NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

ALGOL - 20

A LANGUAGE MANUAL

0CT 12 7p

JANET W. FIERST, EDITOR
DAVID M. BLOCHER
ROBERT 7. BRADEN
ARTHUR EVANS IR.
RICHARD B. GROVE

FIRST PRINTING FEBRUARY 1965

THIS WORK WAS SUPPORTED BY THE
ADVANCED RESEARCH PROJECTS AGENCY QF THE
OFFICE OF THE SECRETARY OF DEFENSE:
CONTRACT SD-146

CARMEGIE INSTITUTE OF TECHNOLOGY

I
' BNT LBRARY
CAMMERIE-RELLON UNIVERSTY

Acknowledgements

The construction of the programming system described here is
the result of the combined effort of many people. The following
were involved with coding the translator: David M. Blocher,

Arthur Evans, Jr., Janet W. Fierst, Richard B. Grove and Carol H.
Thompson. Ronald R. Bushyager, 111, wrote WHAT, the assembly language
processor included in the translator. Charles L. Thornton wrote a
table loader (the "Meta~compiler") which is an essential part of the
process of assembling the translator. Grove wrote the relocator and
the librarian. Special thanks are owed to Robert T. Braden for acting
ag the conscience of the group with many useful suggestions on "ALGOL
esthetics". The entire task was directed by Evans.

This document has been edited by Fierst, who also did much of the
writing. The following people, in addition, contributed to the writing
and editing of the document: Blocher, Braden, Evans and Grove. Ronald
P. Hackleman wrote many of the relocatable library routine descriptions
appearing in Chapter 5. The typing has been done by Edythe Simmons, and
Robert D. Smith contributed materially with his editorial assistance.

PREFACE

ALGOL-20 is a realization of the internatienal language
ALGOL-60, The international language, although a valuable vehicle
for the description of algorithms, does not really become useful
until it is implemented on computers. However, each implementer
has found it necessary in some cases and desirable in others to make
changes in the language. Further, additions te the language such
as input/output are necessary. This ALGOL=-20 Manual is a descriptiom
of the realization of ALGOL as implemented at Carmegie Institute of
Technology.

Two additional documents are needed to complete the description
of Carnegie Tech ALGOL. One is a description of ALIBEN - the librarian
"used in comnnection with the two libraries. The cother document describes
the assembly language - WHAT - which is built into the Algol translator.
The user may include assembly code as part of his program, as described

in the WHAT manual. These manuals are currently in preparation.

The internal operation of the translator has not been adequately

described. However, An ALGOL 60 Compiler, by A. Evans, which was

printed in Annual Review of Automatic Programming, Volume 4, Pergamon

Press, describes part of the translator. A preliminary wversion of the
format language used was described in A Format Languapge, by Alan J.

Perlis, in Commu. ACM, 7{Feb. 1964}, pp. 89-95,

Arthur Evans, Jr.

January, 1965

111

Introduction

The manual is organized as follows: Chapter 0 i3 a ready
reference containing in summary form the Iinformation the experienced
programmer will need. It is not suitable for reading by itself,
but is useful for reference tc particular points. Chapter 1 is an
introduction which includes bibliographical citations to several
introductory texts on ALGOL, for the programmer who does not yet
know the language. Chapter 2 describes in considerable detail how
the local system differs from the international language, Chapter 3
contains a detailed description of the input/output system provided
at Carnegie Tech., A format language of some sqphistication is defined.
Chapter 4 contains a description of system statements - those state=-
ments used to communicate to the translator information which is not
part of the ALGOL language. Chapter 5 contains a description of the
two libraries available to the translator and contains descriptions of
the routines currently in the libraries. Chapter 6 is a collection of
miscellaneous topics, including keypunch conventions, error codes, etc.
Chapter 7 includes the ALGOL-60 report as revised in 1962 and a
summarized list of differences between ALGOL-60 and local ALGOL.

Page numbers are of the form AL.m.n, where m indicates the chapter
number and n is the page in the chapter. Two chapters =-=- three and
8ix -- are divided into sub-chapters distinguished by lower case
letters, e.g., Chapter 3b. The sub-chapters are also paged individually
so that the first page of Chapter 3b is AL.3b.1, immediately following
AL.3a.2.

v

FaN

CONTENTS

CHAPTER O ALGOL Ready Reference
1 Intreduction
2 Hotes on ALGOL at Carnegie Tech
3 ALGOL-20 Input/Output

a. Introduction

k. FPrimer on PRINT

¢c. Primer on READ

d. Complete Description of All
1/0 Commands

4. System Statements
3. The ALGOL Library

a, Introduction
b. Routines in the Library

6. Miscellaneous

a, ALGOL-20 Card Format and
Keypunching Conventions
b. ALGOL-20 Error Messages
¢. Printing of the Compiled Program
d. Privileged Identifiers
€. Machine-Dependent Features
Octal Constants
String Constants
Logic Variables
Half Variables
Index Wariables
f. Segments
g. Disec/Tape Routines
h. Storage Allecation

7. ALGOL-60

a. The Revised ALGOL-60 Report

b. Features of ALGOL-60 Which are
Changed In ALGOL-20

c. Restrictions on ALGOL-20 to
Transform it into a Subset
of ALGOL-60

ta.l

bb,1
6c.l
6d.l
be.l

- 0.16
- 1.2
- 2.14

- 4.6
5.3

= 6h.2

- 7a,17
- 7b.2

- Fe.?

M'OOOI
Chapter 0 - ALGOL READY REFERENCE

ALGOL Notes and Error Messagea

Compile Errors

Notes

Run Errors

Kezgunchinﬁ
Precedence Rules for Ogerators and Relations

Format Instructions
Contrcl Instructions
Instructions for PRINT and PUNCH
Instructions for READ

Librarz Routines and Standard Functions

Relocatable Routines

O~~~ T W NN

—
[

[
|

Symbolic Routines

(=
]

Standard Functions

Regerved Identifiers

Privileged Identifiers

-
[IPC VS

AL.0,2

ALGOL READY REFERENCE

ALGOL Notes and Error Megsages (Chapter 6b)

Compile Errors

.Phase I Errors (Each of these errors terminates Phase II.)

0: The program does not start with begin.

l: A statement starts with an illegal character or an illegal reserved word.
2: A statement starts with an identifier follawed by an illegal character.
3: 1In apn expression an operand was expected and was not found.

4: In an expression a binary operator was expected and was not found.

(Possibly caused by a semicolon missing after the preceding statement.)

5: A "]" does not have a matching "[".

6: An array element has been used illegally.

7: A ":" has appeared incorrectly.

8: A" or ":=" has appeared incorrectly.

9: A """ does not have a matching "(".
10: A "," has appeared incorrectly.

11: then has appeared without if.

12: else has appeared without then,

13: Characters are still in the stack after a or an end.

14: A procedure statement is followed by other than end, else, or

15: for is not followed by an identifier.

16: The for variable is not followed by a "' or ":=",

17: step has appeared without for.

18: wuntil has appeared without step.

19: while has appeared without for.

20: do has appeared without for.

2l: go to is not followed by an identifier or "(" or if.

22: pgo to if...then...is not followed by else.

23:

24: An obscure error in a go to statement.

25: An impossible error after begin. ("}-" is not the second element in the
stack. See Error 98.)

26: own is followed by something other than <type>.

27: An array declaration does not specify subscript bounds.

28: The identifier list of a declaration is not followed by a ";".

29: switch is not followed by an identifier.

30: The identifier of a switch declaration is not followed by a "' or ":=".

31: .

32: procedure is not followed by an identifier,

33: A procedure identifier is not followed by "(" or

34: A formal parameter list is not followed by ")".

35: The "™)" following a parameter list is not followed by a ";".

36: The identifier list in a specification is not followed by a ";"..

37: An identifier did not follow the "," in an identifier list.

38: The illegal construction "then if" has occurred.

39: A switch with more than one subscript position has been usea,

40: The value part of a procedure declaration was not followed by a

",
$
", n
’ »

n.n
’ -

n.n
2 -

AL.0.3

ALGOL READY REFERENCE

41: The name of a permanent subroutine (such as "SIN") is not tollowed by "(".
42: There {8 an extra "," or else a misaing ":" in an array declaration.

43: More bepin's than end's have occurred when the end-of-file is resched.

44: Impossible - see Error 98.

45: max or min is not followed by "(".

46: In an array declaration the identifier list is not followed by "[".

47: Array specifier has subsacript bounds, which it should unot.

48: library is not followed by <type> or procedure,

49:

Phase I Errors (format and name statements) (Each of these ervors terminates
Phase II.)

50: A reserved imput/output word is not followed by "(" .

51: A format list element starts with an fllegal character. (Should be "<"
ur "' or "§" or {dentifier).

52: "9 is missing: 1.e., a replicator was expected but not found,

53: for is missing after "§'".

54: "' is not followed by "$" or an identifier.

55: ™" or ™" is not followed by ™" or ",".

56: A name statement or format statement is not followed by end, else or ";".

57: A replicator is not followed by "(" or "<".

58: <" or "," is followed by an illegal character.

59: An inteper is followed by an i{llegal character,

60: A formar instruction is not followed by ™" or

6l: An illegal prefix to a numeric primary has been used,

62: An illegal numeric primary has been used.

63: ".," appears in a numeric primary in a read statement.

64: In a numeric primary, E, F or § is not followed by an integer,

65:

661

67

68

69:

Phase II Errors (Only those errors marked "#" turn off Phase II.)

*70: A reserved word which is not yet available has been used,
71: A label has been used but not defined. (The name of the label is
printed prior to this error message)
72: An identifier has been usgsed but not declared,
73: An identifier has been declared twice in this block.
74: An identifier in the value list is not a parameter,
75: An identifier which has been used as a procedure has not been declared to
be one,
76: A subscripted identifier has not been declared to be an array or switch.
77: The program is too long.
78: A procedure identifier which is not a function designator has been used
in an expression.

* Turns off Phase 1I.

AL.O.4

79:

BO:
81:
B2:
83:
B4:
85:
86:
*87:
8B:
89
*00;

Q1
92:
93:
94
95:

ALGOL BREADY REFERENCE

An identifier which has been used ag a switch has-not been declared teo
be one,

An array ldentifier has been used without asubscripts.

Toc many index variables have been declared,

A label or array or switch has been called by value.

An identifier in a speclfication list is not a parameter.
In & procedure declaration a parameter 1s not specified.
In a procedure declaration a parameter 13 specified twice.
A procedure, switch or label appears on the left of a ":="
The W2 stack is too full,

More than 110G relocatable library procedures have been declared.

A constant has been used In place of an identifier, e.g., 33[%].

A subscripted for variable has been used (this is not yet available in
ALGOL-20) , :

The next-command pointer {s leas than the base of the program.

or "',

Miscellaneous Errors

96!
97:

o8:
99:

A possible tramslator error - bring listing to Janet Filerat at the
Computation Center,

Imposgible: bring your listing to A. Evans at the Computation Center.
Same as 98.

Subgcan Errors

100;
101:

102:
103:
104:

105:
106;
107 ;
108:
#1091
110:
1il:
112:
113:
114:

A card column contains an illegal combination of punches,

Toc many abcons or adcons have been used {numerical constants and
alphanumeric string constants).

Too many decimal points appear in & number.

Too many ","s appear in a number,

An error has appeared in a parameter delimiter comment: '}<any string
not containing:>:(". '

An illegal bar ("|" } variable has been used.

A constant has been used which is too large to fit into a real wvariable.
A", ia followed by something other than "+", "-%, or <digit>,

A string goes over the end of a card,

The symbcl table has been exceeded.

* Turns off Phase II.

AL.0.5

ALGOL READY REFERENCE

Syatem Statement Errors

115: An abcoun aystem statement has occurred after code haa been compiled.

116:

117: An abcon system statement has requested more space than there is in
user meEmery.

118:

119: An illegal SY card haa occurred, {This may be caused by a LIBRARY card
after the symbolic library has been released.)

120: The library procedure nesting exceeds 5.

121:

122: WHAT has been called after it haa been released,

123: An {llegal segment statement has been used.

124: An SY LIBRARY card has asked for a toutine not {n the symbolic library.

125: A library procedure declaration has named a routine not in the relocatable
library.

Notes

Note 1: end comment convention was used on preceding card., That is, every-
thing was ignored up to ";", end, or else.

Note 2: A function designator has been used as a procedure statement,

Note 3: In an arvithmetic or boolean expreasion, the construction if...then if
has occurred., Thia is ayntactically i{llegal but unambiguous, and is
therefore accepted by the translator,

Note 4: An arithmetic {boolean) {(designational) expression has been used
where a simple arithmetic (boolean) (designational) expression
should have been used.

Hote 5: In a designhational expreesion, the construction if...then if hase
occurred, This is ayntactically 1illegal but unambiguous.

Note 6: FPhase II has been turned off,

Note 7: The construction if.,.then for.,.do...else... which is legal in
ALGOL 60 but illegal in ALGOL €2 has been used.

Rote 8: TAPR appears as a character,

Note 9: Fifty errors have been found on a single card; compilation has been

terminated,
Run Errors
ADRF address--opcode fauglt
CFLG command flag error
EXP EXP (x) called with X > 160,116998
EXPO exponent gverflow
LN LN (x)} called with X< 0
RAD1 upper < lower in a bound palr in an array declaration
BAD2 declared arrays exceed available space

READ an ertor has occurred in reading a data card

AL,0.6

ALGOL READY REFERENCE

SIN the argument to SIN or COS is greater than 8t21.
SQRT SQRT (X) called with X< 0

TIMR time limit exceeded

XtAl X=0and A< O

Xt A2 A* LN (X) > 160.116998

Xt A3 X < 0 and A not integer valued

Reypunching (Chapter 6a)
111 1 1 111 11 2:.222 2222223333333333...R

column - 12 3 45678 9012 3 4 567 89 O 123 4567890123456789 M
WHAT WH .LOC. F 0Op, M Addr, Index;comment..
ALGOL AL .iieeieensesesecsesALGOL teXt.eoeresrassssncans
system Y, tiieesececenncsssan.ByStem teXt. i rorrnnenns
comment CO tieessnsanansassssssecCOMMENnt. cuvvessosensronss

RM is the right margin. (Initially RM = 72. It may be changed by
SY RIGHT MARGIN ~ see Chapter 4.)

Precedence rules for operators and relations (Chapter 2)

! {performed first)
MOD

t

+ ~ (unary)

*/

+ « (binary)

<> mL=m>#
—_

la)

v (performed last)

Format Instructions

Control Ingtructions

Inatructions

nC
nR
nL

AL.0.7

ALGOL READY REFERENCE

{Chapter 3)

Sets CP to column n {CP « n).
Moves CP n columns to the right {CP « CP + n).
Moves CP n columna to the left (CP «CP - n).

for PRINT and PUNCH

Control

Numeric¢ Instructions

1.

nk

nW

'<atring>'

nB

nQ
nA

nT

Prefix
L$
$

14(L-)

and Alphanumerics

Prints or punches the contents of the appropriate
buffer, clears the buffer te blanks, prints or
punches n«1 blank lines, and sets CP to left margin.
Prints or punches the contents of the aﬁpropriate
buffer n times. CP and the buffer are not changed.
Upspaces the paper to a new page and prints a page
header on the firat line, CP and the buffer are
not changed. This instruction is ignored in PUNCH.
Stores the characters of the string into the appro-
priate buffer.

Stores n blanks,

Stores n quotes (').

Stores n charactera which are taken from | ((n+3)/%)
names.

Stores min (5, n) characters which are taken from
cne of the internal strings "TRUE ', "FALSE' or
'UNDEF', according to the boolean value of the

corresponding name.

Stores a dollar sign left-justified.

Stores a dollar sign immediately before the firsat
digit,

Stores the sign (sign {f minus) left-justified or
immediately after a '§' gtored by "L$".

AL.D.8B

2.

3.

+(-)

Rumeric Primary

nD

nZ

Sauffix

ALGOL READY REFERENCE

Stores the sign (sign if minus) immediately before
the first digit or a '$' stored by "$". If the
number is negative, a minug sign is stored; i1f
the number is non-negative, & plus sign {(blank) is

atored,

Steres n digits or blanks. Leading {or trailing)
zerog are replaced by blanks.
Stores n digits,

Stores a decimal point, '.'

Shifts the number until the left-most digit is non-
zerc {(Lf possible} and stores the resultant
exponent.

Shifts the number until its exponent equala + n.
The resultant exponent 1s (is not) printed.

S5hifts the number until the left-most digit is
non-zero {1f possible). The decimal peint is
inserted in the position to give an exponent equal
to tn and the exponent is stored. The numeric pri-
mary must be of the form "mD." or "mZ.".

Converts and stores the number in octal (base 8)
instead of decimsal.

Invokes special spacing. If the prefiix contains
"L$" or "§", the digits of the number are stored

iﬁ groups of three separated by commas. If nelther
"L3" nor "$" appears, the digits are stored in
groups of five, separated by blanks.

Suppresses erreor printing which may occur when
left-most non-zero digits overflow the field speci-
fied by the numeric primary.

Truncates the number at the last digit stored.
Normally, numbers are rounded by adding five to the
firs£ digit not printed. '

"

AL.0.9

ALGOL READY BEFERENCE

Instructicons for READ

Control and Alphanumeric Instructions

nE Reads n card images intc the BEAD buffer and sets
CP to left margin. Only the last card image read
is available after the instruction is executed.

oW Functions as “nB" except that the card imapes are
glso listed on the printer.

‘<string>" Causes the n characters of the string to be
gtored, four per word, inte the next i{{(n+3)/4}
names. If n is not & multiple of four, charscters
in the last name are stored right-justified. The
CP and buffer are not changed. -

ni Scans the characters in the next n positions of the
buffer and steres them as in the '<string>' instruc-
tiom.

nT Scang the characters in the next n positions of the
buffer. Lf the first nen-blank character is the
letter "T", the value true is stored in the next
name; otherwise, the value of the name is set to
false. The corresponding name must be of type

boclean or logic.

Numeric Instructions
1. Numeric Primary
nD Scans the number represented in the next n pesitions
¢f the buffer. Blanks are ignored. Numbers are in
free field format and may contain signs, decimal
points, and exponents. Numbers preceded by a "/"

are treated as octal gquantities.

nZ Scans as "nD" except that blanks are treated as
zeros.
2. Suffix
H Assumes the number read to be octal {(base 8)

instead of decimal.

AL.0,10

3.

Free Read
nF

ALGOL READY REFERENCE

Multiplies the number read by ten (eight) raised
to the power +n.
Causes illegal characters (such as letters) to be

ignored.

Scans and concatenates n octal or decimdl numbers

in fields separated by commas. Blanks are ignored
with the excepticon that if an entire field is blank,
the corresponding name is unchanged, Numbers pre-
ceded by a /" are treated as octal. A number field
may be continued over the end of a card image. The
last number in' the data group must be followed by

either a "," or a "*",

Librnrz Routines and Standard Functions

AL.O, 1)

ALGOL READY REFERENCE

(Chapter 5)

AND. CALL
AND,.FILE
DISC.READ
DISC.WRITE
GOOF ,5TAR
G0.5EG
LINK
RUN.ERROR
SLEW
SYSTEM. DUMP

0lic Routines
AND, PUNCH
BANSOLV

CCMDIV
CURVEFIT

CURFIT

ELIPS

FREQ

GAME

GJR

HERMJA

JACOBI

MULLER

Relocatable Routines (i.e,, library procedures)

sets the scratch pointer and enters AND
assigns a logical file type to an AND file
reads from disc or tape

writes on disc or tape

priﬁts 4 run-error message

slews to a segment

links to a segment

gets up run-~-error recovery

slews to a record

dumps an ALGOL program as a system

punches an AND record onto cards

solves a system of linear equations whose coefficient
matrix is a band matrix

computes the quotient of two complex numbers
determines the best least squares polynomial approxi-
mation to a given curve, with or without constraints
determinea the best least squares polynomial approxi-
mation to a given curve, with constraints

computes the values of the complete elliptic integrals
of the first and second kinds

determines the frequency distribution of a given set
of data

solves a finite, zero-sum, two-person game

computes the lnverse of a given matrix

finds all the eigenvectors and eigenvalues of a given
Hermitian matrix

finds all eigenvectors and eigenvalues of a given
symmetric matrix

finds the real and complex roote of a general equation
of the form £(z) = 0

—— e e

AL,0,12

ALGOL READY REFERENCE

NEVILLE computes approximate values of a tabulated function

by interpolation

NORMRAN computes a sequence of normally distributed paeudb-
random numbers

PLOT produces the graph of one to ten functions

RANDOM computes a sequence of uniformly distributed pseudo-
random mimbers

SIM per forms numerical integration by Simpson's method

SORT1 . gorts a list of numbers into sacending order

Standard Functions (i.e., built-in functions)

ABS abgolute value

ARCT AN arctangent

BUFFERSET redefines the input/output buffers .

CLOCK time since the last job-card minue parameter (in seconds)

Ccos cosine .

DEBUGPRINT a fixed format print routine

ENTIER the largest integer which is not greater than the
parameter

EXP exponential (ex)

HALT halt

LN natural logarithm

MAX maximum} (sece page AL.2.10 in the ALGOL manual)

MIN - minimum

PAGES number of pages since the jobcard

PAUSE saves the program for restart

PRINT controle printing

SIGN -1 if parameter negative, +l1 if positive, ¢ if zero

5IN sine

SQRT aquare root

TIME time since midnight (in seconds)

MOD is an operator such that for integer m and n the quantity m MOD n is the

remainder on dividing m by n.

Reserved Ldentiflers
- -—

ALGOL READY REFERENCE

ABS {2) G0 TO
ARCTAN (2) HALF
ARRAY . (1) IF
BEGIN (L) INDEX
BOOLEAN (1) INPUT
COMMENT (1) INTEGER
COS (2) LABEL
D0 (1) " LIBRARY
ELSE (1) IN

END (0 LOGIC
ENTIER (2) MAX
EXP (2) MIN
FALSE (1) MOD

FOR (1) MONITOR
FORWARD (3-NA&) NAME

GO (1) QUTPUT
GOTO (1) OWN

(1) ALGOL EQ "built in" word.

{Chapter 2)

(1)
(3-2.5)
(1)
(3-2.5)
{3-x4)
(L

(1, 3-2.10)
{3-5.1££)
(2)
{3-2.5)
{(3-2.9)
{3-2.9)
(3-2.9)
{3-N4&)
(3-3.1££)
{3-np)
(1}

PRINT
PROCEDURE
PUNCH
READ
REAL
SIGH
SIN
SQRT
STEP
STRING
SWITCH
THEN
TRUE
UNTIL
VALUE
WHILE

{3-3.1£6)
{1)
{3-3.1£6)
{3-3.1f6)
{1)
{2)
(2}
(2}
{1}
(1)
(1}
{1}
(1)
{1)
{1)
(1)

AL.0,13

{2} ALGOL &0 reserved function identifier.

{3} ALGOL 20 reserved word--see page reference, (NA means not now available.)

Privileged Identifiers {Chapter 6d)

ACC real Accumulator

CLOCK integer prucedure {time in seconds since job-card} minus parsmeter
DAY logic 'uddu' dd = day of month

DEBUGPRINT procedure fixed format print routine

EPSILON real smallest positive number = 8t-63

HALT procedure halt

INFINITY real largest positive number = (8t14-1)*8163
MONTH logic 'mmmy' mom = name of month

PAGES integer procedure number of pages since job-card

PAUSE procedure save for restart

PRINT procedure ‘ controls printing on teletype

TIME integer procedure time in seconds since midnight

YEAR logic 'vyyu yy = last two digits of year

-~ BT LBMm
DANNERE-BEL v ERGITY

AL.O,14

= labels in WHAT and ALIBN

-0

5 e e [s T I
-
w

Complement ¢ when accessed arithmetically

I flag

2 flag

3 flag

Function variable for relocatable library procedures

INFINITY = (8t114~1) * 8113 (Chapter 6d)

EPSILON = Bt(-63) (Chapter 6d)

Dynamic block level - pointer to array stack (an index register)

Exit from FORMAT and NAME

Current NAME list

Current FORMAT list

NAME routine

PRINT routine

PUNCH routine

READ routine

FORMAT routine
Page-and-print-page~-header routine

EOo_to <label> routine

RAD - run-time array declaration routine
begin administration routine

end administration routine

procedure begin administration routine
procedure end adminigtration routine
GOOF* : Run Error routine

ADDR-0P routine

LINK routine

Last location of user memory + 1

Contains base of compiled code

Contains end of relocated subroutines

Contains maximum location used by scalars

Base of array stack

Contains compile-time block level of current procedure
Contains run-time block level of current procedure
Base of run-time procedure nesting stack

Run-error recovery cell

Contains segment number

Contains physical right margin for READ

Contains physical right margin for PRINT

Contains physical right margin for PUNCH

RUN,.ERROR switch for end

Run-time error printing mode switch (Chapter 5.RUNERROR)

AL,C.15

| variables ino ALGOL

| 200
|201
| 202
}203
|204
| 205
1206
|207
|208
|209
j210
j211
[212
[213
|214
| 215
j250
j251
|252

READ character pointer for standard buffer
READ right margin for standard buffer
READ left margin for standard buffer

PRINT and FUNCH character pointer for standard buifer
PRINT and PURCH right margin for standard buffer
PRINT and PUNCH left mergin for standard buffer

Format switch

NAME switch

Page counter

Page header awitech
Up-space counter
Left~justify switch
Current READ buffer
Current PRINT buffer
Current PUNCH buifer

AL.O.16

sttem Statements {Chapter &)

Print Control for Compilation Listing

PAGE

LINE n

SINGLE

DOUBLE

INDENT n or INDENT + n

PRINT <parameter string>

Miscellaneous

RIGHT MARGIN n
LIBRARY <identifiex>>

n ABCONS

SEGMENT n., n

1* 2
RELEASE WHAT

RELEASE SYMBOLIC LIBRARY

DEBUG n

* pnot printed

$ may not contain comments

Eject printer paper to top of next page.

Skip n lines.

Single space the listing.

Double space the listing.

Set the left margin of the listing to n
or K+n,

Print or don't print selected parts of
the listing.

Scan cards to column n for text.

Fetch <identifier> from the symbolic
library.

Reserve space for n abcons and n abcons,
Treat this program as segment n, of
length n, .
WHAT will no longer be used. Free the
space for compilation.

The symbolic Llibrary will no longer be
used. Free the space for compilationm,

If n > O print the results produced by the

three phases of the tramslator. If n=0

do not print the results.

+ must occur before the first begin

AL.1.1

CHAPTER L

ENTRODUCTION TO ALGOL

ALGOL is an international algorithmic programming language designed
for problems whose solution can be expressed in algebraic notation. It is
internaticpal in that its specifications have been agreed upon by an
international committee and it has received wide acceptance throughout the
world. It is algorithmic in that it is designed for the natural representa-
tion of algorithms. It permits the programmer to write his code in such a
way that it is highly readable with an obvious flow of control. The exist-
ence of an ever-growing body of published algorithms increases the utility
of the language to the user.

The ALGOL language as it exists at Carnegie Tech contains essentially
all the features which have been specified for the international language,
the only major eumception being recursive procedures. Thus the user of
ALGOL at Carnegie Tech is using a language with worldwide acceptance and
understanding. Our local version has been augmented by certain features
not now available in the international language, the most notable of which
is an extensive input/output facility.

It is not the purpose of this document to provide the user who is
unfamiliar with ALGOL with an introduction to that language, since the lit-
erature now includes several very fine works which perform this function
admirably. For the user who is learning programming at the same time that

he is learning ALGOL, McCracken's Guide to ALGOL Programming is an easy

introduction, (See the bibliography at the end of this chapter for a
complete citation.) It is used as the text for the introductory program-
ming course at Carnegie Tech. Chapter 11 of the present work contains a
detailed listing of the ways in which the ALGOL system at Carnegie Tech
differs from ALGOL as described by McCracken, including references to
section numbers in McCracken's text. Unfortunately, McCracken does not
give an adequate discussion of ALGOL procedures or of the structure and

syntax of conditional statements and expressions.

AL.1.2

Bottanbruch's tutorial article in the ACM Journal {s a complete intro-
duction, and features good discussions of ALGOL procedures with explanations
and examples and of conditional statements and expressiona.

For the more experienced programmer who wishes to learn ALGOL, Christian
Anderson's text will be worthwhile. Anderson provides a readable Introduction
to what is importanmt in ALGOL-60,

Another Intrcduction which might be conaldered is that of E, W. Dijkstra.
This is a very'complete.buok describing all of ALGOL, It contains some com-
mentary which is not elsewhere available on the effects of the 1limited range
of number representation in computers. It alsc countains a good discuasion
of ALGOL esoterica including Suneaky Procedures.

The baslc document which defines the ALGOL language Ls the Revised
Report on the Algorithmic Language ALGOL-60 edited by Peter Naur. Thia report

defines the language completely and unambiguously. It is, however, not easy

reading and it is not recommended to the beginmer 1n ALGCL. It is reprcduced

- ag Chapter 7 of this report.

Bibliography

Anderson, C., An Introduction to ALGOL 60, Addison Wesley Publishing Co, Inc.,
Reading, Mass.

Bottenbruch, H., Structure and Use of ALGOL 60, Journal of the ACM, 9, No. 2
(1962), i61-221.

Diikstra, E. W., A Primer of ALGOL 60 Programming, Academic Press, Lbndon,
t England.

McCracken, D. D., A Guide to ALGOL Programming, John Wiley and Sons, Inc.,
New York.

Naur, P. ; editor. Revised Report on_the Algorithmic Language ALGOL 60,
Communications of the ACM, 6, Ho. 1 (1963},

AL.2.1

CHAPTER 2

Notes on ALGOL at Carnegie Tech

INTRODUCTION
ALGOL-60 has been designed to be both a universal language for describing

and publishing numerical algorithms, and a programming language for executing
algorithms on computing machines. The "reference language" ALGOL-60 has been

precisely and elegantly defined in the Revised ALGOL-60 Report (Communications

of the ACM, 6, 1 (Jan, 1963)), When ALGOL is actually implemented on a par-
ticular computer, however, some changes of notation and some restrictions are
usually added to this definition.

The ALGOL tramslator which has been written at Carnegie Tech for the
CDC G-20 computer accepts a language which we call ALGOL-20 to distinguish it
from ALGOL-60 when we need to be purists. As a matter of fact, most of the
differences between ALGOL-20 and the reference language ALGOL-60 are minor;
however, a knowledge of them is needed to use the CIT ALGOL system successfully.
In this document, a reference to simply "ALGOL" will always mean ALGOL-60, the
reference language.

This chapter describes those aspects of ALGOL-20 which differ from
ALGOL-60. As such, it is the primary documentation of our ALGOL system. It

is keyed to both the Revised ALGOL-60 report and to the text, A Guide to Algol,
by D. D. McCracken. References to the former are by section numbers given in
gquare brackets, and to the latter by section numbers given in round brackets.
Thus the paragraph at the top of the next page relates to section 2.3 of the
Revised Algol Report and to section 1.4 of McCracken.

AL.2,2

SYMBOLS . .5 (2.3)

The G-20 accepts all of the special symbols of ALGOL-60 except for those
shown in the following table:

ALGOL- 60 - ALGOL-20

= ("implies") Not available, but "," ma& be used with "' to
obtain the pame effect. See page 2.8,

= ("is equivalent") Use "=". See page 2.8.

X (multiplication) Use ',

+ | Not available, but ™" may be used with nm
with the same effect. See page 2.7.

s Use ">",

= Use <",

2 (string quotes) Both represented by '. See page 2.3.

In four cases, ALGOL-20 uses a palr of adjacent symbols to stand for a
single symbol of ALGOL-60. For example, the ALGOL-60 assignment operator ":="
is strictly a single symbol, but it must be punched into an ALGOL-20 program
card as a colon and an equal sign in adjacent columns., There must be nc blanks
separating the symbols of the pair, and they must both be on the same card.
Note: punching them into the same column will give a "hash" of holes which the

G-20 will interpret as some other (erroneous) character, The four double-

symbol characters are

ALGOL-60 character ALGOL-20 character pair
s >
z <
~= ("£" is also allowed)
non-existant 8R
non-existant 8L

non-existant : 8F

AL.2.3

NUMBERS 2.1 (2.5)

(a) A number, N, in an ALGOL-20 program must either be zero (which may be
punched with or without a decimal point) or else its absolute value N must

satisfy:
1,275,-57 = N = 3.450,+69

(b) Because of the nature of the G-20 computer, the diétinctiou between
real and integer numbers is unimportant. The programmer may write an integer-
valued constant with or without a decimal point (e.g., "34", '"34.", or "34.0")
without changing the type of arithmetic performed with the constant,

Numbers are represented in the G-20 in "floating point" form with a maxi-
mum of 42 binary digits of mantissa, corresponding to approximately 12 decimal
digits of precision., If more than 12 digits are written, the extra (least
significant) digits will be ignored. (The number is rounded at the l4th octal
digit.)

(c) 1In ALGOL-20, the last character of a real number may be a decimal
point; thus, the number "6." is legal.

(d) Octal numbers may be written in ALGOL-20. See Chapter be.

STRINGS (2.¢)

(a) A string cannot contain a string since ALGOL-20 has no way of dis-
tinguishing between the left and right string quotes.

(b} Strings of four characters or less may be used as logic constants
and assigned to logic variables. If more than four letters appear in such a
string, only the leftmost four are used. Strings of less than four characters

are stored right-justified.

IDENTIFIERS AND VARIABLES 2.2 (2.3, 3.1

(a) Only upper case (capital} letters are available in ALGOL-20.

(b) In ALGOL-20, ceftain identifiers have special meanings and are
therefore reserved. The programmer may never use these reserved ALGOL identi-
fiers as variables or, indeed, for any purpose other than their reserved mean-

ings. These reserved identifiers must be separated from adjacent identifiers

AL.2.4

by at least one blank. For example, if the blank between the reserved
identifier IF and the identifier "X" were omitted in "IF X > 0", then the
ALGOL translator would interpret "IFX" as a single variable identifier; as
a result, the statement would have no meaning at all.

The reserved identifiers in ALGOL-20 are

ABS GO TO PRINT
ARCTAN HALF PROCEDURE
ARRAY IF PUNCH
BEGIN INDEX READ
BOOLEAN INPUT REAL
COMMENT . INTEGER SIGN
cos LABEL SIN

DO | LIBRARY SQRT
ELSE N STEP

END LOGIC STRING
ENTIER MAX SWITCH
EXP MIN THEN
FALSE MOD TRUE
FOR MONITOR UNTIL
FORWARD NAME VALUE
GO OUTPUT WHILE
GOTO OWN

Same of these reserved identifiers have no ALGOL-60 equivalent; in particu-

lar:

HALF, INDEX, LOGIC (see page 2.5 below)
MAX, MIN, MOD (see page 2.9 below)

NAME , INPUT, QUTPUT, PRINT, PUNCH, READ
(see Chapter 3 - Input/Output)

LIBRARY (see Chapter 5)
FORWARD
MONITOR

FORWARD and MONITOR have not yet been implemented, but will be described

when they are available.
All of the ALGOL-60 standard functions are avgllable in ALGOL-20, and

their names are reserved identifiers:

ABS ENTIER SIGN (2.4)
ARCTAN EXP SIN [3.1.4)
cos LN SQRT

See Chapter 5 for further information on these functions,
"TO" is reserved only when it follows immediately after the reserved

identifier GO, In any other context, "TO" may be used as an ordinary

AL.2.5

identifier by the programmer, See page 2.10 of these notes.

In addition to the reserved words listed above, ALGOL-20 includes a set
of "privileged" identifiers thch have built-in meanings without being
declared; they are, in effect, declared by the translator in a block head
outside of the outer-most block of the program. Therefore, if the programmer
does not wish to use one of these identifiers in its privileged meaning, he
may simply ignore the fact that it is privileged and declare and use it as he
would any non-special identifier. Further, if a privileged identifier 1is
declared in an inner block, it resumes its privileged meaning as soon as the
end of the inner block is passed. These identifiers are listed and their
meanings are explained in Chapter 6d. Identifiers may be added te this list
hy the Compﬁtation Center at sgome future time. Since they are not reserved,
additional privileged identifiers cannot accidentally interfere with identi-
fiers written into a current ALGOL program.

{(c) Spa-es may not appear within an identifier in ALGOL-ZO: The pro-
grammer may, howuver, freely sp:rinkle periods {.) within identifiers to
separate them into wsrds and improve the readability of the program. These
periods are ignored by th» ALGOL-20 trunslator; therefore, the following.are

all instances of the same identifier::

READACARD
READ,A.CARD
R.E.A.D.A.CARD,,

(d) ALGOL-20 allows hoth simple and subscripted variables u. *ype half,

and logic, as well as real, integer, and Boolean. Alsou, simple variaL'es may

- rtpeayiatmpn

Real variables are stored in the G-20 with a precision of 42 binary digi's,
requiring two successive memory cells per varijable. Half variables are stored
with a precision of only 21 binary digits (about 6 significant decimal digits)
and occupy only a single location, but otherwise act as real variables. There-
fore, the programmer may use half variables to gain memory space at the
expense of precision. '
for bit and character manipulation processes. They may be used in either
arithmetic or Boolean expressions. Simple variables of type index will be

assigned to G-20 index registers but act otherwise as variables of type

AL,2.6

integer. The uses of logic and index variables are complex to explain but

obvious to those ALGOL programmers who are also knowledgeable in G-20 machine
language. For more information see Chapter 6e.

(e) The value of a real or half variable must either be zero or else

lie within the range given below:

real: 1.275,-57 & abs(R) = 3.450,.4+69
half: 1.275,-57 = abs{H) = 1,645,463

integer and index variables will always take on integer values in the range
21
)

-2097152 < I < 2097152 (= 2

logic variables are always positive. If used as strings, they are four or
less characters in length, and 1f used as numeric quantities they are restricted
to

0 s L < 4294 967296 (= 232)

The values of Boolean variables must be either true or false.

The G-20 replaces by zero any non-zerc arithmetic result which is smaller
than 1.175,-57 in magnitude; this situation is called an underflow. An inter-
mediate arithmetic result which is greater than 3.450,46%9, the largest number
representable in the G-20, is called an overflow. An overflow during execution
of the object program will cause the run-time error message "RUN ERROR-EXPO" to
be printed, and terminate execution of the program (unless error recovery is in
use}. See Chapter 6b for further details on run-time errors.

An exponent overflow cannot occur during translation of the ALGOL source
program; violation ¢f the restrictions on ALGOL-20 numbers given above will
cause a normal syntactic error message which will not, however, terminate
translation,

The number 3.450,,469 is the upper limit for the result of each individual
arithmetic operation in the evaluation of any arithmetic expression, regardless
of the types of the variables in the expression. However, Iif the result of
the expression is assigﬁed to a half variable, then a value greater than
1,645 +63 will result in an exponent overflow message as explained above. A
value assigned to an integer variable, on the other hand, will be truncated
modulo 221 = 2097152; while a value assigned to a logic variable will be trun-
cated medulo 232 (and given a positive sign); in either case, no overflow

message will occur.

AL.2.7

ARITHMETIC EXPRESSIONS .3 [3.3)

(a) In ALGOL-20, the asterisk ("*") is used in place of the multipli-
cation sign ("x") of ALGOL-60.
{b) ALGOL-20 arithmetic expressions may contain the truncation opera-

tor "I" defined mathematically by
1X = sign (X) * entier (abs(X))

That is, iX is simply the integer part of X if X & 0, and i{s -(integer
part (-X)) for X < 0. Thus, 1(1.7) = 1, 1{(~1.7) = -1, Truncation is per-
formed modulo 232 = 4294967296; for example, 14294967298 = 2.

The truncation operator is unary, having exactly one operand which is
the complete expression immediately to the right of the '"}" symbol. The

precedence of "i" is very high, so that "I" will be executed before "t"

or
any other arithmetic operation (unless parentheses are used to force a dif-
ference order). For example, "1X/Y'" means (1X)/Y and "XtiY" means Xt (iY).
(Truncation is done by an add-logical in mode zero of zero.)

{c) The truncation operator, "I", can be used to get the effect of the
integer divide operation, ™", which is not available in ALGOL-20. If I and

J are integer variables, then
I+J < i (I/D

Notice that the "i'" operator can operate on any integer or real expression,
and 1s therefore more general than ':",

(d) When a variable of type half appears in an arithmetic expression,
the rules for determining the type of the result are exactly as if the half

variable had been of type real. In fact, full precision (42 bit) floating

point arithmetic is always performed on all variables other than Boolean and
logic in ~we G-20,

(e) The "4" and "-" can be used either as binary operators or else as
unary operators. “sen "+" and "-" are used as unary operators with "t" in

the combination "t+" v. "™ _" parentheses around the exponent may be omitted.

AL.2.8

The following table shows some examples of this rule:

The ALGOL+20 Expressions Means: (hoth in ALGOL-20 and ALGOL-60)

i
Xt+Y I Xt (+Y)

Xt-Y Xt (-Y)
Xti-Y | Xt {1 (-7))

(f) The precedence of operators and relations in ALGOL-20 is

i (done first)
nod

1

- + (used as unary operators)
/ *

- + (used as binary operators)

F =A< > <

-

Fal

- {done last)

That is, unless parentheses force a different order, { will be perfprmed,
then mod, then t, and so on. The unary operators + and - arg special cases,
Unary + is ignored. Unary - is performed on the expression on its right whose

operators have higher precedence than it. For example;
gqmod - a1 bmod ¢ *d
is
q mod({(<(a t (b mod ¢))) * d)

BOOLEAN EXPRESSIONS : (3.6)[3.4)

(a) The Boolean operator "5'" ("Implies') is not available in ALGOL-20,
However, for any Boolean expressions B1 and BZ’ the ALGOL-60 expression

B, = B, may be replaced by either of the equivalent forms:

1 2

"‘Bl ~ BZ

- (B]_ ~ -—sz)

(b) ALGOL-20 substitutes the equality symbol "“=" for the Boolean
equivalence operator ''='"., Note that the ALGOL 60 report gives = very

Y

AL,2.9

low precedence. ALGOL-20 canpot distinguish between = and = and
thus gives them the same precedence, Thus A~ B = C + D 1s taken as
A~ (B =C) « D, and parentheses must be used if any other meaning is

intended.

STANDARD FUNCTIONS (2.0)([3.2.4)

ALGOL-20 has three built-in operaters, MAX, MIN and MOD, which are
not in ALGOL, These are defined mathematically as follows, where El’ EZ""E

are arithmetic expressions.

MAX (El' E2’ . EN) = the largest algebraic value of the N
expressions;
MIN (EL‘ EZ’ e EN) = the smallest algebraic value of the N

exXpressions,
M E L E %
B, MO0 F. - B E, * 4 (E/E)
MAX and MLN may have any number of expressions as arguments.

Note that MOD is written ag an u,.>rator between its twp arguments. The .above
definition for MOD holds for all val.»sg of El and E2’ but in the case where
both arguments are positive integer-valuvt eypressions, then E1 MOD E2 1s

the remainder for E

Although E, and E

| divided by E, (and J(El;w,) is the integer quotient).

