since no

single strategy is likely to be effective in all cases, we have left a blank

section in our implementation of the algorithm where the user may code his own

decisions.

-19-

4. Obtaining initial factorizations. The updating algorithm can be used

to obtain the factorizations (2.1) and (2.2) at the start of the algorithm.

The user of course must furnish n+1 vectors x-| >x2> • • • , x
n +] * n t* i e m atrix X.

At the k-th (k^O,1,...,n) step of the initialization procedure, assume that
Ik i k the factorizations of the matrices X « (x^,...,x^) and F = (f^,f2,...,f^)

are known; i.e.
x i k s pT y|k^ G k = Q F|k^

Ik Ik where Y = (y^>»«»>yk) and G* « (g^,...,gk) are upper trapezoidal. Calculate
Ik Ik

the vectors y k + 1 = I > x
k + 1

 a^d g f c + 1 = Q f k + 1 • Append a column to Y and G 1 and

insert y^+i a n (* ^^+1 * m a ^ i n § s ure that the columns just appended are the ones

to be discarded, and update as usual. After the n-th step all the vectors in

X and F will have been incorporated into the factorization.

5. Using an old Jacobian. When a sequence of closely related problems

are being solved, the solution of one may be a good approximation to that of

the next. Moreover the approximation to the old Jacobian implicitly contained

in the matrices Y, P, G, and Q may also be a good approximation to the new

Jacobian. Unfortunately the new iteration cannot simply be started with the

old matrices Y, P, G, and Q, as the following hypothetical example shows.

Consder the case illustrated below in which the numbers associated with

the points give the norms of the function values.

J O "*y * i o " 3

x 1 0 - 6

i o - 4

The point labeled T O - 6 is the converged value for the old iteration. When the

-20-

process is restarted with the new function, the point will have a much higher
-2 * function value, say the circled 10 • Consequently the prediction x will be

far removed from the original points, and when y is inserted into Y, the array

will be judged to be degenerate. Moreover the function value at x will have
-3

a norm (10 in the example) which is out of scale with the old values. Thus

both the G and the Y arrays must rescaled before they can be used with the

new function.

Our method of scaling consists of two steps. First the columns of AY are

scaled so that their norms are equal to |(y -y 1 ||. The modification is extended

to G by linearity. Then, with gj denoting the new g value at y^, the columns

of G are increased by g^-g^. This scaling technique is described below. The

notation Insert(g,i,j) means insert g into column i of G, throwing out column

j, then update as usual.
1. Calculate the new value gj corresponding to ŷ

2. y" = y, - AY(AG)~V
1 1

3.| For i=2,3,...,n+l

2. y± - y± + uoi(yi-y1)

3^ gt - g t + u)i(gi-g1)

4. Tnsert(g|-g 1,1,1), multiplying the update transform­

ations into ĝ
5. g± = g± + (gj-gp, (i=2,3,...,n41)

6. Insert(gj,1,1)

It should be noted that statements 3.2 and 3 U3 do not destroy the upper

triangularity of the matrices Y and G, since only the first elements of y^ and

-21-

are nonzero. Statements 4, 5, and 6 are a circumlocution designed to avoid

excessive updating. Statement 4 transforms the system so that SĴ S-j * s nonzero

in only its first component, after which G may be altered without destroying

its upper triangularity (statement 5). Statement 6 places g.j in its rightful

position.

The y predicted by the scaled Y and G will be the same as the y of state­

ment 1. The columns of G need no longer be in order of increasing norm; but

since all but the first represent old data, they should be discarded as soon

as possible.

6, Incorporating linearities» As was mentioned in Section 1, degeneracies

are certain to develop when some of the component {unctions are linear. Since

the procedure for removing degeneracies is about as expensive as a secant step,

it is important to be able to deal directly with such linearities. This may be

done as follows.

Assume that , and that the equation f(x) » 0 is supplemented

by I linear equations of the form

(4.1) Ax « b,

where A £ fj^(n+i)xA ^ g ^ f u n rank. Suppose that we are given a unitary matrix

U such that

(4.2) AU « (0 T)

where T is square. Set x = U Tx and partition x in the form x - (x ^ x ^) 1 , where

x 2 € \RA. Then from (4.1) and (4.2)

(4.3) Tx 2 « btt

-22-

Since A is of full rank, T is nonsingular and any solution of the system

(4.1) must have x = T ""b.

Define the function i: \\\n -> \Kn by

satisfies f(x) « 0 and Ax = b # The secant method may now be applied to f.

The matrix U required by this process may be obtained in the usual way

as the product of Householder transformations [5]. When this is done, the

matrix T will be triangular, which makes the equation (4.3) easy to solve.

5. Numerical Examples and Conclusions

The algorithm described in the above sections has been tried on a variety

of problems. Here we summarize the results of three tests that exhibit the

typical behavior of the algorithm.

The first example involves the function whose i-th component is given by

is the lower triangular matrix whose nonzero elements are all -1, a nicely

Then f(x.) = 0 if and only if

This function has a solution at x = (1,1 1) , At the solution its Jacobian

more or less nonlinear.

ditioned matrix The numbers q i may be chosen ad libitum to make the function

nlinear. Table one summarizes the results of applying the above

-23-

algorithm ot this function with n = 15 and = .3 (i=1,2,...,n). The initial
T

estimate was the point (0.8, 1.2, 0.8, 1.2,...,0.8) . The remaining 15 points

required by the algorithm were obtained by adding alternately + .05 to the suc­

cessive components of the initial estimate. The results are summarized in

Table 1, where ||e|| denotes the Euclidean norm of the error in the current iterate,

||f || denotes the Euclidean norm of the current function value, and ||u|| denotes

the norm of the vector u used to check degeneracies. Of the starting values

only the central one is reported. At three points it was necessary to rectify

a degeneracy; otherwise the convergence is routine (the iteration was terminated

when ||f|| ^ 10~ 6).

The second example uses the same function with n = 5, q̂ = = q^ = 8 8 «5

and q^ - 0. The starting points are generated in the same way as for the first

example. Since the fifth component of the function is linear, degeneracy can

be expected in the iteration. It occurs at the seventh step (||u|| = 4.6*10)

and is handled easily.

The third example tests the algorithm for reusing old information. The

function depends on a parameter s and is defined by

i n
f t(x) - i.s - E x, + q, S (s-x.) .

j=1 1 Xj=i 1

T

With n = 5 and q^ « .3 the zero (s,s,s,s,s) was found for s = 1.0, 1.2, 1.4,

1.6, 1.8, 2.0. The information from one solution was used to start the next.

The results are summarized in Table three. The last three solutions are atypical

in that they require effectively only a single iteration to converges. This is

because the error vectors and the function values were the same at each new

-24-

starting point, and this information had been preserved from the last solu­

tion.

These examples are given principally to illustrate the behavior of the

algorithm. Additional experiments suggest that the local behavior of the

method is quite good. Indeed if one believes that the algorithm for fixing

degeneracies will work, one can apply the theory in [3] to give local conver

gence proofs. However, we believe it is too early to make general claims

about the algorithm. For example, we do not know if damping techniques can

be used to make it effective on problems where it otherwise would not work.

It is hoped that the program described and listed in Part II of this report

will help interested researchers to investigate the algorithm and compare it

with others.

