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ABSTRACT 

The rounding-error analysis of Gaussian elimination shows that the 

method is stable only when the elements of the matrix do not grow exces­

sively in the course of the reduction. Usually such growth is prevented 

by interchanging rows and columns of the matrix so that the pivot element 

is acceptably large. In this paper the alternative of simply altering 

the pivot element is examined. The alteration, which amounts to a rank 

one modification of the matrix, is undone at a later stage by means of 

the well-known formula for the inverse of a modified matrix. The tech­

nique should prove useful in applications in which the pivoting strategy 

has been fixed, say to preserve sparseness in the reduction. 

i 



1. INTRODUCTION 

Let A be a real matrix of order n. The method of Gaussian elimination 

may be regarded as a technique for computing the LU decomposition of A into 

the product of a unit lower triangular matrix L and an upper triangular 

matrix U. Specifically, at the k-th step of the reduction, we have 

u ( k ) u ( k ) 

U11 U12 
) A ( k ) 

) A22 

(k) (k) 
where L ^ and U ^ ' are of order k e The (k+1)-th row of U is then given by 

(k) 

Uk+l,j ' ak+l,j <J=k+l,k+2,...,n), 

the (k+l)-th column of L by, 

= . 0 0 7 .00 

Al.fcf1 = ai,k +l/ ak +l,k +1 (i^ +1,k +2,...,n) 

and the matrix A ^ k + ^ by 

(k+1) (k) . 
aij = aij - £i,k+l "k+T.j U.J-*«,...,n). 

(k) 

The element a^-j is called a pivot element for the algorithm. If 

it is zero the algorithm fails, and if it is too smkll the algorithm be-

comes unstable in the presence of rounding errors. Usually this problem is 
(k) 

avoided by interchanging two rows and perhaps two columns of A ^ to bring 

an acceptably large element into the pivot position. However, in applica­

tions involving large sparse matrices an unhappy pivot selection may destroy 
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the sparsity of the subsequent matrices. Indeed in some applications 

the choice of pivots is determined entirely from the sparsity structure 

of A, leaving no freedom to pivot for stability (e.g. see 

In this paper we shall examine the technique of modifying the pivot 

element so that it is acceptably large and then undoing the modification 

later after the LU decomposition of the modified matrix has been computed. 

Since the emergence of a small pivot element in Gaussian elimination be­

tokens a numerical ill-determination of the LU decomposition, we shall 

not try to obtain the LU decomposition of A itself; rather we shall show 

how the LU decomposition of the modified matrix may be used to solve linear 

systems involving A. 

The next section will be devoted to describing the mechanics of the 

technique. The effects of rounding error will be discussed in Section 3. 

2. MODIFYING PIVOT ELEMENTS IN THE SOLUTION OF LINEAR EQUATIONS 

In this section we shall show how the solution of the equation 

(2.1) Ax = b 

can be obtained from the solution of 

(2.2) By = b, 

where A and B differ only in their (1,1)-elements. We shall then indicate 

the applications of this technique in Gaussian elimination. 

Since A and B differ only in their (1,1)-elements, B can be written 

in the form 
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T 
B * A + ae 1e 1, 

where e^ is the first column of the identity matrix. Then it follows 

from the well known modification formula (see [2, p. 123]) that 

-1 -1 -1 T -1 (2.3) A - B - TB e^ejB , 

where 
1 

T -1 -1 e^B e^-a 

Since x = A ^ b , we have from (2.2) and (2.3) 

-1 T x = y - T B
 e^ e^y 

= y - Ty 1c ], 

where ŷ  is the first component of y and ĉ  is the first column of B 

Thus the solution of (2.1) can be obtained from the solution of (2.2) by 

subtracting a suitable correction vector. 

The economics of this technique are favorable. The system (2.2) costs 

no more to solve than (2.1). The vector ĉ  can be obtained at the same 

time and at very little additional cqst by solving the system 

BCj « e^. 

T -1 

The computation of T (n. b,, e^B e^ Is the first component of c^) and x 

entails a negligible amount of additional calculation. Note that once ĉ  

has been calculated it can be saved and used to solve other systems of the 

form (2.1) with differing right hand sides. 