2 each appear twice in the defisition, they are actually

evaluated only once,

ASSIGNMENT STATEMENTS (2.5){s.2)

(a) In addition to the ":=" operator of the reference language,
ALGOL-20 allows the left arrow ("«') as an assignment operator. The leftr
[1] (1]

arrow has the same meaning as '":=", except when a npn-integer expression

is assigned to an integer variable. The assignment statement
<integer variable> « <non-integer expression>

result in truncating the value of the expression to an integer without
roundipg. If ":=" is used imstead, the value will be rounded to an integer
in conformity with the reference language; however, the Y“+! operator pro-
duces more efficient object code,

(b) In a multiple assignment statement, the "left part" variables

need not all be of the same type. For example, the sequence

AL.2.10

REAL X ; INTEGER I, J ;
I X eJ = 3.7%X;

is allowed in ALGOL-20, The rule given in (a) above determines for each

integer left part variable whether or not rounding will occur,

LABELS AND GO TO STATEMENTS (3.2) [4.3)

(a) Only identifiers may be used as labels in ALGOL-20; integer

labels are not permitted.
(b) In ALGOL-20, GOTO and GO are both reserved identifiers, and TO

is ignored when it follows after GO, Hence
G0 TO Label
GOTO Label
GO Label

are all equivalent and permissible.

CONDITIONAL STATEMENTS (3.3) {4.5)

(a) Because of character set restrictions, ALGOL-20 must make the

following substitutions for relstional operators:

ALGOL- 60 ALGOL-20
= —<
= ->

In addition, both "#" and '"=" are allowed in ALGOL-20,
(b) There are some compléx syntactic construction which were allowed
by the original ALGOL-60 report but were subsequently found to be ambigpous

or controversial. One such ambiguity arises when a for statement comes

within the scope of an if clause.
(1) Consider the following construction:

if ... then

for ... do

beg

o4

..+ then <unconditional statement> -

else <statement>

end;

AL.2,11

If the "begin ... end” pair is omitted, this construction becomes
ambipuous since the phrase '"else <statement>" could belong to either the
inner or the outer if clause., ALGOL-20, in agreement with the 1962

revision of ALGOL-60, allows the "begin ... end" pair to be omitted, and

considers "else <statement>" to belong with the second <if clsuse>; i.e.,
the construction is treated as if the “begin ... end" pair were actuaily
present.
(2) The following construction:
if ... then
for ... do <unconditional statement>

else <statement>

{8 not gctually ambiguous. Hpwever, the revisjon of ALGOL-60 syntax which
took care of case {1) also had the undesirable effect of outlawing con-
struction {2} which is perfectly respectable. Therefore, ALGOL-20 will
allow (2) but wiil print a "Note 7" {see Chapter &b} to point ocut that it

is inconsistent with revised ALGOL-60 gyntax.

CONDITIONAL FXPRESSIONS (3.5)

_ {a) ALGOL-20 aliows certain comstructiona with conditional expres-
sions which are unambiguous but illegal in revised ALGOL-60, The ALGOL-20
transiator will flag any of these constructions with a "Note 4" messagg
(see Chapter &b) to call the programmer's attention to the violation of
ALGOL syntax.

In ALGOL-20 the right-hand coperand of a binary operator may be a
conditional expression without parentheses; e.g., the second set of

parentheses may be cmitted in:
(if X>0 then X gelse Y) + (if Y>0 theam 3 else X

Note, however, that cmission of the first set of parentheses, surfounding
the conditional expression which is the left-hand operand of the binary

cperator "+", would change the meaning to the following:
if X0 then X else (Y + if Y> 0 then 3 else X).

Similarly, the following construction is legal in ALGOL-20:

X*if A> B then 3 else Y+ Z

— e wem erer e mmaemm e

aL,2.12

but will cause a "Note 4". 1t will be interpreted as:
X* (if A> B then 2 else (Y + 2)) .,

ALGOL-20 allows the analogous constructions with binary Boolean

operator$ and conditional arithmetic expressions. An example of the

last is the Boolean expression

{(if BOOL then X else Y) < if BOOL then 3 else Z

The expression with the first set of parentheses omitted would be inter-

preted as
if BOOL then X else (Y < (if BOOL then 3 else 2))
FOR_STATEMENTS (4.1) [4.6)
(a) A left arrow may be used instead of ";=" in an ALGOL-20 for

" will round each implicit assignment to

clause; " will trupcate and ":=
a for variable of type integer.
{b} The value of the controlled variable is not undefined upon nor-
mal exit from an ALGOL-20 for statement, The :walue of the for variable
upon exit depends upon the form of the last element in the for list, and
is in general just what would be obtained if the equivalent basic programs
(gee section 4,1 of McCracken or section 4.6.4 of the report} were sub-

atituted for the for statememnt. Thus, upon exit from an until or while

form of for list element, the for variable hasz the first value for which

the final test failed. For example:

'3

FOR I « 1 STEP 1 UNTIL 10 DO 5 ,

leaves I = 11 when the for list is exhausted and control passes to the
next statement,

{c) A fourth form of for list element is permitted in ALGOL-20;

FOR V ¢ E1 STEP EZ WHILE 8 DC 54

where E1 and E2 are arithmetic expressiung, B is a Boolean expression, and

AL,2,13

5 is any statement. This is equivalent to the simple program:

V « E, ;

LooP; IF B 1THEN
BEGIN
S
V < V+Ey; GOTO LOOP
END ;

Hotice that if the Boolean expression B is: (V - E3} * (E2] = 0 then
the new step ... while form of for list element is identical to the

step ,., until form. However, when {as is usual) the sipn of the step

expression E, 1s knpwn to the programmer, the step ... while form

2
{omitting the multiplication by EZ} will be more efficient in bhoth space
and time.
ARRAYS (5.2, 5.3 (5.2, 3.1.4)

{a) ALGOL-20 arrays may be of type integer, real, Bgolean, half, or

logic. Index arrays are not permitted.

{b) A non-integer value of a subscript expression in ALGOL-20 is
not rounded. only truncated. This may lead to hard-to-detect errors. For
example, suppose that the result computed for a subscript expression is
3.9999... instead of 4 because of round-off error; this value will be trun-
cated to 3, referring to the wrong element of the array. Thus, the plaus-

ible program:

FOR X « 0O STEP 0.2 UNTIL 1.0 DO
a [5 * i] — X ;

may not work correctly because of the round-aff error in 0.2 which cannot
be exactly represented in a binary computer like the G-20. The following

alternative will work:
FOR I « © STEP 1 UNTIL 5 DO
Al < 1/5;
(c) The speed of execution of an ALGOL-20 program does not depend

upon the lower or upper bounds of an array subscript, upon the order of

the dimensicns, or upon fhe types of variables appearing in subscript

AL.2.14

expressions, however, the number of memory cells required by an array
does depend upon the order of the dimensions; the least number of cells

is required if the longer dimension is liated last.

OWN VARIABLES (6.6) [5.0)

Own arrays may be used in ALGOL-20, but they must have fixed zub-
script bounds so that storage may be allocated to them before execution
begins; that is, "dynamic own arrays" are not allowed.

Dwn simple variables and own arrays are initialized to zerc {or

false, in the case of Boolean quantities ot in the case of logic

quantities) before execution begins.

PROCEDURES
(a) Parameters (7.4){a.7]

When the first occurrence of a label in a block is as an actual

parameter in a procedure call, then the ALGOL-20 processor must be fore-
warned that this identifier is a label. This requires that the label

identifier appear Inm a label declaration in the block head. For example:

BEGIN
INTEGER I, J; LABEL L;
PROC (X, L) ;
L:ILe«1+1,;
END ;

This is the only circumstance in which a label declaration is required in
ALGOL-20,
(b) Specifications (7.5)[5.4.5)
All formal parametefs in an ALGOL-20 procedure declaration must appear

in the specification part of the procedure heading.

(c) Recursive Praocedures {7.7)
Recursive procedures are not now available in ALGOL-20,

(d) Arrays, switches, and labels cannct be called by value.

AL,3a.l
CHAPTER 3

Input/Qutput Statements

3a., Introduction

The official ALGOL-60 language does not include inpu;/output
statements, Thus, ALGOL-60 can be used to describe computational
algorithms but not the process of reading input data from punched
cards, magnetic tape or disc, or the process of outputting intermed-
iate and final answers onto printed pages, punched cards, magnetic
tape or disc. Each ALGOL translator, therefore, must contain its own
scheme for programming input and ocutput operatinns.

ALGOL-20 includes an input/output ("I/0") system derived from
the system used previously in the GATE language at Carnegie Tech.1
The following pages contain both an introductory explanation and a
complete technical description of ALGOL-20 statements for reading data
cards and for printing and punching answers.

Chapter 3b is a primer on ALGOL-20 I/0 which takes a particular
example of printed output and builds up its solution. It is introduc-~
tory in nature, and concerns only printing. Punching requires only
simple extensions of the concepts used in printing. Chapter 3¢ is a
primer on READ which includes a completely worked-out example. Chapter 3d
contains a complete summary of all input/output instructions.

ALGOL-20 also contains provision for reading and updating files of
information stored on magnetic tape or disc. This mechanism is related
to the card reading, printing and card punching statements, but involves

additional complexity. It is described separately in Chapter 6g.

1 The GATE input/output system is described in the manual: "20-GATE:
Algebraic Compiler for the Bendix G-20", Carnegie Tech Computation Center,
September 1962. The general principles of the ALGOL-20 input/output
system were the subject of a paper presented by A, J. Perlis at the Work-
ing Conference on Mechanical Language Structures, August, 1963, published

in Comm. A.C.M., 7 (Feb. 1964) p. 89.

AL,3a.2

AL.3b.1
CHAPTER 23b

Primer on ALGOL-20 Input/Cutput

Consider the task of programming a computer to print answers.
To control printing, such a program must specify two distinct kinds

of information:

{1l) Which values are to be printed, and

{2} The format in which the walues are to appear on the page.

To supply these two kinds of information, ALGOL-20 contains two types
of statements: NAME statements, which select the wvalues to be printed,
and PRINT statements, which specify the printed format for these
values. YMNAME™ and "PRINT" are reserved identifiers in ALGOL-20. 1In
general, each MAME statement is paired with a PRINT statement and the
two are used in parallel to contrel printing; each value specified by
the NAME statement must be matched with a format specification from the
PRINT statemernt.

The remainder of Chapter 3b is divided into sections, as follows:

A, The NAME Statement: Introduction
B. The Format Program: Introducticn
C. The Print Buffer

D. An Example of Print Format

E. Replicators: Introduction

A, The NAME Statement: Introduction

A NAME statement in ALGOL-20 has the following form: The reserved
identifier NAME followed by a pair of parentheses enclosing a name list.
For printing {or punching), the name list is a list of values to be
output and therefore is simply a list of arithmetic expressions {separated

by commas) :

NAME { < Arith Expr >,..., < Arith Expr >)

AL.3b.2

When a value is needed by a PRINT statement, the value of the next
expression in the NAME list is computed and supplied to the appropriate
PRINT instruction. Expressions in the NAME list are evaluated in left
to right order, and the corresponding values are printed in the formats
specified by the PRIKT instructions.

For example, to print the values of the ALGOL variables A, B and C

and alsc the value of the expression af B2 - 4AC, the programmer may use
the MAME statement:

NAME (A,B,C,SQRT{(B 1t 2 - &*%A%C))

along with an appropriate PRINT statement,

NAME statements may be more complicated. For example, they may
contain for clauses and other forms of replicators which repeat the
selection of values in a manner analogous to the repeated execution of
an ALGOL statement by an ALGOL for clause. Replicators are discussed in

Section E.

E. The Format Program: Introduction

Suppose that the value 1.7 has been computed and is to be printed
by an ALGOL program, This number could be printed in any one of many
different formats; for example, one of the following forms might be

appropriate in a specific case:
1.7 +1.7 +00001.700 170 401 1.70 00 17000 ,-04

However, there is more to format control than specification of the forms
of individual numbers. Answers are generally to be printed in a readable
manner: separated by blank columns and zccompanied by suitable headings
and titles to identify the printed results. Therefore, a PRINT statement
must give the programmer control over the position of each number and
title on the line, the assignment of numbers to different lines, the
spacing of printed lines on the page, and the sequencing of pages, as well

as the form of numbers.

AL.3b.3

To control all these aspects of format, ALGOL-20 contains a
special "format language", which is used within PRINT statements. A

series of instructions in this format language forms a format program.

The individual instructions within a format program are separated by
commas ,

The format language uses some of the same characters that ALGOL
uses, but with different meanings. Therefore, special brackets must
be placed around each format program to set 1t apart from the ALGOL
program in which it is embedded. Unfortunately, there are no unused
symbols available in the G-20 alphabet for these format brackets, so
we use "<" {(less than) and ™" (greater than} for this purpose. The
syntax of a PRINT statement is such that "<" and '">" symbols surround-
ing format programs camnot be confused with the same sywbols in Boolean
expressions,

The simplest form which a PRINT statement may have is the reserved
word PRINT followed by a palr of parentheses which enclose a single
format program, or encleose a series of format programs separated by
commas. Each format program is itself enclosed in “<" and ">" brackets.
The following PRINT statement, for example, contains a single format

program which consists of five format instructions:
PRINT (< P, 37C, "4=", + 2D.3Z, 2E >)

The meanings of these instructions will be explained below. The effect
of this PRINT statement would not be changed if each format instruction
were enclosed in format brackets, so that the PRINT statement contained

five format programs each consisting of a single format instruction:

PRINT (< P >, < 37C >, < 'A=' >, < +2D.3Z >, < 2E >)

AL.3b.4
C. The Print‘Buffer

Associated with the G-20 printer is a block of 120 consecutive
cells in memory, called the print buffer. These cells, numbered
1, 2, 3,..., 120, correspond to the 120 physical print positions or
"columns" in a line of printing.

The process of printing takes place in two steps: First, a
format program im a PRINT statement places the characters to be printed
into the print buffer, each character being placed into the cell
corresponding to the column in which it Is to be printed. In this
manner, the format program builds up an "image" of the line to be
printed., Second, when the entire line has been formed, a format control
ipatruction must be executed te send all 120 characters from the print
buffer to the printer and actually print the line on the paper. The
format instruction whiech 18 generally used for the latter purpose 12
'E', which is mmemonic for Execute. The E instruction prints the image
in the print buffer and afterwards automatically "erases" the print buffer
(i.e., ¢lears it to 120 blank characters) in oreparation for the next
line,

The print buffer behaves like other memory cells: Storing a new
character into a buffer call replaces the character which was there
previcualy, while sending a character to the printer to be printed does
not (necessarily) erase it from the print buffer. 1In particular, the
control instruction 'W' executes the same printing operation as 'E' but
doea not erase the buffer afterwards, Thus, the programmer may, 1f he
wishes, save part (or all) of the print image for printing on successive
lines,

Associated with the buffer is a pointer called the "character pointer"
or "CP". The value of CP is always the number of the print buffer column
into which the next character will be stored by a format instruction. As
each character is stored, CP is automatically stepped ahead (to the right)
by one so that successive characters are stored in left-to-right order
into successive cells. Therefore, execution of a format instruction which
stores characters into the print buffer automatically leaves CF set to

the first column after the last character stored, For example, if CP is

AL.3b.5

47 and a format instruction stores a number requiring 5 columms, CP
will be left at column 52.

Another pointer contains the "left margin" or "LM". The value
of LM is the number of the left-most column into which characters may
be stored. Execution of the instruction "E" leaves CP reset to the
value of LM. (Execution of "W" leaves CP unchanged.) There is also
a pointer which contains the "right margin" or "RM" ~- the number of
the right-most column into which characters may be stored. Initially,
IM and RM have the values 1 and 120 respectively. Before each charac-

ter is stored into the print buffer, a check is made to insure that:
IM < CP < RM

If this relation does not hold, an "E" is automatically executed: the
characters already in the buffer are printed, the buffer is cleared,
and CP is reset to the value of LM. The character is then stored into
the buffer. The mechanism for changing LM or RM is explained in
Section E of Chapter 3d.

D. An Example of Print Format

A particular print program will now be discussed in detail. Assume
that an ALGOL program computes all the values in a 40 x 10 array
(40 rows x 10 columns) COEF; these 400 values are to be printed along
with a value of a simple variable DELTA. A sample of the desired print-
ing is shown on page AL.3b.7.

The printing begins with a title, "ADJUSTED COEFFICIENT MATRIX",
which starts in print position 37 of the first line on the page. The "1"
in the next printed line is in column 17, the "2" in colummn 28, etc.

The row numbers, down the left-hand column, are in print positions 6 and 7.
Each matrix element occupies nine positions in the printed line and is
separated from its neighbors by two blank spaces. The numbers to be
printed are all less than 1000 in magnitude, and four digits are to be
printed to the right of the decimal point. A minus sign is to be printed

AL.3b.6

immediately before the first digit {f the number is negative. The
value of DELTA {s to be printed with two significant digits in
"scientific notation", with a power of ten, as shown. No sign is

to be printed for DELTA. The step by step construction of the
necessary NAME and PRINT stafements for printing this example follows.

First, consider printing the title. Three different types of

formating operations are needed for this purpose:

(1) An instruction 18 needed to begin printing at the
top of a page.

(2) An instruction is needed to indicate that the
information is to be printed starting in column 37.

(3) Instructions are needed to specify the information

to be printed.

Since the title is a fixed string of alphabetic information, it is
convenient to include it entirely in the PRINT statement, with no
corresponding value in a NAME statement, In fact, 1f only fixed infor-
mation such as a title were to be printed, no NAME statement would be
needed with the PRINT statement; this is an important exception to the
general rule that NAME and PRINT statements come in pairs.

To specify a title or any other fixed string of alphabetic charac~

ters to be printed, we use a format instruction called an alphanumeric

string instruction. This is simply the string of characters to be

printed, enclosed in quote marks. Such an instruction can thus be used
to print any character except the quote mark, since a quote within the
string cannot be distinguished from the quote terminating the string.
(A special format instruction is provided for printing a quote mark --
see page AL.3d.6) The aiphanumeric string instruction used to specify
the title is:

'ADJUSTED COEFFICIENT MATRIX..=u DELTAL=y'

(Here and in the sequel we use the symbol "' to represent a blank

column, where it is necessary to emphasize that a column is to be blank.)

Blank is a legitimate alphabetic character, so all blanks appearing in the
alphanumeric string instfuction will appear as blank columns in the title

as printed.

=R R - g WA D e

1.7902

-06,0001
:p,bﬁii___

Tel.6910

o =B,1198

. 5.4653
«5,2393
0.3571

0.1641

-

= ,0345
2, 3244
=0, 0004
L =Ba1697

0.0004
=0.37910
127,048
-010035
0.0010

0.4875
g,0018
320,548%
0,1%95
=0,4301¢0

0.2488
0. Q002
0,0378
0.%747
0.0uU71

G.0U35
=307.98472
o.o0gw
1143,3854
0.0003

«0.0z04
g.qua2
21.5%20
. -O.QUUG
26,0042

45,4917 7

ADJUSTED COEFFICIENT MatR]x

N

nl,00400

§3.9153

0.595%4

1.518¢

~21.0559

=0,0060
-9.7117

G.1587

at.0022
=0.0285
=J,01400
T.1944
-66,2361

=484 ,6797

wB14,4740

427.1t30
g.2172

0.0039
6.5445
-0.4436
~0.0020
-0,8177

g,0ad1
=G.0006
-2614622
B.5692

~0,0000

43,2521
v.0004
»0,098%
0.5000

'G-Uﬂﬂi
~0,0000Q
=0.00354
~0.1%20

b,4164

-98.2422

0.0000_

0.0005

~0.0137
~0.0028

L.749%2

___B.ono0
0,3308

~143,7847

il 007S

9.0001

2.2522
o 0.0017

~8.0232
0.1218
-0,0001

U, 0889

0,339

92,6274
Qad70%
=212,219%
G.0012
-68.2311

g.00849
=-0,531%
=0,0040
=2,4%55
046003

'5!?46‘_
~532.2322
=496 .9972

~4,0079

0.0115

0:5394

~165.2740
2.9670
914,2447

“348.2117

-0.0000¢_

9.0002

& 5
0.0008___ =0,0000 _
7.2796 0.,0007
__=0,0009& _ =0,0055
0.0005 =20,9818
_0,0001 §75,097¢
__ 0.0041 _ =q,0001
72.8323 =0.000Q
_ -1.9352 777,2826
=0.,2042 «0,0002
_S.6563 =D,2210
1729.7959 0.0872
T 040035 «0.0000
85,3077 $.0a00
=0.0040 =0,0087
&65-2??* ‘_'U.ﬂﬁ?{
212.5706 0,0005
452.6379 ~19,9396
10,0004 =925,1035
*U-UUUE 0.034?
-3.1782 =0,0000
0.0000 ~0.0074¢
26,1315 =0,013%
0.6001 1.1127
*0-!058 ??'9859
C=Q,00%4 60,0043
-0,0001 535,3546
~214,98%1 =11.0611
0,0003 6,001%5
198,46684 «907,7086
1,1572 1,292
=0.0002 ~0,0497
139.1301 0.50530
1.7152 -0.0002
D.0043 0.0300
~843.1841 1.4976
=4,4232 ‘4013666
=457,851% =0.,0001
-Js 44596 0.0499
=339,15647 D.0000
-0,0083 285,7574

DELTA = 5,0 a=04

&

-2,000Q
-156.7264
~7%,3506

«0,1082

0.0802

=19,4514
=0,3028
4.0002
D.0014
-15,2905

«5,0025
=3.0000
«0,00Q41
110.9960
b.0gaqg

0.0954
-46.,4429
=3.1%28
2%.2204
-U |°226

=14,9826
w0,0033

¢.0a05
«0,0002
vl 0362

~0,0089
c,.0013
g,2778
0,011¢

-484,568675

-ﬂ .3093
0.1562
33,9578
0,2209

9.0031
0.0400
'3.6325
«G,0000
~112,9313

2

0.0034
1.78%2
=58.8134
01219
'0-&223

=3.0003%

~0.0047

=0.065%2

Delbd®’
| -22.9518

368.0110
-f.00ul
=-0.0000
~3.51386

00115

=2.012%
35%.0704
0.0097
«J33.6923
S75:6602

0+5947
-112.8084
-219.95632
g.0034
=337,728%9

=13.3044
758274
=0.,0994
=02 3156
=0,0000

=0.H033
J3.7184
138.86815
-0-0060
-G.0420

g.0000
58,5357
=-1,2%54

378.6081
=0,194J

=0.0242
~4.5811
1,8648
»45,13%4

«1,.00561
-29,7404
52,0718
0.,0013
146,4738

-594,3002
Q,0003
T o=f,.0094
20,5638
=0,00Q0

3.0202
FoGOL4
»3,0013
»D.0219
35,2607

0.3146
¢.0000
226.8146
00,3729
0,0079

00133
228,7%95
=0,0268
“J, 0017
 5.0000

T.0017
=0,0098
J.0224
6.,0002
6.0068

'&36.976&
D.0142
‘D.2277
=0,0000
-548,3588

=0.0573

=11.1611
'2-&406

*0.0446

e0,0102
-0,0472

-0.0377

T a194.5030

_~08.0824
0.0008

0,0001

«1,7935
00,2294
1.5433

-201.,211%
=-0,0804

513,.5410
“6,7067
~.0423
-4'2031

 2.2267

B.0600
263,9816
5.0001
=0.0600
. 0.5487

g.0000
~574,2057
.0.0001
580.9429

-85,1370

=0.40%0QL
g.000%
0.00Q5
«-0.0002
«35,7289

~0.0013
66.8%79
G.000%
216,4519
g.4184

3

R L I

323.0654
6.0003
=g,7871
g.0004
~17.3674

2.0591
Y.954¢
B.0302
0.0003
p.0000D

=7.2878
1.7218
0,0136
-0,45635
=n,04a9

D.5989
0.000%
»0.5347
-1‘.3&43
n.0080

1.2683
1.0346
~0,00L7
0.6368
~1.5120

0.0447
=5.5027
0.0039%
=3.0142

g.0004
ba,r952
0.7802
9.20%8
f.0001

D.0421
»T.189&
f.000%9
Y7786
g.0012

_=0.0652

P L 4

AL.3b.8

This string is to be stored in the print buffer starting at
column 37, so CP must be set to 37 before the alphanumeric string
instruction iz executed. The format instruction to do this is "37¢";
here "C" is mnemonic for "Column". Generally, executing an instruction
of the form "nC", where n may be any integer in 1 < n < 120, will have
the effect of setting CP to column n: CP < n. The format ptrogram
<1C, 37K> might also have been used, 1C sets CP to column one, and
37R moves CP 37 columns to the Right, Similarly, nL moves CF n ¢olumns

to the Left. To summarize:

nC has the effect CP en
nR . has the effect CP«CP+n
nL has the effect CP «CP - n

Therefore, the following format program will set CP to 37, place
the 40 characters of the string inte print positions 37 to 76 of the
print buffer, and then print the buffer:

<37C, 'ADJUSTED COEFFICIENT MATRIX - DELTA = ', &

This could just as well have been written as three successive format

programs by putting brackets around each instruction:
<37C>, <'ADJUSTED COEFFICIENT MATRIX - DELTA = '>, <E-

but the first form is easier to punch. The instruction necessary to
store the value of DELTA into the print buffer is still missing. For
reagsons which will be discussed later, the appropriate numeric instruction

is 1D,1ZL, Further, the title is to be printed at the top of the page.

The format instruction used to upspace the paper to the top of the next
page is "P". Thus, a complete ALGOL-20 program to print the first line

of the example might be

NAME (DELTA) ; PRINT(<P, 37C, 'ADJUSTED COEFFICIENT MATRIX - DELTA = ',
1D.1ZL, E>);

Equivalently, the following might be used:

PRINT (<P, 37C, 'ADJUSTED COEFFICIENT MATRIX - DELTA = '»);
NAME (DELTA) ; PRINT(<1D.1ZL, E>);

AL.3b.9

Next consider the format for printing the number DELTA and the

numbers of the matrix itself. Numeric instructions are those instruc-

tions which place numbers into the print buffer; these numbers are
values which are obtained from the evaluation within the parallel NAME
statement.

A numeric instructibn may be regarded as giving a "pilcture” of thel
number to he printed. Generally, the following items must be specified

to define a number format:

(1) The form for printing the sign, if at all.

(2) The number of places, if any, to the left of the
decimal point, and whether leading zerces are to
be inserted or left as blanks,

(3) The decimal point, if any.

(4) The number of places, if any, to the right of the
decimal point, and whether trailing zeroes are to
be inserted or left as blanks.

(5) The "exponent part" (power of ten), if any.

Items (2), (3) and (4), defining the format of the numeric part of
the number without sign or exponent, are specified by the number form
portion of a numeric instruction. Item (1), the sign, is specified by
the sign part, which is part of the prefix, while item (5) is specified
by the suffix of the numeric instruction. The form of a numeric instruc-

tion then is given by:
<numeric instruction> ::= <prefix> <number form> <suffix>

(We will see later that the prefix includes, in addition to the sign part,
a part which controls the printing of dollar signs.) The number form
glves a simple picture of the basic form of the number; as an illustration,

the matrix values in the example may be printed with the number form:
3D.42

Here "3D" indicates three Digits to the left of the decimal point, with
leading zeroes replaced by blanks; the period is a picture of the decimal
point which is to be printed; and "42" means four digits to the right of
the decimal point, with trailing Zeroes printed. For example, the number
3.74 will be printed:

AL,3b.10

by 3D.4D in the form 3.74)y
by 3D.&Z in the form w3 7400
by 3Z .47 in the form 003.7400
by 3Z.4D in the form 003,74,
by 3Z in the form 004 .,
by 3D in the form e fE

All blanks stored are shown explicitly by i. MNotice in the last two
examples that the number was rounded by adding five to che Firat digit
not printed, and then truncating the result, The syntax of number form

18 as follows:

<number form> ;:= <integer part> I <integer parE>.|

<integer part>.<fractfonal part> |.<fractional part>
<integer part> ::= <unsigred integer> D [<ungigned Integer’™> Z
<fractional part> !:= <unsigned integer> I | <unsigned integer>> Z

If the integer part (fractiomal part} appears, at least one digit will be
printed before (after) the decimal point. For example, the number zero
printed with the numeric primary 3D.2D appears az ' 0.0 ', The total
number of digits apecified must be leas than 15.

In our example, DELTA is to be printed with one digit preceding and
one digic following the decimal point, so it may be printed with any one
of the following number forms:

1D.1D 1D.1Z 1Z.1D 1Z.1Z

The program which actually printed the sample inciuded 1D.lZ to print
DELTA .

The prefix includes the sign part to specify the form for printing che
sign of the number, If no sign is to be printed, this part 1s left empty,
as is the case for DELTA. The array elements are tc be printed with a
minus sign immediately preceding the firsc significant digit of each
negative number. The sign part to use in this case is "-", If in addition
plus signs were to be printed before each non-negative number, the prefix
"+ would be used instead,

The suffix portion of a numeric instructicn is used to supply supple=-
mentary information, such as scﬁling the number, printing an exponent or
special spacing. The format for the array elementz i{s completely specified

by the prefix and the numeric primary portions, so the proper numeric

http://003.74._jl

AL.3b.11

jnstruction is -3D.4Z. DELTA is to be printed in scientific notation:
shifted so that the left-most digit is non-zero (if possible) and the

resultant exponment printed, The suffix “L” provides such printing, so
the nmeric instruction 1D.1ZL is to be used to print DELTA.

E. Replicators: Introduction

In principle, everything which is necessary to print the example
has now been discussed. However, writing or punching the NAME and
PRINT statements for the example using only the NAME and PRINT machinery
discussed so far would be very lengthy and tedious. For example, it seems
ag if the NAME statement would have to be a simple list of all of
the 401 variable names DELTA, COEF[I,l], . COEF[40,10), while the
PRINT statement would have to contain 401 distinct numeric instfuctions
in addition to alphanumeric string instructions and contrel Instructions,
What 18 needed is a "loop™ mechanism analogous to the ALGOL for state-
ment; this mechanism is provided by replicators.

An ALGOL program which would operate in some way upon each element
of each row of the matrix COEF would presumably have the form of two

neated for atatements:

FOR I « STEP 1 UNTIL 40 DO
FOR J « 1 STEP 1 UNTIL 10 DO
something with COEF[I,J] ;

This i3 essentially the form which is used in the NAME statement; the
"action"” to be performed on COEF[I,J] is simply "naming" its wvalue
under the control of thése FOR clauses, The following NAME statement
will supply all 400 values from the array COEF for printing:

NAME($ FOR I « 1 STEP 1 UNTIL 40 DO $
{$ FOR J « 1 STEP 1 UNTIL 10 DO %
(GoEF (1,3])));

AL,3b.12

The "$" signs are necessary around a FOR clause when it is used as a
replicator in a NAME (or PRINT) statement. Also, the phrase being
replicated must be enclosed in parentheses, whether it i3 only a aingle
expression 1like (COEF[I,J]) or a complex expression which Itself con-
tains a replicator, like:

($ FOR J « ...,.00 § (coEF[1,3]))

This aceounts for the three sets of parentheses in the example above,

The following is the ayntax of a NAME statement:

<name statement™> ::= NAME‘('{name list>)

<name list> :i= <name list element> | <name list>, <name list element>
<name list element>> ::= <name expressiom> | <replicatof> (<name list>)
<name expression> !!= <arithmetic expressiomn> l <Boolean expression> |

<logic expression>

This syntax shows that any simple or complex liat of "names" may be
enclosed in parentheses and replicated; such a replicated list may then
be a aingle element in ancther list. The following legal name statement
illustrates lists and replicated lists:

NAME (A[1), $ FOR J « 1 STEP 2 UNTIL 3 DO §
(3, al3), coer(1,3]), al7))

This example is equivalent to the following more simple statement:
wMe (a1}, 1, a(1]), coer(z,1], 3, a(3]), coer(1,3), A7)

As another illustration, refer again to the example, where the row
number ig to be printed on every line of the matrix. The simplest way
to print these numbera is to give their values in the NAME statement and
use numeric instructions to place them into the print buffer. Thus, the
following NAME statement will supply (in addition to the array value},

the row number I just before the first element in each row:

NAME (§ FOR I «) STEP 1 UNTIL 40 DO $
(I, $ FOR J « 1 STEP 1 UNTIL 10 DO §

(coEr [1,3])));

http://AL.3b.12

AL.3b.13

Since for clause replicators used in format programs very frequently
start at one and increase in steps of one, an abbreviated notation has

been provided for this special case, The replicator
<variable> — § <arithmetic expression> §
has the same meaning as:
$FOR <variable> « 1 STEP 1 UNTIL <arithmetic expression>$

Therefore, the NAME statement given above for the matrix with row numbers

may be written more compactly as:
MAME (I - $40%(1,J — 10 (CoEF(I,3)))) ;

One more simplification is possible in this form; in the special case that
the <arithmetic expression> giving the upper limit of replication is a
constant (like "40"), or a simple variable (like "N"), it need not be

surrounded by "$" signs. Thus, for example, "I — N" is a correct replica-
tor, "I - N~-1" is incorrect since dollar signs are required around the
arithmetic expression; the correct replicator would be "I — §N-18",

To print the column headings in the example, the values 1, 2, ...,
10 must be supplied in a NAME statement. The simplest NAME statement for

the column headings 1is:
NAME(I - 10(I) } ;

That is, I runs from 1 to 10, and it is the value of I itself which is
to be printed,

The same forms of replicators which are used in NAME statements may
also be used to execute repeatedly format programs or lists of format
programs in PRINT statements. Thus, instead of writing "<2D, 2D, 2D, 2D>",
we may write "J - 4 <2I>". In the case of a replicator in a PRINT state-
ment, however, the actual value of the replicated variable frequently is
not referred to; that is, the replicator is used simply as a counter. In
such a case, the variable in a " — " replicator may be omitted; thus,

" - 4 <2I>" may be used to get four repetitions of the format instruction
"2D" R

http://AL.3b.13

AL.3b.14

Following is the syntax of replicators:

<replicator> ::= $ <for clause> § | <simple variable> — <limit> |
= <limit>

<limit> ::= § <arithmetic expression> $ | <simple variable> |
<unsigned integer>

Some examples of these forms follow:

$ FOR J « 2, 3, K+ 2 STEP 3 WHILE A[K]) < X DO §
I-¢ @) /2 +3%
J N
J -3
s @l /D +3s
— N
-3

1f the upper limit of replication has a walue such that zerc or
fewer replications are called for, then the phrase which 1s being
replicated will be skipped entirely.

As an illustration, the NAME and the PRINT statement for printing

the column heading of the example are:

NAME (I — 10(I)};
PRINT (<16G>, — 10 <2D, $R>, <E>);

Hotice that the entire format program <2D, 9R> is replicated ten times,
The replicators are not part of the format language, and must therefore
appear oputside the format brackets,

The variable I cannot be omitted from the replicator "I — 10" in
the NAME statement, since I is referred to, and is, In fact, the value
to be "mamed". It would definitely have been incorrect to have used the
identical notation "I — 10" in our PRINT statement, since the same
variable I is already being used for a different replicator. in the NAME
statement. Horrible confusion will result from vsing the same wvariable
as a replicator at the same time in both a NAME statement and its parallel
PRINT statement.

After the instructions "<16C>, - 10<2D, 9R>" have been ekecuggd, c?P
will be set to print position 126, past the BM of 120, However, this

does not cause error printing because the two digits stored on the tenth

AL.3b.15

replication will be put into positions 115 and 116, and no attempt will
be made to store characters in positions greater than RM,

Finally, we set up a PRINT statement for the matrix itself. Notice
the extra blank line every five lines. To get this blank line, we need
only execute an E instruction while the print buffer contains only blanks.

Thua, ocur PRINT statement will have the form:
PRINT { - B8(<E>, —» 5 (format program for one line)))

The format program for one line could be:
<6C, 2D, 5K>, — 10 <-3D.4Z, 2R>

The entire program for the printed output of the example has now been
developed:

PRINT (<P, 37C, 'ADJUSTED COEFFICIENT MATRIX - DELTA = >);

NAME (DELTA) ; PRINT (<1D.1ZL, 4E>);

NAME (I — 10(I)); PRINT (<16C>, — 10 <2D, 9R>,);

NAME (I — 40(I,J ~» L0(COEF [I,J]))); '

PRINT (— 8(<E>, —» 5 (<6C, 2D, 58>, — 10 <-3D.4Z, 2R>,)));

http://AL.3b.15

AL.3c.l

CHAPTER 3c

Introduction to READ

A useful way to visualize the process of reading alphanumeric
information from cards is to consider READ to be the reverse process
of PRINT. Recall that in printing, an image was formed in a buffer
and then sent to the printer to be printed. 1In READ, however, the
image originates at the input hardware and is then sent to an input
buffer which is used by the READ statement in scanning string or
numeric values; these are then loaded into variables named by a NAME
statement, This buffer has a "CP", "LM", and "RM". _

The NAME statement used with READ has the same form as with PRINT
except that it supplies the names of variables rather than the values
of the variables named., Therefore, the NAME statement used with READ
forms a list of ALGOL variables (either simple or subscripted), not
general arithmetic expressions, as are allowed with PRINT, Each numeric
or alphanumeric instruction assigns a value to succesaive variables
supplied by the NAME statement. Replicators may be used in the READ
statement with the same meaning as in a FRINT statement.

The following sequence is incorrect:
NAME (A+ B); READ (< 3D >)

since the NAME statement names an expression which is not a simple or
subscripted variable.

The READ format program contains a list of instructions, very
similar to those in PRINT, which control the reading of new cards and
which specify the location and type of information expected to be found
in the READ buffer. Thus, the programmer, by using suitable READ format
instructions, is free to arrange his data cards in any format he desires.

The remainder cof this chapter is divided into sections:

A. Contrcl Instructions
B. Alphanumeric Instructions
C. Numeric Instructions
D. Card Overflow
E. An Example Using READ
It is assumed that the reader has read Chapter 3b.

AL 3¢ ,2

A, Control Instructions

Just as the user uses E or W in a print format to control printing,

80 does he use E or W in read format to contyol reading.

nE Read n card images Into the current READ buffer
and gset CP to LM. Only the last card imdge read
is available after executing this instruction;
hence, "1E" or "E" is the most c¢ommon use of the
instruction.

n¥W The action is the same as in "nE" except that the

card images are also printed on the program listing.

In a READ format program, as opposed to a PRINT program, the E or W ia
ugually the first instruction, rather than the last, The remainder of
the format program then controls the scanning of the characters read
into the read buffer. As in PRINT, the user has the ability to move CF:

nC Set CP co column n, CP «n

nR Move CP to the right n columns. CP.F-CP +n
nL Move CP to the left n columns. CPeCP =n
nB Equivalent to nR,

B, Alphanumeric Instructions

As in printing, the user has the ability to input any atring infor-

mation with an pA instruction:

nA Scan the next n character positione of the read
buffer and atore the information there into
{ ({nt3) /4) wordas from a NAME statement. The
information is stored four characters per ﬁord,
with the possible exception of the last word.
If the last word does not get four characters,
those characters it does get are stored right-
justified.

AL,.3c.3

As an example, assume that the characters 'ABCDEL' appear on a card,

with the 'A' in column 15. The effect of executing the statements
NAME (L, M); READ(<ISC, 6A>)

will be to store 'ABCD' into L and 'uuEu' into M. CP will be left at
21, ‘

Another possibility is to supply fixed string information directly
from the READ statement, rather than from the card image. This ability
is particularly useful in setting successive elements of an array to

contain alphanumeric string information. We have

'<string>' The n characters between the quote marks
are stored into }((n+3)/4) words from a
NAME statement, just as for nA. CP is
left unchanged.

Again, an example may be useful. Executing the statements
NAME(I » 5 (A(I))); READ(S"THISLIS.A_STRING*'>)
is equivalent to executing

A1) « wonr'; A(2) « 'saIs'; A[3) « 'uAus'; A4) « ‘TRIN';
Af5) « 'uuGr? |

The number of characters between the quotes is 18, not a2 multiple of
four. Thus, the last two characters are stored right-justified in the
fifth named variable.

The last alphanumeric instruction provides the ability to read

Boolean values from & card.

nT The next n columns are scanned, but only the first
non~blank column is examined. If it contains 'T',
the corresponding name is set to true; otherwise,
the corresponding name is set to false. If the
corresponding name is not of type Boolean or logic,
the error situation "ILLEGAL BOOLEAN" exists and will
be treated as described below In Section D of Chapter
3d.

file:///jAuS1

AL.3c.4
C. Numeric Instructions

Two essentially different methods are provided for reading numbers
from cards: fixed field and free field., 1In the former, the programmer
must specify (and therefore he must know) when he writes the program
the columns on data cards in which the numbers will be punched, This
format information ias then part of the compiled program. With free
field reading, the programmer specifies in his program only the number
of quantities to be read. The numbers may then be punched in any format
on the cards, separated by commas. Whether fixed field or free field is
selected, however, the same rules govern the actual form of the numbers
read. (The distinction between fixed field and free field only has to do
with the columns used,) Numbers on data cards obey the same syntax as
decimal numbers in program, with one addition: If a "/" is punched
before the number, either before or after the sign, the number will be
treated as an octal number, If an exponent appears, it will then be
treated as an octal power of eight. (In summary: / on data cards is
equivalent to 8F in program, but the latter notation is not allowed on
data cards. 8L and 8R are alsc not allowed on data cards.)

Fixed field reading will be described first, For each number, the

programmer may speclfy the following information:

1. Number of columns to be read.

2. Treatment of blank columns. Blanks may either be ignored
or may be treated as if they were punched with a zero,

3. Decimal or octal conversion, The programmer may indicate
that the number is to be read as an octal rather than a decimal quantity.

4, Scaling., The programmer wmay indicate that the value read is to
be multiplied by a power‘uf ten (or of eight for octal conversion).

5. Alarm suppression. Normally, reading a character other than a
digit, +, -, decimal point, / or ,, will cause am alarm. However, the
programmer may suppress this feature and cause such illegal characters to

be ignored.

The ayntax for a read numeric instruction 1z as follows:

AL.3c.5

<read numeric instruction> ::= <unsigned integer> D <read suffix>
<unsigned integer> Z <read suffix> I <int> F

<read suffix> ::= <empty> | <read suffix> <read suffix part>

<read suffix part> ::=H I N | E <integer>

<int> ::= <empty> I <unsigned integer>

The unsigned integer gives the number of columns to be scanned, and
may be as large as 127. If D is used, blank columns are ignored, while
using Z causes such columns to be treated as though they were punched
with a zero., The suffix H causes the number to be treated as an octal
quantity, regardless of whether or not a / is punched. A suffix of the
form Ein causes the number read to be multiplied by ten (or eight)
raised to the +n power. The suffix N causes illegal symbols to be ignored.

Two error conditions may be detected in reading numbers: ILLEGAL
SYMBOL and IMPROPER NUMBER. (A detailed description of error messages
in READ is given in Section D of Chapter 3d.) The first indicates that a
character other than a digit, +, =, decimal point, / or , has been read.

It is this error message which is suppressed by the N suffix, The second
message indicates that the number is improperly formed. For example, it
may have more than one decimal point, more than one ,, a decimal point
after a ,,etc.

In the numeric instructions just described, the field width or
number of columns to be scanned is specified by "nD" or "nZ" and is fixed.
A more flexible type of numeric instruction exists in the form of "nF" or
free field read., "nF" specifies that n numbers are to be read and stored
into the next n names. Each number field is terminated by a comma, thus
allowing the data to be punched without reference to particular card
columns. Numbers may be punched in the same forms as for the fixed-field
READ and may continue from one card to the next. Blanks are ignored except
that if an entire field is blank, the value ¢f the corresponding name is
not altered instead of being set to zero.

An "*" may be used in place of a comma to terminate a number field. This
will stop the scanning of the card. If fewer than n numbers have been read,
the remaining names will be left unaltered as though the corresponding number

fields were left blank, For example, executing the statements

MAME(A, B, C, D, E, F); READ(<E, 6F>)

AL, 3c.6

on the data card
12.6, /l4,+5, , O *

is equivalent to executing the statements
A« 12.6; B « BFl4,45; D = 0;

It is clear, of course, that these statements leave C, E and F unaltered,

D. Card Overflow

If a READ statement attempts to scan past the right margin, a card
overflow situation i8 gzaid to exist. This situation is not treated as an
error, but is taken care of automatically by the ayatem. As soon as an
attempt is made to read past the right margin, another card is read into
the buffer using either an E or a W, depending which of these the user
used last to read a card. CP is then set to LM (as usual), and the

tharacter is read from that column.

