NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

gon € 72

June 25, 1962

Staff Publication

- WUNT LiBRARY
GARNEGIE-MELLON UNIVERSITY

)Af. édr—!fm-!-v’

TH.1.1

CHAPTER 1 - ELEMENTS OF 'THAT'
1.0 INTRODUCTION

YTHAT' is a symbolic assembly language designed for writing programs in
the machine language of the Central Processor of the CDC G-21 computer system
at the Carnegie Institute of Technology Computation Center. This manual will
describe the 'THAT' language and the associated Assembly Program, which were
developed by the staff of the Computation Center. The reader may refer to the
G-20 machine language reference manual ('Central Processor/Machine Language -«
Manual', CDC G-20 Publication No, 611) for information on the logical organi-
zation, word formats, arithmetic rules, addressing scheme, and operations of
the.Central Processor. SECTION 2 of the User's Manual describes the hardware
modifications which have been made to the Carnegie Tech system, converting it
from a G-20 into a G-21, '

The 'THAT' Assembly Program (or "Assembler') accepts a source program
containing code in the 'THAT' language, and translates ("assembles") it into
absolute binary machine language in core memory. This translation process is
generally one-for-one; thus, each "THAT' statement, occupying a separate line
or "card image" of the source program, is translated generally into a single
abolute binary instruction or data word. For this reason, 'THAT' is called
an "assembly" language.

The 'THAT' Assembler performs the translation with only one pass over the
source deck, assembling the absclute instructions directly into core memory
without the use of an intermediate "scratch tape'". Instructions from the source
program are {normally) assembled into the core locations from which they will
.subsequently be executed; at present there is no provision for automatic re-
location. As each card image of the source program is processed, its image
is listed on the printer along with the core location into which the corres-
ponding binary instruction is assembled,

yThe<'THAI' language is "symbolic", meaning that symbols may be used for
macﬁine ad&?eéééé"éﬁé ﬁ;éﬁbnic names may be used for operation codes. Since
it operates in a single pass, the "THAT' Assembler will encounter address
fields which contain symbols which have not yet been defined. The Assembler
keeps lists of all such occurrences of undefined address symbols, and when
the symbol is subsequently defined all references to it are properly "fixed

' . . N
up” in the assembled instructions in core memory. There are some important

(™

TH.1,2

restrictions on the use of such undefined symbols, however, in partiéular,

a symbol which has not yet been defined cannot be used in a general address
expression including any arithmetic operatiogs at assembly time (for example:
X1 + 2, or 2*L3 + KO).

The index field of a 'THAT' statement is further restricted: all symbols,
whether used alcone or in assembly - time expressions, must be defined before
the index field is encountered. There is no provision for "fixing up" undefined
symbols used in the index field.

In general, each line of 'THAT' code includes an operation code, either in
absolute octal form or (more frequently) as a three-letter mnemonic. These
mnemonics must be one of the following:
<" (1) A standard G-20 wachine language opcode mnemonic, as listed in
) the G-20 Reference Manual and in Appendix of this manual; or

(2) A "sudo" (pseudo-instruction) mnemonic. A sudo does not stand
for an actual machine command but is rather an instruction to
the "THAT' assembler, to be executed when the sudo is encountered
during the assembly process, All 'THAT' sudos are listed in alph-

abetical order and explained in Chapter 3 of this manual,

-

TH.1,3

1.1 SYMBOLS
_The purpose of symbols is three- fold: (1) The programmer can refer

symbolically to addresses which w111 not be known until the entire program |

has been written ‘and assembled (2) The programmer can parametrlze his

e v

———

program and assign values to the parameters at assembly time, so that sizes
of buffers, data storage blocks, program segments, etc., can subsequently be
' changed by simple reassembly runs. (3) The symbols can give some mnemonlc

value to the program, aiding the programmer in the task of wrltlng, debugglng,

SPIP

“and changing the program.
T Each 'THAT' symbol has the form of a class name followed by an integer;
the integer is referred to as the "subscript" part of the symbol, Class names
are one character, and can be any of the 26 letters or one of the four special
characters: -1, «, —, or |. These rules are summarized by the following
Backus Normal Form:

<class name> ::= <letter> | - | « | - | <the mark '|"™>

<subscript> ::= <integer> | <empty>

<symbol> t:= <class name> <subscript>
Notice that the subscript can be omitted; this has the same meaning as a zero
subscript.
Examples:

L4

—27

3 |
T {(same as: TO0)

The possible symbols are divided into 30 classes by the class names, All
symbols of a particular class will be either:

(1) Label symbols, whose values can be defined independently and in any

order; or

(2) Regional symbols, all referring to the same region and all bearing
' a fixed relationship to each other.
These two kinds are discussed in sections 1.1,1 and 1.1.2, below. The one
class name 'A' has special significance, and is discussed in section 1.1.3,
Symbols are most frequently?used to represent addresses with values
between 0 and 216 _ 1, However, a symbol may be defined (by a 'DEF' sudo)

to have any value between 0 and 230 _ 1.

TH.1.4

1.1.1 LABEL SYMBOLS

All symbols with a particular class name can be declared to be label
symbols with a 'LBL' ('LaBeL") sudo instruction. The 'LBL' declaration
contains the class name character followed by the maximum subscript integer
which labels of the class will be allowed, For example:

LBL K20

declares a set of 21 label symbols: KO, K1, K2, ,,., K20, These symbols are
free and arbitrary and can be defined in any order with any set of values.
The symbols of the class are related only in that they occupy adjacent positions
in the symbol table created by the Assembler. This fact may be of importance
to the programmer who needs to reuse symbols or réclaim symbol table space
during assembly of very large programs; see the sudo instructions CHK, LBL,
and REL in Section 4 for more information. The maximum subscript given in

the "LBL' declaration is used by the Assembler to allocate symbol table space.

TH.1.5

1.1.2 REGION SYMBOLS
A class namé will denote a region if: '
(1) any symbol in that class is given a value (by a 'DEF' sudo
inétruction), and if '
(2) that class has not previously been declared to be label symbols
(by a "LBL' sudo instruction). |
All symbols with a régional class name refer to the same region, and their
values are related in a fixed way: the symbol whose subscript part 1s the
integer n will sfand for the nth ﬁemory address of the-region. Thus, defining
any one symﬁol of the class defines them all.
Example: assume that R has not appeared in a 'LBL' declaration; then:
DEF RO = 40
will make R a region whose first cell is address 40 (an index register). Then
all R symbols will be defined; e.g. R = 49, and 1in general Rn = 40 + n is any
integer constant. The following 'DEF' operation would have the same effect:
DEF R9 = 49
The expression: RO + 23 is equivalent to the symbol: R23, if R is a region,
A class of symbols which has been used as a region can later be declared
in a 'LBL' sudo instruction and thereafter be used as independent label symbols.
Conversely, é class name which has been used for labels can be éhanged into a
region if all labels of that class are undefined with a sudo instruction of the
form:
REL <class name>

and if any one of the members of the class subsequently is defined in a DEF

sudo.

TH.1.6

1.1.3 THE "A' SYMBOLS .

The symbols in class 'A' have special significance in the 'THAT' language
and cannot be used as label symbols. The symbol "A" or "AO0" always has as
value the current value of the Assembler's location counter, i.e. the memory
location into which the current instruction is to be assembled. After pro-
cessing each line of the source program, the Aésembler increments the value
of 'A' by the number of binary words it has loaded into memory. The 'A' value
is pfinted on each line of the Assembly listing.

The 'A' symbols other than "AO™ behave as if A were a region name; that is,
An has the value: A + n,

Example:
TRA A+ 3 {or: TRA A3)
has the same effect as:

LBL L2

L1 TRA L1 +3

: ' TH.1.7

1.? EXPRESSIONS'

Symbols may be used to build expressions, whose syntax can be defined
in Backus Normal Form as follows:
<TERM> ::= <DEFINED SYMBOL> | <INTEGER> | <OCTAL INTEGER> | <POWER OF TWC>
<OCTAL DIGIT> ::= 0|1|2|3|4|5|6{7 '
<DIGIT> ::= <OCTAL DIGIT> |8|9
<INTEGER> ::= <DIGIT> | <INTEGER> <DIGIT>
<OCTAL INTEGER> ::= /<OCTAL DIGIT> | <OCTAL INTEGER> <OCTAL DIGIT>
<POWER OF TW(> ::= $<INTEGER>
<OPERATOR> ::= + |-|*
<EXPRESSION> ::= <TERM> | <EXPRESSION> <OPERATOR> <TERM> | <EMPTY>
EXAMPLES:

418

J17 * 312 .

Ll -6-1L0%/3

Here <DEFINED SYMBOL> means a symbol whose value has been defined previously
in the assembly. The symbol may have been defined in any of the following
ways: '

(1) It may be a regional symbol and therefore have received a value

from the 'DEF' sudo which defined the region. '
(2) It may be a label symbol which has been explicitly defined by a
'DEF' sudo. ‘

(3) It may be a label symbol which has appeared in the location field

of a previous instruction and therefore been defined with the value
of 'A' for that instruction.

An expression defined by these rules can be used in the address and index
fields of a line of '"THAT' code. The meaning of an expression is obtained by
performing the indicated operations from left to right with no hierarchy and
truncating to 32 bits after each operation. Thus, 2 + 3%4 = 20,

The <TERM> "$n", where n is an <INTEGER>, has the value 2 t nj i.e.,

"$n" stands for a l-bit in bit position n of a logic word. An empty expression

or term will have the value zero.

C

TH.1.8

Expressions are generally used to represent G-20 (or G-21) Addrebses,
and their values will therefore be positive integers less than 2 t 16, The
rules for expressions outside this range are more complex, but are contained
in the following paragraphs. |

The value of an expression is generally computed in logic format, and will
therefore be a positive integer between 0 and 232 - 1. The result of each arith-
metic operation is shifted to zero exponent, truncated on both ends to 32 bits,
and made positive (by an 'STL' command in the Assembler). There is an exception

to the logic format, however; the right hand operand of each multiplication ('*')

_operation will be accessed numerically (by an "MPY' command in the Assembler).

