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This paper surveys techniques for calculating eigenvalues and eigenvectors of very large matrices. 

1. INTRODUCTION 

1• The object of this paper is to give a concise 
review of current mathods for solving algebraic 
eigenvalue problems involving matrices so large that 
they cannot be maintained in array form in the high 
speed storage of a computer. Such problems arise in 
a variety of applications, and I hope that this sur­
vey will prove useful to people who must actually 
solve large eigenvalue problems as well as to the 
researcher seeking to devise new techniques. Owing 
to limitations of space, it has been possible to de­
scribe the various computational methods and their 
properties only in barest outline; the reader must 
go to the literature for more detail. The approach 
is not historical, and I have often preferred recent 
references with complete bibliographies in document­
ing this survey. I have not attempted to compare 
algorithms for two reasons. First the field is rap­
idly changing, and too little is known to make flat 
assertions about the superiority of one algorithm 
over another. Second the properties of the methods 
described here depend on many factors, e.g. the type 
of problem, the computer, the operating system, and 
even the language in which the method is coded. A 
method that is superior in one environment may be 
inferior in another, 

2. Many people have encouraged me in writing this 
survey. I should particularly like to thank Jane 
Cullum, Gene Golub, Velvel Kahan and Richard 
Underwood for freely discussing their own work in 
the area with me. I am also indebted to Axel Ruhe 
for sending me post haste copies of valuable reports 
by him and his colleagues at the University of Umea. 

3. It will be assumed that the reader is familiar 
with the standard theory of the algebraic eigenvalue 
problem, as well as the better algorithms for com­
puting the eigenvalues of small, dense matrices. 
For background refer to [22], [61], [62], and [57], 

4. Large eigenvalue problems arise in many scientif­
ic and engineering problems. As a rule such prob­
lems are sparse, that is they have few nonzero ele­
ments. The types of matrices involved can be rough­
ly divided into three classes: structured matrices, 
modifications of structured matrices, and unstruc­
tured matrices. We shall be concerned principally 
with the last class. 

5. Ilighly structured matrices arise from finite dif­
ference and finite element approximations to the so­
lution of continuous problems [58], [60], [64], 
Much work has been done on the efficient solution of 
linear systems involving such matrices [9], [14], 
[21], [60], [64], and these techniques can be applied 
to the solution of their eigenvalue problems (see 
[51]). 

Another class of structured sparse matrices is 
the class of band matrices having small band width. 
A variety of techniques already exist for dealing 
Vc 
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with such matrices. The reader is referred to [61], 
[62]. 

6. In some problems a highly structured matrix is 
modified slightly. For example, a tridiagonal matrix 
may be altered by appending a full row and column. 
In some cases it is possible to relate the solution 
of the structured problem to that of the modified 
problem in a computationally efficient way (see [15] 
for an example of a diagonal matrix modified by add­
ing a matrix of rank one), Even when this is not 
possible, the structure of the underlying problem 
may often be used to economize the iterative methods 
described below, 

7. In many instances, the matrix will have no special 
structure. This is not to say that its elements will 
be distributed randomly; rather their distribution 
reflects an underlying physical problem that is not 
completely regular. For example, in structural 
problems the nonzero entries in the matrix represent 
the connectivity graph of the elements in the struc­
ture. Such a matrix may tend to be banded, but with 
troublesome exceptions. When the exceptions become 
so numerous that it is impossible to take advantage 
of the structure of the matrix, recourse must be had 
to methods that assume little more than sparsity. It 
is with such methods that this paper is principally 
concerned. 

8. A large part of the literature on large eigenvalue 
problems is devoted to problems of the form Ax = \Bx 
(for background see [28]). Here A and B are usually 
symmetric and B is positive definite, in which case 
all the eigenvalues are real. The numerical treat­
ment of such generalized problems is complicated by 
the fact that there is no analogue of the useful pow­
er method, which is the basis of many techniques for 
the ordinary eigenvalue problem (see Section 5 below). 

9. A greater number of the methods described in this 
paper apply only to symmetric matrices, or at least 
have not been extended to nonsymmetric matrices. 
There are two reasons for this. First, the nonsym­
metric eigenvalue problem is considerably more diffi­
cult than the symmetric eigenvalue problem. Even in 
the small dense case, the nonsymmetric problem raises 
points that continue to trouble specialists (e.g., 
what should one compute in the place of eigenvectors 
when the matrix is defective). The second reason is 
that many of the large eigenvalue problems that arise 
naturally are symmetric, which has encouraged a great 
deal of work in the 'area. 

