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ABSTRACT 

The author of the Cigarette Smokers' Problem (S. Patil, MIT) 

tried to show that the problem could not be solved using Dijkstra's 

P- and V-operations without conditional statements. D. L. Parnas 

(CMU) showed that Patil1s proof was false by presenting a solution 

using P- and V-operations, but no conditional statements. This 

paper presents first a correctness proof of Parnas1 solution. This 

solution leads to an obvious generalization and in connection with it 

the question of an optimal set of distinguishable codewords is ad

dressed. Finally a more natural approach to the problem is discussed 

and a solution for this variation is presented with its correctness 

proof. 



INTRODUCTION 

The claim that the Cigarette Smokers1 Problem has no solution using 

P- and V-operations as defined by Dijkstra [1] without conditional state

ments [2,3] is seriously challenged by the solution of the problem given 

by D. L. Parnas [4]. It will be shown that the solution is indeed correct 

and so the claim that no solution exists is not justified without adding 

other restrictions. 

The proof is facilitated by representing the processes and ingredi

ents involved as indexed members of an appropriate set rather than naming 

them explicitly. It turns out that this representation shows how the prob

lem can be generalized quite naturally to more ingredients than just cig

arette paper, tobacco and matches. Considerations about the supply of 

the ingredients lead to a modification of the problem for which still a 

solution can be found using Dijkstra1s P- and V-operations without condi

tional statements. 

REPHRASING THE PROBLEM 

Three cyclic processes, called suppliers (together called the agent 

in Patil's paper [2]), make their moves in a not specified order. The 

term "move11 of a cyclic process means that it is going once through its 

program. The programs of the suppliers are given and read: 

process supplier(i) = £ i = 0,1,2 
begin sup: P(s); 

V(ingr[(i+1)#3]); V(ingr[(i+2)^3]); 
goto sup 

end 
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The symbol $ represents the remainder function. Semaphore s serves 

to sequence the supplier moves (s-moves for short) and its initial value 

is one. Semaphores ingr[0:2] represent the three ingredients and the 

V-operations on those signals represent the arrival of two of the three 

ingredients. The initial value of the ingredient semaphores is zero. 

The objective is to program three user processes, here called addicts 

(smokers in Patil!s paper), which are activated each on a different combina

tion of two ingredients out of the three. In order to avoid confusion, 

the problem statement is quoted from Patilfs paper: 

"The smokers1 problem is, then, to define some additional sema

phores and processes, if necessary, and to introduce necessary 

P and V statements in these processes so as to attain the neces

sary cooperation among themselves required to ensure continued 

smoking of cigarettes without reaching a deadlock. There is, 

however, a restriction that the process which supplies the in

gredients cannot be changed and that no conditional statements 

may be used." 

As pointed out correctly by Patil, the addict programs: 

process addict(j) = c j = 0,1,2 
begin ad: P(ingr[(j+1)<fo]); 

P(ingr[(j+2)^o3]); 
V(s); 
goto ad 

end 

may cause a deadlock, for instance if ingredients 0 and 1 are supplied and 
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addict(O) passes P(ingr[l]) before addict(3) does. But the conclusion 

that no solution without conditional statements would exist is refuted 

by Parnas1 solution [4]. It is here presented in the form of three pushers 

and three addicts. 

process pusher(j) = £ j = 0,1,2 
begin pu: P(ingr[j]); 

P(mutex); 
t := t+2tj; V(a[t]); 
V(mutex) ; 
goto pu 

end 

The critical section ensures that pushers will not operate on t simulta

neously. 

process addict(k) = £ k = 3,5,6 
begin ad: P(a[k]); 

t := 0; 
V(s); 
goto ad 

end 

The initial values of semaphore mutex and semaphores a[k] are one and 

zero, respectively. The initial value of t is zero. 