E. An Example uasing READ

To illustrate many of the concepts which have been discussed, a com=-

plete example follows, programmed in several ways, Assume an array A has

been declared
real array A[I:BOJ

and that valuea for all 80 elementse ate to be read from cards. From the

programmer 's point of view, the simplest way to do this is the sequence
FAME(L — 80 (A[I))); READ(<E, 80F>)

Thus the numbers may be punched, as desired, on as many cards as needed,
with successive numbers separated by commas, Assume instead that the data
cards are already punched, without commas, Each card contains eight

numbers, and each number is punched in nine columns with a column between

AL.Je.7

numbers whose contents are to be ignored. In this case, the READ

statement given above might be replaced by
READ(— 10 (<E», — 8 <9D, 1R>))

A more interesting poasibility is ‘the following: Suppose that the
numbers are punched onto 80 cards and that each card has punched in
columns 9 and 10 a subscript and between columns 12 and 30 a value,
That is, the BO cards way be placed in any order and the number in
columns 9 and 10 indicates into which element of the array the value
is to be stored. One way to program this is the following:

for 1 « 1 step 1 until 80 do
begin MAME (§, A[4]); READ(<E, 9C, 2D, 1R, 19I>) end

This sort of construction will work since the code for naming A[j] is
not executed until aFter a value has been read into j. The reader
should satisfy himself that the following will also work:

NAME(— 80(4, A[j]); READ(— 80 <E, 9C, 2D, 1R, 19I>)

AL.3d.1
CHAPTER 3d

A Complete Description of ALGOL-20 Input/Output
A, Introduction

Chapter 3d is a complete, detailed description of 1npﬁt/output
statements in ALGOL-20. This material is organized to be used for
reference rather than for instruction. The user unfamiliar with the
concepts involved should read first Chapters 3b and 3c which are primers
on printing and reading, respectively,

Chapter 3d 1s divided into sections, as follows:

. Introduction

NAME Statements and Replicators
PRINT and PUNCH Statements

READ Statements

Buffer Manipulations and "|" - variables

o R Y oW B

. Control and Execution of I/O Statements

In the following, the term "format statement” will be used to refer to
either a READ statement, a PRINT statement or a PUNCH statement, since
the latter three types of statement are used to indicate the format of
data. The term "output statement™ will be used to refer to a PRINT state-

ment or a PUNCH statement.

B. NAME Statements and Replicators

NAME statements are used to specify values to be output inm a print
or punch operation or to specify locations into which data is to be stored
in a read operation. The NAME statement is not executed directly: instead
it becomes active and functions as a list of values or locations which are
evaluated when needed by a format statement. To clarify this.concept,

consider the program segment:

AL.3d.2

I7; NAME{ A[I) }; I «12; PRINT(<3D,)

The value of &£12] will be printed ".EQE that of A[ﬁ].

Only one NAME statement may be active at any given time. If several
NAME statemente appear before a format statement, only the last executed
NAMFE statement will be available t¢ the format statement. -Hence in the

program segment:

aME(A(1) y; navEC A[2))
PRINT (<format list>)

only the one element, H[i]; is avallable to the PRINT statement. This
topic i3 discussed in detail ian Section F, below,

A replicator is used in a MAME statement to indicate that an expression
or list of expressions is to be used repeatedly. The replicator acte on the
list of expressions in & manner anglagous te a for scarement acting on a
statement In ALGOL, A replicator appears in one of three forms, the first
of which {s: f

§ <for clause> §

This replicator causes the replicated name list to be used repeatedly until

the for list is exhausted. An example is:

$ for T « 1 sgtep 1 until3ﬁ${l[1], ‘B[I])

which is equivalent to
al1], s(1), a2, s(2, al3], =[3)

The second form of replicater is:

<simple variable> — § <arithmetic expression> §

This form is equivalent to

$ for <gimple variable> « | step 1 until <arithmetic expression> do $

with one Important exception: The <arithmetic expression> is evaluated only

once, when the first name is actually called for., 1If the arithmetic expres-

gion 1is a simple variable or an unsigned constant, the enclosing dellar

signs may be omitted. For example:

ray

P

raiat

AL.3d.3

I-N (3% 2¢0% alz, Jdn
The third form of replicator is:
—+ % <arithmetic expressiom> $

This form functions in a manner similar to the one immediately above, except
that the translator creates an Internal counter to use in place of the
simple variable. This form may be used whenever the controlled variable is
not needed in the pame list. As in the above form, the dollar signs may be
omitted if the &arithmetic expression 1s a simple variable or an unsigned

integer, For example, the constructien
LN (-1 (™), Al
Ls equivalent to

'*.l'&[“l]l '*.l '*.!A[z]t '*ll I*l’ .*t"&[S]l 140y A[N]

Syntax for NAME Statements and Replicators

<npame statement’> ::= MAME (<name List>)}
<name list> ::= <name list element> | <name list> , <name list element>
<name list element> t:= <name expression> | <replicator> (<name liat>)
<name expression> ::= <arithmetic expression> | <Boolean expression> |
<logic expression>
<replicator> ::= $§ <for clauvae> $ | <sgimple variable> -+ <limic> | ~ <limit>
<limit> ::= § <arithmetic expreasliom®> $ | <simple variable> ! <uneigned integer-

C. FRINT Statements and PUNCH Statements

Mast of the instructions in an output statement serve to contro? the form
and positjoning of information as it is entered in the output buffer; hence,

it is natural to discuss PRINT and PUNCH statements together, Because the

AL.3d.4

statements are so similar in function and in order to conserve memory

locations, PRINT and PUNCH initially share a common output buffer. This

means that storing characters with a PRINT statement alters any information
which may have been stored by PUNCH statements, and vice=-versa, In addition,
PRINT and PUNCH share the same CP, LM, and RM, so that changing CP in PRINT
changes it for PUNCH also. Initlally CP and LM are set to 1, and RM is set
to 120, Characters stored to the right of position 80 are ignored when
executing an "E" or "W" instruction in PUNCH. Users may have independent
buffers for PRINT and PUNCH by using the methods described in Section F of
this chapter, ‘

Instructions appearing in output statements fall into one of three

classes: Control instructions to specify the position of informatfon in

the output buffer, alpha~numeric instructions to store constant information

and alpha-numeric strings, and numeric instructions to specify the form in

which numbers are to be stored.

Control Instructions

Associated with the output buffer are three variables: CP, LM and RM,
the character pointer, the left margin and the right margin, respectively.
CP points to the "next" position in the buffer into which information may
be stored. IM and RM refer to the left-most and right-most positions in
the buffer into which characters may be stored. The following instructions

may be used to set or change CP or to output information:

nC Set CP to position p (column m). That is, CP « n.

nR Move CP p positions to the right. That is, CP « CP + n.

nL. Move CP p positions to the left. That is, CP « CF - n.
Moving CP to the left or right with al or nR does not effect the
contents of the positions in the buffer which are passed over.

nE Print (punch) one copy of the contents of the output buffer, output
n ~ 1 blank lines (cards), clear the output buffer to blanks and set

7N

AL.3d.5

CP to the left margin LM.

nW Print (punch) n identical copies of the output buffer on n
successive lines (éards). The output is not cleared and CP is not
moved .,

P Upspace the paper to the top of the next page. (P is ignored in
punch statements.) In general a message will be printed as the
first line of the new page giving the date and a page number.

The date is printed starting at the left margin in the form
' 04 JUL 64', and the page number is printed in the last ten
columns before the right margin in the form 'PAGE nnnn ', where
nonn represents the number of pages printed since the end of com-
pilation, in <4IX> format. Printing of the pdge header is under the
control of the programmer. He may restart the page numbering or
suppress the header completely. See Section E below for details.
Executing "P" does not disturb the output buffer or CP. nP is

treated as 1P or P, for any n.

In the above control instructions, and in the following alphanumeric imstruc-
g tions, n is assumed to be a positive, unsigned integer less than 512. If n

is to be one, it may be omitted. For example, "E" is treated as "1E",

Alphanumeric Instructions

Alphanumeric instructions are used for all storage into the output buffer,
except for storing of numbers. There is provision for storing strings which
appear in the output statement, for storing quote marks, for storing alpha-
numeric information from a NAME statement, for storing blanks, and for storing
Boolean quantities. Whenever a character is stored into the output buiffer,
it is stored into the position indicated by CP and CP Is then incremented by
one. However, before the storing is done, a check is made that LM < CP < RM,
If this condition is not met, an "E" is executed and the character is then

stored at the LM of the next line.

AL,.3d.6

'<string>' The characters of the string appearing between the quote
marks are stored. Any G~20 character except quote may be stored
by this instruction,

nQ n quote marks are stored,

nA 1 alphanumeric characters are stored. These characters come from
{((o+3)/4) names from a NAME statement. Each name, with the possi-
ble exception of the last, supplies four characters to be stored.
The characters from the last name are taken from the right end of
the word.

An example of an A primary may help, Assume that A[l] and

A(2] have been named, containing 'STRI' and "**NG' respectively.
Executing <6A> will cause 'STRING' to be stored into the output
buffer. Had <JA> been executed instead, 'STRI*NG' would have been
stored,

nB n blanks are stored., nB has the same effect as a string instruction
with n blanks between the quotes. ‘

nT A Boolean value is stored. The number of characters stored into the
output buffer 18 min(5, n). The characters stored are taken from
one of three strings, depending on the value, v, of the next NAME,
1f v is true, the string used is 'TRUE_'; if v is false the string
is 'FALSE'; and in all other cases the string is 'UNDEF'. (The
latter may occur if the NAME is not a Boolean quantity.) The two
most useful forms of this instruction are 1T, which stores 'T', 'F'

or 'U', and 5T, which stores 'TRUE.', 'FALSE' or 'UNDEF'.

Numeric Instructions

Numeric instructions are those instructions used to store numbers into
the output buffer. Such an instruction may be regarded as giving a “picture"

of the number to be stored. It includes the following information, some of

which may be omitted if not needed:

(1) Sign control:. The sign may be omitted or it may be stored. If the

AL.3d.7

latter, two more chojices are available: Positive numbers may or may not
have an explicit plus sign, and the sign may be either left-justified in
the field or it may appear just before the left-most digit,

(2) Dollar control: Numbers may be stored as dollar amounts, with
the dollar sign either left~justified or just before the left-most printed
digit.

(3) Digits to the left of the decimal point: The number of such digits,
if any, is specified, Leading zeros may be replaced by blanks,

{4) Decimal point: The decimal point may or may not appear, although 1f
(5) is used it must appear.

(5) Digits to the right of the decimal point: The number of such digits,
if any, is specified. Trailing zeros may be replaced by blanks,

(6) Exponent part: Several forms of "floating point" notation are avail-
able.

(7) Miscellanecus - the user may specify four more options: The number
may be stored decimal or octal; special spacings may be used; alarm output may

be suppressed; and the number may be truncated rather than rounded.
The syntax of a numeric instruction is as follows:
<numeric instructiom> ::= <prefix> <number form> <suffix>

The prefix contains the specification of items (1) and (2); the number form
contains the specification of items (3), (4) and (5); and the suffix contains
the specification of items (6) and (7).

Consider first the number form, with the following syntax:

<number form> ::= <integer part> | <integer part> . |

<integer part> . <fractiomal part> | . <fractional part>
<integer part>_::= <unsigned integer> D | <unsigned integer> Z
<fractional part> ::= <unsigned integer> D | <unaigned integer> Z

Let the integer part be of the form WD or vZ, and the fractional part be of
the form TD or T2Z. If the integer (fractional) part is missing, let v (T)
be zero. Then the number will be stored with v digits to the left of the
decimal point and T) digits to the right. If the integer (fractional) part
contains a D, leading (trailing) zeros will be replaced by blanks, while the

Z form causes such zeros to be stored. If v (1) is zero, then no digits will

AL.3d.8

be stored to the left (right) of the decimal point. If v (T) is non-zero,
at least one non-blank character will be stored to the left (right) of the
decimal point, even though a zZero must be stored where D format would other-
wilse indicate a blank. The decimal point is stored whenever it is present
In the number form. The number is normally rounded by adding five to the
first digit to the right of the last digit stored, The sum of v and T must
be less than 15,

The prefix 1s the apecification of sipgn and dollar sipgn., The syntax

of the prefix {s as followsa:

<prefix> ::= <§ part> <sign part> | <sign part> <$ part>
<$ part> 1i= <empty> | L§ | $§
<slgn part> ::= <empty> | L+ | L= | + | -

In both the sign part and the § part, the presence of "L" indicates left-
justified, A sign or dollar sign specified by "L+", "L-" or "L$" will be
stored into the output buffar befeore any digite or blanks, while a sign or
dollar sipn specified by "+", "-" or "$" will be stored just before the first

non=blank digit stored by the number form, The order of storing is as follows:

1. § specified by "L$"

2. sign specified by "L+" or "L-"

3. blanks from suppressed leading Zercs in D-type Integer part
4, sign specified by "+ or "-"

5. § specified by "$"

6. first non=blank character from number form

The sign part specifies one of three possible formats for storing the
sign of the number, If it 1s empty, no sign is stored, even though the number
may be negative., If it is "+"' or "i+", a sign, either '+' or '-', will be
stored, taking one Space; If it is "-" or "L-", a '-' will be stored if the
number i1s negative and a blank will be stored otherwise.

The suffix part of a numeric instruction is used to supply supplementary
information: scaling of the numbexr, storing the exponent, special spacing

and other options. The syntax is as follows:

AL.3d .9

<auffix> ::= <empty> | <suffix> <guffix element>
<suffix element> ::= L | 8§ <integer> | F <integer> | E <integer> |

Hi{XK|N]T

The various suffix elements are explained below. 1f an exponent is stored,

it takes six positions in the output buffer, in the form: ‘'L.xdds'. No

more than one of the suffix elements §, L, F or E should be used on a given

quffix.

L

Etn

F4n

Stn

The number is left-justified in the field specified by the number
form, and the resultant expcnent ig stored. This Ls "scientific
notation".

The number is shifted so that its exponent equals #n and the
exponent is stored.

The rmumber is shifted so that its exponent equals #n, but the
exponent is not stored,

The number form portion of a numeric instruction containing this
suffix must be of the form "<integer part> ., ™. (The decimal point
must appear.) The number is shifted so that its exponent equals
+n, The resultant mantissa is then left=justified in the specified
field, The two shifting operations determine the position of the
decimal point, which is then inserted where needed. The resulting
exponent is stored,

The number is stored octal rather than decimal. If an exponent is
stored, it is to be interpreted &3 a power of eight.

One of two special spacinga {5 used Ln storing the number., If a §
part appears 1n the prefix, the digits of the number are stored in
groups of three, separated by commas, If a $ part does not appear,
the digits are stored in groups of five separated by spaces. In
either case, the groups are counted left and right from the decimal
peint. The decimal point, if present, serves as one of the spaces.
Possible alarm output is suppressed (see the text below}, and any
digits which overflow the left end of the field are lost,

The numbexr Is truncated after the last stored digit, rather than

rounded as usual,

AL,3d.10

If any format other than L is used, it is possible that the magnitude of
the number is such that there are more digits to the left of the decimal
point than can be stored using the specified number form. In such a case

(providing that the suffix "N" was not used), alarm output will take place
with the use of "L" format. If E or S format was called for, no extra
spaces will be taken. Otherwise the number will take six more spaces
than expected. For example, the number 123 will be atered as 12 401

2D, but as 23 by 2DN.

by

Examples of Numeric Instructions

is 4673900,

will cause the storing; of the

The value of the number to be stored The numeric instruc-

tions listed on the left side of the page

corresponding strings of characters. The numbers at the right indicate
the numbers of buffer positions used.
7D 467 3900 7
8D us 673900 8
9Z 004673900 9
7D.4D 4673900 .00 4 12
7D.42 4673900.,0000 12
8L 467 39000, =010 14
3Dp.1DL 467 . Lt by 11
12 .2ZF+7 0O .4 7w ,,+074 10
12 ,22F+7 0.47 4
3D.3ZF+T g0 .4a67 7
JJZFH . 467 4
+7D +467 3900 8
-7D w4 673900 8
L548D $.4+4673900 10
L$ ~8D 54673900 10
548D Lt+5 4673900 10
8Z .K 046, 73900, 10
L$8D.2ZK $ g4 ,673,900.00 14
3D.1DF+4 467 .4 5
3D.1DFH4T 467 ,3 5
8Z2.5+3 4673 .,9000L,+03.4 15
BZ .54+ 467 .39000,+04u 15
4DN 3900 4
4D 6 67 by +03 10 *
8DH 21650554 8
3ZHNTF+3 650 3

* Alarm output used.

AL.3d.11
Syntax for Print and Punch

For the purpose of this syntax, the ¢-20 characters "< and '">" will
be replaced by "€" ang "»" , respectively. "<" and ">" will be reserved

for meta-linguistic brackets in the Backus Naur Form syntax.

<print statement> ::= PRINT { <format list>)
<punch statement> ::= PUNCH (<format liz¢>)
<format list> ::= <format list element> | <format li{st> , <format list element>
<format list element™ ::= € <format program> » |
<replicator> € {fﬁrmat program> ¥ | <replicator> (<format list>)
<format program> :i!= <format instruction> |
<format program> , <format instruction>
<format Lnstructiom> ::= <control instructior> | <alphanumeric instruction> !
<mumeric instructiom>
<control imstruction> :!!= <int> C | <int> R] <int> L | <int> E | <int> W |
<int> P
<alphanmmeric instruction> :;= <string> | <int> B] <int> Q | <int> A |
<int> T
<mumeric I{nstruction> :!= <prefix> <number form> <suffix-
<prefix> ::= <§ part> <sign part> | <sign part> <§ part>
<slgn pact> ii= <empty> i I+ | L- l + | -
<$ part> i:i= <empty> | L$ | $
<numeric primary> !:= <integer part> f <integer part> . |
<integer partd . <fractional part- ! + <fractional part>
<integer part> I:= <unsigned integer> D 1 <unsigned integer> Z
<fracticnal part> ::= <unsigned integer> D] <unsigred integer> Z
<suffix> :i= <empty> | <suffix> <suffix element>
<suffix element> ::=L | H | N | K | T | 8 <integer> | E <integer>
F <integer>
<unsigned integer> ::= <digit> | <unsigned integer> <digit>
<integer> ::= <unsigned integer>] + <unsigned integer> - <unsigned integer>
<int> ;= <empty> [<unsigned inceger>
<string> ::= ' <proper string> '
<proper string*> I:!:= <empty> f
<proper sting> <any G=20 character other than gqucter

AL.3d.12
Execution of Print and Punch Statements

From the definitions of PRINT and PUNCH statements, it is evident that

the forms of these statements are:

PRINT (fle, fle, ..., fle)
PUNCH (fle, fle, ..., fle)

where "fle" denotes a format list element. The fle's are executed in order
of appearance, from left to right. After the rightmost fle is executed, the
statement is terminated. Fach fle is either a format program bracketed by
"< >" and possibly replicated, or a replicated list of fle's, separated by
commas. In turn eacﬁ format program may be a list of format instructions

(Eg., "3C, 2Q, E"). These instructions are also executed in left to

right order. It should also be noted that no replicators may appear inside

the "<'" '">" brackets. If a format instruction requires a value, it will

cause a call on the corresponding NAME statement and evaluate the next expres-

sion to obtain a value.

D. READ Statements

Most instructions in a READ statements are used to scan data which
has been read into an input buffer and to store data values into variables
which have been named in a NAME statement., As in PRINT and PUNCH, the

instructions fall into three classes: control instructions to control the

reading of data card images into the buffer and the positioning of CP,

alphanumeric instructions to specify the manner in which alphanumeric data

is to be scanned and stored into variables, and numeric instructions to

specify the manner in which numbers are to be scanned, interpreted and stored

into variables.

TN

ke NS

http://AL.3d.12

AL,3d.13

Contrel Instructions

("\
Associated with the input buffer are three variables: C€P, LM, and
EM =~ the Character Epinﬁer, the Left Margin, and the Right Margin. CP
points to the "next" position in the buffer which is to be scanned. LM
and RM refer to the left-most and right-most positions in the buffer which
may be scanned, The following instructions may be used to set or change CP:
nC Set CP to position n {(Column n). That is, CP « n.
nk Move CP n positions to the Left. That is, CP « CP ~ n,
aR Move CP n positions to the Right, That is, CP « CP + n.
nB BEquivalent to "oR",
The following twe instructions may be used to read data card images
into the input buffer:
nk Bead n card ilmages into the current READ buffer, and
set CP to LM. At the completion of this instruction,
only the last card image read is available to be scanned.
oW The action is az in "aE", except that the card images
~ are alsg printed on the program listing.
In the above c¢ontrol instructions, and in the following alphanumeric
instructions, n is assumed to be a positive, unsigned integer less than 512,
If n is one, it may be omitted. For example, "W"” is treated ad "1W",
Alphanumeric Instructions
Alphanumeric instructions are used to scan alphanumeric characters and
store string or Boolean values lnto variables named in a NAME statement:
nA The next n character positions of the input buffer are
scanned, and the string of n characters there is stored,
four characters per word, into the next }{(n + 3)/4)
named variables. If n is not a muliiple of four, the
~

AT LigRARY
CARNEMIE-RELLON UnpyERS)Y

AL.2d.14

'estring>'

nT

characterz stored in the last variable are right-
Justified.

The n characters of the string are stored as in "nA",
CP is not changed.

The next n character pesitions are scanned and a Boolean
value is stored in the next variable named. If the
first non-blank character scanned is the letter "T"™, the
value of the variable is sét to TRUE; otherwise, it ia
set to FALSE. CF is incremented by n. If the wvariable

named Is not of type Boolean or logic, the errer condi-

tion "ILLEGAL BOOLEAN" is detected and treated as described

belD‘W-

Numeric Instructions

READ numeric instructions are eilther fixed-field of free-field, Fixed-

field instructions consist of a primary specifying fleld width (the number of

characters to be scanned) and possibly a sufflx specifying additional infor-

mation, such as scaling or octal conversion,

nD (nZ)

The instructions "nD" and "nZ" are used to form READ
primaries. "nD" scans the next n character positions
of the buffer for a real or integer number and stores

it in the corresponding name. Any blanks scanned are

ignored, with the exception that if the entire field of
n character positions is blank, the value zero is stored.
A number preceded by a "/" is treated as an octal (base
elght) number. n must be a positive integer lessa then
128. The instruction "nZ" functioms as "nD" except that

blanks are treated as zeros. The forms "nD.", "nD,nD"

" nD" and the corresponding Z primaries are not correct

in READ.

h

http://AL.3d.14

AL.3d4,15

The suffix of the fixed-field instruction may be empty or may consist

of one or more of the following suffix parts:

H

E£n,

The number is converted in octal (base e[ght}-regardless
of whether or oot it is preceded by a "/", If the num-
ber has an exponent, the exponent is treated as a power
of eight,

The number read is muleiplied by ten {(or eight) to the
power £n.

Any character other than a digit, +, =, decimal point,
/s or m‘is ignored 1f it 18 scamned, CP 18 incremented
by oue, and the next character is scanned, Nprmally,
scamming any character other than those listed above will
result in the detection ¢f the error condition "ILLEGAL
SYMBOL".

In the numer ic instructions just described, the field width or number

of columns to be scanned is specified by "nD*" or "nZ"™ and 1s fixed, A more

flexible type of numerie instruction exists in the form of "nF" or free

read!

nF

n mumbers are to be scanned and stored into the next

n variables named,. MHNumbers may be punched in the same
forms as for fixed-field read, and each number field ia
terminated by a *," or a "*", Blanks are ignored,
except that if an entire field js blank, the value of
the corresponding variable is left unaltered instead

of being set to Zero.

A "V rerminates the scanning of the "nF" instruc-
tion.- If fewer than n numbers have been scanned, the
values of the remaining variables named are left unaltered,
a3 though the corresponding number fields were left blank.
After execution of "nF", CP points tc the character posi-
tion one position to the right of the last "," or "™*"

scannad.

http://AL.3d.15

AL.3d.l6

Card Overflow

If a READ instruction attempts to scan character positions past the
right margin, a new card image is read using a pseudo control instruction,
This instruction functions as an "E" or "W" instruction, whichever has been
executed most recently. Scanning continues with CP set to LM, Initially,
CP =1, IM =1, and RM = 84,

Error Messages

Several situations are detected by the input routine as indicating an
error by the user, either in his ALGOL I/O call or in his data cards. A
standard error printout 1s provided, containing the following information:

1. The last card read is printed. (If it was read by a W, it will
thus be printed twice.) The next line will contain an integer giving the
present value of CP and will also have a vertical arrow (%) pointing to
the column indicated by CP., Usually, this will be the column just past the
error.

2. A single line is printed identifying the particular error.

3. The standard ALGOL run error mechanism is invoked with RUN ERROR -

READ. The following error messages (item 2, above) are detected:

ILLEGAL BOOLEAN An attempt has been made to read with a T instruction

into a variable of type other than Boolean or logic.

$% - CARD READ An attempt has been made to read past an end-of-file
mark., Reading more card images than are in the current input file results
in reading an end~of-file mark. This mark consists of special dollar signs
{internal representation 1658) in columns one and two. Attempting to read
still another card image causes the error condition "$$ CARD READ" to be

detected.

NO CARD READ An attempt has been made to scan information before an

E or W instruction has loaded the input buffer.

AL.3d.17

IMPROFER NUMBER In scanning a number with a numeric Instruction,
an illegal sequence such as more than one decimal point, more than one ,,

or a decimal point after a , has been detected,

ILLEGAL SYMBOL In scamning a number with a numeric instruction, a
character other than a digit, +, =, decimal point, / or , has been read.

This message is suppressed by the suffix W.

E. Buffer Manipulation and | - variables

As has been mentioned, an input buffer and an ocutput buffer exist in
the I/0 system. Associated with each buffer are three pointers: CP, LM
and BM. It is frequently convenlent for the programmer to be able toc make
direct reference to these buffers instead of being restricted to using
format instructions to refer to them. Feor example, in all that has been
said up to this point no mention has been made of any way the programmer
can change LM or RM. To permit reference tc the various pointers of the
I/O system, ALGOL-20 includes a special class of reserved words: the bar-
variables. These wvariables consist of a wertical bar {"i") followad by
an integer. The] and the first digit of the integer must be In successive
columns of the same card, with no intervening blanks.

The format of a buffer will now be described using the print buffer
for definiteness. The buffer itself consists of 120 consecutive locations
in memory, corresponding to the 120 colurms of the printer. Characters are
stored into the buffer by placing the G-20 representation of each character
in the corresponding word, right-justified. The three pointers associated
with the buffer are stored in the three locations immediately before that
containing column one. "Column zero” contains CP, "column -1" contains RM
and "column -2" contains LM. Each of these three pointers has a name which
is available to the user, the name being a bar-variable. For the print
buffer, CP is in [205, RM is in |206 and LM is in EEU?. Thus the assignment

statement

IZUS «— 5

AL,3d.18

i3 equivalent to the format statement
PRINT (<5C>)

Similarly, the programmer may change the right margin by stering into [206
with an assignment statement.

A similar situation exists fer the input buffer. B4 consecutive
locations are provided for the actual read buffer. QColumn zero, called
]200, contains CP for reading; column -1, |201, contains the read RM; and
column -2, (202, contains the read LM.

Since PRINT and PUNCH share a common buffer, it follows that they
share a common CF, RM and LM.

The following table may help to clarify the preceding discussion:

Location Initcial Contents Meaning

|202 1 LM
|201 84 RM READ
| 200 1 cp

next 84 words - the buffer
[207 1 LM
{206 120 i PRINT and PUNCH
| 205 1 CP

next 120 words - the buffer

This gives the programmer convenlent access te the three pointers, but
it does not provide a way to refer to the words in the buffer. Since it is
frequently desirable for the user to have this ability, a means has been
provided for the user to cause a buffer to be in his own data area instead
of in the 1/0 system. Again considering PRINT, the user may direct that a
particular 123 element array is to be used as the buffer. The system will
then use the first three locations of this array as the three pointers and
the other 120 locations as the print buffer. Since the array is in the
user's memory, he may refer to any column or to any pointer by the ALGOL

name he has given it. For example, assume that the declaration

logic array EUFF[=2 : 120 J

http://AL.3d.18

AL.3d.19

has been used and that the procedure call
BUFFER,SET ('PRINT', BUFF[0])

has been executed. (BUFFER.SET is a privileged identifier.) Then for any
k between one and 120, column k will be in BUFF[k]. CP will be in BUFF{O],
RM will be in BUFF[-]] and LM will be in BUFF[-Z]. It is important to
note that [205, |206 and |207 are specific machine locations and that after
executing the above BUFFER.SET call they will no longer contain the pointers,
BUFFER.SET may also be used to change the READ or PUNCH buffer, using
the string 'READ' or 'PUNCH' as the first parameter to the procedure. As
for PRINT, the second parameter should be an array element which will be
set to correspond to "column zero" of the buffer,
Before calling BUFFER.SET, the programmer should be sure that the three
pointers he 1s about to put into effect contain reasonable values. BUFFER,SET

only makes one check: it insists that the relationship
0 < LM < RM

be zatisfied, 1If it is not, LM will be set to one and RM will be set to 84,
120 or 80 for READ, PRINT or PUNCH, respectively.

BUFFER.SET detects two error conditions which are treated as run errors:
a first parameter which is not one of the three legal strings allowed, or a
second parameter which is not in the user's memory.

There are certain other bar variables associated with the imput/output
system which are available to the user. |[210 and 1211 are switches for
format and NAME, respectively. At any given time during the running of a
program when the user has NAMEd variables which have not yet been printed,
]211 will be non-zero. (Its value iz the location of a routine which will
supply the names to succeeding statements.) If the programmer wishes to
cancel the effect of the extra names which have been supplied, he may do so
by setting |211 to zero. Similarly; extra format elements which have been
supplied may be cancelled by szetting |210 to zero. The programmer should
under no cirgumstances set either of these variables to non~zZero values, or
chaos will result,

[212 and |213 are associated with the message printed at the top of each

AL.3d.20

page. Whenever the printer is moved to the top of a2 new page by the
execution of a P, the user may have a message and page number printed if he so
chooses. The system has been set sco that the page numbers will start with
page one on the first after the completion of the compilation. If the user
does nothing about it, each time a P is executed the first line of the new
page will contain on the left the date on which the program was run, and

on the right the page number. The page number is calculated by finding

cut from the moniter the total number of pages which have been printed
since the run began and subtracting from this number the contents of |212.
The contents of]2]2 15 set on entry to the program te the number of pages
used by the compiler in compiling the program., The user may change it at
any time If he wishes to alter the page numbering sequence.

E213 controls the message to be printed as part of the page header. If
it is negative, no page heading at all will be printed. If it is zero, the
date and page number will be printed, as explained above. Positive values
should not be used in this location. In the present version |213 >0 will
ke treated as suppressing the header, but in planned expansion it will hawve
& different meaning.

|214 is the up=space counter, After each line is printed, the printer
is up-spaced the number of lines indicated by lZlh. This location is set
on entry to the program to one, for single spacing. The user may set it to
two for double spacing, but other values are not recommended. In particular,
setting it to Zero saves paper but makes it hard to read the cutput.

|215 is the left-justify switch. In processing number forms there are
certain cccasions when either blanks or zeroces will be stored depending on
whether the programmer has used D or Z in his format. If a blank would have
been stored and if, further,]215 is zero, then no space will be taken in
the print line instead of leaving a blank. Thus setting |215 to zero permits

215 is initialized to be non-zerc.

the user to get left-justified numbers,

These last few bar-variables may be summarized as follows:

|210 MAME switch. # O = there are names to be processed

|21] format switech. # O = there are formats to be processed

|212 page count

|213 page header switch, < 0 = suppress; = 0 = print; > 0 (do not use)

£

AL.3d.21

|214 upspace counter

l215 left~juatify awitch, = 0 = leéftejustify; # 0 = don't

F. Control and Execution of I/O Statements

The relationship between NAME and format statements is given in the
following description of the execution of an input/autput opecation,

(1) An execution of a NAME statement sets the name switch, |211, to
a positive integer, and sets an internal variable & to peint to the first
name expression. Whenever [211 is positive the NAME statement which set
it so is said to be active. A NAME statement becomes active as encountered,
cancelling any previously active name statement.

When a NAME statement becomes active, a test is made to determine 1f
a format statement is already active (l210 >0), If no fnrmﬂtlstatement
is active (|210 = 0), control passes to the successor of the NAME state~
ment, If a format statement 1s active, the first name expression is evalua=
ated and sent to the format instruction pointed to by v. (See (2).) & is
changed to point to the next name expression, and control passes to the
active format statement,

(2) An execution of a format statement sets the format switch, |210,
to a positive Integer. The format statement iz then said to be active.
Because PRINT, PUNCH, and RFAD statements share the switch, at most one
format statement may be active at any given time. A format statement becomes
active when encountered, cancelling any previously active format statement,

The value (address) of a name expression may be needed during the exe-
cution of a format statement, If so, an internal variable, vy, is set to
point to the format instruction requesting the value (address), and a test
is made to determine if a NAME statement is active ([211 > 0). If not
(]211 = 0), control passes to the successor of the format statement. If
a NAME statement is active, control passes to the expression pointed to by §.

(3} In attempting to evaluate a name expression, a check is made to

determine whether § points to an expression or to the end of the NAME

AL,3d,.22

statement, 1If & points to an expression, it is evaluated and § is set to

™

point to the next name expression (or to the end of the NAME statement),

and the value (address) of the expression is sent back to the requesting
format instruction. When all name expressions have been evaluated, & points
to the end of the NAME statement. In this case, no expression can be evalu-
ated, and |211 is set to zero indicating that no NAME statement is active.

Control is passed to the common successor of the now inactive NAME statement

and the active format statement. (See (5).)
(4) After the last format instruction in a format statement is executed,
IZ]O i8 set to zero, and control is passed to the common successor. (See (5).)
(5) The commen successor of an active statement and a statement which
has just become inactive is the successor of that statement which was most

recently encountered during the execution of the ALGOL program,

To clarify the above points, consider some examples of sequences of
input/output operations. In the following, N(P) denotes a NAME statement with
P name expressions, F(P) denotes a format statement (PRINT, PUNCH or READ)
which requires P values or addresses, S denotes an arbitrary ALGOL statement,

and 5' denotes any ALGOL statement which is not an input/output statement.
A: N(6); S'; F(6); S;

Executing N(6) sets |211 > O and sets § to point to the first name
expression. S' is executed and eventually F(6) is entered. Because N(6) is
already active, each request for a value or address will be filled by N(6).
When the execution of the last format instruction is complete, F(6) becomes
inactive, and S is executed. N(6) is still active, but § points to the end
of statement. In this state, any request for a name expression will render
N(6) immediately inactive. A NAME statement followed by a format statement
is the simplest and most Frequently used sequence.

B: F(5); 8'; N(5); S;

B illustrates an alternate sequence, in which the format statement pre=-
cedes the NAME statement. Executing F(5) sets]210 > 0, but no requests for
name expressions can be filled because there is no active NAME statement,

v is set to point to the first requesting format inmstructionm, and §' is exe-

cuted. When N(5) becomes active, it determines that F(5) is already active.

AL.3d.23

The first name expression is evaluated and sent to the format instruction
indicated by y. Eventually, the last format instruction in F(5) is exe-
cuted and F(5) becomes inactive. As in example A, N(5) is still active
but any request for a name expression will render it inactive.. Control

then passes to 5,
C: N(4); N(2); F(3); 8'; NQ1); 8;

C 1llustrates a more complex situation which is probably a programming
error. N(4) becomes active, but is cancelled by N(2). N(2) and F(3) function
as in example A, except that when F(3) requests a third name expression, N(2)
becomes inactive. S' is executed and N(1) encountered. N(1) now supplies
the requested name expression to F(3) and F(3) becomes inactive, passing
control to 5, Users should be wary about using sequences such as described
in C as it is very easy to produce an error which has repercussions on many
other input/output operations in the program. As a safeguard, the name and

format switches may be zeroed as described in Section E of Chapter 34d.

http://AL.3d.23

AL.4.1
CHAPTER 4

SYSTEM STATEMENTS

Syatem statements are inatruetions to the ALGOL-20 translator which may
be used to modify certain aspects of the translation process. That 18, a
system statement 1ls executed by the translator at compile time rather than
by the object program at execution time. System statements are executed as
they are encountered by the translator as it scans once through the ALGOL
source program and take effect immediately thereafter. All system statements
except those marked with "4" may be used anywhere in the source program.

Each system statement is punched on a separate card which contains "SY"
in columns 1 and 2. The system statement itself may be punched on the card
anywhere between column 4 and the current right margin (see RIGHT MARGIN
below) .

A system statement generally has the form:
< atatement name > < parameters =

Thoge system statements which Eave a fixed aumber of parameters are terminated
by a blank following the last parameter. The rest of the card may be used for
commenta. The system statements which have a variable number of parameters
are terminated by the end of the card, so comments cannot be included on such
a card., System statements which may not contain a comment on the same card
are marked with a dollar sign ($).

Each system statement type will now be described and explained. In the
following, "n" will always stand for an unsigned integer. The system statements
marked with asteriska (*)‘control printing but will never themselves be
printed. Printing of the other system statements may be suppressed by the
system statement: "PRINT NO SYSTEM".

Blanks are not ignored when scanning system statements. There must be at

least one blank between words and/or numbers and none in words or numbers.

AL.4.2

PRINT CONTROL

(1)

*(2)

*(3)
*(4}

*(5)

$(6)

PAGE (No parameters)

The effect is to skip the compilation listing to the top of
the next page. The PAGE statement itself will be printed on
the first line of the new page.

LINE n
The effect is to upspace the printer by n lines. An attempt
to upspace beyond the bottom of the current page will leave

the paper at the top of the next page.

SINGLE (No parameters)

DOUBLE (Mo parameters) .

These statements cause the compilation listing which fcllows

to be printed with single or double line spacing, respectively.

If neither statement is given, the translator assumes SIRGLE.

INDENT 0 K en
INDENT +n : K+—~K+n
INDENT =n KK -n

The indentaticon constant, ¥, specifiei the number of print posi-
tions to the right of the text left margin that the compilation
listing will be printed., The translator normally assumes

"IDENT 0". An IDENT card modifies K as given above. If this
rule leaves K outside of the range 0 = K = 21, then

K « max(0, min (K,21)). Note the difference between "IDEKT 2"
and "IDENT +2%": The former sets K to 2 and the latter increments
K by 2. See Chapter 6c for a discussion of the format of the
compilation listing.

PRINT
The user has the ability to turn on or off the printing of various

aspects of his source program. In general, if he does not spec-
ify otherwise, his source program along with octal addresses,
notes from the tramslater, and system statements will be printed,

while routines accessed from the symbolic library will not. The

* Not printed
$ Comment not allowed

AL.4.3

printing of each of ADDRESSE3, NOTES, SYSTEM statements and LIBRARY
routines may be controlled individually by the programmer by suit-
able PRINT atatements. We have the following syntax:

<PRINT statement> ::= PRINT <parameter string~>
<pafameter string> :i= <parameter>, | <parameter string> <parameter>,
<parameter> :!:= <control word> i NO <control word> | NO | EACH
<control word> ::= PROGRAM | ADDRESSES | NOTES | SYSTEM | LIBRARY

A PRINT atatement ie interpreted by treating each of the parameters
in the parameter string in order from left to right across the card.
The control word ADDRESSES refers to the octal addresses printed
down the left side of the page. NOTES refere to possible error
notes printed by the translator. ¢{See Chapter 6b.} SYSTEM refers
to system statements (except those which never print) . LIBRARY
refers to routinea accessed from the aymbolic library, as described
below. PROGRAM refers to the listing of the scurce statements,

along with notes, addresses and assoclated system atatements.

A parameter consisting sclely of a contrel word has the effect of
turning on the printing of the corresponding part of the assembly
lieting as described above, while a parameter of WO fcllowed by a

control word turns off that part.

The parameter EACH is equivalent to the par ameter string "PROGRAM,
ADDRESSES, NOTES, SYSTEM, LIBRARY", and the parameter N0 is equiva-
lent toc "NO PROGRAM, RO LIBRARY".

The parameter NO PROGRAM suppresses printing of the source program
along with the associated addresses, notes and system statements,
overriding any previous parameter of ADDRESSES, NOTES or S5 YSTEM.

I1f PRINT PROGRAM is in effect, however, then NO NOTES, NO ADDAESSES
or B0 SYSTEM will suppress printing of these individual features.
I+ is not possible to pfint notes, addresses or system statements.
without printing the corresponding source program images. If
PRINT HO PROGRAM is in effect, PAGE and LINE have no meaning and

thus are ignored by the translator,

The parameter LIBRARY has a function analogous to PROGRAM, except
that LIBRARY takes effect only when a subsequent 5Y LIBRARY system

AL.4.4

etatement starts Inserting library images; then, having

PRINT LIBRARY (PRINT NC LIBRARY) in the "main" program text

has the same effect as having PRINT PROGRAM (PRINT NC PROGRAM)
as the first iibrary image. These library images may them-
selves contain PRINT system statements; these will econtrol .
printing only within the library sepment, so rthat the PRINT
statuid {n effect when the 5Y LIBRARY stratement wars encountered
will be restored st tle end of the LIBRARY segment. If 5Y
LIBRARY occurs within & zet of library fimages, print control
woris, a8 deacribed above, calling the outer set of library
images the main program and the ioner set the library images.
The PRINT parameters are always "pushed down" when an SY LIBRARY
system statement {3 encountered, and the “LIBRARY" switch on one

level becomes "PROGRAM" awitch on the next level,

In the absence of any PRINT system statements, the ALGOL-2D
translator assumes PRINT EACH, NO LIBRARY.

MISCELLANEOUS

(7)

(8)

T(9)

RIGHT MARGIN n

Starvting on the next card, the translator will acan column 4
through n for the text of ALGOL, WHAT, and aystem statements,
where 40 = n = 80, If n 1s not in the proper range, an error
measage fa given and the right margin is not changed., The trans-
lator initially asaumes RIGHT MARGIN 72.

LIBRARY <identifier>

The translator tneserts into the program at this point the segment
of ALGOL source program text (generally a procedure) which s
filed in the symbolic library under the pame <identifier>,

n ABCONS

The translator will reserve n G-20 locations for storing "abcons"
and o locations for storing "adcons” during both tramslation and

execution, Abcons are numbers and alpha-numeric strinps which do

not appear in format primaries, Adcons are constants and temps

t+ Before the first begin only

AL.4.5

for format replicators and small integer constants used as
actual parameters to procedures.

If no ABCON statement is given, the translator assumes

"200 ABCONS",

An ABCON statement may only occur at the very beginning of the

program before the first begin.

(10) SEGMENT nl, n2
The iﬁteger nl specifies the segment number, and must usually
satisfy 1 £ nl = N. Segments 1 through N are temporary segment
and thus are not saved after the end of the user's run; perman-
ent segments with numbers greater than N, are available upon
request to the Computation Center. Since the number of temporary
segmehts may change in the future, no value for N is given here.
Ita value can be found in the Users Manual, Section 1.5. The
integer n2 specifies the number of files which will be required
for the segment; each file contains 10240, words. If segment 1

requires 2 files, the next available segment is segment 3.

The number of "words" printed out at the end of an Algol program
is the number that must be dumped out if the program is dumped as

a segment.

See Chapter 6f for a complete discussion of segments.