10. In connection with what it is possible to com­
pute, it is useful to distinguish between large prob­
lems and gigantic problems. We have implicitly de­
fined a large problem as one in which the order n is 
such that n exceeds the high speed storage capacity 
of the computer in question (Section 1.1). If this 
excess is not too great, it is reasonable to ask for 
the full complement of eigenvalues and eigenvectors, 
perhaps computed at great expense. A gigantic prob­
lem is one in which the high speed storage capacity 
of the computer is but a small multiple of n. In 



this case, it is not reasonable to ask for a complete 
eigensystem, since the array of eigenvectors will not 
in general be sparse and cannot be easily manipulated. 
Moreover, the methods best suited to gigantic prob­
lems give at most a few eigenvectors usually corre­
sponding to extreme eigenvalues (eigenvalues lying at 
either end of the spectrum). It is fortunate that in 
many problems all that is required is a few extreme 
eigenvalues and their eigenvectors. 

2. SPARSE MATRIX TECHNOLOGY 

1. In recent years a substantial amount of work has 
been devoted to computing LU decompositions of large 
sparse matrices as a preliminary to solving linear 
systems. This is not the place to survey this work; 
however, some of the techniques developed are appli­
cable to the large sparse eigenvalue problem, and we 
shall mention them in this section. For further 
details and references the reader is referred to 
[47], [43], and [63]. 

2. In order to operate with a large sparse matrix, it 
must be represented in the computer, preferably in 
its high speed storage. Even a gigantic problem, if 
it is sufficiently structured or sparse, may be so 
represented. For example, the five point difference 
approximation to the A operator over an equally 
spaced mesh yields a matrix whose nonzero elements 
have the values 4 and -1 and are regularly distribut­
ed. Hence an element of this matrix can be retrieved 
simply from a knowledge of its position in the ma­
trix. As another example, very large band matrices 
can be represented by recording their nonzero diag­
onals in linear arrays [62], Matrices that depart 
slightly from an otherwise representable matrix may 
be represented by recording the modification^in a 
suitable manner. For example the sum A + uv Tof a 
tridiagonal matrix A and a rank one matrix uv will 
not in general be sparse. But it can be represented 
by recording A and the vectors u and v. 

3. If an unstructured matrix is sufficiently sparse, 
it may also be represented in the high speed storage 
of a computer by recording only its nonzero elements 
along with information enabling one to retrieve these 
elements. How this is done will depend on what is to 
be done with or to the matrix. If, for example, all 
that is required is to form a matrix-vector product 
(cf. Section 5 below), a simple packed row represen­
tation of the matrix will suffice. If arbitrary ma­
trix elements are to be retrieved or if the matrix 
itself is to be altered, more sophisticated repre­
sentations will be needed. Various kinds of linked 
lists are in common use [27], [7], [8], [18], A 
promising alternative is the arc graph representa­
tion [44], [45]. 

4. When the matrix involved is dense or when the 
number of its nonzero elements exceeds the capacity 
of the high speed storage of the computer, the ma­
trix must be retained on a slower backing store and 
its elements brought into high speed storage by 
blocks. Again how this is done will depend on the 
problem to be solved, and little can be said in gen­
eral. For a careful analysis of paging strategies 
in solving linear systems see [46], The behavior of 
some standard matrix algorithms on systems with auto­
matic paging has been discussed in [31], [32]. 

5. In some cases it is necessary to solve repeatedly 
problems in which the distribution of nonzero ele­
ments of the matrix does not change, although the 
value of the elements themselves may be changed. In 
such cases the matrix may often be preprocessed to 
good effect. If the matrix is to be manipulated, a 
preprocessing algorithm can be used to arrange the 
computations so that the fill-in of new nonzero ele­
ments is reduced [19], [54]. Moreover if an algor­
ithm is to be used whose data accesses depends only 
on the structure of the nonzero elements (e.g. 
Gaussian elimination), a preprocessing algorithm can 

actually compile efficient code that takes advantage 
of the known distribution of the zeros [18], [10], 
Both preprocessing techniques should find applica­
tion to the quasi-direct eigenvalue techniques to be 
discussed next. 

3. QUASI-DIRECT METHODS 

1. Since the general algebraic eigenvalue problem is 
equivalent to the solution of a polynomial equation, 
all numerical methods for its solution must be itera­
tive. However, most of the better algorithms for 
dense small eigenvalue problems initially reduce the 
matrix to some compact form as a preliminary to iter­
ation. These direct reductions start with the given 
matrix A^ and produce a sequence of similarity trans­
formations 

in such a way that some A^ (usually A ) has a con­
venient form (usually triaiagonal or Bessenberg) that 
makes iterating for the eigenvalues easy. We shall 
call such a combination of direct reduction and iter­
ation a quasi-direct method. For details on the 
methods mentioned in this section, the reader is re­
ferred to [61]. 

