
NOTICE W A R N I N G CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

SOL-20

BY

GILBERT J. HANSEN

Carnegie Institute of Technology
April 22, 1965

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (SD-146)

H I N T LIBRARY
CARNEE1E-KELUIN UNIVERSITY

ACKNOWLEDGMENTS

The a u t h o r t h a n k s David M. B l o c h e r , J a n e t W. F i e r s t ,

R i c h a r d B . Grove and Caro l H. Thompson f o r t a k i n g t i m e t o e x

p l a i n t h e i n t e r n a l w o r k i n g s o f Algo l-20 and f o r t h e i r s u g g e s

t i o n s and p a t i e n c e in h e l p i n g t o debug t h e s y s t e m .

F i n a l l y , t h a n k s g o e s t o Dr . Alan J . P e r i l s f o r h i s

many f i n e s u g g e s t i o n s and g u i d a n c e in d e v e l o p i n g t h i s i m p l e ­

m e n t a t i o n o f SOL.

CONTENTS

CHAPTER 1 I n t r o d u c t i o n SOL. 1 .1

2 D i f f e r e n c e s in SOL-20 S O L . 2 . 1

3 T r a c i n g SOL. 3 . 1

k Run Time E r r o r s S O L . 4 . 1

5 R e s e r v e d I d e n t i f i e r s S O L . 5 . 1

APPENDIX I Summary o f SOL-20 D i f f e r e n c e s S O L . 1 . 1

I t Sample Program and Output SOL/TT. 1

T T T ^ O r i g i n a l P a p e r s by Knuth and McNeley. . S O L . H I . 1

* The Knuth and McNeley Papers from THE IEEE TRANSACTIONS,
August, 1964 are reprinted with permission.

C h a p t e r 1

I n t r o d u c t i o n

T h i s manual i s a supplement t o t h e o r i g i n a l a r t i c l e A FORMAL

DEFINITION OF SOL by Knuth and McNeley. The v e r s i o n o f SOL d e s c r i b e d

h e r e , known a s S O L - 2 0 , was implemented by p r o c e d u r e s w r i t t e n in A l g o l -

2 0 and G-20 m a c h i n e l a n g u a g e . I t i s t h e p u r p o s e o f t h i s d o c u m e n t a t i o n

t o d e s c r i b e in d e t a i l t h e e x a c t d i f f e r e n c e s and c h a n g e s in s y n t a x

between SOL and S O L - 2 0 .

With some l i m i t a t i o n s , t h e f u l l power o f ALGOL* i s a v a i l a b l e

f o r programming in S O L - 2 0 . A SOL-20 program i s w r i t t e n u s i n g SOL-20

s y s t e m p r o c e d u r e s which implement SOL d e c l a r a t i o n s , e x p r e s s i o n s ,

r e l a t i o n s and s t a t e m e n t s .

The sample p r o b l e m g i v e n by Knuth and McNeley has been r e ­

w r i t t e n in SOL-20 and i s i n c l u d e d in C h a p t e r 1. Sample p r o b l e m o u t ­

put f o r 15 t i m e u n i t s o f s i m u l a t i o n i s a l s o a p p e n d e d . The r e s u l t s

d i f f e r f rom t h o s e o f Knuth and McNeley o n l y b e c a u s e a d i f f e r e n t random

number g e n e r a t o r was u s e d .

*ALG0L, a s used h e r e a f t e r , w i l l r e f e r t o ALG0L-20 , t h e l o c a l C . l . T .
v e r s i o n o f t h e i n t e r n a t i o n a l l a n g u a g e ALGOL-60.

C h a p t e r 2

D i f f e r e n c e s in SOL-20

T h i s s e c t i o n d e s c r i b e s , in d e t a i l , t h e d i f f e r e n c e s and s y n t a x

c h a n g e s between t h e o r i g i n a l l y - p r o p o s e d SOL and t h e v e r s i o n implemented

a s S O L - 2 0 . The f o r m a t and o r g a n i z a t i o n i s t h a t a s g i v e n in t h e formal

Knuth and McNeley document on t h e d e f i n i t i o n o f SOL. A l l e x a m p l e s a r e

f rom t h e sample program appended .

Appendix I c o n t a i n s a c o m p l e t e l i s t o f a l l t h e d i f f e r e n c e s b e ­

tween SOL and SOL-20 d i s c u s s e d b e l o w .

I . GENERAL DESCRIPTION

I I . SYNTAX AND SEMANTICS OF SOL

A. I d e n t i f i e r s and C o n s t a n t s

A l l r u l e s f o r w r i t i n g i d e n t i f i e r s and c o n s t a n t s in

ALGOL-20 a r e a p p l i c a b l e .

S i n c e a p r o c e s s i s a b l o c k , t h e same i d e n t i f i e r can

be u s e d in d i f f e r e n t p r o c e s s e s w i t h d i f f e r e n t m e a n i n g s .

The ALGOL r u l e s f o r l o c a l and g l o b a l v a r i a b l e s a p p l y .

