NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

I R R B |

1

B I I I B B B I M|

BCY 12 72

SOL-20

BY

GILBERT J. HANSEN

Carnegie Institute of Technology
April 22, 1965

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (SD-146)

i

HYNT LIBRARY
CARNECIE-MELLGN UNIYERSITY

ACKNOWLE DGMENTS

The author thanks David M. Blocher, Janet W. Fierst,
Richard B. Grove and Carol H. Thompson for taking time to ex-
plain the internal workings of Algo!=-20 and for their sugges-
tions and patience in helping to debug the system.

Finally, thanks goes to Dr. Alan J. Perlis for his
many fine suggestions and guidance in developing this imple-

mentation of SOL,

ii

~

M

CHAPTER 1

2

3

L

5
APPENDIX T
T
IoT

CONTENTS
Introductioncveveeen . I I
Differences in SOL-20..........0000...50L. 2.1}
Tracinge..eeeeesne teeeressrasanasnasaaS0L. 3,1

Run Time Errors.......cc0eveenannnaasSOLAL
Reserved tdentifiers,,........ ceresesaS0L.5. 1
Summary of 50L-20 Differences,,.......S50L.1.1

Sampie Program and Output,............S0L.IT.1

*Qriginal Papers by Knuth and McNeley, ,SOL.TTT.!

* The Knuth and McNeley Papers from THE IEEE TRANSACTIONS,
August, 1964 are reprinted with permission.

i

-

SOL.1.1

Chapter 1|

Introduction

This manual is a supplement to the original articlie A FORMAL
DEFINITION OF SOL by Knuth and McNeley. The version of SOL described
here, known as SO0L-20, was implemented by procedures written in Algol«
20 and G~20 machine language. 1t is the purpose of this documentation
to describe in detail the exact differences and changes in syntax
between SOL and SOL-20.

With some limitations, the full power of ALGOL* is available
for programming in S0L-20. A S50L-20 program is written using 50L-20
system procedures which impliement SOL declarations, expressions,
relations and statements.

The sample problem given by Knuth and McNeley has been re-
written in SOL-20 and is included in Chapter 7. Sample problem ocut-
put for 15 time units of simulation is also appended. The results
differ from those of Knuth and McNeley only because a different random

number generator was used.

*ALGOL, as used hereafter, will refer to ALGOL-20, the local C.I,T.
version of the international language ALGOL-60.

S0L.2.1

Chapter 2
Differences in SOL-20

This section describes, in detail, the differences and syntax
changes between the originally-proposed SOL and the version implemented
as S0L-20. The format and organization is that as given in the formal
Knuth and McNeley document on the definition of SOL. All examples are
from the sample program appended.

Appendix | contains a complete list of all the differences be-
tween SOL and SOL=20 discussed below.

I. GENERAL DESCRIPTION

I1. SYNTAX AND SEMANTICS OF SOL

A. ldentifiers and Constants
All rules for writing identifiers and constants in
ALGOL-20 are applicable.
Since a process is a block, the same identifier can
be used in different processes with different meanings.
The ALGOL rules for local and global variables apply.
B. Declarations
{declared item) ::= {identifier)

{variable declaration) ::= (all variable declarations,
e.g., half, boolean, logic, and array
that can be used in ALGOL-20 are per-
missible)

{Facility declaration) ::= {variable declaration)

{store declaration) ::= {variable declaration)

{table declaration> ::= half array (identifier)
{1:2,0: Cnumber> , 1: ¢number)]

The first {number) represents the maximum length
of the table while the second {number) represents the
number of different tables under the same identifier.

Examples: . .
line 6: real array Tufi:6],5801:3; { Facilities
line 2: real LINE,COMPUTER; f facilities

line 7: real array QUEUE [i:€]; | stores
line 9: half array TAB {1:2,0:27,1:6]; | tables

S0L.2.2

There is no monitor declaration.
When an arithmetic expression is assigned to an
integer variable, the value assigned is rounded or trun-

cated to the nearest integer, depending on whether the

“é"’"

"or " =" is used.

Statistics for stores, facilities and tables are
obtained by special procedure calls. See Chapter 3 on
statements.

The size of a store is declared by the procedure call

STORE((store identifiery , {constant));
where the constant represents the capacity of the indica-~
ted store.

Likewise, the bounds on the histogram for a table
are given by a special procedure call

TABLE(¢numberd , (table identifier) , ¢{number) ,
(number) , {number));

The first {nhumher) represents the table number, i.e., the
desired table specified by the table identifier. The
other three {number)'s give the starfing point for histo-
gram intervals, the increment between intervals, and the
highest value, respectively.

Example:

lines 13-16: for 1 €1 step 1 until 6 do begin
STORE (QUEUE[1],10); } declare
stores
TABLE (i ,TAB, 2000,500,15000) ;
| declare tables

end;

It is up to the user to ensure that the number of
histogram intervals does not exceed the size of the
table.

Expressions and.Relations
Listed below are the SOL relations and expressions with

the corresponding S0L-20 procedure specifications.

S0L.2.3

The format is:
SOL construction(s):
S0L~-20 procedure specification
fdllowed by comments when needed.
1. expressions
a. time is declared by the system and, therefore,
is a global variable.
Example:
line 41: START.TIME € TIME;
b. (ey,e3,...,e,):

half procedure RAND(N,E); value N; half N;
half array E;
N represents the number of inputs e., or

equivalently the dimension of the array E. E
contains the values of the e;'s.

Examples:
line 37: MESSAGE.TYPE €— RAND{10,TYPE):
line 97: WAIT(RAND(10,WAITS));

c. normal(Cexpression) , {expression)):

real procedure NORMAL(M,S); value M,S; real M,S;
d. exponential(<expressiond):

real procedure EXPONENTIAL(M); value M; real M;
e. poisson{ <expression)):

integer procedure POISSON(M); value M; real M;

f. geometric(<expression)):
integer procedure GEOMETRIC(M); value M; real M;

g. random:’

real procedure RANDOM(A,B,C); value A,B,C;
real A,B,C;

RANDOM represents a random number between A
and B (A<B) where A and B may be any real numbers.
C is always zero.

HONT LIBRARY
CARNERIE-MELLGN URIVERSITY

SOL.2.4

h., ej:eq
inteqer procedure UNIFORM(E1,E2); value El,E2;
real EV,E2;

Examples:
line 36: Q < UNIFORM(I,6);
line 40: WAIT{UNIFORM(6000,8000));

2. relations
a. {facility name) busy, {facility name) not busy:
boolean procedure BUSY{FACILITY); real FACILITY;

The value of this function is true if the
facility is busy and false if it is not busy.

Example:)
line 59 : if BUSY(SB[S]) then beqin

b. {store name) full, {store name) not full:
boolean procedure FULL(STORE); real STORE;

1f the facility is full, the value of the
function is true, otherwise it is false.

c. store name) empty, <store name) not empty:
boolean procedure EMPTY{STORE}; real! STORE;

If the store is empty, the value of the func-
tion is true, otherwise it is false.

d. pr(<expression)):
boolean procedure PR(PROB); value PROB; real PROB:

The value of the function is true with proba-
bility given by the value of the variable PROB.

Example:
line 65: if PR(0.02) then begin

111. STATEMENTS
A. Processes
A process is written as an ALGOL block, each separate
process being a self-contained block. Blocks may not be
nested. The name of a process is a statement label occurring
at the head of the block, e.qg.:

<Brocess identifier) : begin {process declaration
list) ; (statement list)

end;

SOL.2.5

Example: See USERS process, lines 27-52 in the sample program.
Processes are declared by the switch statement PROCESSES,
which appears at the very beginning of the program, i.e.,
switch PROCESSES := * (process identifier)™;
(NOTE: the abbreviation *(A)¥* means "‘a list of {AD ", i.e.,

Ay 1= (AY] *(A)x, (A)).
All the rules for a label given in ALGOL-20 obviously apply.

Example:
line 3 : switch PROCESSES := CONTROL,USERS,PBU,QTHER,PBUS;

Procedures may not be declared in a process if the procedures

contain the SOL statements wait, seize,enter or wait until.

The for clause may be used, and can only be of the form
for {simple variable) ::= {for list element) do
Multiple for lists may be used if the for statement does not
contain any of the SOL statements just mentioned in its scope.
Labels
Creation of Transactions
All labels representing the name of transactions must be
declared by a label declaration either at the start of a program
or in the declarations of the process in which they occur, i.e.,
label * <transaction label)¥;
Example:
tine H : label START,SCAN,COMPUTATION,COMPUTE;
A new copy of a trensaction is created by the procedure call
NEW. TRANSACTION(<label));
Example: - ‘
line 55 : NEW.TRANSACTION(SCAN);
Disappearance of Transaction
Transactions are cancelled by a call to the procedure
CANCEL. The end of a process does not imply a cancel statement;
cancel statements must be explicitly written.
Example:
line 86 : CANCEL;

S0L.2.6

E. Replacement Statements
In a replacement statement, if the variable is an integer
variable, the expression is truncated or rounded depending on
whether a e " or a " ="' is used. A direct assignment to a
store will produce incorrect results. This error will not be
detected.
F. Priority
The integer variable PRIORITY is declared by the system,
thus making it a global variable and not a variable local to
each process. It is initially zero and if a transaction is to
have a different priority, then
PRIORITY¢— (expression) ;

must precede each new transaction statement. It will retain this

assigned value until changed. The priority must be between 0 and
27 .

Assigning a priority to a process, which is equivalent to
assigning a priority to the first transaction occurring in the
process, must be done by special means. The programmer must
declare in his program the integer array PROC.PRIO[}:&] and
then initialize it. The elements of this vector are in a 1-1
correspondence with the process identifiers as written in the
PROCESSES switch statement.

G. Wait Statements
procedure WAIT(WAIT.TIME); value WAIT,.TIME; half WAIT.TIME;
Example: |

line 59 : WAIT(5);
line 40 : WAIT(UNIFORM(6000,8000);

H. Wait-Until Statements
procedure WAIT.UNTIL(P); boolean P;
The relation P may be either a relation or a boolean pro-
cedure which is parameterless.
Example:
line 46: WAIT.UNTIL(TUSTATE [Q] = 0);

soL.2.7

Enter Statements
procedure ENTER(STORE,UNITS); value UNITS; half UNITS; real STORE;
STORE represents the store name which may be a simple identi-
fier or an array element. UNITS represents the number of units
requested of the store and is rounded to the nearest integer.
Example:
line 36: ENTER(QUEUE JQ],1);
Leave Statements
procedure LEAVE (STORE ,UNITS) ; value UNITS; half UNITS; real STORE;
STORE and UNITS are the same as in the enter statement.
Example:
line 47: LEAVE(QUEUE [al,1);
Seize Statements

procedure SEIZE(FACILITY,CONTROL.STRENGTH); value CONTROL.STRENGTH;
half CONTROL.STRENGTH; real FACILITY;
The control strength may be any integer between 0 and 222 _
Examples:

line 38: SEIZE(TU [Q],0);
line 58: SEIZE(LINE,0};

Release Statements
procedure RELEASE(FACILITY); real FACILITY;
An error fs given if the transaction releasing the facility
is not controlling it.
Examples:

line 47: RELEASE(TU [Q]);
line 68: RELEASE(LINE);

Go To Statement

The form go to (*¢label)*), Cexpressiony must be written as
a switch statement. Go to statements can only be used to trans-
fer to another point in a transaction. It is not possible to
transfer control to another process or to another transaction
within the same process.
Examples:

line 35: go to ORIGIN;
line 84: If WORDS > 0 then go to OUTPT;

soL.2.8

Compound Statements
Conditional Statements
Tabulate Statements

procedure TABULATE (EXPRESSION,Q,TABLE); value EXPRESSION,Q;
half EXPRESSION; integer Q; half array TABLE;

Tables are contained in 3~-dimensional arrays as mentioned

in declarations, section Il. Q represents the particular page
of the array, i.e., the table in question. TABLE is the name
of the 3-dimensional array. The value of EXPRESSION represents
the variable to be recorded as a statistical observation in
the Qth page of TABLE,
Example:

line 48: TABULATE({TIME-START.TIME},Q,TAB);
Output Statements

All output must be done in ALGOL-20 using NAME and PRINT
statements.
Example:

Tines 49-50: NAME(Q,TIME);
PRINT (<208, 'TU',20,18, 'RECEIVES REPLY AT
TIME',1B,7D,1B,ED);

Stop Statements
procedure STOP;

A call to this procedure terminates the simulation immedi-
ately. Statistics for all stores, tables and facilities are not
automatically outputted by the system. The information is ob-
tained by special procedure calls. This code must start at the
label RESULTS and occurs in the outermost block (see lines 100-
113 of sample program).

Example:
line 25 : STOP;
1. statistics for facilities

procedure PRT.FAC(INDEX,FACILITY,NAME); value INDEX:-
integer INDEX; real FACILETY; string NAME;

S0L.2.9

If INDEX is 0, the facility is not an array element;
if it is # 0, then INDEX represents the element in the
vector. NAME is a string with a maximum length of k.
This name will appear on the output listing opposite the
corresponding statistic.

Examples:

lines 102-103: for 1 &1 step 1 until 6 do
PRY.FACTE TULIT, ooTu')s
line 106: PRT.FAC(0,LINE,'LINE');

2. statistics for stores

procedure PRT.ST(INDEX,STORE ,NAME); value INDEX; integer
INDEX; real STORE; string NAME;

INDEX and NAME have the same meanings as for |
except now they apply to stores,
Example:

lines 109-110: for 1< 1 step 1 until 6 do
PRT.ST(},QUEVE [t], . QUE');

3. statistics for tables

procedure PRT.TAB(Q,TABLE,NAME); value Q, integer Q:
half array TABLE; string NAME;

The table number Q indicates which table in the
3-dimensional array given by TABLE is to be used to
calculate the statistical information. The string NAME
is again of maximum length k.