-25-

Table 1

llfll Ml

7 . 7 . 1 0 " 1 9 . 0 - 1 0 " 1 2 . 7 . 1 0 °

1 . 3 . 1 0 " 1 3 . L 1 0 " 1 1 . 2 . 1 0 2

7 . 5 . 1 0 " 1 2 . 8 - 1 0 1 1 . 4 - 1 0 1

1 . 2 . 1 0 - 2 1 . 3 . 1 0 " 2 5 . 7 . 1 0 1

2 . 9 - 1 0 " 3 4 . 7 . 1 0 " 3 6 . 2 . 1 0 2

9 . 8 . 1 0 " 3 4 . 3 - 1 0 " 1 1 . 3 . 1 0 1

2 . 4 . 1 0 ' 4 2 . 8 . 1 0 " 4 1 . 5 - 1 0 2

3 . 0 . 1 0 " 3 1 . 0 . 1 0 " 2 1 . 2 . 1 0 1

i . i . i o " 5 3 . 3 . 1 0 " 5 2 . 4 . 1 0 1

1 . 6 - 1 0 " 6 4 . 6 - 1 0 " 6 4 . 3 . 1 0 1

4 . 3 . 1 0 " 7 1 . 5 . 1 0 " 6 2 . 5 . 1 0 1

1 . 2 . 1 0 - 7 4 . 2 . 1 0 " 7 2 . 8 . 1 0 1

Table 2

llell llfll llull

4 . 5 - 1 0 " 1 4 . 5 . 1 0 " 1 1 . 6 . 1 0 °

7 . 9 - i o " 2 1 . 1 . 1 0 " 1 2 . 6 . 1 0 1

i . o . i o ~ 2 8 . 2 . 1 0 " 3 2 . 5 . 1 0 1

3 . 6 . I O - 3 4 . 1 . 1 0 " 3 7 . 5 . 1 0 1

3 . 2 . 1 0 " 4 2 . 6 . 1 0 - 4 7 . 2 . 1 0 1

1 . 0 . 1 0 " 4 1 . 3 . 1 0 " 4 1 . 2 - 1 O 1

2 . 9 . 1 0 " 6 2 . 3 . 1 0 - 6 4 . 6 . 1 0 3

1 . 0 . 1 0 " 4 3 . 4 . 1 0 " 4 5 . 0 . 1 0 °

5 . 4 . 1 0 " 8 1 . 1 . 1 0 " 7 4 . 7 - 1 0 °

-26-

Table 3

lie II llfll Ikxll

4.5-10"1 4.1.10"1 1.6.10°
4.3.10"" 6.5-10~2 2.6.101

4.7-10"3 3.1-10~3 2.3-101

1.4-10'3 1.2.10"3 1.7.102

3.7-10"3 1.1. io" 2 4.5.10°
2.9.10"5 3.9-10'5 6.9.10°
2.8-10"6 3.8-10"6 4.2-10°
7.0-10"8 9.0-10"8 5.6.10°
4.5-10"1 1.5-100 1.0-101

6.6-10"2 9.1.10"2 6.4.10°
2.5-10"3 2.1.10"3 9.6.IO1

-4
9.7-10 i .o . io" 3 1.5.101

2.5-10"5 2.3.10~5 2
1. U1 0

1.0-io"3 8.1.10~4 2.8-102

9.9.10"4 8.1.1O"4 2.4.10°
2.7-10"7 4.2-10"7 1 .o . io 1

4.5-10 _ 1 1.5.10° i . o . io 1

5.L10" 2 6.7.10"2 3.3.10°
2.3.10'3 2.5-10"3 7.1.10°

-4
1.7.10

-4
1.7-10 1.9-101

1.0-io"6 7.2-10"7 6.8.IO1

4.5-10"1 1.5.10° 1.4.102

6.7.IO"1 1.5-10° 9.7.10°
1.2.10 - 7 1.5-IO-7 1.5.101

4.5.IO - 1 1.5.10° 1.5.101

1.1.io"7 2.0.10"7 2.8.IO1

4.5.10"1 1.5.10° 2.8.IO1

8.0-IO"8 1.5.10"7 5.6-101

-27-

PART II

1• Introduction

In this second part of this report we shall describe and list a program

implementing the method described in Part I. Since the program is quite com­

plex, the description is divided into two sections. The first section tells

the casual user what he needs to know to use the program; the second section

describes the program and its subroutines in greater detail and presupposes

a familiarity with Part I.

2. Usage

SSM is a FORTRAN subroutine designed to solve the system of equations

f(x) = 0 ,

Ax = b,

where f: |K n + ^ ->lT\n and A £ J^Ax(iH-A) (t n u g n ^ g t l i e n u m t > e r Q f nonlinear equa­

tions and I is the number of linear equations in the system). The user must

supply to the program the matrix A, the vector b and a subroutine to evaluate

the function f. The user must also supply a set of n+1 estimates of the solu­

tion; however if a sequence of closely related problems is being solved, the

output from the solution of one problem can be used in place of the estimates

for the next problem. The user must also supply a section of code in SSM to

check convergence.

Calling SSM. Information is transfered to SSM by the arguments in the

subroutine call and by a common block. The calling sequence is

CALL SSM(X,F,N,L,EVAL,NEWJAC,NEWA,NEWB,FAIL).

-28-

The parameters in the calling sequence are

X(N-fL) a real array (of minimum dimension n) that on return

contains the solution

F(N) a real array that on return contains the value of f at X

N n, which must be greaLer than one

I. i, which may be zero

EVAL the name of a user coded subroutine to evaluate f

NEWJAC a logical variable which when true indicates that the

user has provided a set of n+1 estimates in the common

array Y. NEWJAC can be false only after SSM has been

called at least once, in which case it tellsXSSM to use

the results of the* last run to start the current run

NEWA A logical variable, which if true indicates that the

coefficients of the system Ax « b have just been placed

in the common array A. If the same coefficients are to

be used in subsequent runs, NEWA must he false.

NEWB A logical variable, which if true indicates that the

elements of the rlghthand side of the systeri Ax = b have

been placed in the common array B, if the same right-

hand side is to be used in subsequent calls, NEWB must

be false. if NKWA is true, SSrl assumes that NEWB is

also true.

-29-

FAIL An integer which on return contains an error indicator.

If FAIL is zero all has gone well. Otherwise FAIL contains

an error trace (see §3 below).

The common block is

COMMON/SSMCCM/A(L,N+L+2) ,B(L) ,Y(N+L+2 ,N+1)

where the dimensions given are the minimal ones. As explained above A and B

contain the coefficients and righthand side of the linear system and the columns

of Y contain n+1 estimates of the solution. All of this information is altered

by the system. If it is desired to use it later then NEWJAC, NEWA, or NEWB,

whichever are appropriate, must be set to false.

The subroutine EVAL. The user must furnish a subroutine to evaluate the

function. Its calling sequence is

CALL EVAL(X,F,FAIL) ,

The arguments are

X(N+L) an array containing the point x to be evaluated

F(L) an array that on return contains f (x)

FAIL an integer that is initially zero. If a failure occurs

it should be set to any integer from 1 through 99. This

will cause SSM to abort. The last two digits in FAIL

will contain the number set in EVAL.

-30-

If further information must be communicated to EVAL, this may be done through

common statements.

Convergence and other tests. In its main loop, SSM produces a new approxi­

mation to the solution which must be tested for acceptability. Since no fixed

strategy is likely to be satisfactory for all problems, the user is required

to furnish his own tests in the section labled 500. This is also the place to

insert aci hoc damping techniques and tests to insure that the iteration does

not continue too long. Additional information can be communicated to this sec­

tion by extending the argument list of SSM or by a common block.

