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Abstract 

This paper describes a mechanism for holding a program in 
syntactic form. This mechanism can be useful to any program which 
processes programs: in program verification, automatic 
programming, and specialized text editing. In this case the 
program holder is used to form the basis for a syntax-driven text 
editor. Formal specifications for the program holder are also 
given. 
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A Program Ho Ider ModuIe 

Introduction 

This paper describes a mechanism for holding a program in 
syntactic form. This mechanism can be useful to any program 
which processes programs: "in program verification, automatic 
programming, and specialized text editing. In this case the 
program holder is used to form the basis for a syntax-driven text 
editor. 

The program holder is designed so that it* can be 
initialized with any context-free grammar. Thus it can be the 
basis for a text editor in most programming languages. Editors for 
different languages will have different features, but can make use 
of the same progam holder. 

The design of the program holder was accomplished by 
writing specifications for it using the software module 
specification language of D. L. Parnas [11. The speci f i cat i ons .-J or 
the program holder can be found in the appendix. The procfram 
holder was then used as the basis of a text editor for the 
programming tool MUTAS [2]. 
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Specification of the program holder 

A. Representation as parse tree 

In an umbiguous context-free grammar G there exists a 
unique parse tree for an input string in the language L(G). Thus a 
parse tree is the most obvious form for holding a program in 
parsed form. A parse tree is simply an n-ary tree with 
specialized information at the nodes, so that the structural 
functions (Table I) of the program holder module represented an 
n-ary tree (an extension of Parnas' binary tree) til. Table 1(a) 
shows the functions for creating and deleting nodes. The nodes are 
referred to by integers, so that the "name" of the node is simply 
the integer corresponding to it. 

The parse tree is illustrated by the following example. 
Suppose that the editor is initialized with a grammar G: 

<A> ::« <B> <C> 
<B> ab I be (1) 
<C> ::« d 

Then the parse tree for the string abd would be 

(2) 

The circled numbers next to each node are the names of the nodes, 
each node corresponding to a unique integer. Each node can have 
an arbitrary number of sons, so that the number on the edge 
connecting a father and one of its sons is the index of that son. 
The functions which define the interconnections of nodes are 
listed and described in Table 1(b). 



B. Representation of grammar and syntactic type assignment 

The grammar is represented as a list of smaMer trees, 
each tree corresponding to a production. The grammar G would be 
represented as 

<A> 

<B> <C> 

<c> 
1 

d 

(3.1) 

<B> <B> 

y \ a ' a / \ ( 3 - 3 ) 

(3-4) 

The functions which represent the grammar are I isted and explained 
i n Tab I e 11. ., 

When a node is ini tial ly .created, its syntactic type is 
undefined. There is a function in the program holder which can 
assign a syntactic type a to a node. Before such an assignment 
can be succesfully completed, the sons of the node are checked to 
see if they correspond in syntactic type to the right side of the 
production in the grammar which defines oc. If a is a terminal 
symbol, no checking need be done, but in this case any node to 
which a is to be assigned must have no sons. For example, if the 
incomplete parse tree looked like this 

undef i ned 
(4) 

type <A> could be assigned to the undefined node in (4) by the 
application of production (3.1). In this manner syntax checking 
is done one level down from the place of assignment in the program 
tree. If an exact match is not found, the type assignment is not 
made and an error call results. The functions which handle type 
assignments are listed and described in Table III. 

In this manner a parse tree can be built from the bottom 
up. There is also a mechanism for generating a tree top-down. 
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Note that (3.2) and (3.3) represent two productions which 
define the nonterminal <B>. When a node is assigned type <B>, it 
must be specified which alternative of <B> is being assigned. Once 
the type assignment has been successfully made, the TVPE function 
for either a Iternative would have value <B>, and the ALT function 
would be used to distinguish between different alternative 
derivations of the same nonterminal symbol (see Table II). This 
method of referring to productions is useful: in the syntax 
checking necessary for assignment in (4), the first son must be an 
inetance of <B> — the alternative is irrelevant; in other cases, 
such as compilers, it is necessary to know the alternative. Thus 
it is useful to separate this information, which all sources do 
not "need to know." 

The representation of grammars in the program holder is 
different from that of context-free grammars in one respect. It 
enables one to define a nonterminal as a list of zero or more 
instances of another symbol, separated by instances of yet a third 
type of symbol. Thus, the productions 

<X> ::« <Y> I <X>, <Y> (5) 
can be replaced by 

<X> ::*A <Y>, (G) 
which means that <X> is defined as a list of <Y> with " a s 
separator. This is useful because it much easier to refer to the 
nth item of a list when it is represented as in (6) at the module 
level. Referring to the nth item of a list is very important in 
text editing and related functions. Nany program constructs can be 
considered as lists: e.g. the list of formal parameters in an 
Algol procedure, or a compound viewed as a list of statements 
bracketed by begin . . . end. 
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C. Incomplete syntax assignment 

When a syntax assignment cc has been successfully made to a 
node i, a strong assumption can be made about the subtree of which 
node i is the root: that the tree represents a valid derivation of 
the input string (represented by the leaves of the subtree) from 
symbol a in the grammar contained in the program holder. This 
assumption is useful in applications such as deterministic 
bottom-up parsing. However, in other applications, such as 
top-down parsing or working with incomplete programs, it is 
desirable to have a tentative or incomplete syntax assignment. In 

- top-down parsing, for example, the goal must be set before a valid 
derivation exists. With incomplete programs, parts of the code 
are left out in which decisions are postponed. When the missing 
information is filled in, a definite syntax assignment can always 
be made. The functions which control incomplete syntax assingment 
are described in Table IV. 

In an incomplete syntax assignment, the derivation may be 
incomplete but is never inconsistent. In other words, a tree in 
which incomplete assignments are present can always be completed 
by addition to form a valid derivation in the language. Below 
are five valid incomplete assignments (7.1), designated by an I, 
and three invalid ones (7.2). The grammar is that defined above. 

