
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

THAT

Staff Publication

June 25, 1962

- MNT LIBRARY
cAJWEfiiHKUM mmm

CHAPTER 1 - ELEMENTS OF •THAT 1

1.0 INTRODUCTION

'THAT 1 is a symbolic assembly language designed for writing programs in
the machine language of the Central Processor of the CDC G-21 computer system
at the Carnegie Institute of Technology Computation Center. This manual will
describe the •THAT 1 language and the associated Assembly Program, which were
developed by the staff of the Computation Center. The reader may refer to the
G-20 machine language reference manual (fCentral Processor/Machine Language
Manual 1, CDC G-20 Publication No. 611) for information on the logical organi
zation, word formats, arithmetic rules, addressing scheme, and operations of
the Central Processor. SECTION 2 of the User's Manual describes the hardware
modifications which have been made to the Carnegie Tech system, converting it
from a G-20 into a G-21.

The •THAT' Assembly Program (or "Assembler") accepts a source program
containing code in the tTHAT l language, and translates ("assembles") it into
absolute binary machine language in core memory. This translation process is
generally one-for-one; thus, each 'THAT 1 statement, occupying a separate line
or "card image" of the source program, is translated generally into a single
abolute binary instruction or data word. For this reason, fTHAT f is called
an "assembly" language.

The ,THAT* Assembler performs the translation with only one pass over the
source deck, assembling the absolute instructions directly into core memory
without the use of an intermediate "scratch tape". Instructions from the source
program are (normally) assembled into the core locations from which they will
.subsequently be executed; at present there is no provision for automatic re
location. As each card image of the source program is processed, its image
is listed on the printer along with the core location into which the corres
ponding binary instruction is assembled.

The fTHAT f language is "symbolic", meaning that symbols may be used for
machine addresses and mnemonic names may be used for operation codes. Since
it operates in a single pass, the "THAT* Assembler will encounter address
fields which contain symbols which have not yet been defined. The Assembler
keeps lists of all such occurrences of undefined address symbols, and when
the symbol is subsequently defined all references to it are properly "fixed
up" in the assembled instructions in core memory. There are some important

restrictions on the use of such undefined symbols, however, in particular,
a symbol which has not yet been defined cannot be used in a general address
expression including any arithmetic operations at assembly time (for example:
XI + 2, or 2*L3 + KO) .

The index field of a 'THAT 1 statement is further restricted: all symbols,
whether used alone or in assembly - time expressions, must be defined before
the index field is encountered. There is no provision for "fixing up" undefined
symbols used in the index field.

In general, each line of 'THAT 1 code includes an operation code, either in
absolute octal form or (more frequently) as a three-letter mnemonic. These
mnemonics must be one of the following:

" (1) A standard G-20 machine language opcode mnemonic, as listed in
the G-20 Reference Manual and in Appendix of this manual; or

(2) A "sudo" (pseudo-instruction) mnemonic. A sudo does not stand
for an actual machine command but is rather an instruction to
the 'THAT' assembler, to be executed when the sudo is encountered
during the assembly process. All 'THAT' sudos are listed in alph-

\ •
V abetical order and explained in Chapter 3 of this manual.

1
\

and changing the program.
Each 'THAT* symbol has the form of a class name followed by an integer;

the integer is referred to as the "subscript" part of the symbol. Class names
are one character, and can be any of the 26 letters or one of the four special
characters: —i, or | • These rules are summarized by the following

Backus Normal Form:
<class name> : := <letter> J —• | <- | | <the mark 1 1 f >
<subscript> ::= <integer> | <empty>
<symbol> : := <class name> <subscript>

Notice that the subscript can be omitted; this has the same meaning as a zero
subscript.
Examples:

L4
-i27

|3
T (same as: TO)
The possible symbols are divided into 30 classes by the class names. All

symbols of a particular class will be either:
Label symbols, whose values can be defined independently and in any

order; or
(2) Regional symbols, all referring to the same region and all bearing

a fixed relationship to each other.
These two kinds are discussed in sections 1.1.1 and 1.1.2, below. The one
class name f A f has special significance, and is discussed in section 1.1.3.

Symbols are most frequently used to represent addresses with values
between 0 and 2*6 - 1. However, a symbol may be defined (by a fDEF* sudo)

30
to have any value between 0 and 2 J - 1.

1.1 SYMBOLS
The purpose of symbols is three-fold: (1) The programmer can refer

symbolically to addresses which will not be known until the entire program
has been written and assembled. (2) The programmer can parametrize his
program and assign values to the parameters at assembly time, so that sizes
of buffers, data storage blocks, program segments, etc., can subsequently be
changed by simple reassembly runs. (3) The symbols can give some mnemonic
value to the program, aiding the programmer in the task of writing, debugging,

1.1.1 LABEL SYMBOLS

All symbols with a particular class name can be declared to be label
symbols with a 1LBL 1 ("LaBeL") sudo instruction. The 1LBL 1 declaration
contains the class name character followed by the maximum subscript integer
which labels of the class will be allowed. For example:

LBL K20
declares a set of 21 label symbols: KO, Kl, K2, ..., K20. These symbols are
free and arbitrary and can be defined in any order with any set of values.
The symbols of the class are related only in that they occupy adjacent positions
in the symbol table created by the Assembler. This fact may be of importance
to the programmer who needs to reuse symbols or reclaim symbol table space
during assembly of very large programs; see the sudo instructions CHK, LBL,
and REL in Section 4 for more information. The maximum subscript given in
the fLBL f declaration is used by the Assembler to allocate symbol table space.

1.1.2 REGION SYMBOLS
A class name will denote a region if:

(1) any symbol in that class is given a value (by a ,DEF I sudo
instruction), and if

(2) that class has not previously been declared to be label symbols
(by a fLBL f sudo instruction).

All symbols with a regional class name refer to the same region, and their
values are related in a fixed way: the symbol whose subscript part is the
integer n will stand for the nth memory address of the region. Thus, defining
any one symbol of the class defines them all.
Example: assume that R has not appeared in a fLBL* declaration; then:

DEF RO = 40
will make R a region whose first cell is address 40 (an index register). Then
all R symbols will be defined; e.g. R9 = 49, and in general Rn = 40 + n is any
integer constant. The following fDEF f operation would have the same effect:

DEF R9 = 49
The expression: RO + 23 is equivalent to the symbol: R23, if R is a region.

A class of symbols which has been used as a region can later be declared
in a fLBL f sudo instruction and thereafter be used as independent label symbols.
Conversely, a class aame which has been used for labels can be changed into a
region if all labels of that class are undefined with a sudo instruction of the
form:

REL <class name>
and if any one of the members of the class subsequently is defined in a DEF
sudo.

1.1.3 THE f A f SYMBOLS

The symbols in class fA' have special significance in the 'THAT* language
and cannot be used as label symbols. The symbol "A" or "AO" always has as
value the current value of the Assembler 1s location counter, i.e. the memory
location into which the current instruction is to be assembled. After pro
cessing each line of the source program, the Assembler increments the value
of t A f by the number of binary words it has loaded into memory. The 'A1 value
is printed on each line of the Assembly listing.

The f A l symbols other than "AO" behave as if A were a region name; that is
An has the value: A + n.
Example:

TRA A + 3 (or: TRA A3)
has the same effect as:

LBL L2

LI TRA LI + 3

1.2 EXPRESSIONS

Symbols may be used to build expressions, whose syntax can be defined
in Backus Normal Form as follows:
<TERM> ::= <DEFINED SYMB0l> | <INTEGEK> | <OCTAL INTEGER^ | <POWER OF T W O
<OCTAL DIGIT> : := 011| 2| 3| 4| 5| 6| 7
<DIGIT> ::= <OCTAL DIGIT> |8|9
<INTEGER> ::= <DIGIT> | <INTEGER> <DIGI1>
<OCTAL INTEGER> : := /<OCTAL DIGIT> | <OCTAL IOTEGER> <OCTAL DIGIT>
<POWER OF T W O : := $<INTEGER>
<OPERATOR> : := + | - | *
<EXPRESSION> ::= <TERK> | <EXPRESSI01N> <OPERATOR> <TERM> | <EMPTY>
EXAMPLES:

418
/77 * $12 .
LI -6-L0*/3

Here <DEFINED SYMBOI> means a symbol whose value has been defined previously
in the assembly. The symbol may have been defined in any of the following
ways:

(1) It may be a regional symbol and therefore have received a value
from the fDEF f sudo which defined the region.

(2) It may be a label symbol which has been explicitly defined by a
•DEF 1 sudo.

(3) It may be a label symbol which has appeared in the location field
of a previous instruction and therefore been defined with the value
of •A 1 for that instruction.

An expression defined by these rules can be used in the address and index
fields of a line of fTHAT f code. The meaning of an expression is obtained by
performing the indicated operations from left to right with no hierarchy and
truncating to 32 bits after each operation. Thus, 2 + 3*4 = 2 0 .

The <TERM> f f$n", where n is an <INTEGER>, has the value 2 t n; i.e.,
1 1 $n" stands for a 1-bit in bit position n of a logic word. An empty expression
or term will have the value zero.

Expressions are generally used to represent G-20 (or G-21) addresses,
and their values will therefore be positive integers less than 2 t 16. The
rules for expressions outside this range are more complex, but are contained
in the following paragraphs.

The value of an expression is generally computed in logic format, and will
therefore be a positive integer between 0 and 2 - 1. The result of each arith
metic operation is shifted to zero exponent, truncated on both ends to 32 bits,
and made positive (by an 'STL 1 command in the Assembler). There is an exception
to the logic format, however; the right hand operand of each multiplication ('*f)
operation will be accessed numerically (by an 'MPY* command in the Assembler).
Thus, the expression:

$ 24 * /377
will be computed by 'THAT 1 to be /377000000; however, the expression with the
operands are reversed:

/377 * $24
will be computed to be 0 since the value $24 will be accessed numerically. In
the expression

/3 * $4 + 13 * $24
both $4 and $24 will be accessed numerically.

Although an expression is generally computed as a 32 bit logic word, the
final result may be truncated to a smaller field, determined by the way that
the expression is used. If an expression is used:

(a) as the address of a G-20 command, it will be truncated to 16 bits,
with the high-order bit stored as bit 30 of the command. See Section
2.6.

(b) in the index field of a G-20 command, its value must be between 0 and
63 or an error message will be printed. See Section 2.7.