In coding this section it is important to realize that SSM works in a co­

ordinate system different from the x-f coordinate system of the user: call it

the y-g coordinate system. To each n-vector y there corresponds a n+£ vector

x satisfying Ax = b, which can be retrieved by the statement

CALL EVAL G(Y,X,F,G,GNRM,.TRUE.,EVAL,FAIL)

The vector x corresponding to y is returned in the array X. The arguments

F,G,GNRM, and FAIL are irrelevent in this context. To each function value f

there corresponds a value g. Given y, the set of vectors x, f $ and g can be

retrieved by the statement

CALL EVAL G(Y,X,F,G,GNRM,.FALSEEVAL,FAIL)

On return GNRM contains the Euclidean norm of g, which is approximately equal

to the Euclidean norm of f. If FAIL is nonzero on return, it contains the value

to which it was set in EVAL. The f value corresponding to a given g can be

found by multiplying g by the transpose of the nxn matrix contained in the array

Q.

-31-

When SSM enters the section labled 500, the arrays YY and GG contain the

point from which the prediction was launched and its g-value,YS contains the

predicted point, and DY contains the difference DY = YS - YY. The array

element N0RM(1) contains the Euclidean norm of GG. The arrays X, F, SN, CS,

and GS may be used for scratch.

In this section the user must decide whether or not to continue the itera­

tion. If he decides to continue he must provide an acceptable prediction in

YS and its corresponding g value in GS, then transfer control to statement 600.

It should be stressed that the value of YS need not be the same as the value

that was input to the section. For example, YS may he taken to be YY + \DY,

where X is chosen so that the norm of GS is not too large.

Either convergence or an error may make the user decide to terminate the

iteration. On normal convergence the user should first execute the statement

CALL EVAL G(YS ,X,F,GS ,GNRM, .FALSE . ,EVAL,FAIL) ,

in order to place the converged x and f in X and F, and then return. On an

error the user should return after executing the statement

FAIL « FAIL + k

where k - 10000-i (i=8,9,...).

Parameters set in SSM. Five parameters contained in the common block

SECPRM are set at the beginning of SSM. The variable TOL contains a tolerance

for detecting degeneracies (see §1.3). The variable NTRY contains an upper

bound on the number of attempts to rectify degeneracies and is currently set

to n. The variable SCL is set to .1 to handle a rather unlikely error in the

-32-

subroutine CHKFIX. The variable UTBND is set to N+3 and insures that any

given point will not be used too long. The only parameter the user should

have to fool with is MCHEPS, which contains the largest floating point number

for which the computed value of 1 . + MCHEPS is equal to 1. (Only a rough esti­

mate of the value is needed; e.g. if the floating point fraction contains 27
-8

bits then MCHEPS may be taken to be 10*" .)

Minimal dimensions. SSM will of course not work if its arrays are too

small for the problem. Here follows a list of subscripted variables in SSM

with their minimal dimensions.

X(N+L),F(N+L),A(L,N+L+2),B(L),Y(N+L+2,N+1)

G(N+L+2,N+2),MARK(N+1),NORM(N+1),

P(N,N) ,Q(N,N).

In addition, the first dimensions of Y and G must be equal. The second argu­

ment in EVALG must be dimensioned at least N+L. All other arrays in the pro­

gram must be dimensioned at least N.

3. Program Details

General considerations. The program consists of eight subroutines: SSM,

the controlling program; CHKFIX, which detects and rectifies degeneracies;

INSERT, which modifies and updates the matrices Y and G; SECSTP, which makes

secant prediction; EVALG, which calls the user coded function EVAL to get a

function value; REDUCE, which accomplishes the reduction described in $1.2;

HESRED, which triangularizes a Hessenberg matrix in G; and ROT which computes

plane rotations.

-33-

These subroutines are linked by three common blocks. The block SECCOM

contains variables that must be visible to the user. The block SECPRM contains

parameters whose values should seldom have to be reset. The block SECVAR con­

tains the remaining variables that are shared by the program.

The array names follow the nomenclature of Part I. In addition, the array

NORM contains the Euclidean norms of the columns of G. The array MARK contains

integers associated with the columns of Y and G that tell INSERT which columns

must be thrown out (specifically if MARK(I) ^ 0UTBND, then CHKFIX and INSERT

will attempt to discard column I before others with MARK < 0UTBND) •

The program is provided with an error tracing feature that operates as

follows. Each subroutine is assigned a power of ten, its failno. If an error

occurs in a given subroutine, it executes the statement FAIL = FAIL + i*failno,

where i - 1 , 2 , . . . , 9 . The calling subrouinte regards the return of a nonzero

value in FAIL as an error and does the same thing. In this way the program

is aborted with an integer in FAIL whose digits tell where an error occurred

and how the program got there.

We shall now give a brief description of each of the subroutines.

SSM(X,F,NN,LL,EVAL,NEWJAC,NEWA,NEWB,FAIL); failno = 10 4. The calling se­

quence for this program has already been discussed. After some initialization,

SSM checks for a new matrix of coefficients in A. If there is one, Householder

transformations H-j ,H 2,... ,H^ are determined so that AH^,..H^ - (0 T) where T

is upper triangular. The matrix A is overwritten in the array A by H.,...H.

and by T (this requires two extra columns). If either NEWA or NEWB is true,

the system Tx 2 = b is solved, the solution overwriting b.

The iteration may be started either by using the Jacobian from a previous

iteration or by building up a new Jacobian. The first alternative is effected

-34-

by a straightforward implementation of the technique described in Section

1.4.5. If the Jacobian has to be built up, it is done by the technique de­

scribed in Section 1.4.4.

In the main loop, the directions are checked for independence and a secant

step is taken. After SSM emerges from the user coded testing section, the new

point is inserted into the Y and G arrays (see the description of INSERT), the

values in the array MARK are increased by unity to prevent a point from hang­

ing on too long, and the loop is begun again.
3

CHKFIX(EVAL,FA EL); failno « 10 . This is a fairly straightforward imple­

mentation of the algorithm described in (1.3.7), with some special features.

The transpose of the Hessenberg matrix A is formed in the lower part of the

array G starting in row three. If the columns of A are zero, the minimum in

(1.3.7.3.3) is taken to be SCL-|(yJ|. The matrix A is reduced to triangular

form by HESRED, and all diagonal elements of A that are too small are set equal

to MA CHE PS.

The column to be thrown out is restricted by the array MARK. If some

MARK(I) ^ OUTBND) then the column K that is thrown out must satisfy

MARK(K) ^ OUTBND; otherwise any column with MARK ^ 0 may be thrown out. The

new column is given a MARK of zero and the elements of the array MARK are in­

creased by unity.

INSERT(YS,GS,GNRM,OT,M). This subroutine inserts YS and GS in Y and G,

treating Y and G as N by M arrays. The index of the column to be thrown out

is specified by OT. If OT is zero, then the column of largest NORM is chosen,

subject to the same MARK restrictions that govern CHKFIX. The new columns are

inserted just before the first column of larger norm and are given a MARK of

zero. The matrices Y, P, G, and Q are updated by REDUCE.

-35-

2 SECSTP(YY,GG,YS,DY,FAIL); failno = 10 . This subroutine calculates

DY - - AY*(AG)-1*GG and the secant prediction YS « YY + DY. As in CHKFIX the

lower part of G is used as a scratch array to contain the transpose of AG,

which is reduced to triangular form by HESRED.

EVALG(YP,XP,FV,GV,GNRM,ONLYX,EVAL,FAIL). Given the point YP, this subroutine

finds the corresponding x-vector XP, calls EVAL to obtain a function value FV,

and converts FV into a vector GV in the g-coordinate system. If ONLYX is true,

the routine returns before calling EVAL.

REDUCE(Y,P,IN,N,M). This subroutine reduces a matrix Y of dimension NxM

with a stalactite to triangular form via the method described in §1.2. The

stalactite is assumed to be in column IN. The transformations are accumulated

in P.

HESRED. This subroutine reduces a Hessenberg matrix to triangular form

using plane rotations. The matrix is stored in the lower part of G starting

in row three. The rotations are returned in the arrays CS and SN.