B . D e c l a r a t i o n s

< d e c l a r e d i t e m) { i d e n t i f i e r)

{ v a r i a b l e d e c l a r a t i o n ^ < a l l v a r i a b l e d e c l a r a t i o n s ,
e . g . , h a l f , b o o l e a n , l o g i c , and a r r a y
t h a t c a n be u s e d in ALGOL-20 a r e p e r -
mi s s i b l e ^

{ f a c i l i t y d e c l a r a t i o n } { v a r i a b l e d e c l a r a t i o r i)
{ s t o r e d e c l a r a t i o n) { v a r i a b l e d e c l a r a t i o n)
{ t a b l e d e c l a r a t i o n) : : = h a l f a r r a y { i d e n t i f i e d

[1 : 2 , 0 : . { n u m b e r } , 1 : { n u m b e r } }
The f i r s t { n u m b e r } r e p r e s e n t s t h e maximum l e n g t h

o f t h e t a b l e w h i l e t h e s e c o n d { n u m b e r) r e p r e s e n t s t h e
number o f d i f f e r e n t t a b l e s under t h e same i d e n t i f i e r .

E x a m p l e s :
l i n e 6 : r e a l a r r a y TU [l : 6] , S B [l: J ; I f a c i l i t i e s
l i n e 2 : r e a l LINE.COMPUTER; (f a c i l i t i e s
l i n e 7 : r e a l a r r a y QUEUE D: 63 ; I s t o r e s
l i n e 9 : h a l f a r r a y TAB (1 : 2 , 0 : 2 7 , 1 : 6 j ; | t a b l e s

T H E R E I S N O M O N I T O R D E C L A R A T I O N .

W H E N A N A R I T H M E T I C E X P R E S S I O N I S A S S I G N E D T O A N

I N T E G E R V A R I A B L E , T H E V A L U E A S S I G N E D I S R O U N D E D O R T R U N ­

C A T E D T O T H E N E A R E S T I N T E G E R , D E P E N D I N G O N W H E T H E R T H E

M ^ _ H o r i. ; = H I S U S E C L

S T A T I S T I C S F O R S T O R E S , F A C I L I T I E S A N D T A B L E S A R E

O B T A I N E D B Y S P E C I A L P R O C E D U R E C A L L S * S E E C H A P T E R 3 O N

S T A T E M E N T S .

T H E S I Z E O F A S T O R E I S D E C L A R E D B Y T H E P R O C E D U R E C A L L

S T O R E ({ S T O R E I D E N T I F I E R } , { C O N S T A N T }) ;

W H E R E T H E C O N S T A N T R E P R E S E N T S T H E C A P A C I T Y O F T H E I N D I C A ­

T E D S T O R E .

L I K E W I S E , T H E B O U N D S O N T H E H I S T O G R A M F O R A T A B L E

A R E G I V E N B Y A S P E C I A L P R O C E D U R E C A L L

T A B L E (^ N U M B E R } , { T A B L E I D E N T I F I E R } , { N U M B E R } ,
{ N U M B E R } , { N U M B E R }) ;

T H E F I R S T < N U M B E T } R E P R E S E N T S T H E T A B L E N U M B E R , I . E . , T H E

D E S I R E D T A B L E S P E C I F I E D B Y T H E T A B L E I D E N T I F I E R . T H E

O T H E R T H R E E { N U M B E R } ' S G I V E T H E S T A R T I N G P O I N T F O R H I S T O ­

G R A M I N T E R V A L S , T H E I N C R E M E N T B E T W E E N I N T E R V A L S , A N D T H E

H I G H E S T V A L U E , R E S P E C T I V E L Y .

E X A M P L E :

1 I N E S 1 3 - 1 6 : F O R I 4r 1 S T E P 1 U N T I 1 6 D O B E G I N
S T O R E (Q U E U E 0 3 , 1 0) ; J D E C L A R E

S T O R E S
T A B L E (I , T A B , 2 0 0 0 , 5 0 0 , 1 5 0 0 0) ;

1 D E C L A R E T A B L E S
E N D ;

I T I S U P T O T H E U S E R T O E N S U R E T H A T T H E N U M B E R O F

H I S T O G R A M I N T E R V A L S D O E S N O T E X C E E D T H E S I Z E O F T H E

T A B L E .

E X P R E S S I O N S A N D R E L A T I O N S

L I S T E D B E L O W A R E T H E S O L R E L A T I O N S A N D E X P R E S S I O N S W I T H

T H E C O R R E S P O N D I N G S O L - 2 0 P R O C E D U R E S P E C I F I C A T I O N S .

The f o r m a t i s :

SOL c o n s t r u c t i o n (s) :

SOL-20 p r o c e d u r e s p e c i f i c a t i o n

f o l l o w e d by comments when n e e d e d .

1 . e x p r e s s i o n s

a . t i m e i s d e c l a r e d by t h e s y s t e m a n d , t h e r e f o r e ,

i s a g l o b a l v a r i a b l e .

Example :

l i n e a l : START.TIME <r TIME;

b . (e] , e 2 , . . . , e n) :

h a l f p r o c e d u r e RAND(N,E); v a l u e N; h a l f N;
h a l f a r r a y E ;

N r e p r e s e n t s t h e number o f i n p u t s e . , o r
e q u i v a l e n t l y t h e d i m e n s i o n o f t h e a r r a y E . E
c o n t a i n s t h e v a l u e s o f t h e e j ' s .