(c) in a *DEF' sudo, the expression will be truncated modulo 2 t 30
(i.e., both flag bits will be set to 0) . See Chapter 3 .

(d) in a 'LWD' or fWRD' sudo, all 32 bits will be stored (EXCEPTION:
'WRD' sudo, if the expression is negative).

TH.2.1

CHAPTER 2 - SOURCE PROGRAM FORMAT

2.0 SUMMARY OF FORMAT

A line of 'THAT* language source code contains information in some or
all of the following fixed fields:

1.
2.
3.
A.
5.
6.
7.
8.

Example:
(Columns)

I 1 I I *

Language
Location
Flag
Operation
Mode
Address
Index
Comment s
Immaterial

1 1 2
3 5 0

- Columns 1 - 2
- Columns 4 - 8
- Column 13
- Columns 15 - 17
- Column 20
- Columns 24 - 67
- Columns 2 4 - 6 7
- Columns
- A l l other Columns

TH|
t
1.

|E4
t
2.

\2\ |CLA|
t t
3. 4.

°L
t
5.

/77, R2; THIS IS A COMMENT
t t t
6. 7. 8.

2.1 LANGUAGE FIELD (Columns 1-2)
When card images are typed-in from a remote teletype, the language field

is used to set the meaning of the TAB key for the language. The mnemonic f T H f

will set the TAB columns for 1THAT 1 card images as follows:
Tab Column Field
1 4 Label
2 15 Opcode
3 20 Mode
4 24 Agdre.ss, Index Register
5 40 Comment

For more details, see SECTION 2 of the User's Manual.

A

2,2 LOCATION FIELD (Columns 4-8)

In general the location field will be blank unless a reference is made
to that line of code. The location field may contain any of the following:

1. A label which is currently undefined. The effect is to define
that label by giving it the current value of the location counter
('A').

2. An expression which equals the current.value of the location counter
This can be used for explanatory or documentary purposes.

3. Any string of characters starting with the letter 'A 1. The contents
of the rest of the field will be ignored and can be used for a
comment.

Examples:

MPY
•

M5; SHIFT RIGHT 5 OCTALS

M5

•
•

105 l; SHIFT CONSTANT

LXP 0 20, R2;
E2 STZ P0, R2; ZERO A LOCATION IN MEMORY

SXT 0 1, R2; DECREMENT AND TEST

TRA E2; LOOP

2.3 FLAG FIELD (Column 13)

The flag field is used to specify the flag bits of the word generated.
FLAG COLUMN FLAG BIT(S) LOADED

0 OR BLANK NONE
1 BIT 30
2 BIT 31
3 BITS 31 AND 30

Note that in the G-21 Central Processor, Flag Bit 30 has the special signif
icance of the highest-order bit of the address. See Note 1, SECTION 4.1.3.
The flag field is ignored on all sudo instruction cards, unless the sudo is
f A D C f , 1 L W D 1 , or 'NAM1 .

2.4 OPERATION FIELD (Columns 15-17)

The operation field may contain one of the following:
1. Blanks. The line will be processed as a VCOM 1 sudo, i.e., a

comment card.
2. An octal integer (without the preceding slash). In this case,

it will be interpreted as the operation part of a G-20 instruction
and the octal integer will be right justified in bits 29 to 21 of
the assembled instruction.

3. The three-letter mnemonic for G-20 operation. The corresponding
octal code will be loaded as part of the assembled instruction.
G-20 mnemonics are listed in the appendix.

4. The mnemonic for a 'THAT 1 sudo. The action taken for the possible
sudos is described in Part 4.

2.5 MODE FIELD (Column 20)

Each G-20 mnemonic has associated with it a "normal'1 mode for that oper-
ation as described below. If the normal mode is desired, the mode field may
be left empty; otherwise, 0, 1, 2 or 3 must be punched. A mode punch always
supercedes the normal mode. The mode field of a sudo is ignored. (EXCEPTION:
See fLWD f sudo, 'ADC' sudo and 'NAM1 sudo.) Section 3 contains a summary of
the addressing modes.

All G-20 mnemonics are mode 2 except the following which are mode 0.
STI STL TRA REP
STS STZ TRM
STD

2.6 ADDRESS FIELD (Columns 24-67)

The address field normally contains the operand or the address of the
operand. Blanks in the address field are Ignored (except in ' ALF f sudo and
1 NAM* sudo)•

4 The address is terminated by a comma, a semi-colon, or Column 68 (which
is not scanned), whichever occurs first. If it is terminated by a comma, an
index is then expected.

The following applies to the address field only if the operation field
contains a G-20 mnemonic or an octal integer.

1. If it is blank, address (bits 14-0 and bit 30)of the assembled
instruction will be zero.

2. If it is a single symbol which Is already defined, the value of the
symbol will be placed in the address (bits 14-0 and bit 30) of the
assembled instruction. If the symbol is a label which is not yet
defined, its v&lue will be placed in the address when it is defined.

3. If it is an expression, the value of the expression will be entered
as the address in the assembled instruction. All symbols in the
expression must have been defined previously or an error message
will be printed. See 5.1.1.

If the operation field contains a G-20 mnemonic or the 'ADC 1 sudo, the
value of the corresponding expression must be less than 2 T 16 and is convert
ed to the 15 and 1 bit format by G-21 commands; i.e., if bit 15 is non-zero,
bit 30 is set to one and bit 15 is set to zero.

EXAMPLES:
DEF A = /120000, P0 = /124000, R0 = /40;

CLA 3 P0, R0;

•

DEF A = P0;
LWD P64;

After these cards are assembled, location /120000 contains /.l 605 40
24000 (Note that bit 15 is shifted to bit 30). Location /124000 contains
/0 000 01 24100.

2.7 INDEX FIELD (Columns 24-67)

If any index register is used, the address field must be terminated by
a comma, followed by a symbol or an expression whose value is the number of
an index register. Blanks in the index field are ignored, and the field is
terminated by a semi-colon or Column 68 (which is not scanned), whichever
occurs first.

The value of the expression in the index field is loaded right-justified
into bits 20-15 of the assembled instruction; if the value is not defined, an
error message will be printed. If the operation field contains a G-20 mnemonic,
an error message will be printed in the value of the index field is greater
than 63.

2.8 COMMENT FIELD (Columns 24-80)

All columns to the right of the first semi-colon in the address-index
field are ignored by the Assembler, and may therefore be used for comments.
Comments may extend to Column 80. All columns of the input line including
the fAND f sequence number are printed (unless assembly printing has been
turned off).

TH.3.1

CHAPTER 3 - SUDO INSTRUCTIONS IN 'THAT 1

3.0 INTRODUCTION

A sudo (pseudo-instruction) is an instruction to 'THAT 1 rather than a •
G-20 command to be assembled for later execution. The mnemonic name of the
sudo is punched in the operation field of the source program card.

For all sudos the following holds:
1. The Location field Is first treated as described in Section 2.2 for

machine commands.
2. The Flag and Mode fields are ignored (EXCEPTIONS: 'LWD' sudo, 'NAM'

sudo and 'ADC' sudo.)
3. Thereafter, the specific action for the particular sudo takes place.
4. A sudo may be listable or non-listable: the parameter set given by

the address field of a listable sudo may be repeated, separated by
commas, as many times as desired in the space provided on the card
up to Column 67, while only one parameter set is allowed in the
address field of a non-listable sudo. The effect of a listable
sudo is the same as if the sudo was repeated on successive lines
with one parameter set per line; the parameter sets are processed
in the left-to-right order.*

Section 3.1 contains a reference list of all sudos in 'THAT 1. The re
mainder of Chapter 3 consists of an alphabetical listing of the sudos, with
an explanation and examples of the use of each one.

The format used in explaining the sudos is as follows:
XXX EXPRESSION

LISTABLE
'EXECUTE EXTRA EXEC*

The first line gives the three letter sudo name and the type and* format of
the parameter set (s). The second line states whether the sudo is listable
or non-listable for sudos for which the concept is meaningful. The third
line contains a word or more describing the action of the sudo. (NOTE: the
above sudo is only a hypothetical example.)

A L F < B L A N K > < S T R I N G > | < D I G I T > < S T R I N G >
N O N - L I S T A B L E

• A L P H A N U M E R I C •

T H E E F F E C T IS TO L O A D T H E G - 2 0 INTERNAL
R E P R E S E N T A T I O N OF THE S T R I N G OF C H A R A C T E R S INTO S U C C E S S I V E
M A C H I N E L O C A T I O N S . 4 C H A R A C T E R S PER W O R D . THE D I G I T G I V E S
T H E N U M B E R OF W O R D S T O BE L O A D E D . W I T H A BLANK B E I N G
T R E A T E D AS 1. AND 0 8 E I N G T R E A T E D AS 1 0 . T H E BLANK OR
D I G I T M U S T A P P E A R IN THE F I R S T P O S I T I O N OF T H E A D D R E S S
F I E L D . C O L U M N 2 4 . THE S T R I N G TO 3 E L O A D E D E X T E N D S F R O M
C O L U M N 2 5 T O C O L U M N C 2 4 + 4 K) . W H E R E K IS THE N U M B E R OF
W O R D S S P E C I F I E D .

E X A M P L E S :

WL ALF 4 E R K 0 R N U M B E R ONE

T H I S L I N E W I L L C A U S E THE L O A D I N G OF
E R R O I N T O Wl
R NU INTO Wl + l
M B E R I N T O W l+2
O N E I N T O W l+3

T H I S IS E Q U I V A L E N T TO
Wl ALF 1ERRO

A L F R NU
ALF M B E R
A L F 1 ONE

A D C < E X P R E S S I ON > | < E X P R E S S I O N >.<INDEX>
N O N - L I S T A B L E

• A D D R E S S C O N S T A N T ^

T H E F U N C T I O N OF •ADC• IS THE SAME AS THE G - 2 0
M N E M O N I C • O C A S ' E X C E P T THE NORMAL M O D E IS ZERO R A T H E R
THAN T W O . •'•.ADC ,T U S E D FOR A D D R E S S C O N S T A N T S . MAY
HAVE A>4 A D D R E S S W H I C H M U S T BE L E S S THAN 2 + 1 6 AND
MAY A L S O HAVE AN I N D E X . •ADC• IS THE S U D O W H I C H W O U L D
N O R M A L L Y BE U S E D W H E N C O M M A N D S ARE TO BE A S S E M B L E D
AT E X E C U T I O N T I M E *

E X A M P L E S :

A D C /177 77 7V
1 O C A 0 / 7 7 T 7 7 ;

T H E S E TWO I N S T R U C T I O N S ARE E Q U I V A L E N T .