Concerning Gaussian elimination, suppose that at the k-th step an 

unacceptably small pivot element emerges. Then a solution of (2.1) may 
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T (k)T (k)T be obtained in the form x = (x^ ,X2 ) as follows. 

1) Solve the system 

2) Set B, 

(k) 
J11 
(k) 

J21 

(k) _ .(k) 
22 = A ^ ' + CTfee1e1, where o^is chosen to make the pivot 

element acceptably large. 

3) Solve the systems 

(k) (k) _ (k) (k) (k) = B 2 2 y 2 - b 2 , B 2 2 C ] e 1 

4) Correct y 2 to yield a solution of the system 

A(k) (k) = (k) 
22 2 2 

5) Solve the system 

U ( k ) x ( k ) 

11 Xl = b (k) U ( k ) x ( k ) 

12 X2 

This process can be repeated should an unacceptably small pivot be 

encountered in step 3 of the above algorithm; however, here the economics 

are not as favorable. The time considerations are roughly the same; each 

application of the technique requires the solution of an additional set of 
(k) 

equations involving the matrix > a negligible increase over the Gaussian 
(k) (k) reduction of B ^ itself. However, each cj must be stored, and, since 

they are columns of inverse matrices, they need not be sparse, even when 
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the original matrices are. Thus in applications involving large sparse 

matrices, the technique cannot be used too many times. 

There remains the problem of choosing o ^ . It is clear that must 
(k) T 

not be too large; for as <jfc increases, A^ 2 + o^e^e^ becomes a slight 
T 

perturbation of the singular matrix cr^e^e^. A natural choice is to take 
cr̂  to be just large enough to dominate the elements in the first column of 
(k) 

A 2 2 > which corresponds to partial pivoting in the elimination process. 

Since the value of the next pivot element can easily be computed, it may 

be desirable to alter slightly, say multiply it by a factor of two, 

whenever cancellation would occur in the calculation of the next pivot 

element. 

It is hardly necessary to add that our results hold also for the Crout 

and Doolittle variants of Gaussian elimination, for which the discussion 

above remains valid with some slight and obvious modifications. 

3. ERROR ANALYSIS 

The algorithm described in the last section must be implemented in 

finite precision arithmetic, and it is important to assess the effects of 

the resulting rounding errors on the solution. For simplicity we shall 

first assume that a modification is made at the first stage of the elimina­

tion and drop the superscripts (k). We shall determine conditions under 

which the computed solution x has a residual 

r = b - Ax 

This baroque variation on the famous theme of Laplace (il est aise a voir) 
is due to Ostrowski [Arch. Rational Mech. Anal. 1̂  (1958), p.241 ]. 
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that is small. Note that, whatever the value of r, x is the solution. 

of the system 

(A+E)x = b, 

where E 8 5 rxT/||x|p satisfies 

IN! IWI 

in the Frobenius norm defined by ||r\|p - trace A TA. Thus a small residual 

implies that x, however inaccurate, is the solution of a slightly perturbed 

problem. 

The following notation will be used in the error analysis. The symbol 

^O, called a relative counter, will stand generically for a quotient of 

the form 
(HP 1)(HP 2).-.(1 + PJ6) 

(3.D <k> = (1+P j J + 1)(P j l f 2)..-(1+P k) 9 

where the numbers | p^| are uniformly bounded by some small quantity. We 

shall also use the notation #k# for the deviation of Kit} from unity: 

#k# = i - <k>. 

The symbol #k# will be called an absolute counter* We shall assume that 

the bounds on the p i in (3.1) and on the integer k are so restricted that 

(3.2) |#k#| * k-e * .1 

for some number e of approximately the same size as the bound on the |p^|• 
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If x is a vector, then x<Jc> will denote the vector (Xj^jc^fX^k^t*• • 9 x <k>) A , 

where each appearance of the counter k may stand for a different value* 

The relative and absolute counters have the following easily verified 

properties: 

<k><Jt>= <k+£>, 

V<k> = k , 
and 

(3.3) <k>-<£> #k+#. 

The usual backward error bounds for t-digit, base (3, floating-point 

arithmetic (see, e.g., [3]) can be expressed in the form 

f Jfc(a o b) - (a o b)<1> (o=x,^) 

and 

f A(a + b) - a<J> + b<l>, 

where e in (3.2) is of the order S t . 