E x a m p l e s :
l i n e 3 7 : MESSAGE. TYPE <r- RAND(1 0 , T Y P E) ;
l i n e 9 7 : WAIT(RAND(10,WAITS));

c . n o r m a l (^ e x p r e s s i o n } , ^ e x p r e s s i o n }) :

r e a l p r o c e d u r e NORMAL(M,S); v a l u e M,S ; r e a l M,S ;

d . e x p o n e n t i a l (^ e x p r e s s i o n s) :

r e a l p r o c e d u r e EXPONENTIAL(M); v a l u e M; r e a l M;

e . p o i s s o n (< e x p r e s s i o n >) :

i n t e g e r p r o c e d u r e POISSON(M); v a l u e M; r e a l M;

f . g e o m e t r ? c (^ e x p r e s s i o n }) :

i n t e g e r p r o c e d u r e GEOMETRIC(M); v a l u e M; r e a l M;

g . random:

r e a l p r o c e d u r e RANDOM(A.B.C): v a l u e A , B , C ;
r e a l A , B , C ;

RANDOM r e p r e s e n t s a random number between A
and B (A < B) where A and B may be any r e a l numbers
C i s a l w a y s z e r o .

HINT LIBRARY
CARNEWE-MELLQM UNIVERSITY

h . e j : e 2 :

i n t e g e r p r o c e d u r e UNIF0RM(E1 .E2) ; v a l u e E 1 . E 2 ;
£ £ a i E 1 , E 2 ;

E x a m p l e s :
l i n e 3 6 : Q « - U N I F O R M (l , 6) ;
l i n e 4 0 : W A I T (U N I F 0 R M (6 0 0 0 , 8 0 0 0)) ;

2 . r e l a t i o n s

a . ^ f a c i l i t y narrre) b u s y , { ' f a c i l i t y name} not b u s y :

b o o l e a n p r o c e d u r e BUSY(FACILITY) ; r e a l FACILITY;

The v a l u e o f t h i s f u n c t i o n i s t r u e i f t h e
f a c i l i t y i s busy and f a l s e i f i t i s not b u s y .

Example :

l i n e 5 9 : i t B U S Y (S B l S j) t h e n b e g i n

b . { s t o r e name} f u l 1 » { s t o r e name} n o t f u l 1 :

b o o l e a n p r o c e d u r e FULL(STORE); r e a l STORE;
I f t h e f a c i l i t y i s f u l l , t h e v a l u e o f t h e

f u n c t i o n i s t r u e , o t h e r w i s e i t i s f a l s e .

c . < s t o r e name } e m p t y , C S T O R E name} not empty :

b o o l e a n p r o c e d u r e EMPTY(STORE); r e a l STORE;

I f t h e s t o r e i s e m p t y , t h e v a l u e o f t h e f u n c ­
t i o n i s t r u e , o t h e r w i s e i t i s f a l s e *

d. P R ({ [e x p r e s s i o n }) :

b o o l e a n p r o c e d u r e PR(PROB); v a l u e PROB; r e a l PROB:

The v a l u e o f t h e f u n c t i o n i s t r u e w i t h p r o b a ­
b i l i t y g i v e n by t h e v a l u e o f t h e v a r i a b l e PROB.

Example :
1 i n e 6 5 : i f . P R (0 . 0 2) t h e n b e g i n

STATEMENTS

A. P r o c e s s e s

A p r o c e s s i s w r i t t e n a s an ALGOL b l o c k , e a c h s e p a r a t e

p r o c e s s b e i n g a s e l f - c o n t a i n e d b l o c k . B l o c k s may not be

n e s t e d . The name o f a p r o c e s s i s a s t a t e m e n t l a b e l o c c u r r i n g

a t t h e head o f t h e b l o c k , e . g . :

^ p r o c e s s i d e n t i f i e r } : b e g i n ^ p r o c e s s d e c l a r a t i o n
l i s t) ; { s t a t e m e n t l i s t }

e n d ;

Example : S e e USERS p r o c e s s , l i n e s 2 7 - 5 2 in t h e sample p r o g r a m .

P r o c e s s e s a r e d e c l a r e d by t h e s w i t c h s t a t e m e n t PROCESSES,

which a p p e a r s a t t h e v e r y b e g i n n i n g o f t h e p r o g r a m , i . e . ,

s w i t c h PROCESSES : = * { ' p r o c e s s i d e n t i f i e r } * ;

(NOTE: t h e a b b r e v i a t i o n * { A } * means M a l i s t o f < A > H , i . e . ,
* < A > * < A > J * < A) * , (7\>) .

A l l t h e r u l e s f o r a l a b e l g i v e n in ALGOL-20 o b v i o u s l y a p p l y .

E x a m p l e :

l i n e 3 : s w i t c h PROCESSES : * CONTROL,USERS,PBU,OTHER.PBUS;

P r o c e d u r e s may n o t b e d e c l a r e d In a p r o c e s s i f t h e p r o c e d u r e s

c o n t a i n t h e SOL s t a t e m e n t s w a i t , s e i z e , e n t e r o r w a i t u n t i 1 .

The f o r c l a u s e may be u s e d , and c a n o n l y be o f t h e form

f o r { s i m p l e v a r i a b l e } : : = ^ f o r l i s t e l e m e n t ^ do

M u l t i p l e f o r l i s t s may be used i f t h e f o r s t a t e m e n t does not

c o n t a i n any o f t h e SOL s t a t e m e n t s j u s t m e n t i o n e d in i t s s c o p e .