2. When a large sparse matrix can be represented in 
the high speed storage of a computer, it is possible 
to attempt to reduce it to compact form by one of 
the kind of reductions indicated above, say 
Householder's reduction of a symmetric matrix to 
tridiagonal form or the reduction by elementary 
transformations to Hessenberg form. The chief enemy 
of such reductions is fill-in, which is likely to be 
greater for eigenvalue problems than for linear sys­
tems for two reasons. First the similarity trans­
formations in (3.1) are more complicated than the 
one-sided transformations used to solve linear sys­
tems. Second, for symmetric matrices orthogonal 
transformations must be used to preserve symmetry, 
and these transformations tend to create more fill-
in than their nonorthogonal counterparts. To miti­
gate fill-in one may attempt during the course of 
the reduction to pivot so that fill-in is reduced 
[59]. The author knows of no algorithm for examin­
ing the structure of a matrix to minimize fill-in, 
as is often done for linear systems (cf. Section 
2.5). 

3. For symmetric matrices a promising algorithm is 
the Lanczos reduction with reorthogonalization as 
implemented in [16] (for a general discussion of the 
Lanczos algorithm see Section 5.5). This algorithm 
generates a sequence of orthonormal vectors x^x^, 
...,xn such that if - (x^,...,x^) then 
T = AX^ is tridiagonal. The eigenvalues of A 
are the same eigenvalues of T , and can ce easily 
computed. The method has the advantage that it re­
quires only that one be able to form the vector Ax 
for any given vector x. Thus fill in is not a prob­
lem for the method, and it can even be used on dense 
matrices that are too large to fit in the high speed 
storage of the computer. The main disadvantage of 
the algorithm is that the vectors x^,x2,...,x^ must 
all be used to generate x^+y However, these vectors 
may be kept on a backing store and brought in as 
needed (it should be noted that the x^'s are not 
changed from step to step so there is no need for 
messy and expensive updating on the backing store). 

The method can also be used on the symmetric 
Ax = \Bx problem whenever B can be cheaply factored 
in the form B = LL T with L lower triangular. For 
then the required eigenvalues are the eigenvalues of 
the symmetric matrix C = L~1AL"T. The product Cx 
can be computed inexpensively by solving triangular 
systems and multiplying by A without ever explicitly 
forming C, which will in general not be rsparse. 

There should be an analogous process for the 
Hessenberg algorithm to reduce a nonsymmetric matrix 
to Hessenberg from, but, since the final matrix will 



not be sparse, it may be of limited value. Whether 
the general Lanczos biorthogonalization algorithm 
[61] can be made stable by some kind of reorthogonal-
ization is an open question, 

4. Once a matrix has been reduced to a condensed 
form, its eigenvalues must be evaluated. For small 
dense matrices this is usually done by the QR algor­
ithm. For large matrices the QR algorithm has some 
disadvantages. First the transformations used by 
the algorithm tend to destroy sparsity, so that it is 
not a good choice for a sparse Hessenberg matrix. 
Second, although the algorithm is satisfactory enough 
for finding all the eigenvalues of a symmetric tri-
diagonal matrix, if only a few eigenvalues are re­
quired there are better ways (see Section 3.6). 
Finally, if eigenvectors are to be computed one must 
save either the original matrix or the QR trans­
formations , 

5. If the matrix A is Hessenberg, the function 
f(X) = det(A-XI) and its derivatives can be cheaply 
evaluated by Hyman's method [61], This suggests 
using an iterative method to find the zeros of f, 
which of course are the eigenvalues of A. This is 
perhaps the best way of getting at the eigenvalues 
of a sparse Hessenberg matrix, and various strategies 
and iterative techniques have been treated in detail 
in [61] and [38], 

6. If only a few of the eigenvalues of a symmetric 
tridiagonal matrix A are to be calculated, it is 
best done by the method of Sturm sequences combined 
with linear interpolation. The method is based on 
the following observation. Let f^CX) = det(A^-XI), 
where A ^ is the leading principal submatrix of 
order k of the symmetric matrix A. The number of 
agreements in sign between consecutive members of 
the sequence f̂  (X),f^(X)>•••,f (X) is the number of 
eigenvalues of A that are strictly greater than X. 
Since, in our case, A is tridiagonal, the numbers 
f^(X) can be easily evaluated and the number of 
eigenvalues in any interval counted. By bisecting 
intervals, arbitrarily small intervals containing an 
eigenvalue can be found. Since f (X) - det(A-XI) 
these values can be used in an iterative scheme, 
such as the secant method, to accelerate convergence. 
The general method, which is described in [41], has 
the additional advantage that it can locate a few 
eigenvalues lying in a specified interval. 