We turn now to the analysis of the effect of modifying the 1-1 element 

of A # All quantities will denote the computed values, with the exception 
T 

of B « A + cre^e^. The first step is to solve the systems By * b and Bc^ - e. 

We assume this is done stably so that the computed solutions satisfy 
Byy -= (B+EJ)y = b 

and 

B 2c 1 5 (B+E 2)c 1 = e^ , 

where 

for some small e^. Note that the single rounding error made in forming B 

from A may be absorbed in the error matrices • 
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The next step is to compute T . There is no rounding error in the 
T - 1 

computation of c ^ 8 8 e . ^ e^. Hence 

T - fJt[(c i ra' 1)" 1] 

= 1 
c n < I > - f f

f c 1 < 2 > 
or 

(3.4) T + a<3> - Tac n<3> * 0. 

Finally one computes 

x - fJKy-TyjCj) = y<1> - Ty ]c<3>. 

From this it follows that 

T y ] c 1 = y<4> - x<3>, 

whence from (3.2) 

(3.5) | T | |yj HeJI ^ 1 . 1 C I W I + IHD 

Now 

r = b - Ax 
T 

= b - (B-ae^^x 
T 

- b - ^-cre^e^x + E 2x 

(3.£) « b - (B2-ae1e^)(y<l> - r y ^ ^ ) - E 2x 

- b - B2y<J> - E 2x + y 1(T4a<1>-Tac n<3>)e 1 

+ y l T B 2 c 1 

the last equality following from the fact that 

B 2c 1<3>= B 2c 1 + B 2 c ] #3# = e} + B ^ #3#. 
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On subtracting zero in the guise of (3.4) from the term in parentheses in 

the last member of (3.6), we obtain from (3.3) 

r « b - B 2y<1> - E 2x + y}(a #4# - T a c n #6#)e1 + y 1TB 2c 1 #3#. 

Hence 

r - b - B}y + (Ej-E^y + B 2y #1# - E 2x 

.+ y ^ a |4# - T a c n #6#) e i + y ^ B ^ #3#. 

Since b - B^y • 0, if we let 

l\H INI 
and 

IHI 
X = IMI ' 

then from (3.2) 

IMI 
^ (e-+e0)X + euX + e 0 + 4eXu, 

IMI IMI 1 2 2 

+ 6.6eM,(1+X) + 3.3ep,(1+X) 

£ e 2 + lOep, + A(6j + e 2 + 15ep.) 

This result is quite satisfactory. For reasonable modifications of 

the pivot element, the number will be of order unity. Thus X, the ratio 

of the sizes of the computed solutions of the equations Ax = b and By s b, 

is the controlling factor. If X is large, that is if severe numerical 

cancellation occurs in the passage from y to x, the result cannot be 

guaranteed to have a small residual. Note that this cannot happen if B is 

well conditioned, whatever the condition of A. In any event, the condition 
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is one that can be easily check. 

There remains one point to clear up. The modification step is only 

one part of the algorithm described in the last section, and we must show 

that this algorithm as a whole is stable. The usual rounding error analysis 
(k) (k) 

for triangular systems shows that the computed vectors b^ and b 2 satisfy 

!t< k ) + F n 0 

( 3 * 7 > (L< k> + F I 
L 2 1 + F 2 1 I 

The results of this (k) (k) 
where F and F ^ are small compared to and . 

^ (k) section imply that, if all has gone Well, the computed vector x 2 will 

satisfy 

< A « + G 2 2 ) * f > - b < k > : 

where G 2 2 is small compared with ^2 • Since the solution for x} amounts 

to no more than the completion of the solution of a triangular system, the 

computed vector x satisfies 

' , T ( k ) + c U ( k ) + G J11 + G11 °12 + G12 
(3.8) 

I A ( k ) + G A22 b22 

(k) (k) 

where and G 2 2 are small compared with U ^ ' and U^2 . Equations (3.7) 

and (3.8) can be combined in the usual way to show that the computed solu­

tion satisfies 
(A+H)x « b 

where H is small compared with A (see, for example, [3, p. 108], in which 

the final bound must be supplemented by a factor of ||l|| since no assumptions 

about pivoting strategy have been made). 
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