<A> <A> "~ <A> <A> <A> 

/ •/ A V O M 

<B> <B> <B> undefined <C> 

I I I 
<A> <A> <A> 

<C> <C> undefined 

(7.2) 

Conclusion 

The program holder module has been implemented, and we are 
currently investigating its uses in tasks which involve operations 
on other programs: text editing, verification, compilation, and 
interpretation. 
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Table I 
Structural Functions for Program Holder 

a) Creation and deletion of nodes 

funct i on 

SETU 

NEWNODE 
SPACE 
DESYN ( i) 
EXISTS(i) 

value 

i nteger 
integer 

boo Iean 

explanation 

creates a new node and sets the value 
of NEWNODE to the name (a unique 
Integer) of the newly created node 
holds the name of the last node created 
number of storage locations left 
deletes node named i 
true iff node named i exists (i.e. 
created by SETU, but not deleted) 

b) Connecting nodes to 

function value 

ERSI (i, n) 

RSI ( i, n) 

ELSI (i) 

LSI ( i) 

LSIX(i) 

EHRS(i) 
MRS(i) 

SREL ( i, j, n) 

form an n-ary tree 

expIanat i on 

boolean 

integer 

boolean 

i nteger 

integer 

boo Iean 
i nteger 

DREL ( i, n) 

refers to the nth son of node i (true 
iff such a relation exists) 
name of the nth son of node i (defined 
iff ERSI(i, n) is true) 

refers to the father of node i (true 
iff such a relation exists) 
name of the father of node i (defined 
iff ELSI(i) is true) 
if ELSI(i) is true, RSKLIS(i), LSIX(i)) = 

true iff 3n [ ERSKi, n) = true 3 
maximum index of sons of i (defined iff 
EMRS(i) is true) 

sets up connection between nodes i and j 
such that 
RSI(i, n) « j ERSI(i, n) - true 
LSI(j) = i ELSI(j) = true 
LSIX(j) * n 

deletes father-son relation between 
nodes i and RSI (i, n) 
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Table II 

Functions Describing 
Representation of Grammar in Program Holder 

funct i on 

NTERM(ty) 

TERM(ty) 
LIST(ty) 

SYMB(ty) 

NALT(ty) 

ITEM(ty) 

SEP(ty) 

value 

boolean 

boolean 
boolean 

boolean 

i nteger 

NPROD(ty f a) integer 

PR0D(ty, n, a) integer 

integer 

integer 

explanation 

true iff ty refers to a nonterminal 
symbol 
true iff ty refers to a terminal symbol 
true if NTERfl(ty) is true, and if ty 
refers to a list of symbols 
true iff ty refers to a symbol table 
entry 

number of alternative right hand sides 
which have symbol ty on the left 
(defined if NTERM(ty) is true, 
and if LIST(ty) is false) 
number of elements in right hand side of 
the ath alternative production, of which 
symbol ty is on the left (defined iff 
NALT(ty) < a) 
syntactic type of nth symbol in the ath 
alternative production, of which 
symbol ty is on the left (defined iff 
NPRODUy, a) <s n) 

symbol of which ty is a list (defined 
iff LIST(ty) is true) 
symbol which separates items of list 
designated by ty (defined iff LIST(ty) 
is true) 
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Assignment of 

Table III 
Functions Regulating 

Syntactic Types to Nodes of Program Tree 

function value 

SETTRM(i, ty) 

SNTERUCi . ty. a) 

S S Y M B U . ty. p) 

ETYPE(i) boolean 

TYPE ( i) integer 

ALT ( i) integer 

PSYIIB(i) integer 

DTYPE(i) 

explanation j 

assigns type ty to node i if TERM(i) is 
true 
assigns type ty (alternative a) to node 
if NTERfl(ty) is true and if a match with 
the grammar exists 
assigns type ty to node i if SYMBtty^ is 
true, p is the symbol table pointer / 
(type integer) 

true iff node i has a syntactic type 
assignment 
integer designating syntactic type of node 
i (defined iff ETYPE(i) is true) 
if NTERM(TYPEU)) is true, designates 
the index of the alternative which 
corresponds to this instance of TYPE(i) 
pointer to symbol table (defined iff 
SYMB(TYPE(i)) is true) 
removes syntactic type assignment 
node i 
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Table IV 

Functions Regulating 
Incomplete Syntax Assignments 

function value explanation 

SPTYPEti. ty t a) - makes incomplete syntactic type assignment 
of ty (alternative a) to node i (NTERM(ty) 
must be true) 

EPTYPE(i) boolean true if node i has an incomplete 
syntactic type assignment 

PTYPE(i) integer incomplete syntactic type assigned to node 
i (defined iff EPTYPE(i) is true) 

DPTYPE(i) - removes incomplete syntactic assignment 
from node i 
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Appendix* 

Function FILLED 

Function NEWNODE 

PV: integers 
PA: none 
IV: undefined 
EF: none 

Function EXISTS(i) 

PV: true, false 
PA: integer i 
IV: false 
EF: 

EC51 if (i < 0) v (i > pi) 

•Note: Grammar functions are shown initialized with a specific 
grammar. 

PV: integers 
PA: none 
IV: 0 
EF: none 



Function EPTYPE(i) 

PV: true, false 
PA: integer i 
IV: undefined 
EF: 

EC52 if (i < 0) v (i > pi) 
EC53 if 'EXISTS'd) - false 

Function PTYPE(i) 

PV: integers 
PA: integer i 
IV: undefined 
EF: 

EC54 if (i < 0) v (i > pi) 
EC55 if 'EXI$TS'(0 - false 
EC56 if 'EPTYPE*(i) - false 

Function DPTYPE(i) 

PV: none 
PA: integer i 
IV: n/a 
EF: 

EC57 if (i < 0) v (i > pi) 
EC58 if 'EXISTS'fl) - false 
EC59 if »EPTYPE'(i) - false 
EPTYPE(i) - false 
PTYPEO) - undefined 
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Function ETYPE(i) 

PV: true, false 
PA: integer i 
IV: undefined 
EF: 

EC60 if (i < 0) v (i > pi) 
EC61 if 'EXISTS'(i) - false 

Function TYPE(i) 

PV: integer I 
PA: integers 
IV: undefined 
EF: 

EC62 if (i < 0) v (i > pi) 
EC63 if 'EXISTS'(i) - false 
EC64 if 'ETYPE'O) - false 

Function DTYPE(i) 

PV: none 
PA: integer i 
IV: n/a 
EF: 

EC65 if (i < 0) v (i > pi) 
EC66 if 'EXISTS'(i) - false 
if 'ELSI'(i) - true then 

EC68 if 'ETYPETLSrfl)) - true 
EC67 if 'ETYPE'(i) - false 
ETYPE(i) - false 
TYPE(i) - undefined 
if 'NTERMVTYPE'O)) - true v 

'SYMB'(TYPE'(i)) - true 
then ALT(i) - undefined 
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Function ELSI(i) 

PV: true, false 
PA: integer i 
IV: undefined 
EF: 

EC69 if (i < 0) v (i > pi) 
EC70 if 'EXISTS'(i) - false 

Function LSKi) 

PV: integers 
PA: integer i 
IV: undefined 
EF: 

EC71 if (i <0) v(i >pl) 
EC72 if 'EXISTS'(i) - false 
EC73 if 'ELSHi) - false 

Function DREL(i, n) 

PV: none 
PA: integer i, n 
IV: n/a 
EF: 