Thus, the expression:

$ 24 * [377
will be computed by 'THAT' to be /377000000; however, the expression with the
operands are reversed: '

/377 * $24 |
will be computed to be 0 since the value $24 will be accessed numerically. 1In
the expression

/3 % 84 + 13 * $24
both $4 and $24 will be accessed numerically.

Although an expression is generally computed as a 32 bit logic word, the
final result may be truncated to a smaller field, determined by the way that
the expression is used. If an expression is used:

(a) as the address of a G-20 command, it will be truncated to 16 bits,

with the highForder.bit stored as bit 30 of the command. See Section
2.6, . |
{b) in the index field of a G-20 command, its value must be between O and
63 or an error message will be printed. See Section 2.7,
(c) in a 'DEF' sudo, the expression will be truncated modulo 2 t 30
(i.e., both flag bits will be set to 0). See Chapter 3 .
(d) in a 'LWD' or 'WRD' sudo, all 32 bits will be stored (EXCEPTION:

'WRD' sudo, if the expression is negative).

-

TH,2.1

CHAPTER 2 - SOURCE PROGRAM FORMAT

2.0 SUMMARY OF FORMAT

A line of 'THAT' language source code contains information in some or

all of the following fixed fields:

1. Language - Columns 1 - 2
2. Location - Columns 4 - 8
3. Flag - Columm 13
4. Operation - Columns 15 - 17
5. Mode - Column 20
6. Address - Columns 24 - &7
7. Index - Columns 24 - 67
8. Comments - Columns
Immaterial - All other Columns
Example:
(Columns) 1 1 2 2
YR R R i
|TH| |E4 I |2| |CLA[|0| _ |/77, R2; THIS IS A COMMENT
t t t t t 1 t t
3. 4, 5. 6. 7. 8,

1. 2.

2.1 LANGUAGE FIELD (Columns 1-2)

When card images are typed-in from a remote teletype, the language field

is used to set the meaning of the TAB key for the language. The mnemonic 'TH'

will set the
Tab

1
2
3
4

5

TAB columns for 'THAT' card images as follows:

Column
4
15
20
24
40

Field
Label

Opcode

Mode

Address, Index Register

. Comment

For more details, see SECTION 2 of the User's Manual.

TH.2.2

2,2 LOCATION FIELD (Columns 4-8)

In general the location field will be blank unless a reférence is made
to that line of code. The location field may contain any ﬁf the fbllowing{

1. A label which is currently undefined. The effect is to define
that label by giving it the current value of the location counter
(IAI). .

2. An expression which equals the current value of the location counter,
This can be used for explanatory or documentary purposes.

3. Any string of characters starting with the letter '"A'., The contents
of the rest of the field will be ignored and can be used for a
comment. |

Examples:

MPY M5; SHIFT RIGHT 5 OCTALS

M5 105 1; SHIFT CONSTANT
LXP 0 20, R2; _

E2 STZ PO, R2; ZERO A LOCATION IN MEMORY
SXT 0 1, R2; DECREMENT AND TEST
TRA E2; LOOP

2.3 FLAG FIELD (Column 13)

The flag field is used to specify the flag bits of the word generated.

FLAG COLUMN ; FLAG BIT(S) LOADED
0 OR BLANK NONE

1 BIT 30

2 BIT 31

3 | BITS 31 AND 30

. Note that in the G-21 Centfal Processor, Flag Bit 30 has the special signif-
(: icance of the highest-order bit of the address. See Note 1, SECTION 4.1.3.

The flag field is ignored on all sudo instruction cards, unless the sudo is

TADC', 'LWD', or 'NAM'. .

. TH.2.3

2.4 OPERATION FIELD {Columns 15-17)

Thé-operation field may contain one of the following:

1. Blanks. The line will be processed as a 'COM‘ sudo, i,e., a
comment card.

2. An octal integer (without the preceding slash). In this case,
it will be interpreted as the operation part of a G-20 instruction
and the octal integer will be right justified in bits 29 to 21 of
the assembled instructiocn,

3. The three-letter mnemonic for G-20 operation. The corresponding
octal code will be loaded as part of the assembled instruction.
G-20 mnemonics are listed in the appendix.

4, The mnemonic for a "THAT' sudo. The action taken for the possible

sudos is described in Part 4,

2.5 MODE FIELD (Column 20)

Each G-20 mnemonic has associated with it a "normal" mode for that oper-
ation as described below. If the normal mode is desired, the mode field may
be left empty; otherwise, 0, 1, 2 or 3 must be punched. A mode punch always
supercedes the normal mode. The mode field of a sudo is ignored. (EXCEPTION:
See "LWD' sudo, 'ADC' sudo and 'NAM' sudo.) Section 3 contains a summary of
the addressing modes.

All G-20 mnemonics are mode 2 except the following.whiéh are mode 0,

STI STL TRA REP
5TS STZ TRM
STD

TH.2.4

2.6 ADDRESS FIELD (Columns 24-67)

The address field normally contains the operand or the address of the
operand. Blanks in the address field are ignored (except in 'ALF' sudo and
'NAM' sudo); -

" The address is terminated by a comma, a semi~colon, or Column 68 (which
is not scanned), whichever occurs first. If it is terminated by a comma, an
index is then expected. _

The following applies to the address field only if the operation field
‘contains a G-20 mnemonic or an octal integer. _

1, If it is blank, address (bits 14-0 and bit 30)of the assembled

instruction will be zero, _ |

2. If it is a single symbol which is already defined, the value of the

symbol will be placed in the address (bits 14-0 and bit 30) of the
assembled instruction. If the symbol is a label which is not yet
defined, its value will be placed in the address wﬁen it 1s defined.

3. If it is an expression, the vélue of the expresslion will be entered

as the address in the assembled instruction. All symbols in the
expression must have been defined previously or am error message
will be printed. See 5.1.1,

If the operation field contains a G-20 mnemonic or the 'ADC' sudo, the
value of the corresponding expression must be less than.Z t 16 and is convert-
ed to the 15 and 1 bit format by G-21 commands; i.e., if bit 15 is non-zero,
bit 30 is set to onme and bit 15 is set to zero,

EXAMPLES:

DEF A = /120000, PO = /124000, RO = /40;
CLA 3 PO, RO;

DEF A= PO
LWD P64,
After these cards are assembled, location /120000 contains /1 605 40
24000 (Note that bit 15 is shifted to bit 30). Location /124000 containg
C /o 000 01 24100, | |

\

TH.2.5

2.7 INDEX FIELD (Columns 24-67)

If any index register is used, the address field must be terminated by
& comma, followed by a symbol or an expression whose value is the number of
an index register. Blanks in the index field are ignored, and the field is
terminated by a semi-colon or Column 68 (which is not scanned), whichever
occurs first,

The value of the expression in the index field is loaded right-justified
into bits 20-15 of the assembled instruction; 1f the value is not defined, an
error message will be printed. If the operation field contains a G-20 mnemonic,
an error message will be printed in the value of the index fileld is greater

than 63.

2.8 COMMENT FIELD (Columms 24-80)

All columns to the right of the first semi-colon in the address-index
field are ignored by the Assemblef, and may therefore be used for comments.
Comments may extend to Column 80. All columns of the input line including
the "AND' sequence number are printed (unless assembly printing has been

turned off).

R S——

TH.3.1

CHAPTER 3 - SUDO INSTRUCTIONS IN 'THAT'
3.0 INTRODUCTION

A sudo (pseudo~instrucfion} is an instructign to 'THAT' rather than a -
G-20 command to be assembled for later execution. -The mnemonic name of the
sudo 1s punched in the operation field of the source program card.
For all sudos the following holdé:
1. The Location field is first treated as described in Section 2.2 for
machine commands. — _ ,
2. The Flag and Mode fields are ignored (EXCEPTIONS: 'LWD' sudo, 'NAM'
sudo and 'ADC' éudo;) '
3. Thereafter, the specific action for the particular sudo takes place.

4. A sudo may be listable or non-listable: ‘the parameter set given by

the address field of a listable sudo may be repeated, separated by
commas, as many times as desired in the space provided on the card
up to Column 67, while only one parameter set is allowed in the
address field of a non-listable sudo. The effect of a listable
sudo is the same as if the sudo was repeated on successive lines
with one parameter set per line; the parameter sets are processed
in the left-to-right order.,s
Section 3.1 contains a reference list of all sudos in "THAT', The re-
mainder of Chapter 3 consists of an alphabetical listing of the sudos, with
an explanation and examples of the use‘of each one,
The format used in explaining the sudos is as féllows:

o' d EXPRESSION
LISTABLE
'EXECUTE EXTRA EXEC'

The first line glves the three letter sudo name and the type and format of
the parameter set (s)., The second line states whether the sudo is listable
or non-listable for sudos for which the concept is meaningful, The third
line contains a word or more describing the action of the sudo. (NOTE: the

above sudo is only a hypothetical example.)

ADC

THe 3.2

CEXPRESSION)> | {EXPRESSIONY+ INDEX)
. ‘ NON-LISTABLE
*ADDRESS CONSTANT?®

THE FUNCTION OF *ADC* [S5 THE SAME AS THE 6-20
MNEMONIC *DOCA's EXCEPT THE NORMAL MODE 1S ZERO RATHER
THAN TwO. *ADC's USED FOR ADDRESS CONSTANTS, MAY
HAVE AN ADDRESS WHICH MUST BE LESS THAN 2+16 AND
MAY ALSO HAVE AN INDEX. *ADCY IS THE SUDO WHICH wWOULD
NORMALLY B8E USED WHEN COMMANDS ARE TO BE ASSEMBLED
AT EXECUTION TIME. '

EXAMPLES:

ALF

ADC LTI
OCA © /777777;

THESE TWOD INSTRUCTIONS ARE EGUIVA_ENT.