THE CORRECTNESS PROOF 

To prove that this solution is deadlock free, it will be shown that 

a move by a supplier (an s-move) is followed by two pusher moves (p-moves) 

and one addict move (a-move) and this sequence enables exactly one sub

sequent s-move. 
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From a paper on correctness proofs of synchronizing processes [5] 

we borrow the result 

m(sem) = MIN(p(sem), cH-v(sem)) 

which says that the number of times [m(sem)] processes moved on passed 

an execution of P(sem) equals the minimum [MIN] of the number of times 

P(sem) was executed [p(sem)], and the number of times V(sem) was executed 

[v(sem)] incremented by a given initial constant [c]. The equation is an 

invariant for P- and V-operations. It is valid if sem represents a sema

phore, but also if sem represents a group of semaphores, in particular a 

semaphore array. 

Applied to this particular example, we have 

m(s) = MIN(p(s), 1+v(s)) 
m(ingr) = MIN(p(ingr), v(ingr)) 
m(a) = MIN(p(a), v(a)) 

where f la , f represents the semaphore set {a[i]|i = 3,5,6} and "ingr" = 

{ingr[i]|i « 0,1,2}. Initially v(s) = v(ingr) = v(a) = 0. It is assumed 

that none of the processes stops deliberately, since it should be shown 

that no process will be stopped unintentionally if all are eager to move, 

i.e., if the numbers p(s), p(ingr) and p(a) are maximal. 

Let a Q represent the action of starting the system. 

Lemma 1. Starting the system results in exactly one supplier move. 

Proof. Given the initial condition v(s) = v(ingr) = v(a) = 0, the system 

is started by allowing all processes an attempt to move, thus 
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p(s) = p(ingr) = p(a) « 3. 

-> m(s) = MIN(3,1) = 1 
m(ingr) - MIN(3,0) » 0 
m(a) =* MIN(3,0) = 0 

Hence, exactly one supplier will move. 

Let s^, p^ and a^ represent the ith s-move, p-move and a-move, 

respectively. The result of lemma 1 is then a^ < ŝ  < p^ and a^ < ŝ  < a^, 

where the symbol < represents ordering in time. 

Lemma 2. Move s^ is caused by move a^ ^ (if any) for i = 1,2,... 

Proof. Let i =* 1; move ŝ  is caused by action a^ (lemma 1). 

Let i > 1; 

attempt to move s^ means p(s) ^ i 

before move a. - v(s) - i-2 

- m(s) - MIN(p(s), 1+v(s)) - MIN(p(s), l+i-2) - i-1 

after move a^ ^ v(s) = i-1 

and so, move a. . causes move s. and a. - < s. 
i - i I i - i i 

Lemma 3. Move s^ (if any) causes moves p^^ ^ and p^^ for i = 1,2,... 

Proof. Attempts to moves ^ and p^^ mean p(ingr) ^ 2i 

before move s^ v(ingr) = 2(i-1) 

-> m(ingr) - MIN(p(ingr), v(ingr)) - MIN(p(ingr), 2(i-1)) = 2(i-1) 

after move s^ v(ingr) = 2 1 

m(ingr) = MIN(p(ingr), 2i) = 2i 

and so, move s. causes moves p 0. , and p 0. ' I r2i-l ^2i 
and s. < p 2 1 - 1 , p 2.. 
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Lemma 4. The second s-move is preceded by the first pair of p-moves and 

the first a-move in that order. 

Proof. 

a) ŝ  is the first move to occur (lemma 1). It causes p^ and p^ 

(lemma 3) -* < P 1>P 2* 

b) a^ < (lemma 

s2 < P3' P4 

nma 2) ^ 

(lemma 3) J 1 J 
p 4 

Thus, if move a^ occurs, it is at most preceded by moves s^, 

p ] and p 2. 

c) initial value of t a 0 

move a^ occurs when t = 2tx+2ty 

where x ^ y and x,y € {0,1,2} 

This is iff P-j>P2 < a ] (see programs). 

d) move a^ causes move (lemma 2) 

Conclusion: ŝ  < p^,p 2 < < 

Note that the proof is constructive; it shows not only that the moves could 

not occur in any other order, but also that the moves will occur in that 

order. 