EC74 if (i < 0) v (i > pi) 
EC75 if (n < 0) v (n > pi) 
EC76 if 'EXISTS'O) - false 
EC77 if 'ERSI'O, n) = false 
ELSK'RSHi, n)) - false 
LSK'RSHi, n)) = undefined 
LSIX('RSI'(i, n)) - undefined 
ERSKi, n) - false 
RSKi, n) - undefined 
if -Gm [ m n 

'ERSI'(i, m) - true ] 
then begin 

MRS(i) - undefined 
EMRS(i) = false 
end 

else 3m [ m t n 
'ERSI'O, m). - true 
Vp ( p + m 

p t n 
'ERSI'(i, p) - true ) 

[ p < m ] 
MRS(i) - m ] 
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Function ERSKi, n) 

PV: true, false 
PA: integer i, n 
IV: undefined 
EF: 

EC78 if (i < 0) v (i > pi) 
EC79 if (n < 1) v (n > pi) 
EC80 if 'EXISTS'O) - false 

Function RSKi, n) 

PV: integers 
PA: integer i, n 
IV: undefined 
EF: 

EC81 if (i < 0) v (i > pi) 
EC82 if (n < 1) v (n > pi) 
EC83 if 'EXISTS'(i) - false 
EC84 if 'ERSI'<i) - false 
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Function LSIX(i) 

PV: integers 
PA: integer i 
IV: undefined 
EF: 

EC90 if (i < 0) v (i > pl> 
EC91 if *EXISTS*(i) - false 
EC92 if 'ELSr<0 - false 

Function ALT(i) 

PV: integers 
PA: integer i 
IV: undefined 
EF: 

EC93 if (i < 0) v (i > pi) 
EC94 if 'EXISTS'(i) - false 
EC95 if CETYPE'(i) -false) v CEPTYPE'O) - false) 
if 'ETYPE'fl) - true then 

EC96 if 'NTERMTTYPE*(i)) - false 
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Function SETU 

PV: none 
PA: none 
IV: n/a 
EF: 

EC98 if'FILLED' * p2 
3k [ k > 0 
k < pi 
'EXISTS'(k) - false 
EXISTS(k) - true 
EPTYPE(k) - false 
ETYPE(k) - false 
ELSI(k) = false 
V j ( j > 0 
j < pi )[ ERSKk, j) - false ] 

NEWNODE - k ] 
FILLED - 'FILLED'* 1 

Function DESYISKi) 

PV: none 
PA: integer i 
IV: n/a 
EF: 

EC99 if (i < 0) v (i > pi) 
EC100 if 'EXISTS'(i) -false 
EC 101 if 3j [ 'ERSI'(i, j) - false ] 
EC102 if 'ELSI'(i) - true 
EPTYPE(i) - undefined 
PTYPE(i) - undefined 
EXISTS<i) = false 
TYPE(i) - undefined 
ETYPE(i) - undefined 
FILLED - 'FILLED' - 1 

Function SETTRMfl, j) 

PV: none 
PA: integer i, j 
IV: n/a 
EF: 

EC103 if (j < 0 ) v (j > pi) 
EC104 if (i < 0) v (i > pi) 
EC105 if 'EXISTS'(i) - false 
EC106 if 'ETYPE'(i) - true 
EC107 if 'TERM'(j) = false 
EC108 if 'EPTYPE'(i) - true 
EC 109 if 3k [ 'ERSKi, k) - true ] 
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if 'ELSr(i) - true then 
begin if 'EPTYPEVLSr(i)) - true then 

begin 
EC189 if 'NTERMTPTYPEVLSHi))) - false 
if 'LIST'('PTYPE'<'LSI'<i))) - true then 

begin 
if 'LSlX'(i) is odd then 

EC187 if j it 'ITEMVPTYPEVLSrO))) 
else EC188 if j * 'SEP'CPTYPE'CLSI'd))) 
end 

end 
begin 
EC111 if 'PRODTPTYPEVLSI'fl)), 'LSIX'(0, 

'ALTTLSPO))) * j 
end 

end 
ETYPE(i) - true 
TYPE(i) = j 
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Function SNTERMO, ty, m) 

PV: none 
PA: integer i, ty, m 
IV: n/a 
EF: 

EC128 if (i < 0) v (i > pi) 
EC129 if (m < 0) v (m > pi) 
EC130if(ty< 0)v(ty>pl) 
EC131 if 'EXISTS'(0 - false 
EC 132 if 'ETYPE'(i) = true 
EC 133 if 'EPTYPE'(i) = true 
EC 134 if 'NTERM'(ty) - false 
if 'ELIST'(ty) - false then 

begin 
EC135 if 3n [ 'EPROD'(ty, n, m) - true 

'ERSI'(i, n) - false ] 
EC136 if 3n [ 'EPROD'(ty, n, m) - false 

'ERSI'(i, n) - true ] 
Vn ('ERSHi, n) - true ) 
[ EC137 if 'ETYPEVRSFfl, n)) - false 

EC138 if 'PROD'<ty, n, m) i TYPETRSKl, n)) ] 
end 

else begin 
Vn ('ERSF(i, n) - true ) 
[ EC 139 if 'ETYPE'('RSP(i, n)) - false 

EC 140 if 3k [ k - n 
k is odd 
'TYPETRSI'O, k)) * TTEMfty) ] 

EC194 if 3 k [ k - n 
k is even 
'TYPEVRSIU k)) + 'SEFUy) ] 

EC195 if 3k [ k < n 
'ERSI'(i, k) - false ] ] 

end 
end 

if 'ELSP(i) - true then 
begin 
if 'EPTYPEVLSI'fl)) - true then 

EC197 if 'PRODVPTYPEVLSrO)), 
>LSIX'(iVALTTLSr(i)) rt ty 

end 
ETYPE(i) - true 
TYPE(i) - ty 
ALT(i) = m 
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Function TERM(i) 

PV: true, false 
PA: integer i 
IV: V k ( k > 5 1 

k < 100 ) 
[ TERIvKk) - true ] 

all others false 
EF: 

EC141 if (i < 0) v (i > pi) 

Function EPROCKty, n, k) 

PV: true, false 
PA: integer ty, n, k 
IV: EPRODU, 1, 1) - true 

EPRODU, 2, 1) - true 
EPR0D<1,3, 1) - true 
EPRODU, 4, 1) - true 
EPRODU, 5, l)-true 
EPRODU, 6, 1) - true 
EPRODU, 7, 1) - true 

all others false 
EF: 

EG142 if (ty < 0) v (ty > pi) 
EC143 if (n < 0) v (n > pi) 
EC144 if (k < 0) v (k > pi) 
EC 198 if 'NTERM'(ty) • false 
EC199 if 'ELIST'(ty) - true 

Function PROD(ty, n, k) 