(11) RELEASE WHAT

(12) RELEASE SYMBOLIC LIBRARY
The user who does not need WHAT or the symbollc library may reclaim
the space used by these parts of the ALGOL compiler. This allows
longer programs to be compiled. Since WHAT is below the library
processor in memory, no space can be reclaimed until WHAT {is

‘ released. The RELEASE's may be done, however, in either order and

at any time during the c&mpilation. Releasing WHAT reclaims /1400
(768,) words; releasing the library will reclaim an additional
/600 (384,) words. Attempting to use WHAT or the symbolic library

after it is released will cause a compile error.

AL.4.6

(13) DEBUG n
This system statement i3 designed for the user with some
knowledge of G-20 machine code and a general knowledge of
the Algol-20 translator who wishes more specific informa-
tion on the tranalation of a particular statement, This
statement controls the printing of up to four columns of

information after each ALGOL text card:

character scanned
postfix produced
code produced

internal variable equivalents

This information is printed one item per line a8 it is
generated. An internal variable equivalent is printed out
for each identifier declared. n > 0 turng on the printing,
n =0 turns it off.

AL.5.1
CHAPTER 5

THE ALGOL LIBRARY

The primitive operators available to the ALGOL programmer include
arithmetic cperators such as +, *, and ' (exponentiation), and elemen-
tary mathematical functions such as SIN, EXP and ARCTAN. However, the
programmer may need matrix inversion, numerical integration, least-
squares curve-fitting, or calculation of eigenvalues and eigenvectors
as baszsic operatlions in the solution of a particular programming problem.
Since the last are somewhat less frequently used operations, they have
not been provided as a part of the ALGOL language itself. Instead, these
and other standard procedures are provided in a procedure library from
which the programmer may call any library procedures which he needs iIn a
particular program, Since the library is in no sense complete, existing
procedures of general interest or the need for mew procedures should be
brought to the attention of the Computation Center staff.

There are twe libraries in the ALGOL-20 system: the relocatable

library and the spymbolic library. The relocatable library contains for

the most part those procedures which must be coded In machine language,
such as DISC.READ and DISC.WRITE. The routines in this library are
assembled once by the Center staff and placed in the library as relocat-
able binary machine fnstructicons. From there they may be accessed by the
user and loaded into any ALGOL program. This loading process is signifi-
cantly faster than compiling a copy of the procedure into the user's
program,

The symbelic library contains pieces of ALGOL text. This text will
typically be a procedure declarastion, but it need not; text for several
procedures, a block, or an arbitrary sequence of ALGOL instructions may
be filed as a single entry in the symbolic source language library. Pro-
cedures in this library are usually those which can be written more
conveniently in ALGOL than in machine language; for example, SIM, the
Simpson's Rule integration procedure, While a more erfficient procedure
might bé written in relocatable machine language, there are at least two
advantages to writing the procedure in ALGOL: First, the routine can be
written and debugged in less time and with less effort by using ALGOL,

and second, ALGOL text is more easily read. Anyone who is interested in

4L.5.2

the detailed cperation of the procedure may get an ALGOL Llisting of the
procedure as it is compiled into his program. (See the discussion of
print-¢control statements in Chapter 4.)

Since all the objects in the libraries are not procedures, the term
"routine” is applied to an entity in either library. Thus, a routine may
be a closed subroutine, a procedure, several procedures or an arbitrary
sequence of ALGOL instructions. The descriptions of all routines in this
chaprer state whether the particular routine is in the symbolic or relocat-
akle library.

Since there are different processes Ilnvolved in processing symbolic
gource language and relpcatable binary routines, there are different
tmechanisms for accessing symbolic and relocatable routinea. Symbolic
libraty routines are accessed by meana of a SYSTEM statement. (See Chapter &

for a complete discussion of SYSTEM statements.} The card image
Y LIBRARY <identifier>

will cause the text for the routine <i{dentifier> to be complled into the
program at that point. The routine may then be used in the same way as
any other routine which appears in the program,

Relocatable routines are accessed by a slightly more complex mechanism;
they must be declared as library procedures in the heazd of the block in
which they are used. The syntax of declarations is extended to include a

library procedure declaration:

<library procedure declaration> ::= library procedure <identifler list>

]librarg <type> procedure <identifier list>
Thus the following are examples of library procedure declarations;

library procedure DISC.READ, DISC,.WRITE,SLEW;
library real procedure ZILCH, SINH, GOSH;

These declarations have the same scope as any other ALGOL declarations; thus
the name of a library procedure may be redeclared in other blocks to be any
other ALCOL construct. Therefore, it may be necessary to declare the same

library procedure in several different blocks. No matter how many times the

procedute is declared ouly one copy of the routine will be added to the

program,

N

AL.5.3

As with any otner library, the ALGOL library also has a librarian,
which is used to update and edit the library. Using the librarian, the
user may add his own routines to the library on a temporary basis. For
a description of the librarian, see the ALIBN Manual.

The remainder of this chapter is a set of descriptions of the
routines currently available in the relocatable and symbolic libraries;
these are arranged within each library alphabetically according to the
procedure name. Also, for completeness, writeups are included for "standard
routines™ - those routines.which are built into the system and whose names
are reserved identifiera. As these routines are automatically included in
any program which calls on them, they do not have to be declared. In fact,
any attempt to fetch them with an SY LIBRARY card or with a library
procedure declaration will be detected as an error.

The reference for numerical method given for many of these routines is

"1604 Routines". This refers to the book, Some Basic 1604 Mathematical Sub-

routines, Publication 061 of Control Data Corporation, Minneapolis, Minnesota.

A copy of this book ig available at the Computation Center for reference.

AL.Seb

AL.5,ARCTAN.1

Standard Function

PROCEDURE SPECIFICATION
real procedure ARCTAN (X); value X; real X;

PURPOSE
ARCTAN finds the inverse tangent of X in radians in the range
from - n/2 to + ﬂ/Z. It operates correctly on any number given as

input,

METHOD
Described on page G-1 of "1604 Routines".

TIMING and ACCURACY
The result is produced in 1,25 milliseconds.

The error is less than 1,-11.

AL.ARCTAN.2

AL.5.C05.,1

Standard Function

PROCEDURE SPECIFICATION
real procedure COS (X); value X; real X;

PURPOSE
COS finds the cosine of X, where X is in radians and may be either

positive or negative.

METHOD
CO0S uses the sine routine, using the identity

COS (X) = SIN (X + n/2).
ALARMS
RUN ERROR ~ SINu IX| » 2,097,152 = 2 t 21

For values beyond this polnt the algorithm breaks down,

TIME and ACGURACY

The result is produced in 1.08 milliseconds. The relative error
is about 5,-11.

AL.COS.2

AL.5.CURFIT.1

ALGOL Symbolic Library

PROCEDURE SPECIFICATION

PROCEDURE GURFIT (K, A, B, M, X, Y, W, N, ALPHA, BETA, S, SGMSQ, XO, GAMMA, C, Z,
R, ORTH, POW, ERROR) ;

VALUE K, M, N, XO, GAMMA, R; INTEGER K, M, N. R;

ARRAY A, B, X, Y, W, ALPHA, BETA, S, SGMSQ, C, Z;

REAL XO, GAMMA; BOOLEAN ORTH, POW; LABEL ERROR;

REFERENRCES

1. Algorithm 74, Comm. ACM, January 1962
2. Peck, J.E.L. Polynomial Curve Fitting with Constraints, SIAM Review, April
1962, pp. 135-141

PURPOSE

CURFIT finds the_ polynomial of degree N which passes through the K points

a1, s(1th,...., @], Bl&]) and fits the M points (x[1}, Y[1]),..., (M, Y[M) in
the least squares sense, where W|I] is the weight attached to the point (X|I), Y IJ),
I =1,...,M. The cosfficienta of this polynomial are stored in the array GC; C|J] is
the coefficient of X* for J = 0,...,N. The sum of the squares of the deviations is
computed for each polynomlal of degree greater than K-l but not greater than N, and
-is stored in the array SGMSQ, i.e., if FL(X) is the least squares polynomial of de-
gree L, then M

semsQ (L) =Z (1) - r x(zh 32 L =K,...N.
T=1

CURFIT will also evaluate the polynomial which it has determined, if the user desires,
for the set of values of the independent variable which it finds in the array Z. The
options available are explained under USAGE.

RESTRICTIONS

(Note: 1In all that follows, upper case letters refer to formal parameters, while
lower case letters denote the corresponding actual parameters.)
1. In the calling program, the arrays used by CURFIT must be declared to include
the subscript bounds as shown below.
(a) Input Arrays:
real array a, b[l:kJ, X, ¥, w[l:uﬂ, z[l:r];
(b) Output Arrays:
real array alpha, beta [O:n-l], 8, c[O:nJ sgmaq[k:nJ;

2. The values of the actual parameters must satisfy the following conditions:
(a) l<k=n<m+k
(b) m=1
(c) gamma # o

AL.5.CURFIT.2

3., The user is reminded of the ALGOL-20 restriction regarding labels used as actual
parameters in procedure calls. See page AL.2.14 of the ALGOL-20 Manual
for details. The conditions which will cause the procedure to transfer con-
trol tc the statement which has the label error are:
(a} Cne or more of restrictions 2 (a), (b) has been violated.
{b}) Division by zero was about to be attempred during a calculation. The
usual cause of this is improper or inconsistent data in the input
arrays x and y.

4, The arrays a and x must not contain an element in common, or the effect of the
procedure is undefined.

5. CURFIT destroys the contents of the arrays a, x, ¥y and w. Conseguently, proviaion

must be made to save these data {(if desired) before CURFIT is called.

METHOD

CURFIT uses the method of orthogonal polynomials, which can be defined recursively
by :
P_L{t) =0] [JU (t) =1 L]

P+ 1 {t} = (t -Q‘i} Pl (t) - Elpl'l (t} N 1= U,...,n-l. {1}

The coefficlents o, , B, and 8, are determined such that the nth degree polynomial

F, (£) = 84Pp (t) + 8Py (&) + ... + sp, () {2)
minimizes the quantity m

2 _ Z - -]

62 - _t;r[yr Fo(t,)]

The coefficients s, can now be used to compute the coefficients of the standard pelyno-

r
mail representation of F, . Suppose that V 15 the coefficient of t° in Pi(t}’ i.e.,

i,r
py(t) = Vy o + ¥ b+ 5 7 -
Then from equation (1), with Vg o =0 , ¥; 4 = ¢ for all i, and V; r =0 for r > i,
we have
Vidr,r = Vy,r-1 - opy,r - BViox

for, 0 s1<n and 0 <r = n. Hence by equation {2},
n

e =1 s,V T = 0y00.,0
r jaor A1 ,T ? » 1

and we have

F,{t) =¢g5 +ec, t+ ... +c,t"

C

("

AL.5.GURFIT.3

USAGE

1., Round off errors are reduced if all the abscissas lie in the interval
[-2,2] {see Reference 2). Consequently, a change of scale is introduced by the proe-
cedure, using the transformation

x'(1) « x(1] - x0) / cama ,

where X0 and GAMMA must be supplied by the user in accordance with the size of the
data, The appropriate values of these parameters can be determined from the equations

x0 = 7a (max(x(1),a1)) + mintx{1],2[1)))
gamma = 74 [max(x[lj,a[l])- min(x[lj,a[l])].

2. The coefficients o,,B;,8,, and ¢, as well as the sums of the squared devi-
ations, are accessible to the user as the contents of the arrays alpha, beta, c, s,
and sgmeq, respectively.)

3. In addition, there are two built-in print optionsa:

(a) If orth is true then the value of the least squares polynomial
F (t) is computed using equation (2) for each element of the
array Z. A message to this effect is printed, followed by r
rows of output, each consisting of the number (subscript) J
of the array element, the value z[J of the array element, and
the value Fn(z[J]) of the polynomial.

(b) If pow 1is true, then the value of the least squares polynomial
F,(t) is computed using equation (3). The format of the output
is the same as part (a).

In some cagses method (a) will yield more accuracy then method (b).

However, the correspomding values will usually agree to four or
five significant figures.

TIME AND ACCURACY

With all internal printing turned off (orth and pow both false), CURFIT
determined an eighth degree polynomial, passing through two points and approximating
eight other points, in approximately one second, The sum of the squares of the
deviations at the eight approximated points was approximately 104 of the difference
between the maximum and minimum ordinates of the curve.

AL.5.CURFIT.4

AL.5.ELIPS.1

ALGOL Symbolic Library

PROCEDURE SPECIFICATION

PROCEDURE ELIPS (M1, X, E, TOL, ALARM);
VALUE ML, TOL; REAL ML, K, E, TOL; LABEL ALARM;

REFERENCES
1. Algorithm 1653, Comm, ACM, April 1963

2. M. Abramvotiz and I. A. Stegun, Handbook of Mathematical Functions, National
Bureau of Standards, 1984, p. 598,

PUIRFOSE
Given a value of the (complementary} parameter ¥l, this procedure computes the

numetical values of K and E, the complete elliptic integrals of the first and seccond
kinda, which are defined by
n/a

dx

First kind: K{ML} =

a\l 1 - (1-M1) sin®x

/3

Second kind: E{Ml) =

\f 1 - (1 -M) sirfx dx

Q

RESTRICTIONS

1. The user ig reminded of the ALGOL-20 restriction regarding labels used as
actual parameters in procedure calls. See page AL.2.l4 of thne ALGOL-20 Manual

for detalls. ‘

2. If Ml =0 or Ml >1 the elliptic integrals are undefined, and the procedure
transfers control to the statement whose label is the actual parameter corresponding
tc ALARM, .

3. The actual parameter correspending to TOL determines the accuracy (and also
the execution time) of the procedure. The size of this parameter is limited by the
relative accuracy of the built-in ALGOL square root routine, and must not be less than

16-12

AL.5.ELIPS.2

METHOD
The arithmetic-geometric mean process 18 used (see reference 2). Starting with

the triple {ag, by,) = {L,3/ ml , 1 - ml}, new values are computed using the {terative
schene :

a4 =1fz @g= + byy) by =\jai-l LT Cg =‘/§ ‘ag = b)),

During the calculation, the quantity 5, , defined by
1
.3
5, = 2} Y ,
§=0

18 accumulated. The process stops when the twe conditions

1.4
Jes | < TOL and Ly < TOL
4, 5y -1

are both met. The desired elliptic integrals are then found uvsing the relations

K = E = K{(1 -=/; 8,).

TIME AND ACCURACY

" Using a value of TOL = lﬂ-ﬁ , nine to ten significant decimal digits were obtained
for both elliptic integrals in approximately ten milliseconds of computption time.

3

i

AL.5.EXP.1

Standard Function

PROCEDURE SPECIFICATION
real procedure EXP (X); value X; real X;

FURPOSE
EXPF computes the exponential function
EtX where E = 2.71828182845,..

METHOD
A continued fraction approximation is used.

For further details see page AA-42 of "1604 routines".

RANGE
For X < -161, the result is given as zero.
It is an error if X >160,116998, since in that case EXF(X) will

exceed the largest number representable in the 6-20.

ALARMS
RUN ERROR =~ EXP ., 1f X > 160.116998,

TIMING and ACCURACY
The result is produced in about 1 to 2 milliseconds.

The errvor is less than 1,-10.

r\

AL.5.FREQ.1
ALGOL Symbolic Library

PROCEDURE SPECIFICATION
PROCEDURE FREQ (N, A, B, IUL, K, X, KA);
INTEGER N, IUL; INTIEGER ARRAY KA;
REAL A, B, K; REAL ARRAY X;

- REFERENCE

Algorithm 212, Comm, ACM, October 1963

PURFOSE

FREQ determines the frequency distribution of N real wvariables, the elements of the
vector X, over the interval EA, BJ. Each element of X is assigned to one of K equal,
half-open subintervals of EA, BJ, and the frequency of X in the Jth subinterval is stored
in kA[J}.

RESTRICTIONS

1. A is assumed to be the left end-point of the interval, and hence must be less

than B.

2. The elements of the vector X must satisfy the inequalities A < min (X [I]) <
max (X[1)) < B for I = 1,..., N.

3. The number N of variables being classified must be less than or equal to the
order of the array X.

4., Upon entry, the array KA is assumed ldentically zero. In the calling program,
the array declaration for the actual parameter ka corresponding to the formal parameter

KA should be: integer array ka [1 : kJ; where k is the actual parameter corresponding

to K.

METHOD
The interval EA, B] is transformed into the interwval [0, KJ with unit subintervals
and the elements of the array X classified there by

Yy (1) = (1] -4 /(B-4 /K forI=1,...,N.

USAGE

The user has the option of having the subintervals closed at either the upper or
lower end, and must specify his choice according to the following scheme: If FREQ is
called with IUL = O, then the lower end-point is included and the upper end-point is
omitted from each subinterval (except, of course, the Kth). If IUL # O, then the
upper end-point is included and the lower omitted, in each subinterval except the first.

AL.5.FREQ.2

TIME
FREQ classifies

approximately one thousand numbers per second.

AL.5.GJR.1
ALGOL Symbolic Library

PROCEDURE SPECIFICATION
PROCEDURE GJR(A, K, EPS);
VALUE N, EPS; ARRAY A; INTEGER N; REAL EPS;

REFERENCES
1. Certification of Algorithm 120, Comm. ACM, Jan. 1963
2. H.R. Schwarz, An Introduction to ALGOL, Comm. EGH, February 1962, p. 94

FPUBPOSE

GJR computes the inverse of the N by N matrix A and stores the resulting inverse

in A.

RESTRICTIONS

1. The actual parameter a which corresponds to the matrizx A must be declared

in the calling program as: REAL ARRAY a [1 tn, 1 IJ, where n is the actual para-
meter corresponding to N.

2. An exit, labeled SINGULARUmust be supplied in the main program. 1f any pivot
element of the given matrix is less than EPS in abacglute value, controi will be trans-
ferred to the statement which has the label SINGULAR.

3. The parameter EPS is impossible to describe in absolute terms; the correct
" value to use depends upon the matrlx being inverted and also on the precision of the
computer. Lf EPFS is too large, GJR will not be able to invert the matrix and will
exlt to the label SINGULAR, in which case the contents of the array corresponding to A
will be meaningless. If EPS {35 too small and the given matrix 1s 1ll-conditioned
{close to being singular}, the results may be meaningless anyway due toc round-off
errors in division.

7 The following scheme is suggested: Use an EPS ln the range 10-5 to 10-?. If
GJR inverts the matrix and there is any doubt that the inverse 1s correct, multiply
the original macrix by the calculated inverse and compare the result with the unit
matrix to determine the accuracy of the inverse. If GJR does nmot invert the matrix,
decrease EPS (e.g., divide by 10) and repeat until an inverse is obtained; check
this inverse by the above method.

4. The order of the matrix to be inverted must not exceed seventy,

METHOD
The Gauas=Jordan direct elimination method, preceded by a pivotal search, is used.
See K.5. Kunz, Numerical Analysis, McGraw-Hill, 1957, pp. 220-22, 234 and reference 2

for details.

AL.5.GJR.2

USAGE

The user is warned again that GJR replaces the given matrix by its inverse.
Consequently, LIf e.g., the matrix to be lnverted arises as a result of a computation
and is to be saved, provision must be made in the main program to store thils array

elgewhere or else print it out before GJR is called.

TIME and ACCURACY

GJIR requires approximately 6.5N3*10-ﬁ seconds of execution time, where N is the
order of the matrix being inverted. Typical accuracy is eight significant decimal
digits.

'AL.5.GOOFSTAR.1

ALGOL Relocatable Library

PROCEDURE SPECIFICATION
procedure GOOF.STAR (PROCEDURE .NAME , ERROR.CODE) ;
value ERROR.CODE;

procedure PROCEDURE.NAME; string ERROR.CODE;

PURPOSE

GOOF.STAR calls the ALGOL run-error routine which prints the diag-
nostic error message described in Chapter 6b. This routine may be of
particular use to the prbgrammer writing routines for the ALGOL Symbolic

Library who wishes té use the ALGOL run-error machinery.

RESTRICTIONS
The actual parameter PROCEDURE.NAME must not be a function designator;

that is, it must have been declared as a procedure, not as a real procedure,

Boolean procedure, etc,

METHOD
A call of GOOF.STAR causes the ALGOL error routine to print the diag-

nostic message.
RUN ERROR - eeece

where 'eeee' is the actual parameter corresponding to ERROR.CODE. The name of
the procedure must be given as PROCEDURE .NAME so that the error routine can
find the entry to the erring routine and thus print the commands in the user's
program which (presumably) caused the error. . The error routine will execute

a HALT, unless an error-recovery switch has been set by RUN.ERROR.

USAGE
Suppose a procedure PIP is used, one of whose parameters is a non-negative

number, DELTA. The statement within PIP
if DELTA < O then GOOF.STAR (PIP, 'PIP1');

will check the validity of the given DELTA and, if there is an error, will call
GOOF ,STAR to print
RUN ERROR - PIPL

AL.5.GOOFSTAR.?

and the usuzl diagnostic information. The user may then look in the ALARMS
section of the description of PIP and discover that the PIPl error resulted
because DELTA was negative, The user may use the procedure RUN.ERROR to

recover from exrror conditions which invoked calls of GOQF.STAR.

ALARMS
A run-error GOOF will result if the parameter procedure.name is the

name of a function designator.

AL.H.GOSEG.1

ALGOL Relccatable Library

PROCEDURE SPECIFICATION

procedure GO.8EG (I) ;

value I; integer I;

PURPOSE

GO.SEG positions the segment tape tc segment 1. The use of this routine can

subgtantially 1ncrease the running speed of a segmented program.

METHOD

In the usual cage, some computation will be carried out before a new segment

is to be loaded. The statement

GO.8EG (1) ;
wlll initiate a slew to sgegment 1. Computation will resume until the next call for

LINK. At that time, computation will cease until the tape 1is positioned and the

gegment 1is loaded. Thus, it is posgsible to overlap time gpent sglewing te a sgegment

with useful computaticn. Since it takes about
(600 + 500%|N-M-1|) ms

to slew a tape from segment M to gegment N, it 1ig worthwhile to overlap asg much

slew time as possible.

ALJGOSEG, 2

AL.5.LINK.1

ALGOL Relocatable Library

PROCEDURE SPECIFICATION
procedure LINK (I};

value I; integer I;

PURPOSE
LINK loads segment i into core and enters 1t at the first begin.

METHOD

LINK loads segment i from bulk storage, reading only as many words
as there are in the compiled segment. If the calling program and the
called segment have identical declarations of own scalars and own arrays,
none of these opwn varlables will be disturbed.

Executing LINK causes all non-own variables to be made undefined.

In addition, certain internal variables are reset:

(1) The READ, PUNCH, and PRINT buffers, which may have been
set by BUFFER.SET, are reset to the standard buffers
supplied by ALGOL.

(2) AlL error-recovery switches created by RUN-ERROR are

cleared.

Finally, control is transferred to the outermost begin of the newly loaded
segment; that is, the first statement executed is always the first state~

ment of the zegment.

ALARMS
A tun error LINK will occur if
(1) 1<, or if

(2) segment i was not previously dumped as an ALGOL segment,

TIMING
Each eall of LINK takes approximately

(600 + 500 * | N-M-1|)ms

where M is the segment at which the tape is currently positioned and
N i3 the segment to be loaded. Running time can frequently be substanti-
ally reduced by use of the procedure G0.SEG.

AL.5.LN.1

Standard Function

PROCEDURE SPECIFICATION

real procedure LN (X); value X; real X;

PURPOSE
LN computes the natural logarithm of X.

METHOD
A Chebychev polynomial approximation is used.
For further details see page AA-17 of "1604 Routines”.

ALARMS
RUN ERROR - LN, if X< 0.

TIMING and ACCURACY

The result is produced in 1.75 milliseconds.

The error is less than 5,-11.

AL.1N.2

AL.S5 .MULLER.1

ALGOL Symbolic Library

PROCEDURE SPECIFICATION

PROCEDURE MULLER (P1, P2, P3, MXM, NRTS, EPFl, EP2, SW1, SW2, SW3, SWR, RRT, IRT,
FUNCTION) ;

VALUE Pl, P2, P3, MXM, NRTS, ©Pl, EP2, SWl, SW2, SW3, SWR; INTEGER MXM, NRTS:

BOOLEAN SW1, SW2, SW3, SWR; REAL P1, P2, P3, EPl, EP2; ARRAY RRT, IRT;

PROCEDURE FUNCTION;

REFERENCES

1. Algorithm 196, Comm ACM, August 1963.

2. Muller, D.E., A Method for Solving Algebraic Equations Using an Automatic
Computer, MTAC, vol. 10 (1956), pp. 208-215.

3. Frank, W.L., Finding Zeros of Arbitrary Functions, JACM, Vol. 5, No. 2 (1958)
pp. 154-160.

PURFOSE

MULLER solves a general equation of the form f(z) = 0, where f(z) is anaiytic in
a neighborhood of the roots. The value of parameter NRTS is the number of solutions to be
deteérmined. Both real and complex roots are found; the Ith root determined is stored
by placing the real part in RRT[I] and the imaginary part in IRT[IJ for I = 1,...,NRTS.
Various print options and search techniques are controlled by the Boolean parameters
SWl, SW2, SW3, and SWR, as explained below. MNo prior knowledge of the location of the
roots is required. Multiple roots are also obtainable, although with less accuracy
than for isclated roots.

RESTRICTIONS

(Lower case letters denote actual parameters, while upper case letters refer to
formal parameters.)

1. The arrays rrt and irt must be declared in the calling program to include the
subscript bounds shown below:

real array rrt, 1rt[1:nrts]

2. The procedure function must be declared in the program before MULLER is called.
It must be able to supply the real and imaginary parts of the value of f(z) for any
desired value of z = x + iy. The declartion of this procedure must be as follows:

procedure function (RE.Z, IM.Z, RE.F, IM.F);
value RE.Z, IM.Z; real RE.Z, IM.Z, RE.F, IM.F;

begin ...
{procedure body)

end;

In the above declaration, RE.Z and IM.Z are the real and imaginary parts of the inde-
pendent variable, while RE.F and TM.F are the real and imaginary parts of the function

AL.5 MULLER.2

evaluated at the point (RE,Z, IM.Z),

Observe that since FUNCTION is a perameter of MULLER, several equations may be
solved In the same program by declaring the appropriate function generator for each
equation with a different identifier. 1f this technique is employed, the user must
either: (a) print out the contents of rrt and irt after each call of MULLER; or (b)
supply a different pair of arrays corredponding te RRT and IRT in each call of MULLER,

3. 1If the equation to be solved is known to have only real roots, awr pust have
the value true when MULLER is called. :

4. pl, p2, and p3 are the real parts of three arbitrary startiog pointe. If the
equation to be solved is suspected to have multiple roots, the choice of pl, p2, and p3
should be such that no one of theim is exactly equal to a multiple root, 1f this re-
striction is not met, MULLER will not discover that the function has multiple zeros at
this particular root. :

2. [If the equation to be solved is a polynomial, sw3 should be set true. This
cguses the procedure to accept the conjugate of each root found as a root, when appli-
cable (i.e., when the root is not real).

6. If the function has singularities, pl, p2, and p3 should be chosen such that
none of them 1s a singular point.

7. epl and ep? are parameters which specify convergence criteria, while the
value of mxm dictates the maximum number of iterations to be made in locating any one
root, If neither of the convergence criteria has been satisfied after rmm iteraticna,
the most recent {terant {s accepted as a root and MULLER will proceed to find the next
root (or terminate if nrts roots have been found). The user will receive no warning
that this event has occurred unless sw2 has the value true, When sw2 is true, each
root 18 printed as it is found; thus if convergence does not occur, a message to that
effect will be printed along with the value of the last iterant and the value of the

function at that point.

METHOD

The algorithm used by MULLER is as follows: given an arbitrary furnction £(z) = 0
which can be evaluated for any value of z and i3 analytic in a neighborhood of -its
raots, select three arbjtrary starting values z,, z,, 2, . Find the second: degree
(Lagrange) polynowial which passes through the %hre% pu?ntu (z,, £(z,)), (z,, £(z,))
and (z,, £(z.)). Choose £, to be the root of this pelynomial which lies ¢1gaer t
Tgen drdp 2z, and repeag the process with z,, z,, and 2,, etc.

Z..]
3 The process stops when any of the following thiee cond&tinns is met:

(1)

iyt - By

< epl
LIS

where z; is the i-th {terant.

(2) |£(z,)| < ep2 and |f _(z,)| < ep? where f£(z,) ia the value
of the function at the point z,, and fr(z‘i is the value of the "modified function"
evaluated at 2.

(3) The number of iterations is equal to mxm,

The "modified funotion" is defined as

7y

()

i}

AL,5.MULLER.2

f{z)

r-1
T (2 - 2y}
j=1

forr:Z, 3, e {1)

fr(z} =

where z; is the j-th root found. If f(2)} ia not a polynomial, it is not possible to
divide out the rocts as they are found in order to reduce the degree of the polynomial
and hence the amount of computation., This device is valid, however, if the division
is performed only for those numbers z actually entering the algerithm, i.e., the points
g2; which are generated during each iteration, Thus, having found r-1 roots, the r-th
root is determined by applying the MULLER zlgorithm to the equation f_(z} = 0, where

f (z) is defined by equation (l). This technique should succeed onlyrfor functions
ffz} which bave no multiple roots, since f {z) as defined above 13 Iindeterminate when
z - zr , where z¥ {s a root previously fSund . However, due to the lower accuracy
with which multip{e roots are determined, they in effect behave like clustered roots
and hence the device has net yet failed,

USAGE

The region near the atarting peointa (PI-U)--iPzrﬂ}r {p,,0) 1 examined first for
roots; successlve roots are then found (usually) in“crder ol increasing magnitude. Thus
it is suggested that starting values reasonably close to cthe origin be used, unless it
is known that the equation has no rocots in that vicinity. In the absence of any know-
ledge about the solutions of the equations, it has been found (reference 2) that the
starting value pl = =1, p2 = 0, p3 = 1 lead to good performance of the algorithm.

The role of the Boolean parameters will be reviewed here briefly.

(1) If swl is true, then each iterant of each rcoot is printed, aloug with
the corresponding values of the function and medified function,

(2) If sw2 I8 Etrue, then each root is printed as it is found, along with
the corresponding values of the function and modified functien,

(3) If swld is true, then the complex conjugate of the root just found is,
when the rcot is not real, admitted as a root., It is computed directly
from the value of the previous root, rather than carrying out the itera-
tive process for its determination,

(4} 1If swr is true, then the imaginary part of each iterant is forced to be
zero throughout the ilteration, and hence only real roots will be found.

TIME AND ACCURACY

Since it is impossible to adequately describe in general terms the required execution
time and obtainable accuracy for this procedure, several examples are given which indicate
jte performance. All results were correct to ten significant decimal digits.

{l) TUsing the call

MULLER {1, -1, .5, s0, 10, ,-10, , -10, false, false, true,
false, X, Y, FUNCTION};

all ten roots of the equation le'_ 1l = 0 were found in six seconds.

(2) The five roots closest to the origin(ﬁhich all lie on the negative real
axis) of the equation

sin x = x + 1
¥ =-1

AL.5 .MULLER.4

were determined in 44 seconds with the call

MULLER (-.4, -5.%, -3.8, 20, 5, ,-10, ,-10, true, true, false, true,
X, Y, FUNCTION):

(3) The single real root of the equation
xe© = 2

was located 1n seven seconds with the call

MULLER (-1, 0, 1, 20, 1, ,-10, ,-10, true, true, falae, true,
X, ¥, FUNCTION);

(4) Fifty-three seconds were required to determine the eight roots of the equation

L
z8 + u? + 326 + 225 + 3% . z3‘ﬁ 3&2 -2z + 1
using the call

MULLER (-1, 1, @, 20, 8, ,-10, ,-10, true, Erue, true, false, X, Y,
FUNCTION) ;

AL.5.NEVILLE J

ALGOL Symbolic Library

PROCEDURE SPECIFICATION

REAL PROCEDURE NEVILLE (W, X, Y, N, P, ALARM, EXTRAPOLATE);
VALUE W, N, P; ARRAY X, ¥; REAL W; INTEGER N, P;
‘1ABEL ALARM; BOOLEAN EXTRAPOLATE;

REFERENCES

1. W. E. Milne, Numerical Calculus, p. 73

2. J. Todd, Survey of Numerical Analysis, McGraw-Hill, 1%62, pp. 3%-42

PURPOSE

Given N abscissas X[0] ,... X[N-1] and N corresponding functicnal values
¥[0] ,...,Y[N-1] which are related by Y[1] = £(x[1]}), I = O0,...,N-1 , this procedure per-
forms a P-point interpolation to find the approximate functional value corresponding to
the input abscissa W, and stores the resgsult in NEVILLE, If the value of W is outside the
range of the table (i.e., W < X[0] or W > X[N-1]), and EXTRAPQOLATE hag been get false,
then the procedure transfers contrcl to the statement whose label is the actual parameter
corresponding to ALARM; if EXTRAPOLATE is true, the P point:s closest to the appropriate
end of the table are used to compute the approximate value of 1;{(W) by extrapolation.

RESTRICTIONS

(Note: Formal parameters are dencoted by upper case letters, and actual parameters
by lower case letters.)

1. Alarm must be declared in the calling program as a label. See page AL.2.14 of
the ALGOL-20 Manual.

2. The procedure assumes that there are n points in the table having subscripts 0
through n - 1. Conseqguently, when the arrays x and y are declared in the calling pro-
gram, their subscript bounds must include those shown in the declaration

real array x, y[0:n-11 ;

3. The abscissas must be monotone increaging, i.e., x[17 > x[1-1] for T = 1,...n - 1,
but they need not be evenly spaced.

4., The number of points used in the interpolation cannot exceed the number of
entries in the table, i.e., n” p .

METHOD

A variation due to Neville of Aitkemn's iterative interpolation scheme is used.
This technique is equivalent to computing the wvalue (at the point of w) of the {p-1}-st
degree Lagrange polynomial which passes through the p points closest to w.

AL.S5 .NEVILLE.2

USAGE

If either of restrictiogns 3 or & are violated the effect of the procedure is unde-
fined. In the event that x[IJ = x[J] for 1 # J, a division by zero will occur and the
execution of the program will be terminated with an EXPONENT OVERFLOW message. Other-
wise NEVILLE will attempt to carry out the calculations, but will give meaningless
results. Consequently, the user should take special care to ensure that the-restrictions

are.met.

TIME AND ACCURACY

The approximate execution time 1is
0.6p° + 0 6p + 0.05n + 0.6

milliseconds, where p and n are the actual parameters which have been defined above. The
accuracy depends upon the behavior of the tabulated function and the number of points
used in the interpolation. Seven to eight significant figures were obtained with n = 20
and p = 5 for the functions SIN(X), COS(X) and EXP(X) over the interval [0,1].

{—0"
\.

(Y

AL.5.NORMRAN.1

ALGOL Symbolic Library

PROCEDURE SPECIFICATION
PROCEDURE NORMRAN (MU, SIGSQR, NR, M, SV);
REAL ARRAY NR; INTEGER M; REAL MU, SIGSQR, SV;

REFERENCE
R. W. Hamming, Num. Meth. for Science and Engineering,
McGraw-Hill, 1962, p. 389

PURPOSE

NORMRAN generates a’aeﬁuence of M pseudo-random numbers, normally
distributed with mean MU and variance SIGSQR, and stores the sequence
in the vector NR.

RESTRICTIONS

(1) The starting value SV must be an odd positive eleven digit
number in integer form (no decimal point). SV is used to supply the
subprocedure RANDOM which generates uniformly diﬁtributed pseudo-
random numbers.

(2) The actual parameter which is substituted for SIGSQR in the
call of NORMRAN must have a positive value.

(3) The desired amount of numbers M must be less than or equal to
the order of the array which is the actual parameter corresponding to NR.

(4) RANDOM is a procedure local to NORMRAN,

METHOD
NORMRAN makes use of RANDOM and the central limit theorem of proba-
bility in the following way: If X[J] is a uniformly distributed random

number with variance V, then the sequence of 'numbers

N
NR(1) =p + Vo2 (T x[(0)) JVN, 1=1,..., M.
J=1

very nearly approximates a sequence of normally distributed random numbers
with mean p and variance o® being good for N 2 10. Procedure NORMRAN adds
the xLi] in blocks of twelve. Since -1 =5 x[J] < 1 for all J, the above

formula reduces to

.12
MR{I) =p + (Vo= /2) ¢ x[5), 1=1,..., M.
J=1

TIME

NORMRAN generates and stores one hundred numbers in approximately 3 seconds.

AL.5.NORMRAND, 2

AL.5.RANDOM.1

ALGOL Symbolic Library

PROGEDURE SPECIFICATION
REAL PROCEDURE RANDOM (A, B, X0);
VALUE A, B, XO; REAL A, B, XO;

REFERENCES
1. Algorithm 133, Comm. ACM., Nov. 1962
2. R. W. Hamming, Num. Meth. for Scien. and Engr., McGraw-Hill, 1962, p. 384,

PURPOSE
RANDOM generates the next member of a sequence of pseudo-random numbers from

a uniform (rectangular) distribution on the interval (A, B).

RESTRICTIONS
1. The first time RANDOM is called, the starting value X0 should be an odd,

positive, eleven digit integer; on subsequent calls in the same program, use X0=0.
The procedure declares an own variable which saves the current value of RANDOM for
use as a starting value on successive calls. |

2. A is assumed to be the left end poilnt of the interval of the distributiocn,

so that Iin most applications A should be less than B.

METHOD
The method of congruences is used for the generation:
. 35
- *
RANDOM L+ 1 5 RANDOMi (mod 277).

If RANDOM is called repeatedly, this results in a sequence with a period of 233

USAGE |

As an example of the uée of RANDOM, the following short ALGOL program generates
5000 pseudo-random numbers uniformly distributed on the interval (0,1) and stores
the numbers in the vector DATA:

AL begin real array DATA [1:5000];
integer I ;
34 LIBRARY RANDOM

DATA [1) « RANDOM (0,1, 13543288579) ;
for I « 2 step 1 until 5000 do
DATA (1] « RANDOM (0, 1, 0);

end

AL.5 .RANDOM .2

TIME

Approximately 2.2 seconds are required fof the generation of one thousand pseudo- i:)
random numbers using this procedure.

AL.5 .RUNERROR . 1

ALGOL. Relocatable Library
—
FROCEDURE SPECYFICATION
procedure RUN.ERROR(L1l, ERROR.TYPE, ERROR.PRINTING);
value ERROR,TYPE, ERROR,PRINTING;
label Ll; string ERROR.TYPE; Boolean ERROR . FRINTING ;

oY
procedure RUN.ERROR(LL, ERROR.TYPE);
value EBRROR,TYPE; label L1; string ERROR.TYPE;

PURPOSE

There are certaln programming problems in which the programmer 1s
able to predict that error conditions, as detected by ALGOL at runtime,
may well occur i some data sets. It is, however, frequently as much
trauble to check a data set for errors as to preocess the data set,
Thus bad or missing data may lead to subroutine errcotrs, exponent over-
flows, or address-opcode faults. The use of RUN.ERROR allows the pro-
grammer to recover control in such situationa, print diagnostic informa-

rm~ tion, correct for the error, and continue processing.

METHOD
Error condltions detected by the G-2Z1 hardware or by a subroutine

during the execution of ALGOL program ordinarily result in the measage

RUN FBROR - peee

'eece' specifies the type of

and the termination of the run; the string
error detected. In the case of errors detected by library procedures,
'eeee' 1s specified in the ALARMS section of the procedure description;
for other runtime error codea and details ceoncerning the diagnostic
messages, see Chapter 6b,

To recover from such an error conditlon, the programmer must have
previously specified which error-types are to result in recovery and
where in his program controel is to be transferred for each of these error
conditions. The first two parameters ir the call of RUB.ERRCR give this
information: The value of ERROR.TYPE should be the string 'eeee’ to

specify recovery from error condition eeee. If error condition ecee

arises, control is transferred to the label L1, subject to the rules

AL.5.RUNERROR.2

discussed below. The parameter Ll usually should be a simple label and
not the more general form of designational expression; for a discussion
of this see restriction 2.

The parameter ERROR.PRINTING, if included in the call, controls
the printing of the usual diagnostic meésage for all error conditioné,
(See Chapter 6b for a description of this diagnostic message.) If
ERROR .PRINTING = false, the diagnostics will not be printed; if
ERROR.PRINTING = true, diagnostics will be printed. ERROR.PRINTING is
used to set the run-time error printing mode switch (— 42) which is
interrogated by the error recovery machinery each time it is called., If
ERROR.PRINTING =~ false, no diagnostics will be printed for any routine
for which error recovery 1s set up. This switch is only changed when a
call of RUN.ERROR is executed which has three parameters, Thus {f the
programmer wishes to get only his own diagnostic printing, he may use the
first form of call for RUN.ERROR, with ERROR.PRINTING = fﬁiﬁi' If an
error occurs for which a recovery switch was not set, the usual diagnostic
message will be printed. ALGOL initially assumes ERROR,PRINTING = true.

(See also restriction 4.)

Scope of Error Recovery
For each call, RUN.ERROR crxeates a triple of the form

(L1, ERROR.TYPE, block,level),

hereafter called an error-recovery switch. The scope of these switches is
‘'determined by the block structure of ALGOL.

The use of any error-recovery switch will clear the switch. Thus if
the programmer wishes to re-enable error recovery after having recovered
from an error, he must reset the switch by again calling RUN.ERROR. The
use of one error-recovery switch will not affect the status of any others
which have been set.

Blocks, procedure declarations, and procedure calls may be nested
arbitrarily in ALGOL. Since it may be convenlent to have different recovery
procedures for the same error condition when it occurs in different blocks,
RUN.ERROR keeps the error-recovery switches in a stack. Thus error-recovery
switches created in a given- block will not destroy those set in an outer

block, but will merely "push them down" in the stack. A newly created

AL.5.RUNERROR.3

switch will be effective for the block in which it is created and for
all blocks and procedure calls nesteﬁ in that bleck.

Leaving a block at dynamic level N will pop up the stack, deleting
all error-recovery switches with block.level = N. Calling RUN.ERROR
twice in the same block for the same ERROR,TYPE with actual parameters
Ll and L2 will replace the triple (L1, ERROR.TYPE, block.level) by the
triple (L2, ERROR.TYPE, block.level}.

Monitor-Detected Errors
RUN.ERROR called with ERROR.TYPE = 'TIMR' will permit recovery
from TIME LIMIT EXCEEDED, PAGE LIMIT EXCEEDED, OPERATOR TERMINATED, and

MACHINE ERROR. The user's program will regain control and will be
allowed an extra 30 seconds of running time, Repeated calls with the

parameter 'TIMR' will not give additional intervals of 30 seconds.

One Procedure with Several Errox Exits

While some complex procedures have several error exits, the pro-
grammer may wish to use the same recovery technique in more than one
case. Error codes for such procedures are typically of the form 'ABCn',
where 0o is a non-zero digit. If an error 'ABCn' occurs, RUN,ERROR
checks for an error-tecovery switch of the form ('ABGn', ,); if there
is none, RUN.ERROR will then look for a switch of the form ('ABCO' , ,).
(Note that the fourth character is zZero, not the letter "0".) Thus the
programmer may handle certain error conditions by special means and

process any other errors by a single general mechaniam.

Example: The error codes for DISC.WRITE are 'RWR1' ,..., 'RWRS'.
Suppose the following calls of RUN.ERROR are executed:

RUN.ERROR (L1, 'RWRS');
RUN,ERROR (L3, 'RWRO');

If an error RWRY occurs in the block, control will be transferred to Ll.