Let w. be the set of moves [a^ ^ , Si , p2i-l , P2i^ f o r = ( w h 

a^ represents getting the system started), 

w^ is partially ordered: 

ai-l < S i < p2i-l , p2i (lemma 2,3) 

ere 
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Lemma 5, If w^,,..,w^ (k ̂  2) are performed strictly in sequence, this 

sequence causes move a^. 

Proof. 

a) move s^ (A € 0>2,...,k}) is preceded by an a-move and so the 

variable t = 0 (see program), when move s starts 

b) s, < p 0 , - ,p 0. < a. for i - 1,...,k-1 because of the strict 
J r2j-l , r2j j 
sequencing. 

The sequence s.. < i j c a u s e s v ^ a ) : = v( a)+l ( s e e program 

and lemma 4,c). 

-» at move a^ ̂  v(a) = k-1 - m(a), because v(a) started at zero 

and was k-1 times incremented. 

c) When move a^ is attempted, p(a) ̂  k. 

move a^ can be performed iff MIN(p(a),v(a)) = k 

move a^ requires v(a) : = k 

(b) in conjunction with (c) implies that move a^ will occur then, when v(a) 

is incremented by one after move a^ ̂ . But, according to (a), v(a) is 

incremented by one after move a^ ̂  not until both moves p^^ ̂  and 

have been completed (see also lemma 4,c). 

Lemma 6. ŵ ^ < a^ and w i < w i + 1 for i = 1,2,... (w^ and w i + 1 are performed 

strictly in sequence). 

Proof, 

a) It is sufficient to prove w^ < a^ for i = 1,2,... because a^ 
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is the first move of w^+-j (see definition) and so relation 

w. < a. implies w. < w. 1 1 r i i + l 

b) (induction) 

w.j < a^ is true (lemma 4) 

Suppose < a^ for i = 1,...,k-1. 

It remains to be proved that this implies that < a^ is 

also true. 

The assumption implies w.j < w 2 <...< w f c, i.e., w..,... ,w is 

performed strictly in sequence. But this sequence causes move 

a^ (lemma 5) and so < a^. 

The correctness proof of Parnas1 solution is now simple: 

Theorem. Parnas1 solution to the Cigarette Smokers1 Problem is deadlock 

free. 

Proof. The proof of lemma 6 showed constructively that suppliers, pushers 

and addicts will move after starting the system in a sequence that allows 

concurrency of pushers only and that can be described as 

(s < (p,p) < a ) * 

GENERALIZATIONS OF THE PROBLEM 

The representation used in the preceding sections shows that it is not 

very important that the total number of ingredients is fixed to three. 

Problem and solution can easily be generalized to n suppliers (n ^ 2 ) , 
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each producing a different set of n-1 ingredients: 

process supplier(i) = c i = 0,1,2,...,n-1 
begin integer I; 

sup: P(s); 
for I := 0 until i-1, i+1 until n-1 do V(ingr[£]); 
goto sup 

end 

Note that the use of the artificial for statement does not really violate 

the restriction that no conditional statements may be used. Variable SL 

is a local, not operated upon by any other process than supplier(i). 

The notation describes that supplier(i) performs a V-operation on all 

ingredient semaphores but ingr[i]. Thus, the sequence of V-operations 

does not depend on any external operation and the for statement could be 

replaced by the fixed sequence of V-operations. 

As before, the initial values of semaphores s and ingr[0:n-l] are one 

and zero, respectively. The generalized problem is to write programs for 

a set of n addicts that should be activated each on the occurrence of a 

different subset of n-1 ingredients as produced by the suppliers. Parnas1 

solution can be generalized very easily to solve this problem: the pro

grams of pushers and addicts stay exactly the samel The indices of the 

pushers are j = 0,...,n-l and of the addicts: 

[k | k = 2t(n+l) - 1 - 2ti, i = 0,...,n-l} 

i.e., the binary representation of k is a number of n bits with a zero 

in position i. 