Example:

lines 112-113: for | é1 step 1 until 6 do
PRT.TAB(I,TAB, 'uTAB');

Procedures
Procedures may not contain any of the SOL statements wait,

wait until, enter or seize. They are not recursive.

Transaction |nput-output
For the transaction read statement, the set of values of
focal variables for a transaction is inputted by the ALGOL-20

NAME and READ statements. These statements are coded in a

v,

SOL.2.10

parameterless procedure declared inside the process in which the

transaction occurs. Variables global to the process may also be

changed.
procedure READIN(PROC,LAB); procedure PROC; label LAB:

The label must be the name of the transaction in which the
transactlon read statement occurs or the start of a statement
occurring within the transaction. |f the latter, then the label
must be declared In the label statement declaring all transac-
tions.

The transaction write statement can be achieved by NAME and

PRINT statements in ALGOL-20.

THE MODEL AS A WHOLE

The SOL system is written in ALGOL and must be loaded from the
library by a system card. Preceding this card, the switch statement
PROCESSES must be coded. Also the integer array PROC,PRIO and any
facilitles, stores, and global SOL variables that are simple vari-
ables must be declared. Facilities and stores must be declared as
real variables. _

After the system card, all stores, facilities (that are arrays),
tables and global variables are declared. All labels used as para-
meters to the procedures NEW,TRANSACTION and READIN must be declared
via a ALGOL-20 label declaration.

Nexf, the procedures STORE and TABLE must be called to give the
maximum size of the stores and the bounds of the histogram for the
tables. Also the vector PROC.PRI0O must be initialized.

The simulation is started by the procedure call:

START.SIMULATION;

Then, each process is coded as an ALGOL block.

Finally, the code for outputting the statistics for all stores,
tables and facilities occurs. It must be labeled with the predefined
label RESULTS. '

A1l of the above rules are exhibited on the on-line communication
system problem of Appendix I1. '

SOL. 3.1

Chapter 3
Tracing

In order to facilitate debugging, a tracing feature has been
added to SOL. There are nine trace switches which can be turned
on and off at will. Due to the fact that the names dictionary is
no longer available at run time, symbolic tracing is not possible.
Only the address at which the traced statement occurs is given and
this is actually the starting address of the statement immediately
after the traced statement. At present no information is given
about which copy of the transaction is being executed at the time
of the trace. The trace switches are contained in a boolean vector
TRACE. The switch is set if the corresponding value is true and

unset if it is false. All switches are initially unset.

Trace switch Traces
TRACE D] everything
TRACE {2] new transaction statements
TRACE 3] cancel statements
TRACE [4] seize statements
TRACE (5} release statements
TRACE [6] enter statements
TRACE [7] leave statements
TRACE 8] wait statements
TRACE [9] wait until statements

Note: The trace switches are global quantities. Once a switch is
set, the corresponding statement is traced in all trans-

actions and all copies of a transaction.

e

SOL.I".]

Chapter &

Run Time Errors

Errors may occur at run time, which, if the simﬁlation were
allowed to contlnue, would produce meaningless results. An error
message along with the address at which it occurred is printed on
the output and the run is aborted.

The following errors are detected:

Error 2: WALT TABLE EXCEEDED
The simulation has accumulated more than 64 wait statements
that need to be processed.
Error 3: WAIT UNTIL TABLE EXCEEDED
More than 6L wait until statements have accumulated.
Error 4: SEIZE TABLE EXCEEDED
More than 64 seize statements have accumulated.
Error 5: ENTER TABLE EXCEEDED
More than 64 enter statements have accumulated.
Error 6: |IMPROPER RELEASE STATEMENT
The transaction releasing the facllity.is not controlling
it.
Error 7: {MPROPER RELEASE STATEMENT
A facility is being released which has not been previously
seized.
Error 8: NEW TRANSACTION TABLE EXCEEDED
' More than 40 new transactions have been started.
Error G: 1MPROPER ENTER STATEMENT
The number of units requested for the store is less than |.
Error 10: IMPROPER LEAVE STATEMENT
The number of units being released is more than the store

already has in use.

Error 11: IMPROPER PR CALL

The input to the procedure PR is greater than 1 or less
than 0.

-—

SOL.4.2

Error 12: MEMORY EXCEEDED
There is no more space left in core to hold the local
variables for the transactions.
Error 13: PROGRAM TOO LARGE
The system and SOL program take up all of memory, leaving
no space for holding copies of local variables.

There are also many internal checks in the system. |If a system
error occurs, an internal error message will appear on the output
and the run aborted.

It is very possible for the run time to expire before the
simulation has finished. In order to obtain all statistics accumu-
lated up to that point, the following card should be inserted into
the SOL program:

RUN.ERROR (RESULTS, 'TIMR');

SOL.5.1

Chepter 5

Reserved ldentiflers

Since SOL-20 Is written in ALGOL~20, certain ldentifiers have
been reserved by the system besides the identiflers used for the
SOL procedures and those reserved by ALGOL-20 itself. The total
1ist of reserved identifiers for SOL-20 Is-iisted below.

BUSY NORMAL SLT
CANCEL POISSON SRT
CTD POP S.TAB
EC PR START. SIMULAT | ON
EMPTY PRIORITY STOP '
ENTER PROCESSES STORE
ERROR PROC.PRIO TABLE
E.TAB PRT.FAC TABULATE
EXPONENT 1AL PRT.ST TC
FULL PRT.TAB TIME
GEOMETRIC PUSH TRACE
H2 RAND TR.DS
LBIT RANDOM T.TAB
LEAVE READIN UBIT
MASTER . CONTROL RELEASE UNIFORM
MAXAD RESULTS WAIT
MOVE RETURN WAIT.UNTIL
MTC RUN, ERROR We
MT.TAB sc W.TAB
NEW. TRANSACT | ON SCAL wuC

SEIZE WU.TAB

Appendix |

SoL.I.1

Summary of S0L-20 Differences

Declarations
soL
store *(constant)¢declared ftem)*

table *(¢humberystep(numberdunti}
(numberd) {declared item)y*

facility *(declared [tem)*

Expressions
soL
time

(e1,e2,...,en)

el e
normil (Cexpression Expression))

exponential ((expression))
poisson z<express,ibn>)
geometric({expression))
random ‘

Relations
soL

(facility namedbusy
facility name)not busy
store name)full }

{store nameSnot full
gtOre namedempty }

tore nameynot empty
pr({expressiony)

SO0L=-20

real *{identifier)* !

real array *{identifier)
Enumber): {number)J*

STORE({declared item>,
{constant));

half array *(identifier)(1:2,
0:{number), 1: (humber)]*
TABLE (Ctable numberd,(table
jdentifier),{number),
6umber),<numbe D)

real *{identifier)*
real array *(ldentlfier}

{{rumber) : {numbe rid
50L.~20
TIME
RAND((humber), (rray

identifier));
UN1FORM (Cnumber), (humberD) ;
NORMAL (expression,

{expression));
EXPONENT 1AL ({expression)) ;

POISSON(¢expression));

GEOMETRIC(<expression));

RANDOM({expression),
(expression),0);

50L-20
BUSY ({facility namey);
FULL({store name));
EMPTY ({store name));

PR({expressiony);

v,

Appendix I

Statements

soL

process {identifier); begin

{process declaration 1ist);
{statement listPend

new transaction to label
cancel

walt{expression)
wait untilrelation)

enter {(store name)
leave (store name)
sejze(Facllity name)d
release{facility name
go to (*{label)), (expression)
tabulate{expression) in

{table name)
output statement

stop
read(constant) to {label)

writedconstant)
statistical output(automatic)

soL.J.2

SO0L-20

switch PROCESSES := *{pbrocess
fdentifery*:

Integer array PROC.PRIO [l:{number)];

(process identifier): begin
{process declaratlon list);
(statement list)end;

NEW. TRANSACT 1ON({label));

CANCEL:

WAIT Cexpressiond);

WAIT.UNTIL(Crelation) {(parameter-

less boolean procedure));

ENTER ({store name),{expression));

LEAVE (¢store name),{expression));

SEIZE (¢facility name),{expression));

RELEASE((facility name';

use a switch statement

TABULATE (¢expression), {number),

table fdentifier));

NAME and PRINT statements

STOP;

READIN({procedure identifier),

{label));

NAME and PRINT statements

PRT.FAC(¢(number), (facility identi-
fier), (stringd);

PRT.ST ({number),{store ldentifier),
string));

PRT.TAB({humber),Stable identifier),
{stringd);

r

p—

© 3YST

p—

Appendix II SOL.II.1

1 401 CARD LIST

LIST MINOCOS PGS0200 CDS0000 TAP HANSEN: S O L
SY PAGE . .5 0O L TEST PROGRAM
BEGIN , , - U |
REAL LINE. COMPUTZR} | FACILITIES 2
SWITCH PROCESSES = CONTRIL,USERS:PBU+OTHER.PBUS] | DECLARE PROCSs _ 3
INTEGER ARRAY PROC.PRIO[124]; | PRIORITY TABLE FOR PROCESSES 4
 SY LIBRARY SOL e .3
AL REAL ARRAY Tu[1:6]., 8B[1:3]);] FACILITIES)
REAL ARRAY QUEUE[1%:6]: | STORES . 7
INTEGER ARRAY TUSTATE.SBNUMBER.TUMESSAGE[1:6]}; B
HALF ARRAY TAB[132,022T7.,1:61); | TABLES o N o 9
INTEGER 13 | GLOBAL INDEX COUNTER 10
LADEL STARTsSCANJCOMPUTATION.COMPUTE] | DECLARE TRANSACT]ONS 11
RUN«ERRDR(RESULTS+ ' TEMR?Y) 12
FDR 1 « 1 STEP 1 UNTIL 6 DO BEGIN . ¥
STORE(QUEUE[L Js 10} | DECLARE STORES : 14
TABLE(I,.TAB,2000,500,15000)3 | DECLARE TABLES 18
ENDS 16
"FOR I ¢ 1 STEP 1 UNTIL & DO ‘ 17
PROC.PRIO[1] + 0} | SET PRIORITIES FOR PROCESSES 18
START.SIMULATION}) 19
CONTROL? BEGIN 20
INTEGER I} | DUMMY DECLAIATION TO MAKE PROCESS A BLOCK 21
SaNUMBER[1] ¢ 1; sBNnumader{2]) ¢ 23) R 22
SBNUMBER[3] ¢ 1; SBNUMBER[4] ¢ 23 23
SBNUMBER[S] ¢ 1; S$BNUMBER[6] + 3; e 2
WAIT(15%50%1000); STOP; | STOP SIMULATION ‘ ' 25
END; o o 26
USERS: BEGIN A . 27
INTEGER QsSTART+TIMZoMISSAGE.TYPE; 28
HALF ARRAY TYPE[1:10]; o o) 29
TYPE[1] « TYPE[2] ¢ 1} 30
FOR I ¢ 3 STEP 1 UNTIL 7 DD TYPE[1] + 2; S S 3
tyrs[8] + TYPE[9] ¢ TYPE[10] ¢ 33 32
NEW.TRANSACTION(START); NEW.TRANSACTIDON(START)}; a3
ORIGINZ NEW. TRANSACTION(START); WAIT(UNIFORM{0,5000))} 34
GD TO DRIGING . 3s
START: Q ¢ UNIFORM(1+6); ENTER(QUEUVE[Q]s1); 36
MESSAGE«TYPE ¢ RAND(10.TYPE}} 37
SEIZEC(TU[Q]s0)}} 3s
TUMESSAGE [Q) ¢ MESSAGE.TYPE; 39
WAIT(UNIFORM{6000.,8000)); 40
START.TIME ¢ TIME; : . 4}
NAME(QMESSAGE.TYPE.TIME) : - T T a2
PRINT(C10Bs4TU® 2D+ 1Be *SEND MESSAGE® 2D+ 18+ 7 AT TIME® 31870 a3
1B4+E>) 5 , . &4
TUSTATE[Q] ¢ 13 S a5
WAIT.UNTIL{TUSTATE[G] = 0)3 , ' as
RELEASE(TU[G])); LEAVE(QUEUE[Q]s1); ‘ 47
TABULATE((TIME=-START.TIME)+G+TAB)S ' ' I 48
_NAME{Q:TIME); N e _ 49