Any other DISCWRITE error will cause control to be transferred to L3,

USAGE

The following block of ALGOL code could be used to evaluate che function

x3 + 1

¥

y=

AL.5.RUNERROR. 4

For varioug values of x, printing out 'y IS8 INFINITE AT .whenever

an exponent overflow occurred:

begin label LI; real x, y: library procedure RUN.ERROR;

comment: Note that since the first occurrence of LI is
ag a parameter to a proecure, we musgt declare it ag a
label. See page 2.14 of thig report;
RUN.ERROR (L1, ‘EXPO°, false);
for x:= -4 step 1 until 4 do
begin y:= (xt3 + 1) / =x;
NAME (x, ¥y} :; PRINT K-1D.1Z, 10B, -4D.4Z, E» ;
go to end.of.loop;
LI: NAME (x}; PRINT(<'y I$ INFINITE AT ', -1D.1Z2, E=x>);
RUN.ERROR (L1, 'EXPQ');
end.of.loop: end

end

RESTRICTIONS

1. Not mere than 20 distinct error-recovery swltches are allowed at
any one time.

2. While ERROR.TYPE and ERROR,PRINTING are called by value and thus
are evaluated when RUN*ERROR is called, the label LI is not evaluated
until the error ceondition ERROR.TYPE actually cccurs. If LI is actually
a general deslignatlional expresslion, 1t willl be evaluated according te the
values of all relevant variables at the time the error coccurs, and coentrol
will be transferred to the resgultant label. Since thig delayed evaluation

ig used, the following simple code will not work:

for i<- 1 step 1 until 5 de
RUN.ERROR (GOCOCFI[i]l , 'RWRO' + 1) ;
At the time of any RWRn error, control will be transferred to GOCF
not GQCF[n] . Thug only simple labels should be used for LI; the programmer
may use deslgnaticnal expresslons to take advantage of this delayed evalu-
ation of LI, but should so with great caution.

3, Run arrorsg 1in RUNERRQR are fatal; that isa, a call of the form:
RUNERROR{L1, ‘RUNR‘) ;

will not permit recovery from errors in RUNERROR.

AL.5.RUNERROR.5

4. The switch set by supplying the parameter ERROR.PRINTING is kept
in a single cell {— 42); it does not invoke the stacking machinery applied

to the error-recovery switches,

ALARMS

The message RUN.ERRCR - RUNR will result if

L. An attempt i1s made to have more than 20 error-recovery switches
set at any time, or 1if

2, The designational expression L1 is undefined at the time of the
error; this will occur if the actual parameter is a switch element and the

subscript is out of bounds at the time the error occcurs.

AL.RUN ERROR.6

AL.5.81IM.1
ALGOL Symbolic Library

PROCEDURE SPECIFICATION
REAL PROCEDURE SIM (N, A, B, Y);
VALUE W, A, B; REAL A, B; INTEGER N; ARRAY Y;

REFEREHNCE
Algorithm 84, Comm. ACM, April 1962

PURPOSE

S5IM determines the approximate numerical value of the definite integral of a

continuous function:

B
SIM - { £(x)dx

RESTRICTIONS

1. The number W of subdivisions must be even.

2. The wvalues Y[l} of the function must be given for equally spaced walues
of the independent variable on the interval [&,B] of Integration.

3. Y([0] = f(a) and Y[H]) = £(B)

4. In the program which calls S5IM, the actual parameter y corresponding to
the array Y must be declared as ABRAY y[ﬂ:n], where n is the actual parameter

corresponding to H.

METHOB

Simpson's well-known formula for numerical integration is used. If
A = XEUJ, K[l],...,x[N-l}, X[H] = B are equally spaced poilnts of subdivision of the
interval E&,B] and Y[I] 1s the value of the function f at the point x[I], i=0,...,N
then

Jg flx)dx = B-A e(o] + ae(n] + 2¢l2] ++ avln-1) + [N
N T

TIME and ACCURACY

The approximate execution tilme required by 5IM is
T - 2wk107
where T = time in seconds
N = number of subdivisions.
The accuracy obtained depends very much upon the function being integrated

and the number of subdivisions.

AL.5.81IN.1

Standard Function

PROCEDURE SPECIFICATION

real procedure SIN (X); value X; real X;

PURPOSE
SIN computes the sine of X, where X is in radiane and may be either

positive or negative.

METHOD
The method {s described on page A-1 of "1604 routine”.

ALARMS
RUN ERROR - SIN., {X| > 2,097,151
For values beyond this point the algorithm breaks down.

TIMING and ACCURACY
The result is produced in 1.08 milliseconds. The relative error is

less than 5,-11.

AL.5.SLEW.1

ALGOL Relocatable Library

PROCEDURE SPECIFICATION
procedure SLEW(LFT, RECORD.NUMBER,EOF) ;
value LFT, RECORD.NUMBER;
integer LFT, RECORD.NUMBER; label EOF;

PURPOSE ,
Reading or writing a tape record is delayed by the amount of time
required to position the tape to the specified record. SLEW enables
the programmer to position a tape while carrying on other computation.
The use of SLEW can thﬁs substantially decrease the running time of a

program which uses magnetic tape.

METHOD

A call for SLEW will initiate a tape motion to record record.humber
of logical file 1ft and will return control to the user's program.
Computation or other input/output operations may then continue untfil the
execution of a call for DISC.READ or DISC.WRITE with the parameters lft
and record.number. At that time, computation will cease until the
tape 1s positioned and the tape operation completed. Thus it is possible
to overlap tape-slewing with useful computation. If logical file 1ft is

on the disc, no action will be taken and the user's program will continue.

USAGE

The statement
SLEW(3, 40, eocf);

will slew to record 40 of the Type 1 RETAP records.

ALARMS
SLEW will exit to the label EOF if RECORD,NUMBER is greater than the
maximum record associated with logical file LFT.

Run-error messages are;

SIWl - LFT is not in the range 2 < LFT < 20
SIW2 - logical file LFT is undefined

AL.5.SLEW.2

TIMING
The time to pesition a tape to recerd M, if it 1s positioned at
record N, i{s about

(B + | M-N -1 | % 20) ms.

The actual time required to instruct the tape unlt, which is the time
spent in SLEW itself, is about 2 ms.

Standard Function

PROCEDURE SPECIFICATION

real procedure SQRT (X); value X; real X;

PURPOSE

SQRT computes the sgquare rceot of X,

METHOQD

For details sgee page M-1 of 'l604 routinesg"

ALARMS
RUN ERRCR SQRT If X < 0.

TIMING and ACCURACY

The regult Ig produced In 1.7 millisgecondas.

The relative errcr is 1lesgg than 1.-12.

AL,.6a.l
CHAPTER 6a

ALGOL-20 Card Format and Keypunching Conventions

ALGOL programa should be punched in the following form:

111 1 1 111 11 2 227 2222223333333333...38
Column — 12 3 45678 9012 3 4 567 89 0 123 4567890123456789 M

Language
L N .
WHAT WH LOC, F 0P, M Addr, Index ;Conment, .

ALDG‘OL ﬂ.L ...4.......-.-.-.-.51{;01; textaolt...ttiit.lioloo

system SY sataassansesararresBYGEEMm CERE ..o viivanr i rs

comment CO c.iavnesviases s cOmmED

The teletype TAB table for these' language fields is as follows:
Tab - 1 2 3 4 5
Language fleld
+

AL [7 10 13 16

WH 4 15 20 24 40

5Y 4 tabs after the first are taken as characters and scanned,
Co no taba - tabs are taken as characters.

Tabs taken as charactera are printed as '=' on the LP-12,

A blank language field (columns 1 and 2) is interpreted as AL or
WH, as determined by the most recent appearance of AL or WH in the
language fileld. A blank language field on the first card is interpreted
as AL.

System cards give speclal instructions to the ALGOL translator. -
The system instructions are described in Chapter &.

Comment cards are printed as part of the translation listing but
are otherwise ignored. They may be freely inserted for purposes of
documentation.

Normally, the programmer may use columns &-72 for his ALGOL program;
however, there is a systeﬁ statement with which he may change the right-
hand margin from 72 to any column between 40 and 80, &g described in

Chapter 4. The columns beyond the right margin may be used for comments, .
etc.

Al..ba.2

The translater will ignore all columns to the right of a double
vertical bar {||}. This allows the programmer to use the rest of the
card for comménts. {Double wvertical bara in atrings will not inyoke
this convention.)

In ALGOL-20, certain conatructions may not be split between the
end of one ALGOL text card and the beginning of the next, since the
translater always supplies an imaginary blank column between the right-

hand margin of one card and column 4 of the next:

(1) An identifier may not be continued from one card to
the next. The implied blank will terminate an identi-
fier which ends at the right margin of the card.

{2) The combination characters

= m>» =< — = BL 8R 8F

must be punched with the two characters in adjscent columns of the aame
card.

In addition, alphanumeric étringi may not be split between two carda.

One reason for this restriction is to provide better error recovery 1f a
quote is accidentally omitted. A long aiphanumeric ptring instruction in
a READ, PRINT, or PUNCH statement may simply be closed by " ', "

{quote comma) after the last character of the string punched on the card
and reopened with another quote on the next card,

The ALGOL program may be punched in any format the programmer desires,
gubject only to the above restrictions. There may be one statement per
card or a slngle statement extended over many cards or many statements on
a single card. Thus, a consiatent indentation rule which aligns each end
with its begin can be used to advantage to show clearly the styucture of
the program. (See also Chapter bc.)

V.t

AL.6h,1
CHAPTER 6%

ALGOL-20 Error Messages

Translation Erroxs

The ALGOL-20 translator prints numerical error codes to indicate
ayntax errgrs in the agurce program. The tranulatcr.prints the error
code just below the last card image it has acamned, with an arrow e
pointing to the last éharacter scanned on this image. Since each card
is scanned once from left to.right, the 't' bninter wiil generally be
ahead (i.e., to the right} of the actual error.

Errore are broadly categoriied as Phase I errors {0 through 69),
Phase II errors {70 through 95), miscellaneous errors (%6 through 99},
Subscan errors (100 through 109}, and System errors (110 through 125).
System errors are those occurring on SY cards. Subscan and ?haseVI
errors are purely ayntactle and are discovered in the process of scanning
the source program cards. Phase II errors are discovered at a later
stage in the translation process when the actual machine code of the
cbject program is generated. The miscellanecus errors are those which
indicate a possible problem withiﬁ the translator. Any listing contain-
ing such an error should be brought to the attention of the User
Consultant or a member of the Computation Center staff immediately.

The translator attempts to "recover" from each error Lf possible,
go that many independent errcors may be found in one pass through the
computer., However, any Phase I error as well as errors marked with * in
the error list will cause all succeeding Phase II errors tc be ignored.
To call the programmer's attention to the fact that subsequent Phase II
errors are being ignored, the translator will print "NOTE 6" (see the
gsection on notes below) as Phase II is turned off.

Any error preventa execution of the compiled program.

Notes

The Algeol~20 translator prints notes on the program listing to call
the programmer's attention to syntactic constryuctions which are accept-
able but gquestionable, or constructions which are possibly caused by an

error. MNotes do not prevent execution of the compiled program.

AL.6b.2

Translation Errors

PLOMNRO

- Phase 1 Errors (Each of these errors terminates Phase 1IL,)

The program does not start with begin.

A statement starts with an illegal character or an 1illegal reserved word.

A gtatement starts with an identiffer followed by an iliegal character.

in an expresaion an operand was expected and was not found,

In en expression a binary operator was empected and was not found,
(Possibly caused by a semicolon missing after the preceding etatement.}

A "]" does not have a matching "{",

An array element has been uaed 1llegally.

":'" has appeared incorrectly,

or '"":=" has appeared incorrectly.

")}" does not have*a matching "(".

"," hae appeared incorrectly.

then has appeared without if.

else has appeared without then.

Characters are still in the stack after a or an end.

A procedure statement is followed by other than end, elae, or "™,
for 1s not followed by an identifier.

The for variable is not followed by a

step has appeared without for.

until has appeared without gtep.

while has appeared without for.

do haa appeared without for.

go _to is not followed by an identifier or "(™ or if.

go to if...then...is not followed by else.

1 1
-

-

. n
3

" n,_w
Ml

Or i= Ll

An obscure erxvor in a go to statement,

An impossible error after begin. {"}-" i3 not the second element in the
stack, See Error 98.)

own ia followed by something other than <type>.

An array declaration does not specify subscript bounds.

The identifier list of a declaration is not followed by a ";".

switch 15 not followed by an identifier.

The identifier of a switch declaration is not followed by a "« or ":=".

procedure is not followed by an ldentifier.

A procedure identifier is not followed by "(" or
A formal parameter 1list is not followed by ™",
The ™" following a parameter list is not followed by a
The identifier list in -a specification is oot followed by a
An identifier did not follow the "," in an identifier list.
The illegal construction “then if" has occcurred.

A switch with more than one subscript position has bkeen uvaed.
The value part of a procedure declaration was not fellowed by a

LI P Ly
s v

11,11
[] L

1w, n
I

n.n
|] L]

Hl:
42:
43:
44
45
46;
473
48:
49

Al.6b.3

The name of a permanent subroutine (such as "SIN") 1s not fallowed by " (",
There is an extra "," or else a missing ":" in an array declaration.

More begin's than end's have occurred when the end-of-file ia reached.
Impossible - see EBrror 98.

max or min is not followed by "(".

In an array declaration the identifier list is not followed by in,

Array specifier has subscript bounds, which it should not.

library is not followed by <type> or procedure.

Phase I Errors (format and name statements) {Each of these errors terminates

50:
51:

52:
53
S54:
55
56:
57:
58:
59:
60:
6l:
62:
63:
64:
B5:
66;
67:
68:
69:

Phase II.)

A reserved input/foutput word 1s not followed by "(" .

4 format list element starts with an illegal character. (Should be '"<"
or """ or "§" or identifier).

"' is missing: 1i.e., a replicator was expected but not found.

for is missing after "$",

T is not followed by "$" or an identiffer.

" or ™" is not followed by "}" or ",".

A name statement or format statement is not followed by end, else or

A replicator is not followed by "(" or "<".

"<" or "," is followed by an 1llegal character.

An integer Is followed by an 1llegal character.

A format instruction 18 not followed by '>" or "%,

An 1llegal prefix to a numeric primary has been used.

An illegal numeric primary has been used.

"." appears in a numeric primary in a read atatement.

In a numeric primsry, E, F or § 18 not followed by an integer.

mn.n
o

Phase II Errors (Only those errors marked "*" turn off Phase 11.)

*7(0:
¥1:

T2:
73:
Th:
T5:

76:
773
78:

A reserved word which 1s not yet available has been usged,

A label haa been used but not defined. (The name of the label ia
printed prier to this error message)

An identifier has been used but not declared.

An identifier has been declared twice in this block.

Mn identifier in the wvalue list is not a paramster. _

&n identifier which has been used am a procedure has not been declared to
be cne.

A subscripted identifier has not been declared to be an array or switch.

The program is too long.

A procedure identifier which i{s not a function designator has been used
in an expression,

* Turns off Phase II.

AL.6b.4

79: An identifier which has been used as a switch has not been declared to
be one.
80: An array identifier has been used without subscripts.
Bl: Too many index variables have been declared.
82: A label or array or switch has been called by value.
83: An identifier in a specification list Ls not a parameter.
84: 1In a procedure declaration a parameter is not specified.
85: In a procedure declaration a parameter is specified twice.
86: A procedure, switch or label appears on the left of a ":="
*B87: The W2 stack 1s too full,
88: More than 100 relocatable library procedures have been declared.
89: A constant has been used in place of an identifier, e.g., 33 kﬂ.
*90: A subscripted for variable has been used (this is not yet available in
ALGOL-20) .
*#9]: The next-command pointer is less than the base of the program.
92
93.
94:
95:

or ",

Miscellaneous Errors

96:

97: A possible translator error - bring listing to Janet Fierst at the
Computation Center,

98: Impossible: bring your listing to A. Evans at the Computation Center.

99: Same as 98.

Subscan Errors

100: A card column contains an illegal combination of punches.

101l: Too many abcons or adcons have been used (numerical congtants and
alphanumeric string constants),

102: Too many decimal points appear in a number.

103: Too many ","s appear in a number.

104: An error has appeared in a parameter delimiter comment: ')<any string
not containing:>:(". : :

105: An fllegal bar ("|") variable has been used.

106: A constant has been used which is too large to fit into a real variable.

107: A "." {s followed by something other than "+", "-", or <digit>.

108: A string goes over the end of a card,

*109: The symbol table has been exceeded.

110:

111:

112:

113:

114:

* Turns off Phase II.

AL.6b.5

System Statement Errors

115: An abcon system statement has occurred after code has been compiled.

116: :

117: An abcon system statement has requested more space than there is in
uBer memory.

118:

119: An illegal SY card has occurred. (This may be caused by a LIBRARY card
after the symbolic library has been released.)

120: The library procedure nesting exceeds 5,

121:

122: WHAT has been called after it has been released.

123: An illegal segment statement has been used.

124: An SY LIBRARY card has asked for a routine not in the symbolic library.

125: A library procedure declaration has named a routine not in the relocatable
library.

Notes

Note 1: end comment convention was used on preceding card. That is, every-
thing was ignored up to ";", end, or else.

Note 2: A function designator has been used as a procedure statement,

Note 3: In an arithmetic or boolean expression, the construction 1f...then if
has occurred. This is syntactically illegal but unambiguous, and is
therefore accepted by the translator.

Note 4: An arithmetic (boolean) (designational) expression has been used
where a simple arithmetic (boolean) (designational) expression
should have been used.

Note 5: In a designational expression, the comstruction if...then if has
occurred, This ia syntactically iliegal but unambiguous,

Note 6: Phase II has been turned off.

Note 7: The construction if...then for...do...else... which is legal in
ALGOL 60 but illegal in ALGOL 62 has been used,

Note 8: TAB appears as a character,

Note 9: Fifty errors have been found on a single card; compilation has been
terminated.

AL,b6b.6

RUH ERRORS

During its execution, an ALGOL-20 program will call upon various
run-time subroutines. Since there are usually restrictions placed
upon the use of these routines, there is a mechanism provided to warn
the user when the restrictions have been violated. It iz the widlat-
ion of these reatrictions which is referred to as "rum error".

The user mey receive hils warning in either of two ways: If he
takes no action otherwise, an error message will be printed out as part
of his output listing which will identify the error and the part of
the program in which theerror took place. The run will then be
terminated. On the other hand, however, the programmer may provide for
a “recovery procedure" by calling on a asubroutine named RUN.EREDR. If
he does this, an occurremce of the error will cause & transfer to a
statement in his program which he has dealgnated. The programmer may
then provide error recovery as he deems appropriate. If the programmer
has provided for error recovery from & given error type, he has the
option of either getting or not getting the normal diagnostic printout.
See Chapter 5.RUNERROR for a description of the recovery procedure,

The normal errer printout conslsts of the two lines

RUN ERROR - eecee
COMMAND IN ERROR -~ cceoce

followed by fourteen lines of diagunostic output. Here ccccc is the (octal)
location of fhe comand which ceused the error {or the command which
called the subroutine in which the error was detected) and eeee 18 a
mnemonic errcor code. By comparing ccccc with the octal addresses printed
on the left side of the compilation listing, tﬁe programmer may determine
the particular statement or declaration whose execution caused the error.
Error codes for library procedures are given in the ALARMS section of the
procedure description in Chapter 5. All other error codes are listed on
the next page. The fourteen lines of diagnostic information refer to the
seven commands before the faulty one, the fauliy command, and the six
commands following. On each line, there are four flelda: the location,
the command in octal, the command in semi-mnemonic form, and the contents
of the word whose address is in the command. This information is useful
to anyone familiar with G-20 machine coding in analyzing the error. It is

of interest to the average user only in that it may be shown to the User

Consultant,

Error Code

ADRP
CFLG
EXP
EXPO
LN

RADI1

RAD2Z

READ

SIN

4QRT
TIMR
XtAal
XtA2

XtA3

AL.6b.7

Meaning

address--opcode fault

command flayg error

EXP (X) c¢alled with X»> 160.116998
exponent overflow

LN (X} called with X <. 0

upper < lower 1in a bound pair in an
array declaration

declared arraysg exceed available sgpace
An error has occurred in reading a
data card, (see below)

The argument teo SIN or COS8 exceeds
8t21

SQRT (X} called with X<0.

meniter detected errors

X 0 and A*0 in XtA

A* LN (X)) > 160.116998 1in Xta

X £ 0 and A not integer valued in Xta

When an error isg detected by the read subroutine, the "RUN ERROR-READ"

message will be preceded by a printeout of the data card containing the

error,

an arrow (t) pointing to the errocneous column, the column number,

and one of the following

1)

2)

3)

4)

$$ - CARD READ

NO CARD READ

IMPROCPER NUMBER

ILLEGAL SYMEOQOL

auxliliary megsages:

An End-of-File mark has been reached: i.e.,
the program hasg attempted to read more data
cards than are in the "deck".

A read statement has attempted to scan
characters from a card image before an "E" or
"W"® primary has been executed to read a card.
An ill-formed number has been scanned; e.g.,
too many decimal points, + or - signs, or

s have been found.

1

A character which cannot be part c¢f a number
(i.e., not a digit, L or V')
has been scanned by a numeric instruction.

This error message is suppressed by the suffix

IINII N

AL.6c.1
CHAPTER 6c

Printing of the Complled Program

Consistent indentation of each level of nesting of subordinate and
compound ALGOL constructions is useful in writing a clean, readable
program, Themximum possible indentation of the program as punched onto
cards is limited by the width of the card, However, the printed image
is 21 columns wider than the card, sc the system statement INDENT has
been provided to let the programmer take advantage of the extra printer
width to get more indentation of the printed source program. Normally,

the compiled ALGOL code is printed in the format

PRINT columns |123|4567 |8....12|13,14|15...8384...104|105...120|
Contents | fblankladdress]blankl text I blank | comments|
CARD columns |123] IQ....?ZI [73.....88]

Using the system statements INDENT and RIGHT MARGIN (see Chapter 4), the
programmer may change the number of card columns scanned as text and

alsc may change the print columns in which this text appears. In general,
the compiled code is printed as follows, where K stands for the indent

constant and RM stands for the right margin:

PRINT columns |123|4567 |8....12|13...14+K|15+K. . 11+K+RM| 12+K+RM. . . 32+RM|33+RM. .. 120|
Contents | |blank|address| blank | text | blank l comments |
CARD columns |123| ' [4viviinnnnn. RM| |RM+1.....88]

The address printed is that of the first instruction generated by the line of
ALGOL text.

Q

O

AL.6d,1
CHAPTER &d

Privileged Identifiers

In addition to the reserved ideniifiers, ALGOL-20 includes s set
of "privileged" identifiers which have built-in meanings. These
ldentifiers can be used with their bullt-in meanings without being
declared; they are, in effect, declared by the tramslator in a block
head outside the outer-most tlock of the program. Therefore, 1f the
programmer does not wish to use one of these identifiers in its
privileged meaning, he ma& éimply Lgnore the fact that it is privi-
leged and declare and use it as he would any non-reserved identifier.
If a privileged identifier is redeclared within an 1inner block, it
resumes its privileged meaning a8 soon as the end of that imner block
is passed.

The currently avallable privileged identifiers in ALGDL-20 are
described below. As additional privileged identiflers become avallable,
they will be described on sheets which can be added to this chapter.

ACC
ACC is a symbol denoting the accumulator, which may appear on the

left side of an assignment statement. Thus
acc:= a1, j, k+3);

will fetch an array element to the accumulator. ACC is of particular use
In setting the accumulator before executing a plece of WBAT éode. Thise
mechanism should always be used when accessing array elements or formal
parameters called by name for use in WHAT code. No error will be detected
if ACC appears other than on the left side of an asgignment statement, but

such uses ;111 usually cauae spurious vesulta.

CLOCK

CLOCK 1s an integer-valued function designator which is csalled with
a single parameter. The value of "CLOCK{O)" is the elapsed time in
seconds since the Name-Time card was read. "CLOCK(V)" is the elapsed time
in seconds minus the integer value of the parameter V, also in seconds ;
i.e.,

CLOCK(V) = CLOCK(QO) - V

AL.6d.2

Example:

A: STARTTIME « CLOCK(D) ;

B: ELAPSE « CLOCK{STARITIME) ;

This will store in ELAPSE the elapsed time In seconds between passing
label A and passing label B.

DAY
MONTH
YEAR
DAY, MONTH, and YEAR are built-in variables of type logic which are
set by the translator to the four-character alphanumeric string representa-

tions of the current day, month, and year, respectively., The format is

~ best defined by example: On the 9th of April, 1962, we have

DAY = 09
MONTH = 'APR.'
YEAR = '62u4

The statements:
NAME (DAY, MONTH, YEAR) ; PRINT (<12A, B>} ;
would print a line containing:

09 APR 62

DEBUGPRINT

DEBUGPRINT is a procedure with an arbitrary number of parameters which
prints the valuea of Lts parameters In a simple rigid format., Its para-
meters may be any arithmetic or Boolean expressiona. Arithmetic values are
printed in the format <+.11ZL> ; i.e., In scientific floating point nota-

tion with 11 significant figures. Boolean values are printed as:

TRUE for true
+.0000000000C,,+00 for false

Values are printed four per line; the first value printed by each call of

DEBUGPRINT starts on a new line.

AL.6d.3

EPSILON
| EPSILON is a built-in real constant, whose value is the smallest
positive number which can be represented in the G-21.
EPSILON = 863
s 1.274473528903,-57

HALT

HALT is a parameterless procedure. Execution of a HALT statement
terminates the run-time execution of the program and returns control to
the monitor. Thus, executing a HALT statement is equivalent to letting

control pass the final end of the program.

EXAMPLE: if X > ,8 then HALT ;

INFINITY
INFINITY is a built-in real constant, whose value is the largest
positive number which can be represented in the G-21.
INFINITY = 81% - 1) % 8%
= 3.450873173389,.69

PAGES

PAGES is an integer procedure with no paraﬁeters. Its value is the
total number of pages which have been completely printed since the job
card was printed. If the printer is positioned to the page which contains
the job card information, the value of PAGES is zero.

PAUSE

Executing this parameterless procedure invokes the monitor PAUSE
mechanism, |27, in the usual way. When the program is subsequently
restarted, PAUSE will return to its calling point. For further details,
see the description of |27 in the Monitor Description: THEM THINGS.

AL.6d.4

PRINT

PRINT is a procedure with one parameter which controls the cutput
of printed information on a teletype. (Note the spellinpg: the third
characeer is a one.) The compilation listing and execution-time output
are always printed on the on-line printer, if a positive number of pages
is requested on the Job Card. PRINT sets a monitar switch which deter-
mines whether execution-time ouvtput will also be typed on the teletype
which originated the program. If the program did not originate at a
teletype, then PRINT will simply be ignored.

PRINT (1} : Sets switch so output will be on the teletype and printer.
PRINT (0) : Sets switch so cutput will not be on the teletype, only on

the printer.

The status of the switch can be changed as often as desired; when an ALGOL
program begins execution, 1t 1s set to PRINT (0) unless zerc pages have
been requested on the Job Card, in which case, it is set to PRINT (1).

TIME
TIME is a real procedure with no parameters, whoee value {5 the time

of day in seconds, starting at midnight.

AL.be.l
CHAPTER be

Machine-Dependent Features

1, Octal Conatants
An octal {base B8) constant may be used in any cantext in ALGOL-20
where a decimal number is allowed; i.e., as a primary in any arithmetic

or logic expression, Octal constants have the following syntax:

<octal digie» :: =0 | 1 |2 |3 |4 |5|6]?7

<octalian> i = <pctal digie> f <octalian> <octal digit>

<gigned cctaliam> :: = <octallan> | + <octalian> I - <octalian>

<1eft-justifie& octal conatant> :; = BL <octalian>

<right~-justified cctal constant> :: = B8R <octalian>

<floctalian> :: = <octalian> | <octallarm>.<octalian> | <octaliarm>.
~<octalian>

<power of 8 :: = ,<slgned octalian>
<floatlng octal constant™ :: = &F <floctalian> I 8F <power of E>‘1
8F <floctallarm> <power of B>

<logical octal constant> :: = <left-justified octal constant>]
<right-justified octal constant>

<octal conatant™> ;! = <floating octsal constant> | <logic octal conatant>

Despite this syntax, the translator does not treat the digits 8 and 9 in
octal constants aa erraneous but will interpret them aa ID)B and 11)8,
respectively. Thus BR495 = BR51S5.

Local octal constante (8L and BR) are considered to be of type logic
and 8o are always accessed in logic mede. Floating octal conatanta (8F)
are considered to be of arithmetic type, and are always accessed in
arithmetic made,

The character~-pairs 8L, BR and 8F are treated by the translator as
single entities and must be punched in adjacent columns of the ssme card,

without intervening blanka.

AL.6e.2

The value of a flecating octal constant is determined by concatena-
ting the floctalian as an octal number and multiplying it by the appro-
priate power of 8, treating the number which fcllows the, as an octal

integer. For example:

8F 10 « 8t8

8F11 -5 = §*8T-5

The value of a left (right}) justified octal constant is determined
by prefixing (suffixing) to the octalian enough =zeros to give eleven
octal digits. This number is then concatenated and stored as a 32-bit
logic word. Since elewven octal digits require thirty-three bits for
representation, the leftmost bit of the leftmost octal digit is lost.

Thus, 8L4 = 0 and 8L7 = 8L3, a "S-flag".

2. BString Constants

Alphanumeric strings of not more than four characters may be used
as constants in an ALGOL-20 program. Such a string, converted toc a set
of G-20 internal characters and stored right-justified in a 32Z2-bit lecgic
word in the abcon region, is treated as a logic octal constant. Since the
G-20 internal character for a blank (YJ) is zero, the following string

constants all have the same value:
A’ = LA’ = ‘uuA’ = ‘uuul

String constants may be used in any context in which octal constants are

allowed.
Examples:
1. if nextchar « ':® then stringval <-';°

2. "ABCD A 8L377

(The value of the expression in example 2 is 'A"uu’)

3. if (xA 8R377} ='A' then

(This tests whether the right-most character of x is 'A'. Note
that the parentheses are needed, since without them, the meaning

is if xa (8R377 = 'A'}) then which is always false.)

AL.6e,3

3. Bit-Manipulation Operations

In addition to arithmetic, Boolean, and designational expressions,
ALGOL~20 snytax includes "logic expressions" which perform bit-by-bit
logic operations on 32-bit G-20 logic words. A logic expression may

include any of the following operands:

. Logic constant: octal constant or string constant

Variable, simple or subscripted, of type logic

Function designator of type logic

B P I
-

. Boolean primary (and, therefore, any Boolean express-
ion in parentheses)
5. Arithmetic primary {and, therefore, any arithmetic

expression in paraentheses)

A Boolean primary used as a logic operand is interpreted as one of

the two 32-bit logic words:

BR 37777771177
8R O

1

32 one bits for true, or

32 zero bits for false.

Each kind of logical operand (except number 5 above, arithmetic
primary) will always be fetched from memory with a "logic access", rather
than a "numeric access"; for example, a CAL command will be used to fetch
a logic variable into the accumulator. When a logic variable or function
designator forms the left-part of an assignment statement, then an STL
command will perform the assignment. Therefore, an assignment statement

of the form
<logic variable> « <arithmetic expression>

will truncate the absolute value of the expression modulo 232. An STL

command is also used for any temporary store of a logical subexpression

(except an arithmetic primary) within a complete logical expression.
Any of the following three logical operators may appear in a logic

expression:

- {(complement logic: unary)

A (extract logic: binary)
V (unite logic: binary)

AL.be.4

Each of these operators performs the same operation simultaneously
and independently in each of the 32-bit positions of its operand(a). If
a bit = 1 represents the Boolean value true while a‘bit = 0 represents
false, then the logic operators —, A, and V can be considered to perform
the Boolean operations —, A, and V, respectively, in each bit position.
The operators +, -, *, and / may also appear in a lopgic expression.
Each of these operates in the usual way, considering its logical operands
(except for arithmetie primaries) aa 32«bit integers.

The complete syntax for logic constructs is given below:

<logic constant> :: = <string constant> | <logic octal constant>

<logic primary> :: = <logic constant> | <logic variable> | <logic function> f
<Boolean primary> | (<logic expressior>) |
<arithmetic primary> ‘

<logic factor’> ::r = <logic primary> | = <logic primary>

<logic term> :: = <logic factor> | <logic term> A <logic factor>

<gimple logic expression> 1: = <logic tern>] <simple logic expression> V
\ <logic term>

<logic expression> :: = <simple logic expression> ' <if clause>

<simple logic expression> glse <logic expression>

4, Half Variables

A variable of type half behaves exactly as one of type real except that
1t contains fewer digits (about 6 instead of about 12), Since half
variables take only one location in the machine and real variables take two,
it is possible to =ave storage space by declaring large arrays to be of

type half instead of real, if the loss of significance can be tolerated.

5. Index Variables

Simple variables of type index are stored in G=20 index registers,
Eventually, efficient code will be compiled for index variables, using the
G-20 index register commands. For the present, however, index is of
interest only in connection with machine language assembly code ("WHAT")
within an ALGOL-20 program. Index variables behave exactly as do integer

variables.

AL.6f.1
J CHAPTER 6f

Segments

ALGOL programs which are too long to fit into core memory may be
divided into subportions, called segments. Each segment will be stored
on tape after it is compiled and may then be called into core memory
as it is needed.

Each segment area on tape holds 10240, words. If a segment contains
more than this, it will be stored on successive segment areas, (Tﬁe
number of such areas needed is the second parameter to the SY Segment
statement.)

A segment is an ALGOL-20 program which includes a SEGMENT system
statement. Each segment must be a complete ALGOL-20 program; that is,
it must have a set of matching ngig's and ggg's and declarations of all
identifiers which are used in the segment.

After a segment has been compiled (i.e., after the end which matches
the first begin is found), the code which has been compiled and any
relocated subroutines will Be written onto tape as the specified segment.
ALGOL will then continue reading cards, expecting to find another program;

this program may also be a segment. Compllation terminates after a program

which is not a segment is processed; control 1s then transferred to the first

statement of this program.

If in a program {(or segment) the statement LINK(i) appears, segment i
will be loaded and control will be transferred to its outermost begin.

It is convenient to be able to communicate data in core memory between
different segments. However, linking from one segment to another involves
exiting from the outermost block of the current segment, thus making all
variables declared in the segment undefined. To overcome this, the same
block of storage locations is used in all segments for own arrays and own
scalars. Thus, if identical declarations of gown arrays and own scalars
are made in different segments, all these values may be transmitted from
one segment to another. All other scalars and arrays are undefined when a

new segment is loaded; these may be communicated by means of the procedures
DISC.WRITE and DISC.READ.

AL,62.2

AL.,6g.1

CHAPTER 6g

ALGOL DISC/TAPE ROUTINES

CONTENTS
I. Introdocrion - Files and Records.
II. Loglecal File Types.
A. Preassigned Logical File Types.
B. Addressing Disc/Tape Files via Logical File and Relative
Addresser Tables,
III. The Binary File Routines - DISC.READ and DISC.WRITE,
A. Parameters and Call,
Examples of Use.
C. &n Algorithm for Puffered Reading.
IV, The AND,FILE Routine,
¥. The Hollerith File Routines.

Introduction.

Primary vs. Secondary Files.

. UOpenlng and Closing Hollerith Files.

Card Image Pointer.

Parameters and Call of HOLLER- Routines.

The Opetraticu of HKOLLER,IN.

+ The Qperatioen of HOLLER,.OUT and HOLLER.OVER.

LI I = B~ - S - .

AL,6g.2

I, INTRODUCTION - FILES AND RECORDS.

ALGOL-20 includes a set of relocatable library subroutines for
storing binary and Hollerith data in the G-21's disc memory or on
magnetic tapes. This chapter explains these routines and their
relationship to the AND system and to certain parts of the Moniter.
A knowledge of AND is assumed, although no knowledge of the Monitor
is required to understand this chapter.

Disc and tape space is divided into segments of consecutive
storage called files. A file in turn is generally subdivided into
a number of sections with similar (or identical) format, called

logical records. The user may subdivide a file into logical records

in any way he pleases; for example, the logical records could be of
varying lengths, or they could all have a fixed length (e.g., 237 words
each). TFiles are recorded on disc and tape in units of 320 words,

called physical records or blocks. If the length of the logical

records is not a multiple of 320 words (the physical record size),
then transmission of logical records to and from disc and tape files
requires the use of buffer areas in core memory to pack and unpack
logical records into physical records.

The G-21 Monitor and the AND Sjstem use a standard format for
files of 80-character "card images'" of Hollerith information. A file
with this standard format is called a "Hollexith File", and always

consists of 21-word logical records. Each logical record contains 84
characters, packed four-éharacters-per-wordz the last four characters
form a Hollerith serial number, the kth image in the file having serial
number k (except see the AND System description, page 4.407 of the User's
Manual, for the numbering system beyond card 9999).

The G-21 Monitor includes a "card read routine", |16, which can
unpack 21-word logical records of a Hollerith input file from a 320-word
internal buffer area in core memory. The relation of |16 to ALGOL pro-

grams is explained more fully in Section VB.

AL _bg .3

Each file is assigned space on dise or tape in units of complete
blocks, i.e., in multiples of 320 words. The space allotted to a file
has a fixed length and therefore an end, called its physical (or binary)
End-of-File. ("End-of-File'" will be abbreviated to "EOF" in this chap-
ter.) Disc/Tape routines will detect an attempt to read or write beyond
the physical end of a file, and will notify the programmer of the End-of-
File condition, for example, by returning through a special exit. Thus,
a program which processes a file may use the EOF condition as a signal to
transfer out of the main processing loop.

The routines for reading and writing disc and tape may be divided

inte two sets: the binary file routines, and the Hollerith file routines.

1) Binary File Routines: DISC,READ, aund DISC,WRITE,

These routines are very cfficient for moving large quantities of
data between ALGQOL arrays in core memory and bulk storage (L.e., disc or
tape files). They assume no logical record structure for the file, but
read and write in units of complete 320-word physical records, Files
read with DISC.READ and written with DISC.WRITE will be referred to as
"binary files", since no logical record structure is assumed by these
routines; however, such binary files could contain any mixture cf binary
numbers and Hollerith strings arranged by the programmer (see the examples
in Section III). The programmer using the binary file routines may wish
to provide buffering in his ALGOL program to pack and unpack legical
records which are not a miltiple of 320 words in 1éngth; see Section III

for a complete discussion.

2) Hollerith File Routines: HOLLER, IN, HOLLER.QUT, and HOLLER.OVER.
These routines allow ALGOL format READ, PRINT, and NAME statements to
be used to read and create Hollerith files, For example, the HOLLER.IN
("HOLLERith INput") routine gets switches in the Monitor to cause "E" and
"W" instructions in READ statements to take successive images from a
selected Hollerith File on disc or tape. Then the full machinery of NAME

and READ statements may be used to scan the Images character-by-character

AL,Bg.4

for Hollerith strings and numbers, to convert them to binary, and to
store them into ALGOL variables, The HOLLER,OUT {"HOLLERith QUTput')
and HOLLER,OVER (''HOLLERith OVERwrite") routines provide the correspond-
ing ability for creating Hollerith files, image-by-image, using NAME
and PRINT statements. HOLLER,OUT appends images to the end of a file,
while HOLLER,OVER is used to alter images of an existing Hellerith file.
Since all Hollerith files have identical format, a file created by
HOLLER,QUT (or -.OVER) may subsequently be edited by the AND System.
See Section V for a complete explanation of these routines.

Since a Hollerith file is composed of 21-word logical records,
320 &' 15,24 card images fit intc each physical record; a file with binary

21 320xB
length of B blocks can contain at most inET——) - 1 card images. However,
a Hollierith file may contain fewer than this maximum number of images.

The end of Hollerith information is indicated by a Hollerith End-of-File

image which normally appears immediately after the last image currently
in the file. _

4 Hollerith End-of-File Image is distinguished by the presence in
columns 1 and 2 of two "lower-case dollar signs”, G-20 character codegl65,
This code is the G-20 internal representation of the (+, -, 8, 9) punch
combination which always appears in columns 1 and 2 of a job card; thus,
each job card serves as an EOF card for the preceding job in the card
reader, The rest of the EOF image contains a message indicating which
routine wrote it there; for example, the EOF image: "§$ ALGOL END OF
FILE" is written by HOLLER,OUT, An EQF image from the card reader is
blank except the two lower-case dollar signs.

It is usually impertant to have an EOF image in a2 Hollerith file
since, for example, the Monitor card read routine]16 checks for the
Hollerith EOF image but not for the physical EOF. Hence, if the program-
mer 1s using the EOF condition to terminate his program when it reaches
the end of reading a Hollerith file, he must have an EOF image in the

file. Hollerith files created by AND always contain EOF images; those

BAL.6g.5

created by HOLLER.OQUT will have an ECF image if the programmer properly
"closes the file - sgee Section V.

The disc/tape routines DISCWRITE, HOLLER.QUT, and HOLLER.OVER
allow an ALGCL user to write directly onto any of his AND files i.e.,
any files which are listed under his man number in the AND Directory.
However, these routines never change the dump count of the file being
written. Therefore, a user who writes files using these ALGOL subroutines
and saves the file for later runs must be aware of the possibility (against
which the dump count protects AND users) that ail AND files may be set
back cne or more days as a result of hardware failure. To protect himself
against this possibility, the programmer may want to keep his own dump
count gomewhere in the file, increment the count when he writes on the
file, and check for the wvalue he expects before reading or writing. If
the AND file is written only once and thereafter is only read, or is used
only as a temporary {("scratch") file during a run, then there is no need
for a dump count.

The user should alsco note that the AND files are stored not only on
the disc but also on two permanently-mounted magnetic tapes. It requires

approximately three minutes of computer time to traverse one of these

tapes end-to-end. An ALGOL user who attempts to access more than one
file on the same tape can easily waste huge amounts of computer time
moving ("slewing"} the tape back and forth between files. On the other
hand, any number of files on disc can be accessed "randomly", i.e.,
without wasting time slewing. Note: a file is on disc if its First
Block Number in the Directory is less than 21000. Anew AND instruction
will shortly be available to force a file to be created or dumped onto
the disc rather than onto one of the AND tapes; the programmer will
therefore have a convenient way of aveiding severe tape slews due to

the ALGOL disc/tape routines.

AL, 6g.6

IT. LOGICAL FILE TYFPES.

A, PREASSIGNED LOGICAL FILE TYPES.

The ALGOL diSC/tape routines refer to particular files by an integer
value between 1 and 19 called the Logical File Type ("LF Type')., Some

of the Logical File Types have been pre-assigned to certain fixed files
in the CIT system: e.g., the AND Scratch Area, However, any of the 19
Logical File Types may be assigned to any permanent AND file for the
duration of the run, either by the AND System or by the ALGOL library
procedure AND.FILE. Normally, a user should use AND to set up all IF
Types for all files he will need, before the ALGOL translator is called
to compile and execute his program. In some cases, the user will need to
assign AND files to LF Types during his ALGGL run; the library.procedure
AND.FILE is provided for this purpose (see Section IV),

The LF Types currently pre-assigned are as follows:

LF Type Meaning Length Length
(blocks) (card
images)
1 Current effective begin-| (see below) (see below)
ning of AND Scratch
Area,
2 Physical beginning of 3072 46811
AND Scratch Area
3 Retap 1 Records 3072 46811
(same as AND Scratch
Area) .,
4 Retap 2 Records 1536 23405

(the second half of
AND Scratch).

