
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A PROGRAM HOLDER MODULE

L. Robinson and D.L. Parnas

and

DESIGN AND IMPLEMENTATION OF A MULTI
LEVEL SYSTEM USING SOFTWARE MODULES

L. Robinson

Carnegie-Mellon University
Department of Computer Science

Pittsburgh, Pa. 15213

June, 1973

P r o ? ^ ; e " ' 1 : , , 0 n U n i v e r 8 i * y and also by the Advanced Re i f arch
(FZIMI* C 6 S ^ 7) 0 f t h ! ° f f i C e ° f t h e Secretary of Defense
Research ' mon.tored by the Air Force of Scientific

Abstract

This paper describes a mechanism for holding a program in
syntactic form. This mechanism can be useful to any program which
processes programs: in program verification, automatic
programming, and specialized text editing. In this case the
program holder is used to form the basis for a syntax-driven text
editor. Formal specifications for the program holder are also
given.

L. Robinson and D. L. Parnas

S/18/73

A Program Ho Ider ModuIe

Introduction

This paper describes a mechanism for holding a program in
syntactic form. This mechanism can be useful to any program
which processes programs: "in program verification, automatic
programming, and specialized text editing. In this case the
program holder is used to form the basis for a syntax-driven text
editor.

The program holder is designed so that it* can be
initialized with any context-free grammar. Thus it can be the
basis for a text editor in most programming languages. Editors for
different languages will have different features, but can make use
of the same progam holder.

The design of the program holder was accomplished by
writing specifications for it using the software module
specification language of D. L. Parnas [11. The speci f i cat i ons .-J or
the program holder can be found in the appendix. The procfram
holder was then used as the basis of a text editor for the
programming tool MUTAS [2].

ii

Specification of the program holder

A. Representation as parse tree

In an umbiguous context-free grammar G there exists a
unique parse tree for an input string in the language L(G). Thus a
parse tree is the most obvious form for holding a program in
parsed form. A parse tree is simply an n-ary tree with
specialized information at the nodes, so that the structural
functions (Table I) of the program holder module represented an
n-ary tree (an extension of Parnas' binary tree) til. Table 1(a)
shows the functions for creating and deleting nodes. The nodes are
referred to by integers, so that the "name" of the node is simply
the integer corresponding to it.

The parse tree is illustrated by the following example.
Suppose that the editor is initialized with a grammar G:

<A> ::« <C>
 ab I be (1)
<C> ::« d

Then the parse tree for the string abd would be

(2)

The circled numbers next to each node are the names of the nodes,
each node corresponding to a unique integer. Each node can have
an arbitrary number of sons, so that the number on the edge
connecting a father and one of its sons is the index of that son.
The functions which define the interconnections of nodes are
listed and described in Table 1(b).

B. Representation of grammar and syntactic type assignment

The grammar is represented as a list of smaMer trees,
each tree corresponding to a production. The grammar G would be
represented as

<A>

 <C>

<c>
1

d

(3.1)

y \ a ' a / \ (3 - 3)

(3-4)

The functions which represent the grammar are I isted and explained
i n Tab I e 11. .,

When a node is ini tial ly .created, its syntactic type is
undefined. There is a function in the program holder which can
assign a syntactic type a to a node. Before such an assignment
can be succesfully completed, the sons of the node are checked to
see if they correspond in syntactic type to the right side of the
production in the grammar which defines oc. If a is a terminal
symbol, no checking need be done, but in this case any node to
which a is to be assigned must have no sons. For example, if the
incomplete parse tree looked like this

undef i ned
(4)

type <A> could be assigned to the undefined node in (4) by the
application of production (3.1). In this manner syntax checking
is done one level down from the place of assignment in the program
tree. If an exact match is not found, the type assignment is not
made and an error call results. The functions which handle type
assignments are listed and described in Table III.

In this manner a parse tree can be built from the bottom
up. There is also a mechanism for generating a tree top-down.

2

Note that (3.2) and (3.3) represent two productions which
define the nonterminal . When a node is assigned type , it
must be specified which alternative of is being assigned. Once
the type assignment has been successfully made, the TVPE function
for either a Iternative would have value , and the ALT function
would be used to distinguish between different alternative
derivations of the same nonterminal symbol (see Table II). This
method of referring to productions is useful: in the syntax
checking necessary for assignment in (4), the first son must be an
inetance of — the alternative is irrelevant; in other cases,
such as compilers, it is necessary to know the alternative. Thus
it is useful to separate this information, which all sources do
not "need to know."

The representation of grammars in the program holder is
different from that of context-free grammars in one respect. It
enables one to define a nonterminal as a list of zero or more
instances of another symbol, separated by instances of yet a third
type of symbol. Thus, the productions

<X> ::« <Y> I <X>, <Y> (5)
can be replaced by

<X> ::*A <Y>, (G)
which means that <X> is defined as a list of <Y> with " a s
separator. This is useful because it much easier to refer to the
nth item of a list when it is represented as in (6) at the module
level. Referring to the nth item of a list is very important in
text editing and related functions. Nany program constructs can be
considered as lists: e.g. the list of formal parameters in an
Algol procedure, or a compound viewed as a list of statements
bracketed by begin . . . end.

3

C. Incomplete syntax assignment

When a syntax assignment cc has been successfully made to a
node i, a strong assumption can be made about the subtree of which
node i is the root: that the tree represents a valid derivation of
the input string (represented by the leaves of the subtree) from
symbol a in the grammar contained in the program holder. This
assumption is useful in applications such as deterministic
bottom-up parsing. However, in other applications, such as
top-down parsing or working with incomplete programs, it is
desirable to have a tentative or incomplete syntax assignment. In

- top-down parsing, for example, the goal must be set before a valid
derivation exists. With incomplete programs, parts of the code
are left out in which decisions are postponed. When the missing
information is filled in, a definite syntax assignment can always
be made. The functions which control incomplete syntax assingment
are described in Table IV.

In an incomplete syntax assignment, the derivation may be
incomplete but is never inconsistent. In other words, a tree in
which incomplete assignments are present can always be completed
by addition to form a valid derivation in the language. Below
are five valid incomplete assignments (7.1), designated by an I,
and three invalid ones (7.2). The grammar is that defined above.

<A> <A> "~ <A> <A> <A>

/ •/ A V O M

 undefined <C>

I I I
<A> <A> <A>

<C> <C> undefined

(7.2)

Conclusion

The program holder module has been implemented, and we are
currently investigating its uses in tasks which involve operations
on other programs: text editing, verification, compilation, and
interpretation.