Appendix II . 8OL.II,2

PRINT({20B+s*TU®+2D,18+ "RECEIVES REPLY AT TIME®,18,7Ds18,E

>) 3 50
... CANCEL3 - P) S -+ S
END} 52
PBU: BEGIN 53
INTEGER S.TsWORDS;) e " 54
NEW+TRANSACTIONISCANIG T ¢ 33 . S5
_SCAN: T ¢ T + 13 IF. T _>6_THEN T & 1 WAIT(1); 56
s ¢ SBNUMBER[T]; s7
SEIZE(LINE.O); L e -.... 58
WAIT(5); IF 8USY(SB[S]) THEN BEGIN ‘ 59
WAIT{80); RELEASE(LINE); GD TO SCAN _END} = 60
SEIZE(SB[S)s0); WAIT(15); IF TUSTATE[T] # 1 FTHEN BEGIN 61
B WAIT(65); RELEASE(LINE)} RELEASE(S3[5])3 62
GD TD SCAN ENDj; 63
WALIT(225); ‘ L 64
SEND: WAIT(170); IF PR(0.02) THEN BEGIN 65
 WAIT(20); GO TD SEND END; R - - S
NEW. TRANSACTION{COMPUTATION): WAIT(20); RELEASE(SB[S]): 67
o RELEASE{LINZ); TUSTATE[T] ¢ 2; 68
CANCEL; , 69
COMPUTATION: SEIZE(COMPUTER,0); WORDS ¢ TUMESSAGE[TY] ¢+ 25 = 70
WAIT{IF WORDS = 3 THEN 250 ELSE IF WORDS = & THEN 300 ELSE 71
400); T2
RELEASE({COMPUTER) § . 73
. DUTPT: WAIT(1); SEIZE(LINE.O); WAIT(S)}; . 74
IF BUSY(SB[S}) THEN BEGIN 75
_ WAET(BO); RELEASE(LINE); GD TO OUTPT END; 76
SEIZE(SB[5]+0); WAIT(7S); : 17
- RECEIVE: WAIT(B0); IF PR{(0O.01) THEN BEGIN ST £ - S
WAIT(20); GO TO RECEIVE END3; 79
RELEASE(LINE); o S 80
WORDS ¢ WORDS - 1} 81
IF WORDS = 0 THEN NEW.TRANSACTION(SCAN) 3 - . .82
wWAIT(325)}; RELEASE(SB[S]): wWAlT(170)3 83
1F WORDS > 0 THEN GO TO OUTPT; L . B84
TUSTATE[T] ¢ 03 85
— . _CANCELSY_ 86
END} ¥4
OTHERPBUS: BEGIN B -1
INTEGER I} HALF ARRAY wAITs[1:210]; S - 1 S
wAlTs{1] ¢ warTsS{2] ¢ 2503 90
___ _FDR I ¢« 3 STEP 1 UNTIL 7 D0 waAITS[1] ¢ 3003 . g1
WAITS[B8] ¢« WwAITS[9] ¢ WAITS[10] ¢ 400; 92
I ¢« 63 : 93
CREATE: NEW.TRANSACTION{COMPUTE};) 94
1 « 1 - 13 IF I >0 THEN GO TO CREATE} CANGEL} =~ 95
COMPUTE: WAIT(UNIFORM{3200.5000)); SEIZE{COMPUTER.+0)} 96
WAIT(RAND(10,WAITS)}; _ 97
RELEASE{COMPUTER); GD TO COMPUTE; . 98
END; , - S 99
RESULTS: 100
CO PRINT FRACTION OF TIME USED BY FACILITIES ' ,) 101

....FOR I ¢ 1 STEP 1 UNTIL 6 0O

102

Appendix I S0L,II.3

PRTSFAC(T+TU[1])e® TU®); . 103

FOR I.-¢« 1 STEP } UNTIL 3 DO i 104
PRT.FAC{I,.S58[I[]s* sSBY); 105

PRT.FACL{O,LINEs"LLINE"®)} o) 106
PRT«FAC{OQO+COMPUTER,*COMP ")} 107
€0 PRINT INFORMATION ON STORES 108
FODR I ¢« 1 STEP 1 UNTIL 6 DD) 109

e e .. _ PRT.ST(I.QUEUE[I].* QUE'Y; 110 _
CO PRINT STATISTICS ON TABLES 111

FOR I ¢« § STEP 1 UNTIL &6 DO . o -) 112
PRT.TAB(I-TAB,* TAB'); 113

END 3 . -) e 114

Tu
TY
TU

Ty
T

Td

Ty

T

Ty

Ty

Tu

Ty
Ty

Ty

Ty

Ty

L B IR]

N

-

S FE

- o

Bola g

E N L

RV

TEEND IESSAGE 1 AT TIME 7752
SEND MESSAGE 2 AT TIME 7784

SEND

SEND

MESSAGE 2 AT TIME '~ 10302 T
TU 2 RECZIVES REPLY AT TIME 10695

MES3AGE 2 AT TIME 14052

Ty 3 RECEIVES REPLY AT TIME
| U4 RECEIVES REPLY AT TIME "~ 15142

TU 1 RECEIVES REPLY AT TIME
MESSAGE 2 AT TIME 19792
MESSAGE 2 AT TIME 21169
MESSAGE 3 AT TIME 23988
TU 5 RECEZIVES REPLY AT TIME
TU 4 RECEIVES REPLY AT TIME
MESSAGE 2 AT TimME 25935
MESSAGE 1 AT TIME 26675
Ty & RECSIVES REPLY AT TIME

'U 1 RECEIVES REPLY AT TIME

S=ND
SIND
S:=ND

S2ND
SIND

AT
§3ND

Sz=ND
SEND

S=ND
SIND
SZND

SEND

SIND
S3IND

"SEND MESSAGE 3 TAT TIME 67310

SEND

TU 2 RECEIVES REPLY AT TIME
MESSAGE 3 AT TIME 31488
MESSAGE 3 AT TIME 31847
MESSAGE 3 AT TIME 52952
U 3 RECZIVES REPLY AT TIME
‘U a4 RECZIVES REPLY AT TIMg
1ESSAGE 2 AT TIME 36767
‘U 5 RECEIVES REPLY AT TIME
4ESSAGE 2 AT TIME 41957
AESSAGE 1 AT TIME = 42977
4ESSAGE 3 AT TIME 43320
iU 1 RECEIVES REPLY AT TIME
TU 2 RECEIVES REPLY AT TIME
4ESSAGE 3 AT TIME 446994
U 3 RECEIVES REPLY AT TIME

TU 4 RECEIVES REPLY AT TIME

MESSAGE 3 AT TIME 49811
MESSAGE 2 AT TIME 52131
TU 5 RECEIVES REPLY AT TIME

14710

18347/

23999
2571

2800
In.i3y

39+59

3519
36.3/

Iy 46

44943

46041

48-02

49421y

33783

iU 6 RECEIVES REPLY AT TIME
4ESSAGE 2 AT TIME 34502
MESSAGE 1 AT TIME 54982
MESSAGE 1 AT TIME 535320

TU 1 RECEIVES REPLY AT TIME
Ty 2 RECEIVES REPLY AT TIME 58:13

MESSAGE 3 AT TIME 50633
TU 3 RECEIVES REPLY AT TIME
fU 4 RECEIVES REPLY AT TIME

TU 5 RECEIVES REPLY AT TIME 65875

MESSAGE 1 AT TIME 66013
MESSAGE 2 AT TIME 46100

4201

TB7i92

60-41
60-87

MESSAGE 2 AT TIME 68017

TU & RECEIVES REPLY AT TIME ~ 69u4i

fU 2 RECEIVES REPLY AT TIME 70%2%
SIND MESSAGE 3 AT TIME 72289
U 3 RECEIVES REPLY AT TIME 73m15

I1 x7puaddy

#°11°7108

SOL.1I1.5

Appendix II

TU 2 SEND MESSAGE 3 AT TIME B448629
T 3 SEND MESSAGE 3 AT TIME B3F731Z7
TU 1 RECEIVES REPLY AT TIME B47.442
R o TU S RECEIVES REPLY AT TIME ~B48778
TU 2 RECEIVES REPLY AT TIME BS51442
........................... TU & RECEIVES REPLY AT TINE ~85{vV3I&s
TU 1 SEND MESSAGE 2 AT TIME 854122
TU 3 RECEIVES REFLY AT TTME &858u53%
Tu 5 mn,:u MESSAGE 2 AT TIME. 855247

TU 6 mmzu MESSAGE 2 AT TIME 858154
TTrnTTTTTTT TTTUTT TRECEIVES ReEPLY AT TIME "d5aszy
TU 2 RECEIVES REPLY AT TIME 861is12
_.c I SEND MESSAGE I AT TIME 851631
TU 6 RECEIVES REPLY AT TIME 862380
.......................... TU Y RECEIVES REPLY AT TIME 865480
TU 5 RECEIVES REPLY AT TIME 866160
TTO L SEND MESSAGE 2 AT TIME 8séisd T
TU &6 SEND MESSAGE 2 AT TIME 869291
TUT1 RECEIVES REPLY AT TIME 870413
TU 3 SEND MESSAGE L AT TIME 872544
UYL 5 SEND MESSAGE 1 AT TIME 872835 T T
Tu 2 SEND MESSAGE 1 AT TIME a7327¢
LT T T T T e T RECEIVES REPLY AT TIME 8734486 T
TU 4 SEND MESSAGE 3 AT TIME 876671
TO 3 RECEYVES REPLY AT TIME 87796
fU 5 RECEIVES REPLY AT TIME 877276
"TU 1 $=ND MESSAGE 3 AT TIME 879085 T
TU 6 SEND MESSAGE 2 AT TIME 880052 B L
U 2 RECEIVES REPLY AT TIME 8B1s20
U 4 RECEIVES REPLY AT TIME 8R2.42yp
TTTTTTTTTTY 3 sEND MESSAGE 1 AT TIME 884231
TU & RECE[VES REPLY AT TIME 885:74
TUTTTTTTTTITTTTTTTTTTTTTTTTTTTU L RECEIVES REFLY AT TIME @87a7)
Tu 2 S=ND MESSAGE 2 AT TImE 888155
T T MU I RECEIVES REPLY AT TIME T 888245 ’
Ty 4 SEND MESSAGE 2 AT TIME A90303
TU 6 SEND MESSAGE 2 AT TIME 892395
fU 2 RECEIVES REPLY AT TIME 892v¥20
TTTTITTT T T T T YU 4 RECELIVES REPLY AT TINE @94¢75 0
Ty 3 SEND .,...mmmpmm:m:m.ﬂ-ﬁnzm.:-@w.m.o.w.m

CTTrTTTTTTT TU 6 RECETVES REPLY AT TIME 896629
TU 3 RECEIVES REPLY AT TIME B89a8v17

ELOCK TIME AT END OF SIMULATION WAS 90000000 =+06

¢t . L . L. . . . L . o - . o — L -

1T 1Y 1T Y Yy 1y Y Y Y)

03 FES &5 ,
R T TNAMETOF TFACTCITY T FRACTTON OF TIME INTUSE —
TTTUT0LY T T T T T 6645
TU02) A i be7802
"""" Turedy T 0.8633
TUIO4} 0.8137
100057 0.7230
. yutesy 0.852%
S8101) 0.5843
$B102) 0.4166
UUseivyy T 0.2327
LINE g6.8761
COMp

0.5168

11 xypuaddy

911108

T Y 7 o1 7 Y 1 Y T OTYTYSIOTTY TS OTTTY Y Y T Y)Y]

03 FEB &5 : e o)
TNAMETOF STORE T T TTTCAPACITYY MAXIMUM USEY AVERAGE OCCUPANCY AVERAGE UTILIZATION
TTTTeoeleery T 10 T 7Y T - 1 £ % X -1 -1 i }
____@uetwozy 10 . B . 2.4839 Q.2484 = =
Quelno3) 10 10 31,6486 0.3649
__Buelooey 10 5 — 2,5833 0.2583
QUELUG3) 10 4 1,8545 0.1855
__BUEluos) 10 3,044y 0 0.304s
&
o
]
=1
[~
|..l-
E]
]
-

L*I1°'108S

http://0j._3__.__l_

1 1 3 } 1 9 | 1] 1 1) 1
05 FEB 45 : - N e onrmame
TABLE NaME IS TABIOUL]
~ NUMBER 3F TABLE ENTRIES 49 =~ T T7'SyM OF ALL ENTRY VALUES .2520930000

 MEAN OF TABLE

 5144.7551

TUPPER (IMITT T NUWGER PER CENT ™77 CUNULATIVE MULTIPLE OF MEAN
2035.0 0 0.00 0.00 0.3887
.....2u.8 O . 8.00 . 0,00 0.4859
300020 0 0.00 0.00 0.5831
3500.0 4 8.16 8.16 0.6803 o
0080 -) 163377 7T T Ue 49 T 047775
_____ 4500.0 0 20.41 44.99 0.8747
”””” 5000.0 7T TTTTTTTTTULE 24 S E T S 0+9719
5500.0 7 14.29 /1.43 1.0690]
"""""""" 000.0 T T T T 76W12 77,55 o 1.1662
o..5500.0 1 2.04 79,59 1.2634
7000.0 o 2 T 4.08 33.67 1.3606
_7500.0 4 .16 v1.84 1.4578
BONU.O . 2.04 ¥3.88 1.5550
8300.0 1 2.04 95,92 16522
BT 11U e U P T SRS 28 T 1.7494
. 9500.0 1 2.04 190.00 1.8465
TTTTTLe000L0 T 0 TOV 00 T T 10,00 19437
10500.0 0 0.00 1u0.00 240409
1 11000.0 TR gL 00 140.00 2.1381
. 11500.0 O 00D _ .. 1u0.00 2.2358% .
12000G.0 0 0.00 160.00 2.3325
12590.0 0 0.00 108.00 2.4297)
130000 0 4.00 110,00 2.5268
.. .A3500.0 0 0.00 ... 1vo.00 2.6240
14000.0 0 0-00 1u8.00 2.7212
145008.0 0 0.00 1006.00 2.8184
15000.0 T e 0.00 100.00 249156