L a b e l s

C r e a t i o n o f T r a n s a c t i o n s

A l l l a b e l s r e p r e s e n t i n g t h e name o f t r a n s a c t i o n s must be

d e c l a r e d by a l a b e l d e c l a r a t i o n e i t h e r a t t h e s t a r t o f a program

o r in t h e d e c l a r a t i o n s o f t h e p r o c e s s in which t h e y o c c u r , i . e . ,

l a b e l * { t r a n s a c t i o n l a b e l } * ;

Example :

l i n e 11 : l a b e l START,SCAN,COMPUTATION,COMPUTE;

A new copy o f a t r a n s a c t i o n i s c r e a t e d by t h e p r o c e d u r e c a l l

NEW.TRANSACTI ON(< l a b e l >) ;

E x a m p l e :

l i n e 55 : NEW.TRANSACTI ON(SCAN);

D i s a p p e a r a n c e o f T r a n s a c t i o n

T r a n s a c t i o n s a r e c a n c e l l e d by a c a l l t o t h e p r o c e d u r e

CANCEL. The end o f a p r o c e s s does n o t imply a c a n c e l s t a t e m e n t ;

c a n c e l s t a t e m e n t s must be e x p l i c i t l y w r i t t e n .

Example :

l i n e 8 6 : CANCEL;

R e p l a c e m e n t S t a t e m e n t s

In a r e p l a c e m e n t s t a t e m e n t , i f t h e v a r i a b l e i s an i n t e g e r

v a r i a b l e , t h e e x p r e s s i o n i s t r u n c a t e d o r rounded depending on

w h e t h e r a 1 1 o r a 1 1 : = " i s u s e d . A d i r e c t a s s i g n m e n t t o a

s t o r e w i l l p r o d u c e i n c o r r e c t r e s u l t s . T h i s e r r o r w i l l n o t be

d e t e c t e d .

P r i o r i t y

The i n t e g e r v a r i a b l e PRIORITY i s d e c l a r e d by t h e s y s t e m ,

t h u s making i t a g l o b a l v a r i a b l e and n o t a v a r i a b l e l o c a l t o

e a c h p r o c e s s . I t i s i n i t i a l l y z e r o and i f a t r a n s a c t i o n i s t o

have a d i f f e r e n t p r i o r i t y , t h e n

P R I O R I T Y * - < e x p r e s s i o n > ;

must p r e c e d e e a c h new t r a n s a c t i o n s t a t e m e n t . I t w i l l r e t a i n t h i s

a s s i g n e d v a l u e u n t i l c h a n g e d . The p r i o r i t y must be between 0 and

2 1 7 - 1 .

A s s i g n i n g a p r i o r i t y t o a p r o c e s s , which i s e q u i v a l e n t t o

a s s i g n i n g a p r i o r i t y t o t h e f i r s t t r a n s a c t i o n o c c u r r i n g in t h e

p r o c e s s , must be done by s p e c i a l m e a n s . The programmer must

d e c l a r e in h i s program t h e i n t e g e r a r r a y PROC.PRIo£l : n j and

t h e n i n i t i a l i z e i t . The e l e m e n t s o f t h i s v e c t o r a r e in a 1-1

c o r r e s p o n d e n c e w i t h t h e p r o c e s s i d e n t i f i e r s a s w r i t t e n in t h e

PROCESSES s w i t c h s t a t e m e n t .

Wai t S t a t e m e n t s

p r o c e d u r e WAIT(WAIT.TIME): v a l u e WAIT.TIME; h a l f WAIT.TIME;

Examp1e:

l i n e 5 9 : W A I T (5) ;

l i n e 4 0 : WAIT(UNI F O R M (6 0 0 0 , 8 0 0 0) ;

W a i t - U n t i l S t a t e m e n t s

p r o c e d u r e WAIT.UNTIL(P) ; b o o l e a n P;

The r e l a t i o n P may be e i t h e r a r e l a t i o n o r a b o o l e a n p r o ­

c e d u r e which i s p a r a m e t e r l e s s .

Example :

l i n e k6: WAIT.UNTIL(TUSTATE [q] = 0) ;

I . E n t e r S t a t e m e n t s

p r o c e d u r e ENTER(STORE,UNITS); v a l u e UNITS; h a l f UNITS; r e a l STORE;

STORE r e p r e s e n t s t h e s t o r e name which may be a s i m p l e i d e n t i ­

f i e r o r an a r r a y e l e m e n t . UNITS r e p r e s e n t s t h e number o f u n i t s

r e q u e s t e d o f t h e s t o r e and i s rounded t o t h e n e a r e s t i n t e g e r .

Example :

l i n e 36: ENTER (QUEUE 1X3,0;
J . Leave S t a t e m e n t s

p r o c e d u r e LEAVE(STORE,UNITS); v a l u e UNITS; h a l f UNITS; r e a l STORE;

STORE and UNITS a r e t h e same a s in t h e e n t e r s t a t e m e n t .