Another generalization is not to fix the number of ingredients pro

duced by the suppliers at n-1, but let them supply one of the (̂ ) different 
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subsets of q ingredients 0 < q < n. There are now ( ) suppliers, again 

n pushers, and (̂ ) addicts. 

This version can still be generalized without changing the programs 

of pushers and addicts. Let us call the set of ingredient semaphore 

indices, on which a supplier performs a V-operation, a codeword and the 

set of all codewords the code. The last generalization can then be 

characterized as a codeset of n signals with a fixed codeword length of q 

signals (0 < q < n) . 

A further generalization would be not to fix the codeword length q: 

instead, the suppliers transmit codewords of various length with the 

restriction that none of the codewords is a proper subset of any of the 

others. This restriction is necessary to avoid ambiguity, for, if one 

supplier, for instance, transmits codeword (a,b,c) and another one codeword 

(a,b), an addict waiting for codeword (a,b) could snatch this one away 

from the addict waiting for codeword (a,b,c). 

It can be shown, however, that the last generalization viz. to allow 

variable codeword length, is not very useful. To leave a particular 

signal (ingredient) out of a codeword should make a difference: let A,B,... 

be the codewords produced by the suppliers; ingredient a 6 A distinguishes 

codeword A properly from codeword B if a ^ B, but A - {a} c B. Since 

B c A creates an ambiguity, there is also a b 6 B such that b ^ A. 

Codeword A is distinguishable from all other codewords if A is not 

empty and all its elements (ingredients, signals) distinguish A properly 

from all other codewords. For convenience we will say that codeword A is 

distinguishable in case the code consists of one signal only and A is that 

signal. 
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lt seems as if the last generalization, to allow variable codeword 

length, increases the number of distinguishable codewords in a code of n 

signals. But the theorem below states that this is not true and so the 

word length might as well be fixed. 

Theorem. The maximum number of distinguishable codewords in a code of n 

signals is (^), where q = ENTIER(n/2), n ^ 1. 

Proof. A codeword A can be represented by its characteristic function 

x on the ordered set of n signals: suppose the code set = [u,v,w,x,y,z} 

and codeword A = (u,y), then x(A) » (100010). 

Let T be the codeset. If T consists of signal a only, there is only 

one distinguishable set, viz, A = {a} and x(A) - (1). If r = {a,b}, there 

are two distinguishable sets (see definition), viz. A = {a} and B = {b} 

and so x(A) = (1 0) and x(B) = (0 1). Hence, the statement is true for 

n=l and n=2. Let n > 2 and let A be a distinguishable codeword and 

a £ A a (distinguishing) signal. Signal a distinguishes codeword A from 

a codeword B, i.e., there is a codeword B and a signal b ^ B such that 

a ^ B, b £ A and A - {a} e B. The codeset r can be ordered such that 

signals a and b are the first two elements: r s {^b,...}. Hence, 

x(A) = (1 0...) and x(B) = (0 1...). 

In order to obtain the maximum number of codewords the remainder of 

codeword A must distinguish A from all other codewords whose characteristic 

function also begins with 1 0, i.e., from all other codewords that also 

contain signal a but not signal b. Let r* be the codeset derived from r 

by deleting signals a and b. The remainder of codeword A must be a 
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distinguishable codeword in code T* with n* n-2. 

If n* = 1 then A* = T* = {c} and x(A) (1 0 1). 

If n* = 2 then x(A*) = (1 0) after ordering f* properly and so 

x(A) = ( 1 0 1 0 ) . 

If n* > 2 then x(A*) = (1 0...) after ordering r* and so x(A) = ( 1 0 1 0 . . 

The remainder of A* can be broken down and this process ends (because n is 

finite number) when the reduction comes to a codeset of only one or two 

signals. 