R0T(A,B,CS,SN,R). This subroutine computes plane rotations for REDUCE and

HESRED.

4. Program

-36-

00100
88208
88388
88488
00500
88G88
08788
00800
80900
01088
01100
81280
01300
81488
01500
81608
01700
01800
01900
02088
82188
82200
82388
02400
82508
02800
82788
02800
82988
03000
83100
03200
03388
03480
03500
03600
03708
03800
83900
04000
04100
04200
04300
04400
04500
04G00
04700
04880
04980
05000
05100
05200
05380
05408
05500

C
C
C

C
C
C

C
C
C

C
C
C

c
c
c

c
c
c

c
c
c

SUBROU TINE SSM(X,F,NN,LL,EVAL,NEUJAC,NEUA,NEWB,FA IL)

PARAMETERS IN THE CALLING SEQUENCE.

REAL F(20),X(20)
INTEGER FAIL.LL.NN
LOGICAL NEUA,NEWB,NEUJAC
EXTERNAL EVAL

GLOBAL VARIABLES.

COMMON /SECCOM/A(20,22),B(20),Y(22,21)
COMMON /SECVAR/CS(20),G(22,22),L,LM1,MARK(21),N,N1,N2,
1 NL,NL1,NL2,NM1,NM2,NORM(21),P(20,20),
2 Q(20,20),RSQN,SN(20)
COMMON /SECPRM/MCHEPS,NTRY,OUTBND, SCL,TOL
REAL A,B,CS,G,MCHEPS,NORM,P,Q,RSQN,SCL,SN,TOL,Y
INTEGER L.LM1,MARK,N,Nl,N2,NL,NL1,NL2,NM1,NM2,NTRY,OUTBND

VARIABLES INTERNAL TO SSM.

REAL DY(20),GNRM,GG(20),GS(20),MAX,OMEGA,OMEGA1,
1 S,T,YY(20),YS(20)
INTEGER I,U,II,J,JJ,K,KK,KM1,NK

SET UP VALUES IN SECPRM.

TOL = 100.
NTRY = NN
MCHEPS = l.E-8
SCL = .1
OUTBND = N+3

INITIALIZATION.

L = LL
LM1 - L-l
N - NN
Nl = N+l
N2 = N+2
NL •= N+L
NL1 = NL+1
NL2 = NL+2
NM1 = N-1
NM2 = N-2
RSQN = l./SQRT(FLOAT(N))
FAIL = 0

CHECK FOR LINEAR SYSTEMS,

IF(L.EQ.B) GO TO 200

PROCESS THE LINEAR SYSTEM.

IF(.NOT.NEUA) GO TO 180

- 3 7 -

85608
85788
85888
85988
86888
86188
86288
86388
86488
86588
86688
86708
86888
86388
87888
87188
87288
87388
87488
87588
87600
87788
07808
87988
88888
88188
88288
88388
88488
88588
88688
08700
88888
08900
89800
09100
09200
09300
09400
09500
09600
09700
09800
09900
10800
10100
10200
10380
10400
10508
10600
10700
10808
10900
11000

C
C
C
C

C
C
C
C

C
C

REDUCE THE MATRIX OF THE LINEAR SYSTEM BY
HOUSEHOLDER TRANSFORMATIONS.

DO 170 KK=1,L
K = L-KK+1
NK = N+K
MAX = 0.
DO 110 J-l.NK

MAX = AMAX1(MAX,ABS(A(K,J)))
110 CONTINUE

IF(MAX .NE. 0.) GO TO 120
FAIL = 18008
RETURN

120 S = 0.
DO 130 J-l.NK

A(K,J) = A(K,J)/MAX
S = S + A(K,J)vnv2

130 CONTINUE
S = SQRT(S)
IF(A(K,NK) ,LT. 0.) S = -S
A(K,NK) = A(K,NK) + S
A(K,NL1) = S*A(K,NK)
A(K.NL2) = -MAX*S
IF(K .EQ. 1) GO TO 170
KM1 = K-l
DO 168 I-1.KM1

T = 0,
DO 140 J=1,NK

T = T + A(I,J)*A(K,J)
CONTINUE
T = T/A(K,NL1)
DO 150 J-l.NK

Ad,J) = Ad,J) - T>vA(K,J)
CONTINUE

CONTINUE
CONTINUE

IF(.NOT.(NEUA .OR. NEUB)) GO TO 200

SOLVE THE TRIANGULAR SYSTEM FOR THE CONSTANT
PART OF THE TRANSFORMED SYSTEM.

B(L) = B(L)/A(L,NL2)
IF(L.EQ.l) GO TO 200
DO 195 II-1,LM1

I = L-II
II = 1+1
DO 190 J-Il.L

NJ = N+J
B d) = B d) - A(I,NJ)*B(J)

190 CONTINUE
B d) = B(I)/A(I,NL2)

195 CONTINUE

CHECK THE STATUS OF THE APPROXIMATE JACOBIAN.

140

150
160
170
180

-38-

11100 C
11200 200 IF(NEUJAC) GO TO 388
11300 C
11400 C RESCALE THE OLD APPROXIMATE JACOBIAN.
11500 C
11608 MARK(1) = 0.
11700 DO 205 I-l.N
11800 YY(I) = 0.
11900 MARKU+l) = OUTBND
12000 205 CONTINUE
12100 YY(1) = Y(l,l)
12200 CALL EVALG(YY,X,F,GG,GNRM,.FALSE.,EVAL,FAIL)
12300 IF(FAIL .EQ. 0) GO TO 210
12480 FAIL = FAIL + 20000
12500 RETURN
12600 210 CALL SECSTP(YY,GG,YS.DY.FAIL)
12700 IF(FAIL .EQ. 0) GO TO 215
12800 FAIL = FAIL + 30000
12980 RETURN
13000 215 S = (YS(1) - Y(l,l))**2
13100 DO 220 I=2.N
13280 S = S + YS(I)**2
13308 220 CONTINUE
13400 S = SQRT(S)
13500 DO 240 J-2.N1
13600 T = (Yd,J) - YU,1))**2
13780 DO 225 1=2,N
13800 T = T + Y(I,J)**2
13900 225 CONTINUE
14000 IF(T .NE. 0) GO TO 230
14100 FAIL = 40000
14200 RETURN
14300 230 OMEGA = S/SQRT(T)
14400 OMEGA1 = 1. - OMEGA
14500 NORM (J) = SQRT((0MEGAl*N0RMd)hv*2 +
14600 1 2.*OMEGAl*OMEGA*G(1,1)*G(1, J)
14780 2 (0MEGA>vN0RM(J)hv*2)
14800 Yd, J) = OMEGAl*Y(l,l) + OMEGA*Y(l,J)
14900 Gd.J) = OMEGAlrtGd.l) + OMEGA*G(l, J)
15000 NJ = MIN0(N,J)
15100 DO 235 1-2.NJ
15200 Yd, J) = OMEGAftYd , J)
15300 Gd.J) = OMEGAvvGd , J)
15400 235 CONTINUE
15500 240 CONTINUE
15600 DO 245 I-l.N
15700 G(I,N2) = GGd)
15800 245 CONTINUE
15900 GGd) = GGd) - Gd.l)
16000 CALL INSERT(YY.GG,8.,1.N2)
16100 DO 250 J-2.N1
16200 NORM(J) = SQRT(G(1,1)**2 +
16300 1 2.*G(1,1)*G(1,J) +
16400 2 N0RM(Jhv*2)
16500 Gd.J) = G(1,J) + G(l,l)

-39-

16600
1G788
1G888
1G988
17888
17188
17288
17388
17488
17588
17G88
17708
17888
17988
18888
18188
18288
18300
18488
18500
18G88
18700
18888
18900
19000
19100
19200
19300
19400
19500
19G88
19700
19888
19900
28888
20100
28200
20300
20400
20500
20G00
20708
20800
20900
21000
21100
21200
21300
21400
21580
21600
21700
21800
21900
22000

250 CONTINUE
DO 255 I=1,N

GG(I) = G(I,N2)
255 CONTINUE

CALL INSERT(YY,GG,GNRM,1, Nl)
GO TO 400

300 CONTINUE
C
C
C
C

C
C
C
C

305

310
315
320
325

340

350

3G0
370

373

380

THE APPROXIMATE JACOBIAN IS TO BE FORMED FROM A
NEW SET OF POINTS. BUILD UP THE MATRICES Y,P,G, AND Q.