4

Table I
Structural Functions for Program Holder

a) Creation and deletion of nodes

funct i on

SETU

NEWNODE
SPACE
DESYN (i)
EXISTS(i)

value

i nteger
integer

boo Iean

explanation

creates a new node and sets the value
of NEWNODE to the name (a unique
Integer) of the newly created node
holds the name of the last node created
number of storage locations left
deletes node named i
true iff node named i exists (i.e.
created by SETU, but not deleted)

b) Connecting nodes to

function value

ERSI (i, n)

RSI (i, n)

ELSI (i)

LSI (i)

LSIX(i)

EHRS(i)
MRS(i)

SREL (i, j, n)

form an n-ary tree

expIanat i on

boolean

integer

boolean

i nteger

integer

boo Iean
i nteger

DREL (i, n)

refers to the nth son of node i (true
iff such a relation exists)
name of the nth son of node i (defined
iff ERSI(i, n) is true)

refers to the father of node i (true
iff such a relation exists)
name of the father of node i (defined
iff ELSI(i) is true)
if ELSI(i) is true, RSKLIS(i), LSIX(i)) =

true iff 3n [ERSKi, n) = true 3
maximum index of sons of i (defined iff
EMRS(i) is true)

sets up connection between nodes i and j
such that
RSI(i, n) « j ERSI(i, n) - true
LSI(j) = i ELSI(j) = true
LSIX(j) * n

deletes father-son relation between
nodes i and RSI (i, n)

5

Table II

Functions Describing
Representation of Grammar in Program Holder

funct i on

NTERM(ty)

TERM(ty)
LIST(ty)

SYMB(ty)

NALT(ty)

ITEM(ty)

SEP(ty)

value

boolean

boolean
boolean

boolean

i nteger

NPROD(ty f a) integer

PR0D(ty, n, a) integer

integer

integer

explanation

true iff ty refers to a nonterminal
symbol
true iff ty refers to a terminal symbol
true if NTERfl(ty) is true, and if ty
refers to a list of symbols
true iff ty refers to a symbol table
entry

number of alternative right hand sides
which have symbol ty on the left
(defined if NTERM(ty) is true,
and if LIST(ty) is false)
number of elements in right hand side of
the ath alternative production, of which
symbol ty is on the left (defined iff
NALT(ty) < a)
syntactic type of nth symbol in the ath
alternative production, of which
symbol ty is on the left (defined iff
NPRODUy, a) <s n)

symbol of which ty is a list (defined
iff LIST(ty) is true)
symbol which separates items of list
designated by ty (defined iff LIST(ty)
is true)

6

Assignment of

Table III
Functions Regulating

Syntactic Types to Nodes of Program Tree

function value

SETTRM(i, ty)

SNTERUCi . ty. a)

S S Y M B U . ty. p)

ETYPE(i) boolean

TYPE (i) integer

ALT (i) integer

PSYIIB(i) integer

DTYPE(i)

explanation j

assigns type ty to node i if TERM(i) is
true
assigns type ty (alternative a) to node
if NTERfl(ty) is true and if a match with
the grammar exists
assigns type ty to node i if SYMBtty^ is
true, p is the symbol table pointer /
(type integer)

true iff node i has a syntactic type
assignment
integer designating syntactic type of node
i (defined iff ETYPE(i) is true)
if NTERM(TYPEU)) is true, designates
the index of the alternative which
corresponds to this instance of TYPE(i)
pointer to symbol table (defined iff
SYMB(TYPE(i)) is true)
removes syntactic type assignment
node i

7

Table IV

Functions Regulating
Incomplete Syntax Assignments

function value explanation

SPTYPEti. ty t a) - makes incomplete syntactic type assignment
of ty (alternative a) to node i (NTERM(ty)
must be true)

EPTYPE(i) boolean true if node i has an incomplete
syntactic type assignment

PTYPE(i) integer incomplete syntactic type assigned to node
i (defined iff EPTYPE(i) is true)

DPTYPE(i) - removes incomplete syntactic assignment
from node i

8

Appendix*

Function FILLED

Function NEWNODE

PV: integers
PA: none
IV: undefined
EF: none

Function EXISTS(i)

PV: true, false
PA: integer i
IV: false
EF:

EC51 if (i < 0) v (i > pi)

•Note: Grammar functions are shown initialized with a specific
grammar.

PV: integers
PA: none
IV: 0
EF: none

Function EPTYPE(i)

PV: true, false
PA: integer i
IV: undefined
EF:

EC52 if (i < 0) v (i > pi)
EC53 if 'EXISTS'd) - false

Function PTYPE(i)

PV: integers
PA: integer i
IV: undefined
EF:

EC54 if (i < 0) v (i > pi)
EC55 if 'EXI$TS'(0 - false
EC56 if 'EPTYPE*(i) - false

Function DPTYPE(i)

PV: none
PA: integer i
IV: n/a
EF:

EC57 if (i < 0) v (i > pi)
EC58 if 'EXISTS'fl) - false
EC59 if »EPTYPE'(i) - false
EPTYPE(i) - false
PTYPEO) - undefined

10

Function ETYPE(i)

PV: true, false
PA: integer i
IV: undefined
EF:

EC60 if (i < 0) v (i > pi)
EC61 if 'EXISTS'(i) - false

Function TYPE(i)

PV: integer I
PA: integers
IV: undefined
EF:

EC62 if (i < 0) v (i > pi)
EC63 if 'EXISTS'(i) - false
EC64 if 'ETYPE'O) - false

Function DTYPE(i)

PV: none
PA: integer i
IV: n/a
EF:

EC65 if (i < 0) v (i > pi)
EC66 if 'EXISTS'(i) - false
if 'ELSI'(i) - true then

EC68 if 'ETYPETLSrfl)) - true
EC67 if 'ETYPE'(i) - false
ETYPE(i) - false
TYPE(i) - undefined
if 'NTERMVTYPE'O)) - true v

'SYMB'(TYPE'(i)) - true
then ALT(i) - undefined

11

Function ELSI(i)

PV: true, false
PA: integer i
IV: undefined
EF:

EC69 if (i < 0) v (i > pi)
EC70 if 'EXISTS'(i) - false

Function LSKi)

PV: integers
PA: integer i
IV: undefined
EF:

EC71 if (i <0) v(i >pl)
EC72 if 'EXISTS'(i) - false
EC73 if 'ELSHi) - false

Function DREL(i, n)

PV: none
PA: integer i, n
IV: n/a
EF:

EC74 if (i < 0) v (i > pi)
EC75 if (n < 0) v (n > pi)
EC76 if 'EXISTS'O) - false
EC77 if 'ERSI'O, n) = false
ELSK'RSHi, n)) - false
LSK'RSHi, n)) = undefined
LSIX('RSI'(i, n)) - undefined
ERSKi, n) - false
RSKi, n) - undefined
if -Gm [m n

'ERSI'(i, m) - true]
then begin

MRS(i) - undefined
EMRS(i) = false
end

else 3m [m t n
'ERSI'O, m). - true
Vp (p + m

p t n
'ERSI'(i, p) - true)

[p < m]
MRS(i) - m]

12

Function ERSKi, n)

PV: true, false
PA: integer i, n
IV: undefined
EF:

EC78 if (i < 0) v (i > pi)
EC79 if (n < 1) v (n > pi)
EC80 if 'EXISTS'O) - false

Function RSKi, n)

PV: integers
PA: integer i, n
IV: undefined
EF:

EC81 if (i < 0) v (i > pi)
EC82 if (n < 1) v (n > pi)
EC83 if 'EXISTS'(i) - false
EC84 if 'ERSI'<i) - false

13

Function LSIX(i)

PV: integers
PA: integer i
IV: undefined
EF:

EC90 if (i < 0) v (i > pl>
EC91 if *EXISTS*(i) - false
EC92 if 'ELSr<0 - false

Function ALT(i)

PV: integers
PA: integer i
IV: undefined
EF:

EC93 if (i < 0) v (i > pi)
EC94 if 'EXISTS'(i) - false
EC95 if CETYPE'(i) -false) v CEPTYPE'O) - false)
if 'ETYPE'fl) - true then

EC96 if 'NTERMTTYPE*(i)) - false

14

Function SETU

PV: none
PA: none
IV: n/a
EF:

EC98 if'FILLED' * p2
3k [k > 0
k < pi
'EXISTS'(k) - false
EXISTS(k) - true
EPTYPE(k) - false
ETYPE(k) - false
ELSI(k) = false
V j (j > 0
j < pi)[ERSKk, j) - false]

NEWNODE - k]
FILLED - 'FILLED'* 1

Function DESYISKi)

PV: none
PA: integer i
IV: n/a
EF:

EC99 if (i < 0) v (i > pi)
EC100 if 'EXISTS'(i) -false
EC 101 if 3j ['ERSI'(i, j) - false]
EC102 if 'ELSI'(i) - true
EPTYPE(i) - undefined
PTYPE(i) - undefined
EXISTS<i) = false
TYPE(i) - undefined
ETYPE(i) - undefined
FILLED - 'FILLED' - 1

Function SETTRMfl, j)

PV: none
PA: integer i, j
IV: n/a
EF:

EC103 if (j < 0) v (j > pi)
EC104 if (i < 0) v (i > pi)
EC105 if 'EXISTS'(i) - false
EC106 if 'ETYPE'(i) - true
EC107 if 'TERM'(j) = false
EC108 if 'EPTYPE'(i) - true
EC 109 if 3k ['ERSKi, k) - true]

15

if 'ELSr(i) - true then
begin if 'EPTYPEVLSr(i)) - true then

begin
EC189 if 'NTERMTPTYPEVLSHi))) - false
if 'LIST'('PTYPE'<'LSI'<i))) - true then

begin
if 'LSlX'(i) is odd then

EC187 if j it 'ITEMVPTYPEVLSrO)))
else EC188 if j * 'SEP'CPTYPE'CLSI'd)))
end

end
begin
EC111 if 'PRODTPTYPEVLSI'fl)), 'LSIX'(0,

'ALTTLSPO))) * j
end

end
ETYPE(i) - true
TYPE(i) = j

16

Function SNTERMO, ty, m)

PV: none
PA: integer i, ty, m
IV: n/a
EF:

EC128 if (i < 0) v (i > pi)
EC129 if (m < 0) v (m > pi)
EC130if(ty< 0)v(ty>pl)
EC131 if 'EXISTS'(0 - false
EC 132 if 'ETYPE'(i) = true
EC 133 if 'EPTYPE'(i) = true
EC 134 if 'NTERM'(ty) - false
if 'ELIST'(ty) - false then

begin
EC135 if 3n ['EPROD'(ty, n, m) - true

'ERSI'(i, n) - false]
EC136 if 3n ['EPROD'(ty, n, m) - false

'ERSI'(i, n) - true]
Vn ('ERSHi, n) - true)
[EC137 if 'ETYPEVRSFfl, n)) - false

EC138 if 'PROD'<ty, n, m) i TYPETRSKl, n))]
end

else begin
Vn ('ERSF(i, n) - true)
[EC 139 if 'ETYPE'('RSP(i, n)) - false

EC 140 if 3k [k - n
k is odd
'TYPETRSI'O, k)) * TTEMfty)]

EC194 if 3 k [k - n
k is even
'TYPEVRSIU k)) + 'SEFUy)]

EC195 if 3k [k < n
'ERSI'(i, k) - false]]

end
end

if 'ELSP(i) - true then
begin
if 'EPTYPEVLSI'fl)) - true then

EC197 if 'PRODVPTYPEVLSrO)),
>LSIX'(iVALTTLSr(i)) rt ty

end
ETYPE(i) - true
TYPE(i) - ty
ALT(i) = m

17

Function TERM(i)

PV: true, false
PA: integer i
IV: V k (k > 5 1

k < 100)
[TERIvKk) - true]

all others false
EF:

EC141 if (i < 0) v (i > pi)

Function EPROCKty, n, k)

PV: true, false
PA: integer ty, n, k
IV: EPRODU, 1, 1) - true

EPRODU, 2, 1) - true
EPR0D<1,3, 1) - true
EPRODU, 4, 1) - true
EPRODU, 5, l)-true
EPRODU, 6, 1) - true
EPRODU, 7, 1) - true

all others false
EF:

EG142 if (ty < 0) v (ty > pi)
EC143 if (n < 0) v (n > pi)
EC144 if (k < 0) v (k > pi)
EC 198 if 'NTERM'(ty) • false
EC199 if 'ELIST'(ty) - true

Function PROD(ty, n, k)

PV: integers
PA: integer ty, n, k
IV: PRODU, 1, 1) - 51

PRODU, 2, 1) = 41
PRODU, 3, 1) = 2
PRODU, 4, 1) - 78
PRODU, 5, 1) = 52
PRODU, 6, 1) = 77
PRODU, 7, 1) - 9

all others undefined

18

EC145 if (ty < 0) v (ty > pi)
EF:

EC146 if (n < 0) v (n > pi)
EC147 if (k < 0) v (k > pi)
EC200 if ,NTERM'(ty) - false
EC201 if 'ELIST'tty) - true
EC148 if 'EPR0D'(ty, n, k) - false

19

Function SPNTERM(i, ty, m)

20

PV: none
PA: integer i, ty, m
EF:

EC149 if <i < 0) v (i > pi)
EC150 if (ty < 0) v (ty > pi)
EC151 if (m < 0) v (m > pi)
EC152 if 'EXISTS'fl) « false
EC153 if 'EPTYPE'(i) - true
EC154 if 'ETYPE'(i) - true
EC155 if 'NTERM'(ty) = false
if 'ELIST'(ty) - false then

Vn ('ERSI'G, n) = true)
[EC156 if 'EPROD'(ty, n, m) - false

Vk (k - n
'ETYPETRSI'O, k)) - true)

[EC157 if 'PROD'tty, k, m) ft TYPE'(RSI'(i, k))]
Vk (k = n

'EPTYPE'('RSP(i, k)) - true)
[EC 158 if 'PROD'tty, k, m) ft 'PTYPETRSFO, k))]]

else Vn ('ERSP(i, n) = true)
[Vk (k = n

'ETYPE'CRSFfl, k)) - true)
[if k is odd then EC159 if

'TYPEVRSI'tf, k)) ft 'ITEM'tty)
else EC202 if 'TYPE'('RSF(i, k)) ft 'SEP'(ty)]

Vk (k - n
'EPTYPETRSFO, k)) - true)

[if k is odd then EC203 if *PTYPE'('RSF(i, k)) ft 'ITEM'tty)
else EC204 if 'PTYPE'('RSF(i, k)) ft 'SEP'(ty)]]

EPTYPE(i) - true
PTYPE(i) - ty
ALT(i) - m

Function SRELO, j, n)

21

PV: none
PA: integer i, j, n
IV: n/a
EF:

EC160 if (i < 0) v (i > pi)
EC161 if (j < 0) v (j > pi)
EC162 if (n < 0) v (n > pi)
EC 163 if 'EXISTS'(i) - false
EC 164 if 'EXISTS'O) - false
EC 165 if 'ELSI'(j) - true
EC166 if 'ERSF(i, n) - true
EC167 if 'ETYPE'(i) - true
if 'ETYPE'(j) - true then
begin if 'EPTYPE'(i) - true then
begin EC168 if 'EPRODTPTYPEXO, n, 'ALT'fl)) - false
EC205 if 'PRODVPTYPE'fl), n, 'ALT'O)) * 'TYPE'(j)

end
end
else if 'EPTYPE'(i) - true then
begin EC206 if 'EPROD'('PTYPE'(i), n, 'ALTO)) - false
if 'EPTYPE*(j) - true then
EC207 if 'PRODVPTYPE'(i), n, 'ALT'(i)) i< 'PTYPE'tj)

end
ERSKi, n) - true
RSKi, n) - j
ELSI(j) - true
LSI(j) - i
LSIX(j) - n
if 'MRS'(i) < n then MRS(i) - n

Function DSTR(i)

22

PV: none
PA: integer i
IV: n/a
EF:

EC169 if (i < 0) v (i > pi)
EC 170 if 'EXISTS'(i) - false
EC171 if 'LSI'(i) - true
EX1STS0) - false
Vn ('ERSP(i, n) - true)
[RSKi, n) - undefined
ERSKi, n) - undefined]

ETYPE(i) - undefined
TYPE(i) - undefined
FILLED = 'FILLED' - 1
EPTYPE(i) - undefined
PTYPE(i) = undefined
LSl(i).» undefined
ELSI(i) - undefined
LSIX(i) - undefined
MRS(i) - undefined
Vk ('ELSI'(k) - true

ELSI(k) - undefined)
[EXISTS(k) - false
Vn ('ERSHk, n) = true)
[RSKk, n) - undefined
ERSKk, n) = undefined]

ETYPE(k) = undefined
TYPE(k) - undefined
EPTYPE(k) - undefined
PTYPE(k) - undefined
LSI(k) - undefined
ELSl(k) - undefined
LSIX(k) - undefined
MRS(k) - undefined
FILLED - FILLED - 1]

Function LIST(i)

PV: true, false
PA: integer i
IV:

LISTX2) - true
LISTX6) - true
LIST<9) - true
LISTU6) - true
LISTU9) - true
LISK31) - true
LISK34) - true
LIST(40> - true
LISTC44) - true
L1STX45) - true
all others false

EF:
EC177 if (i < 0) v (i > pi)
EC 178 if 'NTERM'(i) - false

Function SEP(i)

PV: integers
PA: integer i
IV:

SEP(2) - 78
SEP(6) - 79
SEP(9) - 79
SEP(16) - 79
SEPU9) - 79
SEP(31) - 79
SEP(34) - 79
SEP(40) - 79
SEP(44) - 79
SEP(45) - 79
all others undefined

EF:
EC179 if (i < 0) v (i > pi)
EC180 if 'NTERfcffl) - false
EC181 if 'LIST'(i) - false

23

Function PSYMBfl)

PV: integers
PA: integer i
IV: undefined
EF:

EC115 if (i<0)v(i>pl)
EC116 if 'EXISTS'(i) - false
EC117 if 'ETYPE'O) - false
EC118 if 'SYMB'CTYPE'fl)) - false

Function SYMBfl)

PV: true, false
PA: integer i
IV: Vk (K > 0

k < 100
k * 41
k ft 42
k ft 43)

[SYMB(k) - false]
SYMB<41) - true
SYMB(42) - true
SYMB(43) - true

EF:
EC119 if (i < 0)v(i >pl)

24

Function SSYMBfl, j, k)

if 'EPTYPEVLSHi)) - true then begin
if 'LISTTPTYPEVLSni))) - true then

begin
if 'LSIX'(i) is odd then

EC190 if j * 'ITEMTPTYPEVLSni)))
else EC191 if j i< 'SEPVPTYPETLSHi)))
end

else begin
EC 192 if 'EPRODVPTYPETLSrO)), 'LSIX'fl), 'ALr<'L$I'(i))) - false
EC 193 if 'PRODTPTYPETLSr(i)), 'LSIX'tf), 'ALTTLSrfl))) * j

Function MRS(i)