The method can also be applied to the symmetric 
Ax = XBx problem, by setting f^(X) = det (A^-XB ̂ ) . 
If A and B are band matrices, the f̂  can be evaluat­
ed with not too much computational expense [41], 

7. It should be noted that the techniques of Section 
3.5-6 often can be applied to matrices that are 
simple modifications of a highly structured matrix. 
For example, the determinant of the matrix A 4- uv T 

can be easily calculated from the determinant of 
A: det(A + uvT) = det(A) + v Tu. Hence if A is 
upper Hessenberg, det(A + uv̂ " - XI) can be cheaply 
evaluated. 

8. If it is desired, eigenvectors of the condensed 
matrix may be computed by the inverse power method 
and then transformed back to eigenvectors of the 
original matrix. Since the condensed matrix A is 
usually Hessenberg or tridiagonal, the linear sys­
tems generated by the inverse power method may be 
cheaply solved, although extra storage must be pro­
vided to save A, which must not be destroyed. Care 
must be taken with multiple and defective eigen­
values [42], After the eigenvectors of the condensed 
matrix have been computed, they may be transformed 
back using the transformations P^ of (3.1), which 
must be stored for this purpose. Since the informa­
tion required to recover will usually require at 
most n locations, the P^ may easily be saved on a 
backing store. 

4. METHODS THAT REDUCE THE RAYLEIGH QUOTIENT 

1. The methods of this section apply to the Ax - XBx 
problem, where A is symmetric and B is positive def­
inite. They are based on the fact that the Rayleigh 
quotient p(x) - x^Ax/x^Bx has as its minimum the 
smallest eigenvalue X̂  of the problem. This minimum 
is attained when x is an eigenvector corresponding 
to X r 

The idea is to generate a sequence of vectors 
fx.} related by x, M - x. + Qi.p., where p. is a cor-i 1 i i i i rection vector ana a. is a scalar. The p. and Oi. i i i are chosen in such a way that the sequence p(x.) de­creases, and hence approaches a limit. 

By taking B = I, the methods of this section 
yield methods for solving the usual symmetric eigen­
value problem. Moreover if it is attempted to in­
crease rather than reduce p(x.), they yield analo­
gous methods for finding dominant eigenvalues, 

2. The simplest of the methods is the method of re­
laxation, in which the vector p. is chosen to be 
one of the coordinate vectors, say e^, so that only 
the kth component of x. is altered. The scalar a. 
is chosen so that x. . satisfies the equation 
(a^ - p( x^) bj c) x

i +i ~ 0> where a^ and b^ are the kth 
rows of A and B. This corresponds to one step of 
the usual relaxation method for solving the homoge­
neous system (A-p(x^)B)x « 0, and the method is at 
least as old as the widespread use of relaxation 
techniques [40], In versions suited for computers 
the directions p^ are chosen cyclically from among 
the coordinate vectors e^, usually in the order 
e^> e2 > • • • , e

n
, e ] 5 " • • 

3. The simplicity of the relaxation method particu­
larly recommends it. If a backing store is neces­
sary, the rows of A can be brought in one by one, or 
in blocks. The Rayleigh quotient can be updated at 
each stage, so that it is not necessary to compute 
p(x.) ab initio for each x. [33]. Other quantities 
necessary to the iteration can be treated similarly 
[25]. 

4. It has been known for some time [6] that if 
p(x^) < min(a ^ / b ^ ) , then the sequence (p(x.)} de­
creases, and since it is bounded below by X^, it 
must converge to a value X. The residual vectors 
(A - p(x.)B)x. also approach zero [50 j. It follows 
that X must be an eigenvalue. Moreover, if X is 
simple, the sequence {x.} approaches an eigenvector 
when it is suitably scaled. However, unless p(x.) 
is less than the second largest eigenvalue, it can­
not be guaranteed that X = X-j (but see Section 4.7 
below) . 

5. The relaxation method can be overrelaxed in the 
usual way by taking a. greater than necessary to 

t T 
solve the equation (a^ - p (x^)b^) x^+-j = 0. In some 
cases this will improve convergence. If the prob­
lem has sufficient structure, it is possible to 
carry over some of the theory of successive over-
relaxation for linear systems [50], [51]. 
6. Closely related to the relaxation method is the 
method of "coordinate-relaxation" [11], It differs 
from the relaxation method in that the parameter a. 
is chosen so that p(x^_^) is minimized. The value1 

of Oi. can be obtained as one of the roots of a 
quadratic equation whose coefficients can be cheaply 
generated. Empirical evidence indicates that the 
method of coordinate relaxation is superior to the 
relaxation method in the early stages of the itera­
tion [55], [50]. 