The consequence is that the characteristic function of a codeword has 

the same number of ones as zeros if n is even, and one more one than zeros 

if n is odd. But the number of codewords with that property equals (̂ ) 

where q = n/2 if n is even and q » (n+1)/2 if n is odd. In the latter 

case (n) = ( n -) as is well known and so the statement follows, q q-1 
It is interesting to note that, due to (n) = ( n -) for odd n and 

' vq' q-» 

q = (n+l)/2, it is not necessary to fix the codeword length at (n+l)/2: 

the same number of distinguishable codewords is obtained with q = (n-1)/2. 

In case n=3, for instance, and r - {a,b,c} there are at most three dis

tinguishable codewords A, B and C and either 

But a mixture of these codewords does not constitute a distinguishable set. 

This theorem has found an application in the ALGOL 60 Compiler for 

the PDP-10. The problem was to code nine types in a field preferably 

smaller than nine bits, but in such a manner that the type information 

can be extracted by means of one test instruction. The PDP-10 allows a 

x(A) = ( 1 0 0 ) , x(B) = (0 1 0), x(C) (0 0 1) 

or x(A) = ( 0 1 1 ) , x(B) = ( 1 0 1 ) , x(C) (1 1 0) 
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selective test for all zeros (unfortunately not a test for all ones). 

A nine bit field is certainly wide enough to code the types by means of 

exactly one 1 in a particular field. The test can then be either a non

zero test on a particular bit or an all zero test on the remaining bits. 

But the theorem above says that a codeset of 5 signals with a codeword 

length of two or three will suffice, i.e., a 5-bit field and all patterns 

with exactly three ones gives a set of 10 distinguishable codewords. To 

play it safe, we reserved a 6-bit type field and coded the types as pat-

terns with three ones and three zeros. This allows for a set of (̂ ) - 20 

types. We added three new types later on bringing the total number to 12 

and so we were very happy after all with the earlier decision to reserve 

a 6-bit type field. 

The prograns need hardly to be changed to implement the m - (̂ ) sup

pliers, n pushers and m addicts, where n is the number of ingredients 

and q the number of ingredients on which a supplier performs a V-operation. 

Each supplier program has a sequence of q V-operations that distinguishes 

it from all other suppliers. The function of the pushers is essentially 

to assemble a codeword, i.e., the characteristic function of the sequence 

of V-operations performed by a supplier. The indices of the addicts are 

the numbers whose binary representation is one of the codewords. 

There are only minor changes in the correctness proof. In lemma 3: 

move s. causes moves p / # - N I l , p / . , N | 0»"*>P* > a n d lemma 4 should read: l r(i-i)q+l , r(i-l)q+2' , riq* 
the second s-move is preceded by the first q p-moves and the first a-move 

in that order. The changes are straightforward and so a repetition of 

the complete proof is omitted. 

mi UilARY 
CARNEtiE-KUtH MHVERSITY 
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VARIATION ON PROBLEM AND SOLUTION 

Going back to the original problem statement, we quote from Patil: 

11 On the table in front of them, two of the three ingredients 

will be placed, and " 

and further on: 

"....To inform the smokers about the ingredients which are placed 

on the table, three semaphores a, b and c representing tobacco, 

paper and match, respectively are provided. On placing an in

gredient on the table, the corresponding semaphore is incremented 

by performing a V-operation." 

There is nothing in the problem statement that suggests or requires that 

the two ingredients should be placed on the table by one process. But 

Patilfs agent and the suppliers discussed in the preceding sections do 

exactly that. It seems, however, more natural to assume that the in

gredients are provided more or less independently of each other. In 

terms of the last generalization: it is more natural to assume n (instead 

of m) suppliers, who each signal one ingredient. Suppliers should cooperate 

to the extent that providing an ingredient should be stopped after a set 

of q until the addicts are ready to accept another set. Also, such a set 

should not contain more than one ingredient from any one of the suppliers. 