CBLANK> (STRINGY|[CDIGIT)> <STRING)
NON-LISTAHBLE
*ALPHANUMERIC?® '

THE EFFECT 1S TO LOAD THE G-20 INTERNAL
REPRESENTATION OF THE STRING OF CHARACTERS INTO SUCCESSIVE
MACHINE LOCATIONSs 4 CHARACTERS PER WORD. THE ODIGIT GIVES
THE NUMBER OF WORDS TO BE LOADED. WITH A BLANK BEING
TREATED AS 14 AND © BEING TREATED AS 10. THE BLANK DR
DIGIT MUST APPEAR IN THE FIRST POSITION OF THE ADDRESS
FIELDs COLUMN 24. THE STRING TO 3E LODADED EXTENDS FROM
COLUMN 25 TO COLUMN (24+4K). WHERE K IS THE NUMBER OF
WORDS SPECIFIED.

EXAMPLES:

Wl ALF 4ERHOR NUMBER ONE

THIS LINE WILL CAUSE THE LOADING OF

ERRO INTO Wi
R NU INTD Wi+l
MBER INTO Wl+2

DNE INTO wil+3

THIS 1S EQUIVALENT TO

wl ALF 1ERRD
ALF R NU
ALF MBER

ALF 1 ONE

CHK

THe3.3

(SYMBOL)>
LISTABLE

YCHECK?
_ THE FUNCTION IS TD CHECK WHETHER OR .NOT LABELS WHICH
"HAVE BEEN USED ARE DEFINED. THE SYMBOL MUST BE A LABCL.
IF ITS SUBSCRIPT 1S 2ZSRD OR BLANK, THEN THE SUBSCRIPT 1S
CONSIDERED TO BE THE MAXIMUM ALLOWED SUBSCRIPT. THE
LABELS FROM (IDENTIFIER)0 TO C(IDENTIFIER»SUBSCRIPT ARE
THEN CHECKED TD SEE IF ALL THOSE WHICH HAVE BEEN USED ARE
DEFINED. IN CASE AN UNDEFINED LABEL IS ENCOUNTED. AN
ERROR PRINT OUT TAKES PLACE WITH THE FOLLOWING FORMS
UND TS 26347 54362

THIS MEANS THAY THE LABEL TS IS UNDEFINED, AND THAT
IT HAS LAST BEEN USED IN LOCATION /26347 AS A 16-BIT
'CONSTANT AND 'IN LOCATION /54362 AS AN ADDRESS. TO AN
INSTRUCTIDN. _

THE CHECKING WILL CONTINUE UNTIEL ALL THE
SUDD~-PARAMETERS HAVE BEEN EXHAUSTED.

EXAMPLES?

LBL . DS3

LBL w103

LBL . R903

(PROGRAM)

CHK Ds»WSsR3

ALL DF THE D®S AND R*'S AND w0 TD W5 ARE CHECKED.

COMm

cPy

THe 3.4

CIMMATERIAL)
COMMENT

THE REST OF THE LINE 1S IGNORED.

EXAMPLES:

LBL L13

COM THIS IS A COMMENT

DEF A=/30000%

L1 COoM GEEees ANOTHER COMMENT
THESE LINES WILL BE PRINTED. TWO L*S WILL BE DECLARED AS
LABELS AND L1 WILL BE GIVEN THE VALUE /30000. HOWEVER, NO
CODE WILL BE COMPILED
CEXPRESSIONY, CEXPRESSION?Y
‘ LISTABLE
COoPY

LET THE VALUE OF THE FIRST AND THE SECOND EXPRESSIONS
BE N1 AND N2, RESPECTIVELY.

THE NEXT N1 WORDS WILL BE FILLED BY COPYING FROM
THE LAST N2 WORDS ASSEMBLED. THAT I1S. THE WORDS IN
A=N2s A=-NZ2+1lseeesA-1 WILL BE COPIED REPEATEDLY
UNTIL N1 HAVE BEEN COPIED. NI NEED NOT BE A MULTIPLE
DF N2:; IF N1 = 0O» NO WORDS WILL BE COPIED.

AFTER *CPY® HAS BEEN EXECUTEDs THE LDCATION
COUNTER *A*' HAS BEEN INCREASED BY Nl.

WARNING: IF THE LAST N2 WORDS CONTAIN ANY
UNDEFINED LABELS. THESE WiLL NOT LATER BE DEFINED IN THE
COPIES.

EXAMPLES?
w8 LWD 7737
LWD w533;
cPY 500,2

(WB) AND (W8+1) WILL BE COPIED INTO THE NEXT S00 LOCATIONS.
El LWD 0; '
cPY 499,13

THE EFFECTYT IS5 TO CLEAR 500 LOCATIONS STARTING AT El.

0BG

DEC

TH. 3.5

*DEBUG®
¥

THE FUNCTION IS TDO TURN ON THE SELECTIVE TRACE
SWITCH IN MONITOR. IN RUNNING THE PROGRAM, ALL COMMANDS
WITH A 2 FLAG (A 1 IN BIT 31) WILL BE LISTED ON THE
PRINTER IN THE FORMAT FOR MONITOR TRACEZ DESCRIBED IN THE
APPENDI X

A 'DUG* SUDD CARD MAY BE PLACED ANYWHERE IN THE _
THAT® DECKes COMMANDS MAY BE MARKED FOR TRACING EITHER BY
INSERTING A *FLG®* SUDO BEFORE, OR PUNCHING A 2 IN THE FLAG
FIELD (COLUMN 13) OF THE CARD WHOSE "INSTRUCTION IS TO BE
TRACED

CIMMATERIAL)>
*DECIMAL LISTING® -

THE FUNCTION 1S TO CAUSE SUBSEQUENT CONVERSION FOR
PRINTING OUF THE CURRENT INSTRUCTION CUUNTER AND REGION
AND LABEL ADDRESSES TU HBE DONE IN DECIMAL.

EXAMPLES:
- DEF A=/20000;
DEC PRINT IN DECIMAL
RGN A
AO 8192

NOTICE THAT THE REGIONAL SYMBOL IS CONVERTED IN
DECIMAL.

-

. THe3.6
DEF (SYMBOL>=(EXPRESSI10N)
LISTABLE
*DEFINE"

THE VALUE OF THE EXPRESSION WILL 3E CALCULATED AND
TAKEN MDOOULO 2+30, AND THE SYMBOL wilLl. DE GIVEN THIS
VALUE.

IF THE LETTER OF THE SYMBOL HAS BEEN DECLARED AS A
LABELs THE PARTICULAR LABEL GIVEN IS THEREOBY DEFINED. 1F
THE LETTER 1S NOT A LABEL, THE CORRESPONDING REGIONAL BASE
IS DEFINED AS

CEXPRESSIONY ~ (SUBSCRIPT)
WHERE THE SUBSCRIPT NORMALLY EQUALS ZERO.
. EXAMPLES:
DEF A=/13000
THE MEMORY LOCATION FOR fHE NEXT INSTRUCTION IS /13000,

LBL B30
DEF BO=/22750

THIRTY ONE B'S ARE DESIGNATED AS LABEZELS, AND BO IS GIVEN
THE VALUE /22750. 8ls B2rsesn B30 ARE UNDEFINEDe.

DEF C10=/7000;

CO IS5 GIVEN THE VALUE /76766, AND ALL C*S ARE DEFINED.

DMP CEXPRESSIONY, {EXPRESSIUN>
’ LISTABLE
PRINTING BEFDORE EXECUTION
DUMP?

THE EFFEGT IS TO GIVE AN OCTAL DUMP ON THE PRINTER
DF THE LOCATIONS FROM THE VALUE OF THE FIRST EXPRESSION UP
TO AND INCLUDING THE VALUE OF THE SECOND EXPRESSION.

WARNING: THERE IS ND CHECK THAT THE VALUES ARE PROPER
MACHINE LOCATIONS. '

ENT

FLG

TH. 3.7
EXAMPLES:

omp /721000,/722000

AN OCTAL DUMP WILL BE GIVEN FRUOM LOCATION /21000 UP TO
AND INCLUDING THE LOCATION /22000.

DMpP A-100,A-13

AN OCTAL DUMP OF THE LAST 100 LOCATIONS WILL BE GIVEN,

CIMMATERIAL)D
PENTRY®

THE EFFECT IS TO UPSPACE THE PRINTER TWICE (IF THE
PRINTING 1S ON), AND ASSEMBLE AN ALL ZERO WORD. THIS sSUDO
CAN BE USED FOR ENTRY INTD A SUSROUTINC. A LABEL
APPEARING IN THE LOCATION FIELD WILL BE DEFINED AS USUAL.

EXAMPLES:

P1 ENT SUBROUTINE

THIS DESIGNATES THE ENTRY INTO A SUBROUTINE THAT IS
REFERRKRED TO BY THE LABEL Pl. ZERDO 15 LDADED INTO THE
LOCATIDN Pl.

CBLANK))
*FLAG?

THE FUNCTION IS YO INSERT A 2 FLAG (BIT 31) IN THE
NEXT G=20 INSTRUCTION STDRED. BECAUSE OPERAND ASSEMBLY
(OA) COMMANDS ARE NOT TRACED, PLACING A *FLG' SUDD
BEFORE AN 'OA*' COMMAND CAUSES THE NEXT NON-*0A' COMMAND
TO BE TRACED,

EXAMPLES?S
DBG
TFLG
P1 CAL Ds13
FLG
oca 115
P2 STL Csl23 '

THE COMMANDS LABELED P1 AND P2 WILL B= TRACED.