PV: integers 
PA: integer ty, n, k 
IV: PRODU, 1, 1) - 51 

PRODU, 2, 1) = 41 
PRODU, 3, 1) = 2 
PRODU, 4, 1) - 78 
PRODU, 5, 1) = 52 
PRODU, 6, 1) = 77 
PRODU, 7, 1) - 9 

all others undefined 

18 

EC145 if (ty < 0) v (ty > pi) 
EF: 



EC146 if (n < 0) v (n > pi) 
EC147 if (k < 0) v (k > pi) 
EC200 if ,NTERM'(ty) - false 
EC201 if 'ELIST'tty) - true 
EC148 if 'EPR0D'(ty, n, k) - false 
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Function SPNTERM(i, ty, m) 

20 

PV: none 
PA: integer i, ty, m 
EF: 

EC149 if <i < 0) v (i > pi) 
EC150 if (ty < 0) v (ty > pi) 
EC151 if (m < 0) v (m > pi) 
EC152 if 'EXISTS'fl) « false 
EC153 if 'EPTYPE'(i) - true 
EC154 if 'ETYPE'(i) - true 
EC155 if 'NTERM'(ty) = false 
if 'ELIST'(ty) - false then 

Vn ('ERSI'G, n) = true ) 
[ EC156 if 'EPROD'(ty, n, m) - false 

Vk ( k - n 
'ETYPETRSI'O, k)) - true ) 

[ EC157 if 'PROD'tty, k, m ) ft TYPE'(RSI'(i, k)) ] 
Vk ( k = n 

'EPTYPE'('RSP(i, k)) - true ) 
[ EC 158 if 'PROD'tty, k, m) ft 'PTYPETRSFO, k)) ] ] 

else Vn ('ERSP(i, n) = true ) 
[ Vk ( k = n 

'ETYPE'CRSFfl, k)) - true ) 
[ if k is odd then EC159 if 

'TYPEVRSI'tf, k)) ft 'ITEM'tty) 
else EC202 if 'TYPE'('RSF(i, k)) ft 'SEP'(ty) ] 

Vk ( k - n 
'EPTYPETRSFO, k)) - true ) 

[ if k is odd then EC203 if *PTYPE'('RSF(i, k)) ft 'ITEM'tty) 
else EC204 if 'PTYPE'('RSF(i, k)) ft 'SEP'(ty) ] ] 

EPTYPE(i) - true 
PTYPE(i) - ty 
ALT(i) - m 



Function SRELO, j, n) 

21 

PV: none 
PA: integer i, j, n 
IV: n/a 
EF: 

EC160 if (i < 0) v (i > pi) 
EC161 if (j < 0) v (j > pi) 
EC162 if (n < 0) v (n > pi) 
EC 163 if 'EXISTS'(i) - false 
EC 164 if 'EXISTS'O) - false 
EC 165 if 'ELSI'(j) - true 
EC166 if 'ERSF(i, n) - true 
EC167 if 'ETYPE'(i) - true 
if 'ETYPE'(j) - true then 
begin if 'EPTYPE'(i) - true then 
begin EC168 if 'EPRODTPTYPEXO, n, 'ALT'fl)) - false 
EC205 if 'PRODVPTYPE'fl), n, 'ALT'O)) * 'TYPE'(j) 

end 
end 
else if 'EPTYPE'(i) - true then 
begin EC206 if 'EPROD'('PTYPE'(i), n, 'ALTO)) - false 
if 'EPTYPE*(j) - true then 
EC207 if 'PRODVPTYPE'(i), n, 'ALT'(i)) i< 'PTYPE'tj) 

end 
ERSKi, n) - true 
RSKi, n) - j 
ELSI(j) - true 
LSI(j) - i 
LSIX(j) - n 
if 'MRS'(i) < n then MRS(i) - n 



Function DSTR(i) 

22 

PV: none 
PA: integer i 
IV: n/a 
EF: 

EC169 if (i < 0) v (i > pi) 
EC 170 if 'EXISTS'(i) - false 
EC171 if 'LSI'(i) - true 
EX1STS0) - false 
Vn ( 'ERSP(i, n) - true ) 
[ RSKi, n) - undefined 
ERSKi, n) - undefined ] 

ETYPE(i) - undefined 
TYPE(i) - undefined 
FILLED = 'FILLED' - 1 
EPTYPE(i) - undefined 
PTYPE(i) = undefined 
LSl(i).» undefined 
ELSI(i) - undefined 
LSIX(i) - undefined 
MRS(i) - undefined 
Vk ('ELSI'(k) - true 

ELSI(k) - undefined ) 
[ EXISTS(k) - false 
Vn ( 'ERSHk, n) = true ) 
[ RSKk, n) - undefined 
ERSKk, n) = undefined ] 

ETYPE(k) = undefined 
TYPE(k) - undefined 
EPTYPE(k) - undefined 
PTYPE(k) - undefined 
LSI(k) - undefined 
ELSl(k) - undefined 
LSIX(k) - undefined 
MRS(k) - undefined 
FILLED - FILLED - 1 ] 



Function LIST(i) 

PV: true, false 
PA: integer i 
IV: 

LISTX2) - true 
LISTX6) - true 
LIST<9) - true 
LISTU6) - true 
LISTU9) - true 
LISK31) - true 
LISK34) - true 
LIST(40> - true 
LISTC44) - true 
L1STX45) - true 
all others false 

EF: 
EC177 if (i < 0) v (i > pi) 
EC 178 if 'NTERM'(i) - false 

Function SEP(i) 

PV: integers 
PA: integer i 
IV: 

SEP(2) - 78 
SEP(6) - 79 
SEP(9) - 79 
SEP(16) - 79 
SEPU9) - 79 
SEP(31) - 79 
SEP(34) - 79 
SEP(40) - 79 
SEP(44) - 79 
SEP(45) - 79 
all others undefined 

EF: 
EC179 if (i < 0) v (i > pi) 
EC180 if 'NTERfcffl) - false 
EC181 if 'LIST'(i) - false 
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Function PSYMBfl) 

PV: integers 
PA: integer i 
IV: undefined 
EF: 

EC115 if (i<0)v(i>pl) 
EC116 if 'EXISTS'(i) - false 
EC117 if 'ETYPE'O) - false 
EC118 if 'SYMB'CTYPE'fl)) - false 

Function SYMBfl) 

PV: true, false 
PA: integer i 
IV: Vk ( K > 0 

k < 100 
k * 41 
k ft 42 
k ft 43 ) 