7. The method of coordinate relaxation has been 
thoroughly analyzed in [25], where it is shown that 
the ot. approach the values used in the relaxation 
method. This means that in the limit the two meth­
ods are the same. Moreover, there is given a 



criterion for when to shift over to the les 
sive relaxation method. Since the method o 
dinate relaxation is a descent method, the 
form a decreasing sequence, which approache 
eigenvalue X. It cannot be guaranteed that 
unless p(x.) is less than the second larges 
value. However, geometric considerations i 
that convergence to an eigenvalue other tha 
unlikely, and when it happens the sequence 
almost certainly be unbounded, which it is 
p (xj -* \y These comments on convergence 
also to the relaxation method. 

s expen-
f coor-
p(x.) 
s an 

X = \ v 

t eigen-
ndicate 
n \! is 
{x.J will 
not when 
apply 

k+1 3-a \ ' Xk-1 

8. It has also been proposed to apply the method of 
conjugate gradients to minimize p(x) [2], [12], 
This is practical since gradient p(x) is propor­
tional to the residual (A - p(x)B)x and may be easily 
calculated. There results a scheme in which the 
sequences {x^} and {p.) are generated concurrently: 
xi+i = xi + Vi> pi+i = p ' t W + hpi- H e r e at 
is chosen to minimize p(x._^). The (3̂  are choen to 
maintain conjugacy among the directions p., and 
there are several possible formulas (see J 4 8 ] ) . One 
approach is to choose 3. and ex. simultaneously to 
minimize p(x^+^) [13], 1 1 

The theory of conjugate gradient methods ap­
plied to the Rayleigh quotient is not highly devel­
oped. Limited experiment [51] that it is somewhat 
better than relaxation or coordinate relaxation 
(here one conjugate gradient step is compared with 
a complete cycle of relaxation). 
9, A natural generalization of the relaxation meth­
ods is to write A - p(x.)B in the form M. - N., i i i where M^ is easy to invert. The vector xi+.. is then 
given by x... = M. N.x.. Methods of this kind have & J l+l l 11 
been analyzed in [50], [51], 

5. METHODS BASED ON KRYLOV SEQUENCES 

1. The methods of this section use a Krylov sequence 
of the form x, Ax, A^x,... to find an approximate 
eigenvector of A. Since a Krylov sequence can be 
generated by sequential vector matrix multiplica­
tions, the methods are well suited to large or gigan­
tic problems. Most, but not all of the methods apply 
only to symmetric matrices (for another survey of 
these methods see [ 4 8 ] ) . 

2. One of the oldest methods for finding an eigen­
vector is the power method. It is based on the 
fact that the members of the Krylov sequence will 
tend toward an eigenvector of A. Specifically if 
the eigenvalues X i , X 2 , . . . , X of A satisfy 
|xJ > |X 9 | 2> \\\ (i > 2), Shen under mild restric-

k 
tions on x the vectors A x tend, when suitably 
scaled, toward u^, the eigenvector corresponding to 
X.|. The convergence is essentially linear with 
ratio | X 2 A } I . 
3. The convergence of the power method can some­
times be accelerated by working with the matrix 
A - pi, where the scalar p is chosen to enhance the 
dominance of X-j. When A is symmetric with eigen­
values X 1 > X 2 > . . . > X , the optimal value of p is 
( X 2 + ^r?^' °^ course this value of p can be com­
puted only if estimates are available for \^ and 
X (if A is positive definite then X can be esti­
mated by zero). In general the choice of p is 
something of an art. 
4 . In the symmetric case, where an interval [a,3] 
enclosing [>. , X 9 ] is known, the vectors 

(V'\ 
yk = [oc $](~^X9

 w h e r e c[7g] i s t h e k t h c h e b y c h e v 

polynomial on the interval will in general 
converge faster than the vectors Alcx of the power 
method. The vectors y^ can be generated by the 
three term recurrence 

which is suitable for large problems. The conver­
gence is at least as fast as the approach of 
/ (k) 

l/Cj-̂  jaj](̂-|) t 0 zero. This method has been used in 
[53].' 
5. An extremely important algorithm for symmetric 
matrices is the Lanczos algorithm [29]. Here the 
elements of the Krylov sequence are orthogonalized 
to yield a sequence x^x^,... of orthonormal vectors. 
The vectors x^ can be shown to satisfy a three term 
recurrence of the form 

Ax, V k pkxk-r (5.1) 

where o>^ and 8 k are chosen to make x^ + 1 orthogonal 
to Xk and x. k-1 and is chosen so that x^+^ has 
length unity. It follows from (5.1) that if 

. . , \ ) , then xTAXk=tridiag(ek,ak,Yk)=Tk. (x Xk 
6. The matrix T is similar to A, and consequently 
its eigenvalues coincide with those of A (cf. Sec­
tion 3.3). However some of the eigenvalues of an 
intermediate T may very closely approximate eigen­
values of A [2e], [36], even when k is very much 
less than n. This is particularly true of isolated 
eigenvalues and eigenvalues at the extremity of the 
spectrum. If jj, is such an eigenvalue of T, and z is 
its eigenvector, then may approximate an eigen­
value of A, It is an unfortunate aspect of the al­
gorithm that in order to compute eigenvectors in 
this way the vectors ̂  must either be saved or re­
generated. 