5 Retap 3 Records =10000 = 152381
(on a permanently
mounted system tape)

6 Comp Center Records | =----= | =-=---
(NOT available to
user, unless specifi-
cally allocated by CC
staff!).

AL_6g.7

In some circumstances (specifically, the execution of a "RUN,
AND, ..." instruction) the AND System moves the effective beginning
of the AND Scratch Area past the end of information already in Scratch.
AND defines Logical File Type 1 to be the effective beginning of the
Scratch Area when AND loads and executes the ALGOL system. Logical File
Type 2, however, is always defined as the fixed physical beginning of
the Scratch Area. It is recommended that LF Type 1 rather than LF Type
2 be used to refer to AND Scratch so that "recursive'" AND runs can be

performed without changing the operation of the ALGOL program.

B. ADDRESSING DISC/TAPE FILES VIA THE LOGICAL FILE AND RELATIVE ADDRESSER
TABLES.

The correspondence between a particular LF Type and actual block
addresses on the physical input/output devices is established by two
tables in the Monitor: the Logical File table, and the Relative Addresser
table., The ALGOL programmer is thereby removed by two levels of general-
ized (or "symbolic'") addressing from the physical input /output devices.
The process of finding a block on the physical device can be visualized

by the following picture:

Logical File Table Relative Addresser Table
1 4]
2 : 1
: '.‘ ~ZL/0
R.A. TYPE| BELATTEE ’ UNIT
11
f

[.F TYPE

AL, 6g.8

The LF Type is used to select an entry in the Logical File Table
which specifies: (1) a Relative Addresser Type ("RA Type™ and (2)
the first block of the file, relaflve to the first block of the region
defined by the RA Type. This RA Type is used in turn to select an
entry in the Relative Addresser Table, which gpecifies: (1) the (logical)
number of an actual I/0 unit and (2) the first physical block number of
that RA Type region on that unit. This addressing process can be sgum-
marized by the following ALGOL statements: to find block number B of
the file with Logical File Type LF,TYPE, the Monitor uses:

U « 70, u81T (RA.TYPE [LF.TYPE]];

P PHYSICAL,FIRST,BLOCK [RA.TYPE [LF.TYPE]]

+ RELATIVE,FIRST,BLOCK [LF.TYPE] + B
where U is the logical I/O Unit number, and P is the physical block
number on that unit, The logical unit number U is converted to a physical
1/0 unit number through another Monitor Table to achieve flexibility in
the use of the physical tape drives; this last logical-physical corres-
pondence is irrelevant to the programmer, however,

The Relative Addresser Table (discussed on page 14 of the Monitor
"|routine" write-up "THEM THINGS") provides a global allocation of space
on tape and disc, gepnerally the same for every program run, The Relative
Addresser Table is changed in two circumstances: (1) The Computer
Operations staff may change the global allocation of space on tapes and
disc, or may convert the entire operation to tapes when the disc is
"down"; and (2) a user may specify a 'User Tape' on his job card, replacing
one {or more) of the standard system Relative Addresser entriles by
entries pointing to his own magnetic tape, onrly for the duration of his
run. If a User Tape replaces a Relative Addresser Type to which a
Logical File Type is assigned, then the meaning of the Logical File Type
and the length of the file change correspondingly, but only for the

duration of the run.

AL.6g.9

III, THE BINARY FILE ROUTINES: DISC.READ AND DISC,.WRITE,

A. PARAMETERS AND CALL.

DISC.READ will read information from disc or tape into an array
in core memory; DISC,WRITE will write the contents of an array in core
memory out onto disc or tape. These routines allow the user to move
binary and Hollerith information in bulk between core memory and
disc/tape files. Their parameters are ags follows:

DISC,BEAD(NWDS, FIRST.LOC, LF.TYPE, BLK.NO, EOF.EXIT);

DISC.WRITE (NWDS, FIRST.LOC, LF.TYPE, BLK.NO, EOF.EXIT);
Here:

NWDS = Number of machine words to read or write.

FIRST,LOC = An array element which is the ALGOL Bgmgvof the

first word in core memory to read or write.
LF,TYPE = Logical File Type {explained in Section II).
BLE,NQ = Number of the first 320-word block to be read or
written (the first block of the file has block
number 0).
EOF.EXIT = Label through which the routine will exit if the
physical End-of-File is reached during the operation,
Starting at the block number BLK.NO of the tape/disc file with Logical
File Type LF.TYPE, the routines will read or write as many block: as
are needed for the number of words NWD5. DISC,READ reads into core
memory exactly NWDS words, where NWDS is not necessarily a multiple of
320. DISC,WRITE will write enough extra words (generally "garbage') to
complete the last 320-word physical record, These routines initiate
direct input/output transmission between core memory and the tape or
dige unity there is no buffering.
Attempting to read or write beyond the physical End-~of-File will

cause the routine to complete the operation up to the End-of-File, and

AL,6g.10

then exit through the EOF.EXIT label.
If an AND file assigned to a Logical File Type (by AND.FILE, or
by the AND system) belongs to a programmer different from the man making
the run, then this LF Type will be marked 'read only". Calling
DISC,WRITE (or HOLLER.QUT, or HOLLER,OVER) to write on this file will
cause a run error; thus, a user can write only on his own files. Both
DISC.READ and DISC,WRITE print the same run-error messages, as follows:
RUN ERROR - RWRl: The specified Logical File Type has not been
' pre-assigned or assigned by AND or by AND,FILE.
RUN ERROR - RWR2: A negative number of words has been called for.
RUN ERROR - RWR3: The FIRST,LOC address lies outside user's

memory,
RUN ERROR - RWR4: LF,TYPE is out of range: 1 = LFTYPE = -19,
RUN ERROR - RWR5: DISC,.WRITE has been asked to write on a file

which is marked "read-only".

B. EXAMPLES OF USE,
Assume the following declarations:
real array X(O:ZO, 1:100] ;
integer array I[O:IOOQ]; logic array L[1:3OQ];

Then the subroutine call:

DISC.READ (4200, x[o0,1), 1, 23, EOF);
reads 4200 words into the X array in core memory from the file with Logical
File Type 1 (the AND Scratch Area), starting from block 23 of this file,
Each element of the real array X occupies tﬁo machine locations and
X[O,I] is the first element of X; therefore, this call will exactly fill
the X array. There is no check in DISC,READ (or DISC.WRITE) for over-
flowing an array; if this call were changed to read more than 4200 words,
the extra words would be stored into locations beyond the end of the X

array, presumably clobbering another array.

http://AL.6g.10

AL, 6g.11

Similarly, the entire I array may be written on records 40 through

43 of AND Scratch by the procedure call

DISC,WRITE (1001, 10}, 1, 40, EOF);
Since each integer variable is stored in one G-21 memory location, 1001
words are needed for the 1001 elements of the array. A little more than
three blocks are needed for this WRITE operation; the fourth block will
be filled up with whatever happens to be in memory in the locations
following 1[1000] .

These routines may be used to read or write alphanumeric strings;
such strings should be stored in core In arrays of type logic. Each
word of the string contains four characters, Thus, the call:

DISC.WRITE (300, L[1], 1, O, EOF);
will write a string of 4 x 300 = 1200 characters from the array L,

C. AN ALGORITHM FOR BUFFERED READING.

In all the above examples, each logical record read or written was
assumed to start at the beginning of a physical record. If the logical
records contain significantly fewer than 320 words, however, this simple
agsignment of logical to physical records 1is wasteful of both time and
space on tape or disc., If disc/tape space is important and if the
logicel records are short, the user should include buffer routines in
his ALGOL program to pack and unpack logical records from each physical
record., The buffer area would be an ALGOL array whose length was a
suitable multiple of 320,

For example, the procedure declaration below describes the algorithm
for buffered reading from a binary file. The algorithm reads BUFF,SIZE
blocks at & time into a buffer array:

' BUFF [1:320%BUFF.SIZE) .
Note that BUFF is a "dynamic own array" (see page AL.2.14 of ALGOL-20
Manual) ; if this algorithm is used in an ALGOL-20 program, a numerical

http://AL.6g.ll

AL, 6g .12

value must be substituted for BUFF.SI2E before the program ia compliled,
or else BUFF must be declared globally to the procedure. Although the
formal parameter A in BUFFERED,BEAD {8 g logic array, an array of any
type may be subatituted as an actual parsmeter; however, if a real
array 1s substituted, then the actual parameter substituted for N muat
be doubled.

http://AL.6g.12

AL.6g.13

procedure BUFFERED.READ (N, A, LF.TYPE, EQF.EXIT);
value N, LF,TYPE;

integer N, LF.TYPE; logic array Aj label EQF.EXIT;

comment Each call of BUFFERED.READ moves the next logical record of N
logic words into variables A[ll , ..., A[N] of a logic array A. If this
process empties the internal buffer array BUFF, DISC.READ is called to
refill the buffer from the £file with Logical File Type LF.TYPE. If the
physical EOF is encountered before the logical record is obtained,
BUFFERED.READ exits to the label EOF.EXIT.

Calling BUFFERED.READ with LF.TYPE < 0 initializes the record
number and buffer pointer to the beginning of block 0 of the Logical File

Type -LF.TYPE, and moves the first n-word logical record of the file;

begin

own logic array BUFF [l:320%BUFF.SIZE] ;

own integer PT, BLK.NO; integer I, ULIM;
if LF.TYPE < 0 then
begin BLK.NO <- 0 ; PT *- 320*BUFF.SIZE end dinitialization;
T 4-1;
MORE:
ULIM *-min (N, 320*BUFF.SIZE - PT) :

for I «-I step 1 until ULIM do

A[l] <-BUFF[PT + 1] ;
comment move words until N word s* moved or buffer empty;

“4f ULIM < N then

begin comment BUFF is empty and more words are needed;

DISC.READ (320*BUFF.SIZE, BUFFI[1] , abs (LF.TYPE), BLK.NO,EOF.EXIT);
BLK.NQ 4-BLK,.NQ + BUFF,SIZE;
PT <- PT - 320*BUFF.SIZE;
go to MORE
end of refill;
PT «- PT + max (N, 0) ;

end BUFFERED. READ ();

HINT UBRAJT
CARNEQIE-MELLM HNIVERSITY

http://AL.6g.13

AL.6g. 14

IV, THE AND, FILE ROUTINE
The relocatable library procedure AND.FILE &llows an ALGOL program
to define a Logical File Type as a particular AND file. -AND.FILE {is

called with the following parameters:
AND,FILE(USER, PROG, LF,TYPE, BUFF,10C, EBR,EXIT);
where:

USER = The AND "User" number for the file, an eight character
alphanumeric string; this string may appear either as
an 8 character string constant {e.g., 'PHI3WWO1') or as
the name of the first of two succesgive elements of a
logic array which contains the string as value (aee
example below). '

PROG = The AND "Program” oumber of the file (not including the
dump-count} .

LF.TYPE = The Logical File Type to be associated with this AND
file; LF,TYPE must lie in the range: 1 = LF,IYPE = 19,

BUFF.LOC = An array element which is the firast element cof a
vector of at least 320 words.

ERR,EXIT = A label to which AND,FILE will exit if any cof the
parameters are improper or if the designated AND file
does not exist in the AND Directory.

The effect of calling AND.FILE is to look up the AND file under
{USER, PROG)} in the AND Directory, and assign it to Logical File Type
LF,TYPE. The 320 locations starting at BUFF,LOC are used as & buffer
to read the AND Directory; after the call of AND,.FILE, this space is
available for cther uses. '

It is important to ohserve that AND,FILE reads but never writes
on the AND Directory; thus, the AND Directory will never be changed as
a result of. execution of AND,FILE, This implies that:

(1) the file being looked up must already exist; it will not be

‘created by AND.FiLE if 1t does not exist;

http://AL.6g.14

AL.bg.15

{2) operation of AND.FILE will never change either the physical
(i.e., binary) length of the ARD file, or the most-recent-
access date in the Directory, or the Dump Count of the file.

In general, a run using the AND system will be required to create an
AND file or to increase Lts length. There is an AND inatructiom
"CREATE" for this purpose.

The user is warned that {f he accesses an AND file only in his
ALGOL program via the AND.FILE procedure, never in AND itself, then
the latest-acceag-date for the file wil! never be updated. As a re-
pult, the file will eventually be "frozen", i.e., moved to a history
tape and deleted from the current AND records. ©On the other hand,
setting up a Logical File Type during an AND run does update the ac-
cess date of the file in the AND Directory; hemnce it is generally
preferable to set up L.F. Types durlng the AND run rather than-to use
AND.FILE.

An example of a cgll of ANG.FILE would be:
Integer arrxay BUFF [1:320] ;

label GLUG:
logic array USER[1:2] ; integer I, FROG.NO;

name {I — 2(USER{I]) , PROG.NO.) ;
read (<€, BA, 8D>) ; comment read user number and program number

from a data card;
AND,FILE (USER[1] , PROG.NO, 12, BUFF[1] ,GLUG) ;

GLUG: PRINT {(<'NO SUCH FILE EXISTS', 2E>) ; HALT ;

This program will read an 8 character user number string (e.g.,

'$236JP01') and an integer program number from a data card, and look

http://AL.6g.15

AL,bg.16

up the corresponding file in the AND Directory. If the file exists,
it will become Logical File Type 12; 1f not, the atatement labeled

| "GLUG" will be executed. The 320 words BUFF[1]...BUFF[320] will be
used to read the AMD Directory.

If AND,FTLIE is called to look up an AND file under a man number
differing from the man number appearing onm the Job Card, then the cor-
regponding Logical File Type entry will be marked "read-only”. ¢all-
ing DISC.WRLTE, HOLLER.OUT, or HOLLER,OVER to write on a read-only
AND file will cause a run error; thus, a user can use the ALGOL disc/
tape routines to write on his own AND files only.

AND,FILE checks carefully the validity of its parameters. Any
of the following errors will cause it to print an appropriate message
and exit to the lsbel ERR.EXIT without defining the Logical File Type.
A subpequent attempt to operate on this Logical File Type with one of
the other dlscftape routines will cause a tun error. The error con-
ditions detected by AND.FILE are: |

1. Usage number iz improperly formed or not im AND directory.

2. Program number is out of range or not in the AND directory.

3. Designated file is empty (contains D words) and can there-
fore be neither read nor written.

4, Logical File Type does not satisfy 1= L.F. Type = 19,
Selected AND file ia on a tape which is temporarily unavail-
able.

6. AND instruction DONT has not been executed, sc the AND

Directory camnot now be read by this CP. See AND System
Write-up.

7. Attempt has been made to access ancther man's file which is

marked "“secret™. See AND System Write-up.

http://AL.6g.16

AL,6g.17

V. JTHE HOLLERITH FILE ROUTINES

A, INTRODUCTION
The DISC.READ and DISC,WRITE routines move binary and Hollerith

information in bulk between core memory and disc/tape files. The
"HOLLER-'" routines, HOLLER,.IN, HOLLER,OUT, and HOLLER.OVER, on the
other hand, provide buffered input and output of Hollerith files'using
ALGOL format READ, PRINT,‘and NAME statements.

Calling HOLLER.IN selects a Hollerith file as the source of card
imeges for READ statements; each subsequent execution of an "E" or "W"
instruction will read the next image from the selected file into the
format read buffer, where it can be scanned character-by-character,
Similarly, HOLLER.OUT (or HOLLER.OVER) will cause each "E" or "W"
format instruction in a PRINT statement to output columns 1 through
‘80 of the 120-column print buffer plus & sequence number in columns
81 to 84, as the next imaée of a selected Hollerith output file.
HOLLER,.OUT {and -~ .OVER) supply consecutive integer serial numbers,
equal to the ordinal numbers of the images in the file. HOLLER.OUT
appends images to a file, while HOLLER.OVER may be used to alter
images in the middle of an existing Hollerith file.

B, PRIMARY vs. SECONDARY FILES
When an ALGOL program begins execution under the G-21 Monitor,
there is always one Hollerith input file and one Hollerith output
file; these are referred to as the "primary" imput and output files,
reepectively. The primary input file may be a teletype input file,
an AND file, the AND Scratch Area, or a physical deck in the card
reader, for example. The primary output file may be the LPI12 printer,
a teletype output file, or both. The HOLLER- routines designate
auxiliary input and output files, referred to as "secondary files".
When an "E" or "W" format instruction is executed in a READ

statement, the ALGOL format routine calls the Monitor card read

http://AL.6g.17

AL, 6g.18

routine ("|16") to supply a Hollerith card image. |16 has implicit
parameters which indicate whether the image is to come from the next
physical card in the card reader, or from the next 2l-word logical
record in a particular Hellerith file on disc or tape. In the latter
case, 116 transmits te the (B4&-character) ALGOL READ buffer® the card
image which ia the next 2Zl-word logicai record in a 320-word 1loput buffer
area in core memory. If this image was the last complete image in the
320-word buffer, then |16 automatically reads the next 320-word block
from disc or tape intc its buffer area, in anticipation of supplying

the next image. (Mote: this description has omitted some details which
are unnecegsary to an understanding of the HOLLER- routines; further
information on Monitor routines may be found in Section 2.3 of the CIT
User's Manual.)

The function of HOLLER.IN 1is to set the source parameters of |Iﬁ
to take Hollerith images from a particular file. Calling]16 elther
implicitly with “E" or "W" format READ instructions, or explicitly in
machine language with WHAT code will read succeasive imagea from the
file selected by EOLLER.IN. It should be remembered that any roupine
in the user's program whose effect is to read 'cards™ will ultimately
call tl&, and will therefore get images from a aecondary file if
BOLLER.IN has been called.

Similarly, when the ALGOL format routine executes an "E' or "W"
iostruction in a PRINT statement, or a "W'" instruction in a READ
statement, it calls the Monitor Hollerith output routine 11" to
transmit the print line to the primary and/or a secondary output file.
The function of HOLLER,OUT (and -.OVER) is to set the secondary des-

tination parameter in lll to a particular secondary output file. The

*Note: the "ALGOL READ buffer", part of the format READ mechanism
of ALGOL, contains exactly one 84-character card image to be scanned
by format instructioms; it should not be confused with the 320-word
input buffer area used by [16 to vnpack 2l-word logical records from
320-word disc/tape blocks.

http://AL.6g.18

AL.6g.19

images sent to a secondary file are collected in a 320-word buffer in
core memory; when this buffer is filled, its contents are automatically
written onto the next physical block on tape/disc. Even 1f the pro-
grammer calls |11‘direct1y in WHAT code, |11 will transmit the print
line to the primary and/or secondary output files as determined by
HOLLER.OUT (or -,0VER). On the other hand, ALGOL run-error messiges,
page headings, and output from DEBUG.PRINT are transmitted only to the

primary cutput file, never to a secondary output file.

C. OPENING AND CLOSING HOLLERITH FILES

The process of selecting a Hollerith file with HOLLER.IN, HOLLER.OUT,
or HOLLER,OVER will be referred to as "opening" the file; the "de-
selection" of a file will be referred to as "closging" that file. Clos-
ing a secondary output flle writes the last 320-word block from the
core buffer onto the file on disc or tape. The user of HOLLER.QUT or
HOLLER,OVER is cautioned that the system does not automatically close
a secondary output file when the ALGOL program terminates. The user
must call HOLLER,.QUT(0) or HOLLER.OQVER(0), as appropriate, to close
the file and write out the last block, or he will lose up to 16 card
images.

Because input can be read from only one source at a time, there
can be only one open input file at once: either the primary input
file, or a secondary file selected by HOLLER.IN. Omn the other hand,
the same output line may be transmitted simultanecusly to more than
one output file, so cone secondary output file (selected by HOLLER.OGUT
or HOLLER,OVER) may be open simultaneously with the primary ocutput

file, if the user so chooses.

D, CARD IMAGE POINTER
The Hollerith card read routine |16 has an input card image

pointer which contains the serial number of the next card image to be
read from the current file (unless the input file is a physical card
deck, in which case the card image pointer is undefined}; each call

http://AL.6g.19

AL,6g.20

of |16 increments this pointer automatically. The Hollerith print

routine |11 has a corresponding output card image pointer which con-

tains the serial number of the next card image to be output to a
secondary output file, but is undefined if no secondary ocutput file

is open. Note that the output card image pointer is associated only
with a secondary file, and has no necessary connection with the serial
number of the primary output file. TIf a secondary output file is
open, then each call of |]] converts the value of the image pointer

to 4 Hollerith characters and stores it as the serial number in col-
umns 81-84 of the image (note: this serial number is also stored into
columns 81~84 of the print line sent to the primary file); then the
image pointer is incremented by 1.

HOLLER.IN sets the input card image pointer when it selects a
new input file; first, however, the previously selected file is
closed, and the previous value of the card image pointer is saved in
a pointer temporary associated with the previous LF Type. Similarly,
when HOLLER.OUT or HROLLER.OVER selects a new secondary output file,
it closes the previous file and saves the previous value (if any) of
the output card image pointer in the pointer temporary associated
with the LF Type of the previously selected secondary file, before
setting the output card image pointer to a new value. The programmer
can reselect ("reopen") any secondary file which was selected earlier
in the run, either for reading or writing, in such a way as to restore
the card image pointer to the value saved in the pointer temporary for
that LF Type. It is important to note, however, that there is only
one pointer temporary for each LF Type, used for saving both input
and ocutput card image pointers. This makes it convenient to read
through a file until a certain image is found and then start rewriting
the file from that image on.

In addition to the internal pointer temporary mechanism just

described, there is provision in the call of the HOLLER- routines for

http://AL.6g.20

AlL.6g.21

storing and setting the input and output card image polnters using
ALGOL variables designated by the programmer. -

When an ALGOL program begins execution, the pointer temporaries
for all LF Types (except perhaps 0 and 1) are initialized to 1.
Calling AND.FILE to assign a particular LF Type to an AND file
initializes the pointer temporary of that LF Type to 1.

It is possible to have the same file, with the same LF Type, open
for both Hollerith input and Hollerith output, simultaneously. Fur-
thermore, the same file can be assigned (by the AND system ot by AND.-
FILE) to more than one Logical File Type. This gives the user great
flexibility in processing several different parts of the same file at
once. However, the user should avoid doing such an operation on a
file which ig on a tape rather than on the disc, or machine time may
be wasted on long tape slews.

It is convenient to think of the primary input file as Logical
File Type = . ¥For example, when the primary inﬁut file is closad by
HOLLER,IN and & secondary input file becomes the card image source, the
input image pointer for the primary file ig saved in the internal
pointer temporary associated with LF Type = 0. Calling HOLLER.IN to
open LF Type = 0 will reselect the primary input file, after closing
the previcusly selected secondary input file. LF Type = 0 has no
relation to the primary output file, which cannot be opened or closed
by the HOLLER- routines.

E. PARAMETERS AND CALL OF HOLLER- ROUTINES

The HOLLER- routines may have one or two parameters, as follows:

HOLLER, IN(LFT) ; or HOLLER,IN(LFT, POINTER) ;
HOLLER.QUT(LFT) ; or HOLLER, OUT (LFT, POINTER) ;
HOLLER, OVER (LFT)} ; or HOLLER.QVER (LFT, POINTER) ;

In each case, the formal parameters could be specified by:

value LFT ; integer LFT, POINTER ;

http://AL.6g.21

Al,bBg,22

LFT is generally the Loglcal File Type of the file to be opened for in-

put (HOLLER.IN) or cutput {HOLLER,OUT or HOLLER,OVER); see the detailed

description of each routine below. Any arithmetic expression may be

substituted for the LFI parameter.

The meaning of the parameter POINTER depends upon the value of

LFT:

1 s LFT = 19: Pointer = the serial number to which the card image
pointer will be initialized in the secondary file with
LF Type = LFI. 1Iua thie case, any arithmetic express-
ion may be substituted for the parameter POINTER, If
the POINTER parameter 1s omiited, then the card image
pointer will be init{alized instead to the value of the
internal polnter temporary asscciated with LFT.

LFT = (: POINTER is a variable which will be set equalrto the
previous input or output card image poilnter, i.e.,
the pointer in the file which 1s being c¢losed; this-
same poilnter value 1s also stored inm the internal
pointer temporary asscclated with the LF Type being
closed. In this case, only a variable, either simple
or subscripted, may be substituted for POINTER, If
POINTER i3 cmitted, then the card image pointer will be
stored only in the internal pointer temporary.

The programmer may wish to find out the serial number of the next
image to be output to, or read from, an open secondary file; notice
that closing and immedistely reopening the same Logical File Type will
have no effect other than saving the current image pointer in POINTER,
1f the parameter is present in the statement which closes the file.
The user may also wish to skip about in one file, which means that the
internal image pointer from & preceding file closure will be lost on
a following closure; 1f the user saves his own copy of the pointer in
POINTER when he closes the file, he may veopen the file later at this
serial number by using POINTER as parameter.

http://AL.6g.22

AL.6g.23

F. THE OPERATION OF HOLLER. IN
A call of the following form:
HCLLER. IN {(LFT); or HOLLER.IN(LFT, POINTER) ;
opens for Hollerith input the file with LF Typs = LFT, after closing
for input the file which was previocusly open* The following steps are

petformed:

{1) Hie previous value of the input card image pointer is
assigned tc the internal pointer temporary for the
LF Type of the file previously open for input.

(2) If LFT = 0, (i.e., the primary input file is being
selected) then the previcus card image pointer ig also
assigned tc the variable POINTER (if the PCINTER para-

meter is present) .

(3) The card image source 1s set to the file with LF Type = LFT:

1 g LET " 19: openg a secondary input file, and
LFT = 0 : regpens the primary file.

(4) The input card imags pointer (i.e., the serial number cf
the first image to be read from the newly opened file) is
set equal to the value of the pointer temporary for file
LFT, unlegsg LFT ig > 0 (i.e., a gecondary file ig being
gelected) and the parameter POINTER i1g pregent; in the
latter case, the input card image pointer isg sst to the
value of PCINTER.

Thus, the ALGOL programmer can always "get hold of' of the input card
image pointer of a secondary file by executing: HCLLER.IN(J, HIS.POINTER)
to close the secondary input file and store the pointer in the ALGOL
variable HEIS_ POINTEER. The user canmnot "get hold of" the card image
pointer for the primary file, since this file may be a physical card

deck for which the pointer ig undefined. On the other hand, i1f the

user has arranged it so that the primary file is a particular AND

file or cne cf the files which have preassigned LF Types, then the user

http://AL.6g.23

AlL.6g.24

can assign the same file a LF Type and select it as a secondary file
with HOLLER,IN; he can then effectively "backspace' and reread such
a primary input file,

Whenever the Monitor card read routine |16 transmits a Hollerith
EOF image to the ALGOL READ routine or directly to the user, a switch
is set in the Monitor; if]16 is called to provide another card image
after this EOF switch is set, the Monitor will terminate the program.
However, calling HOLLER, IN with L.F. Type = 0 not only closes the
secondary file, but also clears this ‘l6 EOF switch. Therefore, the
user can read and detect the Hollerith EOF image in a secondary file
(by testing for the first two characters being 8R165), close the file,
and continue reading images from the primary file or open another
secondary file.

HOLLER, IN may produce any of the following run-error messages:

RUN ERROR - HIN1 LFT < 0 or LFT > 19

RUN ERROR - HIN2Z Attempt to close a secondary input file whgn
there was no secondary file open for input.

RUN ERROR - HIN3J Attempt to read from a file which was not
predefined or defined by AND or AND,FILE.

RUN ERROR - HIN4 Attempt to set the image pointer to a negative

card number or beyond the physical End-of-File.

G. THE OPERATION OF HOLLER,.OUT AND HOLLER.OVER
A call of the form:
HOLLER, OUT (LFT) ; or HOLLER,OUT(LFT, POINTER);
will close the secondary file (if any) which was previously open for
Hollerith output; if LFT > 0, it will then open the secondary file
number LFT for Hollerith input.
If 1 = LFT = 19, then the following steps are performed:
(1) If there was previously a secondary output file
open for Hollerith output, then it is closed‘in

the following manner:

http://AL.6g.24

AL.6g.25

(a) The output card image pointer is assigned
to the internal pointer temporary of the
LF Type previously open.

(b) A Hollerith EOF image is placed after the
last image appended to the file (but the card
image pointer 1s not incremented, so LIf the
file is later reopened at thie point then the
EOF image will automatically be overwritten by

" the next image).

(c) The last 320-word block is written from the
secondary output buffer in core onto the disc/
tape file.

(2) The secondary output destination is set to the file
with LF Type = LFT,

(3} The output card image pointer is set equal to the
serial number in the pointer temporary associated

with LFT, unless the parameter POINTER is present,

in which case, the pointer is set equal to the value

of POINTER. The physical block containing this

image 1s read into the secondary output buffer,

If LFT = O, then the following steps are performed instead:
(1) The secondary output file which was previously open is
" closed, as described above for the case: 1 S LFT = 19;
if none was previocusly open, a run error - HOTZ will occur.
(2) If the parameter POINTER is present, then the same pointer
value which has been stored in the internal pointer
temporary for the previously open file will also be
assigned to POINTER,
If HOLLER,OUT is used, the user must declare the Boolean variable
PRINT.OR.NOT in his outermost block. ILf PRINT.OR.NOT = true when |11

http://AL.6g.25

AL, 6g.26

ig called by an "E" or "W" in a PRINT statement, a "W' in a READ
atatement, or directly in WHAT code, then the print line will be
ttansmitted to the primary output device as well as to the secondary
cutput file. If no secondary output file is open, PRINT,OR,NOT has
no effect, Hote that the Boolean wvalue of PRINT.OR.NOT may be set at
any time without calling HOLLER.OQUT agzin. When & secondary output
file is closed by HOLLER,QUT, a Hellerith EQF image is appended to
the file, as described above. The serial number of this EOF image
iz the pointer to the "next" image which {s aaved in the pointer
temporary and perhapg passed to the user via the POINTER parameter.
If the file ia subsequently reopened for output with this pointer
restored, the End-of-File image will be writtem over.

Each time a file is opaned by HOLLER,GUT, the disc (or tape) block
containing the card image at which the file is opened is read into
core. However, on succeeding blocks, a read does not precede the
write. Thus, HOLLER.OUT may bhe used to append images to the end of
a Hollerith file but not to alter imagee in the middle of an existing
file: the routine HOLLER.OVER should be used for the latter purpose.

WARNING: If an ALGOL program terminates before the secondary cutput
file L8 closed by a call: HOLLER.OUT(0), as many as the last 16 card
images outputted to that file may be leost

If an attempt is made to "HOLLER.OUT" (or "-.OVER') the last
card image of the entire physical file, an End-of-File image will be
written instead but no error indication will be given; an attempt to
write ancther image, beyond the physical end of the file, will re-
ault in an error "HOT3", There should always be an EOF image as the
last card image of the physical file; however, closing a file with
HOLLER, OUT(0) may write another EOF image earlier.

http://AL.6g.26

AL, bg.27

A page heading or page number which is output to the primary file
under control of the |212 and |213 switches {(see Chapter 3d) will not
appear in the secondary output file. Similarly, run error messages
produced by the ALGOL error diagnostic routine as well as output from
DEBUG. PRINT will appear only in the primary output file. Thus,

DEBUG, PRINT statements canlbe inserted into a program without chafiging

the number of images sent to the secondary file,

The operation of HOLLER.OVER is aimilar to HOLLER,OUT with two
differences:
(1) HOLLER, OVER does not output an End-of-File image
when it closes a secondary file;
(2) HOLLER.OVER reads each block into core before it
is altered and written out, Thus, HOLLER.OVER may
be used to alter images in the middle of an already
existing Hollerith file,
1f an error is detected in the HOLLER.OUT or HOLLER,OVER routine,
the secondary file will be closed if it was open, and no new secondary
file will be opened; however, the last block {up to 16 card images)
may be lost.
Both HOLLER,OUT and HOLLER,OVER produce the following run error

me58agEB:

RUN ERROR - HOTI LFT < 0 or IFT > 19

RUN ERROR - HOT2Z Attempt to close a secondary file when
there was no secondary output file open.

RUN ERROR - HOT3 Attempt to open a LF Type which was not
predefined or defined by AND_FILE or AND.

RUN ERROR - HOT4 Attempt to write outaide the bounds of
the physical file.

RUN ERROR - HOTS Artempt to write on file marked read-only

(i.e., another user's file),

http://AL.6g.27

AL,5.ANDFILE,1

ALGOL Relocatable Library

PROCEDURE SPECIFICATION
procedure AND,FILE (USER, PROG, LF,TYPE, BUFF,LOC, ERR.EXIT) ;
value PROG, LF.TYPE;
string USER; integer PROG, LF,.TYPE, BUFF.LOC; label ERR,EXIT;

PURPOSE

AND,FILE associates togical File Type number LF,TYPE with the AND
program ("“file") specified by USER and PROG, Thus an ALGOL user may
define (or redefine) entries in the Monitor Logical File Table during the
ALGOL run as well aa during execution of the AND system, 5See Chapter b6g

for more information,

PARAMETERS
USER

The AND "User™ number for the file, an eight character
alphanumeric string; this string may appear either as an
8-character string constant {e.g. "PHIIWWO1') or as the
name of the first of two successive elements of a logic
array which contain the string as value (see example in
Chapter 6g).

PROG = The AND "Program' number of the file,

LF,.TYPE = The Logical File Type to be associated with this AND
file; LF.TYPE muat lie in 1 = LF.TYPE = 19,

BUFF.LOC = An array element which is the first element of a
vector of at least 320 words; this array will be changed
by AND,.FILE,

ERR,EXIT = A label to which AND,FILE will exit if any of its

parameters are improper or 1f the desipgnated AND file

doeg not exist in the AND Directory.

METHOD
The AND file "USER, PROG" is looked up in the AND Directory and
Logical File Type LF.TYPE is associated with it. The 320 locations

AL.5.ANDFILE.2

starting at BUFF.LOC are used as a buffer to read the AND Directory.
After the call of AND,FILE, this space is available for other uses.

See Chapter 6g for an example.

ALARMS

If AND.FILE 1s called to look up an AND file under a man number

differing from the man number appearing on the Job Card, then the cor-

responding Logical File Type will be marked as "read-only".

Any of the following errors will cause AND,FILE to print an ap-

propriate error message and exit to the label ERR.EXIT without assigning

the Logical File Type.

1.,
2.
3.

4-
5.

6.

7.

Usage number is improperly formed or not in AND Directory.
Program number is out of range or not in AND Directory.
Designated file is empty (contains O words) and can therefore
be neither read nor written,

Logical File Type is < 1 or > 19,

Selected AND filé is on a tape which is temporarily unavailable.
The AND instruction DONT has not been executed, so the AND
Directory cannot be read by this CP.

An attempt has been made to access another man's file which
has been marked "secret" by the AND instruction SECRET.

(See the AND writeup.)

AL.5.ANDCALL, 1

PROCEDURE SPECIFICATION
procedure AND,CALL (IMAGES . IN. SCRATCH) ;
value IMAGES, IN,SCRATCH;
integer TMAGES.IN.SCRATCH;

PURPOSE
AND, CALL may be used to enter the AND system to operate on card images

or binary information written into the AND Scratch Area by an ALGOL program,

METHOD .

The AND system is loaded and entered by a special entry, which sets the
AND Scratch pointer, o, tol(IMAGES.IN.SCRAICH) + 1, If Scratch contains
binary information, IMAGES,IN,SCRATCH should be set to | {Number of words of
binary information + 20)/21. Once loaded, AND will operate as usual,
reading and executing AND instruection cards from the Hollerith file which
is currently open for input,

Before executing the AND,CALL procedure, the ALGOL program must have
loaded the AND Scratch Area (Logical File Type = 1 or 2) with card images
using HOLLER,QUT or DISC,WRITE, or binary information using DISC,WRITE.

It is not possible to return to the original ALGOL program after the
execution of AND,CALL, since the AND system overlays all of core; however,
ALGOL may be called from AND to perform a new translation,

EXAMPLE: An ALGOL program has generated 20 card images in AND Scratch, at
which point it executes an AND,CALL (20). The AND system is then loaded
and entered with o «~ 21, and AND begins reading cards, If the first card
contains the AND instructions:

AN FILE, 6/0 ; DUMP; DONE;
then the 20 images generated by the ALGOL program will be dumped as the
20 cards of AND file 6.

AL.5,HOLLERIN.1

PROCEDURE SPECIFICATION
procedure HOLLER.IN (LF,TYPE);

value LF.TYPE ; integer LF.TYPE;

or
procedure HOLLER.IN (LF,TYPE, POINTER);
value LF.TYPE; integer LF.TYPE, POINTER;
PURPOSE

HOLLER. IN sets the Monitor's card source pointers for Hollerith
card reading to an image in the disc/tape file with Logical File Type =
LF.TYPE. After a call of HOLLER,IN has selected a file in this way,
executions of "E" or "W" primaries in ALGOL read statements (or amn
explicit call for |16 in machine language) will bring in successive

card images from this file., See Chapter 6g for more informatiom.

PARAMETERS
LF.TYPE = The Logical File Type to be selected as Hollerith input
source, replacing the previous source., LF.TYPE in the
range: | = LF,TYPE = 19 represents one of the pre-
assigned files or an AND file; LF.TYPE = O always
represents the "primary" Hollerith card source, the
one in effect when the ALGOL program began execution.
If 1 3 LF.TYPE = 19, then:
POINTER - An arithmetic expression whose value is the serial
number of the first image to be read from file LF,TYPE,
If POINTER is omitted, then the first image to be read
will be the one after the last image read during the
last previous selection of this LF,.TYPE by HOLLER. IN;
however, if HOLLER,OUT or HOLLER.OVER have also selected
the same LF,TYPE, then the rule is more complicated;
see Chapter 6g, If file LF,TYPE has not been previously

AL.5.HOLLERIN.Z2

gelected during this run, POINTER = 1 will be asgsumed
1f POINTER 1s omitted.
If LF.TYPE = 0 then:
POINTER = An arithmetic variable which will be set equal to the
gserial number of the next card to be read from the pre-

viously selected file.

METHOD

See Chapter 6g for complete discussion.

ALARMS
RUN ERROR - HINI1: LEFT < Q or LFT > 19.
RUN ERROR - HIN2Z: An attempt has been made to select the primary
scurce (LFT = 0) when it is already selected.
RUN ERROR - HIN3: The Logical File Type specified has no file

assigned to it.

RUN ERROR - HIN4: PCINTER < 1, or beyond the physical End-of-File

AL,5.DISC READ/WRITE, 1
ALGOL Relocatable Library

PROCEDURE SPECIFICATION
DISC,READ (NWDS, FIRST,LOC, LF,.TYPE, BLK.NO, EOF, EXIT):
DISC,WRITE {KWDS, FIRST.LOC,-LF.TYPE, BLK.NO, EOF,EXIT);
value NWDS, L¥,TYPE, BLK.NO;
label EOF.EXIT; integer WNwWDS, LF.TYPE, BLK.NO;

PURPOSE

DISC,READ reads information from disc or tape into an array in
core memory; DISC,WRITE writes the contents of an array in core memory
out onto disc or tape. These routines allow the user to move binary and
Hollerith information in bulk between core memory and discftape files.

See Chapter bg for a complete discussion.

PARAMETERS
HWDS = Humber of machine words to read or write.

FIRST.LOC = An array element which is the ALGOL name of the first

word in core memory to read or write,

LF.TYPE = Logical File Type (explained in Chapter 6g}.

BLEK.NQ = Number of the first 320-word block to be read or written
{the first block of the file has block number 0).

EOF ,EXIT = Label through which the routine will exit if the

physical End-of-File is reached during the operatiom.

METHOD

DISC,READ reads into core memory exactly NWDS words, where NWDS is
not necessarily a multiple of 320, DISC.WRITE will write enough extra
words (generally '"garbage™) to complete the last 320-word physical
record. These routines initiate direct inputfoutput transmission between
core memory and the tape or disc unit; there is no buffering.

Attempting to read or write beyond the physical End-of-File will

cause the routine to complete the operation up to the End-of-File, and

AL,5,DISC READ/WRITE.2

then exit through the EOF,EXIT lsbel,

ALARMS

DISC, READ

RUN ERROR

RUN ERROR
RUN ERROR

RUK ERROR
RUN ERROR

AND DISC,WRITE give the same error wmessages, ad follows:

REWR1:

RWRZ:
RWR3:

RWR4:
REWRS:

The specified Logical File Type has not been
pre-assigned or agsigned by AND or by AND.FILE,
4 negative number of words has been called for.
The FIRST,LOC address lies outside user's
Memory.

LF.TYPE 18 out of range: 1 = LFIYPE = 19.
DISC.WRITE has been asked to write on a file

which ig marked "read-only".

AL.5 .HOLLEROUT,]

PROCEDURE SPECIFICATTON
procedure HOLLER,OUT (LF,TYPE);

value LF,TYPE ; integer LF.TYFE;

OR
procedure HOLLER,OUT (LF.TYPE, POINTER):
value LF,TYPE; integer LF.TYPE, POINTER;
PURPOSE

HOLLER.OQUT sets switches which cause subsequent Hollerith print images
to be appended to the disc/tape file with Logical File Type = LF,TYPE.
The output file selected by HOLLER.OUT is referred to as the '"secondary
output" file. When a secondary output file has been selected by HOLLER.OUT,
each execution of an "E" or '"W' instruction in an ALGOL print statement
(or a "W" instruction in an ALGOL read statement) copies the first 80
characters of the output line, followed by a four character serial number,
into the secondary output file as the next 84-character image.

A Boolean variable PRINT.OR.NOT, global te HOLLER.OUT, determines
whether or not the print image will be transmitted to the "primary"” output
destination(s) (the LP12 printer and/or teletype output file) in additiom

to the secondary file.

PARAMETERS

LF.TYPE = The Logical File Type to be selected as the secondary
output file. If another secondary file is currently
selected, then a Hollerith End-of-File image will auto-
matically be written as the next image in this latter
file, and its image pointer will be saved with the
Logical File Type. Then:

If IF.TYPE lies in the range 1 = LF.TYPE = 19,

the file associated with LF.TYPE will be selected as
the secondary output file,

AL, 5.HCLLEROUIT, 2

If LF.TYPE = O, no secondary file will be
selected; all subsequent print images will be
directed to the primary output destination,

regardless of the truth value of PRINT.QR.NOT.

If 1 = LF.TYPE = 19 then:

POINTIER =

If LF,TYPE = 0
POINTER =

An arithmetic expression whose value is the serial
number of the first image to be appended to the
secondary file. If POINTER is omitted, then the
first image written will be the next after the
lasr Image written during the most recent selectic
of this LF.TYPE by EOLLER.OUT: however, if HOLLER,
or HOLLER,OVER have alsc selected the same LF.TYPI
then the rule is more complex (see Chapter 6g).
LF.TYPE has not been previcusly selected during t}
tun, POINTER = 1 will ke assumed if POINTER is
omitted.

then:

An arithmetic variable which will be set equal to
the serial number of the EOF image written into

the previously selected file.

PRINT.OR.NCT = A Boolean variable global to HOLLER.OUT. Th

user must declare the weriable PRINT.COR.NOT in hi

. outer-most block. Its value can be changed by th

METHOD

wain program to turn primary ocutput primting on
{true) or off (false) without czlling HOLLER,OUT
again, PRINT,OR,NOT is ignored when no secondary

gutput file is selected.

See Chapter 6g for complete discussion.

ALARMS
RUN ERROR
RUN ERROR -

RUN ERROR
RUN ERROR -
RUN ERROR

1

USE

Before

AL.5.HOLLEROUT.3

HOT1: LF.TYPE < 0 or LF.TYPE > 19.

HOT2: LF.TYPE = 0, and there is no secondary file currently
selected.

HOT3: Logical File Type LF.TYPE has no file assigned to it.

HOT4 POINTER < 1, or beyond the physical End-of-File.

HOTS5: Attempt to write on file marked read-only (i.e.,

another user's file).

an ALGOL program using HOLLER.OUT terminates executiom, it

must call HOLLER,QUT(0) to write out the last physical record of the last-

used secondary output file; a Hollerith End-of-File image will be written

onto the file at this time. If the programmer fails to do this, he will

lose up to the last 16 card images.