" 'STANDARD DEVIATION

1501.1870

) hj 1 3 1 1 } B |] D b) 1 1 } 1 ¥
03 FEB &5 .
o TABLE NAME IS TABLOOZ]
TNUMIER IF TABLE ENYRTEY T TTRYTT T C T SUM OF TALL ENTRY VALUES 2784510000 »+06
MEAN OF TABLE T 4640.8500 T STaANDARD DEVIATION T T 1365.2080 T
TUPPERLCTMIT NUNBER PEX CENT CUMULATIVE MOLTIPLE OF MEAN
"""" LT R Y T Y Y T D 7Y, % 5 X D
2500.0 0 0.00 0.00 0.5387 e
3060.0 B T 1 .00 T 06464 :
3500.0 5 8.33 13.33 D.7542 B
4000, 0 1% 26.67 40.00 0+8619
4500.0 12 20.00 60.00 g.9696 o
TTTT8h00.0 o - 13.33 T X3y T 1.0774 7
5500.0 5 8.33 %1.67 1+1851 B >
“““ LY EPE R S 1 Y A5 O 1 S P71 { - R) B o
... 55n0,0 3 5.00 58,33 1.4006 &
700050 ? 3.33 91.67 1.5083 8.
7500.0 2 3.33 ¥5,00 1.6162 -
TTTTBOGULDT 1 1.67 U667 T T 1.7238 - -
B500.0 0 0.00 ¥6.67 1.8316 o - -
""" -4 L - R 10 5 S 17) IO | 1+ J, P - 5 { - = S
950040 0 0.00 100,00 _2.0470
1000050 b 0-00 130.00 2.1548
o .ie5¢2.0 e 5.0 1 ivp.00 2.2625
11d00.0 0 0.00 100.00 2.3703
_11500.0 0 . 0.00 1u0.00 2.4780 B
120000 0 0.00 100.00 2.5857
__12500.0 0 0.00 100.00 2.6935 e
130nu.0 0 0.00 150.00 2.8012
__.13500.0 0__ 0.00 100,00 __2+9089 -
14500.0 ¢ & 00 iw@.00 o _d J.1244
15000.0 0 6.00 100.00 3.2322

6°I1°108

03 FEB 55

N ,,,__;T ABUE NENE TS TARt00 %)

- NUM3ER OF TABLE ENTRIES 7 77 gl ™~~~ SUM OF ALL ERNTRY VALUES 3233110000 .+06
"MEAN OF TABLE TN 49740154 T STANDARD DEVIATION i298.1728
UPPER LIMIT T NUMBERTT PERCENT CUMOLATIVE ™ 7 MULTIPLE OF MEAN
2000.0 T TR o T 0.00 - “"0.00 0.4021
___._@3p00.0 - 0 0.00 0.00 Qe5026
Joo0.0 T T B4 TTTTLL.854 - 0.6031
" 4p00.0 T T i3 20.00 25,08 0.8042
4500.0 15 23.08 46.15 0.9047
5000.0 0 TR - 2 13.85 T 60.00 T T4, oesz T
5500.0 9 13.85 73.85 o 1.10%7 o &
"""" 000.0 T TUTTETTTTTTTTTTTTIURS T T L84 T 1.2063 s,
5500.0 _ 3 4.62 86.15 1.3068 o
7000.0 - 3 §.67 90.77 1.4073 o
~7500.0 I 4.62 95.38 1.5078 %
BON2.D 1 1.54 96.92 1.6084 —
8500.0 0 0.80 96.92 1.7089 ey
99dfu.0 T I 7TTTTTTTLLs o 9B. 46 X T} Z
___9500.0 .1 1.54 100.00 1.9099
10000.0 0 .00 100,00 2:0404
~165%e%.0 0 0.00 ___.. . io0.00 2.1$20
ti000.0 T T R. 80 T T 100.00 2.211%
. 31590.0 @ Q.00 i600.00 2.3120 _
12000.0 0 (.00 110.00 2.4125
__12500,0 0 0.00 100.00 2.5131
13000.0 e 0.08 1v0.00 2.6136
~13500.0 0 0.00 190,00 2.7141)
14000.0 B 0 .00 100.00 2.8146
14500.0 _ 0 __b.00 .. Acp.00 I 2.945%
15000.0 ' I T T 1006.00 3.0157

0L"II"T0S

Y Y Y Y Y Y Y Y Y Y Y Y Ty oy
03 FEH &5
T T T TTTTTT T U T YABLE NANE IS TABTO04)
NUMBER JF 'TABLE ENTRIES " B§ T T T T T T T G UM U OF ALK T ENTRY TVALDES T 3095450000 L4067
CMEANTOFTUTABLETTT T 8248, 5854 T T T T T TS TRNDARD DEVIATION T T 1598,838%¢ T

TUPPERTLIMITTT TTNUMBERT PERTCENT " CJUMULATIVE™™ —— MULTIPLE OF MEAN
2o0n0.0 T (1] oe00 T o.00 T o.38i2 T T
2500.0 0 0.00 0.00 0.4765
B 1:2; 1 U | I U 000" TTeL00 T T g.%7i8 T oUUTTUTTC
3500.0 2 3.39 3.39 0.6671
4000 1D 15.95 20.94 0:+7624
4500.0 12 20.34 40,68 0.8577
R4 11T . § | I 16.9% YL Ay T TTTTTTTTTTTTTTTTTLYs3 T
5500.0 -3 10.17 67.80 1.0483 . e
XL EY 4 6.78 74,58 141436 o]
. __6_500-0__ q 6078 81-36 102_389 1]
7000.0 2 3.39 34.75 1.3342 A
__7500.0 2 5.39 48.14 00000 1.4295 . X
803070 4 6.78 " 54.92 1.,524% -
8500.0 0 0.00 94,92 i.620¢. 1 =
LU B i TTTTT1.69% J6.63 1.73%¢
_ §500.0 0 0.00 96.61 1.8107
10000.0 1 1.69%9 98,31 1.9060
10500.0 0 . 8.00 98,31 2.0043
11500.0 . g 0.00 1u0.00 2.1919
12050C.0 0 6.00 100.00 2.2872
~12%¢0.0 0 0.00 1v0.00 2.3825
13000.0 0 0.00 149.00 2.4778
13500.0 L 0 0.00 100.00 2.5731
14090.0 0 0.00 1uo.00 2.6684
14500.0 0 0400 100.00 _2.7637
15000.0 o 0 .00 S lvg.00 0 0 T T 2.8590

1L 11708

http://40fir.no

1] 1 b } } k)) } | I |)) 1
03 FEB &5
TABLE NAME IS TABt0O0S]
NUM3ER JF TABLE ENTRIES 777 -7 N SUM DF ALL ENTRY VALUES 2770320000 =+06
McAN OF TABLE 5130.2222 STANDARD DEVIATION 1558.8936
UPPER LIMIT NUMBER PER CENT CUMULATIVE MULTIPLE OF MEAN
2030.0 0 0.00 0.00 0.3898
__2500.0 \] N 0.00 5,00 0.4873 .
3000.0 B 2 3.76 3.70 0.5848
3500.0 5 9.26 12.96 0.6822
40000 H 3.26 22.22 07797
4300.0 _ 11 20.37 _ 42.5u9~_'_ 0D.8772
500900 6 11--11 dddddddd 53070_ 0-77‘6
5500.0 7 12.96 = 66.67 1.0721
6000.0 5 5.26 75.93 1.1695 =
7000.0 4 7.41 90.74 1.3645 J4
7500.0 1 1.85 92.59 144619 s
8000.0 1 1.85 94,44 1.5594 »
_ 8500.0 i 1 1.85 96.30 1.6568 K
90n0.0 1 1,85 Y8.15 17543
95100.0 0 0.00 98.15 1.,8518
10000.0 0 0.00 98.15 1.9492
10500.0 _ . o 0«00 . 98.45% 2.0467 -
11900.0 1 1.85 100.00 2.1442
11500.0 L [S 0.00 . 1u0.00 242416
12000.0 0 0.00 100.00 2+33%91
125p0.0 '] 6.00 100,00 2.4365
130n0.0 0 g.00 100.00 2:5340
__13500.0 0 0.00 100,00 2.6315
14500.0 0 0.00 100.00 2.8264
150400,.,0 T] .00 100.00 2.9238

| *I1°T0S

http://fl~.ll
http://9D~0
http://0.lt

03 FEB &5
TABLE NAME [§ TAB Y0081
“TNUMBER “3F "TABLE ENTRIES —~~~~— ~ X SUM OF ALL ENTRY VALUES . 3116160000 .+06
TMEAN OF TABLE T T 4869.0000 T STANDARD DEVIATION TT1310.2439 0 0 T
TUFPER CINTY NUMBER PER CENT — CUMULATIVE " MULTTPLE OF MEAN
2ood.0 T 0 N 1Y« | T | P I T 0.4108
. 2500.0 0 6.00 0.00 0.5135
TTTRUOULD T | Iy U 1/ Ry DA 1 I Y3 13 SR
3500.0 3 4.69 4.69 0.7188
400050 10 15.63 70.31 t.8215 T
4500.0 25 39.06 59,38 0.9242
BEENE 1 1 1'FY I B TTTTTTRVLE T TTTTTTUTTRELS0 T T T T TTL.0269 T
5500.0 11 17.19 79.69 11296 -
""" YD) TTTTTTETTTTTTTTTTI e T 87.50 T TTTTTTUUTTTUL.2323 0 g
6500.0 1 1.56 89,06 1.33%0 S
]y] 1 1.5¢% 50.62 7T 1.43727 07 2
7500.0 1 1.56 92.19 1.5404 %
8000.0 2 IR 88y TTTTTTUTTT{ 6430 .
TR0 T - 6 THi00 T ST Y R T Y. Y S
9500.0 0 0.00 98.44 1.9511
TTIH000S0 1 1°5% 100,00 T TR.05387
105n0.0 . B ... b.00 150,00 . R.1565
110000 T 0.00 {io0.00 242592
____115¢00.0 8 0.00 __10p.00 243619
12000.0) 0.00 140.00 2.4646
12508.0 0 _w.00_ 110.00 2.5673
. 13000.0 A | B Y T I 1u0.00 2+.6700
= . 43300.0 0 o 0.00 1v0.00 247726
: g {40050 0 0.00 100.00 2.8753
& ~145p0.0 L0 o 0.00 130.00 2.9780
=28 15000.0 0 0.00 100.00 3.0807
s .
§"‘ TIME USED! 0144706 PAGES USED:t ~ 2¢ 02:24303 9
o

SOL.III.1

Appendix III

SOL—A Symbolic Language for General-Purpose

Systems Simulation

D. E. KNUTH awp J. L. McNELEY

Summary—This paper illustrates the nuse of SOL, a gonersl-
purposs algerithmic language useful for describing and simulating
complex systems. Such a system is described as a number of indi-
vidual processes which simyltaneously enact a program very much
like a computer program. (Some features of the SOL language are
directly applicable to programming languages for parallel computers,
a8 well ag for simulation.) Once a system has been described In the
Isnguage, the program can be translated by the SOL compiler into an
interpretive code, and the execution of this code produces statistical
information about the model. A detalled example of a SOL model for
a multiple on-line console system is exhibited, indicating the nota~
tional simplicity and intuitive nature of the language,

IMULATION by computer is one of the most im-

portant tools available to scientists and engineers

who are studying complex systems. The first com-
puter programs of this type were especially designed to
simulate some particular model; but afterwards the
- authors of several of these programs abstracted the es-
sential features of their program organization and pre-
pared general-purpose simulation programs. The most
extensively used general-purpose programs of this type
have apparently been the SIMSCRIPT compiler of
Markowitz, Hauser, and Karr [1], and the GPSS (Gen-
eralfflirpose Systems Simulator) routines of Gordon
[2]-14).

Although SIMSCRIPT and GPSS are both general-
purpose simulation programs, they are built around
- quite different concepts because of their independent
evolution, and so they bear little resemblance to each
other. SOL (Simulation-Oriented Language) is another
general-purpose simulation routine, in which we have
attempted to incorporate the best features of the other
languages. After a careful study of SIMSCRIPT and
GPSS, and after having implemented a version of GPSS
for another computer, we found that it would be possible
to generalize the characteristics of the former programs,
while at the same time the language became simpler
and more convenierit for the preparation of models. This
simplification was achieved by extracting the essential
characteristics of GPSS and recasting them into a sym-
bolic language such as SIMSCRIPT, There are, of
course, a great many ways in which this can be done,
and we are not sure that the compromises we have
chosen have been optimal; but a year of experience with
the SOL language, after applying it to a number of
problems of different kinds, indicates that SOL is a

Manuscript received January 3, 1964.

. E, Knuth is with the California Institute of Techaology,
Pasadena, Calif.
Cal"l" L. McNeley is with the Burroughs Corporation, Pasadena,

M.

quite power{ul and flexible way to describe systems for
simulation. We also found that the increased generality
available in SOL was actually simpler to implement
into a computer program than the previous routines
were.

A complex system can be represented as a number of
individual processes, each of which follows a program
very much like a computer program. For example, if we
were simulating traffic in a network of streets, we might
have one program describing a typical automobile (or
perhaps two programs, one which describes all of the
women drivers and one which describes all of the men),
another program which represents the action of trafhic
signals, and possibly some other programs representing
pedestrians, etc, Each program depends not only on
quantities which are specified in advance, but also on
random quantities which describe a probabilistic be-
havior; thus, we can specify the probability that a driver
will turn left, the probability that he will switch lanes,
the distribution of speeds, etc. Altliough each program
represents only a single entity (such as a single auto-
mobile), there can be many entities each carrying out
the same program, each at its own place in the program.

Because of these considerations, SOL is a language
which is in many respects very much like a problem-
oriented language such as ALGOL or FORTRAN.
There are three major points of difference between SOL
and conventional compiler languages. SOL provides

1) mechanisms for parallel computation,

2) a convenient notation for random elements within
arithmetic expressions, -

3) automatic means of gathering statistics about the
elements involved,

On the other hand, many of the features of problem-
oriented languages do not appear in SOL, not because
they are incompatible with it, but rather because they
introduce more complication into this scheme than
seems to be of practical value for simulation processes.

A program written in the SOL language is punched
onto cards and it is then compiled by the SOL compiler
into an interpretive pseudocode. The SOL snlerpreter is
another machine program, which executes this pseudo-
code and produces the results. (The SOL system has
been implemented for the BS0O00 computer, but at the
present time it is being used only for research within the
Burroughs Corporation, and it is not currently available
for distribution.)