C H K < S Y M B O L >
LI S T A B L E

• C H E C K •
T H E F U N C T I O N IS TO C H E C K W H E T H E R OR N O T L A B E L S W H I C H

HAVE B E E N U S E D ARE D E F I N E D . THE S Y M B O L M U S T BE A L A B E L .
IF ITS S U B S C R I P T IS Z E R O OR BLANK• T H E N THE S U B S C R I P T IS
C O N S I D E R E D TO BE THE M A X I M U M A L L O W E D S U B S C R I P T . THE
L A B E L S F R O M <I D E N T I F I E R > 0 TO X I D E N T I F I E R > S U B S C R I P T ARE
T H E N C H E C K E D TO S E E IF ALL T H O S E W H I C H HAVE B E E N U S E D ARE
D E F I N E D . IN C A S E AN U N D E F I N E D L A B E L IS E N C O U N T E D • AN
E R R O R P R I N T O U T T A K E S P L A C E W I T H T H E F O L L O W I N G F O R M :

U N D T 5 2 6 3 4 7 5 4 3 6 2

T H I S M E A N S THAT T H E L A B E L T 5 IS U N D E F I N E D . A N D THAT
IT HAS L A S T B E E N U S E D IN L O C A T I O N Z 2 6 3 4 7 AS A 1 6 - B I T
C O N S T A N T A N D IN L O C A T I O N Z 5 4 3 6 2 AS AN A D D R E S S TO AN
I N S T R U C T I O N .

THE C H E C K I N G WILL C O N T I N U E U N T I L ALL T H E
S U D O - P A R A M E T E R S HAVE B E E N E X H A U S T E D .

E X A M P L E S :

L B L D 5 ;
L B L w i o ;
L B L R 9 0 ;
(P R O G R A M)
C H K D » W 5 . R ;

A L L OF THE D « S AND R « S AND WO Tt) W5 ARE C H E C K E D .

CPY < E X P R E S S I O N > . < E X P R E S S I O N >
L I S T A B L E

•COPY•

L E T T H E V A L U E OF T H E F I R S T AND T H E S E C O N D E X P R E S S I O N S
B E Nl AND N 2 . R E S P E C T I V E L Y .

THE N E X T Nl W O R D S W I L L BE F I L L E D BY C O P Y I N G F R O M
T H E L A S T N 2 W O R D S A S S E M B L E D . THAT IS. T H E W O R D S IN
A - N 2 . A - N 2 + I A - 1 W I L L BE C O P I E D R E P E A T E D L Y
U N T I L Nl HAVE B E E N C O P I E D . Nl N E E D NOT BE A M U L T I P L E
OF N2« IF Nl = 0. NO W O R D S W I L L BE C O P I E D .

A F T E R •CPY» HAS B E E N E X E C U T E D . THE L O C A T I O N
C O U N T E R F A F HAS B E E N I N C R E A S E D BY N l .

W A R N I N G : IF THE L A S T N2 W O R D S C O N T A I N ANY
U N D E F I N E D L A B E L S . T H E S E W I L L NOT L A T E R BE D E F I N E D IN THE
C O P I E S .

E X A M P L E S :

W8 LWD / 7 3 7
LWD W53;
CPY 50 0 .2

(W8.J AND (W8+1) WILL BE COPIED INTO THE NEXT 500 LOCATIONS.
E l LWD 0 ;

CPY 4 9 9 . 1 ;

THE EFFECT IS TO CLEAR 5 0 0 LOCATIONS STARTING AT El

COM < I M M A T E R I A L ^

• C O M M E N T •

THE R E S T OF T H E L I N E IS I G N O R E D ,

E X A M P L E S :

L B L L i ;
COM T H I S IS A C O M M E N T
D E F A = / 3 0 0 0 0 ;

LI COM G E E . . . A N O T H E R C O M M E N T

T H E S E L I N E S W I L L BE P R I N T E D . TWO L # S W I L L B E D E C L A R E D AS
L A B E L S AND L I W I L L BE G I V E N THE VALUE / 3 0 0 0 0 . H O W E V E R . NO
C O D E W I L L B E C O M P I L E D .

D B G

•DEBUG•

T H E F U N C T I O N I S TO TURN ON T H E S E L E C T I V E T R A C E
S W I T C H IN M O N I T O R . IN R U N N I N G THE P R O G R A M . ALL C O M M A N D S
W I T H A 2 FLAG (A 1 IN B I T 3 1) WILL BE L I S T E D ON THE
P R I N T E R IN THE FO RM AT FOR M O N I T O R T R A C E D E S C R I B E D IN THE
A P P E N D I X .

A •DBG• S U D O C A R D MAY B E P L A C E D A N Y W H E R E IN THE
* T H A T • D E C K . C O M M A N D S MAY BE M A R K E D FOR T R A C I N G E I T H E R BY
I N S E R T I N G A •FLG• S U D O B E F O R E . OR P U N C H I N G A 2 IN THE FLAG
F I E L D (COLUMN 13) OF THE C A R D W H O S E I N S T R U C T I O N IS TO BE
T R A C E D .

D E C < I M M A T E R I A L >

•DECIMAL L I S T I N G *

T H E F U N C T I O N IS TO C A U S E S U B S E Q U E N T C O N V E R S I O N FOR
P R I N T I N G OF T H E C U R R E N T I N S T R U C T I O N C O U N T E R AND R E G I O N
AND L A B E L A D D R E S S E S TO B E D O N E IN D E C I M A L .

E X A M P L E S :

D E F
D E C
R G N

A = / 2 0 0 0 0 ;
P R I N T IN D E C I M A L
A;

AO 8 1 9 2

N O T I C E T H A T T H E R E G I O N A L S Y M B O L IS C O N V E R T E D IN
D E C I M A L .

DMP < E X P R E S S I O N > . < E X P R E S S I O N >
L I S T A B L E
P R I N T I N G B E F O R E E X E C U T I O N

•DUMP*

T H E E F F E C T IS TO GIVE AN OCTAL DUMP ON T H E P R I N T E R
OF THE L O C A T I O N S F R O M T H E V A L U E OF THE F I R S T E X P R E S S I O N UP
TO A N D I N C L U D I N G T H E V A L U E OF T H E S E C O N D E X P R E S S I O N .

W A R N I N G : T H E R E IS NO C H E C K THAT T H E V A L U E S ARE P R O P E R
M A C H I N E L O C A T I O N S .

D E F < S Y M 8 0 L > = < E X P R E S S I 0 N >
L I S T A B L E

• D E F I N E *

T H E V A L U E OF THE E X P R E S S I O N WILL 3 E C A L C U L A T E D AND
T A K E N M O D U L O 2 * 3 0 . AND THE S Y M B O L W I L L BE G I V E N T H I S
V A L U E •

IF T H E L E T T E R OF THE S Y M B O L HAS B E E N D E C L A R E D AS A
LABEL» . THE P A R T I C U L A R L A B E L G I V E N IS T H E R E B Y D E F I N E D . IF
THE L E T T E R IS N O T A L A B E L . THE C O R R E S P O N D I N G R E G I O N A L B A S E
IS D E F I N E D AS

< E X P R E S S I O N > - < S U B S C R I P T >

W H E R E THE S U B S C R I P T N O R M A L L Y E Q U A L S Z E R O ,

E X A M P L E S :

D E F A = / 1 3 0 0 0

T H E MEMORY L O C A T I O N FOR T H E NEXT I N S T R U C T I O N IS / 1 3 0 0 0 .

L B L B 3 0
D E F B 0 = / 2 2 7 5 0

T H I R T Y ONE B9S ARE D E S I G N A T E D AS L A B E L S . AND BO IS G I V E N
THE V A L U E / 2 2 7 5 0 . B l . 8 2 B 3 0 ARE U N D E F I N E D .

D E F C 1 0 = / 7 0 0 0 ;

CO I S G I V E N THE V A L U E Z 6 7 6 6 . AND A L L C F S ARE D E F I N E D .

ENT < I M M A T E R I A L >

• E N T R Y •

T H E E F F E C T IS TO U P S P A C E THE P R I N T E R T W I C E (IF T H E
P R I N T I N G IS O N) . AND A S S E M B L E AN A L L ZERO W O R D . T H I S S U D O
CAN BE U S E D FOR E N T R Y INTO A S U B R O U T I N E . A L A B E L
A P P E A R I N G IN T H E L O C A T I O N F I E L D WILL BE D E F I N E D AS U S U A L .

E X A M P L E S :

P i ENT S U B R O U T I N E

T H I S D E S I G N A T E S T H E E N T R Y I N T O A S U B R O U T I N E T H A T IS
R E F E R R E D TO BY THE L A B E L P I . ZERO IS L O A D E D INTO THE
L O C A T I O N P I .

F L G < B L A N K >

• F L A G •

T H E F U N C T I O N IS TO INSERT A 2 FLAG (BIT 3 1) IN THE
N E X T G - 2 0 I N S T R U C T I O N S T O R E D . B E C A U S E O P E R A N D A S S E M B L Y
(OA) C O M M A N D S ARE NOT T R A C E D . P L A C I N G A •FLG • S U D O
B E F O R E AN •OA F C O M M A N D C A U S E S THE N E X T NON-« OA» C O M M A N D
TO BE T R A C E D .

E X A M P L E S :

D B G
' F L G

PI CAL D . I ;
FLG
OCA I 1;

P 2 S T L C . 1 2 ;

THE C O M M A N D S L A B E L E D * PI AND P 2 W I L L BE T R A C E D .

E X A M P L E S :

OMP / 2 1 0 0 0 . / 2 2 0 0 0

AN O C T A L DUMP W I L L BE G I V E N FROM L O C A T I O N / 2 1 0 0 0 UP TO
AND I N C L U D I N G T H E L O C A T I O N / 2 2 0 0 0 .

DMP A - 1 0 0 . A - l ;

AN O C T A L DUMP OF T H E L A S T 1 0 0 L O C A T I O N S W I L L BE G I V E N .