THe 38

Fpc CSIGNED DSECIMAL NUMDERD
_ LISTADOLE
TFULL PRECISION CUNSTANT?®
THE FUNCTION IS TO LOAD THE OCTAL REPRESENTATION DF
THE DECIMAL NUMBER INTO THE NEXT TwO LICATIONS.
WARNING: THE ABSOLUTE VALUS OF THE NUMBER MUST BE LESS
THAN 3.450873173389,69 AND THE EXPUONSNT LESS THAN 70, O
AN EXPONENT OVERF_OW WILL OCCUR AT ASSIMBLY TIME.
EXAMPLES?:
w10 FPC 10:4.000159,16
Wil FPC ~2,,5+3.44463,~5
W10 AND W10+1 WILL BE LOADED WITH 10, W1042 AND W10+3
WILL.BE LOADED WITH 4,000159%10+16, W11l AND W11+l wILL BE
LOADED WITH —-2%10+5, AND W11+2 AND Wi13i+3 WILL BE LOADED
WITH 3.44463%10+-5, ALL IN STANDARD G-20 FULL PRECISIUN
FORMe W10 AND W1l MUST BE LABELS. SINCE THEY ARE NOT
IN ADJACENT LDCATIONS.
HPC (SIGNED DECIMAL NUMBER)Y

LISTABLE
*HALF PRECISION CONSTANT®

THE FUNCTION IS TO LOAD THE OCTAL REPRESENTATION OF
THE DECIMAL NUMBER INTD THE NEXT LOCATION. THE MANTISSA
OF THE NUMBER [5 ROUNDED TO SEVEN (0OCTAL) DIGITS BEFORE

" STORING.
EXAMPLES®
W12 HPC 0s122,:33
HPC —4.15,~63%

Os» 1s. 2¢ 3+ AND -4,.15%10+-6 WILL DBE LOADED INTO FOUR
CONSECUTIVE LOCATIONS STARTING AT wiZ2e.

WARNING: IT IS A DETECTABLE ERROR IF A NUMBER WHOSE A3-
SOLUTE VALUE IS5 GREATER THAN (8+7-13)%8+63 1S PUNCHED.

TH«3.9
LBL {SYMgoL>

_ LISTABLE
(: *LABEL"®

THE LETTER IS DECLARED TO BE A LABEL. IF THE LETTER
‘HAS NOT PREVIQUSLY APPEARED IN A *LBL'" SUDOs THEN THE
SUBSCRIPT IS THE MAXIMUM SUBSCRIPT WHICH MAY DBE USED
FOR THAT LABEL.

IF THE LETTER HAS PREVIOUSLY APPZARED IN A
'LBLLY SUDD, ITS NIZW SUBSCRIPT MAY NOT BE GREATER THAN THE
SUBSCRIPT FIRST DESIGNATED UNLESS THE LABEL HAS FIRST BEEN
RELEASED 3Y THE *REL* SUDO OR EL.SE IT IS AN ERROR. THE
FOLLOWING ACTIONS TAKE PLACESD

FIRST, THE DPERATION OF A *CHK®' SUDD IS DONE ON THE
SYMOB0OL . THEN THE LABELS FROM <(LETTER>0 TO
(LETTER)(SUBSCRIPT) ARE CLEARED TO USZ AGAIN. WHILE ANY
LABELS GREATER THAN THE SUBSCRIPT APPEARING IN
(LETTER>CSUBSCRIPT> ARE LEFT UNTOUCHED.

~ IN CASE *CHK? FINDS ONE OR MORE UNDEFINED LABELS
AN ERROR MESSAGE WILL BE PRINTED (SEE *CHK') AND THE VALUE
OF THE LABEL WILL BE CLEARED FOR REDEFINITION.

EXAMPLES?Z
LBL 010
DO THROUGH D10 WwILL BE PERMITTED FOR USE AS LADBELS.

(PROGRAM)}
LBL D7
(PROGRAM)

THE LABELS DO THRDUGH D7 wWILL BE CLEARED FOR REDEFINITION
AS NEW LABELS, WITH AN ALARM MESSAGE PRINTED
IF. ANY ARE UNDEFINED.

) ~ . ’ THe3.10
LIN CEXPRESSION?>
NON-LISTABLE
CARD IMAGE NOT PRINTED
LINE?®
THE FUNCTION IS TO UPSPACE THE PRINTER
N=C(EXPRESSION> LINESs IF PRINTING IS ON.
IF N = 0 DR THEZ ADDRESS FIELD IS 3LANK,s 1 LINE UPSPACE
 WILL OCCUR.

EXAMPLES:
CLA P93
LIN 23
EXL K213

ABOVE ARE THE CARDS AS THEY WERE PUNCHED. BELOW 1S
THE COMPILATION OF THE CARDS. :

CLA Pa;

EXL - K213

NOTICE THAT 2 LINES WERE SKIPPED AND THE *LIN?
SUDO WAS NOT PRINTED.

LwWD CEXPRESSIONY| (EXPRESSIONY.{EXPRESSION?
. LISTABLE
""LOGIC WORD®

THE EFFECT 15 TO LOAD THE VALUE OF THE EXPRESSION
INTD THE NEXT MACHINE LOCATIDON AS A LOGIC WORD
(I¢Ee WITH AN *STL* COMMAND). ANY PUNCHING IN THE
FLAG OR MODE FIELD WILL TAKE PRECZDZcNCEZ OVER THE INFORMATION
THAT wWOULD OTHERWISE BE LOADED INTO BITS 28 TD 31.
IF THE ADDRESS EXPRESSION IS TERMINATED BY A
COMMA AN INDEX REGISTER 1S EXPzZCT=ZD AND wlLL TAKE
PRECEDENCE OVER THE INFORMATION IN .BITS 15 TD 20.
NO CHECKS ARE MADE TO SEE [IFf THE VALUES DF THE
EXPRESSIONS ARE WITHIN THE LIMIT OF THE FIELDS.

EXAMPLES:
DEF © A=/20000;
LBL E2; ‘
20000 EO LWD 7350 + $4;
20001 E1 LWD 1 /7777+%1;
20002 €2 LWD ITTTTTTTTITT

THE VALUE OF /350+34 = /370 WILL BE LOADED INTO
LOCATION 20000 (EO). /Z7777+351+ BIT 28 (MODE 1 PUNCH) =
/2000010001 WILL BE LOADED INTO LOCATION 20001 (E1)s AND
FITTTITTTTT7T WILL BE LOADED INTO LOCATION 20002 (E2). '

B

-

_ _ THe3.11
MTT CEXPRESSION) :
NON-L_ISTABLE

PRINTING BEFORE EXECUTION .
'"MARK TRANSFER TO* '

THE FUNCTION IS TD CHECK THAT NO ASSEMBLY ERRDRS
HAVE OCCURRED AND THAT ALL USED LABELS ARE CURRENTLY DE-
FINEDe. IF NO ERRORS ARE DETECTEDs *THAT®* EXECUTES A *TRM?
TO. THE LOCATION DEFINED BY <(EXPRESSION)>. THE ROUTINE
MAY RETURN THROUGH [T3 MARK [F ASSEMDLY IS TO
CONTINUE OR TRANSFER CONTROL TO THE MONITOR BY EXECUTING
THE MONITOR HALT ROUTINE. -

EXAMPLE
El ENT ZERO DATA REGION
LXP 0 100.,R1} :
E2 STZ D.R1;
SXT 0 1,R13
"TRA E23
TRA - 1 El;
CHK £;
MTT El;

THE SIX INSTRUCTIONS STARTING AT Z1 WILL BE ASSSMBLED
AND EXECUTED. ASSEMBLY WILL THEN CDNTINUE. '

NAM (STRING?>
NON-L ISTADLE

*NAME®

THE EFFECT IS TO PACK THE SIX BIT REPRESENTATION OF
THE S CHARACTERS IN COLUMNS 24 TO 28 INTD THE RIGHTMOST
30 BITS OF THE NEXT MACHINE LOCATION. ANY PUNCHING IN
THE FLAG OR MODE FIELD WILL TAKE PRECEDENCE OVER THE
INFORMATION THAT DTHERWISE wOULD HAVE BEEN LOADED INTO

BITS 28 TO 31.
EXAMPLES?
NAM PN3e$

THE 6 —-BIT REPRESCNTATIONS OF THE CHARACTERS Py Ne 3. o
AND ® WILL BE LOADED INTO THE NEXT MACHINE LOCATION.
THIS 1S THE SAME AS

LWD /20 16 43 53 65}

THe 312
ocT CIMMATERIAL?Y

*OCTAL LISTING?

THE. FUNCTION IS TO CAUSE SUBSEQUENT CONVERSION FOR
PRINTING OF THYE CURRENT INSTRUCTION COUNTER AND REGION
AND LABEL ADDRESSES TO OE OONE IN OCTAL. (SEE *DEC*}.
*OCTY IS5 ASSUMED WHEN ASSEMBLY BEGINS.

EXAMPLES -

DEF A=8192;
ocT PRINT IN OCTAL}
RGN Al

AO 20000

NOTICE THAT THE REGIONAL SYMBOL IS CONVERTED 7O

oPM CIMMATERIALY

*OPERATOR MESSAGE!

THE FUNCTYTION IS TO PRINY THE CURRENT TIME.
DATE AND OPERATOR INFORMATION. COLUMNS 24 TO 80 OF THC
INSTRUCTION CARD ARE REPLACED B8Y THE ABOVE INFORMATION.

EXAMPLES?
oPMm : OPERATORDIO1 Gl JUL 654 235 S
2 * -+
OPERATOR DATE TIME

THIS IS THE LISTING WITH THE OPERATOR MESSAGE.

_ THe3.13
our CEXPRESSION?»
‘ NON-LISTABLE
PRINTING BEFORE EXECUTION

guT?

THE EFFECT OF THE 'DUT' SUDD IS TO CHECK THAT NO
ASSEMBLY ERRORS HAVE OCCURED AND THAT ALL USED LABELS ARE
DEFINED. IF NO ERRORS ARE DETECTEDs *THAT' EXECUTES A
*TRA'" - TO THE LOCATION DEFINED BY <(EXPRESSIONDY,.