AL.5.HOLLEROVER, 1

PROCEDURE SPECIFICATION
procedure HOLLER,OVER (LF.TYPE);
value LF,.TYPE;

inteper LF,TYPE;
OR
procedure HOLLER.OVER (LF.TYPE, POINTER);
value LF.TYPE;
integer LF,TYPE, POINTER;

PURFOSE

HOLLER,OVER is basically the same as HOLLER.OUT, While HOLLER.OUT
appends Hollerith output images to a file, however, HOLLER,OVER allows
the user to alter ("overwrite")} any individual card images in the middle
of an existing AND file (which may have been created originally by AND
or by HOLLER.OUT).

METHOD

HOLLER,OVER differs from HOLLER.OUT in two ways:

(1) HOLLER,OVER does not write a Hollerith End-of-File image onto
the previously selected secondary record. HOLLER,OVER writes
an End-of-File image only if an attempt is made to write on
the last image of the physical file.

(2) HOLLER.OVER reads each block of the file as it currently exists

into the output buffer before new images are entered,

PARAMETERS

See AL.5.HOLLER.OQUT.
ALARMS

See AL.S5.HOLLER.OUT.

ERRATA

Two minor features of the HOLLER,OUT and HOLLER.OVER routines do
net yet function as described in Chapter 6g. These features are as

follows.

(1} HOLLER.QUT (and -« .OVER) do not yet use the complete ANR
serial numbering system for serial numbers > 9999; instead,
these routines now supply purely numeric 4-digit serlal
numbers, modulo 104. See Section I of Chapter bg.

(2} Page headings, run error messages, and DEBUG.PRINT cutput
will appear in an open secondary output file as well as in
the primary output file, See Section V B of Chapter 6g.

Both these features will soon be corrected to correspond to Chapter 6g.

AL.6h.1
CHATTER 6h

Storage Allocation

Algol programs go through 3 phases: compilation of the program,
loading and relocation of all relocatable subroutines, and rumning of
the program. The same area of memory may be used for differeat pur-
poses at the three different times. It is necessary to have some
understanding of this storage allocation to understand how much space
is available for program and for data, and to understand how this
space can be expanded. On page AL,6h.Z is 2 memory map showing storage
allocation at the three times. A vertical arrow (t or |} indicates an
area of storage which may expand to the next horizomtal line. Opposing
vertical arrows (:) indicates areas of storage which may expand until
they meet. A vertical arrow terminated by a horizontal line indicates
that the exact upper {(or lower} bound of the area is different for each
program,

At the end of each Algol program the "words" printed is the total
number of words which wouid be dumped if the program were dumped as a
segment - the space from A& to B on the memory map. Call this number NWRDS.

Since the total space available for this information and for data is
C - A = /56720 = 24016, locations

the total space available for data {scalars, arrays, own scalars, own
arrays) Ls 24016, - NWRDS, Let the space required for WHAT labels be
NWHAT. Then the space originally available for a preogram and for WHAT

labels is
E - D= /27630 = 12384, locations

The total space permitted the program Is thus 12384, - NWHAT. Deing
"Release WHAT" and "Release Symbolic library" increases the program space

to
F - D = /32030 = 13336, locations.

Changing the number of abcons and adcons changes the location of D
and so changes the amount of space available for the program. The system
statement "n ABCONS", which is described in detail in Chapter 4, causes

D to be set to G + 2n. Since n is imitially 200, D is G + 400,

AL.6h.2

RELOCATE

COMPILE RUN
17777
MONITOR
73000
SUBROUTINE
RELOCATOR e
FIXED SUBROUTINES
OWN SCALARS
RELOCATOR
TRANSLATOR
ARRAYS
A SCALARS AND
43200 @ STATEMENT
SYMBOLIC LIBRARY RELOCATABLE TEMPS
DIRECTORY
42600 SUBROUTINES
PROGRAM
WHAT AND
41000 @ RELOCATABLE
WHAT'S LABEL SUBROUTINES
TABLE PROGRAM

Altered by
SY Abco
(11150)

PROGRAM

\/""

AN

s

ABCONS

AND

ADCONS

SYSTE

M CONSTANTS

MONITOR

® 6 O

(All addresses are octal)

AL.7a.l

Revised Report on the Algorithmic Language
ALGOL 60

TPETER WATR (Fdifen)

I W- BACKIIS O KATZ H. RUTISHATISER I. H. WEGSTEIN
F. T.. BATIER I MCCARTHY K. SAMELSON AL VAN WITNGAARDEN
J. GREEN A. J. PERLIS B. VAUQUOIS L. WOODGER

Dedicared to the AMemorv of WILLLM TU RAN SKI

SUMMARY

The report gives a complete denning description ol the
international algorithmic language ALGOL 60. This is
a language suitable for expressing a large class of nu-
merical processes in a lorm sulliciently concise for direct
automatic translation into the language of programmed
automatic computers.

The introduction contains an account of the preparatory
work leading up to the final conlerence. where the language
was defined. In addition, the naotions, reference language,
publication language and hardware representations are
explained.

In the ftirst chapter, a survey of the basic constituents
and features of the language is given, and the formal
notation, by which the svnlactic struclure i3 denned, is
explained.

The second chapter lists all the basic symbols, and the
svntactic units known as identifiers, numbers and strings
arc defined. Further. some important notions such as
quantity and value are defined.

The third chapter explains the rules for forming ex-
pressions and the mceaning of these expressions. Three
different tvpes of expressions exist: arithmetic, Boolean
(Togical) and designational.

The fourth chapter describes the operational units of
the language. known as statements. The basic statements
are: assignment stalements (evalualion of a [ormula),
g0 to statements (explicit break of the sequence of ex-
ecution of statements), dummy statements. and pro-
cedure statements (call for exceution ol a closed process.
defined by a procedure declaration). The formation of
more complex structures. having statement character. is
cexplained. These include: conditional statements, for
statements, compound statements, and blocks.

[n the fifth chapter, the units known as declarations,
serving for defining permanent properties of the units
enlering inlo a process described in the language. are
defined.

The report ends with two detailed examples of the use
of the language and an alphabetic index ol delinitions.

CONTENTS

INTRODUCTION
1. STRUCTURE O THE LANGUAGE

1.1. Formalism for syntactic description
1. BASIC SYMBOLS, IDENTIFIERS, KUMBERS, AND STRINGS.

BASIC CONCEPLS.

Lelters

Digits. Logical values.
Delimiters

Identifliers

Numbers

Strings

Quantities, kinds and scopes
Values and types
ESSI0NS

. Yariables

Function designators

. Arithmetic expressions
Boolean expressions
Designational cxpressions
1. STATEMENTS

[N S N]

w
=
54

P

Bt be o= A 98 -1 O ke bw b —

Wy W

th

4.1. Compound statements and blocks

4.2. Assignment statements

4.3. Go 1o stalements

4.4. Dummy statements

4.5. Conditional statements

4.6. For stalements

4.7. Procedure statements
5. DECLARATIONS

5.1. *Type declaration®

5.2. Array declarations

5.3. Switch declarations

5.4. Procedure declarations

EXAMPLES OF PROCEDURE DECLARATIONS

ALTHABETIC INDEX OF DEFINITIONS OF CONCETTS AND

SYNTACTIC LNITS

This report was published

gimul-

tanecusly in the Ceoemmunications
of the acM, 6, No. 1 (1963), 1-17,

the Numerische Mathematik,

Computer Journal.

and the

AlL.7a,2

MVISED ALGOL 60

INTRODUTCTION

Buckegrotnd

Alter the publieation of o prelimisary reporl. on the
algorithimic lasgurge Avcon, s prepased al o conference
in Zindeh in 1958, mueh interst in the Atoon lnguage
develapmal,

As o oresnlt of ag iforieal sreecting beid ot Maing in
Novemlwr 1058, sheit [orty terested persens Trom
several Furopean eodidries Bekl ane Aroo, inplementas-
tian condercuee in Copenbagen in Febrmry 1939, A
“hardware group't was Bsrmed for working conperdively
right sdewn to the level of the paper inpe cole. This
conferenen also Jod to the pahlieatinn by Reégneeentralen,
Copendiagen, of qu ALGOE Buetfetin, edited by Peter
Kaur, which serveld a5 a forin. for Turthor diseassion,
During the dimse 1939 1CHE Conlerenee in Paris soveenl
meetings, both Tormel and il ones, were hold.
These nweetings revealed some soisuncerdaudings as
to the intent of the group which was primarily responsible
for 1he (ormnlation of the lunguage, Hul al the rame time
midde it elear that (heee exists o wide appreciation of the
effurt involvrd, As o result of the disenssdoes it was de-
cidedl tr holed ancinteriitionad mecting in Jannacy 19660
for improving the Autoen langaage and prepering o final
report. At o Moaropean Aveon Conferenss in 1aris in
Naovember 165 which was attonded by about Gty poople,
seven Juropean representalives were solected to atbend
the January 19650 Conference, wnd they tepresent the
following organizations: Asweintion Frangaise Je Caleul,
Writish Compiter SBovicty, Gesellschaft fiir Angowandtc
Mothematik nnd Mechangk, and Bederlands Reken-
marchine Genootschup, The seves representatives held o
fual prepactory menting at Mainz in Deecnther 1950,

Meanwhile, in the United Siates, anyone who wished to
stiggest. changes or eorrections to Avtol was requested to
send his comments to the Communications of the ACM,
where they were published. These comiments then beeame
the hasis of ronsideration for changes in the Avcon lan-
guage. Both the Saank amd USLE organizations estab-
lished Avgor working groups, and both organizativns
were teprsentnd on the ACM Committee on Progrm-
ming Languagen. The ACM Committee met in Washing-
ton in Nevember 1950 and considerced ol comments on
Avcon ihat had beei sent to the ACM Commundcattins,
Alsa, seven represenintives were selectesd Lo attend the
Jonuary 1960 interontionsl conferenee. These weven
representatives held a final preparatory mecting in Boston
in Decembeyr 158,

Januury 1960 Conference

The thirtoan representatives,® from Denmark, Eaglamd,
Franee, Giermany, Tlollud, Nwitzorland, and the United
States, ronfereed jn Paric feom Janusry U to 16, TN,

V'ricr to this mecting a completely new. dralt report was
worked out from the predintinary report and the recom-
mendations of the prepamdory mectings by 1"cler Noor

nnied the sonferenee mikopted this new Tonn as the lasis (o
its report, The Conference then proeesided ta work Tor
sgreetenl on each item of the report. The prosent. report,
toprosents Waion of the Commilees sonoepls and the
inberseetion af ils agreoments,
April 1962 Conferenee [lidited by M, Woodger|

A merting of some nf the anthoes of Ausor, G0 was held!
on April 2 3, 192 in Roe, Taly, theoogh the Teeilities
andl eourtesy of the Trfernational Compitation Centre,
The following were present:

Asmthars Adagers (ibsevyrr
I*. o Baeere M, I'ant W. L. vah der 'l
J. fireen L. irraneindti [Chiirran, TFIP
C. Kuiz P.E Tgermipn TE: 2.8 Warking
L Kengi Gironp ALLGOLY
Irepreacading J. W
Thrkiia)

" Nuwr

K. samelaon

J. H. Wegnlein

A, van Wiingannlen
M. Wonedper

The purpose of the mecting was to corrcet known
arvors 1, nttempt $o climinate oppareat smibiguitics in,
and othorwive cladfly the Aweorn 60 leport, Extensions
o the language wore not considernd at the ineeting.
Various praposgls for eorrection and clarificalion Chal
were snbmitted by dnlerested pariics in response to the
Questionnaire in ALGOL Bufictin Mo, 14 were wsed g2 5
guide.

This report* eonstibiles e supplement to the Aucon 60
Iteport. which should resolve 2 number of diffiendtics
thercin. Naot all of the guestions raised concerning the
original report could be resolyed, Wather than risk hastily
drswn conrhisions on a pumber of sultle points, which
might creale new ambigaities, the committee decided to
reporl. only thoze points which they unankmously felt
could be stated in clear and unombiguons fashion,

Questivis coneerned with the foliowing areas arve lefi,
for further consulemtion by Waorking Group 2.1 of IFIP,
in the expectation dhal. owrrent work on advaneed pro-

* [lorcon's Nork, The presenl editinn follima Lhe 1ext which
wad approved by tho Couneil of TFTP AN Dosgh i ar . elear Trom
thee Tont rowdigedicnts, 4l prosensl. vession i dhe origine] report uf Lhe

Jatunry 1 comfeoenee mordificd nocomfing 0 the ngreoments
renched during Vhe April 1962 eonferenee, Thus the report imen.

;. Beegmiilller
. L. Utinh

*. Linnedine

 bioned hene i ingorporated in (e prewent version, The modifcn-
!

tiona Lonich e nriginal repoert o Lhie ToHowing sectionns: Chnnges
af text: 1 with Gmlaede, 2.0 fonlaote; 23, 2,7, 3003, 3042, 4.1.3;
A2 02 430 TS AT ATa N 47561, 4754, 174,
5:5.3.3;5.3.5; 5.4.5; 544; 545 Changer of gyntax: 3415 4.1.0;
42.0; 451 ‘

1 Prelipmioney poproel—TInternadional Algebraic Tanguagn.
Comm. ACH I, 12 {19h%), B.

' Keport on the Mgocithmie Tnngunge ALGOL Dy the ACM
Commiliee on Progrsmming Latgnages aml the CGAMM Cian-
mittee o0 Progeapwming, #oitaal by AL 3. Vorlin and K, Svnciron.
Muwm. Mtk | (ID6DY, 41-1H},

*Willian LTuranski of U American groap was killed by an
mtibeinmbvile Jud, prioe Lo the Jaounry 198 Coonfeecnen.

FaY

£

gramming languages will lead to better resolution:

1. Bide effects of functions

2. The call by name concept

3. own: static or dynamic

4. For statement: static or dynamic

5. Confliet between specificetion and declaration

The authors of the Avucon 60 Report present at the
Rome Conference, being aware of the formation of a
Working Group on Argou by 1P, accepted that any
collective responsibility which they might have with
respect to the development, specification and refinement
of the ALcou language will from now on he transferred to
that body. '

This report has been reviewed by IFIP TC 2 ou Pro-
gramming Languages in August 1962 and has been ap-
proved by the Council of the International Federation
for Information Processing.

Ag with the preliminary AvLgoL report, three different
levels of language are recognized, namely a Reference
Language, a Publication Language and several Hardware
Representations.

REFERENCE LANGUAGE

1. It is the working language of the committee.

2. It is the defining language.

3. The characters are determined by ease of mutual
understanding and not by any computer limitations,
coders notation, or pure mathematical notation.

4. It is the basic reference and guide for compiler
builders.

5. It is the guide for all hardware representations.

6. It is the guide for transliterating from publication
language to any locally appropriate hardware representa-
tions,

AL .7a.3

REVISED ALGOL 40

7. The main publications of the ALcor language itself
will use the reference ropresentation,

PusLicaTion LANGUAGE

1. The publication language admits variations of the
reference language according to usage of printing and hand-
writing (c.g., subscripts, spaces, exponents, Greek letters).

2. Tt is used for stating and communicating processes.

3. 'The characters to be used may be different in
different countries, hut univocal correspondence with
reference representation must be secured.

Hanpwank REPRESENTATIONS

1. Each one of these is a condensation of the reference
language enforced by the limited number of characters on
standard input equipment.

2. Each one of these uses the character set of a particu-
lar computer and is the language accepted by a translator
for that computer.

3. Each one of these must be accompanied by a special
set of rules for transliterating from Publication or Refer-

ence language.

For transliteration between the reference language and -
s language suitable for publications, among others, the
following rules are recommended.

Publieation Language

Lowering of the line. between the
brackels and removal of the
brackets

Rauising of the exponent

Any form of parentheses, brackets,
braces

Raising of the ten and of the follow-
ing integral number, inserting of
the intended multiplication sign

Reference Language
Bubseript bracket []

Expenentiation 1
Parentheses ()

Basis of ten 1

DESCRIPTION OF THE REFERENCE LANGUAGE

1. Structure of the Language

As stated in the introduction, the algorithmic language
has three different kinds of representations——reference,
hardware, and publication—and the development de-
scribed in the sequel is in terms of the reference repre-
sentation. This means that all objects defined within the
language are represented by & given set of symbols—and
it is only in the choice of symbols that the other two
representations may differ. Structure and content must
be the same for all representations.

The purpose of the algorithmic language is to describe
computational processes. The basic concept used for the
description of calenlating rules is the well-known arith-
metic expression containing as constituents numbers, vari-
ables, and functions. From such expressions are com-
pounded, by opplying rules of arithmetic compeosition,

Was sich Gberhaupt sagen ISsst, lhsat
sich kiar sagea; und woven man nicht
reden kann, dartber muss man schweigen.
Lupwio WiTraENsTEIN.
self-contained units of the language—explicit formulae
—called assignment statements.

To show the flow of computational processes, certain
nonarithmetic statements and statement clauses are
added which may describe, e.g., aliernatives, or iterative
repetitions of computing statements. Since it is necessary
for the function of these statements that one statement
refer to another, statements may be provided with labels.
A sequence of statements may be enclosed between the
statement brackets begin and end to form a compound
statement.

Statements are supported by declarations which are not
themselves computing instructions but inform the trans-
lator of the existence and certsin properties of objects
appearing in statements, such as the class of numbers
taken on as values by a variable, the dimension of an

AL.7a.4

REVISED ALGOL 40

array of numbers, or even the set of rules defining a func-
tion. A sequence of deelarations followed by a sequence of
statements and enclosed between begin and end con-
stitutes a block. Every declaration appears in a block in
this way and is valid only for that block.

A program is & block or compound statement which is
not eontained within another statement and which makes
no use of other statements not contained within it.

In the sequel the syntax and semantics of the language
will be given.t

1.1. FormaLisM FOR SynTacTic DEscripTiON

The syntax will be described with the aid of metalin-
guistic formulae.® Their mterprptatmn is best explained
by an example

tab) 1i= (| [] {ab) (| {ab}{d}

Bequences of characters enclosed in the brackets () repre-
sent metalinguistic variables whose values are sequences
of symbols. The marks ::= and | (the latter with the
menaning of or} are metalinguistic connectives. Any mark
in a formula, which is not a variable or a connective,
denotes itself (or the class of marks which are similar to it).
Juxtaposition of marks and/or variables in & formula
signifies juxtaposition of the sequences denoted. Thus the
formula above gives a recursive rule for the formation of
velues of the variable (ab). It indicates that (ab) may
have the value { or { or that given some legitimate value
of {ab}, another may be formed by following it with the
character (or by following it with some value of the vari-
able (d). If the values of {d) are the decimal digits, some
values of {ab) are:

[0 @a7(

{12345(

([

86
In order to facilitate the study, the symbols used for
distinguishing the metalinguistic variables (i.e. the se-
quences of characters appearing within the brackets {)
as ab in the above example) have been chosen to be words
deseribing approximately the nature of the corresponding
variable. Where words which have appeared in this manner
are used elsewhere in the text they will refer to the corre-
sponding syntactic definition. In addition some formulae
have been given in more than one place.

Definition:

{empty) :=
(i.e. the null string of symbols).

1 Whenever the precision of arithmetic is stated as being in
general not specified, or the outcome of a certain pracess is left
undefined or said to be undefinod, this is to be interpreted in the
sense that a program only fully defines a computational process
if the aceumpnnying information apecifies the precision assumed,
the kind of arithmetic assumed, and the course of action to be
taken in all puch cases as muy oceur during the execution of the
computation.

+CI, J: W. Backus, The syntax and semantios of the proposed
internationnl aigebrale language of the Zirich ACM-GAMM
conference. Proe. Internat. Conf. Inf. Proe,, UNE‘SCO Paris,
June 1959.

2. Basic Symbols, Identifiers, Numbers, and
Strings. Basic Concepts.

The reference language is built up from the following
baste symbols:

(basi¢ symbol) ::= ({letter)|(digit}{logical value)|{delimiter}
2.1. LETTERS

(etter) ::= ajblcldle|fIglh[ili (k) imnlo|plalrls|tlulv|w|ziylef
A|B|C|DIE|FIG\H || K |LIM N0\ PIQIRISITIV|VIW|X| Y| 7

This siphabet may arbitrarily be restricted, or extended
with any other distinctive character (i.e. character not
coinciding with any digit, logical value or delimiter).

Letters do not have individual meaning, They are
used for forming identifiers and strings® (cf. sections 2.4.
Identifiers, 2.6, Strings).

2.2.1. Diarrs
(digit) :r= 0[1/2|3/4|5/6!7|8(9

Digits are used for forming numbers, identifiers, and
strings.

2.2.2. Logicas VALUES

{logical value) ::= true|false
The logical values have a fixed obvious meaning,.
2.3. DELIMITERS

(detimiter) ::= (operator)|{separator}|{bracket)|({declarator)|
{specificator)

(operator) ::=m (arithmetic operator}|({relational aperator)
{logical operator)|{sequential operator}

(arithmetic operator) ;= +|~[X|/|+ |1

(relationnl operator) 1= <] |=[Z >

{logieal operator) ;1= =|DN|A|~

{sequential operator) ::= go tolif/then|else|for|/do”

{separator} ;1= ,|.|iw]:|;|:=|u[step|until|while|comment

(bracket) :z= (|){[]]|*}'[begin|end

{declarator} ::= own|Boolean|integer|real|array|awitch|
procedure

{apecificator) ;= string|label|value

Delimiters have s fixed meaning which for the most part
is obvious or else will be given at the appropriate place
in the sequel.

Typographical features such as blank space or change
to & new line have no significance in the reference language.
They may, however, be used freely for facilitating reading.

For the purpose of including text among the symbols of

¢ It should be partieularly roted that throughout the reference
language underlining [in typewritten copy; boldface type in
printed copy—Ed.] i used for defining independent basic symbnls
(see sections 2.2.2 and 2.3), These are underatood to have no rela-
tion to the individual letters of which they are composed. Within
the present report [not including headings—Ed.), boldface will be
used for no other purpose.

7 do is used in for statemenis. It has no rvetation whatsoever
to the do of the preliminary report, which is not mcluded in
ALGOL 60

¥

a program the following “'comment” conventions hold:

The sequence of basic symbola: 8 equivalent (o

; comment {any sequence not containing ;); H
begin comment {any sequence not containing ;); hegin
end (any sequence not containing end or ; or else) end

By equivalence is here meant that any of the three struc-
tures shown in the left-hand column may be replaced, in
any occurrence outside of strings, by the symbol shown on
the same line in the right-hand columm without any
effect on the action of the program. It is further understood
that the comment structure encountered first in the text
when reading from left to right has precedénce in being
replaced over lafer structures contained in the sequence.

2.4. IDENTIFIERS
2.4.1. Syntax

(identifier) ::= (letter)f{identifier} (letter)| (identifier) {digit}
2.4.2. Examples

1

Soup

Viia
a34kTMNa
MARILYN

2.4.3. Semantics .

Identifiers have no inherent meaning, but serve for the
identification of simple variables, arrays, labels, switches,
and procedures. They may be chosen freely {(cf., however,
section 3.2.4. Standard Functions).

The same identifier cannot be used to denote two
different quantities except when these quantities have
disjoint scopes as defined by the declarations of the pro-
gram (cf. section 2.7. Quantities, Kinds and Scopes, and
section 5. Declarations).

2.5. NuMBERS
2.5.1. Syntax

(unsigned integer) ::= (digit}|{unsigned integer){digit)

({integer) ::= (unsigned integer)|+ {unsigned integer}|
— (unsigned integer)

{decimal fraction} ::= _(unsigned integer)

{exponent part) ;= w{integer)

(decimal number} ::= (unsigned integer)|{decimal fraction}|
{unsigned integer){desimal fraction)

{unsigned number) ::= {(decimal number)}{exponent part)|
{decimal number }{exponent part}

{number} ::= {unsigned number){+ {unsigned number)|
— {unsigned number)

2.5.2. Examples

0 — 20084 — 08310 —02
177 +07.43108 - 107
5384 0.34w+10 10—4
+0.7300 2—10t +wt+b

2.5.3. Semantics

Decimal numbers have their conventional meaning,
The exponent part is a scale factor expressed asan integral
power of 10.

AL.7a,5

REVISED ALGOL 60

2.5.4. Types
Integers are of type integer. All other numbers are of
type real (cf. section 5.1. Type Declarations).

2.6. STrings
2.6.1. Syntax
{proper string} ::= {(any sequence of hasic aymhols not contrining
" or ')|{empty}
{open string) ::= {proper string}|‘{open string}’|
{open atring){open string)
(utring) = “{open string}’
2.6.2. Examples

Sk, — [A=/ T
‘.. This L is U a U ‘string”’
2.6.3. Semantics
In order to enable the language to handle arbitrary
sequences of basic symbole the string quotes * and * are
introduced. The symbol u denotes a space. It has no
significance outside strings.
Strings are used as actual parameters of procedures
(cf. sections 3.2. Funection Designators and 4.7. Procedure
Statements).

2.7. QuaNTiTiEs, KiNps AND Scores

The following kinds of quantities are distinguished:
simple variables, arrays, labels, switches, and procedures.

The scope of a8 quantity is the set of statements and
expressions in which the declaration of the identifier asso-
ciated with that gquantity is valid. For labels see section
4.1.3.

2.8. VaLues anp Types

A value is an ordered set of numbers (special case: a
single number), an ordered set of logical values (special
case: a gingle Jogicn] value), or & label,

Certain of the syntactic units are said to possess values.
These values will in general change during the execution
of the program. The values of expressions and their con-
stituents are defined in section 3. The value of an array
identifier is the ordered set of values of the corresponding
array of subseripted variables (cf. section 3.1.4.1).

The various “types’’ (integer, real, Boolean) basically
denote properties of values. The types associated with
syntactie units refer to the values of these units.

3. Expressions

In the language the primary constituents of the pro-
grams deseribing algorithmic processes are arithmetic,
Boolean, and designational expressions. Constituents of
these expressions, except for certain delimiters, are logical
valies, numbers, variables, function designators, and
elementary arithmetic, relational, logical, and seguential
operators. Since the syntactic definition of both variables
and function designators contains expressions, the defin:-
tion of expressions, and their constituents, is necessarily
recursive,

{expression) ;= {arithmetic expression)|{Boolean &xpression)|
{designalional expression)

——— e e

AL.7a.&

REYISED ALGOL 60

3.1. YaARIABLES
3.1.1. Syntax

{vatinble {dentifer) ;= Jideniifier)

{wimple veriable) ::= (warable identifer)

(subaeript expression} = {arithmeile expression

{auhseript, Het) := (kubacript cxpression}| aubseript list),
{wubscript expression }

(mrrey identifier) ::= {identiker}

(subseripted wvariabla) = {array identifier}[{subeeript list}]

{variable} = {simple vAriable)| (aubseripted variabla)

3.1.2. Examples

epailon
detik
a)?

Q7.2
zlrin{nx pi/2} QB 41

3.1.3. Semantica

A variable is & designation given to & single value, Thie
value may be wsed in expressions for forming other values
and may be changed at will by means of ausignment state-
ments (section 4.2). The type of the valun of & particular
variable ia defined in the declarstion for the wariable
ituelf {cf. section 5.1. Type Doclarations) or for the eorre-
spanditg array identifier (ef. section 5.2, Array Declars-
tions}. :

1.1.4, Subscnpts

A.L.4.1. Subeeripted varisblen designate values which
are componenta of multidimensional arrays {of, asction
5.2 Array Declarations). Esch arithmetic expression of
the subscripl list occupies one subscript position of
the subseripted variable, and is called a subseript, The
cumplete list of subacripta 18 enclosed in the subseript
brackets [). ‘he array component referred to by a sab-
scripted varishle s specified by the actual numerical value
of its aubscripts (el. section 3.3. Arithmetic Expressions).

3.1.4.2. Each subscript pesition acts like a variable of
typc integer and the evalyation of the submeripl s under-
stood to be equivalent to an assignment to this fictitions
varigble (cf, section 4.2.4), The value of the subseripled
variabie is defined only if the value of the subseript ex-
pression is within the subscript hbounds of the array {(of.
section 3.2, Array Declarations),

3.2, I'uxcermon DESIGNATORS
3,2.1. Hyntax

{pracedure identifier) ::= (identifier}
{actunl parameter} = (string)| oxprossion | {array identifier)
{awitch identifier bi{procedura ldentifer)
fletiee etring) o= (letiec)} {letter atring } (letter)
(parameter delimitery ;= [} ilatter alring} :{
{actual paramcter lisl) ::= {actusl parameter}
{actual porameter list) (parameter dalimiter}
tactun] parameter} C
(actual purameter part} cte {ampty)|{{sctusl paramater list})
{funciion desighutor) ::= (procedure identifior?
{actusl parnmeter part’

1.2.2, FExamplen
sin{n—b}
S{pdam)
o
8(a- &) Temperature :{F)Presaurs:(F)
Compriel’ ;= "1Black:(Q)
1.2.3. Semanties
Function designators define single numerival or Jogical
values, which regult through the application of given wets
of rulez defined by & procedure declaration (of. section 5.4.
Procedure Declarations) to fixed sota of actusl param-
eters, The riles governing specification of actusl param-
eiers are given in seetion 4.7, *rocedure Statements. Not
every procedure deelaration defines Lhe value of & function
designator,

1.2.4. Standard functions
Certain idemtifiers should be reserved for the standand
innetions of analysis, which will he expressed as procedures.
It is recommendesd {hat this reserved list should contajn:
aha{T) for the madulug (bsolute valoe) of the value of the
) cxpression B
s#ign{E) for the sign of the valus of E(41 for E>0, 0 for E~0Q,
—1Inr E<Q)
sgri(lt) for the equare root of the value of B
n(E) for the sine of the value of E

g (o} for the aogine of the value of E

oreten (B for the principal value of the arctangent of the value
of &

tn(F) for the nabaral logarithm of the yalue of E

exp(E) for the exponential funclion of the value of B (¢B),

‘These functions are all understood to operate indifferently
on arguments both of type real and integer, They will
all ¥ield valuca of iype real, except for sipn(E) which will
bave valuea of type integer. In s particulsr representa-
tion these functions may be aveilable without explicit
declarations (cf. section 5. Declarations).

1.2.5. ‘Tranafer functions

It i understood Chat Lransfer functions between any
pair of quantitira and expressions may be defined. Among
the standard funetions it is recommended that there be
one, namely,

entier (B},

which ‘‘transfers’’ an expression of real type to one of
integer type, and assigns to it the value which in the
largest integer not greater then the value of E.

31.3. AmruMETIc EXPRESSIONR
3.3.1. Syntax

{adding operator) 1= +|—
{(multiplying operator} 1= % /| +
(primaty} ;= {unsignsd number)|(variable}|
(funation designator)|{{arithmetic cxpresmiob })
Hueloe) o= (primary ¥ {factor)t (primary }
fterm) sza (faator)|{term } (multiplying operator) {faslor)
{simple writhsnetie expreasion) = (torm)|
{adding operator){term }| imple arithmotic expreasion}
{adding operator)(term)}
{if clanss) = 3T (Boolearn expression jthen
{arithmetic expression} 1= (wimple erithmetic expression]|
il clause jésimpie arithmetic sxpromaion jelae
{mtlthmeti¢ expression) '

3.3.2. Examples
Primaries:
7.30410-8
aum
wli+2,8]
cos(y+2X3)
{a—3/y+uvui8)

Factors:

omega
sumlcos(y+zX3)
7.30410—Btu(i 42,811 (a—3/y+rulB)

Terms:

U
omega X sumlcos(y+2%3)/7.39%0—8Twli+2,8]t
(a—3/y+vul8)

Simple arithmetic expression:

U — Yu+tomegaXx sumleos(y+:X3)}/7.304 —BTwli+2,8}
{a—3/y+ovul8d)

Arithmetic expressions:

wi u—-Q{S+u)12

if g>0 then S+3XQ/A else 2X84+3Xq

if 6<0 then U+V else if aXb>17 then U/V else if
k#y then V/U elne 0

aXstn{omegaX)

0.57ui2XalN X (N—-1)/2, 0]

{AXarctan(y)+Z)T(7+Q)

if g then n—1 else n

ifa<0 then A/R else if b=0 then B/A else 2

3.3.3. Semantics

An arithmetic expression is a rule for computing a
numerical value. In case of simple arithmetic expressions
this value is obtained by executing the indicated arith-
metic operations on the actusl numerical values of the
primaries of the expression, as explained in detail in
section 3.3.4 below. The actual numerical value of a
primary is obvious in the case of numbers. For variables
it is the current value (assigned last in the dynamic sense),
and for function designators it is the value arising from
the computing rules defining the procedure (cf. seetion
5.4.4. Values of Function Designators) when applied to
the curreut values of the procedure parameters given in
the expression. Finally, for arithmetic expressions en-
closed in parentheses the value must through & recursive
analysis be expressed in terms of the values of primaries
of the other three kinds.

In the more general arithmetic expressions, which in-
clude if clauses, one out of several simple arithmetic ex-
pressions is selected on the basis of the actual values of the
Boolean expressions {(cf. section 3.4. Boolean Expressions).
This selection is made as follows: The Boolean expressions
of the if clauses are evaluated one by one in sequence from
left to right until one having the value true is found. The
value of ‘the arithmetic expression is then the value of
the first arithmetic expression following this Boolean
{the largest arithmetic expression found in this position

AL.7a.?

REVISED ALGOL &0
is understood). The construction:

else (simple arithmetic expression)
is equivalent to the construction:
else if trne then (simple arithmetic expression)

31.3.4. Operators and types

Apart from the Boolean expressions of if clauses, the
constituents of simple arithmetic expressions must be of
types real or integer (cf. section 5.1. Type Declarations).
The meaning of the basic operators and the types of the
expressions to which they lead are given by the following
rules:

3.3.4.1. The operators +, —, and X have the conven-
tional meaning (addition, subtraction, and multiplication).
The type of the expression will be integer if both of the
operands are of integer type, otherwise real.

3.3.4.2. The operations (term)/{factor) and {term) <+
{factor) both denote division, to be understood as a multi-
plication of the term by the reciprocal of the factor with
due regard to the rules of precedence (cf. section 3.3.5).
Thus for example

a/bX1/(p—q)Xv/s
means
{aX B XTIX ((p—g) D) Xe) X (87}

The operator / is defined for ali four combinations of
types real and integer and will yield results of real type
in any case. The operator + is defined only for two
operands both of type integer and will yicld a result of
type integer, mathematically defined as follows:

a+b= sign {a/b)Xentier(abs(a/b})

(cf. sections 3.2.4 and 3.2.5).

3.3.4.3. The operation (factor)T{(primary} denotes ex-
ponentiation, where the factor is the base and the primary
is the exponent. Thus, for example,

2tntk means (2%)*

while

2T {nim) meang 2™

Writing ¢ for & number of integer type, r for a number of
real type, and a for & number of either integer or real
type, the resuli is given by the following rules:

afi If 1>0,aXaX ... Xa {i timea), of the sume type as a.
If ¢=0, if =0, 1, of the same type as a.
if a=0, undefined.
If i<0, if a0, 1/(aXaX ... Xa) (the denominator has
-1 fuctor), of type real.
if =0, undefined.
alr If a>0, exrp(rXin{a)), of type real.
If a=0, if >0, 0.0, of type real.
if r50, undefined.
It a<0, always undefined.

3.3.5. Precedence of operators
The sequence of operations within one expression is

AL.7a.8

REVISED ALGOL 60
generally from left to right, with the following additional
rules:

3.3.5.1. According to the syntax given in scction 3.3.1
the following rules of precedence hold:

firat: 1
second: X/+
third: +—

3.3.5.2. The expression between a left parenthesis and
the matching right parcnthesis is evaluated by itself and
this value is used in subsequent caleulations, Consequently
the desired order of exccution of operations within an
expression can always be arranged by appropriate posi-
tioning of parentheses.

3.3.6. Arithmetics of real quantities

Numbers and variables of type real must be interpreted
in the sense of numerical analysis, i.e. as entities defined
inherently with only a finite accuracy. Similarly, the
possibility of the occurrence of a finite deviation from the
mathematically defined result in any arithmetic expression
is explicitly understood. No exact arithmetic will be
specified, however, and it is indeed understood that
different hardware representations may evaluate arith-
metic expressions differently. The control of the possible
consequences of such differences must be carried out by
the methods of numerical analysis. This control must be
considered a part of the process to be deseribed, and will
therefore be expressed in terms of the language itseif.

3.4. BooLEan EXPRESSIONS
3.4.1. Syntax

(relational operator) 1= <|Z|=I2|>##
(relation) ;= {simple arithmetic expression)

(relational operstor }{simple arithmetic expression)
{Boolean primary} ::= (logical value}| {variable)|

{function designator)|{relation}|({Boolean expression})
{Boolean secondary) ::= {Boolean primary }| - {Boolean primary }
{Boolean factor) ::= {(Boolean secondary)|

{Boolean factor) A {Boolean secondary)
{Boolean termy) ::= (Bonlean factor}|{Boolean term}

W {Boolean factor) -
{implication} ::= (Boolean term}| (implication)2 {Boolean term)
{simple Boolean} ::= {implication}|

(simple Boolean }= (implication)
(Boolean expression} ::= {simple Boolean }|

(if clause }{simplec Boolean) else (Boolean expression)

3.4.2. Examples

= —2

¥Y>VVza<yg

at+b > —65 A z—d > ql2

pAg V z#y

g= aaAbA— cVdVeD f

ifk<! then s>welse hSc

if if if & then b elpe ¢ then d else f then g else k<k

3.4.3. Semantics

A Boolean expression is a rule for computing a logical
value. The principles of evaluation are entirely analogous
to those given for arithmetic expressions in section 3.3.3.

3.4.4. Types '

Variables and function designators entcred as Boolean

primaries must be declared Boolean (cf. section 5.I.
Type Declarations and scction 5.4.4. Values of Function
Dcsignators).

3.4.5. The operators

Relations take on the value true whenever the corre-
sponding relation is satisfied for the expressions involved,
otherwise false.

The meaning of the logical operators— (not), /A (and),
V (or), D (implies), and = (equivalent}, is given by the
following function table.

bl false false true true
l32__ __ false true false true
bl true true false false

blAb2 false false false true
blV/b2 f(alse true true true
b12b2 true true false true
bl=b2 true failse false true

3.4.6. Precedence of operators

The sequence of operations within one expression is
generally from left to right, with the following additional
rules:

3.4.6.1. According to the syntax given in section 3.4.1
the following rules of precedence hold:

first : arithmetic expressions according to sestion 3.3.5.
second: < Sz >

third: -
fourth: A
fifth: \
aixth: o
seventh: =

3.4.6.2. The use of parentheses will be interpreted in
the sense given in section 3.3.5.2.

3.5. DESIGNATIONAL EXPRESSIONS
3.5.1. Byntax

{label} ::= {identifier }{ {unsigned integer)

(switch identifier) ::= (identifier)

({awitch designator) ;1= (switeh identifier)[{subscript expression }]

{(simple designational expression} ;1= {label)|{switch designator}|
({designational expression))

{designational expression) ::= (simple designational expression)|
{if clause}({simple designational expression) else
{designational expression)

3.5.2. Examples

17

P9

Chooseln—1]

Town[if y<0 then N clse N+1]

if Ab<c then 17 else glif w50 then 2 else n|

3.5.3. Semantics

A designational expression is a rule for obtaining a label
of & statement (ef. section 4. Statements). Again the
principle of the evaluation is entirely analogous to that of
arithmetic expressions (section 3.3.3). In the general case
the Boolean expressions of the if clauses will select a
simple designational expression. If this is a label the
desired result is already found. A switch designator refers
to the correspouding switch declaration (cf. section 5.3.

N

Hwileh Dreclarations) and by the actual numerical value
of its sithseripl expression seleets one of the designational
expressions listed in the switch declaration by counting
these from left to right. Since the designational expression
thus selected may again be a switch designator this evalua-
tiom is obvivusly n recursive process,

3.5.4, The subseript expression

The evaluation of the subseript expression is analogous
tn that of subyeriptedd variables (ef. section 3.1.4.2), The
value of a switeh designator is defined only if the subseript
cxpression assiumes one of the positive valuee 1, 2,8, ... | n,
where n s the number of entrics in the switch list.

3.5.5. Unsigned integers as labels

Unsigned integers used as lubels bave the property that
leading zeros do not affect their meaning, eg. 00217
dengtes the same label as 217.

4, Stratements

The unts of operation within the language are called
statements, They will normally be executed consecutively
axs written, However, this sequence of operations may be
broken by go o statements, which define their suecessor
cxplieitly, awnd shortened by eonditional astatements,
which may cause certain statements to be skipped.

In order to make it possible to define & speeific dynamic
succesgion, statements may be provided with labels.

Since sequences of statements muy be grouped together
into compound statemnents and blocks the definition of
stateient mist necessarily be recursive, Also since decla-
rations, described in section 5, enter fundamentally into
the syntactin structure, the syntactie definition of state-
ments must supposc declarations to be alecady defined.

4,1, Compounp STATEMENTS AND DBLOCKS
4.1.1. Syutax

{unfabelled bagie statement) ;= (mswignment statément)|
(o Lo statement Y {dummy statement)| (procedure statement)

{basic statement} ::= (unlabelled basin statement)| ({label }:
(husie stutement)

{unconditional atatement) :'= (baaic statement)|
(compoand atatement)| (blook)

(Atatement) 1= {unconditional statement)
(conditiomal statcment)| (for statement)

{compound tail} ::= (atatement) end |{sintement) ;
(enmpotnd tail)

Mock hewd) ;= begin(declaration)| thlosk head} ;
{dcelaration}

{(mnlubelled ¢ompound) = begin {(compound tail }

(unlabetled block) 1= (block head) ; {eompound tail }

{eompound statement) ::= {uninbelled compound 3]
(Inbel }: {eompound statement

{bloek) ;= {unlabelied black ¥ {lalel)1 {blaak)

{program} = {bloak ¥ {eampound sintement)

This syntax may be illustrated as follows: Denoting arbi-
ilrary statements, declarations, and labels, by the letters
8, 17, and 1., respectively, the basic syntactic unite take
the forms:

Compound statement:

il o begln 8 ; B 3 ..8 ; Send

AlL.7a,%

REVISED ALGOL 60
Block:

121 .. begin L ; 1 ; . D ; 8 ;8 ; .8 ;

8 end

It should be kept in mind that cach of the statements S
may again be a complete compound statement or block,
4.1.2. Fxamples

Basic statements;

e = ptq
o Lo Naplea
START: CONTINITE: W = 7T.093

Compound statement:

heginxz ;=0 ; fory := 1 step 1 until » do
z .= g+ Ayl ;
if 229 then go Lo STOF elne if 2w -2 then
goto S ;
Aw: St: W 1= z+4-bob emd

Block:

Q: begin integer 1,k ; realw ;
fori ;= I step 1 until m do
for k := {+1 step 1 until m do
begin to 1= Aji, k]
Alt, &l o= Alk, 1]
Alk, §] = w end for ¢ and &
end Llock @

4.1.3. Semantica

Every block automatically introducez & new level of
nomenclature. This is reslized as follows: Any identifier
occurring within the block may through a suitable declara-
tion (cf. section 5. Declarations) be specified to be local
to the block in guestion. This means {a) that the entity
represented by this identifier inside the block has no
existence outside it, and (L) that any entity represenied
by this identifier outside the block s completely inacces-
aible inside the block.