[ SYMB(k) - false ] 
SYMB<41) - true 
SYMB(42) - true 
SYMB(43) - true 

EF: 
EC119 if (i < 0)v(i >pl) 
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Function SSYMBfl, j, k) 

if 'EPTYPEVLSHi)) - true then begin 
if 'LISTTPTYPEVLSni))) - true then 

begin 
if 'LSIX'(i) is odd then 

EC190 if j * 'ITEMTPTYPEVLSni))) 
else EC191 if j i< 'SEPVPTYPETLSHi))) 
end 

else begin 
EC 192 if 'EPRODVPTYPETLSrO)), 'LSIX'fl), 'ALr<'L$I'(i))) - false 
EC 193 if 'PRODTPTYPETLSr(i)), 'LSIX'tf), 'ALTTLSrfl))) * j 

Function MRS(i) 

PV: integers 
PA: integer i 
IV: undefined 
EF: 

end 
end 

end 
ETYPEO) - true 
TYPE(i) - j 
PSYMBfl) - k 

EC185 if (i < 0) v (i > pi) 
EC186 if 'EXISTS'<i) - false 
EC208 if 'EMRS'(i) - false 

Function NTERM(i) 

PV: 
PA: 
IV: 

true, false 
integer i 
Vk (k «> 1 

k S 43 ) 
[ NTERM(k) - true ] 
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PV: none 
PA: integer i, j, k 
IV: n/a 
EF: 

EC120 if (i < 0) v (i > pi) 
EC121 if (j < 0) v (j > pi) 
EC122 if (k < 0) v (k > pi) 
EC123 if 'EXISTS'W - false 
EC124 if 'ETYPE'(i) - true 
EC 125 if 'EPTYPE'(i) - false 
EC126if 'SYMB'(j) - false 
if 'ELSI'(i) - true then begin 



all others false 

Function EMRS(i) 

PV: true, false 
PA: integer i 
IV: undefined 
EF: 

EC209 if (i < 0) v (i > pi) 
EC210 if 'EXISTSXi) - false 
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EF: 
EC187 if (i < 0) v (i > pi) 



Function SSYMBO, j, k) 

PV: none 
PA: integer i, j , k 
IV: n/a 
EF: 

EC120 if (i < 0) v (i > p i ) 
EC121 if (j < 0) v <j > p i ) 
EC122 if (k < 0) v (k > p i ) 
EC123 if 'EXISTS'(i) - false 
EC124 if 'ETYPE'(i) - true 
EC 125 if 'EPTYPE'(i) - false 
EC126 if 'SYMB'(j) - false 
if *ELSI*(t) - true then begin 

if 'EPTYPETLSPfl)) - true then begin 
if 'LISTTPTYPE'CLSrO))) - true then 

begin 
if 'LSIX'(i) is odd then 

EC190 if j fi 'ITEMTPTYPEVLSrtf))) 
else EC191 if j ^ 'SEP'('PTYPETLSr<i))) 
end 

else begin 
EC192 if 'EPRODVPTYPEVLSrtf)), 'LSIX'fl), 'ALr('LSI'(i))) - false 
EC 193 if 'PRODVPTYPEVLSni)), 'LSIX'd), 'ALT'OLSTCi))) ft j 
end 

end 
end 

ETYPE(i) - true 
TYPE(i) - j 
PSYMB<i)-k 

Function MRS(i) 

PV: integers 
PA: integer i 
IV: undefined 
EF: 

EC185 if (i < 0) v (i > pi) 
EC186 if 'EXISTS'(i) - false 
EC208 if 'EMRS'fl) - false 

Function NTERMfl) 

PV: true, false 
PA: integer i 
IV: Vk (k 2 1 

k S 43 ) 
[ NTERM(k) - true ] 
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EF: 
all others false 

Function EMRS(i) 

PV: true, false 
PA: integer i 
IV: undefined 
EF: 

EC209 if (i < 0) v <i > pi) 
EC210 if 'EXISTSXO - false 
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EC187 if (i < 0) v (i > pi) 



Function ITEMfl) 

PV: EC182 if (i < 0) v (i > pl) 
EC183 if 'NTERM'(i) - false 
EC184 if 'LISTtf) -false 

Function NALT(ty) 

PV: integers 
PA: integer ty 
IV: NALTO) - 1 

NALTX2) - 1 
NALTO) - 1 
NALT(4) - 1 
NALT(5) - 2 

EF: 
all others undefined 

EC175 if (ty < 0) v (ty > pl) 
EC176 if mERM*(ty) - false 
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Abstract 

A mechanism for holding programs in syntactic form was 
desired for use by systems which operate on other programs! 
program verifiers, automatic programming systems, and specialized 
text editors. The mechanism was designed using the software 
module specification language of D. L. Parnas, and implemented in 
SAIL, an Algol-1 ike language on the PDP-18. It is suggested that 
specifications assist in both the design and implementation 
processes. 
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Design and Implementation of a Multi-Level System 
Using Software Modules 

Introduction 

A mechanism for holding programs in syntactic form was 
desired for use by systems which operate on other programs: 
program verifiers, automatic programming systems, and specialized 
text editors. The mechanism was designed using the software module 
specification language of D. L. Parnas [11, and implemented in 
SAIL, an Algol-like language on the PDP-1B. 

This paper describes the process of design and 
implementation of this system by one person. It has been shown 
that software module specifications are useful in group projects 
[21. This paper will demonstrate how the specifications can be 
useful in an individual programming effort by isolating 
programming problems, by allowing programming problems to be 
approached in an organized manner, and by simplifying the process 
of getting the programs to run correctly. 
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Motivation for a syntax-driven text editor 

It has been the case in construction of programs with 
standard text editors, for programmers to use various gimmicks to 
perform "intelligent" text editing functions. For example, 
suppose one were constructing a LISP program and wanted to see if 
the parentheses matched, and how the nested S-expressions related 
to one another. For a large enough program one could spend hours 
with a standard text editor, or one could use one of the many 
specialized editors which take advantage of the LISP syntax. It 
is argued that such features would be useful in the construction 
of programs in other languages as well. The desired features would 
vary depending on the language to be edited. 

Most standard text editors consider a program as a set of 
lines, each line containing a character string. A syntax-driven 
editor would treat a program as a set of lexemes related by the 
application of the syntactic rules of that language. If one 
wanted to change all instances of the identifier "A" to the 
identifier "B", a standard text editor (without extensions) would 
be of almost no use. There are text editors [31 which have been 
extended to permit substitution of <separator>A<separator> for 
<separator>B<separator>, but these editors have already made a 
concession to defining a lexical unit and to utilizing syntactic 
generality. Another use for the syntax-driven text editor is for 
insertion, deletion, and substitution based on a syntactic 
pattern. Knowing that quick changes to a program are syntactically 
correct saves much compile time. The syntax-driven text editor 
gives some of the benefits of incremental compilation for changing 
programs. This is especially useful in write in programs for 
languages with highly optimizing compilers, where compilation time 
is a major cost consideration. 
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Motivation for a program holder 

For a programming system such as a syntax-driven text 
editor, some mechanism is necessary for inputting a program, for 
attributing syntax information to the program text, and for 
changing the text of the program in a manner limited by the syntax 
of the language. These capabilities are universal to a 
syntax-driven text editor for any language. He have specified a 
mechanism called a program holder which realizes these 
capabilities. The program holder is useful for an task which 
operates on programs: verification, automatic programming, 
compilation, and interpretation. 