A self-contained, complete description of SOL ap-

SOL,III.2

Appendix III

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

pears in another paper [5]. The definition there is rather
terse since it is intended primarily as a reference de-
scription; we will introduce the language here by means
of an example, discussing the significance of each state-
ment in an intuitive fashion.

ExaMPLE; COMMUNICATION WITR
REMOTE TERMINALS

The following example has been chosen not only to
iltustrate most of the features of SOL, but also because
it is a practical application in which SOL has been used
to evaluate the design of an actual system of some com-
plexity. '

Consider the configuration shown in Fig. 1. This
represents one of four similar groups of devices which
alt share the processor shown at the right. The “TU’s”
are terminal units which may be thought of as inquiry
stations or typewriters. There are three groups of type-
writers, with three in the first group (TU[1], TU[3],
TU[S]), two in the second group (TU([2], TU[4]) and
only one in the third (TU[6]). These groups are located
many miles from each other and from the central proces-
sor. People come in at the rate of about five or six per
minute to use each typewriter, and they wait in the
appropriate queue until the typewriter is free.

These people will send one of three kinds of messages.

Message Frequency Compute time h:;gf&ig’:‘
20 per cent 250 myec 3
B 50 per cent 300 msec 4
C 30 per cent 400 msec 5

Each message type has a different frequency and re-
quires a different amount of central processor time.
Communication between the typewriters and the
processor is handled by site buffers SB[1], SB[2], SB[3],
one at each remote site, and by two processor buffers
PBU's, which receive the information and transmit it to
the computer. These processor buffers sequentially scan
TU[1], TU[2}, - - -, TU[6], TU{1], - - - until locat-
ing a typewriter ready to transmit information; this
scanning is done by sending control pulses to all lines,
then receiving a “positive” response from the SB if the
appropriate TU is ready. Then a message is transferred
from SB to the PBU and from there to the processor;
after computing the answer, the processor refills the
PBU, and the appropriate number of words is sent back
to the SB and is typed on the TU (one word at a time).
Further details will be given as we discuss the program.
We will compose three programs.

1) A program which describes the action of each per-
son who uses the remote typewriters.

2) A program which describes the action of each of
the two PBU’s.

3) A program which simulates the action of the other

August

six PBU's, which share the central processor with
the configuration shown in Fig. 1.

Fig. 2 shows these three programs together with the con-
trol information, as a complete SOL maodel.

The independent quantities which enact the programs
as the simulation proceeds are called transactions. (Much
of the terminology used in SOL is taken from Gordon's
simulator [2]-[4].) As simulation begins, there are only
three transactione: one for each of the programs 1), 2),
3). Therefore, these programs describe not only the ac-
tion of the quantities mentioned above, they aiso de-
scribe the creation and dissolution of new transactions.

Each transaction containa local variables which have
values that can be referred to only by that transaction.
There are also global variables, and some other types of
global quantities, which can be referred to by all trans-
actions. Thus, transactions can interact with each other
by setting and testing ‘global quantities, Only one
“copy” of each global variable is present in the system,
but there are in general many copies of each local vari-
able (one for each transaction).

Program 1), which represents the people using the
typewriters, might begin as follows:

process USERS;

begin integer Q, START TIME, MESSAGE TYPE;

new transaction to START; new transaction to START;

ORIGIN: new transaction to START; wait 0:5000; go to
ORIGIN;

START:

The first line merely identifies a process (f.e., a program)
with the name “usgrs.” The language resembles
ALGOL, and we distinguish control words by putting
them in bold-face type. The second line states that there
are three local variables in these transactions, having the
names Q, START TIME and MESSAGE TYPE. The statement
“new transaction to starT” describes the creation of a
new transaction whose local variables have the same
values as the local variables of the parent transaction (in
this case zero, since all local variables are automatically
set to zero at the beginning of a process), and this new
transaction begins executing the program at the state-
ment labeled sTART. The statement “wait 0:5000”
means an amount of simulated time, chosen randomly
from 0 to-5000, is to elapse before the next statement is
executed. In general, the statement.-“wait E,” where E
is some expression, means that E units of time are to
pass before excuting the next statement. The expression
E,: Ey always denotes a random integer chosen between
E, and E,, and therefore “wait 0:5000” has the meaning
stated above. A unit of time in this case represents
1 msec in the simulated model.

The reader should now reread the above sequence of
coding before proceeding further. The essential action it
describes is that three transactions will begin executing
the program beginning at the statement called START,
and thereafter a new transaction (i.e., a new user enter-

S0L.III.3
Appendix IIT
1964 - Knuth and McNeley: SOL-'-Symbouc Language for Systems Simulation
theew
Ay
[,
pairs
@—[TUra] = G
@ [SB.033
Gosves Torita IS e Pt
Fig. 1—Multiple console on-line communication system.
begin Beize LINE;
facility Tu{6], sB[3], LINE, cOMPUTER; walt 5; if sn[s] busy then (wait 80; release LINE; go to
store 10 QUEUE[6]; SCAN);

integer TUSTATE[6], sBNUMBER[6], TUMESSAGE[6];

table (2000 step 500 until 15000) TABLE[6];

pProcess MASTER CONTROL;

begin sBNUMBER[1]—1; sBNUMDER{2]«2;
SBNUMBER[3]«—1; sBNUMBER [4]«2;
SBNUMBER|[5]«—1; SBNUMBER [6 | +-3;

wait 60X 601000; stop end;

process USERS;

begin integer @, START TIME, MESSAGE TYPE;

new transaction to START; new transaction to START;

ORIGIN: new transaction to START; wait 0:5000; go to

ORIGIN;

START: Q+—1:6; enter QUEUE[o];

MESSAGE TYPE+(1,1,2,2,2,2,2,3,3,3);

seize Tu[g]; |

TUMESSAGE [Q | —MESSAGE TYPE;

wait 6000:8000;

START TIME«—time;

output Frugd, @, FSENDS MESSAGEF, MESSAGE TYPE,

#aT TINES, time;

TUSTATE[Q]+1;

wait until TUSTATE[Q]=0;

release TU[Q]; leave QUEUE[Q];

tabulate (time —START TIME) in TABLE[0];

output #TUf, Q, FRECEIVES REPLY AT TIMEF, time;

cancel end; :

process FBU; begin integer 5, T, WORDS;

new fransaction to SCAN; T+-3;

sCaN: T«T+1; if T>6 ther T—1; wait 1;

s+sBNUMBER[T];

seize sn[s]; wait 15; if TusTATE[T] %1 then

{wait 65; release LINE; release sB{s]; go to scaN);

wait 225; SEND: wait 170; if pr(0.02) then (wait 20; gé to
SEND};

new transaction to COMPUTATION; wait 20; relessesa(s};

release LINE; TUSTATE [T]+2; cancel;

COMPUTATION: #éizé COMPUTER ; WORDS —TUMESSAGE [1]
+2; :

wait (if worDs =3 then 250 else if worps =4 then 300
else 400);

release COMPUTER;

OUTPUT: weit 1; seize LINE; wait 5;

if sB[s] busy then {wait 80; release LINE; go to OUTPUT);

seize sB[s]; wait 75;

RECEIVE: wait 80; if pr(0.01) then (wait 20; go to
RECEIVE) ;

release LINE;

WORDS+—WORDS —1;

if worps =0 then new transaction to scan;

wait 325; release sB[s); wait 170;

if wornps >0 then go to oUTPUT;

TUSTATE [1]+-0; cancel end;

process OTHER PBUS;

begin integer 1; 1+—6;

. CREATE: new transaction to COMPUTE;

1<1—1;if 1>0 then go to CREATE; cancel;

COMPUTE: wait 3200:5000; seize COMPUTER;

wait (250, 250, 300, 300, 300, 300, 300, 400, 400, 400);

release COMPUTER; g0 to COMPUTE end; '

end.

Fig. 2—Complete SOL program for the on-line lsyshem.

SOL.III.4

Appendix III

IEEE TRANSACTIONS ON

ing the system) will be created at intervals of about 2.5
sec. We have started the system with three transactions
so that it will not take it very long to arrive at a more or
less stable condition.

The program now proceeds as follows:

START: Q+—1:6; enter QuEvE[Q];

The statement “Q«1:6" means that local variable Q is
set to a random number between 1 and 6; thus the user
is assigned to one of the six typewriters. The “enter”
statement refers to one of six global quantities,
QUEVE[1], - - -, QuEUE[6]. At the conclusion of the
simulation, data will be reported giving the average
number of people in each queue at a given time, and
also the maximum number.

MESSAGE TYPE+~(1,1,2,2,2,2,2,.3,3,3);

The expression (E,, Ei, -+, E,} denotes a random
choice selected from among the n expressions. There-
fore, the given statement mieans that the local variable
MESSAGE TYPE receives the value 1 with probability 20
per cent, 2 with probability 50 per cent and 3 with
probability 30 per cent; this represents the choice of
message A, B or C as stated earlier.

seize TU[Q];

This statement refers to one of the global quantities
Tu[l], - - -, TU[6], which are classified as facilities, A
facility is sefzed by one transaction, and then it cannot
be seized by another transaction until it has been re-
leased by the former transaction. Therefore, if transac-
tion X comes to a seize statement, where the correspond-
ing facility is busy (i.e., has been seized by transaction
¥), transaction X stops executing its program until
transaction Y releases the facility. If several transac-
tions are waiting for this event, they are processed in a
first-come-first-served fashion.

~ Thus, the statement “seize TU[Q]” expresses the situ-
ation that the user takes control of typewriter number
Q, after possibly waiting in line for it to become avail-
able. :

TUMESSAGE [Q]«~MESSAGE TYPE;

This statement says that the global variable TUMES-
sAGE[Q] is set to indicate the type of message. This
global variable is used to communicate with the PBU
process which is described below.

wait 6000:8000;

This statement simulates the time of 6 to 8 sec, taken
by the man to type his request on the terminal unit.

START TIME+«—time;

We now set the local variable START TIME equal to
“time,” the current value of the simulated clock.

output §TUf, @, FSENDS MESSAGEF, MESSAGE TYPE,
FAT TIMEF, time;

ELECTRONIC COMPUTERS August

This statement causes the printing of a line during the
simulation, having the form “TU 3 SENDS MESSAGE 2 AT
TIME 12610.” The “§” symbols indicate a string inserted
into the output.

TUSTATE[Q]1;

Another global variable TUSTATE[Q] is now set to 1 to
indicate that the typed message is ready to send.
TUSTATE Q] has three possible settings.

TUSTATE =0 means the TU is {ree.
TUSTATE =1 means the message has been typed.
TUSTATE = 2 means the answer message may be typed.

The next statement
wait until TUSTATE [0} =0;

means the transaction is to stop at this point until
TUSTATE[] has been set to zero (by some other trans-
action). This indicates that we are to wait until the
answer message has been fully received. When that oc-
curs, the transaction finishes its work as follows:

release Tu[Q]; leave QUEUE[Q];
tabulate (time —sTART TIME) in TABLE[q];

The latter statement is used for statistical data;
TaBLE[Q] is a global quantity which receives “readings”
by means of “tabulate” statements. At the end of simu-
lation, this table is printed out giving the mean, the
standard deviation and a histogram of the data it has
received. :

output #TUf, Q, FRECEIVES REFLY AT TIME#, time;
cancel end; .

The last statement, “cancel,” causes the disappearance
of the transaction, and the word “end” indicates the
end of the program for this process.

Program 2),.which runs simultaneously with 1) and
3}, describes the action of the PBU's.

process PBU; begin integer s, T, WORDS;
new transaction to scan; T+3;
SCAN: :

We have three local variables, 5, T and wWoRDs. At the
beginning, two transactions (representing the two
PBU's) start at SCAN, one with its variable T=0, the
other with T=3.

SCAN: Te~T+1; if T>>6 then Te1; wait 1;

These statements represent the cyclic scanhing_ process
which we assume takes 1 msec. The variable T repre-
sents the number of the TU which the PBU will be
referencing.

8+—SBNUMBER[T];
“SBNUMBER” is a table of constants, which is used to
tell which SB corresponds to the TU scanned.

seize LINE;

SOL.III.S

Appendix III
1964 Knuth and McNeley: SOL—Symbolic Language for Systems Simulation

We now seize the facility LINE, which represents the
long-distance communication lines. (If the other PBU
has seized LINE already, we must wait until it has been

_ released.)

walt 5; if su[s] buay then
(wait 80; release LINE; go to SCAN);

We wait 5 msec for a control signal to propagate to the
SB unit. Here snls] 1s a facility; if it is busy (S.., has
been seized by the other PBU) we wait 80 msec more,
receiving no signal back, so we release the line and re-
turn to scan the next TU.

seize snfs]; wait 15; if TusTATE[T] 1 then
(wait 65; release LINE; release sns]; go to scan);

If sB[s] received the control signal, it is brought under
the control of this PBU. Fifteen milliseconds later, the
number T has been transmitted across the line, and it
takes 65 msec for the SB to determine if Tu{T] is ready
to transmit or not. If not, we release the SB and the
line, and scan again.

wait 225; SEND: wait 170; if pr(0.02) then
(wait 20; go to SEND);

It takes 225 msec for the SB to get ready to transmit
the message and to send a warning signal across the
line to the PBU. Then 170 msec are required to send the
input message. The construction “if pr(0.02)" means
“2 per cent of the time,” and 30 this statement indicates
that, with probability 0.02, a parity error in the trans-
mission is detected; in such a case, we send back a signal
calling for retransmission of the message.

new transaction to COMPUTATION; wait 20; release sB[s];
release LINE; TUSTATE[T]|—2; cancel; :

At this point two parallel processes take place. As the
PBU tries to send the message to the computer, it also
sends a “message received” signal across the lines to the
5B, and, 20 msec later, the SB and the lines are released.
The TUSTATE is adjusted, and then this portion of the
transaction is cancelled.