IF(L .EQ. 0) GO TO 325

THERE ARE LINEAR EQUATIONS. TRANSFORM
THE POINTS.

DO 320 KK-l.L
K - L-KK+1
NK = N+K
DO 315 J-l.Nl

T = 0.
DO 305 I=1,NK

T = T + A(K,I)*Y(I,J)
CONTINUE
T = T/A(K,NL1)
DO 310 1=1,NK

Yd,J) = Yd,J) - T*A(K,I)
CONTINUE

CONTINUE
CONTINUE

DO 350 I=1,N
DO 340 J-l.N

Pd,J) = 0.
Q(I,J) = 0.

CONTINUE
Pd.I) = 1.
Qd.I) = 1.

CONTINUE
DO 380 K-l.Nl

DO 370 I=1,N
YY(I) = 0.
DO 3G0 J-l.N

YY(I) = YY(I) + P(I,J)*Y(J,K)
CONTINUE

CONTINUE
CALL EVALG(YY,X,F,GG,GNRM,.FALSE.,EVAL,FAIL)
IF(FAIL .EQ. 0) GO TO 373
FAIL = FAIL + 50000
RETURN

NORM(K) = GNRM
CALL INSERT(YY.GG,GNRM,K,K)

CONTINUE
C
C MAIN LOOP. OBTAIN A SET OF AFFINELY INDEPENDENT
C POINTS AND THEN TAKE A SECANT STEP.

-40-

22108 C
22200 400 CALL CHKFIX(EVAL,FAIL)
22380 IF(FAIL .EQ. 0) GO TO 405
22400 FAIL = FAIL + 60000
22500 RETURN
22608 405 DO 410 I-l.N
22708 YY(I) = 0 .
22800 GG(I) = 0.
22900 410 CONTINUE
23000 YY(1) = Y(l,l)
23100 GG(1) = G(l,l)
23200 CALL SECSTP(YY,GG,YS.DY.FAIL)
23300 IF(FAIL .EQ. 0) GO TO 500
23400 FAIL = FAIL + 70000
23500 RETURN
23600 C
23700 C ON ENTRY TO THIS PART OF THE PROGRAM, YS CONTAINS
23800 C A NEU POINT. IT IS THE RESPONSIBILITY OF THE
23900 C USER TO PROVIDE CODE THAT DETERMINES WHETHER YS IS
24000 C ACCEPTABLE AND UHETHER THE ITERATION HAS CONVERGED.
24100 C ON EXIT (OTHER THAN A RETURN), YS AND GS MUST
24200 C CONTAIN AN ACCEPTABLE POINT AND ITS VALUE.
24300 C THE SAMPLE SECTION BELOU RETURNS IF THE NORM
24400 C OF THE FUNCTION IS LESS THAN OR EQUAL TO 1.0E-6.
24500 C BEFORE RETURNING INSERT AND CHKFIX ARE CALLED TO
24600 C INSURE THAT THE LATEST APPROXIMATION TO THE
24700 C JACOBIAN IS CONTAINED IN THE ARRAYS Y.P.G, AND Q.
24800 C
24900 500 CALL EVALG(YS,X.F.GS,GNRM,.FALSE.,EVAL,FAIL)
25000 IF(FAIL .EQ. 0) GO TO 510
25100 FAIL = FAIL + 80000
25200 RETURN
25300 510 IF(GNRM .GT. l.E-G) GO TO G00
25488 CALL INSERT(YS,GS,GNRM,0,N1)
25500 CALL CHKFIX(EVAL,FAIL)
25600 IF(FAIL .NE. 0) FAIL - FAIL + 90000
25700 RETURN
25800 C
25900 C INSERT THE NEU POINT AND GO BACK FOR ANOTHER.
26000 C
26100 680 CALL INSERT(YS.GS,GNRM,0.N1)
26200 DO G10 1-1,Nl
26300 MARK (I) = MARK(I) + 1
26400 610 CONTINUE
26500 GO TO 400
26600 END

-41-

801 ee SUBROUTINE CHKFIX(EVAL,FAIL)
00200 C
00300 C PARAMETERS IN THE CALLING SEQUENCE.
00400 C
00500 INTEGER FAIL
00600 EXTERNAL EVAL
00700 C
00800 C GLOBAL VARIABLES.
00900 CJ

01888 COMMON /SECCOM/A(20,22),B(20),Y(22,21)
01100 COMMON /SECVAR/CS(20),G(22,22),L, LM1,MARK(21),N,Nl, N2,
81288 1 NL,NL1,NL2,NM1,NM2,NORM(21),P(20,20),
01300 2 Q(20,20),RSQN,SN(20)
81488 COMMON /SECPRM/MCHEPS,NTRY,OUTBND,SCL,TOL
01500 REAL A,B,CS,G,MCHEPS,NORM,P,Q,RSQN,SCL,SN,TOL,Y
01600 INTEGER L, LM1, MARK, N, Nl, N2, NL, NL1, NL2, NM1, NM2, NTRY, OUTBND
01700 C

INTEGER L, LM1, MARK, N, Nl, N2, NL, NL1, NL2, NM1, NM2, NTRY, OUTBND

01800 C VARIABLES INTERNAL TO CHKFIX.
01900 c
02000 REAL F (20), GNRM, GS (20), MINNRM, NRM, S, T, U (20), UMAX, UNRM, V (20),
02100 1 VNRM,X(20),YS(20)
02200 I NTEGER 1,11,11,1Ml,J,Jl,JU,OUT,OUTSET, TRY
02300 LOGICAL NRMSET
02400 EQUIVALENCE (CS(1), YS(1)), (SN(1) ,GS(1)), (U(l) ,X(1)),
02500 1 (V(1),F(D)
02600 c

1 (V(1),F(D)

02700 c TRY NTRY TIMES TO OBTAIN AN AFFINELY INDEPENDENT
02800 c SET OF DIRECTIONS.
02900 c
03000 DO 600 TRY=1,NTRY
03100 c
03200 c DETERMINE WHICH VECTORS MAY BE THROWN OUT.
03300 c
03400 OUTSET = 0
03500 DO 10 1=1,Nl
03600 OUTSET = MAX0(MARK(I),OUTSET)
03700 10 CONTINUE
03800 IF(OUTSET .LT. OUTBND) OUTSET = 0
03900 c
04000 c FORM THE TEST MATRIX IN THE SCRATCH AREA OF G.
04100 c

FORM THE TEST MATRIX IN THE SCRATCH AREA OF G.

04200 100 NRMSET = .FALSE.
04300 DO 130 J=2,N1
04400 Jl = J+l
04500 G(Jl.l) = Yd,J) - Y(l,l)
04600 NRM = G(J1,D**2
04700 JU = MIN0U.N)
04800 DO 110 I=2,JU
04900 GUI,I) = Yd,J)
05000 NRM = NRM + G(J1,I)**2
05100 110 CONTINUE
05200 IF(NRM .EQ. 0.) GO TO 130
05300 NRM = SQRT(NRM)
05400 IF(.NOT. NRMSET) MINNRM = NRM
05500 NRMSET = .TRUE.