31 



Description of the program holder 

The program to be held in syntactic form is stored as the 
values of functions which describe a parse tree. The parse tree 
is simply an n-ary tree with specialized information at the nodes. 
The program holder has acces to a representation of the grammar of 
the language. This enables syntax checking within the module, 
root of a valid parse tree, one could use functions to assign this 
information to the node. Thus the functions of the program holder 
module could be divided into three disjoint sets: 

1) Structural functions — creation, deletion, and 
linking of nodes to form a parse tree. 

2) Functions which describe the grammar. 

3) Functions which assign syntactic information to 
the nodes. 
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Design evolution of a hierarchical system 

The specification in [4 J describes the program holder as a 
set of functions which comprise a single module. In the 
implementation these functions must map to a data structure which 
stores the function values, or to a procedure or macro which 
calculates the values. The mapping could be done by coding the 
module directly in a given programming language. For a module as 
complex as the program holder (36 functions, 208 error calls), 
there are two disadvantages: 

1) Direct implementation would be messy to do without 
relying on some specific lower-1 eve I abstractions. 

2) The direct implementation of a complicated system 
may generate design decisions which are very 
difficult to change. 

The approach which we chose was to decide which lower level 
abstractions are needed to implement the top level module (in this 
case the program holder), and to write software module 
specifications for these lower level abstractions. This process 
continues until the designer judges that the mapping from the 
current lowest level to a program is straightforward. 

At this point the designer has specifications for the 
different layers or abstractions in his system. The 
specifications for various modules are independent of one another, 
in the sense that the specifications make reference only to 
functions in the same module. The process of creating mappings 
between different abstractions (or virtual machines) constitutes 
the implementation of the system. 
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Example of the hierarchical design process — 
editor 

syntax-driven text 

At first, the design effort involved an enumeration of the kinde 
of operatione desired of the text editor: 

1) Input of programs or parts of programs. 

2) Internal storage of program in parsed form. 

3) Searching and substitution on strings classified 
by syntactic type. 

4) Ability to work with incomplete programs for the 
purposes of stepwise refinement. 

It was only after examination of the desired capabilities that we 
determined that the editor should be built around the storage of 
programs in parsed form, rather than around any particular 
capability. The other parts of the system would make use of this 
program storage mechanism and could therefore be built later. The 
mechanism for such storage was called the program holder: other 
parts of the editor would be a parser, a lexical analyzer, an 
input/output module, and a pattern matching and substitution 
module (see figure 1). 

Several design decisions went into the specifications for 
the program holder. Here is a list of decisions which were made 
in approximately chronological order: 

1) Representation of the program as a parse tree 
[excludes representation as an unparsed string of 
tokens]. 

2) The structural functions of the parse tree should 
be those of an n-ary tree where n is variable [rulee 
out restriction of n-ary tree with n fixed, 
specifically a binary tree]. 

3) The assignment of syntax information to the nodes 
required two design decisions: 

a) To include a representation of the grammar in 
a submodule of the program holder module. 
b) To specify automatic syntax checking as part 
of the holder. 

It turned out that a) and b) could be incorporated 
into specifications which describe a program holder 
for any context-free grammar, instead of having a 
different set of specifications for each grammar 
dealt with. This was a generalization beyond our 
initial goals. 
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4) For special applications (working with incomplete 
programs and top-down parsing) a second type of 
syntax assignment — incomplete syntax assignment — 
was incorporated into the specifications. This 
mechanism will detect errors if an incomplete program 
is syntactically inconsistent. 

5) A special type of nonterminal was provided, which 
was defined as a list of zero or more instances of 
another syntactic type. 

These factors were all considered in the development of a 
set of specifications. Next it was time to consider the 
implementation of the program holder in terms of lower level 
abstractions. The major problem was how to implement the n-ary 
tree, which was the structural basis for the program holder. 
Perhaps the most flexible means was to devise specifications for a 
list processing system which could allocate and link elements of 
arbitrary size. This decision allowed many possible formats for 
the nodes of the tree and permitted various schemes to specify the 
linkage of one node to an arbitrary number of other nodes (a 
requirement for an n-ary tree). List processing systems require 
some means of dynamic storage allocation, so that the third 
(lowest level) abstraction to be specified was that of a storage 
allocator mechanism. 

At this point the design consisted of three module 
specifications which were independent of one another. The 
implementation then consisted only of the designer's idea of the 
mappings between the levels of abstraction; these mappings were 
the last design decisions to be made: they were still flexible at 
a time when the specifications were relatively fixed. Although the 
specifications for this three-1 eve I system were written from the 
top down, the implementations were were written in reverse order, 
to facilitate the debugging and testing of the system. (If the 
higher of two levels is to be tested, one needs either an 
implementation of the lower level or a simulation of it. Since 
the lower level implementation had to be built anyway, it was 
natural to implement this system from the bottom up.) Table I 
describes the implementation of the mul ti-level system in terms of 
design decisions. The design decisions are divided into the 
following categories: tasks to be performed, information to be 
exchanged with the outside of the module (or program), information 
hidden inside the module, information unknown to the module (which 
must be kept outside), and the implementation of the module in 
terms of lower level abstractions. A detailed description of the 
program holder specification can be found in [41. 
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In the syntax-driven text editor the design phase 
consisted of several distinct processes: 

1) Consideration of the entire problem in terms of a 
set of capabiIities for the finished product. 

2) Decomposition of this practical problem into one 
or more collections of shared information 
(incorporated with operations upon it). Each 
collection becomes a software module. Examples: 

a) Building the editor around a program holding 
mechani sm. 
b) Building the n-ary tree of the program holder 
from a list processing system. 
c) Building the list processing system from a 
storage allocation mechanism. 

3) Writing the formal specifications for a module 
once its role has been identified. 

4) Implementaion of the module specifications, either 
in terms of lower-level abstractions or directly in a 
programming language. 