Example :

l i n e k7: LEAVE(QUEUE [<l2,l);

K. S e i z e S t a t e m e n t s

p r o c e d u r e SEIZE(FACILITY,CONTROL.STRENGTH); v a l u e CONTROL.STRENGTH;
h a l f CONTROL.STRENGTH; r e a l FACILITY;

The c o n t r o l s t r e n g t h may be any i n t e g e r between 0 and 2 ^ - 1.
E x a m p l e s :

l i n e 38: SEIZE(TU foJ .O) ;
l i n e 58: SEIZE(LINE,0);

L . R e l e a s e S t a t e m e n t s

p r o c e d u r e RELEASE(FACILITY) : r e a l FACILITY;

An e r r o r i s g i v e n i f t h e t r a n s a c t i o n r e l e a s i n g t h e f a c i l i t y

i s n o t c o n t r o l l i n g i t .

E x a m p l e s :

l i n e k7: RELEASE (TU CQ});
l i n e 68: RELEASE(LINE);

M. Go To S t a t e m e n t

The form 3 0 t o (* < l a b e l > *) , < e x p r e s s i o n > must be w r i t t e n a s

a s w i t c h s t a t e m e n t . Go t o s t a t e m e n t s can o n l y be used t o t r a n s ­

f e r t o a n o t h e r p o i n t in a t r a n s a c t i o n . I t i s n o t p o s s i b l e t o

t r a n s f e r c o n t r o l t o a n o t h e r p r o c e s s o r t o a n o t h e r t r a n s a c t i o n

w i t h i n t h e same p r o c e s s .

E x a m p l e s :

l i n e 35: 30 t o ORIGIN;
l i n e 8k: i f WORDS > 0 t h e n go t o OUTPT;

Compound S t a t e m e n t s

C o n d i t i o n a l S t a t e m e n t s

T a b u l a t e S t a t e m e n t s

p r o c e d u r e TABULATE(EXPRESSI ON,Q,TABLE); v a l u e EXPRESSI ON,Q;

h a l f EXPRESSION; i n t e g e r Q; h a l f a r r a y TABLE;

T a b l e s a r e c o n t a i n e d in 3 - d i m e n s i o n a l a r r a y s a s m e n t i o n e d

in d e c l a r a t i o n s , s e c t i o n I I . Q. r e p r e s e n t s t h e p a r t i c u l a r page

o f t h e a r r a y , i . e . , t h e t a b l e in q u e s t i o n . TABLE i s t h e name

o f t h e 3 - d i m e n s i o n a l a r r a y . The v a l u e o f EXPRESSION r e p r e s e n t s

t h e v a r i a b l e t o be r e c o r d e d a s a s t a t i s t i c a l o b s e r v a t i o n in

t h e Qth page o f TABLE.

Examp1e:

l i n e 4 8 : TABULATE((TIME-START.TIME),Q,TAB);

Output S t a t e m e n t s

A l l o u t p u t must be done in ALGOL-20 u s i n g NAME and PRINT

s t a t e m e n t s .

Example :

l i n e s 4 9 - 5 0 : NAME(Q,TIME);
PRINT (< 2 0 B , ' T U 1 , 2 0 , I B , • R E C E I V E S REPLY AT

T I M E ' J B ^ D i l B ^ }) ;

S t o p S t a t e m e n t s

p r o c e d u r e STOP;

A c a l l t o t h i s p r o c e d u r e t e r m i n a t e s t h e s i m u l a t i o n immedi­

a t e l y . S t a t i s t i c s f o r a l l s t o r e s , t a b l e s and f a c i l i t i e s a r e not

a u t o m a t i c a l l y o u t p u t t e d by t h e s y s t e m . The i n f o r m a t i o n i s o b ­

t a i n e d by s p e c i a l p r o c e d u r e c a l l s . T h i s c o d e must s t a r t a t t h e

l a b e l RESULTS and o c c u r s in t h e o u t e r m o s t b l o c k (s e e l i n e s 1 0 0 -

113 o f sample p r o g r a m) .

Example :

l i n e 25 : STOP;

1 . s t a t i s t i c s f o r f a c i l i t i e s

p r o c e d u r e PRT.FAC(INDEX,FACILITY,NAME); v a l u e INDEX;
i n t e g e r INDEX; r e a l FACILITY; s t r i n g NAME;

I f INDEX i s 0, t h e f a c i l i t y i s not an a r r a y e l e m e n t ;

i f i t i s £ 0, t h e n INDEX r e p r e s e n t s t h e e l e m e n t in t h e

v e c t o r . NAME i s a s t r i n g w i t h a maximum l e n g t h o f k.

T h i s name w i l l a p p e a r on t h e o u t p u t l i s t i n g o p p o s i t e t h e

c o r r e s p o n d i n g s t a t i s t i c .

E x a m p l e s :

l i n e s 102-103: f o r I <6-l s t e p 1 u n t i 1 6 do
p R T . F A C T R F U R A , , u . - T u , y r

l i n e 106: P R T . F A C(0,L I N E , ' L I N E 1) ;

2. s t a t i s t i c s f o r s t o r e s

p r o c e d u r e PRT.ST(INDEX,STORE,NAME); v a l u e INDEX; i n t e g e r
INDEX; r e a l STORE; s t r i n g NAME;

INDEX and NAME have t h e same meanings a s f o r 1
e x c e p t now t h e y apply t o s t o r e s .