IT IS A DETECTABLE ERROR IF THIS LOCATION IS NOT A
VALID MACHINE ADDRESS.

EXAMPLES?:

(PROGRAM)
ouTr - El

CONTROL wiILL BE TRANSFERRED TO LOCATION Ele« EITHER
THIS SUDOD OR *MTT* IS NORMALLY USED YO START EXECUTION OF
A PROGRAM.

PAG CIMMATERIAL)
PRINTING AFTER EXECUTION
PAGE ~
IF PRINTING IS TURNED ON, THE PAPER IN THE PRINTER
WILL BE MDVED TO THE NEXT PAGEs :

PBC CEXPRESSIDNY>s CEXPRESSIONY|
CEXPRESSION?»<EXPRESSIDONYs1
NON—-LISTABLE
PRINTING BEFDRE EXECUTION
*PYUNCH BINARY CARDS? '

THE FUNCTION IS TO PUNCH A ROW-BINARY DECK OF THE
MEMORY LOCATIONS FROM THE ADDRESS GIVEN BY THE FIRST
EXPRESSION UP TO AND INCLUDING THE ADDRESS GIVEN BY THE
SECOND EXPRESSIDN. IF A THIRD PARAMETER '1' APPEARS »

THE SYMBOL TABLE WILL BE PUNCHEDe. THUS IT 15 POSSIBLE
LATER TO ADD TO OR TO CORRECT A PROGRAM WITH THE USE OF
SYMBOLS AFTER LOADING THE ROW-BINARY DECK (BY MEANS OF THE
tRBCY SUDD DR THE MONITOR BAR ROUTINE). |

WARNING: THERE IS NO CHECK DN THE VALUES BEING
PROPER MACHINE LOCATIDNS.

. TH.3.14
EXAMPLES: . .

PAC 720000,WS3e1

A ROW-BINARY DECK WILL BE PUNCHED FROM LOCATION /20000 TO
THE LOCATION OF W53. THE SYMBOL TABLE WILL ALSO BE

PUNCHED .
PRT <{SYMBOL?> :
LISTABLE .
PRINTING BEFORE EXECUTION
*PRINT®

THE FUNCTION 1S SIMILAR TO t*CHK*®*, BUT IN ADDITION,
IF THE PRINTING IS ON., THE VALUES OF ALL USED LABELS WILL
BE LISTED ON THE PRINTER.

EXAMPLES?
PRT Wwse Py Dy Q103

ALL THE USED LABELS DOF THE SYMBOLS Ws Ps D AND Q0 TO Q10 AND THE
LOCATIONS TO WHICH THEY HAVE BEEN ASSIGNED ARE LISTED ON
THE PRINTER.

‘RBC CEMPTY)D
NON-LISTABLE
PRINTING BEFORE EXECUTION
READ BINARY CARDS®

THE FUNCTION IS TO LOAD A ROW-BINARY DECK AS PREPARED
BY THE *PBC?*-S5UD0U (EITHER WITH OR WITHOUT THE SYMBOL
TABLE). THE ROW BINARY DECK SHOULD FOLLOW IMMEDIATELY
WITH NO BLANK CARDS PRECEEDING ITe TWD BLANK CARDS SHOULD
BE PLACED AT THE END OF THE BINARY DECK BEFORE THE
REMAINING *THAT®' CARDS.

THE PROGRAM PORTION OF THE 'PBC*-DECK IS READ INTO

THE SAME MACHINE LOCATIONS FROM WHICH IT WAS PUNCHED AND
THE SYMBOL TABLE PORTION (1F PRESENT) IS READ INTO THE
THAT® SYMBOL TABLE REPLACING THE SYMBOL TABLE BEING USED
PRIDR TO THE 'RBC*' SUDD.

NOTE: THIS CANNOT BE DONE FROM *AND* FILES.

T Lispany
CARNEGIE-MELLON UNIVERSITY

D

- : THe 3415
REL {SYMBOL>
LISTABLE
*RELEASE®

THE FUNCTION IS 7O RELEASE L ABELS; TeEes TO CLEAR
THE DEFINITION OF A LETTER AS A LABEL 50 THAT IT
CAN BE USED THEREAFTER A5 A REGION - (OR A NEW LABEL).

FIRST *CHK* IS PERFORMED IF NO UNDEFINED LABEL 1S
ENCOUNTYERED, THE LETTER IS THEN MARKED AS UNUSED. UNDER
CERTAIN CIRCUMSTANCES THE SPACE USED FOR THE LABEL TABLE
WILL ALS0 BE RELEASEDa. THIS WILL OCCUR IF THE LETTER
BEING RELEASED IS THE LAST LETTER DECLARED AS A LABELs OR
IF ALL LETTERS DECLARED SINCE HAVE BEEN RELEASED AND THEIR
SPACE RECLAIMED.

IF AN UNDEFINED LABEL IS ENCOUNTERED BY *CHK®'s AN .
ERRUOR MESSAGE WILL BE PRINTED (SEE *CHK') AND THE ERROR

IGNDRED»
EXAMPLES?S
L8L . R10
{ PROGRAM)
REL R
LBL RI1

THE SET OF LABELS RO THROUGH R10 IS RELEASED AND THEN
A NEW SET OF LABELS RO THROUGH R11 IS DEFINED.

RETY {IMMATERIAL)>
PRINTING BEFORE EXECUTION

*RETURN?®

THIS SUDD WILL EFFECT A RETURN TO THE LOCATION MARKED
AS THE LAST CALL DF *THAT'.

EXAMPLES:
RET EXIT FROM THAT

CONTROL WILL RETURN TD THE PROGRAM WHICH CALLED *THAT®
AS A SUBROUTINE (USWALLY THIS WILL BE THE MONITOR)}.

RGN

SXX

THe 3106

<SYMBOL?>
: LISTABLE
*PRINT REGIONAL SYMBOL®
© THE FUNCTION OF THE 'RGN' SUDO IS TO CHECK THAT
THE <SYMBOL)> 15 A DEFINED REGIONAL SYMBOL.
IF THE PRINTING IS5 ON THE VALUE OF THE SYMBOL IS PRINTED
AS IN 'PRT'.
DEF P=/20000;
RGN P201;
P201 20311
P20t IS A DEFINED REGIDNAL SYMBOL-LOCATION 20311.
CEXPRESSION)
S NON-L1STABLE
*SET STORAGE EXTRACTOR'

THE VALUE OF THE EXPRESSION WILL BE STORED AS THE
INTERNAL STORAGE EXTRACTOR IN *THAT'. NORMALLY THE
STORAGE EXTRACTOR IS 0.

] WHENEVER A WORD IS STORED BY *THAT?® IT IS DONE AS
FOLLDWS: '

CAL 3 INSTRUCTION CDUNTER (A)

EXL STORAGE EXTRACTOR

"ADL WORD TO BE STORED

STL 1 INSTRUCTION COUNTER (A)

THUS *SXX* CAN BE USED WHEN PARTS OF ALREADY LOADED
WORDS HAVE TO BE CHANGED.
EXAMPLES:

DEF A=/10000
El LWD 7177773

LWD /717373

LWD /17313

SXX /7 777

DEF A=El;

LWD 724000

LWD /735000

LWD /710600

SXX o

*

TOP

WRD

TH«3.17
FIRST THE INITIAL LOCATION IS DEFINED. THEN THE

. LDGIC WORDS /17777, /17373, AND /17313 ARE LOADED INTO

THE FIRST THREE LODCAYIONS, AND THE STORAGE EXTRACYOR IS

SET TO /7 777 THE LOCATION IS AGAIN GIVEN AS £1 FOR

THE LOADING OF /724000, /35000, AND /71000. THUS THE VAL~
UES /724777, /35373, AND /71313 WILL BE STORED IN LOCATIONS
Els E1+1 AND El1+42. THE LAST LINE WILL RESET THE

STORAGE EXTRACTOR TOD ZERD.

(EXPRESSION> : _
: PRINTING AFTER EXECUTION

*TYPE OR PRINT?

THE EXPRESSIONs WHICH 1S TAKEN MODULO 2,
DETERMINES WHETHER OR NOT THE INPUT LINES WILL BE
LISTED ON THE LINE PRINTER, AS FOLLOWSS

0: PRINTING OFF

1 PRINTING ON

WHEN PRINTING IS5 OFF ALL ACTIDN INVOLVING THE
PRINTER WILL BE BYPASSED EXCEPT ERROR MESSAGE PRINTOUT.

(SIGNED EXPRESSION> .

LISTABLE

WORD

THE EFFECT IS TO STORE THE VALUE DF THE EXPRESSION
INTO THE CORE LOCATION SPECIFIED BY THE LOCATION CDUNTER 'A°.
IF THE VALUE DF THE EXPRESSION IS NEGATIVE, *WRD' wILL
STORE IT INTO MEMORY AS AN INTEGER (leEe WITH AN *STI®
COMMAND)} IF POSITIVE, IT WILL BE STORED AS A LOGIC WORD
(1.E+ WITH AN *STL* COMMAND).

EXAMPLESS

W8 WRD -/735+8

w8 WILL BE LODADED WITH THE NEGATIVE INTEGER /725

w10 WRD O ITYTTTITTVITT

w10 WILL BE LOADED WITH THE LOGIC WORD /37777777777,

4,1

THe 4
‘CHAPTER 4 — ERROR MESSAGES

ERRDOR DETECTYED DURING COMPILATION

ANY ERROR DETECTED BY *THAT' DURING THE PROCESSING OF A

LINE WILL CAUSE A PRINT DOUT OF THE LINE OF CODE FOLLOWED BY AN
ERROR MESSAGEs AS FOLLOWS.