Of the above processes, 1) and 4) are common to all methods of 
program design. 2) is an extremely difficult process, because 
there are many modular decompositions which will describe a 
particular system — some of which are very poor from the 
viewpoint of information hiding. The Parnas specifications [13 
assist in process 2 ) , because they limit the effective size of a 
given module by forcing the designer to enumerate all external 
connections (functions) and internal state changes (effects). In 
our experience bad decompositions yield large, unwieldy 
specifications. Once a decomposition has been arrived at, process 
3) is rather mechanical, involving many small decisions. Given 
the module specifications from process 3), process 4) is easy. 
However, it is a difficult task to produce an efficient 
implementation of a modular program, because the modules limit the 

potentially destructive but efficient "tricks" which the 
programmer can perform. There-will, always be some efficiency 
sacrificed in the modularization of a programming system. He 
expect that higher reliability and increased efficiency from 
improved modular programming techniques may minimize complaints 
about inefficiency of modular programming with formal 
specifications. 
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Variability of design decisions using the modules 

Several questions come to mind concerning the constraints 
imposed by the use of the modules, and the ability to change 
design decisions already made: 

1) How large should a module be? 

2) How difficult is it to change design decisions in 
the specification stage? 

3) How difficult is it to change design decisions in 
the implementation stage? 

There is no clearcut answer to the first question. In the 
case of the program holder two separate abstractions were present 

the parse tree and the representation of the grammar. If these 
two abstractions were in separate modules, the syntax checking 
desired in the parse tree could not be explicity included in the 
parse tree module (because a given software module specification 
must not make references to functions in another module). Thus 
the parse tree and the representation of the grammar were kept 
together in one large module so that explicit syntax checking 
could be included in the specification. In other cases, a design 
decision might indicate the breakdown of a large module into 
several smaller ones. 

Changing design decisions during the specification process 
is easy, because the specificat ion process involves the writing of 
a "first draft" of a specification, and then refining the original 
work. Besides the maximum flexibility during this phase (one is 
not burdened with having started the implementation concurrently), 
the information contained in the specification makes it easy to 
enumerate design decisions, to decide appropriate changes, and to 
make the desired changes in the specifications. One method of 
determining whether or not the specifications are adequate is to 
write programs (or flowcharts) of desired operations using the 
modules. 11 becomes apparent which desired capabilities are 
impossible, or at least difficult, to accomplish. When such 
difficulties occur, changes in the specifications are indicated. 
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Uhen the specifications have become fixed and used in 
implementing other modules, some design decisions are difficult to 
change. The easiest decisions to change are the ones which involve 
no changes in the specifications, because such changes are 
invisible outside the module in which the changes are made. An 
example of this was a decision to completely rewrite the 
implementation of the storage allocator module (bottom level of 
the program holder). The original implementation had been running 
far too slowly, and major changes seemed necessary. Since the 
desired changes could be made without any change in the 
specifications, it was unnecessary to change any of the code for 
the higher levels. Usually a change in the lowest level of a 
system which is not formally specified will result in havoc with 
the upper levels. Uith the storage allocator, the change was 
made easily, without the higher levels being affected. 

Making a change which does affect the specifications is 
far more serious and should be avoided wherever possible. In a 
group project such a change may propagate errors throughout the 
system. 
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Uriting code for the system 

The language chosen for implementation of the program 
holder was SAIL (Stanford Artificial Intel Iigence Language) t51• on 
a Digital Equipment PDP-10. The language is essentially Algol-68 
with separately compiled outer blocks, ca11-by-reference instead 
of call-by name, a macro facility, and built-in I/O routines which 
interface well with the machine. The presence of separately 
compiled outer blocks was especial I y helpful for the following 
reasons: 

1) A block could contain all the code for the 
implementation of a single module. In one module, 
those procedures whose text is written inside the 
block, but whose names would be available outside the 
module (as functions) would be declared "INTERNAL." 
Any separately compiled block (another module) which 
wanted to use the procedures must declare them 
"EXTERNAL" (i.e. supplied from outside) at the 
outermost block level in which they are used. 

2) Different implementations of a module could be 
trivially "plugged in" without recompiling. 
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Error call implementation 

Uhen an implementation of a function from a module 
specification is written, tests are made for all the error 
conditions in the "EFFECTS" section of the function. Then the 
function's value is caluclated, or the state of the module is 
changed as indicated in the specifications. 

In the implementation of a multi-level system, error 
checking on a higher level may prevent an incorrect function call 
at a lower level. Nevertheless, error checking at a lower level 
is still carried out, causing a large amount of time to be spent 
in rarely useful error checking. Since many errors on a higher 
level correspond to errors on a lower level (such as an 
out-of-bounds argument), some multi-level error checking is 
redundant. These difficulties can be handled in two ways: 

1) The lower-1 eve I error calls can be eliminated. 
This would increase efficiency, but would require the 
"custom tailoring" of a module implementation every 
time a higher level was added. In addition this 
solution assumes that the implementation of the next 
highest level is correct, in the sense that it does 
not make any incorrect calls to the lower level. This 
assumption cannot always be made. If an incorrect 
call were made of a lower-level function which had no 
error checking, recovery from (or even detection of) 
the error would be impossible. 

2) Instead of making a time-consuming test for an 
error condition, each upper-1 eve I error call would 
set a trap location for a certain lower level error 
call. This would allow the errors to be detected at 
a lower level but recovery could be specified by the 
highest level at which the error could have occurred. 
Parnas [6] has suggested the feasibility of this 
method of handling error calls in a multi-level 
system. This system will be implemented for the 
program holder in the near future. 

Note that only in the second case do all modules meet their 
specifications. 
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Program testing and ver i fi cat ion using the specifications 

Having software module specifications for a program can 
simplify the process of testing or verifying the progam. In 
program testing the specificat ions provide a complete description 
of the classes of external program behavior, so that writing a 
test program for these external cases can be done directly from 
the specifications. Of course the module speicficat ions do not 
provide any indication of the classes of internal behavior of the 
program to be tested. In most cases some analysis of the 
implementation algorithms is necessary in order to determine and 
test internal cases which are not manifested on the outside. 
However, the specifications have eliminated much of the work in 
deciding what to test for and where to test it. 

In the case of verification of an implementation, one can 
interpret that each statement in the "EFFECTS" section of a 
function specification corresponds to an assertion. One can 
verify that the desired effect has taken place by inspection of 
the part of the function implementation which corresponds to that 
particular effect. Care must be taken to ensure that an assertion 
which is true at a given point in the function implementation is 
also true on exit r from the function call. Considering the 
specifications as assertions is also useful for more formal 
verification procedures. The specifications constitute a complete 
set of assertions, so that a programmer is less likely to "forget" 
about an important property of the program if he can refer to the 
specifications. Such forgetfulness is likely to occur when large 
programs are being written. 

Note that when the behavior of simple functions is 
established (either by testing or verification), this behavior 
forms a base from which other functions related to the simple ones 
may be tested or verified. Picking the correct order can speed the 
testing or verification of an entire module. 

The following results were obtained with the program 
holder implementation: 

1) For each of the three modules written, the times 
for coding a module and testing/verification were 
approximately equal. The specification time for the 
two lower-1 eve I modules was approximately equal to 
that of coding them. The top level of the program 
holder, in which many design decisions were made, 
took twice as long to specify as to code. 