-42-

85G00 MINNRM - AMIN1 (NRM,MINNRM)
05708 DO 120 1=1,JU
05800 GUI, I) = G(Jl,I)/NRf1
85900 128 CONTINUE
06000 138 CONTINUE
06108 IF(.NOT. NRMSET) MINNRM = SCUY(l.l)
06200 IF(MINNRM ,NE. 0.) GO TO 200
86308 FAIL = 1000
06488 RETURN
86588 C
86600 C SOLVE FOR U AND TEST FOR U LARGE.
86700 C
06800 200 CALL HESRED
06900 DO 210 1=1,N
07000 IF(ABS(G(I+2,I)) .LT. MCHEPS) G(I+2,I) = MCHEPS
07100 210 CONTINUE
07200 U(N) = RSQN/G(N2,N)
07300 UNRM = U(Nhv*2
07400 DO 230 II=2,N
07500 I = N-II+1
07688 11 = 1+1
07788 S = 0.
87888 DO 220 J=U,N
87988 S = S - G(J+2,IhvU(J)
88888 220 CONTINUE
88100 U(I) = RSQN
88288 IF(S .LT. 0.) U(I) = -RSQN
08300 U(I) = (U(I) + S)/G(I+2,I)
88488 UNRM = UNRM + U(I)>w<2
08500 230 CONTINUE
88688 UNRM = SQRT(UNRM)
08700 IF(UNRM .LE. TOL) RETURN
88888 C
08900 C THE DIRECTIONS ARE AFFINELY DEPENDENT. DETERMINE
89888 C WHICH ONE TO THROW OUT.
09100 C
89288 300 UMAX = 0.
89300 DO 310 I=2,N1
89488 IF(MARK(I).LT.OUTSET .OR. UMAX.GT.ABS(Ud-l)))
09508 1 GO TO 310
89600 OUT = I
89788 UMAX = ABS(Ud-D)
09800 310 CONTINUE
89900 C
10000 C SOLVE FOR V.
10100 C
10200 400 V(l) = l./G(3,l)
10300 VNRM = V(l)**2
10400 DO 420 I=2,N
10500 S = 0.
10688 IM1 = 1-1
10700 DO 418 J=1,IM1
18888 S = S - G(I+2,J)*V(J)
10900 410 CONTINUE
11088 V d) = 1.

-43-

11109 IF(S .LT. 0.) V(I) = -1.
11200 V(I) = (V(I) + S)/G(I+2,I)
11300 VNRM = VNRM + V(I)**2
11400 420 CONTINUE
11500 VNRM = SORT(VNRM)
11600 DO 430 II-l.NMl
11700 I = N-II
11800 T = CSUhvVU) - SN(IhvV(I+l)
11900 Vd+l) = (CS(I)>vV(I+l) + SN(I)*V(I))/VNRM
12000 V(I) = T
12100 430 CONTINUE
12200 V(l) = V(1)/VNRM
12300 C
12400 C COMPUTE THE NEW POINT AND INSERT IT.
12500 C
12600 500 YS(1) = Y(l,l) + MINNRMftV(l)
12700 DO 510 1=2,N
12800 YS(I) = MINNRMftV(I)
12900 510 CONTINUE
13000 CALL EVALG(YS,X,F,GS,GNRM,.FALSE., EVAL,FAIL)
13100 IF(FAIL .EQ. 0) GO TO 528
13200 FAIL = FAIL + 2000
13300 RETURN
13400 520 CALL INSERT(YS,GS,GNRM,OUT,Nl)
13500 DO 530 I=2,N1
13600 MARK (I) = MARK(I) + 1
13700 530 CONTINUE
13800 600 CONTINUE
13900 FAIL = 3000
14000 RETURN
14100 END

-44-

88198 SUBROUTINE INSERT(YS.GS,GNRM,OT,M)
88288 C
88388 C PARAMETERS IN THE CALLING SEQUENCE.
00400 C
88588 REAL GNRM,GS(20),YS(20)
00G00 INTEGER M,OT
00700 C
00800 C GLOBAL VARIABLES.
00900 C
01000 COMMON /SECCOM/A(20,22),B(20),Y(22,21)
01100 COMMON /SECVAR/CS(20),G(22,22),L,LM1,MARK(21),N,N1,N2,
01200 1 NL,NL1,NL2,NM1,NM2,NORM(21),P(20,20),
01300 2 Q(20,20),RSQN,SN(20)
01488 COMMON /SECPRM/MCHEPS.NTRY,OUTBND,SCL,TOL
81500 REAL A,B,CS,G,MCHEPS,NORM,P.Q.RSQN,SCL,SN,TOL,Y
01688 INTEGER L,LM1,MARK,N,Nl,N2,NL,NL1,NL2,NM1,NM2,NTRY,OUTBND
01700 C
81888 C VARIABLES INTERNAL TO INSERT.
01988 C
02080 REAL MAXNRM
02100 INTEGER I,IN,INI,INM1,JU,J,JJ,OUT,OUTSET
02200 C
02300 C INITIALIZE THE Y AND G ARRAYS.
02400 C
02500 IU = MIN0(M,NM1)
02600 DO 10 1=1, IU
02700 G(1+1,1) = 0.
02888 GU+2,1) = 0.
82988 Y (1+1,1) = 0.
03000 Y (1+2,1) = 0.
03100 10 CONTINUE
03200 C
03300 C DETERMINE WHICH COLUMN IS TO BE THROWN OUT.
03400 C
03500 100 OUT = OT
03600 IF (OUT .NE. 0) GO TO 150
03700 C
03888 C AMONG THE POSSIBLE CANDIDATES CHOOSE THE COLUMN
03900 C WITH LARGEST G NORM.
04000 C
04100 OUTSET = 1
04200 DO 110 1=1,M
04300 OUTSET = MAX0(MARK(I),OUTSET)
04400 110 CONTINUE
04500 IF(OUTSET .LT. OUTBND) OUTSET = 0
04G00 OUT = M
04700 MAXNRM = 0.
04800 DO 120 I=1,M
04988 IF(MAXNRM.GT.NORM(I) .OR. MARK(I) .LT.OUTSET)
05000 1 GO TO 120
05100 MAXNRM = NORM(I)
05200 OUT = I
05308 120 CONTINUE
05400 150 CONTINUE
05500 C

-45-

85888 C THE VECTORS ARE TO BE INSERTED JUST BEFORE THE
85788 C FIRST COLUriN OF LARGER NORM.
85888 (_>

85988 DO 160 IN-l.M
86888 IF(GNRM .LE. NORM(IN)) GO TO 200
86188 160 CONTINUE
86288 IN = M+l
86388 C
86488 C SHIFT THE COLUMNS AND INSERT THE NEW COLUMN.
86588 C

J

86688 200 IF(IN .EQ. OUT) GO TO 260
86780 C
86888 C SHIFT THE COLUMNS
06900 o

87800 IF(IN .GT. OUT) GO TO 230
07100 C
07200 C RIGHT SHIFT.
07300 C
07400 INI = IN+1
07500 DO 220 JJ=INI,OUT
07600 J = OUT-JJ+IN1
07700 DO 210 I-l.N
07880 Yd,J) = Y(I.J-l)
07900 Gd.J) = G(I.J-l)
08000 210 CONTINUE
08100 MARK(J) = MARK(J-l)
08200 NORM(J) = NORM(J-l)
08300 220 CONTINUE
08400 GO TO 260
08500 230 CONTINUE
08600 c
08700 c LEFT SHIFT.
08800 c
08988 IN = IN-1
09000 IF(IN .EQ. OUT) GO TO 260
89100 INM1 = IN-1
09200 DO 250 J=OUT,INMl
09300 DO 240 I-l.N
09400 Yd,J) = Y(I,J+1)
09500 Gd.J) = Gd.J+l)
09600 240 CONTINUE
09700 MARK (J) = MARKU+l)
09800 NORM (J) = NORMU+l)
09900 250 CONTINUE
10000 260 CONTINUE
10100 C

J

10200 C INSERT THE NEW COLUMNS.
10300 C
10400 DO 270 1=1,N
10588 Yd,IN) = YSd)
10600 Gd.IN) = GSd)
18700 270 CONTINUE
10800 NORM(IN) = GNRM
10900 c
11000 c REDUCE THE MATRICES.