T H • 3 • 8
FPC <SIGNED DECIMAL NUMQER>

L I S TADLE
•FULL PRECISION CONSTANT•

THE FUNCTION IS TO LOAD THE OCTAL REPRESENTATION OF
THE DECIMAL NUMBER INTO THE NEXT TWO LOCATIONS.
WARNING: THE ABSOLUTE VALUE OF THE NUMBER MUST BE LESS
THAN 3 .450873173389^69 AND THE EXPONENT LESS THAN 7 0 . OR
AN EXPONENT OVERFLOW WILL OCCUR AT ASSEMBLY TIME.

EXAMPLES:

WIO FPC 10 .4 .000139 , 0 1 6
Wl l FPC - 2 , 0 5 . 3 . 4 4 4 6 3 ^ - 5

WIO AND W10+1 WILL BE LOADED WITH 10. W10+2 AND W10+3
WILL.BE LOADED WITH 4 . 0 0 0 1 5 9 * 1 0 * 1 6 . Wl l AND W l l + 1 WILL BE
LOADED WITH - 2 * 1 0 + 5 . AND W l l + 2 AND W H O WILL BE LOADED
WITH 3 .44463*10+—5. ALL IN STANDARD G-20 FULL PRECISION
FORM• WIO AND Wl l MUST BE LABELS. SINCE THEY ARE NOT
IN ADJACENT LOCATIONS.

HPC < SIGNED DECIMAL NUMBER >
LISTABLE

•HALF PRECISION CONSTANT*

THE FUNCTION IS TO LOAD THE OCTAL REPRESENTATION OF
THE DECIMAL NUMBER INTO THE NEXT LOCATION. THE MANTISSA
OF THE NUMBER IS ROUNDED TO SEVEN (OCTAL) DIGITS BEFORE
STORING.

EXAMPLES:

W12 HPC 0 . 1 . 2 . 3 ;
HPC - 4 . 15 , 0 -6 ;

0 . 1 . 2 . 3 . AND - 4 . 1 5 * 1 0 + - 6 WILL BE LOADED INTO FOUR
CONSECUTIVE LOCATIONS STARTING AT W12.

WARNING: IT IS A DETECTABLE ERROR IF A NUMBER WHOSE AB
SOLUTE VALUE IS GREATER THAN (8 + 7 - 1) * 8 + 6 3 IS PUNCHED.

LBL < S Y M B O L >
L I S T A B L E

• L A B E L •

THE L E T T E R IS D E C L A R E D TO BE A L A B E L . IF THE L E T T E R
HAS NOT P R E V I O U S L Y A P P E A R E D IN A •LBL• SUDO* T H E N T H E
S U B S C R I P T IS THE MAXIMUM S U B S C R I P T W H I C H MAY BE U S E D
FOR THAT L A B E L .

IF T H E L E T T E R HAS P R E V I O U S L Y A P P E A R E D IN A
•LBL• S U D O • ITS NEW S U B S C R I P T MAY NOT BE G R E A T E R THAN THE
S U B S C R I P T F I R S T D E S I G N A T E D U N L E S S T H E L A B E L HAS F I R S T B E E N
R E L E A S E D BY T H E •REL* S U D O OR E L S E IT IS AN E R R O R . THE
F O L L O W I N G A C T I O N S T A K E P L A C E X

F I R S T . THE O P E R A T I O N OF A •C HK• S U D O IS D O N E ON THE
S Y M B O L . T H E N T H E L A B E L S F R O M < L E T T E R > 0 TO
< L E T T E R >< S U B S C R I P T > ARE C L E A R E D TO U S E A G A I N . W H I L E ANY
L A B E L S G R E A T E R THAN T H E S U B S C R I P T A P P E A R I N G IN
< L E T T E R X S U B S C R I P T > ARE L E F T U N T O U C H E D .

IN C A S E •CHK * F I N D S ONE OR MORE U N D E F I N E D L A B E L S
AN E R R O R M E S S A G E W I L L 3E P R I N T E D (SEE • C H K *) A N D T H E V A L U E
OF THE L A B E L W I L L BE C L E A R E D FOR R E D E F I N I T I O N .

E X A M P L E S :

L B L D I O

DO T H R O U G H D I O W I L L BE P E R M I T T E D FOR U S E AS L A B E L S .

{ P R O G R A M)
L B L D7
(P R O G R A M)

T H E L A B E L S DO T H R O U G H D7 W I L L BE C L E A R E D FOR R E D E F I N I T I O N
AS N E W L A B E L S . W I T H AN ALARM M E S S A G E P R I N T E D
IF A N Y ARE U N D E F I N E D .

EXL K 2 i ;

NOTICE THAT 2 LINES WERE SKIPPED AND THE *LIN*
SUDO WAS NOT PRINTED.

LWD <EXPRESSION>|<EXPRESSION>.<EXPRESS ION>
LISTABLE

•LOGIC WORD*

THE EFFECT IS TO LOAD THE VALUE OF THE EXPRESSION
INTO THE NEXT MACHINE LOCATION AS A LOGIC WORD
(I . E . WITH AN *STL* COMMANO). ANY PUNCHING IN THE
FLAG OR MODE FIELD WILL TAKE PRECEDENCE OVER THE INFORMATION
THAT WOULD OTHERWISE BE LOADED INTO BITS 28 TO 3 1 .

IF THE ADDRESS EXPRESSION IS TERMINATED BY A
COMMA AN INDEX REGISTER IS EXPECTED AND WILL TAKE
PRECEDENCE OVER THE INFORMATION IN B I T S 15 TO 2 0 .

NO CHECKS ARE MADE TO SEE IF THE VALUES OF THE
EXPRESSIONS ARE WITHIN THE L IMIT OF THE F IELDS .

EXAMPLES:

DEF A = / 2 0 0 0 0 ;
LBL E 2 ;

20000 EO LWD / 3 5 0 + $4 ;
20001 E l LWD 1 / 7 7 7 7 + S i ;
20002 E2 LWD / 7 7 7 7 7 7 7 7 7 7 7 ;

THE VALUE OF / 350+S4 = / 3 7 0 WILL BE LOADED INTO
LOCATION 20000 (E O) . / 7 7 7 7 + $ 1 + BIT 28 (MODE I PUNCH) =

V2000010001 WILL BE LOADED INTO LOCATION 20001 (E l) . AND
Z37777777777 WILL BE LOADED INTO LOCATION 20002 (E 2) .

L I N < E X P R E S S I O N >
N O N - L I S T A B L E
C A R D IMAGE NOT P R I N T E D

•LINE*
THE F U N C T I O N IS TO U P S P A C E THE P R I N T E R

N = < E X P R E S S I O N > L I N E S . IF P R I N T I N G IS O N .
IF N - 0 OR T H E A D D R E S S F I E L D IS 3LANK. 1 LINE U P S P A C E
W I L L O C C U R .

E X A M P L E S :

C L A P 9 ;
L I N 2 ;
EXL K 2 1 ;

A B O V E ARE T H E C A R D S AS T H E Y WERE P U N C H E D . BELOW IS
THE C O M P I L A T I O N OF THE C A R D S .

CLA P 9 ;

ENT ZERO DATA REGION
LXP 0 1 0 0 .R l ;
STZ D . R I ;
SXT •0 l . R i ;
TRA E 2 ;
TRA 1 e i ;
C H K E ;
MTT e i ;

THE SIX INSTRUCTIONS STARTING AT E l WILL BE A S S E M B L E D
AND EXECUTED. ASSEMBLY WILL THEN CONTINUE.

NAM < S T R I N G >
N O N - L I S T A B L E

• N A M E •

THE E F F E C T IS TO P A C K THE S I X B I T R E P R E S E N T A T I O N OF
THE 5 C H A R A C T E R S IN C O L U M N S 2 4 TO 2 8 INTO T H E R I G H T M O S T
3 0 B I T S OF THE NEXT M A C H I N E L O C A T I O N . ANY P U N C H I N G IN
THE FLAG OR M O D E F I E L D W I L L TAKE P R E C E D E N C E O V E R T H E
I N F O R M A T I O N THAT O T H E R W I S E W O U L D HAVE B E E N L O A D E D INTO
B I T S 2 8 TO 3 1 .

E X A M P L E S :

NAM P N 3 . $

THE 6 - B I T R E P R E S E N T A T I O N S OF T H E C H A R A C T E R S P. N. 3. .
AND $ W I L L BE L O A D E D INTO T H E NEXT M A C H I N E L O C A T I O N .
T H I S IS T H E SAME AS

LWD / 2 0 16 4 3 5 3 6 5 ;

M T T < E X P R E S S ! 0 N >
N O N - L I S T A B L E
P R I N T I N G B E F O R E E X E C U T I O N

•MARK T R A N S F E R T O F

T H E F U N C T I O N IS TO C H E C K THAT NO A S S E M B L Y E R R O R S
HAVE O C C U R R E D AND THAT ALL U S E D L A B E L S ARE C U R R E N T L Y D E
F I N E D , IF NO E R R O R S ARE D E T E C T E D . •THAT* E X E C U T E S A •TRM•
TO THE L O C A T I O N D E F I N E D BY < E X P R E S S I ON>• THE R O U T I N E
MAY R E T U R N T H R O U G H ITS MARK IF A S S E M B L Y IS TO
C O N T I N U E OR T R A N S F E R C O N T R O L TO THE M O N I T O R BY E X E C U T I N G
THE M O N I T O R H A L T R O U T I N E .

E X A M P L E :

OCT < I M M A T E R I A L >

•OCTAL L I S T I N G *

T H E F U N C T I O N IS TO C A U S E S U B S E Q U E N T C O N V E R S I O N FOR
P R I N T I N G OF THE C U R R E N T I N S T R U C T I O N C O U N T E R AND R E G I O N
AND L A B E L A D D R E S S E S TO OE D O N E IN O C T A L . (SEE * DEC*) .
•OCT* I S A S S U M E D W H E N A S S E M B L Y B E G I N S .

E X A M P L E S :

D E F A = 8 1 9 2 ;
O C T P R I N T IN O C T A L ;
RGN A;

AO 2 0 0 0 0

N O T I C E THAT T H E R E G I O N A L S Y M B O L IS C O N V E R T E D T O
O C T A L .

OPM < I M M A T E R I A L >

• O P E R A T O R M E S S A G E *

T H E F U N C T I O N IS TO P R I N T T H E C U R R E N T T I M E .
D A T E AND O P E R A T O R I N F O R M A T I O N . C O L U M N S 2 4 TO 8 0 OF THE
I N S T R U C T I O N C A R D ARE R E P L A C E D BY THE A B O V E I N F O R M A T I O N .