LYS N |

AD U
AD >
FLAG
IR U
IR >
LASBL

MODE

OPER

ERRORS IN G—-20 INSTRUCTIONS

UNDEFINED CONSTRUCTION IN ADDRESS FIELD OF G-20
INSTRUCTION

THE VALUE OF THE EXPRESSION IN THE ADDRESS OF A G-20
INSTRUCTION WITH MNEMONIC OPERATION 1S NOT LESS
THAN 2+16.

ERROR IN THE FLAG FIELD OF A G-20 INSTRUCTION

UNDEFINED CONSTRUCTION IN INDEX FIELD OF A G-20
INSTRUCTION

VALUE OF THE EXPRESSION IN INDEX OF A G=-20
INSTRUCTION WITH MNEMONIC OPERATION IS NOT LESS THAN
64,

ERROR IN ENTRY FILELD

ERROR IN THE MODE FIELD OF A G-20 INSTRUCTION

ERROR IN OPERATION FIELD

TH.4e2
4ele2 ERRORS IN SUDD INSTRUCTIONS

AD U UNDEFINED CONSTRUCTION WHERE AN EXPRESSION IS
NEEDED IN THE ADDRESS FIELD OF A sSUDO.

AU . *AY IS NOT WITHIN BOUNDS OF MEMDRY . (UPON STORING A WORD)
FLAG ERRDR IN PARAMETER TO *FLG® 3UDO

LaLy A SUBSCRIPT ON A LABEL SYMBDL IS GREATER THAN ALLOWED
TERM UNDEFINED CONSTRUCTIODON WHERE A SYMBbL IS WANTED IN

THE ADDRESS FIELD OF A SUDDe

WHAT A LETTER WHICH HAS NOT BEEN DECLARED AS A LLABEL
"APPEARS IN A SYMBOL IN THE ADDRESS FIELD OF A SUDOD
WHERE A LABEL SYMBOL [S5 REQUIRED. :

4.1.3 = NOTES

NOTE 1 A ONE FLAG OR A THREE FLAG HAS BEZN PUNCHED IN
FLAG COLUMN OF A G—-20 MNEMONIC AND HAS ALTERED
THE EFFECTIVE OPERAND ADDRESS OF THE INSTRUCTION.

NOTE 2 AN '"XEQ* OPCODE HAS BEEN PUNCHED WITH A MODE
0 OR 1 AND WILL CAUSE AN OPCODE FAULT IF EXECUTED.

) THe4.3
4.2 ERRORS DETECTED DURING RUNNING

4

ADDRESS~OPCODE FAULT?:

AN ADDRESS 0PCODE FAULT 15 DETECTED WHENEVER THE G-20
ATTEMPTS TO PROCESS A COMMAND INSTRUCTION IN WHICH ONE OR
MORE OF THE FOLLOWING OCCURS:

le THE BIT CONFIGURATION IN THE OPERATION FIELD
{(8ITS 21-29) 1S NOT A LEGAL G-20 OPERATIDN

2« . THE ADDRESS OF THE NEXT COMMAND TO BE EXECUTED
IS NOT WITHIN THE LIMITS OF MEMORY.

3. AN OPERAND ILLEGAL TD A G-20 COMMAND IS COMPUTED
(THIS FREQUENTLY OCCURS IN MDDE 3 ADDRESSING-
. {SEE SECTION 3} OR WITH A PRECEDING *OCA*).

DIAGNOSTIC PRINTING:?

36000 _3 305 7?7 WTrTvirT A +00000000000000 +00 OOOOOV7?
1 2 3 4 5 6 7 8 9

1« '~ ADDRESS OF THE COMMAND INSTRUCTION

2e FLAG

3. MDDE AND 0OPCODE

4. INDEX REGISTER

Se ADDRESS

S *A* TO INDICATE ADDRESS OPCODE FAULT

Te SIGNED ACCUMULATOR

‘"Be SIGNED EXPONENT

9. CONTENTS OF INDEX REGISTER (1F DNE WAS USED)

) THe4 .4
EXPONENT DVERFLOW:

IF, DURING COMPUTINGs THE EXPONENT OF THE ACCUMULATOR, THE
DPERAND ASSEMBLY REGISTER OR THE ARITHMETIC UNIT BECOMES TOD
LARGE, AN EXPONENT DVERFLOW INTERRUPT IS GENERATED AND ONE L INE
OF DIAGNOSTIC DUTPUT IS PRINTED. THE FORMAT OF THE PRINTING IS
THE SAME AS FDR AN ADDRESS OPCODE FAULT WITH THE EXCEPTION THAT
FIELD 6 CONTAINS AN 'E® TO INDICATE THAT AN EXPONENT OVERFLOW
HAS OCCURRED.

PRINT LINE EXCEEDED:

IFs WHILE STORING CHARACTERS INTO THE PRINT LINE.
AN ATTEMPT IS MADE TO STORE A CHARACTER QUTSIDE '
THE LINEs THE PROGRAM IS HALTED AND THE FOLLOWING 1S5
PRINTED:

¢ON THIS LINE IS PRINTED THE CONTENTS UF-THE PRINT LINE)
PRINT LINE EXCEEDED

THE FIRST LINE PRINTED [S THE CONTENTS (FIRST 120
COLUMNS) OF THE PRINT LINE AT THE TIME THE ERROR OCCURS..
FOLLOWING IS THE MESSAGE *PRINT LINE EXCEEDED®.

PAGE

THeAW1
TH.A.2
THoAC3
THeA5
THeAL?7
THeA.8

THes A9

APPENDIX A

CONTENT

G-20 ALPHABET

G-20 °*THAT?* opcobss

COMMANDS 1IN NUMERICAL DRDER
COMMANDS IN ALPHABETICAL ORDER
SUDDS IN *THAT*

G-20 SHIFT MULTIPLIERS

BRIEF DECIMAL-0CTAL CONVERSION TABLE

M

SYMBOL
SPACE

¥ P NAXELCCHAVIDVOZEZFrAC=INNMMOND >

THeAW1
G—-20 ALPHABET

INTERNAL CARD CGODE SYMBOL INTERNAL CARD COD
00 NO PUNCH' ‘ 0 40 0
01 + 1 1 41 1
02 + 2 2 42’ 2
03 + 3 3 43 3
04 + 4 4 44 4
0s + 5 5 45 S
06 + 6 5 46 6
07 + 7 7 47 r 2
10 + 8 8 50 8
11 + 9 9 51 9
12 -1 w0 52 078
13 -2 . 53 + 38
14 -3 + 56 +
15 - 8 - 55 -
16 - -5 » 56 - 4 8
17 -6 ’ 57 01
20 - 7 = 60 3 8
21 -8 v 61 + 78
22 -9 * 62 -28
23 02 A 63 +.6 8
2a o3 < 64 - s 8
2s 0 4 $ 65 - 38
26 05 > 66 -~ & 8
27 06 3 67 4 8
30 o7 (70 048
31 08 [71 05 8
32 09] 72 06 8
33 28 MOTE 1) 73 + 4.8
34 6 B NOTE 1 * 74 7 8
as - 7 8 NDTE 1 + 75 + 28
36 + 5 8 NDTE 1 : 76 028
37 0 38 - ’ B o 4 S 8

THE INTERNAL REPRESENTATIONS ABOVE ARE OCTAL INTEGERS.

NOTE 1:
NDOTE 23

MUST 8E PUNCHED USING THE MULTIPLE PUNCH BUTTON

THE KEY MARKED QUOTE ON THE KEYPUNCH ACTUALLY PUNCHES
THE SEMI~CDLON — THE 4-8 COMBINATION. THE 6-20
CHARACTER QUOTE MUST BE MULTI-PUNCHED AS S5-B.

£

NOTE

NOTE
NOTE
NAOYE
NOTE

NOTE
NOTE

NOTE
NOTE

NOTE
NOTE
NOTE
NOTE

N - g e et

oy

-

N v o e

THeA2
G20 *THAT* OPCODOES

ADDRESS PREPARATION STORE

OCA 000 X + {(DA) STL 173 (ACC) + X

0CS 020 -%X + {UA) SYD 153 (ACC) + X4 X 4 1

OAD 040 (ACC) + X *» {DA) STS 113 (ACC) + X

DSU 060 (ACC) - X + (OA) STI 133 (ACC) + X

OSN 120 -{ACC) + % + (DA) STZ 073 0 + X

OAN 100 —(ACC) - X 3+ (DA) -

DAA 140 | (ACC) + X| * (DA) INDEX REGISTER CODES

DSA 160 [(ACC) - X| » (DA) LXP 012 X »+ 1

LXM 032 =X + 1|

ADD AND SUBTRACT ADX 002 [!) + X + 1

CLA 005 X + (ACC) SUX 022 (1) - X » 1

CLS 025 — X 3 (ACC) XPT 016 X » 1 (20)
ADD 045 (ACC) + X 3 (ACC) XMT 036 - X 3 1 (#0)
SUB 065 (ACC) - X * (ACC) AXT 006 (1) + X + 1 (£0)
ADN 105 - (ACC) - X + (ACC) SXT 026 (i) — X + 1 (£0)
SUN 125 ~(ACC) + X + (ACC) .