Identifiers (except those representing labels) occurring
within a block and not being declared to this block will be
nonlocal to it, i.e. will represent the same entily inside
the block and in the level immediately outside it. A label
separated by a colon from s statement, i.e. labeiling that
statement, behaves as though deciared in the head of the
smallest embracing block, 1.e. the smallest block whose
brackets bugin and end enclose that statement. In this
context a procedure body must be congidered as if it were
enclosed by begin and end and treated as a block,

Bince a statement of a block may again itsell be a block
the concepts local and nonloeal to & block must be under-
stood recumively, Thus an identifier, which is nonlocal
to & block A, may or may not be nonlocal to the block B
in which A is one statement,

4.2, ABSIGNMENT STATEMENTS
4,21, Syntax

(left part) :=m {variable) := [(procediure identifier) :=

{left part list} :;=e (loft part)|{left part list){eft part)

(aesignmentstatement } ;1= (left partlist) (arithmetie exprension)|
(left part list \{Boolean expreasion)

AlL.7a.10

REVISED ALGOL 60
4.2.2. Examples

nH-+s

. = ploy = &
1 x= n-f-1

A s= HCv-gXS
St 2 = Z-aretan{8Xzcm)
o= OsFA%

4.2.3, Semantics

Assignment stalements serve for assigning the value of
an expression to one or several variables or procedure
identifiers. Assignment to a procedure identifier may only
oceur within the body of a proccdure defining the value of
a function designator {(cf. section 3.4.4). The process will
in the general case be understood to take place in three
steps as follows:

4.2.3.1. Any subscript cxpressions occurring in the left
part variables arc evaluated in sequence from left to right.

4.2.3.2. The expression of the statement is evaluated.

4.2.3.3. The value of the cxpression is assigned to all
the lell part variables, with any subscripl expressions
having values as evaluated in step 4.2.3.1.

4.2.4. Types

The tvpe associated with all variables and procedure
identitiers of a left part list must be the same. If this type
is Boolean, the expression must likewise be Boolean.
If the type is real or integer* the expression must bhe
arithmetic. If the tvpe of the arithmetic expression differs
[rom thatl associaled with the variables and procedure
identifiers, appropriate transfer functions are understood
to be automatically invoked. For transfer from real to
integer tvpe, the transter function is understood to
vicld a result equivalent to

anticr(E+0 §)

where E is the value of the expression. The type asso-
ciated with a procedure identifier is given by the declarator
which appocars as the first s¥ymbol of the corresponding
procedurc declaration (ef. scotion 35.4.4).

4.3. Go To STATEMENTS

4.3.1. Syntax

(g0 to stulement) go lo (designational expression)

4.3.2. Examplcs

go to 8

go to exit (n+1l

go to TWIlif /<0 then N ¢lse AfHIT

go to iIf 4b<c¢ then 17 cine gfif w<@ then 2 ¢lse nf

-

4.3.3. Semantics

A go to statement interrupts the normal sequence of
operations, defined by the write-up of statements. by
delining its successor explicitly by the value of a designa-
tional expression. Thus the next statement to be executed
will be the one having this value as its label.

4.3.4. Restriction

Since labels are inherently local, no go to statement can
lead trom outside into a block. A go to statement may.
however, lead from outside into a compound statement.

4.3.5. Go to an undefined switch designator
A go Lo statement is equivalent 1o a dummy stalement
il the designational expression is a switch designator whose
value iz undetined.
4.4 DUMMY STATEMENTS
4.4.1. Syntax
{dummy statement) == {cmpty)
4.4.2. Examples
L:
hegin ...

4.4.3. Scmantics
A dummy statement excoutes no operation. It may

s Jehn: end

serve to place a label.

4.5, CONDITIONAL STATEMENTS
4,5.1. Syntax

(il clause) =« il' {Boolean expression) 1lhen
{unconditional statemcent) ::= ({basic statcment)!
(compound siatement)!{block)
{if statement) ::— (if clause) (uncenditional statement)
{conditional statcmert) (if statement}!(if statement) else
{statement)!(if clausc)(for statement)!
(label) : (conditional statement)

4.5.2. Examples

if x># then n :« n+l

il v>& lhen }: g:= n+m else go 1o {1
if s<0V/~Q then Ad4: begin if g<v then a = »¥
else y := ZXo end
else it v>& thene :— »—g elsc ift=>8—1

then go 1o §

4.5.3. Semanlics

Conditional statements caunse certain statements 1o be
execuled or skipped depending on the running values of
specified Boolean expressions.

4.5.3.1. If statement. The unconditional statement of
an it statement will be executed if the Boolean expression
of the if clause is true. Otherwise it will be skipped and
the operation will be continued with the next statement.

4.5,3.2. Conditional statement, According to the syn-
tax two different forms of conditional statements are
possible. These may be illustrated as follows:

if Bl then SI else if 132 then 52 else 83 | S4
and

if Bl then SI else if B2 then S2 elsce if B3 then S3 sS4

Here Bl to B3 are Boolean expressions, while 81 1o 83
arc unconditional statements. S4 is the statement following
the complete conditional statement.

The execution of a conditional stalement may be de-
scribed as follows: The Boolean expression of the if clauscs
are evaluated one aller the other in sequence [rom lell to
right until one yiclding the valuc true is found. Then the
unceonditional statement following this Boolean is exe-
cuted. Unless this statement defines its successor explicitly
the next statement to be executed will be 54, 1.¢. the state-

http://AL.7a.10

ment following the complete conditional statement. Thus
the effect of the delimiter clse may be described by saying
that it defines the successor of the statement it follows to
be the statement following the complete conditional
statement.

The construction

else {unconditional statement)
is eqquivalent to
efse if true then {unconditional statement)

Ii none of the Boolean cxpressions of the if clauses is
true, the effect of the whole conditional statement will be
equivalent to that of 8 dummy statement.

For further explanation the following picture may be
useful:

Bl false B2 false

4.5.4. Go to into a conditional statement

The effect of a go to statement leading into a conditional
statement follows directly from the above explanation of
the effect of else.

4.6. For STATEMENTS

4.6.1. Syntax

{for list element} ::= {(arithmetic expression}|
{arithmetic expression) step (arithmetic expression) until
(arithmetic expression}|{arithmetic expression) while
{Boolean expression)
{for liet) ::= {for list element}}{for list) , {for liat element)
{for clause) ::= for (variable) := {for list} do
{for statement) ::= {(for clause}{atatement}|
{Ilabel): (for statement)

4.6.2. Examples

for ¢ := 1 step & until n do Alg] := Blg}
for k := 1, V1X2 while V1<N do
for j := I+G,L, 1 step 1 until N, C+D do
Afk,j] ;= B[R]

4.6.3. Semantics

A for clause causes the statement S which it precedes to
be repeatedly executed zero or more times. In addition it
performs a sequence of assignments to its controlled
variable. The process may be visualized by means of the
following picture:

Initialize ; test ; statementS ; advance ; successor

for liat exhausted

In this picture the word initialize means: perform the firs$
assignment of the for ¢lause. Advance means: perform the
next assignment of the for clause. Test determines if the
last assignment has been done. If so, the ‘execution con-

AL.7a,11

REVISED ALGOL 60

tinucs with the successor of the for statement. If not, the
statement following the for clause is executed.
4.6.4. The for list elements
The for list gives a rule for obtaining the values which
are consecutively assigned to the controlled variable. This
sequence of values is obtained from the for list elements
by taking these one by one in the order in which they are
written. The sequence of values generated by each of the
three species of for list elements and the corresponding
execution of the statement S are given by the following
rules:
4.6.4.1. Arithmetic expression. This element gives rise
to one value, namely the value of the given arithmetic
expression as caleulated immediately before the corre-
sponding execution of the statement 8.
4.6.4.2. Step-until-element. An element of the form
A step B until C, where A, B, and C, are arithmetic ex-
pressions, gives rise to an execution which may be de-
scribed most concisely in terms of additional AvcoL
statements as follows:
V:i=A ;
L1: if (V-C)X sign(B}>0 then go to element exhausted;
statement 8
V:= V4B ;
go to L1 ;

where V is the controlled variable of the for clause and
element exhausted points to the evaluation according to
the next element in the for list, or if the step-until-element
is the last of the list, to the next statement in the program.

4.6.4.3. While-element. The execution governed by a
for list element of the form E while F, where E is an
arithmetic and F a Boolean expression, is most concisely
described in terms of additional Ancon statements as
follows:
L3:vV.=E ;

if —F then go to element ethausted ;

Statement 8
go to L3 ;

where the notation is the same as in 4.6.4.2 above,

4.6.5. The value of the controlled variable upon exit

Upon exit out of the statement 8 (supposed to be com-
pound) through a go to statement the value of the con-
trolled variable will be the same as it was immediately
preceding the execution of the go to statement.

Ii the exit is due to exhaustion of the for list, on the
other hand, the value of the controlled variable is unde-
fined after the exit.

4.6.6. Go to leading into a for statement

The effect of 2 go to statement, outside a for statement,
which refers to a label within the for statement, is unde-
fined,

4.7. PROCEDURE STATEMENTS
4,7.1. Syntax

{actunl parameter) ::= (string)|{expression}|{array identifier}|
{awitch identifier)| {procedure identifier}
(letter string) ::= (letter)|(letter atring) (letter)

AlL.7a,12

REVISED ALGOL 40

{parameter delimiter) ::= |3 {letter atring:(

(actunl parameter list) ::= (netunl parnmeter)
{nctual parumeter list) {parameter delimiter)
{actunl parameter)

{actual parameter part) ::= (empty)|

- {{actual parameter list})

(procedure stutement) ::= {(procedure identifier}

(actual parameter part)

4.7.2. Lxamples

Spur (A)Order: {T)Result to: (V)
Transpose (W,v-+1}

Absmaz (AN M, Yyl K)
Imnerproduct{A [, Pu],B[(P),10,P,Y)

These examples correspond to examples given in section
54.2.

4.7.3. Semantics _

A procedure statement serves to invoke {call for) the
execution of a procedure body (cf. section 5.4, Procedure
Declarations). Where the procedure body is a statement
written in Arcor the effect of this execution will be
equivalent to the efiect of performing the following opera-
tions on the program at the time of execution of the pro-
cedure statement:

4.7.3.1. Value assignment (call by value)

All formal parameters quoted in the value part of the
procedure declaration heading are assigned the values
{cf. section 2.8. Values and Types) of the corresponding
actual parameters, these assignments being considered as
being performed explicitly before entering the procedure
body. The effect is as though an additional block embrac-
ing the procedure body were created in which these assign-
ments were made to variables local to this fictitious block
with types as given in the corresponding specifications
(cf section 5.4.5). As a consequence, variables called by
value are to be considered as nonlocal to the body of the
procedure, but local to the fictitious block (ef. section
5.4.3).

4.7.3.2. Name replacement (call by name)

Any formal parameter not quoted in the value list is
replaced, throughout the-procedure body, by the corre-
sponding actual parameter, after enclosing this latter in
parentheses wherever syntactically possible. Possible
conflicts between identifiers inserted through this process
and other identifiers already present within the procedure
body will be avoided by suitable systematic changes of the
formal or local identifiers involved.

4.7.3.3. Body replacement and execution

Finally the procedure body, modified as above, is
inserted in place of the procedure statement and executed.
If the procedure is called from a place outside the scope
of any nonlocal quantity of the procedure body the con-
flicts between the identifiers inserted through this process
of body replacement and the identifiers whose declarations
are valid at the place of the procedure statement or fune-
tion designator will be avoided through suitable systematic
changes of the latter identifiers. ’

4,7.4. Actual-formal correspondence

The correspondence between the actual parameters of

the procedure statement and the formad parametors of the
procedure heading is established as follows: The actual
parameter list of the procedure statement must have the
same pumber of entries as the formal parameter list of the
procedure declaration heading. The correspondence is
obtained by taking the entrics of these two lisis in the
same order.

4.7.5. Restrictions

¥or a procedure statement 1o be delined it is evidently
necessary thut the operations on the procedure body de-
fined in scetions 4.7.3.1 and 4.7.3.2 lead to a correct AnGorn
statement,

This imposes the restriction on any procedurc statement
that the kind and type of each actual parameter be com-
patible with the kind and type of the correcsponding formal
paramcter. Some jimportant particular eases of this gen-
eral rule are the following:

4.7.5.1. If a string is supplied as an actual parameter in
8 procedure statement or funetion designator, whose
defining procedure body is mn Aicon 60 statement (as
opposed to non-ALGoL code, cf. section 4.7.8), then this
string can only be used within the procedure body as an
actual parameter in further procedure calls. Ultimately it
can only be used by a procedure body expressed in non-
ALgoL code.

4.7.5.2. A formal parameter which occurs as a left part
variable in an assignment statement within the procedure
body and which is not called by value can only correspond
to an actual parameter which is a variable (specia! case of
expression).

4,7.5.3. A formal parameter which is used within the
procedure body as an array identifier can only corre-
spond to an actual parameter which is an array identifier
of an array of the same dimensions. In addition if the
formal parameter is called by value the local array created
during the call will have the same subscript bounds as
the actual array.

4.7.5.4. A formal paramciler which is called by value
cannot in general correspond to a switch identifier or a
procedure identifier or a string, because these latter do not
possess values (the exception is the procedure identifier of
a procedure declaration which has an empty formal
parameter part (ef. section 5.4.1) and which defines the
value of a function designator {cf. section 5.4.4). This pro-
cedure identifier is in itself a complete expression).

4,7.5.5. Any formal parameter may have restrictions
on the type of the corresponding actual parameter asso-
ciated with it (these restrictions may, or may not, be
given through specifications in the procedure heading).
In the procedure statement such restrictions must evi-
dently be observed.

4.7.6. Deleted.

4.7.7. Paramcter delimiters

All parameter delimiters are understood to be equiva-
lent. No correspondence between the parameter delimiters
used in a procedure statement and those used in the pro-
cedure heading is expected beyond their number being the

~

P

same. Thua the information conveyed by using the elabo-
rate ones is entirely optional.

4.7.8. Procedure body expressed in code

The restrictions impoeed on a procedure statement
calling a procedure having ita body expressed in non-
ALsoL code evidently cen only be derived from the charac-
teristics of the code used and the intent of the user and
thus fall cutside the scope of the reference language.

5. Declarations

Declarations serve to define certain properties of the
quantities used in the program, and to ssaceinte them with
identifiers. A declaration of en identifier is velid for one
block, Ouiside thia block the particular identifier may be
ugsed for other purposes {cf. section 4.1.3).

Dynamically this implies the following: at the time of sn
entry into a block (through the begin, since the labels
inside are local and therefore inaccessible from outside)
all identifiers declared for the block assume the signifi-
cance implied by the oature of the declarations given.
If these identifiers had already been defined by other
declarations outside they are for the time being given a
new signifieance. Identifiers which are not declared for the
block, on the other hand, retain their old meaning.

At the time of &n exit from e block {through end, or by
a go to statement) all identifiers which are declared for
the block lose their loce! significance.

A declaration msy be marked with the additional
declarator own. This has the following effect: upon & re-
entry inte the block, the values of awn quantities will be
unchanged from their values st the last exit, while the
values of declared variables which are not marked a3 own
are undefined, Apart from labels and formal parameters
of procedure declarations and with the possible exception
of those for standard functions {cf. sections 3.24 and
3.2.5), sll identifiers of & program must be declared. No
identifier may be declared more than once in any one
block head.

Byntax,

{decloration) .= {iype declaration}|{srray -declaration}]
{switch declarstion}|{procedure deeluration}

5.1. Tyre DECLARATIONS
5.1.1. Syntax
{trpe list} (1= {simple varjable)|
{pimple variable}, {type list)
{ype} :t=m rexl | integer | Boolesn
{local or own type} 1= (type}jown {type}
{type declaration) ;= {locsl or own Lype){typs Hat)

5.1.2, Examples

integer p,g.8
own Boolean Acryln
5.L.3. Semantics
Type declarstions serve to declare certain identifiers to
represent simple variables of a given type. Real declared
variables may only assume positive or negative values

AL.7a.13

FEYISED ALGOL 40

including zero. Integer declared veriables may only assume
pogitive Bnd negative integral values including zero.
Boolean deckared varighles may only assume the valoes
true and false.

In arithmetic expressions any position which can be
oceupled by a real declared varable may be occupicd hy
an integer declared variable.

I'or the semantica of own, see the fourth paragraph of
section 5 above.

5.2, ArrAY DECLARATIONS
5.1, Syntax
{lower bound} ::= (arithinetic expression)
{upper bound} :: & {arithmetic expression
{hound pair’t ;:= {lower hound i {upper bound}
{bound pair liat) ;:= {bound pair}|{kouad pair list), {bound pair}
{array segment} = {array idenlifer}]{beund pair Lst}p
{array idenlifier), farray segment) -
{array liet} ::= {array segment}|{srray list},{array segment}
{array declaration} ::= array (array liat }{local or own tvpe}
array {array liat} .

5.2.2. Examples
array @, b, ¢[T:n,2:m), of-2:110§
own integer array ANl <0 then 2 clse 1:20]
real meeny g[—7:—1}
5.2.3. Semantics
An arrey declerstion declares one or eeverai identifiera
to represent multidimensions] arrays of subscripted
varishlea and gives the dimensions of the arrays, the
bounds of the subseripts and the types of the variebles.
5.2.3.1. Subscript bounds. The subseript bounds for
&ny array are given in the first subseript bracket following
the identifier of this array in the form of & bound pair list.
Each item of thia list gives the lower and upper bound of a
subscript in the form of two srithmetic expressions sepa-
rated by the delimiter : The bound pair list gives the
bounds of all subscripts taken in order from left to right.
5.2.8.2. Dimengions. The dimensions are given Bs the
number of entries in the bound pair lists.
5.2.3.3. Types. ANl arrays declsred in one declaration
sre of the same quoted type. If no iype declarstor is
given the type real is urderstood.
§.2.4. Lower upper bound expressions
5.2.4.1 The expressionz will be evsluated in the same
way 88 subscript expressions {cf. section 3.1.4.2).
5.2.4.2. The expressions can only depend on variables
and procedures which are nonlocsl to the block for which
the array declaration iz valid. Consequently in the outer-
most block of a program only array declarations with
constant bounds may be declared.
5.2.4.3, An array is defined only when the values of all
upper subscript bounds are not smaller than those of the
corresponding lower bounds.
5.2.4.4. The expressions will be evaluated once &t each
entrance into the block,
5.2.5. The identity of subseripted variables
The identity of & subscripted variable is not related to
the subscript bounds given in the array declarstion. How-

AL.7a,14

REVISED ALGOL 40

ever, even if an array is declared own the values of the
corresponding subscripted variables will, at any time, be
defined only for those of these variables which have sub-
scripts within the most recently caleulated subseript
bounds.

5.3. Switcu DECLARATIONS
5.3.1. Syntax _
{switch list) ::= {(designational expression}|
{switch list), (designational expression)
{switch declaration} ::= switch (switchidentifier}:= (switch list)

5.3.2. Examples

switeh 8 :m S1.82Q[m], if v>~5 then S3 else S4
awiteh @ :=plw

5.3.3. Semantics

A switch declaration defines the set of values of the
corresponding switch designators. These values are given
one by one as the values of the designational expressions
entered in the switch list. With each of these designational
expressions there is associated a positive integer, 1, 2, ...,
obtained by counting the items in the list from left to
right. The value of the switch designator corresponding to
& given value of the subscript expression (cf. section 3.5.
Designational Expressions) iz the value of the designa-
tional expression in the switch list having this given value
as its nssociated integer. ’

5.3.4. Evaluation of expressions in the switch list

An expression in the switch list will be evaluated every
time the item of the list in which the expression occurs is
referred to, using the current values of all varables
involved,

5.1.5. Influence of scopes

If a switch designator occurs cutside the scope of a
quantity entering into a designational expression in the
switch list, and an evaluation of this switch designator
selects this designational expression, then the conflicts
between the identifiers for the quantities in this expres-
sion and the identifiers whoee declarations are valid at the
place of the switch designator will be avoided through
suitable systematic changes of the latter identifiers.

5.4, ProceEpURE DECLARATIONS
5.4.1. Syntax

{formal parameter) :;s= {identifier)
{formal parameter liat) ::= (formal parameter)|
(formal parameter list }{parameter delimiter)
{formal parameter}
{formal parameter part) ::= {(empty)|({formal parameter list})
{identifier list) ::= {identifier}|{identifier liat),{(identifier}
{value part) ::= value(identifier list}) ; [{empty)
(apecifier) ::= string|{type)|array|(type)array{label|switch]
procedure|{type)procedure
(specification part) ::= {empty }|{specifier)(identifier liat} ; |
(specification part)(specifier}(identifier list) ;
{procedure heading) ::= (procedure identifier}
{formal parameter part} ; (value part)(specification part)
{procedure body) ::= (statement}|{code}
{procedure declaration) ::=
procedure (procedure heading) (procedure body |
{type)} procedure (procedure heading}{procedure body}

5.4.2. Examples (see also the examples at the end of
the report}

procedurs Spur{a)Order:(n)Result:(a) ; value a ;

arraya ; integern ; recals ;

begin integer k& ; .

8:=0 ;

fork := 1 step 1 until n do » := s+alkk]

end

procedure Transpose(z)Order:(n) ; valuen ;
arraya ; integern ;

begin real w ; integert, &
for i :=] atep 1 until » do
for k := 141 step 1 until n do
begin w = gli k] ;
ali k] 1= alk,f] ;
alk,i] ;= w

1

end
end Transpose

integer procedure Step (u) ; realu
Step ;= if 02uAu=s] then 1 elne 0

procedure Absmaxr(a)size:(r,m)Reault:(y)Subseripts .{i k);

comment The absolute greatest element of the matrix a,
of size n by m is transferred to y, and the subscripts of this
element tojand k ;

array a ; integern,m,i,k ; remly ;
begin integer p, ¢ ;
yi=0 ;

for p := 1 step 1 until n do for g ;= 1 step 1 until m do

if absle[p.ql}>y then begin y := abelalp,gl) ; 7 = » ;
k:=gq

end end Absmaz

procedure Innerproduct(a,b)Order:(k,p)Result:(y) ; valuek ;
integer k,p ; realyambd ;

begin real ¢ ;

s =0 ;

for p i= 1 step 1 until k do & := s+aXbd ;

¥y =

ond Innerproduct

5.4.3. Bemantics

A procedure declaration serves to define the procedure
associated with a procedure identifier. The principal con-
stituent of a procedure declaration iz a statement or a
piece of code, the procedure body, which through the use
of procedure statements and/or function designators may
be activated from other parts of the block in the head of
which the procedure declaration appesars, Associated with
the body is a heading, which specifies certain identifiers
occurring within the body to represent formal parameters.
Formal parameters in the procedure body will, whenever
the procedure is activated (cf. section 3.2, Function
Designators and section 4.7. Procedure Statements)
be assigned the values of or replaced by actual parameters.
Identifiers in the procedure body which are not formal
will be either local or nonlocal to the body depending on
whether they are declared within the body or not. Those
of them which are nonlocal to the body may well be local
to the block in the head of which the procedure declara-
tion appears. The procedure body alweys acts like a

Fama

http://AL.7a.14

block, whether it has the form of one or not. Consequently
the scope of any label labelling a statement within the
body or the body itself can never extend beyond the pro-
cedure body. In addition, if the identifier of & formal
parameter is declared anew within the procedure body
{including the case of its use as a label as in section 4.1.3),
it is thereby given a local significance and actual param-
eters which correspond to it are inaccessible throughout
the scope of this inner local quantity.

5.4.4. Values of function designators

For a procedure declaration to define the value of &
function designator there must, within the procedure
body, occur one or more explicit assignment statements
with the procedure identifier in a left patt; at least one of
these must be executed, and the type associated with the
procedure identifier must be declared through the appear-
ance of a type declarator as the very first symbol of the
procedure declaration. The last value so assigned is used
to continue the evaluation of the expression in which the
function designator occurs. Any occurrence of the pro-
cedure identifier within the body of the procedure other
than in a left part in an assighment statement denotes
activation of the procedure,

5.4.5. Specifications

In the heading a specification part, giving information
about the kinds and types of the formal parameters by
means of an obvious notation, may be included. In this
part no formsal parameter may occur more than once.
Specifications of formal parameters called by value {cf.
section 4.7.3.1) must be supplied and specifications of
formal parameters called by name {(cf. section 4.7.3.2)
may be omitted.

5.4.6. Code as procedure body

It is undemstood that the procedure body may be ex-
preseed in non-AvrcoL language. Since it is intended that
the use of thia feature should be entirely a question of
hardware representation, no further rules concerning
this code language can be given within the reference
language

Examples of Procedure Declarations:

ExamrLE 1.
proeedm;e euler (fct, sum, ape, lim) ; value eps, tim ;
integer tim ; real procedure fci ; real sum, eps ;

comment euler computes the sum of fet(s) for § from zero up to
infinity by means of a suitabley refined euler transformation. The
summation is stopped as soon as f{m times in succession the abgo-
lute valua of the terms of the transformed series are found to be
less than eps. Hence, one should provide o funetion fc! with one
integer argument, an upper bound eps, and an integer #m. The
output in the sum sum. euler is particularly efficient in the case
of a glowly convergent or divergent alternating series ;
begin integer 6,5, n, ¢ ; array m[0:15] ; real mn, mp,ds ;
fi=pnc=t =m0 m0] = fel{0) ; sum = mid]/2 ;
nertierm: i 1= 1+1 ; mn = fet(s) ; '
for k := (step 1 until n do
begin mp = (mn+mik])/2
mn = mp end means

i mik] cmomn

AL,7a.15

REVISED ALGOL &0

if (aba(mn) <abs(m[n}))A(n<15) then
begin di = mn/2 ; n = adl ; mn] :=
mn end poospt
else ds ;= mn ;
aum im gum +ds
if abs(ds) <epe then § := (41 else i := 0 ;
if t<tim then go to nexiterm
end euler

ExamrLE 2.8

procedure RK(zynFKTepsetazEyE £) ; value 2y ;
integer n ; Boolean f ; real zepselazE ; array
y.vE ; procedure FKT ;

comment: RK integrates the system 1/=fi(xn .15, ...,)
(k=12, ... n) of differential equations with the method of Runge-
Kutta with automatic search for appropriate length of integration
step. Parameters are: The initial values z and ylk] for z and the un-
known functions 4 (z). The order n of the aystem. The procedure
FET{xymn,) which representa the system to be integrated, i.e.
the set of functions f. . The tolerance values eps and eta which
govern the necuracy of the numetieal integration. The end of the
integration interval zE. The output parameter yE which repre-
sents the solution at x=2E. The Boolean variable fi, which must
alwaya be given the value true for an isolated or first entry into
RK. If however the functiona ¥ must he available at several mesh-
poiots xp , =t , ... , T4, then the preerdure must be called repeat-
edly (with z=2,, zE =14, for k=0, 1,..., n—1} and then the
later cally may oceur with i=false whioch saves ecomputing time.
The input parameters of FKXT must be z,yn, the oulput paramster
z representa the set of derivatives zlkl=fi(z.y{1], ¥[2), ..., ynD)
for z and the actual y's. A procedure comp enters as a nosnlocal
identifier ;

begin
areay zyly2330m] ; real z12223,H ; Boolean oul ;
integer k.j ; own real sHs ;

procedure RKIST(z,phxeye) ; real zhze ; array
e ;
comment: RK1ST integrates one single RUNGE-KUTTA
with initial values z,y(k] which yields the output
parameters te=z-+h and yelk], the latter being the
solution at ze. Important: the parameters n, FKT, &
enter RK18T an nonlocal entitiea ;
begin
array w{l =], a{l:8] ; integerk;j ;
afl] := al2] := a|b] := A/2 ; o3} := ald] := b
xe =g ;
for k 1= 1 step 1 until n do yelk] 1= wik] := yk] ;
for j := 1 step 1 until 4 do
begin
FKT(zeawm,z)
ze 1= ztali] ;
for k := 1 step I until n do
begin
wik] := yklHalilxXzlk] ;
yelk] = yelk] + ali+1]xzlk}/3

¢ This RK-progrum contains some new ideas which are retated
to ideas of 8. GILL, A process for the step-by-step integration of
differential equations in an sutomatie computing machine,
[Proc. Camb. Fhil. Soc. 47 (1951}, 06]; and E, Frbaexa, On the
solution of urdinury differentiul equations with digital computing
machines, [Fysiograf. Sillsk. Lund, Forhd. £0, 11 (1950}, 136-162].
It must be clear, huwever, that with respect to computing time
and round-off errors it may not be optimal, nor has it actuslly
been teated on a computer.

http://AL.7a.15

AL.7a.16

REVISED ALGOL &0

end k
end ;
end RKIST ;

Begin of program: .
iffithenbegin H :=m2zE—x ; #:=0Oendelse H := Hs ;
oul 1= false ; :

AA: i (x4+2.0L X H—2E>0)=(H>0) then
begin Hs ;= H ; oul := true ; H = (2zE—2)/2

end if ’
RKIST (zy2XHaxlyl) .

BB: RKIST (zyHx2y2) ; REKIST (242 Hx343) ;

for k := 1 step | until n do
if comp(ylikly3lk)ela) >eps them go to CC ;

comment: compiabe,) is a function designator, the value
of which ia the absolute value of the difference of the
msantissae of ¢ and b, after the exponenta of these quan-
tities have been made equal to the largest of the exponents
of the originally given parameters abc
z = 23 ; if ouf then go 1o DD ; ,
for k := | atep I until n do yit) := y3k] ;
if #=5 then begin s := 0 ; H = 2XHendif ;
#:im 34l ; gotodd ;
CC: H ;= 05XH ; oul := falwe ; zl := 12 ;
for k :=] atep 1 until n do gi[k] := p2[k] ;
go to BB ;
DD: for k := 1 step | until n do yE[k] := y3[k]
end RK

ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS AND SYNTACTIC UNITS

All references are given through section numbers. The referencea are given in three groups:
def Following the abbreviation *‘del’’, reference to the syntactic definition (if any) is given,
synt Following the abbreviation “aynt’’, referanges to the ocourrences in metalinguistic formulae are given. Refer-
ences already quoted in the def-group are not repeated.
text Following the word ““text”, the references to definitiona given in the text are given.
The basio symbols represented by signs other thon underlined words [in typewritten copy; boldface in printed copy—Ed.]

have been collected at the beginning.

The examples have been ignored in compiling the index.

=+, see: plus

—, aee: minus

*, see: multiply

/, +, see: divide

1, see: exponentiation

<, 5,=, 2, >, v, see: (relational operator}
=, D, \, A, o, see; (logical operator)
1y BES: cOmMma

.y #ee; decimal peint

u, 88: ten

:, sea: colon

;» B08: semicolon

;= , ssa: colon equal

u, see: gpace

(), see: parcatheses

{], see: subseript brackets

! ! see: string quotes

{notual parameter), def 3.2.1, 4.7.1

{nctusl parameter liat}), def 3.2.1, 4.7.1

{actual parameter part), def 3.2.1, 4.7.1

{adding operator}, def 3.3.1

alphabet, text 2.1

arithmetic, text 3.3.6

{arithmetic expression), def 3.3.1 synt 3, 3.1.1, 3.3.1, 3.4.1, 4.2.1,
4.6.1, 5.2.1 text 3.3.3

{arithmetio operator}, def 2.3 text 3.3.4

array, synt 2.3, 5.2.1, 5.4.1

array, text 3.1.4.1

{array declaration), def 5.2.1 synt b text 6.2.3)

{array identifier), def 3.1.1 synt 3.2.1, 4.7.1, 5.2.1 text 2.8

{array list), dei 5.2.1

{array segment), def 5.2.1 .

{assignment statement), def 4.2.1 synt 4.1.1 text 1, 42.3

{basio statement), def 4.1.1 synt 4.5.1
(basi¢ aymbol), def 2

begin, eynt 2.3, 4.1.1 .

{block), def 4.1.1 synt 4.6.1 text 1,413, &
{block head), def 4.1.1

Boolean, synt 2.3, 5.1.1 text 5.1.3

{Boolean expression), def 3.4.1 synt 3, 3.3.1, 4.2.1, 4.5.1, 4.6.1 text
343

{Boolean factor}, def 3.4.1

{Boolean primary}, def 3.4.1

{Boolean secondary), def 3.4.1

{Boolean term), def 3.4.1

(bound pair), def 5.2.1

{bound pair list}, def 5.2.1

(bracket}, def 2.3

{code}, aynt 5.4.1 text 4.7.8, 548

colon :, synt 2.3, 3.2.1, 4.1.1, 4.5.1, 48.1,4.7.1, 521

colon equal :=, syut 2.3, 4.2.1, 46.1, §.3.1

comma, ,synt 2.3,3.1.1,3.2.1,46.1,47.1,511, 52.1,53.1,541
comment, synt 2.3

comment convention, text 2.3

{¢compound statement), def 4.1.1 aynt 4.5.1 text 1

{compound tail), def 4.1.1

{conditional statement), def 4.5.1 aynt 4.1.1 text 4,53

{decimal fraction), def 2.5.1

{decimal number), def 2.5.1 text 2.5.3

decimal point ., synt 2.3, 2.5.1

{declaration), def 6 synt 4.1.1 text 1, 5 (complete section)
{declarator), def 2.3

(delimiter), def 2.3 synt 2 .
{designational expression), def 3.5.1 synt 3, 43.1,, 5.3.1 text 3.5.3
{digit), def 2.2.1 synt 2, 2.4.1, 2.5.1

dimension, text 5.2.3.2

divide / +, synt 2.3, 3.3.1 text 3.3.4.2 L

do, aynt 2.3, 46.1

(dummy atatement)}, def 4.4.1 synt 4.1.1 text 4.4.3

elee, synt 2.3, 3.3.1, 3.4.1, 3.5.1, 4.5.1 text 4.5.3.2

{empty), def 1.1 aynt 2.8.1, 3.2.1, 4.4.1, 4.7.3, .41

end, aynt 2.3, 4.1.1

entier, text 3.2.5

exponentiation T, synt 2.3, 3.3.1 text 3.34.3

{exponent part), def 2.5.1 text 2.8.3

{expression), def 3 synt 3.2.1, 47.1 text 3 {complete sect.ion)A

{factor), def 3.3.1

fulsc, aynt 2.2.2

for, synt 2.3, 4.6.1

{for clause}, def 4.6.1 toxt 4.6.3

{for Hat), def 4.6.1 text 4.0.4

(for list element.), def 4.6.1 tevt 4841, 4842, 4643

{forma! parametecr), def 5.4.1 text 5.4.3

{formal parnmeter liat), def 5.4.1

{formal parnmeter part), def 5.4.1

{for statement}, dof 46.1 synt 4.1.1, 4.5.1 text 4.6 (complnsta
section)

{function desigontor), def 3.2.1 eynt 3.3.1, 3.4.1 text 323, 544

B7 to, aynt 2.3, 4.3.1 . .
{go to statement), def 4.3.1 synt 4.1.1 text 4.3.3

{identifier}, def 2.4.1 aynt 3.1.1,321; 351, 541 text 2.4.3
{identificr lint), def §.4.1

i, aynt 2.3, 3.3.1, 4.5.1

(f eluuse), def 3.3.1, 4.5.1 aynt 3.4.1, 3.5.1 text 3.3.3, 4.63.2
{if mtatcment), def 4.5.1 text 4.5.3.1

{implieation), def 3.4.1

Integer, aynt 2.3, 5.1.1 exi 5.1.3

{integer), def 2.5.1 text 2.5.4

label, synt 2.3, 6.4.1

{labal), del 3.6.1 aynt 4.1.1, 4.5.1, 46.1 text }, 4.13
(left pert), def 4.2.1

({left part liat), def 4.2.1

{lettes), def 2.1 mynt 2, 2.4.1, 3.2.1, 471
(letter string), def 3.2.1, 4.7.1

loeal, text 4.1.3

{loenl of own type), def 6.1.1 aynt 5.2.1
{logical operator), def 2.3 aynt 3.4.1 text 3. 4.5
(logical value), def 2.2.2 synt 2, 3.4.1

{lower bound), def 5.2.1 text 5.2.4

minus —, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
multiply x, aynt 2.3, 3.3.1 text 3.3.4.1
{multiplying operator), dof 3.3.1

nonloeal, taxt 4.1.3
(number}, def 2.4.1 text 2.56.3, 2.5.4

{open string }, def 2.6.1
{nperator), del 23
own,aynt 2.3, 5.1.1 text 5, 5.2.5

(parameter Jelimiter), def 3.2.1, 4.7.1 synt 5.4.1 text 4.7.7
parentheses (), aynt 2.3, 3.2.1, 331, 34.1, 3.5.1, 4.7.1, 4.1
text 3.3.82
ptus 4+, gynt 2.3, 2.5.1, 3.5.1 text 3.3.4.1
{primary), def 3.3.1
procedure, aynt 2.3, 5.4.1
{proocedure body), def 5.4.1
{proaedura decluration), def 5.4.1 ayat 5 text 5.4.3
{procedire beading), def 5.4.1 text 5.4.3
{procedure identitier) defl 3.2.1 synt 3.2.1, 4.7.1, 5.4.1 text 4.7.5.4
(procedure statement), def 4.7.1 synt £.1.1 text 4.7.3
{program)}, def 4.1.1 text 1
{proper atring), def 2.6.1

quantity, text 2.7

AL,7a,17

REVISED ALGOL 40

roal, aynt 2.3, 5.1.1 text 5.1.3
{relation}, def 3.4.1 text 3.4.5
(relational operator}, def 2.3, 34,1

scope, text 2.7

seminalon ;, aynt 2.3, 41,1, 5.4.1

{meparator), def 2.3

{sequential aperator), def 2.3

(simaple nrithmetic cxpression), def 3.3.1 text 3.3.3

(simple Boolean), def 3.4.1

{aimple designational expression), def 3.5.1

{simple variablo), def 3.1.1 aynt 5.1.1 text 243

apace u, Rynt 2.3 text 2.3, 2.6.3

{specifiention part), def 5.4.1 text 5.4.5

{mpecificator), def 2.3

(aperifier), def 5.4.1

standard function, text 3.2.4, 3.2.8

{atatement), def 4.1.1, synt 4.6.1, 46,1, 54.1 text 4 {(complets
scction)

atatement bracket, see: begin end

step, mynt 2.3, 48,1 text §.6.4.2

atring, aynt 2.3, 5.4.1

(atring), def 2.6.1 aynt 3.2.1, 4.7.1 text 283

siring quotes © ’, nynt 2.3, 2.6.1, text 2.6.3

aubscript, text 3.1.4.1

subseript bound, text 5.2.3.1

subscript bracketa [], synt 2.3, 3.1.1, 34.1, 5.21

(subssripted variable}, def 3.1.1 text 3.1.4.1

(subscript expreasion), def 3.1.1 aynt 3.56.1

{subacript lizt), def 3.1.1

successor, text 4

awiteh, ayat 2.3, 5.3.1, 5.4.1

(switch declaration), def 5.3.1 synt b text 5.3.3

(switch designator}, def 3.5.1 text 3.5.3

{awiteh identifer}, def 3.5.1 synt 3.2.1, 7.1, §.3.1

(ewitch list), def 6.3.1

{term)}, def 3.3.1

ten w, aynt 2.3, 2.5.1

then, aynt 2.3, 3.3.1, 4,61

transfer function, text 3.2.5

true, synt 2.2.2

{type), def 5.1.1 synt 5.4.1 text 2.8

{type declaration}), def 5.1.1 aynt 5 text 5,13
(type liat), del 5.1.1

{uneobiditional statement), def 4.1 .1, 4.5.1
(unlabelled basio statement), def 4.1.1
{unlabelled block }, def 4.1.1

{unlabelled compound }, detf 4.1.1
(unsigned integer), def 2.5.1, 3.5.1
{utelgoed number}, def 2.5.1 synt 3.3.1
until, aynt 2.3, 46,1 text 4642

{upper bound }, def 5.2.1 text 5.2.4

valuc, synt 2.3, b.4.1

value, text 2.8, 3.3.3

(value part), def 5.4.1 text 4.7.3.1

{variable), def 3.1.1 synt 3.3.1, 3.4.1, 42.1, 48.1 text 3.1.3
(variable identifier}, def 3.1.1

while, synt 2.3, 4.6.1 text 46,43

END OF THE REPORT

AL.7b.1
CHAPTER 7b

Features of ALGOL-6&0

which are changed in ALGOL-20

This gection lists those aspects of the Report which do not hold
for ALGOL-20. The section numbers refer to the Report and page
numbers refer to this manual.
2.1 Only upper case letters are available.
2.2.2,2.3 The basic sgymbolg indicated by underlined identifiers 1in the
reference language (boldface in the report) are replaced in Algol-20
by identifiers with the same spelling. These identifiers, which may
not be used for any other purpose, are referred to as "reserved identi-
fierg". 1In addition, certain other reserved identifiers have been
added to Algol-20. See Chapter 2, page 3ff.
2.3 A change to a new line of input text has the same significance

as a blank space (except that strings may not continue bevond the end of

a line). B8Bee Chapter 6a.

2.3 The characters > and -r are not available. The characters

=, X, " and * are available in different forms. See Chapter 2, page 2.
2.4 Identifiers may not contain spaces. However, see Chapter 2,

page 5, for alternative punctuation.

2.5 See Chapter 2, page 6 for the range of values of meaningful
numbers.
2.6.1 Since ALGOL-20 cannot distinguish between a left and right

string guote, strings may not contain strings.

3.1.4.2 Array subscripts are truncated, not rounded, when they are

evaluated.
3.3.4.2 -r is not available. See Chapter 2, page 2.
3.3.4.3 t produces a value of type real when it is applied toc any com-

binaticn of real and integer values.

3.4 D is not available. 8See Chapter 2, page 8.

3.4.6.1 = has the same precedence as =.

3.5 A label may net be an unsigned integer.

4.1 ALGOL-20 defines <programs::=<unlabeled blocks|<unlabelad

compound”™. Thus the first character of a program must be a begin.

AL.7b.2

4,1,3 If the first occurrence of & label in the block in which it
is defined is as an actual parameter, it i3 necessary to declare it
a8 a label in that block head.

4.6 The controlled variable in a for statement may only be a
simple wvariable.

4.7.3.1 Arrays camnot be called by value.

5.2 Dynamic own arrays. are not allowed.

5.4 Recursive procedures are not available.

5.4.5 All formal parameters must be specified.

AL.7c.1
CHAPTER 7c

Restrictions on ALGOL-20
to transform it into a subset of ALGOL-60

The user of ALGOL-20 may use many abilities which are not part of
ALGOL-60, since the translator at Carnegie Tech implements an extension
of the language. If a program (or procedure) is to be sent outside of
Carnegie Tech, however, the programmer may wish to restrict himself to
those aspects of our system which are part of the standard language. To

do 80, he must obey the rules given in this section.

Anything which gives a note (except for notes 1 and 2) indicates a
deviation of ALGOL-20 from ALGOL-60 and so should not be used.

All left parts in a statement must be of the aame type.

Boolean variables must not occur as primaries in arithmetic express-
ions. '

Arithmetic variables must not cccur as primaries in Boolean express="
ions. ‘

Go must be followed by to.

Nothing may be assumed about the initial value of a variable - includ-
ing own variables.

"." {5 not a legal character in identifiers,

Constants may not end with a decimal point.

Variables may only be of type real, integer or Boolean.

The value of a for variable is undefined after the for statement has
Yun to completion.

I1f a unary operator follows another operator, it and its operand must

uaually be surrounded by parentheses.

AL.7c.2

None of the following exist in ALGOL-60 and must not be used:

octal constants
alphanumeric string constants

step...while for-list elements

privileged identifiers (with their privileged meanings)
label declarations

nested substitutions

the operators | and «

the reserved words max, min, and mod
library pracedures

SY statements

CO statements

WHAT

the operator = used to mean =
input/output

|| comment convention