PV: integers
PA: integer i
IV: undefined
EF:

end
end

end
ETYPEO) - true
TYPE(i) - j
PSYMBfl) - k

EC185 if (i < 0) v (i > pi)
EC186 if 'EXISTS'<i) - false
EC208 if 'EMRS'(i) - false

Function NTERM(i)

PV:
PA:
IV:

true, false
integer i
Vk (k «> 1

k S 43)
[NTERM(k) - true]

25

PV: none
PA: integer i, j, k
IV: n/a
EF:

EC120 if (i < 0) v (i > pi)
EC121 if (j < 0) v (j > pi)
EC122 if (k < 0) v (k > pi)
EC123 if 'EXISTS'W - false
EC124 if 'ETYPE'(i) - true
EC 125 if 'EPTYPE'(i) - false
EC126if 'SYMB'(j) - false
if 'ELSI'(i) - true then begin

all others false

Function EMRS(i)

PV: true, false
PA: integer i
IV: undefined
EF:

EC209 if (i < 0) v (i > pi)
EC210 if 'EXISTSXi) - false

26

EF:
EC187 if (i < 0) v (i > pi)

Function SSYMBO, j, k)

PV: none
PA: integer i, j , k
IV: n/a
EF:

EC120 if (i < 0) v (i > p i)
EC121 if (j < 0) v <j > p i)
EC122 if (k < 0) v (k > p i)
EC123 if 'EXISTS'(i) - false
EC124 if 'ETYPE'(i) - true
EC 125 if 'EPTYPE'(i) - false
EC126 if 'SYMB'(j) - false
if *ELSI*(t) - true then begin

if 'EPTYPETLSPfl)) - true then begin
if 'LISTTPTYPE'CLSrO))) - true then

begin
if 'LSIX'(i) is odd then

EC190 if j fi 'ITEMTPTYPEVLSrtf)))
else EC191 if j ^ 'SEP'('PTYPETLSr<i)))
end

else begin
EC192 if 'EPRODVPTYPEVLSrtf)), 'LSIX'fl), 'ALr('LSI'(i))) - false
EC 193 if 'PRODVPTYPEVLSni)), 'LSIX'd), 'ALT'OLSTCi))) ft j
end

end
end

ETYPE(i) - true
TYPE(i) - j
PSYMB<i)-k

Function MRS(i)

PV: integers
PA: integer i
IV: undefined
EF:

EC185 if (i < 0) v (i > pi)
EC186 if 'EXISTS'(i) - false
EC208 if 'EMRS'fl) - false

Function NTERMfl)

PV: true, false
PA: integer i
IV: Vk (k 2 1

k S 43)
[NTERM(k) - true]

25

EF:
all others false

Function EMRS(i)

PV: true, false
PA: integer i
IV: undefined
EF:

EC209 if (i < 0) v <i > pi)
EC210 if 'EXISTSXO - false

26

EC187 if (i < 0) v (i > pi)

Function ITEMfl)

PV: EC182 if (i < 0) v (i > pl)
EC183 if 'NTERM'(i) - false
EC184 if 'LISTtf) -false

Function NALT(ty)

PV: integers
PA: integer ty
IV: NALTO) - 1

NALTX2) - 1
NALTO) - 1
NALT(4) - 1
NALT(5) - 2

EF:
all others undefined

EC175 if (ty < 0) v (ty > pl)
EC176 if mERM*(ty) - false

27

References

[13 Parnas, D.L., "A Technique for Software Module Specifications
wi th Examples, M Communications of the ACM. flay 1972. Avai lable
as a Technical Report, Computer Science Department,
Carnegie-Mellon University, 1971.

[23 Chang, H.C. and D.L. Parnas, "General Purpose Macro Expander,"
Unpublished manuscript.

28

Abstract

A mechanism for holding programs in syntactic form was
desired for use by systems which operate on other programs!
program verifiers, automatic programming systems, and specialized
text editors. The mechanism was designed using the software
module specification language of D. L. Parnas, and implemented in
SAIL, an Algol-1 ike language on the PDP-18. It is suggested that
specifications assist in both the design and implementation
processes.

iii

L. Robineon
5/20/73

Design and Implementation of a Multi-Level System
Using Software Modules

Introduction

A mechanism for holding programs in syntactic form was
desired for use by systems which operate on other programs:
program verifiers, automatic programming systems, and specialized
text editors. The mechanism was designed using the software module
specification language of D. L. Parnas [11, and implemented in
SAIL, an Algol-like language on the PDP-1B.

This paper describes the process of design and
implementation of this system by one person. It has been shown
that software module specifications are useful in group projects
[21. This paper will demonstrate how the specifications can be
useful in an individual programming effort by isolating
programming problems, by allowing programming problems to be
approached in an organized manner, and by simplifying the process
of getting the programs to run correctly.

29

Motivation for a syntax-driven text editor

It has been the case in construction of programs with
standard text editors, for programmers to use various gimmicks to
perform "intelligent" text editing functions. For example,
suppose one were constructing a LISP program and wanted to see if
the parentheses matched, and how the nested S-expressions related
to one another. For a large enough program one could spend hours
with a standard text editor, or one could use one of the many
specialized editors which take advantage of the LISP syntax. It
is argued that such features would be useful in the construction
of programs in other languages as well. The desired features would
vary depending on the language to be edited.

Most standard text editors consider a program as a set of
lines, each line containing a character string. A syntax-driven
editor would treat a program as a set of lexemes related by the
application of the syntactic rules of that language. If one
wanted to change all instances of the identifier "A" to the
identifier "B", a standard text editor (without extensions) would
be of almost no use. There are text editors [31 which have been
extended to permit substitution of <separator>A<separator> for
<separator>B<separator>, but these editors have already made a
concession to defining a lexical unit and to utilizing syntactic
generality. Another use for the syntax-driven text editor is for
insertion, deletion, and substitution based on a syntactic
pattern. Knowing that quick changes to a program are syntactically
correct saves much compile time. The syntax-driven text editor
gives some of the benefits of incremental compilation for changing
programs. This is especially useful in write in programs for
languages with highly optimizing compilers, where compilation time
is a major cost consideration.

30

Motivation for a program holder

For a programming system such as a syntax-driven text
editor, some mechanism is necessary for inputting a program, for
attributing syntax information to the program text, and for
changing the text of the program in a manner limited by the syntax
of the language. These capabilities are universal to a
syntax-driven text editor for any language. He have specified a
mechanism called a program holder which realizes these
capabilities. The program holder is useful for an task which
operates on programs: verification, automatic programming,
compilation, and interpretation.