The problem is then to program the suppliers, the addicts, each reacting 

on a different set of q ingredients, and additional processes, if needed, 

together forming a deadlock free system. 
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It seems that phrasing the problem this way is far off from Patilfs 

original problem statement, especially because he requires from any solu

tion that it does not need to alter his agent. But taking a closer look, 

it appears that the only essential thing about the agent that should not 

be allowed to be changed is that an ingredient is provided by means of a 

V-operation on the corresponding semaphore. If this restriction is re

moved, too, then a trivial solution would exist, in which a V-operation 

by a supplier is replaced by an addition of 21j to the variable t of 

Parnas1 solution, and take over in this way all the work of the pushers. 

So, the sting of the problem is still there, since an ingredient is pro

vided by means of a V-operation. 

Let n be the number of ingredients (signals) and q the codeword 

length (the number of ingredients wanted by addicts). Let m = (̂ ) and 

z = 2tn-2t(n-q)# semaphore array s[0:n-1] serves to prevent a supplier 

from providing its ingredient twice when a series of q is being collected. 

The initial value of these semaphores is one. semaphore array ingr[0:n-1] 

represents the ingredients; the initial value of the semaphores is zero. 

semaphore array a[1:z] represents the set of semaphores of which only a 

subset is used corresponding to the desired codewords. (As Parnas observed, 

if overflow is a problem, we can introduce dummy addicts for all the ir

relevant semaphores. Their program is nothing more than a repetition of 

a P-operation on such an irrelevant a-semaphore. The initial value of the 

a semaphore is zero, semaphore quant indicates the number of ingredients 

that must be provided to complete a codeword. Its initial value is q. 

semaphore mutex serves to ensure mutual exclusion when operations with 

variable t are performed. Its initial value is one. integer t is a 
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variable in which a codeword is assembled; its initial value is zero. 

process supplier(i) » c i = 0,1,...,n-1 
begin sup: P(s[i]); 

P(quant); 
V(ingr[i]); 
goto sup 

end 

The function of the first P-operation is to prevent that ingredient[i] 

is produced again before an addict has signaled the acceptance of the pre

ceding instance. The subsequent P-operation stops the suppliers after a 

group of q ingredients (a codeword) have been produced. The intention is 

that eventually one addict reacts on this codeword and this addict is 

supposed to perform q V-operations on semaphore quant to allow pro

duction of the next codeword. The order of the two P-operations is sig

nificant; with the order reversed, a deadlock would arise if a supplier 

passed P(quant) twice and it was stopped in P(s[i]). When quant gets zero 

in that situation, at most q-1 ingredients have been produced and so no 

addict will be activated and do V(quant) to release the suppliers. 

process pusher(j) = c j = 0,l,...,n-l 
begin pu: P(ingr[j]); 

P(mutex); 
t := t+2tj; V(a[t]); 
V(mutex); 
goto pu 

end 

The pusher program is still the same as in the preceding sections. The 

function of the pushers is to assemble the codeword in t, which results 



eventually in waking up one of the addicts. 

n-1 . n-1 
process addict(k) = c k = £ c.2 ,c.=0 or 1, 2 c.=q 

, . . „ . i=0 1 1 i=0 1 

begin integer array c[l:qj; 
integer i, j; j := 1; 
for i := 0 until n-1 do 

if k#2f(i+1) ̂  2ti then 
begin c[j] :- i; j := j+1 end; 

ad: P(a[t]); 
t := 0; 
for i 1 until q do 

begin V(quant); V(s[c[i]]) end; 
goto ad 

end 

The first for statement in the addict program initializes array c with 

the set of ingredient indices that is typical for the kth addict. Array 

c and both the for statements serve the purpose of representing all 

addict programs in one for all possible n and q. When a particular n, q 

and k are given, array c and the first for statement can be left out 

entirely. The second for statement can then be replaced explicitly by 

the characteristic (and fixed) sequence of V-operations typical for that 

addict. 