COMPUTATION ! s€ize COMPUTER;
WORDS+—TUMESSAGE [1]+2;
wait (if worps =3 then 250 else

if woRDSs
=4 then 300 else 400);
release COMPUTER;

Here we send the message to the computer facility,
possibly waiting for it to become available. The local
variable WoRrDS is set to the number of words output
for the current message, and we also wait the appropri-
ate amount of computer time. At this point, the output
message has been created by the computer, and it has
béen sent back to the PBU. The final job is to output
this fmessage, one word at a time:

OUTPUT: wait 1; seize LINE: wait 5;
if s [s] busy then (wait 80; release LINE; go to OUTPUT) ;

A control word is sent out to interrogate the SB, as in
the case of input above.

seize sn(s]; wait 75;

RECEIVE: wait 80; if pr(0.01) then
{wait 20; go to RECEIVE);

release LINE;

We have output one word te the SB; there was proba-
bility 1 per cent that a transmission error was detected.

WORDS—WORDS —1;
if worps =0 then new transaction to scan;
wait 325; release snfs]; wait 170;

Alfter the last word has been transmitted, a parallel
activity starts with another scan. It takes 325 msec for
the SB to send the word to the typewriter, and another
170 msec are required for the typewtiter to finish its
typing.

if worps > 0 then go to oUTPUT;

TUSTATE [T]+0; cancel end;

When the output has all been typed, TUSTATE is reset to
zero (thus activating the USER transaction) and this
parallel branch of the program disappears.

Program 3} is used to describe the traffic which takes
place at the computer, by creating six simulated PBU's
as follows:

process OTHER PBUS;
begin integer 1; 1+6;)

CREATE: new transaction to COMPUTE;

1+—1—1; if 1> 0 then go to CREATE; cancel;
COMPUTE: wait 3200:5000; seize COMPUTER;
wait {250,250,300,300,300,300,300,400,400,400) ;
release COMPUTER; go to COMPUTE end;

Qur example program is now almost complete. We
precede the three processes given above by the following
code, which declares the global quantities. There is also
a fourth process which accomplishes the initialization
and which stops the simulation alter 1 hour of simulated
time.

facility Tu[6], sB[3], LINE, compUTER;

store 10 QUEUE[6];

integer TUSTATE[6], sBNUMBER[6), TUMESSAGE[6];

table (2000 step 500 until 15000) TaBLE [6];

Process MASTER CONTROL;

begin saNumBeR[1]+1; sBNUMBER[2]+2;
SBNUMBER [3]+1; sanuspER{4]«—2;
SBNUMBER[5]«1; seNUMBER[6]+3;

walt 6060 1000; stop end;

REMARKS

We have purposely chosen a rather complex example
to show how SOL. can be used to solve an actual problem
of practical importance, and to show in what a natural
manner the system can be described in the language.

Fig. 3 is a sample of some of the output resulting
from the program of the preceding section,

CLOCK TIME AT END OF SIMULATION WaAS

TU
w
ALY

TV
TV
T
T
T
W
W

Ty
TV

T

T
T
TU

TV
T

TV

TY

Tty
™

TV
TJ
Ty

SENDS

SENDS

SENDS
6

[
5
SENDS
SENDS
SENDS
[
2
3 SENDS

weo

wmn o

5
1 SENDS
3
SENDS
SENDS
1

v

5
SENDS
SENDS
5
2
3
1 SENDS

LY R

NUMBER OF TIMES LABELS AERE ENCOUNTERED

LABEL

ORIGIN
SEND
RECELVE

COUNT
1455
1a77
5990

NAME OF FACILITY

LABEL

COMPUTATION

rutods)
Tuloo2)
Tutogd
Tul0o0a)
Tul00s)y
Tuloosy
salo01y
salgo02y
safonly
LINE

* COQMPUTER

MESSAGE
MESSAGE
MESSAGE
RECEIVES
RECEIVES
RECEIVES
MESSAGE
MESSAGE
MESSAGE
RECEIVES
RECEIVES
MESSAGE
RECEIVES
MESSAGE
RECEIVES
MESSAGE
MESSAGE
RECEIVES
RECEIVES
MESSAGE
MESSAGE
RECEIVES
RECEIVES
RECEIVES
MESSAGE

3600000

START

L I B BN

CREATE

1
1

4
REPLY AT
REPLY &Y
HEPLY at

k|

2

1
REPLY AT
REPLY AT

4
HEPLY AT

2
REPLT aT

1

2
REPLY AT
REPLY a7

3

3
REPLY At
REPLY AT
REPLY T

1

AT
AT
At
TIME
TIME
TIWE
AT
At
AT
TINE
TI4E
AT
TIME
AT
TEME
AT
AT
TIME
TIME
AT
At
TIME
TIME
TInE
AT

COUNT
1457
PLTTS

6

0.8318
0,8053
0.7887
0,.8085

0.8302.

Q,7%549
0.6051
0.a8221
0.,2120
0,864y
0.5509

-1)
TIKkE 5586
‘TIME ris2
TIME 7295

9973
10305
13353
Timg 16908
TIME 17476
TIME - 17305
21166
21412
TIME 21848
24229
TIME 25824
27959
TIME 30442
TIME 3140¢
31609
. 3327a
TIME 3N067
TIME asars
Is0as
38953
39378
TINE 40472
LABEL
SCAN
QUTPUT
COMPYTE

FRACTIQN OF TIME IN USE

COUN'
1730
802
L34 1

NAME OF STORE CAPACITY MAXIMUM USED AVERAGE DCCUPANCY AVERAGE UTILIZATION
GUEVELCOY) 10 10 2.%272 09,2527
QUEUEL D2} 10 10 2.425% 0,292s
QUEUE{003) 10 10 2,3835 0,238a
QUEUEL DDA} 10 4 1.76%96 9,177
CUEUEL005) 10 8 2,188 0,218a
QUEVEL006) 19 s 18971 0.1497

TABLE NAME IS TABLELQDI]}

NUMBER OF TaABLE ENTRIES 235 SUM OF AuLL ENTRY VALUES 1205076
MEAN OF TABLE 5110.9617 STANDARD DEVIATION 1841,51124
UPPER LINIT NUMBER PER CENT CUMULATIVE MULTIPLE OF MEAN
2000 0 0,00 2.00 0,3913
2500 0 0,00 0,00 00,0891
Jono % 2,13 2.13 0,5870
3500 14 5,968 8,09 0.6843
4000 34 15,32 23,40 0,7826
4500 12 13,62 37,02 0,880%
5000 46 19.57 56,60 0,978)
5500) 23 9.79 66438 1,078%
6000 25 10,68 T7.02 1.1739
6500 18 7 .66 84,63 1.2718
7000 12 5,11 89,79 1,369
7500 10 4,26 94,04 1,4874
8000 H 2,13 98,17 1.5653
8500 1 0,43 96,60 1,6631
9690 4 1.70 98,230 1.,7609
9500 1 0,43 eB.72 1,8587
10000 i 0,43 9%,15 1,9%66
10500 1 0.83 99,57 2,05a4
11000 0 0,00 929,57 2,1522
11500 1 N.43 100,00 2.2501
12000 0 0,00 100.00 2,347
12500 0 0.00 100,00 2,0437
13000 0 0,00 120,00 2,5436
13%00 0 0,00 100,00 2.641a
14000 0 0,00 100,00 2,7392
14500 0 0,00 100,00 2.82370
Q 0.00 100.00 2,93a9

15000
' Fig. 3 (pp. 406-407)—Samples of the output obtained.

SOL.III.8

Appendix IIIX

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

The ideas wsed in SOL {or creating and canceling
transactions have applications in the design of languages
for highly parallel computers.

The techniques which are used in the implementation
of SOL will be the subject of another paper. 1t shouid be
indicated here, however, that the implementation gives
a rather efficient program because separate lists are
kept for transactions which are waiting for different
reasons. Those which are waiting for time to pass are
kept sorted on the required time. Those which are wait-
ing for a condition such as “wait until A =0," for some
global variable A, are kept in a list associated with A;
this list is interrogated only when the value of A has
been changed.

The SCL system has proved to be especially advan-
tageous f{or simulating computer systems since “typical

programs,” which we assume are to be run on the simu-
lated computers, are easily coded in SOL's language.

ACKNOWLEDGMENT

The authors wish to express their appreciation to J.
Merner for many helplul suggestions.

REFERENCES

(1} H. M, Markowitz, B. Hauser, and H, W. Kurr, “SIMSCRIPT—
A Snmuhtmn Prv unmmg Language,” l‘renln‘e-Hdll. Inc.,
Englewood Clifls,

121 G. Gordon, "A gtm.-ral pnrpmu. systems simulation program
Proc. Eastern Josmt Computers Conf., pp. 81-104; I)cumbcr. 1961

[3] — “A geacral purpose systems simulation progeam,” IBM
ﬁﬂeuul vol. 1, pp. 18-32; September, 1962,

141 * eference Manual, General l’urpme Systems Simulator [I,”

M Corp., White Plains, N. Y.,

{st D E. Knuth and J. L. McNeley, 'A ormal definition of SOL,”
this issue, page 409

(6] M. R. Lackoer, *Toward a general simulation capability,” Proc.
Spring Joint Compuier Conference, pp. 1-14; May, 1962,

SOL.IIL.9

Appendix IIY
A Formal Definition of SOL

D. E. KNUTH anp J. L. McNELEY

Summary—This paper gives a formal definition of SOL, a general-
purpose algorithmic language useful for describing and simulating
complex systems. SOL is described using meta-linguistic formulas
a8 uged in the definition of ALGOL 60. The principal differences be-

tween SOL and problem-oriented languages such as ALGOL or

FORTRAN is that SCL includes capabilities for expressing paraltel
computation, convenient notations for embedding random quantities
within arithmetic expuuiohs and automatic means for gathering
statistics about the eloments involved. SOL differs from other simu-
lation languages such as SIMSCRIPT primarily in simplicity of use
and in readability since it is capable of describing models without
including computer-oriented characteriatics.

1. GENErAL DEscrIrTION

OL IS an algorithmic language used to construct
S models of general systems for stmulation in a

readable form. The model builder describes his
model in terms of processes whose number and detail
are completely arbitrary and definable within the con-
straints of the language elements. A SOL model con-
sists of a number of statements and declarations which
have a character similar to that found in programming
languages such as ALGOL,

The model is not built to be executed in a sequential
fashion as ordinary programming languages require.
Rather, the processes are written and executed as if all
were running in parallel. Control between processes is
maintained by the interaction of global entities and by
control and communication instructions within the
different processes. At the initiation of the simulation
all processes are begun simultaneously.

Variables declared within a process are called lecal
variables. Within a given process it is possible to have
several actions going on at once; therefore, we may
think of several objects on which the action takes place
each in its own place in the process at any given time.
These objects will be referred to as transactions. A set of
local variables corresponding in number to those de-
clared in the process is “carried with” each transaction
of that process. Transactions situated within one proc-
ess may not refer to the local variables of another proc-
ess nor to the local variables of ancther transaction in
the same process.

Global quantities are of three major types: global
variables, facilities and stores. Global variables can be
referenced or changed by any transaction from any
process in the system, and the variable possesses only
one value at any given time.

Manuscript received January 3, 1964,
D, E. Knuth is with the California lastitute of ‘Technology,
Pasadena, Calif.
c Jf‘ L. McNeley is with the Burroughs Corporation, I'asadena,
alif.

A facility is a global element which can be controlled
by only one transaction at a time. Associated with each
request for the fucility is a “control strength,” and if a
requesting transaction has a higher strength than the
transaction controlling the facility, an interrupt will
occur, Interrupts may be nested to any depth. [the
requesting transaction is not of greater strength than
the controlling transaction, then the requesting transac-
tion stops and waits for the facility until the controlling
transaction releases its control. When a transaction is
interrupted, it cannot advance to any other position in
its program until it regains control of the facility.

Stores are space-shared rather than time-shared global
elements, and they are assigned a specific storage capac-
ity. As long as there is sufficient storage to accommeodate
the requesting transaction the request for space is satis-
fied; otherwise, the transaction waits until the space it
is requesting becomes available. In this sense, a facility
nay be regarded as a store which has a capacity of one
unit only, except for the fact that no interrupt capabil-
ity is provided for stores.

Simulated time passes in discrete units indicated in
“wait statments.” The model builder requires the trans-
actions to wait a proper number of time units at the
appropriate places in the processes, and this specifies
the time element. The interpretation of the physical
significance of a unit of time is inmaterial in the SOL
language; if all time interval specifications are multi-
plied by a factor of ten it will not decrease the speed by
which the model is simulated. o

Control within or between processes is also introduced
into the simulation by allowing a transaction to wait
until a global variable or expression obtains a certain
value. A transaction may also be forced to wait until a
space- or time-shared element attains a certain status.

. Output statements which display the progress of the
simulation may be inserted at will in the model, Special
types of statistics are automatically available, such as
the per cent of utilization of a facility, the average and
maximum number of elements in a store at a given
moment, etc. Another type of global quantity, called a
table, is introduced to record statistical information
about desired data. The mear, the standard deviation
and a histogram are provided for all data recorded in a
table.

Processes initiate parallelism within themselves by
using a duplication operation. The transaction makes an
exact copy of itsell and sends the copy to a specified
location in the process while the original continues in
sequence. A transaction is taken out of the system when
it executes a “cancel” statement.