Example :

1 i n e s 109-HO: f o r I <£- 1 s t e p 1 u n t i 1 6 do
PRT. ST (I , QUEUE C Q / u Q U E 1) ;

3. s t a t i s t i c s f o r t a b l e s

p r o c e d u r e PRT.TAB(Q,TABLE,NAME); v a l u e Q, i n t e g e r Q;
h a l f a r r a y TABLE; s t r i n g NAME;

The t a b l e number Q, i n d i c a t e s which t a b l e in t h e

3 - d i m e n s i o n a l a r r a y g i v e n by TABLE i s t o be used t o

c a l c u l a t e t h e s t a t i s t i c a l i n f o r m a t i o n . The s t r i n g NAME

i s a g a i n o f maximum l e n g t h k.

Example :

l i n e s 112-113: f o r I 1 s t e p 1 u n t i1 6 do
P R T . T A B (l , T A B , l ^ T A B TT;

P r o c e d u r e s

P r o c e d u r e s may not c o n t a i n any o f t h e SOL s t a t e m e n t s w a i t ,

w a i t u n t i 1 . e n t e r o r s e i z e . They a r e not r e c u r s i v e .

T r a n s a c t ion I n p u t - o u t p u t

F o r t h e t r a n s a c t i o n r e a d s t a t e m e n t , t h e s e t o f v a l u e s o f

l o c a l v a r i a b l e s f o r a t r a n s a c t i o n i s i n p u t t e d by t h e ALGOL-20
NAME and READ s t a t e m e n t s . T h e s e s t a t e m e n t s a r e coded in a

p a r a m e t e r l e s s p r o c e d u r e d e c l a r e d i n s i d e t h e p r o c e s s in which t h e

t r a n s a c t i o n o c c u r s . V a r i a b l e s g l o b a l t o t h e p r o c e s s may a l s o be

c h a n g e d .

p r o c e d u r e READIH(Pfc0C.tA8); p r o c e d u r e PROC; l a b e l LAB:

The l a b e l must be t h e name o f t h e t r a n s a c t i o n in which t h e

t r a n s a c t i o n r e a d s t a t e m e n t o c c u r s o r t h e s t a r t o f a s t a t e m e n t

o c c u r r i n g w i t h i n t h e t r a n s a c t i o n . I f t h e l a t t e r , t h e n t h e l a b e l

must be d e c l a r e d in t h e l a b e l s t a t e m e n t d e c l a r i n g a l l t r a n s a c ­

t i o n s .

The t r a n s a c t i o n w r i t e s t a t e m e n t c a n be a c h i e v e d by NAME and

PRINT s t a t e m e n t s in ALGOL-20.

THE MODEL AS A WHOLE

The SOL s y s t e m i s w r i t t e n in ALGOL and must be l o a d e d f r o m t h e

l i b r a r y by a s y s t e m c a r d . P r e c e d i n g t h i s c a r d , t h e s w i t c h s t a t e m e n t

PROCESSES must be c o d e d . A l s o t h e i n t e g e r a r r a y PR0C.PRI0 and any

f a c i l i t i e s , s t o r e s , and g l o b a l SOL v a r i a b l e s t h a t a r e s i m p l e v a r i ­

a b l e s must b e d e c l a r e d . F a c i l i t i e s and s t o r e s must be d e c l a r e d a s

r e a l v a r i a b l e s .

A f t e r t h e s y s t e m c a r d , a l l s t o r e s , f a c i l i t i e s (t h a t a r e a r r a y s) ,

t a b l e s and g l o b a l v a r i a b l e s a r e d e c l a r e d . A l l l a b e l s u s e d a s p a r a ­

m e t e r s t o t h e p r o c e d u r e s NEW.TRANSACTI ON and READIN must be d e c l a r e d

v i a a ALGOL-20 l a b e l d e c l a r a t i o n .

N e x t , t h e p r o c e d u r e s STORE and TABLE must be c a l l e d t o g i v e t h e

maximum s i z e o f t h e s t o r e s and t h e bounds o f t h e h i s t o g r a m f o r t h e

t a b l e s . A l s o t h e v e c t o r PR0C.PRI0 must be i n i t i a l i z e d .

The s i m u l a t i o n i s s t a r t e d by t h e p r o c e d u r e c a l l :

START.SIMULATI ON;

T h e n , e a c h p r o c e s s i s c o d e d a s an ALGOL b l o c k .

F i n a l l y , t h e c o d e f o r o u t p u t t i n g t h e s t a t i s t i c s f o r a l l s t o r e s ,

t a b l e s and f a c i l i t i e s o c c u r s . I t must be l a b e l e d w i t h t h e p r e d e f i n e d

l a b e l RESULTS.

A l l o f t h e above r u l e s a r e e x h i b i t e d on t h e o n - l i n e communica t ion

s y s t e m p r o b l e m o f Appendix I I .

C h a p t e r 3

T r a c i n g

In o r d e r t o f a c i l i t a t e d e b u g g i n g , a t r a c i n g f e a t u r e h a s been

added t o SOL. T h e r e a r e n i n e t r a c e s w i t c h e s which c a n be t u r n e d

on and o f f a t w i l l . Due t o t h e f a c t t h a t t h e names d i c t i o n a r y i s

no l o n g e r a v a i l a b l e a t run t i m e , s y m b o l i c t r a c i n g i s n o t p o s s i b l e .