2) For the total system (approximately 2388 lines of 
SAIL code), in 5 months there has been only one "bug" 
detected after the testing/verification procedure (an 
error was detected by the wrong error checking 
statement). 
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Conclusion 

One big problem in software development is that the total 
time spent in the coding and debugging of large systems is 
exponential in the size of the system. Software module 
specifications, because they fragment the programming problem and 
because debugging time seems to be reduced, may be a way to help 
reduce the magnitude of the "software crisis." This conjecture has 
yet to be rigorously tested in a large-scale software effort. 
There is a group experiment which indicates that the presence of 
software module specifications can result in the successful 
interface of programs written by many di fferent inexperienced 
programmers [21. The experience of one person in the 
implementation of the program holder mechanism suggests that the 
module specifications are also useful in a one-man effort of 
writing a large system. 
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Tab It I — Design decisions in syntax-driven ttxt editor 

Program 

Type of specification 

••sign doc Is ions 

I* Tastes to bo performed 

II. Information exchanged with 
outs ids of Moduls 

III. Information hiddsn Mithin 
modulo 

IV. Information unknown to 
modulo (which must bo kept 
outsido) 

V. Implementation of module 
in terms of lower level 
abstractions 

Editor 

Informal — in terms of tasks that 
the editor should perform 

1. Should be able to perform all standard 
text editing functions (smallest unit may be 
a lexeme instead of a character). 

2. Specialized text editing functions dependent 
on the syntax of the program 
a) Checks for syntax errors 
b) Can match on a pattern of terminals and 

nonterminals 
c) Indenting 
d) Printing of parse tree 
e) Uorking with incomplete, but 

syntactically consistent programs 
3. Original intended use — to 

help generate the module specifications 

Input 
Program text 
Grammar (on initialization) 
Editor commands 

Output 
Altered program text 
Formatted program text 
Parse tree 
Editor responses and diagnostics 

1. Internal representation of program 
2. Parsing algorithm 
3. Symbol table format 

4. Horizontal decomposition at lower level 

not f inally decided 

Tasks performed by algorithmic modules 
I/O 
Searching, substitution, and pattern matching 
Parsing 

Information stored in Parnas type modules 
Program holder 
Lexical analyzer 
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Table I (continued) 

II* Information exchanged with 
outsido of modulo 

III. Information hidden within 
modulo 

IV. Informat ion unknown to 
modulo (which must be kept 
outs Ids) 

V. Implementation of modulo 
in torms of lower lovol 
abstract ions 

Program holder 

Parnas (formal) specification 

1« Process any context-free language 
2. Representation of program as 

parse tree (n-ary tree) 
3. Grammar — fixed at initialization 
4. Trees can be built up and 

deleted dynamically 
5. Syntax assignment 

a) Automatic syntax checking 
ensures valid parse below 

b) Representation of grammar 
must be internal to module 

6« Need incomplete syntax assignment 
a) Top down parsing 
b) Stepwise refinement of 

programs 
7. Consideration of a special class 

of nonterminal defined as a list 
of symbols 

Input 
Creation and deletion of nodes 
Data associated with nodes 
Grammar — at initialization 

Output 
Existence of nodes 
Relations between nodes 
Data assigned to nodes 
Productions of grammar 

1. Manner in which nodes are given 
values 

2. Internal representations of 
parse tree and productions of 
grammar 

3. Algorithm for syntax checking 
4. Means of determining existence of 

nodes and whether data in nodes 
is defined 

1. Node indices not referred to 
in context (i.e. pointers into 
the tree are required) 

2. Correspondence of integers to 
syhtact ic types 

3« Symbolic informat ion*associated 
with the nodes (i.e. a symbol 
table is required) 

1. Grammar is stored in an arra^ 
with links and is accessed by 
macros 

2. Program holder is implemented 
by calls to functions of list 
processing module 
a) Nodes in parse tree 

correspond to list elements 
b) Pointers to sons are stored 

in blocks linked to father 
node 
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I. Tasks to bo perfornod 



Table I (continued) 

Program 

Type of specification 

Design decisions 

I. Tasks to be performed 

II. Information exchanged with 
outside of module 

III. Information hidden within 
module 

IV. Information unknown to 
module (which must be kept 
outside) 

V. Implementation of module 
in terms of lower level 
abstractions 

List processing system 

Parnas (formal) specification 

1. Create and destroy list elements 
2. Can specify the number of fields 

in each element created 
3. Can determine from outside 

whether or not a field has been 
given a value 

4. Can set values of fields 

Input 
Creation and deletion of elements 
Values of fields 

Output 
Existence of elements 
Existence of a value for a field 

in an element 
Values of fields 

1. Means of determining the 
existence of elements 

2. What value constitutes an 
undefined field 

3. Method of allocating and 
choosing indices for elements 

1. Whether a field is a pointer or 
data 

2. Indices of elements referred 
to out of context 

List processor calls storage 
a I locator module 

a) undefined « 2t34 - 1 
b) indices of nodes are 

"addresses" in storage 
allocator 
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Table I (continued) 

Program 

Type of specification 

Design decisions 

I. Tasks to be performed 

Storage al locator 

Pamas (formal) specification 

1. Allocate and free blocks of 
variable size 

2« Desire knowledge of whether or not 
an address is the head of a block 
(blocks are referred to by address 
of head) 

3« Desire knowledge of whether or not 
an address is free or allocated 

4. Can only free storage which has 
been allocated as a block 

I!. Information exchanged with 
outside of module 

III. Information hidden Mithin 
module 

IV. Information unknown to 
module (which must be kept 
outside) 

V. Implementation of module 
in terms of lower level 
abstractions 

Input 
Size of block for a Ilocation 
Address of block for freeing 

Output 
Whether an address is free or 
allocated 

Uhether an address is head of a block 
Whether an address is used by 
allocator for bookkeeping 

1. Keeping track of free and 
allocated blocks 

2. Determination of heads of blocks 
3. Storage allocatIon strategy 

1. Compacting process (when free 
storage becomes tight) 

2. Reference to block heads out of 
context (calling program must 
remember the addresses of blocks 
it has a I located) 

1. Direct implementation in SAIL 
2. First fit allocation strategy 
3. Bit matrix to determine free 

storage 
4. Storage to be allocated is SAIL 

integer nrrn^ 
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Editor 

(Program holden 
(Parse 
tree 

I Rep. 
! o f 

I Gr animai: 

Parser Lexical 
Analyzer 

Searching, Eattern match-ng and Sub-
titution 

Storage 
allocator 

[nteger 
Array 

Figure 1 - Structure of a Syntax-Driven Text Editor 
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