SOL.TII.10

Appendix III

LEEE TRANSACTIONS ON ELECTRONIC COMPUTERS August

Other operations available in SOL are similar to those
of existing algorithmic languages, but these portions of
the language are at the present time less powerlul than
the features available in a large scale programming fan-
guage. '

A detailed example of a complete SOL model appears
in a companion paper in this issue [2].

II. Synrax anD SEmaNnTICS OF SOL

We will define the syntax of SOL using meta-finguistic
formulas as given in the definition of ALGOL 60 [t].
Certain things which have been carefully defined in
ALGOL 60 will not be redefined here but will merely
be stated to have the came interpretation as given by
ALGOL. We will use the abbreviation *{A)* to mean “a
list of {A},” 1.e.,

HAY = () AP, (A)

Comments may be written in the form “comment
{string without semicolons});” as in ALGOL 60.

A. Identifiers and Constants
{letter):: =AlB[C[D| - - - |z

{digit):: =0|1]2|3] - - - |9

{number): : = (constant)| (decimal constant)

{constant):: =*{digit)*

{decimal constant): : = {constant).{constant)

(identifier): : = (letter)| (identifier }(letter)|
{identifier) (digit)

Identifiers are used as the names of variables, statisti-
cal tables, stores, facilities, processes, procedures and
statelients. The same identifier can be used for only one
purpose in a program. Constants are used to represent
integer numbers. Decimal constants represent real num-
bers. Identifiers must be declared before they are used
elsewhere.

B. Declarations

(declared item): : = {identifier)| {identifier)[{constant)]

(variable declaration):: =integer *(declared item)*]
real* (declared item)*

{facility declaration): : =facility *{declared item)*

{store declaration): : =store *{constant}{declared item)*

{table declaration}: : =table *({number)step(number)
until {(number})}{declared item)*

{monitor declaration}: : = monitor *{identifier)*

If the declared item is simply an identifier, it means
that a single item of that name is being declared. The
other form, e.g., A[10], means 10 similar items called
Alt] a2}, - - -, a[10] are being declared.

The variable declaration is used to specily variables
(either local or global, depending on where the declara-
tion appears). All variables are initially set to zero when
declared. “Integer” variables differ f[rom “real” variables
in that when a value is assigned to them it is rounded to
the nearest integer.

When a [ucility is declared, it is initially “not busy™;
at the end of the simulation run, statistics are reported
giving the per cent of time cach facility was in use.

A store declaration gives the capacity of each store
{the number preceding the identifier). At the end of the
simulation run statistics are given on the average and
the maximum number of items occupying the store (as a
function of time). Stores are empty when first declared.

A “table” is used to gather detailed statistical in-
formation of any desired type; readings are tabulated
and afterwards the mean, the standard deviation, histo-
gram distribution, ete., are output. The constants pre-
ceding the table name give the starting point for histo-
gram intervals, the increment between initervals and the
highest value. :

A wmonitor declaration names items which already
have been declared, with the understanding that these
identifiers are to be “monitored.” This means that when-
ever a change in the state of the corresponding quantity
is detected, a line will be printed giving the details. This
capability is especially useful when checking out a
maodel, and it can aiso be used to advantage for output
during a regular simulation run.

C. Expressions and Relations
{name): : = {identifier}| {identifier) [{expression)]

By {variable name}, {facility name), etc., we will
mean that the identifier in the name has appeared in a
{variable declaration}, {facility declaration), etc., re-
spectively.

{primary}:: = (variable name)| (store name)|
(constant)! {decimal constant)l time]
{*(expression)*) | abs({expression)} |
max{*{expression)*)| min(*(expression)*) |
normal({expression), {expression))
exponentiai((expression))l poisson({expression}) I '
geometric((expression)}| random

(term): ! = {primary}| (term} X (primary}|
{term) < {primary)}| {term)/ (primary}|
{term)mod{primary) _

(sum): : = (term}| +{term)| — (term)| (sum)+ (term)|
{sum}— (term)

{unconditional expression): : = (sum)| (sum): (sum)

{expression): : = {unconditional expression}]
if (relation) then {(expression) else {expression)

The meaning of the arithmetical operations inside ex-
pressions is identical to the meaning in ALGOL 60.

The new elements here are “a mod 5,” the. positive
remainder obtained wupon dividing a by b;
“max(ey, - - -,)" and "min(e, - - -, e.),” which de-
note the maximum and minimunt values, respectively,
of the = expressions; and there are also notations for ex-
pressing random values. The expression “(¢;, - - -, &))"
indicates that a random selection is made from among
the n expressions with equal probability of choosing any

SOL.III.1i

Appendix III

1964 Knuwih and McNeley: A Formal Definliion of SOL

expression. The expressions normal(M, S), poisson(M),
geometric{M) and exponential(M) indicate random
values with apecial distributions which occur {requently
in applications, A random number drawn from the nor-
mal distribution with mean M and standard deviation
S is denoted by normal(M, S) and is a real {not neces-
sarily integer) value. A number drawn from the ex-
ponential distribution with mean M is denoted by ex-
ponential(M) and is also of type real. The poisson
distribution signified by poisson(M}), on the other hand,
yields only integer values; the probability that pois-
son(M)=n is (e~®M"/n!). The geometric distribution
with mean M, denoted by geometric(M), also yields
integer values, where the probability that geometric(M)
=n is 1/M(1 —1/M)>L The symbo! random denotes a
random real number between 0 and 1 having uniform
distribution. Finally, we have the notation e,:e;, which
denotes a random integer between the limits ¢, and &;
more formally

{ 0, 60>
Crily =
(e,ant+1,: -, 00 ase

The normal, exponential, poiseon and geometric dis-
tributions are mathematically expressible in terms of
random as follows:

normal{M,S) = § X +/—2 in (random)
X sin (2x random) + M
exponential(M) = — M In (random)

Mi M-—l
i - R — M — « e
poisson(M) = nif e (1+M+ T + +(n—1)[)

M
§mdom<e—“(1+M+...+_l_')
n

geometric(M) = [1 + In (random)/In (1 - %)]

{The poisson distribution should not be used for
values of M greater than 10.) As examples of the use of
these distributions, consider a population of customers
coming to a market with an average of one customer
every M minutes. The distribution of waiting time be-
tween successive arrivals is exponential{M). On the
other hand, if an average of M customers come in per
hour, the distribution of the actual number of customers
artiving in a given hour is poisson(M). If an individual
performs an experiment repeatedly with a chance of
success, 1/M on each independent trial, the number of
trials needed until he first succeeds is geometric(M).

The special symbol *time” indicates the current time;
intially, ime is zero. The value of a store name ia the
current number of occupants of the store,

{relational operator):: = = [#| <| Z|>]2
{relation primary): : = {unconditional expression}

(relational operator}{unconditional expression)
{facility name) busy | {facility name) not busy
{store name}) full | (store name) not full|
(store name) empty| (store name) not empty|
pr({expression)}| ({relation))

{relation): : = (relation primary)
{relation primary)V/ (relation primary}
({relation primary)A (relation primary)
“J{relation primary)

These relations have obvious meanings except for the .
construction “pr(e)” which stands for a random condi-
tion which is true with probability e. (Here e must be
less than or equal to 1.) Thus we might say

if pr(0.12) then (12 per cent of the time)
eise (88 per cent of the time).

1I1. STATEMENTS
A. Processes

As this simulator operates, any number of processes
written in the language may be in use at once. We may
think of several objects, each in its own place in the
process at any given time. These objects are referred to
as lransactiens. In this section, we describe the various
manipulations that transactions can perform in the jan-
guage,

{process description): : = process (identifier); .
{statement)
process (identifier); begin
{process declaration list}; {statement list) end
{process declaration): : = (variable declaration)]
{procedure declaration)| (monitor declaration)
(process declaration list): : = {(process declaration)|
{process declaration list); {process declaration)

There are two kinds of variables, global variables (not
declared in a procesa) and local variables (those which
are declared in a process). All transactions can refer to
the global variables, and a global variable has only one
value at any given time. But a local variable is “carried
with” each transaction within a given process, and there
is in general, a different value [or a local variable de-
pending on which transaction is using it. Transactions
situated within one process may not refer to the local

" variables of another process, nor can the local variables

of one transaction within a process be reached directly
by other transactions in that same process. Communica-
tion between processes is accomplished solely with the
help of global quantities.

B. Labels

A statement may be named by any identifier as fol-
lows:

(statement): : = (unlabeled statement)|
(identifier): (statement)

SOL.TIIT.12

Appendix III
IEEE TRANSACTIONS ON ELKCTRONIC COMPUTERS August

By the designation {label} we will mean the name of a
statement.

C. Crealion of Transactions

At the beginning of simulation, there is one transac-
tion present for each process described. Each of these
initial transactions starts at time zero and is positioned
at the beginning of the process. More transactions may
be created by using “start statements,”

{start statement):: =new transaction to (label)

This statement, when executed, creates a new transac-
tion (whose local variables are the sanie in number and
value as those of the transaction which created it). The
new transaction begins executing the program at (label)
while the original transaction continues in sequence.
New transactions are also created by input statements
(Section 111-T). .

D, Disappearance of Tronsaclions

Transactions “die” when they execute a cancel state-
ment.
{cancel statement): : =cancel

An implied cancel statement is at the end of every
process, so cancel statements need not always be ex-
plicitly written.

E. Replacement Slatements

{replacement statement):: = {variable name)
—{expression)

This replaces the value of the variable by the value of
the expression. The variable may be global or local, but
not the name of a store. If the variable is an mteger
variable, the expression is rounded.

F. Priority

Time is measured in discrete units, 80 it may happen
that by coincidence two transactions want to do some-
thing at precisely the same time. They may be in con-
flict, e.g., they may both want to seize a facility, or
to change the value of the same global variable or one

may want to change it while the other is using its value."

Actually, in such cases of conflict, the simulator does
choose a specific order for execution; no tweo things
actually happen at the same instant, as we deal more
properly with fnfinilesimal units of time between the
discrete units. The choice of order is fairly arbitrary ex-
cept when a difference of priority is specified; in that
case, the transaction with higker priority will be acted
on first. Each transaction has a priority, which is ini-
tially zero; priority is changed by the statement

PRIORITY +—{expression).

The declaration “integer PrIORITY" is implied at the
beginning of each process, .c., PRIORITY is treated as a
local variable. In the present implementation of SOL,
the priority must be between ¢ and 63. The effect of
priority is spelled out further in Section IV,

G. Wait Siatements
{wait statement):: =wait {expression)

The cxpression is rounded to the nearest integer, and
then this atatement advances “tme” by max(0,
{expression}), as far as this transaction is concerned. All
time delays in a siinulated procesa are, in the last analy-
sis, specified by using wait statements,

H, Wait-Until Stalemenis
{wait-until statement): : =wait until {relation)

This causes the transaction to freeze at this point
until the relation becomes true (because of action by
other transactions). The relation must not involve ex-
presgions which have a random value; e.g., it is not legal
to write “wait until pr(10)” or “wait until A[1:4]=0,"
etc.

I. Enter Statements

{enter statement):: = enter (store name)|
enter (store name), {expression)

The first form is an abbreviation for “enter (store
name), 1." The value of the expression, rounded to the
nearest integer, gives the number of units requested of
the store. The transaction will remain at this statement
until that number of units is available and until all
other transactions of greater or equal priority which
have been waiting for storage space have been serviced.

J. Leave Statement

(leave statement): : =leave (store name))
feave (store name), (expression)

The first form is an abbreviation for “leave (store
name}, 1.” This statement returns the number of units
equivalent to the value of the {rounded) expression.,

K. Seize Statements

(seize statement): : =seize (facility name)|
seize {facility name), {expression)

The first form is equivalent to “seize {facility name),
0.” This statement is usually rather simple, but there
are situations when complications arise. If the facility
is not busy when this statement occurs, then it becomes
busy at this point and remains busy until later released
by this transaction. {Note: If this transaction creates
another transaction by means of a start statement, the
new transaction does not control the facility.)

The expression appearing above represents the “con-
trol strength” which is normally zero. Allowance is
made, however, for one trausaction to interrupt an-
other. If the facility is busy when the scize statement
occurs, let F; be the control strength with which the
facility was seized and let E; be the control strength
of this seize statenient. [f'Ey 5 E,, the transaction waits
until the facility is not busy. If £,> E,, however, inler-
rupt occurs. The transaction Ty which had control of

]

SOL.IIX.13

Appendix III

1964 Knuth and McNeley: A Formal Definition of SOL

the facility is stopped wherever it was in its program,
and the present transaction 1% seizes the facility. When
T} releases the [acility, the [ollowing occurs:

1) If Ty was excctiting a wait statement when inter-
rupted, the time of wait is increascd by the time
which passed during the interrupt.

2) There may be several transactions not waiting to
seize this facility. If any of these has a higher
control strength than E,, then T, is interrupted
again. The transaction which interrupts is chosen
by the normal rules for deciding who obtains con-
trol of a facility upon release, as described in the
next section.

The control strength in the preseat implementation of
SOL must be an integer between 0 and 4095. This al-
lows interrupts to be nested up to 4095 deep.

L. Release Statemenis
{release statement): : ~release {(facility name)

This statement is permitted only when the transac-
tion is actually controlling the facility because of a pre-
vious seizure. When the facility is released, there may
be several other transactions waiting because of seize
statements. In this case, the one which gets control of
the facility next is chosen by a consideration of the fol-
lowing three quantities in order:

1) highest control strength,
2) highest PRIORITY,
3) first to request the facility.