The idea of the statement P(a[t]) is, as in the preceding sections, to 

activate an addict right after a codeword has been assembled. It is ap

parently assumed that, when an addict makes its move, no pusher is active, 

for variable t is reset to zero with the idea that t is still zero when 

the next set of ingredients is going to be produced. The subsequent for 

statement enables the production of the next set of q ingredients and re

leases the suppliers which contributed to the current codeword. 
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CORRECTNESS PROOF OF THE VARIATION 

We recall the equation m(sem) - MIN(p(sem), c+v(sem)), where m(sem) 

represents the number of times a P-operation on sem has been passed suc

cessfully. Application leads to: 

The initial value of v(s), v(quant), v(ingr) and v(a) is zero. 

a) according to (1) n suppliers are able to begin when the system 

is started 

b) according to (2) not more than q suppliers can complete their 

move until v(quant) is incremented in move a^. -> a^ ^ sq+1 

c) according to (3) a pusher will move when a supplier performs 

v(ingr), hence, the first q suppliers activate the first q 

m(s) = MIN(p(s), n+v(s)) 
m(quant) = MIN(p(quant), q+v(quant)) 
m(ingr) = MIN(p(ingr), v(ingr)) 
m(a) » MIN(p(a), v(a)) 

(1) 
(2) 
(3) 
(4) 

d) 

pushers -* s i < p i for all i 

an addict cannot move until a pusher performs the right 

— — -i 1 
n-1 i=0 x 

or 1 and £ c. = q.) This implies, since variable t = 0 
i=0 i 

initially, that move a- is preceded by at least q p-moves.) 

e) a supplier cannot move a second time until an addict has moved • 

(d) in conjunction with (e) implies that the first q s-moves 

produce different ingredients and activate q different pushers. 

Hence, the first q p-moves produce a codeword and so the first q 
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p-moves cause the first a-move. -» s^ < p^ < a^ for all 

j = 1,...,q. 

Let the notation x < y mean that move x causes move y, and x strictly 

precedes y in time; let the notation x ^ y mean that move x causes move y, 

and x is all done before y is completed. 

x < y | m o v e x i | — w v c Y 1 
move y I - \ x £ y I 1 J move x 

Let c± - [s k,p k | sfc < p k , k = i*q+l,...,i*q+q}, for i = 0,1,... . 

Thus, c^ represents the ith set of q s-moves and q p-moves. This set is 

not ordered, but its first element is sj*q + i a n c * ^ *-s completed when all 

its p-moves are completed. 

If a^ represent getting the system started, the result of the analysis 

above is 

a o * c o < a i 

The following theorem implies that the system runs deadlock free: 

Theorem. If P-operations are performed when possible, suppliers, pushers 

and addicts move in the order a^ ^ c^ < a^ £ ĉ  < a^ ^ < 

Proof. The statement is true for the sequence a^ ^ c^ < a^ (see above). 

Note that C Q not just precedes a^ in time, but it actually causes a^, 

i.e., the compound move c^ incremented v(a) by one (see (4)). Suppose 

it had been proven that the programs generate the sequence 
a 0 ^ C 0 < al*** ai 1 ^ °i 1 a n < i t t i a t : c j r e s u l t s i n incrementing v(a) by one 
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for j = 0 , 1 , . , . , I t must be shown that this assumption implies that, 

if possible P-operations are performed, the sequence 

a n ^ c n < a-...a. . £ c. - < a.£ c. 0 0 1 i-i i-l i i 

is generated and that also results in v(a) := v(a)+l. 

a) When c^ ^ is completed, i-1 a-moves have been completed not 

counting a^. Hence, the number of possible P-operations on 

the a-semaphores is p(a) ^ i-1 + (̂ ) s> i. v(a) is initialized 

at zero and incremented i times -* v(a) =* i. Hence, 

m(a) = MIN(p(a),v(a)) = MIN(p(a),i) = i and so c ^ causes 

a. and c. , < a.. 
I i-l I 

b) It will be shown next that move a. causes s-moves 
I 

S . J L , , , . . . , 8 , . , , which cause in turn p-moves i*q+l i*q+q* r 

P.A »P.a- , • When variable t is reset to zero in move ri*q+l ri*q+q 

v(quant) = (i-l)*q (for, i-1 a-moves have been completed). 