7. There are several mathematically equivalent ways 
of computing a, |B, y i-n (5.1), and the numerical 
properties will depend on which choice is made. An 
analysis in [36] shows that one should compute ct'k 
according to either of the formulas cfk - x^Axk or 
# k = x k ^ A \ " ̂ kXk 1^' a n d t h a t s n o u l c i b e taken 
equal to y k = V*^. 

8. The curse of the Lanczos algorithm is the loss of 
orthogonality and even independence among the vectors 
x,. For example, the matrices T k cannot have multi-
pie eigenvalues, so that if A has a multiple eigen­
value and the process must break down prematurely. 
Numerically this will be signaled by severe cancel­
lation in the computation of some ̂ xjc"q1|c

xic"̂ jc ]xk -| > 
after which the computed x k +^ will be far from 
orthogonal to its predecessors. One cure is to re-
orthogonalize x, ^ with respect to the previous 
vectors (see [35], [16] and Section 3.3), but this 
is expensive. 

In practice the algorithm without reorthogonal-
ization produces accurate eigenvalue approximations. 
However, as the process degenerates it tends to 
start over and produce multiple approximations to 
the same eigenvalue. This need not be regarded as a 
defect, since it permits the method to compute multi­
ple eigenvalues, which it could not otherwise do. 
In order to avoid the acceptance of spurious eigen­
values, all the eigenvectors corresponding to a 
cluster of eigenvalues can be computed as in Sec­
tion 5.6, those with large residuals rejected, and 
a linearly independent subset of the remainder ac­
cepted as true eigenvectors of A [36], 
9. There is a version of the Lanczos algorithm for 
nonsymmetric matrices which requires in addition to 
the Krylov sequence of Section 5.1 another Krylov 
sequence in A--. Its theoretical and numerical prop­
erties are not as well understood as those of the 
symmetric Lanczos algorithm (for a discussion see 
[61]). 
10. The methods discussed so far in this section 



have the defect that the user has no choice of what 
eigenvalues he gets. The methods now to be dis­
cussed have the property that they take an accurate 
approximation X to an eigenvalue X-j of the symmetric 
matrix A and attempt to^find a linear combination 
y k = a Qx + a.|Ax+.. ,+o^A x^ of the Krylov sequence 
that is a good approximation to the eigenvector u^ 
corresponding to X^. Of course it does not hurt if 
x is already a fair approximation to u^. 

11. The author has considered but not analyzed a 
method in" which = 1 and the remaining cy's are 
chosen to minimize ||(A-\I)y, || , This least squares 
can be solved by orthogonalizing the sequence 
A(A-\I)x, A 2 ( A - \ I ) x , . . . , A K ( A - \ I ) x , which gives a 
three term recurrence a la the^Lanczos algorithm. 
Alternatively the vectors Ax,A x , . . . , A x may be 
orthogonalized with respect to the positive definite 
matrix (A-\I) , again giving a three term recurrence. 

1 2 . In a slightly different approach, Hufford [ 2 3 ] 
chooses y k so that ||(A-p(y, ) I)yk||/||yk|| is approxi­
mately minimized. Again the vector y, can be com­
puted via a three term orthogonalization. A crite­
rion for selecting k is given, and it is shown that 
the method has nice convergence properties when X is 
sufficiently near X-j. 

1 3 . Given an approximation X to X^, the inverse pow­
er method takes as an approximation to û  the solu­
tion of the system (A-XI)y = x. In [ 4 9 ] it is pro­
posed to use the method of conjugate gradients [ 2 0 ] 
to solve this system. The resulting approximations 
y k are linear combinations of the Krylov sequence as 
described in Section 5 , 1 0 , Some care must be taken 
in starting the process, since the method breaks 
down if X = p(x). Numerical experiments suggest 
that the method is quite powerful. In this connec­
tion the version of the method of conjugate gradi­
ents in [ 3 7 ] may be superior to the usual one, 

1 4 . For completeness we mention that the method of 
Section 4 . 8 in which the method of conjugate gradi­
ents is used to minimize p(x) also expresses an ap­
proximate eigenvector as a linear combination of the 
members of a Krylov sequence. However, this method 
generally converges to the smallest eigenvalue of A . 

6 . CALCULATING SEVERAL EIGENVALUES AND EIGENVECTORS 

1 . Some of the iterative methods discussed in the 
last two sections give only one eigenvalue and eigen­
vector at a time, whereas in some applications sever­
al are needed. In this section some methods for ob­
taining more than one eigenvalue are discussed. 