E X A M P L E S :

OPM O P E R A T O R D I 0 1 01 JUL 6 4 2 3 S S

O P E R A T O R D A T E TIME

T H I S IS T H E L I S T I N G W I T H THE O P E R A T O R M E S S A G E .

PAG < I M M A T E R I A L >
P R I N T I N G A F T E R E X E C U T I O N

•PAGE*

IF P R I N T I N G IS T U R N E D O N . THE P A P E R IN T H E P R I N T E R
W I L L BE M O V E D T O T H E N E X T P A G E .

P B C < E X P R E S S I O N > » < E X P R E S S I O N > |
< E X P R E S S ! ON >•< E X P R E S S I O N S 1

N O N - L I S T A B L E
P R I N T I N G B E F O R E E X E C U T I O N

• P U N C H B I N A R Y C A R D S 1

T H E F U N C T I O N IS T O P U N C H A R O W - B I N A R Y DECK OF T H E
M E M O R Y L O C A T I O N S F R O M THE A D D R E S S G I V E N BY T H E F I R S T
E X P R E S S I O N UP T O AND I N C L U D I N G T H E A D D R E S S G I V E N BY T H E
S E C O N D E X P R E S S I O N . IF A T H I R D P A R A M E T E R • 1 • A P P E A R S »
THE S Y M B O L T A B L E W I L L BE P U N C H E D . THUS IT IS P O S S I B L E
L A T E R TO A D D TO OR T O C O R R E C T A PROGRAM W I T H THE U S E OF
S Y M B O L S A F T E R L O A D I N G THE R O W - B I N A R Y D E C K (BY M E A N S OF T H E
•RBC• S U D O OR T H E M O N I T O R BAR R O U T I N E) .

W A R N I N G : T H E R E IS NO C H E C K ON THE V A L U E S B E I N G
P R O P E R M A C H I N E L O C A T I O N S .

OUT < E X P R E S S I ON>
N O N - L I S T A B L E
P R I N T I N G B E F O R E E X E C U T I O N

•OUT*

THE E F F E C T OF T H E •OUT* S U D O IS TO C H E C K THAT NO
A S S E M B L Y E R R O R S HAVE O C C U R E D AND THAT A L L U S E D L A B E L S ARE
D E F I N E D . IF NO E R R O R S ARE D E T E C T E D • * THAT * E X E C U T E S A
•TRA* TO THE L O C A T I O N D E F I N E D BY < E X P R E S S I O N > •

IT IS A D E T E C T A B L E E R R O R IF T H I S L O C A T I O N I S N O T A
V A L I D M A C H I N E A D D R E S S .

E X A M P L E S :

(P R O G R A M)
O U T E l

C O N T R O L W I L L B E T R A N S F E R R E D TO L O C A T I O N E l . E I T H E R
T H I S S U D O OR •MTT• IS N O R M A L L Y U S E D TO START E X E C U T I O N OF
A P R O G R A M .

PRT <SYMBOL>
LISTABLE
PRINTING BEFORE EXECUTION

• PRI NT•

THE FUNCTION IS SIMILAR TO •CHK•t BUT IN ADDITION,
I F THE PRINTING IS ON * THE VALUES OF ALL USED LABELS WILL
BE LISTED ON THE PRINTER.

EXAMPLES:

PRT W. Pt D. o i o ;

ALL THE USED LABELS OF THE SYMBOLS W. P. D AND 0 0 TO Q 1 0 AND THE
LOCATIONS TO WHICH THEY HAVE BEEN ASSIGNED ARE LISTED ON
THE PRINTER.

RBC < EMPTY >
NON-LISTABLE
PRINTING BEFORE EXECUTION

•READ BINARY CARDS•

THE FUNCTION IS TO LOAD A ROW-BINARY DECK AS PREPARED
BY THE 'PBC^SUDO (EITHER WITH OR WITHOUT THE SYMBOL
TABLE) . THE ROW BINARY DECK SHOULD FOLLOW IMMEDIATELY
WITH NO BLANK CARDS PRECEEDING I T . TWO BLANK CARDS SHOULD
BE PLACED AT THE END OF THE BINARY DECK BEFORE THE
REMAINING •THAT' CARDS.

THE PROGRAM PORTION OF THE •PBC'-DECK IS READ INTO
THE SAME MACHINE LOCATIONS FROM WHICH IT WAS PUNCHED AND
THE SYMBOL TABLE PORTION (I F PRESENT) IS READ INTO THE
•THAT* SYMBOL TABLE REPLACING THE SYMBOL TABLE BEING USED
PRIOR TO THE •RBC* SUDO.

N O T E : T H I S C A N N O T BE D O N E FROM 'AND* F I L E S .

• N T U I R A I Y
CARREBIE-IKLL8N U N I V E R S I T Y

E X A M P L E S :

PBC / 2 0 0 0 0 . W 5 3 . 1

A R O W - B I N A R Y D E C K W I L L BE P U N C H E D FROM L O C A T I O N / 2 0 0 0 0 TO
THE L O C A T I O N OF W 5 3 . T H E S Y M B O L T A B L E W I L L A L S O BE
P U N C H E D •

REL < S Y M B O L >

• R E L E A S E *
LI S T A B L E

T H E F U N C T I O N IS TO R E L E A S E L A B E L S ? I.E.t TO CLEAR
THE D E F I N I T I O N OF A L E T T E R AS A L A B E L S O THAT IT
CAN BE U S E D T H E R E A F T E R AS A R E G I O N (OR A NEW L A B E L) .

F I R S T •CHK• IS P E R F O R M E D . IF NO U N D E F I N E D L A B E L I S
E N C O U N T E R E D . THE L E T T E R IS T H E N M A R K E D AS U N U S E D . U N D E R
C E R T A I N C I R C U M S T A N C E S T H E S P A C E U S E D F O R THE L A B E L T A B L E
W I L L A L S O BE R E L E A S E D . T H I S W I L L O C C U R IF THE L E T T E R
B E I N G R E L E A S E D IS T H E L A S T L E T T E R D E C L A R E D AS A L A B E L . OR
IF ALL L E T T E R S D E C L A R E D S I N C E HAVE B E E N R E L E A S E D AND T H E I R
S P A C E R E C L A I M E D .

IF AN U N D E F I N E D L A B E L IS E N C O U N T E R E D BY •CHK*. AN
E R R O R M E S S A G E WILL BE P R I N T E D (SEE • C H K *) AND T H E E R R O R
I G N O R E D .

E X A M P L E S :

L B L R I O
(PROGRAM)
R E L R
L B L R l 1

THE S E T OF L A B E L S RO T H R O U G H R I O IS R E L E A S E D AND THEN
A N E W S E T OF L A B E L S RO T H R O U G H R l l IS D E F I N E D .

R E T < I M M A T E R I A L >
P R I N T I N G B E F O R E E X E C U T I O N

•RETURN*

T H I S S U D O W I L L E F F E C T A R E T U R N T O T H E L O C A T I O N M A R K E D
AS T H E L A S T C A L L OF •THAT *»

E X A M P L E S :
R E T E X I T F R O M T H A T

C O N T R O L W I L L R E T U R N TO T H E PROGRAM W H I C H C A L L E D * TH A T *
AS A S U B R O U T I N E (U S U A L L Y T H I S WILL BE T H E M O N I T O R) .

RGN < S Y M B O L >
L I S T A B L E

•PRINT R E G I O N A L SYMBOL*

THE F U N C T I O N OF T H E •RGN• S U D O IS TO C H E C K T H A T
THE < S Y M B O L > IS A D E F I N E D R E G I O N A L S Y M B O L .
IF THE P R I N T I N G IS ON THE VALUE OF THE S Y M B O L IS P R I N T E D
AS IN • P R T • .

D E F P = / 2 0 0 0 0 ;
RGN P 2 0 1 ;

P 2 0 1 2 0 3 1 1

P 2 0 1 IS A D E F I N E D R E G I O N A L S Y M B O L - L O C A T I O N 2 0 3 1 1 .

SXX < E X P R E S S I O N >

• S E T S T O R A G E E X T R A C T O R *
N O N - L I S T A B L E

T H E V A L U E OF THE E X P R E S S I O N W I L L BE S T O R E D AS T H E
I N T E R N A L S T O R A G E E X T R A C T O R I N * T H A T • . N O R M A L L Y T H E
S T O R A G E E X T R A C T O R IS 0.

W H E N E V E R A W O R D IS S T O R E D B Y 'THAT*
F O L L O W S :

IT IS D O N E AS

CAL
E X L
A D L
S T L

I N S T R U C T I O N C O U N T E R (A)
S T O R A G E E X T R A C T O R
W O R D TO BE S T O R E D
I N S T R U C T I O N C O U N T E R <A)

T H U S *SXX* CAN B E U S E D W H E N P A R T S OF A L R E A D Y L O A D E D
W O R D S HAVE TO BE C H A N G E D .

E X A M P L E S :

E l
D E F
LWD
LWD
LWD
SXX
DEF
L WD
LWD
LWD
SXX

A = / 1 0 0 0 0
/ 1 7 7 7 7 ;
/ 1 7 3 7 3
/ 1 7 3 I 3
/ 7 7 7
A=EI ;
/ 2 4 0 0 0
/ 3 5 0 0 0
/ 7 1 0 0 0
0

TH.3.17
FIRST THE I N I T I A L LOCATION IS DEFINED. THEN THE

LOGIC WORDS /17777% /I 7 3 7 3. AND / 1 7 3 1 3 ARE LOADED INTO
THE FIRST THREE LOCATIONS. AND THE STORAGE EXTRACTOR IS
SET T O . / 7 7 7 . THE LOCATION IS AGAIN GIVEN AS E l FOR
THE LOADING OF / 2 4 0 0 0 . / 3 5 0 0 0 . AND / 7 1 0 0 0 . THUS THE VAL
UES / 2 4 7 7 7 . / 3 5 3 7 3 . AND /7 1 3 1 3 WILL BE STORED IN LOCATIONS
E l . E l + 1 AND E l + 2 . THE LAST LINE WILL RESET THE
STORAGE EXTRACTOR TO ZERO.

TOP < E X P R E S S ION>
P R I N T I N G A F T E R E X E C U T I O N

• T Y P E OR P R I N T /

T H E E X P R E S S I O N . W H I C H IS T A K E N M O D U L O 2*
D E T E R M I N E S W H E T H E R OR N O T T H E INPUT L I N E S W I L L B E
L I S T E D ON THE L I N E P R I N T E R . AS F O L L O W S :

0: P R I N T I N G OFF
I: P R I N T I N G ON

W H E N P R I N T I N G I S OFF A L L A C T I O N I N V O L V I N G T H E
P R I N T E R W I L L BE B Y P A S S E D E X C E P T E R R O R M E S S A G E P R I N T O U T .