Only t h e a d d r e s s a t which t h e t r a c e d s t a t e m e n t o c c u r s i s g i v e n and

t h i s i s a c t u a l l y t h e s t a r t i n g a d d r e s s o f t h e s t a t e m e n t i m m e d i a t e l y

a f t e r t h e t r a c e d s t a t e m e n t . At p r e s e n t no i n f o r m a t i o n i s g i v e n

a b o u t which copy o f t h e t r a n s a c t i o n i s b e i n g e x e c u t e d a t t h e t i m e

o f t h e t r a c e . The t r a c e s w i t c h e s a r e c o n t a i n e d in a b o o l e a n v e c t o r

TRACE. The s w i t c h i s s e t i f t h e c o r r e s p o n d i n g v a l u e i s t r u e and

u n s e t i f I t i s f a l s e . A l l s w i t c h e s a r e i n i t i a l l y u n s e t .

T r a c e s w i t c h T r a c e s

TRACE f l] e v e r y t h i n g

T R A C E R] new t r a n s a c t i o n s t a t e m e n t s

TRACE [3 j c a n c e l s t a t e m e n t s

TRACE [4] s e i z e s t a t e m e n t s

TRACE [53 r e l e a s e s t a t e m e n t s

TRACE [6 j e n t e r s t a t e m e n t s

TRACE [7] l e a v e s t a t e m e n t s

TRACE [8] w a i t s t a t e m e n t s

TRACE [9] w a i t u n t i l s t a t e m e n t s

N o t e : The t r a c e s w i t c h e s a r e g l o b a l q u a n t i t i e s . Once a s w i t c h i s

s e t , t h e c o r r e s p o n d i n g s t a t e m e n t i s t r a c e d in a l l t r a n s ­

a c t i o n s and a l l c o p i e s o f a t r a n s a c t i o n .

C h a p t e r 4

Run Time E r r o r s

E r r o r s may o c c u r a t run t i m e , w h i c h , i f t h e s i m u l a t i o n were

a l l o w e d t o c o n t i n u e , would p r o d u c e m e a n i n g l e s s r e s u l t s . An e r r o r

m e s s a g e a l o n g w i t h t h e a d d r e s s a t which i t o c c u r r e d i s p r i n t e d on

t h e o u t p u t and t h e run i s a b o r t e d .

The f o l l o w i n g e r r o r s a r e d e t e c t e d :

E r r o r 2: WAIT TABLE EXCEEDED

The s i m u l a t i o n h a s a c c u m u l a t e d more t h a n 6 4 w a i t s t a t e m e n t s

t h a t need t o be p r o c e s s e d .

E r r o r 3 : WAIT UNTIL TABLE EXCEEDED

More t h a n 6 4 w a i t u n t i l s t a t e m e n t s have a c c u m u l a t e d .

E r r o r 4 : SEIZE TABLE EXCEEDED

More t h a n 6 4 s e i z e s t a t e m e n t s have a c c u m u l a t e d .

E r r o r 5 : ENTER TABLE EXCEEDED

More t h a n 6 4 e n t e r s t a t e m e n t s have a c c u m u l a t e d .

E r r o r 6 : IMPROPER RELEASE STATEMENT

The t r a n s a c t i o n r e l e a s i n g t h e f a c i l i t y i s n o t c o n t r o l l i n g

I t .

E r r o r 7 : IMPROPER RELEASE STATEMENT

A f a c i l i t y i s b e i n g r e l e a s e d which h a s n o t been p r e v i o u s l y

s e i z e d .

E r r o r 8 : NEW TRANSACTION TABLE EXCEEDED

More t h a n 4 0 new t r a n s a c t i o n s h a v e b e e n s t a r t e d .

E r r o r 9 : IMPROPER ENTER STATEMENT

The number o f u n i t s r e q u e s t e d f o r t h e s t o r e i s l e s s t h a n 1.
E r r o r 10: IMPROPER LEAVE STATEMENT

The number o f u n i t s b e i n g r e l e a s e d i s more t h a n t h e s t o r e

a l r e a d y h a s in u s e .

E r r o r 1 1 : IMPROPER PR CALL

The input t o t h e p r o c e d u r e PR i s g r e a t e r t h a n 1 o r l e s s

t h a n 0.

E r r o r 1 2 : MEMORY EXCEEDED

T h e r e i s no more s p a c e l e f t i n c o r e t o h o l d t h e l o c a l

v a r i a b l e s f o r t h e t r a n s a c t i o n s .

E r r o r 1 3 : PROGRAM TOO LARGE

The s y s t e m and SOL program t a k e up a l l o f memory, l e a v i n g

no s p a c e f o r h o l d i n g c o p i e s o f l o c a l v a r i a b l e s .

T h e r e a r e a l s o many i n t e r n a l c h e c k s in t h e s y s t e m . I f a s y s t e m

e r r o r o c c u r s , an i n t e r n a l e r r o r m e s s a g e w i l l a p p e a r on t h e o u t p u t

and t h e run a b o r t e d .