ADA 145 J(ACC). + X} » {ACC) TRANSFER OF CONTROL

SUA 165 |(ACC) - X]| + (ACC) TRA 017 X + NC

‘ _ _ SKP 137 {NC) + X + NC

ARITHMETIC TESTS : TRM 177 (NC) #* X3 X + 1 + NC
FOM 021 X < © REP 013 REPEAT

FOP 001 X > O XEQ Q10 EXECUTE X

Fi.LO 121 (ACC) < ©

FGD 061 (ACC) » 0

FUD 161 {(ACL) #X

FSM 101 (ACC) + + X ¢ ©

FSN 141 |(ACC) + X} > 0

FSP 041 (ACC) + X > 0

MULTIPLY AND DIVIDE et ettt e o e e e e
MPY 077 (ACC) % X + (ACC) MODE INTERPRETATION

SUL 075 (ACC) = X + (ACC)
DIV 053 (ACC)Y / X + (ACC) X + (1) + (0DA)
RDV 057 X 7 (ACC) + (ACC) (X) +« (1) + (0A)

(X + (1) +« (0A))
({X) + (1) + {(DA))}

WN=-0

LOGIC OPERATIONS

CAL 015 X * {ACC)

CCL 035 =X + (ACC)

ADL 055 (ACC) + X + (ACC)
EXL 115 (ACC) ~ X + (ACC)
ECL 135 {(ACC) A X + (ACC)
UNL 155 (ACC) v X + (ACC)
UCL 175 (ACC) v =X + (ACC)

FOR ALL TESTSs DO NEXT IF
CONDITION INDICATED IS TRUE.

LOGIC TESTS
I0Z 011 X = O
ICZ 031 =X = 0

THAT ASSEMBLES ALL COMMANDS
IN MODE 2 EXCEPT?

ISN 051 (ACC) + X 2 0 STI1 TRA
10 071 (ACC) - X = 0 STS TRM
IEZ. 111 (ACC) ~ X = © STD REP
IEC 131 (ACCY A =X = 0 STL
IUZ 151 (ACC) v X = O SYZ

v »X = 0

IuC 171 (ACC)

000
001
002
005
006
010
o11
012
013
015
016
017
020

021

022
025
026
031
032
035
036
040
041
045
051
053

‘055

057
060
061
065
071
073
075
077

0CA
FOpP
ADX
CLA
AXT
XEQ
10z
LXP
REP
CAL
XPY
TRA

-0OCs

FOM
SuUXx
cLs
SXT
ICZ
LXM
ccL
XMT
DAD
FSp
ADD
ISN
DIV
ADL
RDV
osu
FGD
suB
1UO
STZ
SuUL
MPY

CUOMMANDS IN NUMERICAL

OPERAND CLEAR ADD
IF OPERAND PLUS
ADD TO ' INDEX
CLEAR ADD

ADD TO INDEX AND TEST

EXECUTE OPERAND
IF OPERAND ZERO
LLOAD LINDEX PLUS
REPEAT

CLEAR ADD LOGIC

LOAD INDEX PLUS AND TEST

TRANSFER

OPERAND CLEAR SUBTRACT

IF OPERAND MINUS
SUBTRACT FROM INDEX
CLEAR S5UBTRACT

SUBTRACT FROM INDEX AND TEST

IF COMPLEMENT ZERO
LOAD INDEX MINUS

CLEAR ADD COMPLEMENT LODGIC
LOAD INDEX MINUS AND TEST

OPERAND ADD

IF SUM PLUS

ADD :
IF SUM NON-ZER
DIVIDE

ADD 1_0OGIC
REVERSE DIVIDE
OPERAND SUBTRACT

IF GREATER THAN OPERAND

SUBTRACT _

IF UNEQUAL DPERAND
STORE ZERD
SUBTRACT LOGIC
MULTEPLY

(ACC) |
X 7 (ACC)

TH.A.3
ORDER

X + (0DA)

X > 0

(I} + X ¢ 1

X + (ACC)

(1Y + X +» 1 (#£0)
X+ (NCY+X+13({NC)

X =0

X + 1
REPEAT
+ (ACC)

1 (£0)
(NC)

* {(0A)

0

- X+ 1

» (ACC)

(1) - X » 1 {(#£0)
X =0

- X + I

-X +» {ACC)

- X » U (£0)
(ACC) ‘(DA)
{ACC) i
{ACC)
(ACC)
(ACC)

X X X

HKow A X & »

1

- X

(ACC)

(ACC)
{ACC)
{ACC)
(OA)

+N

X X X X X X

L 2B 2 I B I BV
©

(ACC) -
{ACC) >
{ACC) -
(ACC) #
0 + X

(ACC) -
{ACC) =

{ACC)

X X X
-

+ (ACC)
{ACC)

x x
-

100
101
105
111
113
115
120
121
125
131
133
135
137
140
141
145
151
153
155
160
161
165
171
173
175
177

OAN

FSM

ADN
IEZ
STS
EXL
OSN
FLO
SUN
iEC
571
ECL
SKP
DAA
FSN
ADA
l1uz
STD
UNL
0sSA
FUO
SUA
1ucC
STL
vcL
TRM

OPERAND ADD AND NEGATE

IF SUM MUNUS '

ADD AND NEGATE

IF EXTRACT ZERO

STORE SINGLE

EXTRACT LDGIC

OPERAND SUBTRACT AND NEGATE
IF LESS THAN DPERAND
SUBTRACT AND NEGATE

IF EXTRACT COMPLEMENT ZERO
STORE INTEGER

EXTRACT COMPLEMENT LDGIC
SKIP

OPERAND ADD AND ABSOLUTE
IF SUM NON-ZERD

ADD AND ABSOLUTE

IF UNJDON ZERO

STORE DOUDLE

UNITE LOGIC

OPERAND SUBTRACT.AND ABSDOLUTE

IF UNEQUAL OPERAND
SUBTRACT AND ADSOLUTE

IF UNIDN COMPLEMENT ZERD
STORE LOGIC

UNITE COMPLEMENT LOGIC
TRANSFER AND MARK

THeAW %

- (ACC) - X » (0A)
(ACC) + X € ©

- (ACC) - X + (ACC)
(ACC) *» X = © .
(ACC) + X

{ACC) ~ X » (ACC)

- (ACC) + X =+ (0A)
(ACC) ¢ X

- (ACC) + X » (ACC)
(ACC) » X '= ©

(ACC)Y + X

(ACC) A X + (ACC)
(NC} + X #+ NC
JtACC) + X| + (DA)
(ACC) + X 2 O
|tACC) + X} » (ACC)
{(ACC) v X =0

(ACC) + X, X + 1
(ACC) v X + (ACC)

| tACCY - X| + (0A)

- (ACC)Y # X
JLACC) - X} + {ACC)
(ACC) v X = O
(ACC)Y » X

{(ACC) v =X *» {ACC)
(NC) » X3 X + 1 * NC

Py

145
045
059
105
002
006
015
005
035
025
053
135
t1s

061

121
021
001

101

141
041
161
031
131
111
011
051

171

o071
151
032
012
077
140C
040
100

ADA
ADD
ADL
ADN
ADX
AXT
CAL
CLA
ccL
CcLS
DIv
ECL

EXL

FGO
FLO
FOM
FOP

FSM

FSN
Fsp
FUO
1cz
1EC
1E2
102
ISN
1uC
1U0
1uz
LXM
LXP
MPY
DAA
DAD
DAN

COMMANDS IN ALPHABETICAL

ADD AND ABSOLUTE

ADD

ADD LDGIC

ADD AND NEGATE

ADD TD INDEX

ADD TO INDEX AND TEST
CLEAR ADD LOGIC

CLEAR ADD

CLEAR ADD COMPLEMENT LOGI

CLEAR SUBTRACT
DIVIDE

EXTRACT COMPLEMENT LOGIC
EXTRACT LOGIC

IF GREATER THAN OPERAND
IF LESS THAN OPERAND

IF OPERAND MINUS

IF OPERAND PLUS

IF SUM MUNUS

IF SuUM NDN=ZERO

IF SUM PLUS

IF UNEQUAL OPERAND

IF COMPLEMENT ZERO

IF EXTRACT COMPLEMENT ZERO

IF EXTRACT ZERO

IF OPERAND ZERO

IF SUM NON-ZERO

IF UNION COMPLEMENT ZERO
I1F UNEQUAL OPERAND

IF UNIDMN ZERO

LOAD INDEX MINUS

LOAD INDEX PLUS

MULTIPLY

OPERAND ADD AND ABSDOLUTE
OPERAND ADD

OPERAND ADD AND NEGATE

ORDER

Jtace) + x|

(ACC) +
{ACC) +
- (ACC)
{I1) + X
(1) + X

X
X

»
+

X + (ACC)
X » (ACC)

=X + (ACC)

- X *+ (ACC)

(ACC)
(ACC)
{ACC)
(ACC)
(aACC)
X ¢ 0
X >0
{acc)
(ACC)
(ACC)
{acc)
=X = 0
(ACC) A
{ACC) A
X =0
(ACC)
(ACC)
{ACC)
{ACC)
_x.)
X + 1

AWV D PN
X x x

o+t

T

MR X

X

X X X

b

b3

»
=X

+

v H A

H

{ACC) ® X =+
teAacCc) + x|
(ACC) + X »
- (ACC) = X + {(0A)

THeAS

+ (ACC)
(ACC)
(ACC)
» (ACC)

{z0)

(ACC)

+ {ACC)

({ACC)

Cc Qo

{ACC)
+. {0A)
(0OA)

000
020
160
120
060
057
013
137
153
133
173
113
073
165
165
075
125
022
026
017
177
175
155
010
016
036

oca
ocs
OSA
OSN
osu
RDV
REP
SKpP
STD
ST1
STL
5TS
5TZ
SUA
s5uB
SuL
SUN
SUX
SXT
TRA
TRM
ucL
UNL
XEQ
XPY
XMy

OPERAND
OPERAND
OPERAND
OPERAND
OPERAND
REVERSE
REPZAT
SK1IP
STORE DO
STORE IN
STORE
STORE
STORE ZE
SUBTRACT
SUBTRACT
SUBTRACT
SUBTRACT
SUBTRACT
SUBTRACT
TRANSFER
TRANSFER

CLEAR ADD
CLEAR SUBTRACT

SUBTRACT AND ABSOLUTE

SUBTRACT
SUBTRACT
DIVIDE

AND NEGATE

UBLE
TEGER

LOGIC
SINGLE

RO
AND ABSOLUTE

LOGIC

AND NEGATE

FROM TINDEX

FROM INDEX AND TEST

AND MARK

UNITE COMPLEMENT LOGIC
UNITE LOGIC

EXECUTE OPERAND

LOAD INDEX PLUS AND TEST
LOAD INDEX MINUS AND TEST

TH.AL6

X + (DA)