WRD < S I G N E D E X P R E S S I 0 N > v
L I S T A B L E

•WORD*

T H E E F F E C T IS TO S T O R E T H E V A L U E OF T H E E X P R E S S I O N
INTO T H E C O R E L O C A T I O N S P E C I F I E D BY T H E L O C A T I O N C O U N T E R • A * •
IF T H E V A L U E OF THE E X P R E S S I O N IS N E G A T I V E . •WRD• W I L L
S T O R E IT I N T O M E M O R Y AS AN INTEGER (I . E . W I T H AN • S T I •
C O M M A N D) ; IF P O S I T I V E . IT W I L L BE S T O R E D AS A L O G I C WORD
(I . E . W I T H AN •STL• C O M M A N D) .

E X A M P L E S :

W8 WRD - / 7 3 5 + 8

W8 W I L L B E L O A D E D W I T H T H E N E G A T I V E INTEGER / 7 2 5

W I O WRD 7 7 7 7 7 7 7 7 7 7 7 7

W I O W I L L B E L O A D E D W I T H T H E L O G I C W O R D 7 3 7 7 7 7 7 7 7 7 7 7

CHAPTER 4 - ERROR MESSAGES

4 . 1 ERROR DETECTED DURING COMPILATION

ANY ERROR DETECTED BY •THAT• DURING THE PROCESSING OF A
LINE WILL CAUSE A PRINT OUT OF THE LINE OF CODE FOLLOWED BY AN
ERROR MESSAGE * AS FOLLOWS.

4 . 1 . 1 ERRORS IN G-20 INSTRUCTIONS

AD U

AD >

FLAG

IR U

IR >

LABL

MODE

OPER

UNDEFINED CONSTRUCTION IN ADDRESS FIELD OF G-20
INSTRUCTION

THE VALUE OF THE EXPRESSION IN THE ADDRESS OF A G-20
INSTRUCTION WITH MNEMONIC OPERATION IS NOT LESS
THAN 2+16*

ERROR IN THE FLAG FIELD OF A G-20 INSTRUCTION

UNDEFINED CONSTRUCTION IN INDEX FIELD OF A G-20
INSTRUCTION

VALUE OF THE EXPRESSION IN INDEX OF A G-20
INSTRUCTION WITH MNEMONIC OPERATION IS NOT LESS THAN
6 4 .

ERROR IN ENTRY FIELD

ERROR IN THE MODE FIELD OF A G-20 INSTRUCTION

ERROR IN OPERATION FIELD

4*1*2 ERRORS IN SUDO INSTRUCTIONS

AD U UNDEFINED CONSTRUCTION WHERE AN EXPRESSION IS
NEEDED IN THE ADDRESS FIELD OF A SUDO*

A U •A» IS NOT WITHIN BOUNDS OF MEMORY• (UPON STORING A WORD)

FLAG ERROR IN PARAMETER TO •FLG' SUDO

LBL> A SUBSCRIPT ON A LABEL SYMBOL IS GREATER THAN ALLOWED

TERM UNDEFINED CONSTRUCTION WHERE A SYMBOL IS WANTED IN
THE ADDRESS FIELD OF A SUDO*

WHAT A LETTER WHICH HAS NOT 8EEN DECLARED AS A LABEL
APPEARS IN A SYMBOL IN THE ADDRESS FIELD OF A SUDO
WHERE A LABEL SYMBOL IS REQUIRED*

4*1*3 NOTES

NOTE 1 A ONE FLAG OR A THREE FLAG HAS BEEN PUNCHED IN
FLAG COLUMN OF A G-20 MNEMONIC AND HAS ALTERED
THE EFFECTIVE OPERAND ADDRESS OF THE INSTRUCTION*

NOTE 2 AN •XEQ• OPCODE HAS BEEN PUNCHED WITH A MODE
0 OR 1 AND WILL CAUSE AN OPCODE FAULT IF EXECUTED*

ADDRESS-OPCODE FAULT:

AN ADDRESS OPCODE FAULT IS DETECTED WHENEVER THE G-20
ATTEMPTS TO PROCESS A COMMAND INSTRUCTION IN WHICH ONE OR
MORE OF THE FOLLOWING OCCURS:

1 . THE BIT CONFIGURATION IN THE OPERATION FIELD
(B ITS 2 1 - 2 9) IS NOT A LEGAL G-20 OPERATION

2 . THE ADDRESS OF THE NEXT COMMAND TO BE EXECUTED
IS NOT WITHIN THE LIMITS OF MEMORY•

3. AN OPERAND ILLEGAL TO A G-20 COMMAND IS COMPUTED
(THIS FREQUENTLY OCCURS IN MODE 3 ADDRESSING—
(SEE SECTION 3) OR WITH A PRECEDING •OCA«)•

DIAGNOSTIC PRINTING:

36000 3 305 77 77777 A +00000000000000 +00 0000077
1 2 3 4 5 6 7 8

1 . ADDRESS OF THE COMMAND INSTRUCTION
2 . FLAG
3 . MODE AND OPCODE
4« INDEX REGISTER
5 / ADDRESS
6 . • A• TO INDICATE ADDRESS OPCODE FAULT
7 . SIGNED ACCUMULATOR
6 . SIGNED EXPONENT
9 . CONTENTS OF INDEX REGISTER (I F ONE WAS USED)

4#2 ERRORS DETECTED DURING RUNNING

P R I N T L I N E EXCEEDED^

IF. W H I L E S T O R I N G C H A R A C T E R S INTO T H E P R I N T L I N E ,
AN A T T E M P T IS M A D E TO S T O R E A C H A R A C T E R O U T S I D E
THE L I N E . T H E P R O G R A M IS H A L T E D AND THE F O L L O W I N G IS
P R I N T E D :

<ON T H I S L I N E I S P R I N T E D T H E C O N T E N T S OF T H E P R I N T L I N E >
P R I N T L I N E E X C E E D E D

T H E F I R S T L I N E P R I N T E D IS T H E C O N T E N T S (F I R S T 1 2 0
C O L U M N S) OF THE P R I N T L I N E AT THE TIME THE E R R O R O C C U R S ,
F O L L O W I N G IS T H E M E S S A G E «PRINT L I N E E X C E E D E D * •

EXPONENT OVERFLOW:

I F . DURING COMPUTING. THE EXPONENT OF THE ACCUMULATOR. THE
OPERAND ASSEMBLY REGISTER OR THE ARITHMETIC UNIT BECOMES TOO
LARGE. AN EXPONENT OVERFLOW INTERRUPf IS GENERATED AND ONE LINE
OF DIAGNOSTIC OUTPUT IS PRINTED. THE FORMAT OF THE PRINTING IS
THE SAME AS FOR AN ADDRESS OPCODE FAULT WITH THE EXCEPTION THAT
FIELD 6 CONTAINS AN •E• TO INDICATE THAT AN EXPONENT OVERFLOW
HAS OCCURRED.

APPENDIX A

PAGE CONTENT

TH« A•1 G-20 ALPHABET

T H . A . 2 G-20 «THAT f OPCODES

TH .A .3 COMMANDS IN NUMERICAL ORDER

T H . A . 5 COMMANDS IN ALPHABETICAL ORDER

T H . A . 7 SUDOS IN 'THAT*

T H . A . 8 G-20 SHIFT MULTIPLIERS

T H . A . 9 BRIEF DECIMAL-OCTAL CONVERSION TABLE

G - 2 0 A L P H A B E T
TH.A.1

IBOL INTERNAL C A R D C O D E S Y M B O L I N T E R N A L C A R D C O O E
S P A C E 00 NO P U N C H 0 40 0

A 01 + 1 1 41 1
B 02 2 2 42 2
C 03 3 3 43 3
D 04 4 4 44 4
E 05 5 5 45 5
F 06 6 6 46 6
G 07 7 7 47 7
H 10 8 8 50 8
I 1 1 9 9 51 9
J 12 - 1 10 52 0 7 8 N O T E 1
K 13 — 2 • 53 • 3 8
L 14 - 3 54
M 15 4 - 55 -N 16 - 5 # 56 - 4 8
0 17 - 6 / 57 0 1
P 20 - 7 - 60 3 8
Q 21 - 8 V 61 • 7 8 N O T E 1
R 22 - 9 62 - 2 8 N O T E I
S 23 0 2 A 63 6 8 N O T E 1
T 24 0 3 < 64 - 5 8 N O T E 1
U 25 0 4 S 65 - 3 8
V 26 0 5 > 66 - 6 8 N O T E 1
w 27 0 6 •

T 67 4 8 N O T E 2
X 30 0 7 (70 0 4 8
Y 31 0 8 C 71 0 5 8 N O T E 1
z 32 0 9 3 72 0 6 8 N O T E 1
1 33 2 8 N O T E 1) 73 + 4 8

34 6 8 N O T E 1 74 7 8 N O T E 1
35 - 7 8 N O T E I 75 + 2 8 N O T E 1
36 + 5 8 N O T E 1 • • 76 0 2 8 N O T E 1

• 37 0 3 8 77 5 8 N O T E 2

T H E INTERNAL R E P R E S E N T A T I O N S A B O V E ARE OCTAL I N T E G E R S .

N O T E 1 : M U S T BE P U N C H E D U S I N G T H E M U L T I P L E P U N C H B U T T O N
N O T E 2 : T H E K E Y M A R K E D Q U O T E ON THE K E Y P U N C H A C T U A L L Y P U N C H E S

T H E S E M I - C O L O N - T H E 4 - 8 C O M B I N A T I O N . THE G - 2 0
C H A R A C T E R Q U O T E M U S T BE M U L T I - P U N C H E D AS 5 - 8 .