But m(quant) ^ q 4- v(quant) ^ i*q (see (2)) -» move ^ 

does not start before move a^. On the other hand, m(quant) ^ i*q, 

because each compound move c^ (j = 0,...,i-l) contains exactly 

q s-moves. 

-» m(quant) = q + v(quant) = i*q and so, move s^q+i i s t h e o n e 

that will occur the next time v(quant) is incremented. 

Move a^ ^ has been completed; this can be derived from the assump

tion and part (a). Since t = 0, move a i + 1 cannot start until 

at least q p-moves are completed. The next q p-moves are 

Pi*q+1>---'Pi*q+q' b e c a u s e S i * q + 1 i s t h e n e x t S - m O V e 3 n d S j < ?j 
for all j. 
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CONCLUSION 

It has been shown that Parnas1 solution to the Cigarette Smokers1 

Problem is deadlock free. The particular choice of three ingredients 

happens to be rather unfortunate, because it does not reveal anything 

about the distinguishable codewords that can be produced. A generalization 

of the problem showed that Parnas1 solution also applies to the production 

of codewords of length q out of a set of n ingredients (0 < q < n). It 

was also found that the largest set of distinguishable codewords in a 

code with n ingredients has (̂ ) elements, where q = ENTIER(n/2) and so 

nothing is gained by letting the codeword length vary. 

The last variation on the problem does not leap to the obscure con

clusion that the ingredients to assemble a codeword have to be produced 

by one supplier. Instead, a supplier produces only one ingredient at a 

time and codewords must be assembled out of potentially concurrent sup

pliers and pushers. The variation has still the same basic difficulty 

as the original problem, although the supplier programs differ consider

ably in appearance from Patilfs agent. It is interesting to notice that 

the solution is nevertheless very close to the one given by Parnas. 

Throughout the paper the invariant equation that describes the work

ing of Dijkstra1s P- and V-operation has shown to be very useful. But 

the length and most of the phrasing of the proofs show that it is even 

hard to apply our current proving techniques to what seems rather obvious 

to the programmer. 
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move a causes moves s , s . . . , which cause moves l i*q+l ' i*q+q 
Pi*q+r- #-' Pi*q+q ( S 6 e P r o 8 r a m s > -

c) It remains to be shown that moves s.. s.. , produce 
i*q+I7 7 i*q+q r 

different ingredients such that moves p.. p.. , result 

in an increment of v(a). 

A particular supplier(j) would be able to move twice after 

move a^ started if it was waiting in P(quant) and move a^ is 

going to perform a V-operation on s[j]. The latter implies 

that supplier(j) moved in compound move c^ ^. But until at least 

move a^ ^ each s-move was followed by a V-operation in an a-move 

and so m(s[j]) = 1 + v(s[j]) when move a^ starts. But then an 

attempt to supply ingredient[j] after a^ started cannot succeed 

until move a^ increments v(s[j]) because of 

m(s[j]) = MIN(p(s[j]),l + v(s[j])) 

Hence, such a supplier[j] can only move once after move a^ 

started and consequently all supplier moves sj*q+j>•••>si*q+q 

are different. Thus, the p-moves P^^-j > • • • 'P^q+q a r e a^- s o 

on different indices and so exactly one codeword is the result 

or v(a) is incremented by one. 

It is remarkable that this proof is not a copy of the correctness 

proof of the first generalization. This is mainly due to the fact that 

the first one is less complex, because producing all the ingredients for 

one codeword in one supplier dismisses the problem of proving that dif

ferent ingredients are produced. However, parts a) and b) of this proof 

are very similar to parts of the first correctness proof. 
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