- X * {0OA)

J(ACCY =~ X} » (DA)
- {ACC) + X » (DAa)
{ACC) - X » {(DA)

X /7 (ACC) » (ACC)
" REPEAT

{NC) + X 3 NC

{ACC) + X, X + 1
{ACC) » X

(ACC) » X

{ACC) + X

0 + X

JLACC)Y = X| » (ACC)
{ACC) - X +» {(ACC)
{ACC) - X » (ACC)

- (ACC) + X »+ (ACC)
(1) - X » 1

(1) - X + 1 {20)
X *» (NC)

{NC) + X3 X + 1 3+ NC

(ACC) v =X + (ACC)
LACCY) v X + LACC)
EXECUTE X AS COMMAND
X + I (20)
- X 3 I (#0)

"ADC

ALF
CHK
coM
cPy
DBG

" DEC

DEF

oMP

ENT
FLG
FPC
HPC
LBL
LIN
LWD
MTT
NAM
oCcT
OPM
ouT
PAG
PBC
PRT
RBC
REL
RET
RGN
SXX
TOP
WRD

SUDOS IN *THAT?*

AODRESS CONSTANT. . :
ALPHANUMERIC INFORMATION
CHECK

COMMENT

COPY

DEBUG

DECIMAL LISTING

DEFINE '

DUMP

ENTRY

FLAG _

FULL PRECISION CONSTANT
HALF PRECISIDN CONSTANT
LABEL

LINE

LDOGIC WORD

 MARK TRANSFER TO

NAME

OCZTAL LISTING
OPERATUOR MESSAGE

ouTt

PAGE

PUNCH BINARY CARDS
PRINT

READ BINARY CARDS
RELEASE

RETURN

PRINT REGIONAL SYMDOL
SET STORAGE EXTRACTOR
TYPE OR PRINT

WORD .

THeA«7

G-20 SHIFT MULTIPLIERS

LEFT SHIFT

05
05
0S5
06
06
06
o7
07
07
10

10

10
11
11
il
12
12

00
00
00
o0
00
00
00
00
00

00

o0
0o
co
Q0
0o
00
00

10
20
40
100
200

400

1000
2000
4000
10000
20000
40000
00001
00002

00004

00001
00002
000G
00001
00002
00004
00001t
00002
00004
00001
00002
00004
00001
0Cco002

NUMBER

VONIPANLWN=O

RIGHT

000

101
101
101
102
102

102

103
103
103
104
104
104
105
105
105
106
106
106

107

107
107
it0
110
110
111
111
111
112
112
112
113

00
00
a0
co
00
00
00
00
o0
00
00
00
00
00
00
00
00
00
0¢
00
00
00
00
00
00
Go
00
00
co
oo
GO
0o

SHIFT

G0001
00004
006002
cCco001
60004
00002
0001
00004
00002
00001
00004
o002
00001
00004
Qo002
00001
00004
00002
co001
00004
00002
00001
0000C4a
cooo2
00001
00004
00002
00001
00004
00002
00001
00004

TH'A.B

DECIMAL

10
20
30
40
50
60
70
80
90

100
200
300
400
500
600
700
800
900

000
000
000
000
000
000
000
000
000

CENON & UN-

10 000
20 000
30 000
40 000
50 000
60 000
70 000
80 000
90 000
100 000

BRIEF DECIMAL-OCTAL CONVERSION TABLE

OCTAL

[

23
a7
72

116

141

165

210

234

257

303

12
24
36
S0
62
74
106

120

132

144
310
454
620
764
130
274
440
604

750
720
670
640
610
560
530
500
450

420
040
4690
100
520
140
560
200
620
2490

OCTAL

N W -

100
200
300
400
S00
500
700
1 000

10
20
30
40
50
50
70

100
200
300
400
S00
600

700

000
Q00
000
000
000
000
000

000
000
000
000
000
000
000

600
GO0
000
000
Qo0
000
000
Q00

DEC

32
65
98
131
163
196
229
262

IMAL

8
16
-24
- 32
40
48
56

64
128
192
256
320
384
448

512
024

536

048
S60
072
584

096
192

288

384
480
576
672

768

536
304
072
840
- 608
376
134

THeAe9

TH.B,]

APPENDIX B

THAT SUDOS FOR COMPUTATION CENTER STAFF

BUT <IMMATERIAL>

'"BUFFER THAT'

Code to be executed by the CB-11 control buffer has to be assembled special-
ly. 'BUT' turns on the buffer code processing portion of 'THAT', which assembles
the buffer code, one 8-bit character per G-20 word. Images not having & buffer

op-code are processed in the normal manner.

Examples:
CLA T2; Normal THAT code
BUT Begin processing buffer opcodes
LO LLM B2;
SLM 2;
TRC :
TRA
SDT
L1 Ccor
LBL L; :
CuT : Stop processing buffer opcodes

'BUT' permits buffer codes to be processed. Non-buffer opcodes are processed

normally.

CcuT <IMMATERIAL>
NON-LISTABLE
' NORMAL THAT'
'THAT' will return to processing cards in the normal mode. They will not be
processed as possible buffer code. (See 'BUT'.) |
Example:

See 'BUT'.

CRD <IMMATERIAL>

PRINTING BEFORE EXECUTION
'CARDS'

'"THAT' switches to taking input from cards.

TH.B.2

LC8 <LINE MNEMONIC>|<EXPRESSION>|<1C8>

The function is to pack information in 8-bit characters for transmission
over the communication line. If the parameter is a line mnemonic, the approp-
riate octal constant is supplied. If the parameter is an expression, the value
of the expression is entered in two 6-bif characters and numeric flags added,
Characters are packed four per G-20 word, It is a detectable error if the value

of the expression is not less than /10000,

Examples:
1c8 QIN, LLM, H2, SLM;
LGB HO, POP, SSF;

The first instruction causes 5 8-bit characters to be packed into 2 G-20
words, The rightmost 3 characters in the second word are zero,
The second instruction causes 4 8-bit characters to be packed into 1 G-20

word,

PAX <EXPRESSION>,<EXPRESSION>

NON-LISTABLE
PRINTING BEFORE EXECUTION

'"PACK BUFFER CODE'
' The function is to pack code which has been assembled by ﬁuffef That, 4
characters per G-20 word. The first and last -addresses of the BUT code are
given by the first and second expressions, respectively. If the number of
characters to be packed is not an even multiple of 4, the odd remaining'chafac-
ters are packed left-justified and the rest of the last word is made zero, After
the 'PAK' sudo has been executed, the value of the current instruction counter is

left at the address of the last packed word + 1.

TLC <LINE MNEMONIC>|<EXPRESSION>,<EXPRESSION>|
<EXPRESSION>| <LINE MNEMONIC>,<EXPRESSION>
NON-LISTABLE

'TRANSMIT LINE COMMAND'
The function is to assemble the G-20 instruction 'TLC', allowing the address

portion of the command to be a 'LINE MNEMONIC',

TH.B.3

The address field of the instruction is scanned until column 68 or a
character other than a blank, letter or digit is encountered., Tf the last
non-blank characters are a legal line mmemonic, the equivalent octal value is
used as the address, the instruction made mode zero and the rest of the line
treated as usual. If the address is not & mnemonic the input line is treated
as usual.

Examples:

TLC QRD;
TLC 0 /60;
157 0 /60;

These instructions are equivalent,.

RXA <SIGNED EXPRESSION>
RON-LISTABLE

'SET RELOCATION CONSTANT'

The function is to store the value of the expression as the relocation
constant 'R' in '"THAT' normally 'R’ = O, 7

'RXA' gives the user the ability to assemble a program in one part of mem-
ory, and execute it at a later time from another part of memory. Whenever 'THAT'
storés an instruction, it is stored in the location A + 'R', All references in
the program listing are to the value of A, the current instruction counter,
Although the program is assembled in another part of memory, it is generally the
case that it should not be executed until the program has been relocated to the

addresses appearing on the listing,

Examples:

LBL D6;

DEF A = /20000;

RXA /10000;
20000 D! ENT A DO-NOTHING SUBROUTINE;
20001 TRA 1 D1, EXIT AFTER DOING NOTHING
. PRT E;

El 20000

The code produced is stored in locations /30000 and /30001.

TH.B. 4

TD8

TD6

RD8

RD6

TC8

'TRANSMIT DATA 8-BIT'
'TRANSMIT DATA 6-BIT'
YRECEIVE DATA 8-BIT'
'RECEIVE DATA 6-BIT'

'TRANSMIT COMMAND 8-BIT'

<EXPRESSION>,<LINE MNEMONIC>|
<EXPRESSION>, <EXPRESSION>
NON-LISTABLE

The function of the sudos is the same as in '"TLC', except that the index

field is checked for a line mnemonic.

A block transmit of instructions is set up starting at PO for a block length of

Examples:
BTR PO;
T18 16, SDT;

16 werds.
transmission.
TOP <EXPRESSION>,<EXPRESSION> *

LISTABLE
YTYPE QR PRINT'

The second expression which is taken modulo 4, determines where the error

indications are to be listed, as follows:

A listing of the program will be made on the printer with errors being listed on

1 On the printer

2: On the console typewriter

3: On both the printer and the console typewriter
0: As it was before the 'TOP' sudo occured

It is not possible to turn the error print-out totally off.

Examples:
TOP 1,3;

both the printer and the console typewriter.

<IMMATERTAL> _ 7
PRINTING BEFORE EXECUTION

*TYPEWRITER!

VTHAT' switches to taking input from the console typewriter.

The index field is scanned and '"SDT' (Start Data Trénsmission) starts

»

N