- 4 6 -

11108 C
11288 388 CALL REDUCE(Y,P,IN, N,M)
11388 CALL REDUCE(G,Q,IN,N,M)
11488 MARK(IN) = 8
11588 RETURN
11688 END

-47-

88108 SUBROU TINE SECS TP(YY,GG,YS,DY,FAIL)
88288 C
88388 C PARAMETERS IN THE CALLING SEQUENCE.
88488 C
88588 REAL DY(20),GG(20),YS(20),YY(20)
88688 INTEGER FAIL
88788 C
88888 c GLOBAL VARIABLES.
88988 c
81888 COMMON /SECCOM/A(28,22),B(20),Y(22,21)
81188 COMMON /SECVAR/CS(20),G(22,22),L,LM1,MARK(21),N,Nl,N2,
81288 1 NL,NL1,NL2,NM1,NM2,NORM(21),P(20,28),
81388 2 Q(20,20),RSQN,SN(20)
81488 COMMON /SECPRM/MCHEPS,NTRY,OUTBND,SCL,TOL
81588 REAL A,B,CS,G,MCHEPS,NORM,P,Q,RSQN,SCL,SN,TOL,Y
81688 I NTEGER L, LM1, MARK, N, Nl, N2, NL, NL1, NL2, NM1, NM2, NTRY, OUTBND
81788 c

I NTEGER L, LM1, MARK, N, Nl, N2, NL, NL1, NL2, NM1, NM2, NTRY, OUTBND

81888 c VARIABLES INTERNAL TO SECSTP.
81988 c
82888 REAL S
82188 INTEGER I,I1,II,J,JL,JU
82288 c
82388 c FORM THE G-DIFFERENCE MATRIX IN THE LOUER PART OF G.
82488 c
82588 DO 20 J-l.N
82688 JU = MIN0(N,J+1)
82788 DO 10 I-l.JU
82888 G(J+2,I) = GU.J+l)
82988 18 CONTINUE
83888 GU+2,1) = GU+2,1) - G(l,l)
83188 YS(J) = GG(J)
83288 28 CONTINUE
83388 C

J

83488 C SOLVE THE G-DIFFERENCE SYSTEM.
83588 C
83688 188 CALL HESRED
83788 DO 110 I=1,NM1
83888 11 = 1+1
83988 T = YSdhvCSd) + YSdlhvSN(I)
84888 YS(Il) = YSdl)ftCS(I) - YSdhvSN(I)
84188 YSd) = T
84288 118 CONTINUE
84388 IF(G(N2,N) .NE. 0.) GO TO 115
84488 FAIL = 100
84588 RETURN
84688 115 YS(N) = YS(N)/G(N2,N)
84788 DO 130 II=2,N
84888 I = N-II+1
84988 11 = 1+1
85888 DO 120 J=U,N
85188 YSd) = YSd) - G(J+2,I)*YS(J)
85288 128 CONTINUE
85388 IF(G(1+2,I) .NE. 0.) GO TO 125
85488 FAIL = 200
85588 RETURN

-48-

85688 125 YS(I) - YS(I)/G(I+2,1
85788 130 CONTINUE
05800 C
85980 C CALCULATE DY.
06000 C
06100 200 S - 0.
06200 DO 220 I-l.N
06300 S - S + YSU)
86408 JL « HAX0U.2)
06500 DYU) = 0.
06600 DO 210 J-JL,N1
06700 DYU) - DYU) -
06800 210 CONTINUE
06900 220 CONTINUE
07000 OY(l) = DY(1) + S*Y(1,1)
07188 C
07200 C CALCULATE YS.
87388 C
07400 300 DO 310 I-l.N
87588 YSU) - YYU) + DYU)
07600 310 CONTINUE
07788 RETURN
07888 END

-49-

88188 SUBROUTINE EVALG(YP,XP,FV,GV,GNRM,ONLYX,EVAL.FAIL)
88288 C
88388 C PARAMETERS IN THE CALLING SEQUENCE.
88488 C
88588 REAL GNRM.FV(20),GV(20),XP(20),YP(20)
00G00 INTEGER FAIL
00700 LOGICAL ONLYX
00800 EXTERNAL EVAL
00900 C
81888 C GLOBAL VARIABLES.
01100 C
81288 COMMON /SECCOM/A(20,22),B(20),Y(22,21)
01300 COMMON /SECVAR/CS(20),G(22,22),L,LM1,MARK(21),N,N1,N2,
01400 1 NL,NL1,NL2,NM1,NM2,NORM(21),P(20,20),
01500 2 Q(20,20),RSQN,SN(20)
01G00 COMMON /SECPRM/MCHEPS.NTRY,OUTBND,SCL,TOL
01700 REAL A,B,CS,G,MCHEPS,NORM,P,Q,RSQN,SCL,SN,TOL,Y
01888 INTEGER L, LM1, MARK, N, Nl, N2, NL, NL1, NL2, NM1, NM2, NTRY, OUTBND
01980 C
82888 C VARIABLES LOCAL TO EVALG.
02100 C
82288 REAL T
02300 INTEGER I,J,K,NI,NK
82488 C
02500 C TRANSFORM YP INTO THE X COORDINATE SYSTEM.
82G88 C
02700 DO 20 I-l.N
02800 XP(I) = 0 .
02900 DO 10 J-l.N
03000 XP(I) = XP(I) + P(J,I)*YP(J)
03100 10 CONTINUE
03200 20 CONTINUE
03300 C
03400 C IF THERE ARE LINEAR EQUATIONS, SET THE LAST OF XP
03588 C TO THE CONSTANT PART AND TRANSFORM INTO THE INITIAL
03G00 C X COORDINATE SYSTEM.
83780 C
03800 IF0. .EQ. 0) GO TO 100
03980 DO 30 I-l.L
04000 NI = N+I
04100 XP(NI) = B U)
04200 30 CONTINUE
04300 DO G0 K-l.L
04488 NK - N+K
04588 T = 8.
84G88 DO 48 I-l.NK
84788 T = T + A(K,I)*XP(I)
04800 40 CONTINUE
04900 T = T/A(K,NL1)
05000 DO 50 I-l.NK
85180 XP(I) = XPU) - T*A(K,I)
05200 50 CONTINUE
05300 G0 CONTINUE
05400 C
05500 C IF ONLY XP IS REQUIRED, RETURN.