31

Description of the program holder

The program to be held in syntactic form is stored as the
values of functions which describe a parse tree. The parse tree
is simply an n-ary tree with specialized information at the nodes.
The program holder has acces to a representation of the grammar of
the language. This enables syntax checking within the module,
root of a valid parse tree, one could use functions to assign this
information to the node. Thus the functions of the program holder
module could be divided into three disjoint sets:

1) Structural functions — creation, deletion, and
linking of nodes to form a parse tree.

2) Functions which describe the grammar.

3) Functions which assign syntactic information to
the nodes.

32

Design evolution of a hierarchical system

The specification in [4 J describes the program holder as a
set of functions which comprise a single module. In the
implementation these functions must map to a data structure which
stores the function values, or to a procedure or macro which
calculates the values. The mapping could be done by coding the
module directly in a given programming language. For a module as
complex as the program holder (36 functions, 208 error calls),
there are two disadvantages:

1) Direct implementation would be messy to do without
relying on some specific lower-1 eve I abstractions.

2) The direct implementation of a complicated system
may generate design decisions which are very
difficult to change.

The approach which we chose was to decide which lower level
abstractions are needed to implement the top level module (in this
case the program holder), and to write software module
specifications for these lower level abstractions. This process
continues until the designer judges that the mapping from the
current lowest level to a program is straightforward.

At this point the designer has specifications for the
different layers or abstractions in his system. The
specifications for various modules are independent of one another,
in the sense that the specifications make reference only to
functions in the same module. The process of creating mappings
between different abstractions (or virtual machines) constitutes
the implementation of the system.

33

Example of the hierarchical design process —
editor

syntax-driven text

At first, the design effort involved an enumeration of the kinde
of operatione desired of the text editor:

1) Input of programs or parts of programs.

2) Internal storage of program in parsed form.

3) Searching and substitution on strings classified
by syntactic type.

4) Ability to work with incomplete programs for the
purposes of stepwise refinement.

It was only after examination of the desired capabilities that we
determined that the editor should be built around the storage of
programs in parsed form, rather than around any particular
capability. The other parts of the system would make use of this
program storage mechanism and could therefore be built later. The
mechanism for such storage was called the program holder: other
parts of the editor would be a parser, a lexical analyzer, an
input/output module, and a pattern matching and substitution
module (see figure 1).

Several design decisions went into the specifications for
the program holder. Here is a list of decisions which were made
in approximately chronological order:

1) Representation of the program as a parse tree
[excludes representation as an unparsed string of
tokens].

2) The structural functions of the parse tree should
be those of an n-ary tree where n is variable [rulee
out restriction of n-ary tree with n fixed,
specifically a binary tree].

3) The assignment of syntax information to the nodes
required two design decisions:

a) To include a representation of the grammar in
a submodule of the program holder module.
b) To specify automatic syntax checking as part
of the holder.

It turned out that a) and b) could be incorporated
into specifications which describe a program holder
for any context-free grammar, instead of having a
different set of specifications for each grammar
dealt with. This was a generalization beyond our
initial goals.

34

4) For special applications (working with incomplete
programs and top-down parsing) a second type of
syntax assignment — incomplete syntax assignment —
was incorporated into the specifications. This
mechanism will detect errors if an incomplete program
is syntactically inconsistent.

5) A special type of nonterminal was provided, which
was defined as a list of zero or more instances of
another syntactic type.

These factors were all considered in the development of a
set of specifications. Next it was time to consider the
implementation of the program holder in terms of lower level
abstractions. The major problem was how to implement the n-ary
tree, which was the structural basis for the program holder.
Perhaps the most flexible means was to devise specifications for a
list processing system which could allocate and link elements of
arbitrary size. This decision allowed many possible formats for
the nodes of the tree and permitted various schemes to specify the
linkage of one node to an arbitrary number of other nodes (a
requirement for an n-ary tree). List processing systems require
some means of dynamic storage allocation, so that the third
(lowest level) abstraction to be specified was that of a storage
allocator mechanism.

At this point the design consisted of three module
specifications which were independent of one another. The
implementation then consisted only of the designer's idea of the
mappings between the levels of abstraction; these mappings were
the last design decisions to be made: they were still flexible at
a time when the specifications were relatively fixed. Although the
specifications for this three-1 eve I system were written from the
top down, the implementations were were written in reverse order,
to facilitate the debugging and testing of the system. (If the
higher of two levels is to be tested, one needs either an
implementation of the lower level or a simulation of it. Since
the lower level implementation had to be built anyway, it was
natural to implement this system from the bottom up.) Table I
describes the implementation of the mul ti-level system in terms of
design decisions. The design decisions are divided into the
following categories: tasks to be performed, information to be
exchanged with the outside of the module (or program), information
hidden inside the module, information unknown to the module (which
must be kept outside), and the implementation of the module in
terms of lower level abstractions. A detailed description of the
program holder specification can be found in [41.

35

In the syntax-driven text editor the design phase
consisted of several distinct processes:

1) Consideration of the entire problem in terms of a
set of capabiIities for the finished product.

2) Decomposition of this practical problem into one
or more collections of shared information
(incorporated with operations upon it). Each
collection becomes a software module. Examples:

a) Building the editor around a program holding
mechani sm.
b) Building the n-ary tree of the program holder
from a list processing system.
c) Building the list processing system from a
storage allocation mechanism.

3) Writing the formal specifications for a module
once its role has been identified.

4) Implementaion of the module specifications, either
in terms of lower-level abstractions or directly in a
programming language.

Of the above processes, 1) and 4) are common to all methods of
program design. 2) is an extremely difficult process, because
there are many modular decompositions which will describe a
particular system — some of which are very poor from the
viewpoint of information hiding. The Parnas specifications [13
assist in process 2) , because they limit the effective size of a
given module by forcing the designer to enumerate all external
connections (functions) and internal state changes (effects). In
our experience bad decompositions yield large, unwieldy
specifications. Once a decomposition has been arrived at, process
3) is rather mechanical, involving many small decisions. Given
the module specifications from process 3), process 4) is easy.
However, it is a difficult task to produce an efficient
implementation of a modular program, because the modules limit the

potentially destructive but efficient "tricks" which the
programmer can perform. There-will, always be some efficiency
sacrificed in the modularization of a programming system. He
expect that higher reliability and increased efficiency from
improved modular programming techniques may minimize complaints
about inefficiency of modular programming with formal
specifications.

36

Variability of design decisions using the modules

Several questions come to mind concerning the constraints
imposed by the use of the modules, and the ability to change
design decisions already made:

1) How large should a module be?