G-20 •THAT* OPCODES

ADDRESS PREPARATION
OCA OOO X * (OA)
OCS 020 - X -> (OA)
OAD 040 (ACC) + X + (OA)
OSU 060 (ACC) - X -> (OA)
DSN 120 - (A C C) + X -> (OA)
OAN 100 - (A C C) - X + (OA)
OAA 140 | (ACC) + X| •» (OA)
OSA • 160. | (ACC) - X| • (OA)

ADD AND SUBTRACT
CLA 005 X + (ACC)
CLS 025 - X * (ACC)
ADD 045 (ACC) • X *
SUB 065 (ACC) - X +
ADN 105 - (ACC) - X
SUN 125 - (A C C) + X

(ACC)
(ACC)
* (ACC)

• (ACC)
ADA 145 | (ACC) + X| + (ACC)
SUA 165 | (ACC) - X| + (ACC)

ARITHMETIC TESTS
FOM 021 X < 0
FOP 001 X > 0
FLO 121 (ACC) < 0
FGO 061 (ACC) > 0
FUO 161 (ACC) *X
FSM 101 (ACC) + + X <
FSN 1 4 1 | (A C C) • Xj >
FSP 041 (ACC) + X > 0

0
0

STORE
STL 173 (ACC) * X
STO 153 (ACC) • X. X • 1
STS 113 (ACC) • X
STI 133 (ACC) • X
STZ 073 0 • X

INDEX REGISTER CODES
LXP 012 X -> I
LXM 032 -X + I
ADX 002 (I)
SUX 022 (1)
XPT 016 X •
XMT 036 - X
AXT 006 (I)
SXT 026 (I)

X
X

I
X
X

(* o)
(* 0)
.1*0.)
(* 0)

TRANSFER OF CONTROL
TRA 017 X + NC
SKP 137 (NC) + X •» NC
TRM 177 (N O * X; X • 1 •
REP 013 REPEAT
XEO 010 EXECUTE X

NC

MULTIPLY AND DIVIDE
MPY 077 (ACC) * X * (ACC)
SUL 075 (ACC) - X -> (ACC)
DIV 053 (ACC) / X • (ACC)
RDV 057 X / (ACC) • (ACC)

LOGIC OPERATIONS
CAL 015 X • (ACC)
CCL 035 -»X (ACC)
ADL 055 (ACC) + X +
EXL 115 (ACC) X *

(ACC)
(ACC)

ECL 135 (ACC) A -iX •» (ACC)
UNL 155 (ACC) v X • (ACC)
UCL 175 (ACC) v -*X -> (ACC)

LOGIC TESTS
IOZ O i l X = 0
ICZ 031 -»X = 0
ISN 051 (ACC) + X * 0
IUO 071 (ACC) - X = 0
IEZ 111 (A G O A X = 0
I EC 131 (ACC) A -»X = 0
IUZ 151 (ACC) v X = 0
IUC 171 (ACC) v -»X = 0

MODE INTERPRETATION

0 X • (I) + (OA)
1 (X) + (I) • (OA)
2 (X • (I) • (O A))
3 ((X) • (I) + (O A))

FOR ALL TESTS t DO NEXT IF
CONDITION INDICATED IS TRUE*

•THAT* ASSEMBLES ALL COMMANDS
IN MODE 2 EXCEPT:
STI TRA
STS TRM
STD REP
STL
STZ

COMMANDS IN NUMERICAL ORDER

0 0 0 OCA OPERAND CLEAR ADD X • (OA)
001 FOP IF OPERAND PLUS X > 0
0 0 2 ADX ADD TO INDEX (I) • X • I
005 CLA CLEAR ADD X • (ACC)
0 0 6 AXT ADD TO INDEX AND TEST (I) > X • I (* 0)
0 1 0 XEQ EXECUTE OPERAND X* (N C) t X+l+ (N C)
o n IOZ IF OPERAND ZERO X = 0
012 LXP LOAD INDEX PLUS X • I
0 1 3 REP REPEAT REPEAT
0 1 5 CAL CLEAR ADD LOGIC X • (ACC)
0 1 6 XPT LOAD INDEX PLUS AND TEST X • I C*0>
0 1 7 TRA TRANSFER X • (N O
0 2 0 OCS OPERAND CLEAR SUBTRACT - X • {OA)
0 2 1 FOM IF OPERAND MINUS X < 0
0 2 2 SUX SUBTRACT FROM INDEX (I) - X -> I
0 2 5 CLS CLEAR SUBTRACT - X • (ACC)
0 2 6 SXT SUBTRACT FROM INDEX AND TEST (I) - X • I (* 0)
0 3 1 ICZ IF COMPLEMENT ZERO -*X S 0
0 3 2 LXM LOAD INDEX MINUS - x y i
0 3 5 CCL CLEAR ADD COMPLEMENT LOGIC - X • (ACC)
0 3 6 XMT LOAD INDEX MINUS AND TEST • - X * I (* 0)
040 OAD OPERAND ADD (ACC) + X (OA)
041 FSP IF SUM PLUS (ACC) + X > 0
0 4 5 ADD ADD (ACC) + X (ACC)
051 ISN IF SUM NON-ZERO (ACC) 4- X * 0
0 5 3 DI V DIVIDE (ACC) / X -> (ACC)
0 5 5 ADL ADD LOGIC (ACC) + X (ACC)
0 5 7 RDV REVERSE D IV IDE X / (ACC) (ACC)
0 6 0 OSU OPERAND SUBTRACT (ACC) - X + (OA)
0 6 1 FGO IF GREATER THAN OPERAND (ACC) > X
0 6 5 SUB SUBTRACT (ACC) - X (ACC)
071 IUO IF UNEQUAL OPERAND (ACC) * X
073 STZ STORE ZERO 0 » X
0 7 5 SUL SUBTRACT LOGIC (ACC) - X (ACC)
0 7 7 MP Y MULTIPLY (ACC) * X (ACC)

TH* A* 4

100 OAN OPERAND ADD AND NEGATE - (A C C) - X (O A)
101 FSM I F SUM MUNUS (A C C) • X < 0
105 ADN ADD AND NEGATE - (A C C) - X (A C C)
111 I E 2 I F EXTRACT ZERO (A C C) A X 0
1 13 STS STORE S I N G L E (A C C) • X
115 EXL EXTRACT L O G I C (A C C) A X + (A C C)
120 OSN OPERAND SUBTRACT AND NEGATE - (A C C) + X (O A)
121 FLO I F L E S S THAN OPERAND (A C C) < X
125 SUN SUBTRACT AND NEGATE - (A C C) • X (A C C)
131 I EC I F EXTRACT COMPLEMENT ZERO (A C C) A X 11 0
133 S T I STORE INTEGER (A C C) • X
135 ECL EXTRACT COMPLEMENT L O G I C (A C C) A -» X -ft (A C C)
137 SKP S K I P (N O + X NC
140 OA A OPERAND ADD AND ABSOLUTE I (A C C) x | (O A)
141 FSN I F SUM NON-ZERO (A C C) • X * 0
145 ADA ADD AND ABSOLUTE | (A C C) x | •» (A C C)
151 IUZ I F UNION ZERO (A C C) V X = 0
153 STD STORE DOUBLE (A C C) • X • X • 1
155 UNL U N I T E L O G I C (A C C) V X (A C C)
160 OSA OPERAND SUBTRACT AND ABSOLUTE I (A C C) - x | (O A)
161 FUO I F UNEQUAL OPERAND (A C C) * X
165 SUA SUBTRACT AND ABSOLUTE I (A C C) - x | -ft (A C C)
171 IUC I F UNION COMPLEMENT ZERO (A C C) V X It 0
173 STL STORE L O G I C (A C C) • X
175 UCL U N I T E COMPLEMENT L O G I C (A C C) V X •ft (A C C)
177 TRM TRANSFER AND MARK (N O • x ; X I • NC

COMMANDS IN ALPHABETICAL ORDER
TH•A•5

145
045
055
105
002
006
015
005
035
025
053
135
115
061
121
021
001
101
141
041
161
031
131
1 11
O i l
051
171
071
151
032
012
077
140
040
100

ADA
ADD
AOL
ADN
ADX
AXT
CAL
CLA
CCL
CLS
PI V
ECL
EXL
FGO
FLO
FOM
FOP
FSM
FSN
FSP
FUO
ICZ
I EC
IEZ
IOZ
ISN
IUC
IUO
IUZ
LXM
LXP
MPY
OA A
OAD
OAN

ADD
ADD
ADD
ADD
ADD
ADD
CLEAR
CLEAR

AND ABSOLUTE

LOGIC
AND NEGATE
TO INDEX
TO INDEX AND

ADD LOGIC
ADD

TEST

CLEAR ADD COMPLEMENT LOGIC
CLEAR SUBTRACT
DIVIDE
EXTRACT COMPLEMENT LOGIC
EXTRACT LOGIC
IF GREATER THAN OPERAND
IF LESS THAN OPERAND
IF OPERAND MINUS
I F OPERAND PLUS
IF SUM MUNUS
IF SUM NON-ZERO
IF SUM PLUS
IF UNEQUAL OPERAND
IF COMPLEMENT ZERO
IF EXTRACT COMPLEMENT ZERO
IF EXTRACT ZERO
IF OPERAND ZERO
I F SUM NON-ZERO
IF UNION COMPLEMENT ZERO
IF UNEQUAL OPERAND
IF UNION ZERO
LOAD INDEX MINUS
LOAD INDEX PLUS
MULTIPLY
OPERAND ADD AND ABSOLUTE
OPERAND ADD
OPERAND ADD AND NEGATE

| (ACC) • X|
(ACC) • X •
(ACC) + X •
- (ACC) - X
(I) + X • I
(i) + x I
X V (ACC)
X (ACC)
-•X -> (ACC)
- X • (ACC)

-> (ACC)
(ACC)
(ACC)
• (ACC)

(* 0)

(ACC) / X •
(ACC) A -*X
(ACC) A X •
(ACC) > X
(ACC) < X
X < 0
X > 0
(ACC) + X <
(ACC) • X *
(ACC) • X >
(ACC) * X
-.X == 0
(ACC) V X =
(ACC) A X ~
X = 0
(ACC) + X *
(ACC) v X s
(ACC) * X
(ACC) v X
- X + I
X • I
(ACC) * X •
| (ACC) + X|
(ACC) + X V
- (ACC) - X

(A G O
• (ACC)

(ACC)

0
0

0
0

< ACC)
+ (OA)
(OA)
* (OA)