2 . When an approximate eigenvalue X-j and its corre­
sponding approximate eigenvector x^ have been found 
by an iterative method, it is natural to modify the 
matrix so that the iterative method cannot converge 
to x^. Such modifications are called deflations. 
Deflation methods have been treated in detail in 
[ 6 1 ] , and here we mention only one for illustrative 
purposes. 

Suppose that A is symmetric, and x^ is an exact 
eigenvector of norm unity corresponding to the eigen­
value X-j • Then, since the eigenvectors of A are 
orthogonal,Tit is easily verified that the matrix 
A ^ = (1-x^x.j) A (I-x^xJ) has an eigenvalue zero cor­
responding to the eigenvector x^. The remaining 
eigenvalues and eigenvectors are undisturbed. More­
over, if x is orthogonal to x^, then so is the 
Krylov sequence x , A^x , A^x,..., so that the methods 
of Section 5 cannot converge to x^. 

In practice x^ will only approximate an eigen­
vector of A . However, it can be shown that the er­
ror induced by the inaccuracy of x^ is equivalent to 
perturbing A by a matrix of norm equal to 
| |AX.J-p (x^ )x^ Ik [ 5 7 ] , Thus x^ need not even be an 
accurate eigenvector, as long as it has a small re­
sidual . 

3 . A frequently encountered objection to deflation 
techniques is that they destroy sparsity. This is 
in general true if the deflated matrix is formed 
explicitly. However, in many cases one can work with 
the matrix in a factored form. For example, if it is 
desired to compute the vector A^x, where Â  is the 
deflated matrix of Section 6 . 2 , one can compute se­
quentially y = (I-x.jX^)x =» x - (x|"x)x̂ , z = Ay, and 
A 1 = z - (x|z)x-, so that instead of the matrix Â  
all that is required is the vector x̂  and the matrix 
A. In fact if x is orthogonal to x^, then y = x and 
the first step can be skipped. 

The practical implementation of a deflation 
technique, will depend on the technique and the iter­
ative method to be used. For an example of deflation 
in relaxation methods see [ 5 5 ] , 

4 . The method of simultaneous iteration [ 1 ] , [ 4 ] , 
[ 5 2 ] , [ 5 3 ] , [ 5 6 ] for finding several dominant eigen­
vectors of a matrix is based on the following obser­
vation. Suppose that | X1 | * | X~ | ̂ ...^ | X^ | > U r + 1 I 
^ . . . ^ |x I, and let U denote the invariant sub-
space corresponding to \y • t\Y. Let the nXr matrix 
X be given. Then under mild restrictions on X, the 
space spanned by the columns of A X tends toward U 
[ 3 9 ] . Thus appropriate linear combinations of the 
columns of A X tend toward eigenvectors of A. 

In practice all of the columns of A kX will tend 
toward the dominant eigenvector of A, and the infor­
mation about the other eigenvectors of A will be 
lost. To cure this problem, matrices X^ having the 
same column space as A are generated according to the 
formula X. +- = AX, R^, where R^ is chosen to keep the 
columns or X^^ strongly independent. The matrix R^ 
is commonly chosen to be the upper triangular matrix 
that makes the columns of X^ + 1 orthonormal. If A is 
symmetric, then the ith column x£ ' of X^ will usu­
ally tend toward the eigenvector corresponding to X^ 
at a rate proportional to the kth power of max{|x k/x k_ 1 I , UfcH-i/̂ J }• T h u s f o r symmetric A, the 
method oi: simultaneous iteration obtains several 
eigenvectors at a time. 

(k) 
5 . It is evident that the convergence of x. will 
be slow if X. is poorly separated from its neighbors. 
On the other hand, if |x | » |X + 1 | , the space 
spanned by the columns oi X^ will quickly contain a 
good approximation to the ith eigenvector of A. 
This good approximation can be retrieved by the fol­
lowing Rayleigh-Ritz device. Form the symmetric ma­
trix B k = X^A^ a n d d i a & o n a l i z e it by a unitary 
transformation: ^ = P̂ B P k (this last step involves 
the solution of a comparatively small rxr symmetric 
eigenvalue problem). Then the columns of Z = ̂ k P k 

will also converge to eigenvectors of A, but this 
time at rates proportional to the kth power of 
|Xr+j/X.|. The diagonal elements of M are Rayleigh 
quotients of the y's and provide good approximations 
to the eigenvalues. A program incorporating this 
acceleration appears in [ 5 3 ] , 

6 . In [ 5 ] the above technique is generalized to non-
symmetric matrices. Here another sequence Y is 
formed from the matrices (AT)kY. The matrices X 
and Y are required to satisfy the biorthogonality 
relations Y^X^ = I. Suppose that Bfc = Y^AXfc can be 
diagonalized: = \ » under suitable 
conditions the column of X^P^ and YkP~ approach 
left and right eigenvectors. 