2) How difficult is it to change design decisions in
the specification stage?

3) How difficult is it to change design decisions in
the implementation stage?

There is no clearcut answer to the first question. In the
case of the program holder two separate abstractions were present

the parse tree and the representation of the grammar. If these
two abstractions were in separate modules, the syntax checking
desired in the parse tree could not be explicity included in the
parse tree module (because a given software module specification
must not make references to functions in another module). Thus
the parse tree and the representation of the grammar were kept
together in one large module so that explicit syntax checking
could be included in the specification. In other cases, a design
decision might indicate the breakdown of a large module into
several smaller ones.

Changing design decisions during the specification process
is easy, because the specificat ion process involves the writing of
a "first draft" of a specification, and then refining the original
work. Besides the maximum flexibility during this phase (one is
not burdened with having started the implementation concurrently),
the information contained in the specification makes it easy to
enumerate design decisions, to decide appropriate changes, and to
make the desired changes in the specifications. One method of
determining whether or not the specifications are adequate is to
write programs (or flowcharts) of desired operations using the
modules. 11 becomes apparent which desired capabilities are
impossible, or at least difficult, to accomplish. When such
difficulties occur, changes in the specifications are indicated.

37

Uhen the specifications have become fixed and used in
implementing other modules, some design decisions are difficult to
change. The easiest decisions to change are the ones which involve
no changes in the specifications, because such changes are
invisible outside the module in which the changes are made. An
example of this was a decision to completely rewrite the
implementation of the storage allocator module (bottom level of
the program holder). The original implementation had been running
far too slowly, and major changes seemed necessary. Since the
desired changes could be made without any change in the
specifications, it was unnecessary to change any of the code for
the higher levels. Usually a change in the lowest level of a
system which is not formally specified will result in havoc with
the upper levels. Uith the storage allocator, the change was
made easily, without the higher levels being affected.

Making a change which does affect the specifications is
far more serious and should be avoided wherever possible. In a
group project such a change may propagate errors throughout the
system.

38

Uriting code for the system

The language chosen for implementation of the program
holder was SAIL (Stanford Artificial Intel Iigence Language) t51• on
a Digital Equipment PDP-10. The language is essentially Algol-68
with separately compiled outer blocks, ca11-by-reference instead
of call-by name, a macro facility, and built-in I/O routines which
interface well with the machine. The presence of separately
compiled outer blocks was especial I y helpful for the following
reasons:

1) A block could contain all the code for the
implementation of a single module. In one module,
those procedures whose text is written inside the
block, but whose names would be available outside the
module (as functions) would be declared "INTERNAL."
Any separately compiled block (another module) which
wanted to use the procedures must declare them
"EXTERNAL" (i.e. supplied from outside) at the
outermost block level in which they are used.

2) Different implementations of a module could be
trivially "plugged in" without recompiling.

39

Error call implementation

Uhen an implementation of a function from a module
specification is written, tests are made for all the error
conditions in the "EFFECTS" section of the function. Then the
function's value is caluclated, or the state of the module is
changed as indicated in the specifications.

In the implementation of a multi-level system, error
checking on a higher level may prevent an incorrect function call
at a lower level. Nevertheless, error checking at a lower level
is still carried out, causing a large amount of time to be spent
in rarely useful error checking. Since many errors on a higher
level correspond to errors on a lower level (such as an
out-of-bounds argument), some multi-level error checking is
redundant. These difficulties can be handled in two ways:

1) The lower-1 eve I error calls can be eliminated.
This would increase efficiency, but would require the
"custom tailoring" of a module implementation every
time a higher level was added. In addition this
solution assumes that the implementation of the next
highest level is correct, in the sense that it does
not make any incorrect calls to the lower level. This
assumption cannot always be made. If an incorrect
call were made of a lower-level function which had no
error checking, recovery from (or even detection of)
the error would be impossible.

2) Instead of making a time-consuming test for an
error condition, each upper-1 eve I error call would
set a trap location for a certain lower level error
call. This would allow the errors to be detected at
a lower level but recovery could be specified by the
highest level at which the error could have occurred.
Parnas [6] has suggested the feasibility of this
method of handling error calls in a multi-level
system. This system will be implemented for the
program holder in the near future.

Note that only in the second case do all modules meet their
specifications.

40

Program testing and ver i fi cat ion using the specifications

Having software module specifications for a program can
simplify the process of testing or verifying the progam. In
program testing the specificat ions provide a complete description
of the classes of external program behavior, so that writing a
test program for these external cases can be done directly from
the specifications. Of course the module speicficat ions do not
provide any indication of the classes of internal behavior of the
program to be tested. In most cases some analysis of the
implementation algorithms is necessary in order to determine and
test internal cases which are not manifested on the outside.
However, the specifications have eliminated much of the work in
deciding what to test for and where to test it.

In the case of verification of an implementation, one can
interpret that each statement in the "EFFECTS" section of a
function specification corresponds to an assertion. One can
verify that the desired effect has taken place by inspection of
the part of the function implementation which corresponds to that
particular effect. Care must be taken to ensure that an assertion
which is true at a given point in the function implementation is
also true on exit r from the function call. Considering the
specifications as assertions is also useful for more formal
verification procedures. The specifications constitute a complete
set of assertions, so that a programmer is less likely to "forget"
about an important property of the program if he can refer to the
specifications. Such forgetfulness is likely to occur when large
programs are being written.

Note that when the behavior of simple functions is
established (either by testing or verification), this behavior
forms a base from which other functions related to the simple ones
may be tested or verified. Picking the correct order can speed the
testing or verification of an entire module.

The following results were obtained with the program
holder implementation:

1) For each of the three modules written, the times
for coding a module and testing/verification were
approximately equal. The specification time for the
two lower-1 eve I modules was approximately equal to
that of coding them. The top level of the program
holder, in which many design decisions were made,
took twice as long to specify as to code.

2) For the total system (approximately 2388 lines of
SAIL code), in 5 months there has been only one "bug"
detected after the testing/verification procedure (an
error was detected by the wrong error checking
statement).

41

Conclusion

One big problem in software development is that the total
time spent in the coding and debugging of large systems is
exponential in the size of the system. Software module
specifications, because they fragment the programming problem and
because debugging time seems to be reduced, may be a way to help
reduce the magnitude of the "software crisis." This conjecture has
yet to be rigorously tested in a large-scale software effort.
There is a group experiment which indicates that the presence of
software module specifications can result in the successful
interface of programs written by many di fferent inexperienced
programmers [21. The experience of one person in the
implementation of the program holder mechanism suggests that the
module specifications are also useful in a one-man effort of
writing a large system.