-50-

05600 C
05788 100 IF(ONLYX) RETURN
85888 C
85988

C
J EVALUATE THE FUNCTION

86888 C
86188 CALL EVAL(XP.FV,FAIL)
86288 IF(FAIL .NE. 0) RETURN
86388 C
86488 C TRANSFORM FV INTO THE G COORDINATE
86588 C
86688 200 GNRM = 0.
86788 DO 220 I-l.N
86888 GV(I) = 0.
86900 DO 210 J-l.N
87888 GV(I) = GV(I) + QU.JhvFVU)
07100 210 CONTINUE
87288 GNRM = GNRM + GV(I)#*2
07300 220 CONTINUE
87400 GNRM = SORT(GNRM)
07500 RETURN
07600 END

-51-

0 0 1 0 0 SUBROUTINE REDUCE(Y,P, IN,N,(1)
88288 C
88388 C PARAMETERS IN THE CALLING SEQUENCE.
08488 C
00500 REAL Y(22,21),P(20,20)
08680 INTEGER IN,M,N
00700 C
00800 C VARIABLES INTERNAL TO REDUCE.
00900 C

J

01000 REAL CS,R,SN,T
01100 INTEGER 1,11,11,IN2,IU,J
01200 IN2 = IN+2
01300 IFUN+l.GE.N) GO TO 50
01400 C
01508 C REDUCE THE STALAGTITE.
01688 C
81788 DO 40 11=IN2,N
81800 11 = N-II+IN2
81988 I = 11-1
02000 IF(Ydl.IN) .EQ. 0.) GO TO 40
82188 CALL ROT(Y(I,IN),Y(Il,IN),CS,SN,R)
82200 Yd 1, IN) = 0.
82388 Yd,IN) = R
02400 IFd.GT.M) GO TO 20
82588 DO 10 J=I,M
02600 T = CS*Yd,J) + SN>vY(Il,J)
82788 Ydl.J) = CS>vYdl,J) - SN>vYd,J)
02800 Yd,J) = T
82900 10 CONTINUE
03000 20 CONTINUE
03100 DO 30 J-l.N
03200 T = CSvcPd.J) + SN*Pdl,J)
03300 P(U.J) = CS*Pdl,J) - SN*Pd,J)
03400 PCI,J) = T
03500 30 CONTINUE
03600 40 CONTINUE
03700 50 CONTINUE
03800 C

J

03900 C REDUCE FROM HESSENBERG TO TRAPEZIODAL FORM.
04000

REDUCE FROM HESSENBERG TO TRAPEZIODAL FORM.

04100 IU = MIN0(M,N-1)
04200 DO 100 1=1,IU
04300 11 = 1+1
04400 IF(Y(11,1) .EQ. 0.) GO TO 100
04500 CALL ROT(Y(I,I),Y(Il,I),CS,SN,R)
04600 Yd,I) = R
04700 Y(I1,I) = 0.
04800 IFdl .GT. M) GO TO 80
04900 DO 70 J=U,M
05000 T = CS>vYd,J) + SN>vY(Il,J)
05100 Ydl.J) - CS>vY(Il,J) - SN*Yd,J)
05200 Yd,J) = T
05300 70 CONTINUE
05400 80 CONTINUE
05500 DO 90 J-l.N

-52-

85688 T = CS*Pd,J) + SN*P(U,J)
85788 P(I1,J) - CS*Pdl,J) - SN*Pd,
85888 Pd,J) - T
85388 90 CONTINUE
86888 108 CONTINUE
86188 RETURN
06280 END

-53-

88108 SUBROUTINE HESRED
88288 C
88388 C GLOBAL VARIABLES.
88488 C
88588 COMMON /SECCOM/A (20,22),B(20),Y(22,21)
88888 COMMON /SECVAR/CS(20),G(22,22),L,LM1,MARK(21),N,Nl,N2,
88788 1 NL,NL1,NL2,NM1,NM2,NORM(21),P(20,20),
88888 2 Q(20,20),RSQN,SN(20)
00900 COMMON /SECPRM/MCHEPS,NTRY,OUTBND,SCL,TOL
81888 REAL A,B,CS,G,MCHEPS,NORM,P,Q,RSQN,SCL,SN,TOL,Y
81188 I NTEGER L, LM1, MARK, N, Nl, N2, NL, NL1, NL2, NM1, NM2, NTRY, OUTBND
81288 C

J

I NTEGER L, LM1, MARK, N, Nl, N2, NL, NL1, NL2, NM1, NM2, NTRY, OUTBND

81388 C
J VARIABLES INTERNAL TO HESRED.

81488 C
81588 REAL R,T
81688 INTEGER I,K,K1,K3
81788 DO 20 K=1,NM1
81888 Kl = K+l
81988 CALL ROT(G(K+2.K),G(K+2,Kl),CS(K),SN(K),R)
82888 G(K+2,K) = R
82188 G(K+2,K1) = 0.
82200 K3 = K+3
82388 DO 10 I=K3,N2
02488 T = CS(K)*G(I,K) + SN(KhvG(I,Kl)
82588 G(I,K1) = CS(K)*G(I,K1) - SN(K)*G(I,K)
82688 G(I,K) - T
82788 10 CONTINUE
82888 20 CONTINUE
82988 RETURN
83880 END

- 5 4 -

0016Q SUBROUTINE ROT(A,B,CS,SN,R)
00200 REAL A,B,CS,SN,R,AA,BB,ETA
00300 ETA = AMAX1(ABS(A),ABS(B))
00400 IF(ETA .NE. 0.) GO TO 10
00500 R = 0.
00500 CS = 1 .

00700 SN - 0.
00800 RETURN
00300 10 CONTINUE
01000 AA = A/ETA
01100 BB = B/ETA
01200 R = SQRT(AA**2 + BB**2)
01300 CS = AA/R
01400 SN = BB/R
01500 R = RftETA
01800 RETURN
01700 END

-55-

References

1. R. H. Bartels, J. Stoer, and Ch. Zenger, A realization of the simplex
method based on triangular decomposition, in Handbook for Automatic
Computation II. Linear Algebra (J. H. Wilkinson and C. Reinsch, eds.),
152-190, Springer, New York, 19710

2. R. P. Brent, On maximizing the efficiency of algorithms for solving
systems of nonlinear equations, IBM Research RC 3725, Yorktown Heights,
1972.

3. J. M. Ortega and W. C, Rheinboldt, Iterative Solution of Nonlinear Equa­
tions in Several Variables, Academic Press, New York, 1970*

4. P. Wolfe, The secant method for simultaneous nonlinear equations, Comm. ACM 2
(1959) 12-13.

5. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon, Oxford, 1965.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
REPORT DOCUMENTATION PAGE R E A D INSTRUCTIONS

B E F O R E C O M P L E T I N G FORM

1 REPORT NUMBER 12. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)
A STABLE VARIANT OF THE SECANT METHOD FOR SOLVING
NONLINEAR EQUATIONS

5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORfa;
W, B, Gragg and G. W. Stewart

8. CONTRACT OR GRANT NUMBERfa)
ONR N00014-67-A-0128-0018

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
April, 1974

13. NUMBER OF PAGES
57

14. MONITORING AGENCY NAME A ADDRESŜ / different fromControlling Office)
Office of Naval Research
Mathematics Program
Washington, D. C. 20360

15. SECURITY CLASS, (of thla report)

unclassified
15a. DECLASSIFICATION/DOWN GRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue on reverse side it necessary and identify by block number) _

The usual successive secant method for solving systems of nonlinear equations sufjfers
from two kinds of instabilities. First the formulas used to update the current
approximation to the inverse Jacobian are numerically unstable. Second, the dir|-
ections of search for a solution may collapse into a proper affine subspace, re­
sulting at best in slowed convergence and at worst in complete failure of the
algorithm. In this report it is shown how the numerical instabilities can be
avoided by working with factorizations of matricies appearing in the algorithm.

• • - *.~~A ,\f*r-e*nt- *inrl rnme„dv dep:enar£.ci§s_ e
a v o i d e d Dv w o r K i n u WALU i . a t - L U L I ^ U V . J . V . U M ~ * * - ^ ^ ^ ^

^ v e g ^ t h e s e factorUgtlong ^ g ^ a U g g ^ a n ^ ^ l S g ^ g S f i S M i f i 1 *
iescritie

1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE
SECURITY CLASSIFICATION OF THIS PAGE fWh»n Data Entered)