7 , A different approach to the nonsymmetric case has 
been taken by the author in an effort to avoid the 
problems posed by degeneracies in the matrix. The 
matrices X^ are formed as in the symmetric case, and 
under suitable conditions x; ' approaches the kth 
Schur vector, that is the vector obtained by ortho­
gonalizing the eigenvector u. with respect to 
u.| ,u^ ,.. • ,u. _.|. The convergence can be accelerated 
by forming B k as in Section 6 . 5 and finding a uni­
tary P k such that ̂  = P k \ P k i s u P P e r triangular 
with its eigenvalues ordered in descending order of 



modulus. The columns of Z = X^P will converge 
faster than those of X^. It should be noted in many 
applications a knowledge of the Schur vectors is all 
that is required 

8, A promising area of research is the use of block 
Lanczos schemes. These are obtained by orthogonal-
izing the block Krylov sequence X,AX,A2X,..., where 
X is an nXp matrix. One obtains a three term recur­
rence of the form 

W k + i " A xu - \ \ - \-iV 
If C k +i is chosen to be the lower triangular matrix 
that orthogonalizes the columns of X, _, then 
D k = X^AXR and B R = C^. Moreover, the matrix 
T k = (X1,...,Xk)TA(X1,...,Xk) is block tridiagonal 
with entries B k, D^, and C . Eigenvalues and eigen­
vectors can be found as in the usual Lanczos method; 
however, eigenvalues of multiplicity less than r may 
now be found without difficulty. 

Work in this area is being carried out by Gene 
Golub and Richard Underwood (Stanford University) 
and by June Cullum (IBM Research, Yorktown Heights) 
and Velvel Kahan (UC, Berkeley). 

7. THE USE OF AN INVERSE 

1. Some of the standard techniques for dense eigen­
value problems - the inverse power method, for ex­
ample - require one to be able to form the vector 
x = (A-XI) b for any vector b. This is of course 
equivalent to solving the system (A-XI)x - b. If A 
is sparse such systems can often be solved with 
reasonable efficiency via the sparse matrix tech­
niques discussed in Section 2. This section is de­
voted to examining the consequences of this fact for 
the large eigenvalue problem. 

2, The transformation A -» (A-XI) * transforms the 
eigenvalues X-j>•••,X R of A into the eigenvalues 
(X1-X)"1,(X2-X)" ,...,(X n-X) _ 1 of (A-XI)"1 without 
altering the eigenvectors. Thus all of the eigen­
values of A near X become extreme eigenvalues of 
(A-XI)"\ In particular if X is very near an eigen­
value of A, the power method with (A-XI)"^ will con­
verge very swiftly to the corresponding eigenvector 
of A, This is the inverse power method [42], Al­
ternatively one can employ the Lanczos algorithm 
(Section 5,5), or simultaneous iteration techniques 
(Section 6.4) to find several eigenvalues near X 
and their corresponding eigenvectors. 

3, The methods mentioned in Section 7.2 share the 
property that the shift X is fixed. Several meth­
ods, such as the well known Rayleigh quotient meth­
od [34], achieve high order local convergence by 
varying X. Such methods have the drawback that a 
new LU decomposition of A-XI must be calculated each 
time X is changed. However, the sparsity structure 
of A-XI does not change with X, and considerable 
work may be saved by the preprocessing techniques 
mentioned in Section 2,5, Another difficulty with 
these methods is that their convergence to a specif­
ic eigenvalue cannot be guarenteed unless an accu­
rate starting approximation is given. 

4. The generalized eigenvalue problem Ax = XBx is 
equivalent to the ordinary eigenvalue problem 
B - 1Ax = Xx whenever B is nonsingular. Consequently 
if systems involving B can be readily solved, one 
can apply some of the techniques previously dis­
cussed to the matrix B - 1A (n.b., B - 1A will not in 
general be formed explicitly). When A is symmetric 
and B is positive definite, symmetry can be pre­
served by factoring B into the product LL T, where L 
is lower triangular, and working with the symmetric 
matrix L^AL^^O] (cf. Section 3.3). 

The inverse power method applied to B A, re­
quires that one solve the symmetric system 

(A-XB)y = Bx. Since in general A-XB is indefinite, 
the usual symmetry preserving methods for solving 
systems may be unstable. It is unfortunate that the 
stable method in [3] has not been adapted to sparse 
matrices. A method which uses the inverse power 
method with several shifts to find the eigenvectors 
corresponding to eigenvalues lying in a given inter­
val has been described in [24]. 
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