M. Go Te Statemenis

(go to statement):: =go to {label}]
go to (*(label)*), {expression)

This statemeunt is used to transfer to another point in
the program; statements are usually executed sequen-
tially. In the second form, the expression is used to
select which statement to transfer to; if there are n
labels, the expression, when rounded to the nearest
integer, must have a value between 0 and n. Zero means
continue in sequence, 1 means go to the first statement
mentioned, and so on.

N. Compound Statements

Several statements may be combined into one, as
follows:

{statement Jist):: = (statement)l {statement list);
{statement)

{compound statement): : =begin {(statement list) end]
({statement list)})

0. Conditional Siatements

{conditional): : =if {relation) then {unconditional
statement)|
if {relation) then {unconditional statement) else
(statement}

The meaning is the same as in ALGOL; testing of the
relation requires no simulated time,

P. Tabulale Statements

{tabulate statement): : =tabulate {expression) in
{table name)

The value of the cxpression is recorded as a statisti-
cal observation in the table specified.

Q. Output Statements

{carriage control):: = (empty)| page|line| double
{string):: = {any sequence of characters excluding “#")
(output list item): : = f(string)$| (expression)[
{store name)]| (table name)} {facility name)
{output staternent): : = output *{carriage control)
{output list item)*

Output occurs for all items listed, in turn, after doing
the appropriate carriage control positioning. The out-
put for a string is the string itsell. An output for an ex-
pression is the value. For a store, table or facility, the
appropriate statistical information is output. At the
conclusion of an output statement, the final line is
printed out.

R. Stop Statemenis
{stop statement):: =stop

A stop statement causes simulation to terminate im-
mediately, and all transactions cease. The statistics for
all stores, tables and facilities are output as in the out-
put statement, as well as the final time, the number of
times each labeled statement was referenced and the
number of transactions which appeared in each process.

S. Procedures

{procedure declaration): : = procedure {identifier);
{statement)
{procedure statement): : = (procedure name)

A procedure is simply a subroutine used to save cod-
ing. Parameters are not allowed, but their effect can be
achieved by setting local variables in the transactions
before calling the procedure. There are local procedures
and global procedures (the latter are declared outside
of a process). Global procedures cannot refer to local
variables. A go to statement may not lead out of a pro-
cedure body. Procedures may be used recursively.

T. Transaction Input-Oulput

{transaction read statement): : =read (constant} to
(label)
{transaction write statement): : = write {constant)

The read statement inputs a set of values of [ocal
variables for a transaction of the same type as the one
executing the read statement; this set of values is used
in the creation of a new transaction which begins exe-

L R B R |

)

SOL.III.14

Appendix III
IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

cuting the program at the statement mentioned. The
write statement writes the current values of the local
variables of the transaction onto the unit specified and
does not cancel the present transaction. The constant
in each refers to a tape or card unit number. The same
tape should not be used for both input and output in
the same simulation run,

U. Summary of Statements

{unlabeled statement}:: = {unconditional at‘atement)]
{conditional}

{unconditional statement): : = {start statement)}
{cancel statement)|
{replacement statement)| (wait statement)]
(wait-until statement)| (enter statement))
(leave statement)| (seize statement)|
{release statement)| {go to statement)|
{compound statement)| {output statement)|
{tabulate statement}| (stop statement)}
{transaction read statement)] (procedure statement)|
{transaction write statement}| {empty)

IV. TuE MoDEL As A WHOLE

{model):: =begin (global declaration list}; {process list}
end.
(declaration}: : = (variable declaration}|
{facility declaration)|
(store declaration)| (table declaration)]
{(monitor declaration)| (procedure declaration)
{global declaration list):: = (declaration)[
{global declaration list); {declaration}
{process list): : = {process sdescription}|
{process list}; {process description}

‘Imitially all variables are zero, all facilities are *not
busy,” all stores are “empty,” the time is zero, one trans-
action appears for each process described and the simu-
lator is in the “choice state.”

When the simulator is in “choice state,” each trans-
action is either positioned at a wait statement, a wait-
until statement, a seize or enter statement or else it has

just been created. (We will dispense with the latter case
by assuming a “wait 0" statement has been inserted just
before the present position when a new transaction is
created.) I there are no transactions which can move
at this time, the time is advanced to the earliest com-
pletion time for a wait statement. Now, from the set of
transactions able to move, that one is selected which has
the highest rrioriTy, and in case of ties, which has
been waiting the longest. (If there is still a tie, an arbi-
trary choice is made.} The selected transaction is acti-
vated, and it continues to execute its statements until
encountering a cancel or stop statement, a priority as-
sighment statement, a wait statement, a wait-until
statement with a false relation or a seize or enter state-
ment which cannot take place at that time. We examine
all other transactions which are stopped because of a
wait-until statement involving global quantities
changed by the present transaction. I the correspond-
ing relation is now true, these transactions become free
to move at the current time. Then we have once again
reached “choice state.” Note that all release statements
which are passed during the time the selected transac-
tion was moving are processed immediately in such a
way that the facility becomes not busy only if no other
transaction were interrupted or were waiting to seize it;
if other transactions are in the latter category, the choice
of successor and the transfer of control described in
Section I1I-L takes place immediately as the release
statement is executed. Therefore, it is conceivable that
the statement *wait until FAC not busy” may never be
passed if other transactions are always ready to seize the
facility FAC. Similar remarks apply to the leave state-
ments.

Since this paper was written, a few additions have
been made to the SOL language, including “synchron-
ous” variables and some additional diagnostic capabili-
ties.

REFERENCES
[1] *Revised report on the algorithmic language ALGOL 60,” Comm.
ACM, Ep 1-17; January 6, 1963. sHsge
(2] D. E. Knuth and J. L. McNeley, *SOL—A symbolic langua
for general-purpose systems simulation,” this issue, page 401.

ERRATA for SOL-20

Since the publication of the SOL-20 manual, changes have been made to im-
prove the SOL system as implemented. The major changes were: (1) the addition
of procedures which may éontain SOL statements, (2) changing TIME to type real
instead of integer, (3) increasing the run time speed of the system, and (4)
eliminating the need to recompile the SOL system for every SOL program. The
system is now callable from a job card under the name 'SOL'.

As a consequence of the aforementioned improvements, some of the documen-
tation is incorrect. This errata explains all the changes and additions to

the ﬁanual.

NOTE: 1In this errata, positive line numbers (e.g. 7, 11, etc.) indicate lines

from the top of the page; negative numbers (e.g. -10, -7, etc,) indicate

lines from the bottom,.

Page 2.1
line -10:

<table declarationm> ::= real array <identifier>

line -7: .
of the table plus 1 while the...

line -6:
...the same identifier. This number is 1 if there is only one table.

line -1:
line 9: real array TAB[1:2,0:28,1:6); | tables:

Page 2.3
line 7:
18 a global variable. It is of type real, not integer.
line 11:
real procedure RAND(N,E); value N; integer N;
line 12;
real array E;
line -11:

poisson (M) = 0 if random < e-M

Page 2.4
lines 2,3:

If the result is to be of type integer then COLON is used.
integer procedure COLON (E1,E2); value E1,E2; integer EI, E2;

otherwise

real procedure UNIFORM (E1,E2); value El,E2; real E1,E2;

line 5¢
line 36: Q « COLON(1,6);

Page 2.5
line 2:

Processes are declared by a switch statement

line 4:
switch < switch identifier > := *<process identifier>*-

Page 2.5 (cont)
line 18:

...name of transactions appearing in a new transaction statement

mst be

Page 2.6
line 15:

215— 1.

line -10:
procedure WAIT(WAIT,TIME); value WAIT,TIME; real WAIT,TIME;

Page 2.8
line 5:

real EXPRESSION: integer Q; real array TABLE;

line -12:
procedure STOP (<label>);

1ine =-7:

<label> and occursa,,.

line -4:
line 25: STOP(RESULTS);

Page 2.9
line -15:

real array TABLE; string NAME;
lines -6, 5:
A S50L-procedure is defined to be exactly the same as an ALGOL-20 pro-

cedure, except it contains a wait, wait until, seize, enter, or cancel

statement. The SOL-procedure is thus constructed the same as Algol pro-
cedure. However, there are some restrictions on the structure and usage

of procedures containing the aforementioned SOL statements.

1. No own variables may be declared as local variables in the SOL-

procedure body.

2, No arrays may be declared as local variables in the SOL-procedure

body. However, arrays may be passed as parameters,

“3a

3. Local variables are undefined in the usual Algol-20 sense, i.e.,

upon entering the procedure, their values are undefined,

4, SOL-procedures may contain nested blocks which in turn way contain

SOL code. No arrays may be declared inm the block.

5. A SOL-procedure may not be used as an input parameter to a pro-
cedure, SOL or Algol. Also, a SOL-procedure cannot be called from
any procedure, In general then, a SOL-procedure may not be nested

ingide another procedure.

6., for statements with SOL statements in their scopes must not have

meltiple for lists.

7. A go to statement may lead out of a procedure body, but must be

into the tramsaction that called the procedure.

8. A NEW.TRANSACTION or a READIN statement cannot occur in the pro-

cedure bedy.
9. SOL-procedures and Algol procedures are non-recursive,

10, SOL-procedures may have input parameters.

Page 2.10
lines 13-21:

The SOL system is written in ALGOL and has been precompiled. There-
fore, the SOL program's first card must have an "AL' in the language
field and the program must provide the matching 'END' (Since the SOL
system 18 an ALGOL program, it starts with a BEGIN). The system 18 called
from a job card using the mmemonic SOL. The integer array for process
priorities, the switch statement for processes and all facilities, stores,
and global SOL variables must be declared, Facilities and stores that

are simple variables must be declared as real variables,

All labels used as parameters to the procedures NEW.TRANSACTION, STOP,
and READIN must be declared...

line -9:

.++ Also the vector for process prilorities must be initialized.

wlye

line -7:
START.SIMULATION (<simple variable>,<array identifier>,<switch identi-~
fier>);

The <simple variable> is the last global scalar declared in the pro-
gram before the procedure call START,SIMULATION, If procedure declara-
tions immediately precede this call, then some scalar must be declared
between the last declaration and the call (The order of array and scalar
declarations 1s not relevant). The <array identifier> is the vector de-
‘clared previously that will contain the priorities for the processes.
The <switch identifier’> is the identifier of the switch statement pre-

vicusly declared that lists the processes,

Page 4.1
Add to the lists of errors:

Erroxr 1: PROCEDURE CALL NESTED INSIDE A PROCEDURE
A SOL-procedure is called from another procedure or SOL-pro-

cedure.

The following erroras have been changed:
Error 2, Error 3, Error 4, Error 5: TABLE SPACE EXCEEDRED
The simulation has exhausted the space allocated by the system

for tables.

Error 8: TRANSACTION INTERRUPTING ITSELF
A transaction presently controlling a facility is reseizing

the facility with a higher control strength.

Page 4.2
lines -2, 1:

the outermost block of the SOL program:

RUN.ERROR (<label>,'TIMR');
where <label> is the start of the procedure calls for outputting the
statistical results of the simulation.

Page 5.1

The following identifiers are no longer reserved:
MOVE, MT.TAB, PROCESSES, PUSH, RESULTS, RETURN

Page 5.1 (cont)
The following identifiers are now reserved:

B.LINKI1, B,LINK2, COLON, HHZ2, T,CNT, UMARK, X1, X2

Page I.1
iine 10:

real array *<idegtifieﬁ>[l:2

line 23;
UNIFORM....; COLON(<number>, <number>);

Page 1.2
line 4:

switch <switch identifier> := *<process

line 6:
integer array <array identifieﬁ>[1:<numbeﬂg H

line -10:
STOP(<label>) ;
-add: procedure <identifier> Same as in Algol. For SOL-procedure restric-

<procedﬁre statement> tions, see 50L.2.9, section 5 on procedures.

Add page II.O

A few critical features of the test program are worthy of mentionm.

~ the program does not start with a BEGIN, this is provided by the
system,

- the program provides the wmatching END.

- the first card of the program must have an 'AL' in the language
field.

Additional statistical information is now automatically provided by
the syatem. |
1. .facilities:
- utilization: the number of times the facility was seized, not

including interrupts, over the simulation run.

- average utilization: total time the facility was busy divided
by the utilization,

6=

2. stores:

- number of entries: the total number of units entered in the store.

3. tables:

- deviation from mean: the upper limit of the histogram interval
minus the mean, all divided by the standard
deviation.

- all entries that exceed the last histogram limit are fndicated by

the word OVERFLOW printed in the limit field. Anything less than
the first limit goes into the first cell.

The average occupancy of a store 18 calculated as follows: Let
L = length of time for which the store remained at its current value.
U = total unit-occupancy = LL° (storage contents)

Then average occupancy = U/ total time of run

Hence, this figure 18 a weighted average of the number of transactions
in the store. Average utilization is then average occupancy divided by

the capacity.

Page II,1
The following 'program' will correct the test program,

ALTER 1 TO 2;
REAL LINE, COMPUTER; | FACILITIES

ALTER 5 TO 6;
REAL ARRAY TU(1:6), sB[1:3]; | FACILITIES

ALTER 9;

REAL ARRAY TAB[1:2,0:28,1:6}; | TABLES
INSERT AFTER 11;

LABEL 'RESULTS ;

ALTER 19;
START . S IMULATTON(I, PROC, PRIO, PROCESSES) ;

ALTER 25; |
WAIT (15%60%1000) ; STOP(RESULTS); | STOP SIMULATION

ALTER 28 TO 29;
INTEGER Q, MESSAGE,TYPE; REAL START,TIME;
REAL ARRAY TYPE[1:10) ;

ALTER 36;
START: Q « COLON(1,6); ENTER(QUEUE(Q),1);

-7-

ALTER 89 TO 90;

INTEGER I; REAL ARRAY WATTS[1:10);
WAITS(1) « wAITS(2] o 250,