42

Tab It I — Design decisions in syntax-driven ttxt editor

Program

Type of specification

••sign doc Is ions

I* Tastes to bo performed

II. Information exchanged with
outs ids of Moduls

III. Information hiddsn Mithin
modulo

IV. Information unknown to
modulo (which must bo kept
outsido)

V. Implementation of module
in terms of lower level
abstractions

Editor

Informal — in terms of tasks that
the editor should perform

1. Should be able to perform all standard
text editing functions (smallest unit may be
a lexeme instead of a character).

2. Specialized text editing functions dependent
on the syntax of the program
a) Checks for syntax errors
b) Can match on a pattern of terminals and

nonterminals
c) Indenting
d) Printing of parse tree
e) Uorking with incomplete, but

syntactically consistent programs
3. Original intended use — to

help generate the module specifications

Input
Program text
Grammar (on initialization)
Editor commands

Output
Altered program text
Formatted program text
Parse tree
Editor responses and diagnostics

1. Internal representation of program
2. Parsing algorithm
3. Symbol table format

4. Horizontal decomposition at lower level

not f inally decided

Tasks performed by algorithmic modules
I/O
Searching, substitution, and pattern matching
Parsing

Information stored in Parnas type modules
Program holder
Lexical analyzer

43

Table I (continued)

II* Information exchanged with
outsido of modulo

III. Information hidden within
modulo

IV. Informat ion unknown to
modulo (which must be kept
outs Ids)

V. Implementation of modulo
in torms of lower lovol
abstract ions

Program holder

Parnas (formal) specification

1« Process any context-free language
2. Representation of program as

parse tree (n-ary tree)
3. Grammar — fixed at initialization
4. Trees can be built up and

deleted dynamically
5. Syntax assignment

a) Automatic syntax checking
ensures valid parse below

b) Representation of grammar
must be internal to module

6« Need incomplete syntax assignment
a) Top down parsing
b) Stepwise refinement of

programs
7. Consideration of a special class

of nonterminal defined as a list
of symbols

Input
Creation and deletion of nodes
Data associated with nodes
Grammar — at initialization

Output
Existence of nodes
Relations between nodes
Data assigned to nodes
Productions of grammar

1. Manner in which nodes are given
values

2. Internal representations of
parse tree and productions of
grammar

3. Algorithm for syntax checking
4. Means of determining existence of

nodes and whether data in nodes
is defined

1. Node indices not referred to
in context (i.e. pointers into
the tree are required)

2. Correspondence of integers to
syhtact ic types

3« Symbolic informat ion*associated
with the nodes (i.e. a symbol
table is required)

1. Grammar is stored in an arra^
with links and is accessed by
macros

2. Program holder is implemented
by calls to functions of list
processing module
a) Nodes in parse tree

correspond to list elements
b) Pointers to sons are stored

in blocks linked to father
node

44

Program

Type of specification

Design doc is ions

I. Tasks to bo perfornod

Table I (continued)

Program

Type of specification

Design decisions

I. Tasks to be performed

II. Information exchanged with
outside of module

III. Information hidden within
module

IV. Information unknown to
module (which must be kept
outside)

V. Implementation of module
in terms of lower level
abstractions

List processing system

Parnas (formal) specification

1. Create and destroy list elements
2. Can specify the number of fields

in each element created
3. Can determine from outside

whether or not a field has been
given a value

4. Can set values of fields

Input
Creation and deletion of elements
Values of fields

Output
Existence of elements
Existence of a value for a field

in an element
Values of fields

1. Means of determining the
existence of elements

2. What value constitutes an
undefined field

3. Method of allocating and
choosing indices for elements

1. Whether a field is a pointer or
data

2. Indices of elements referred
to out of context

List processor calls storage
a I locator module

a) undefined « 2t34 - 1
b) indices of nodes are

"addresses" in storage
allocator

45

Table I (continued)

Program

Type of specification

Design decisions

I. Tasks to be performed

Storage al locator

Pamas (formal) specification

1. Allocate and free blocks of
variable size

2« Desire knowledge of whether or not
an address is the head of a block
(blocks are referred to by address
of head)

3« Desire knowledge of whether or not
an address is free or allocated

4. Can only free storage which has
been allocated as a block

I!. Information exchanged with
outside of module

III. Information hidden Mithin
module

IV. Information unknown to
module (which must be kept
outside)

V. Implementation of module
in terms of lower level
abstractions

Input
Size of block for a Ilocation
Address of block for freeing

Output
Whether an address is free or
allocated

Uhether an address is head of a block
Whether an address is used by
allocator for bookkeeping

1. Keeping track of free and
allocated blocks

2. Determination of heads of blocks
3. Storage allocatIon strategy

1. Compacting process (when free
storage becomes tight)

2. Reference to block heads out of
context (calling program must
remember the addresses of blocks
it has a I located)

1. Direct implementation in SAIL
2. First fit allocation strategy
3. Bit matrix to determine free

storage
4. Storage to be allocated is SAIL

integer nrrn^

46

Editor

(Program holden
(Parse
tree

I Rep.
! o f

I Gr animai:

Parser Lexical
Analyzer

Searching, Eattern match-ng and Sub-
titution

Storage
allocator

[nteger
Array

Figure 1 - Structure of a Syntax-Driven Text Editor

References

til Parnas, D.L., "A Technique for Software Module Specifications
with Examples." Communications of the ACM, May 1972. Available as
a Technical Report, Computer Science Department, Carnegie-Mellon
Univereity, 1971.

[21 Parnas, D.L., "Some Conclusions from an Experiment in Software
Engineering Techniques," Proceedings FJCC f 1972. Available as a
Technical Report, Computer Science Department, Carnegie-Mellon
Univereity, 1972.

[31 Savitzky, Steven, Son of Stopgap, Stanford Artificial
Intelligence Laboratory, Operating Note 50.1, September, 1969.

[43 Robinson L. and D.L. Parnas, "A Syntax-Driven Text Editor,"
Technical Report, Computer Science Department, Carnegie-Mellon
University, 1973.

[5] Swinehart D. and R. Sproull, SAIL Manual, Stanford Artificial
Intelligence Project, Operating Note No. 57, November 1969.

[61 Parnas, D.L., "Response to Detected Errors in Well- Structured
Programs," Technical Report, Computer Science Department,
Carnegie-Mellon University, 1972.

48