0 0 0 OCA OPERAND CLEAR ADD X • (OA)
0 2 0 OCS OPERAND CLEAR SUBTRACT - X • (OA)
160 OSA OPERAND SUBTRACT AND ABSOLUTE | (ACC) - X| • (OA)
120 OSN OPERAND SUBTRACT AND NEGATE - (ACC) + X • (OA)
0 6 0 OSU OPERAND SUBTRACT (ACC) - X • (OA)
0 5 7 RDV REVERSE DIVIDE X / (ACC) + (ACC)
0 1 3 REP REPEAT REPEAT
137 SKP SKIP (NC) • X * NC
153 STO STORE DOUBLE (ACC) • X. X • 1
133 STI STORE INTEGER (ACC) + X
173 STL STORE LOGIC (ACC) • X
113 STS STORE SINGLE (ACC) • X
0 7 3 STZ STORE ZERO 0 V X
165 SUA SUBTRACT AND ABSOLUTE | (ACC) - X| • (ACC)
165 SUB SUBTRACT (ACC) - X • (ACC)
0 7 5 SUL SUBTRACT LOGIC CACO - X • (ACC)
12.5 SUN SUBTRACT AND NEGATE - (ACC) • X + (ACC)
0 2 2 SUX SUBTRACT FROM INDEX C I) - 'X * I
0 2 6 SXT SUBTRACT FROM INDEX AND TEST (I) - X • I (* 0)
0 1 7 TRA TRANSFER X • (N O
177 TRM TRANSFER AND MARK (N O • x ; X • 1 * NC
175 UCL UNITE COMPLEMENT LOGIC (ACC) v -vX • (ACC)
155 UNL UNITE LOGIC (ACC) v X • (ACC)
010 XEQ EXECUTE OPERAND EXECUTE X AS COMMAND
016 XPT LOAD INDEX PLUS AND TEST X * I (* 0)
0 3 6 XMT LOAD INDEX MINUS AND TEST - X. • I (* 0)

SUDOS IN •THAT*
f-H • A • 7

ADC ADDRESS CONSTANT
ALF ALPHANUMERIC INFORMATION
CHK CHECK

COM COMMENT
CPY COPY
DBG DEBUG
DEC DECIMAL LISTING
DEF DEFINE
DMP DUMP
ENT ENTRY
FLG FLAG
FPC FULL PRECISION CONSTANT
HPC HALF PRECISION CONSTANT
LBL LABEL
L IN LINE
LWD LOGIC WORD
MTT MARK TRANSFER TO
NAM NAME
OCT OCTAL LISTING
OPM OPERATOR MESSAGE
OUT OUT
PAG PAGE
PBC PUt^CH BINARY CARDS
PRT PRINT
RBC READ BINARY CARDS
REL RELEASE
RET RETURN
RGN PRINT REGIONAL SYMBOL
SXX SET STORAGE EXTRACTOR
TOP TYPE OR PRINT
WRD WORD

LEFT SHIFT NUMBER RIGHT SHIFT

1 0 000 00 00001
2 1 101 00 00004
4 2 101 00 00002

10 3 101 00 00001
20 4 102 00 00004
40 5 102 00 00002

100 6 102 00 00001
200 7 103 00 00004
4 00 8 103 00 00002

1000 $ 103 00 00001
2000 10 104 00 00004
4000 1 1 104 00 00002

10000 12 104 00 00001
20000 13 105 00 000 04
40000 14 105 00 00002

05 00 00001 15 105 00 000 01
05 00 00002 16 106 00 00004
05 00 00 004 17 106 00 00002
06 00 000 01 18 106 00 00001
06 0 0 00002 19 107 00 00004
06 00 00004 20 107 00 00002
07 00 00001 21 107 00 00001
07 00 00002 22 110 00 00004
07 00 00004 23 110 00 00002
10 00 00001 24 110 00 00001
10 00 00002 25 111 00 00004
10 00 00004 26 111 00 00002
1 1 00 00001 27 1 11 00 00001
11 00 00002 28 112 00 00004
11 00 00004 29 112 00 00002
12 00 00001 30 112 00 00001
12 00 00002 31 113 00 00004

V

G-20 SHIFT MULTIPLIERS

BRIEF DECIMAL -OCTAL CONVERSION TABLE

DECIMAL OCTAL OCTAL DECIMAL

10 12 10 8
20 24 20 16
30 36 30 24
40 50 40 32
50 62 50 40
60 74 60 48
70 106 70 56
80 120
90 132 100 64

200 128
100 144 300 192
200 310 400 256
300 454 500 320
400 620 600 384
500 764 700 448
600 I 130
700 1 274 1 000 512
800 1 440 2 000 I 024
900 1 604 3 000 1 536

4 000 2 048
1 000 1 750 5 000 2 S60
2 000 3 720 6 00 0 3 072
3 000 5 670 7 000 3 584
4 000 7 640
5 000 I I 610 10 000 4 096
6 000 13 560 20 000 8 192
7 000 15 530 30 000 12 288
a 0 00 17 500 40 000 16 384
9 000 21 450 50 000 20 480

60 00 0 24 576
10 000 23 420 70 000 28 672
20 000 47 040
30 000 72 460 100 000 32 768
40 000 1 16 100 200 000 65 536
50 000 141 520 300 000 98 304
60 000 165 140 400 000 131 072
70 000 210 560 500 000 163 840
80 000 234 200 600 000 196 608
90 000 257 620 700 000 229 376

1 00 000 303 240 1 000 000 262 134

TH.B.l

APPENDIX B

THAT SUDOS FOR COMPUTATION CENTER STAFF

BUT <IMMATERIAL>
•BUFFER THAT 1

Code to be executed by the CB-11 control buffer has to be assembled special
ly. 'BUT 1 turns on the buffer code processing portion of 'THAT 1, which assembles
the buffer code, one 8-bit character per G-20 word. Images not having a buffer
op-code are processed in the normal manner.

Examples:
CLA T2; Normal THAT code
BUT Begin processing buffer opcodes

LO LLM B2;
SIM 2;
TRC
TRA
SDT

LI COF
LBL L;
CUT Stop processing buffer opcodes

'BUT 1 permits buffer codes to be processed. Non-buffer opcodes are processed
normally.

CUT <IMMATERIAL>
NON-LISTABLE

1 NORMAL THAT 1

1THAT 1 will return to processing cards in the normal mode. They will not be
processed as possible buffer code. (See 'BUT'.)

Example:
See •BUT 1.

CRD <IMMATERIAL>
PRINTING BEFORE EXECUTION

•CARDS1

•THAT1 switches to taking input from cards.

LG8 <LINE MNEMONIO) <EXPRESSION>| <LC8>

The function is to pack information in 8-bit characters for transmission
over the communication line. If the parameter is a line mnemonic, the approp
riate octal constant is supplied. If the parameter is an expression, the value
of the expression is entered in two 6-bit characters and numeric flags added.
Characters are packed four per G-20 word. It is a detectable error if the value
of the expression is not less than /lOOOO.

Examples:
LC8 QIN, LLM, H2, SLM;
LC8 HO, POP, SSF;

The first instruction causes 5 8-bit characters to be packed into 2 G-20
words. The rightmost 3 characters in the second word are zero.

The second instruction causes 4 8-bit characters to be packed into 1 G-20
word.

PAK <EXPRE S S ION>, <EXPRE S S ION>
NON-LISTABLE
PRINTING BEFORE EXECUTION

'PACK BUFFER CODE*
The function is to pack code which has been assembled by Buffer That, 4

characters per G-20 word. The first and last addresses of the BUT code are
given by the first and second expressions, respectively. If the number of
characters to be packed is not an even multiple of 4, the odd remaining charac
ters are packed left-justified and the rest of the last word is made zero. After
the 1PAK 1 sudo has been executed, the value of the current instruction counter is
left at the address of the last packed word + 1 .

TLC <LINE MNEMONIO] <EXPRESSION>,<EXPRESSION>|
<EXPRE S S ION> | <L INE MNEMON IC>, <EXPRE S S ION>

NON-LISTABLE
•TRANSMIT LINE COMMAND'
The function is to assemble the G-20 instruct ion 1 T L C 1 , allowing the address

portion of the command to be a "LINE MNEMONIC 1.

The address field of the instruction is scanned until column 68 or a
character other than a blank, letter or digit is encountered. If the last
non-blank characters are a legal line mnemonic, the equivalent octal value is
used as the address, the instruction made mode zero and the rest of the line
treated as usual. If the address is riot a mnemonic the input line is treated
as usual.

Examples:
TLC QRD;
TLC 0 /60;
157 0 /60;

These instructions are equivalent.

RXA <SIGNED EXPRESSION
NON-LIST ABLE

•SET RELOCATION CONSTANT 1

The function is to store the value of the expression as the relocation
constant f R f in 1THAT 1 normally t R t = 0 .

,RXA I gives the user the ability to assemble a program in one part of mem
ory, and execute it at a later time from another part of memory. Whenever fTHAT f

stores an instruction, it is stored in the location A -f fR'. All references in
the program listing are to the value of A, the current instruction counter.
Although the program is assembled in another part of memory, it is generally the
case that it should not be executed until the program has been relocated to the
addresses appearing on the listing.

Examples:
LBL D6;
DEF A = /20000 ;
RXA /10000;

20000 Dl ENT A DO-NOTHING SUBROUTINE;
20001 TRA 1 Dl; EXIT AFTER DOING NOTHING

PRT E;
El 20000

The code produced is stored in locations /30000 and /30001.

TD8
•TRANSMIT DATA 8-BIT 1

TD6
'TRANSMIT DATA 6-BIT 1

RD8
'RECEIVE DATA 8-BIT*

RD6
•RECEIVE DATA 6-BIT 1

TC8
'TRANSMIT COMMAND 8-BIT 1

<EXPRESSION>,<LINE MNEMONIC>|
<EXPRESSION>,<EXPRESSION>

NON-LISTABLE
The function of the sudos is the same as in f T L C f , except that the index

field is checked for a line mnemonic.

A block transmit of instructions is set up starting at PO for a block length of
16 words. The index field is scanned and •SDT 1 (Start Data Transmission) starts
transmission.

•TYPE OR PRINT 1

The second expression which is taken modulo 4, determines where the error

indications are to be listed, as follows:
1: On the printer
2: On the console typewriter
3: On both the printer and the console typewriter
0: As it was before the 'TOP 1 sudo occured

It is not possible to turn the error print-out totally off.

Examples:

A listing of the program will be made on the printer with errors being listed on
both the printer and the console typewriter.

Examples:
BTR
TI8

PO;
16, SDT;

TOP <EXPRE S S ION>, <EXPRE SS I0N>
LISTABLE

TOP

TYP

•THAT 1 switches to taking input from the console typewriter.