I t i s v e r y p o s s i b l e f o r t h e run t i m e t o e x p i r e b e f o r e t h e

s i m u l a t i o n h a s f i n i s h e d . In o r d e r t o o b t a i n a l l s t a t i s t i c s accumu­

l a t e d up t o t h a t p o i n t , t h e f o l l o w i n g c a r d s h o u l d be i n s e r t e d i n t o

t h e SOL p r o g r a m :

RUN.ERROR(RESULTS, f TIMR 1) ;

BUSY NORMAL SLT

CANCEL POISSON SRT

CTD POP S.TAB

EC PR START.S1MULAT1 ON

EMPTY PRIORITY STOP

ENTER PROCESSES STORE

ERROR PROC.PRIO TABLE

E.TAB PRT.FAC TABULATE

EXPONENTIAL PRT.ST TC

FULL PRT.TAB TIME

GEOMETRIC PUSH TRACE

H2 RANO TR.OS

LBIT RANDOM T.TAB

LEAVE READIN UBIT

MASTER.CONTROL RELEASE UNIFORM

MAXAD RESULTS WAIT

MOVE RETURN WAIT.UNTIL

MTC RUN.ERROR WC

MT.TAB SC W.TAB

NEW.TRANSACT i ON SCAL WUC

SEIZE WU.TAB

C h a p t e r 5

R e s e r v e d I d e n t i f i e r s

S i n c e SOL-20 I s w r i t t e n In ALGOL-20 9 c e r t a i n i d e n t i f i e r s have

been r e s e r v e d by t h e s y s t e m b e s i d e s t h e i d e n t i f i e r s u s e d f o r t h e

SOL p r o c e d u r e s and t h o s e r e s e r v e d by ALGOL-20 i t s e l f * The t o t a l

l i s t o f r e s e r v e d i d e n t i f i e r s f o r SOL-20 i s l i s t e d b e l o w .

Appendix I
Summary of SOL-20 Differences

I. Declarations
SOL

store *<constant}<dec1ared Item}*

table *(^umber>step{humber}unti 1
{number}){declared item}*

fact 1itv *{tiedared item}*

II. Expressions

SOL

time
(elt e2*•••» en^

normal (^expressions Expression})

exponential ({expression})
po i s son({expres s i on})
geometric({exp res s i on})
random

ill. Relations
SOL

{^facility name}busy >
^facility name}not busy)
{i$tore name}fu11 \
{store naroeSnot ful 1 j
Atore nameVempty \
(btore nameVnot empty j
p r ({exp r es s i on})

SOL-20
real *<i dent if Ier}* f
real array ^identifier}

j£numbe r}: <n umbe r}J*
STORE({declared item}.

^constant});

half array *tf dentif ier>0 • 2f
O.^number}, 1: {humber}J*

TABLE ({[table numbed .{table
i dent 1 f i er} ̂ number},

^number}.^humber});

real *<1dentifier}*
real array *{IdentIfIer}
£jfnumbe r}: {numbe r)3 *

SOL-20

TIME
RAND({humber}f <&rray

identifier};;
UN I FORM ({number}, {number});
NORMAL(<exp res s i on ^

Expression});
EXPONENTIAL({expres s i on});
POISSON({express i on});
GEOMETRIC({express ion>);
RAN DOM «exp res sIon},

{expression}fO);

SOL-20

BUSY({facility name});

FULL({store name});

EMPTY«store name});

PR({expression});

SOUJ. 2
Appendix I

S t a t e m e n t s

SOL

p r o c e s s { I d e n t i f i e r } ; b e g i n

{ p r o c e s s d e c l a r a t i o n l i s t } ;
{ s t a t e m e n t 1 i s t > e n d

new t r a n s a c t i o n t o l a b e l
c a n c e l
w a i t ^ e x p r e s s i o n s
w a i t u n t t I p e l a t i o n }

e n t e r { s t o r e name}
l e a v e { s t o r e name}
s e i z e { F a c i 1 i t y name}
r e l e a s e { f a c i 1 i t y name}
g o t o (*{1 a b e 1 > *) , { e x p r e s s i o n }
t a b u 1 a t e { e x p r e s s i o n > in

{ t a b l e name}
o u t p u t s t a t e m e n t
s t o p
r e a d { c o n s t a n t } t o { l a b e l }

wr i t e { c o n s t a n t }
s t a t i s t i c a l o u t p u t (a u t o m a t i c)

SOL-20

s w i t c h PROCESSES : = * < p r o c e s s
i d e n t l f e r } * ;

i n t e g e r a r r a y PROC.PRiO [j : < n u m b e r) J ;
{ p r o c e s s i d e n t i f i e r } : b e g i n

{ p r o c e s s d e c l a r a t i o n l i s t ^ ;
{ s t a t e m e n t H s t } e n d :

NEW.TRANSACTION({label)) ;
CANCEL;
W A I T ({ e x p r e s s i o n }) ;
WAIT•UNTIL(<re1at i o n } | ^ > a r a m e t e r -

l e s s b o o l e a n p r o c e d u r e }) ;
ENTER ({ s t o r e n a m e } , { e x p r e s s i o n }) ;
LEAVE(. {s tore n a m e } , { e x p r e s s l o n }) ;
S E I Z E (< f a c ?1 i t y n a m e } , E x p r e s s i o n }) ;
R E L E A S E ({ f a c i1? t y n a m e }) ;
u s e a s w i t c h s t a t e m e n t
TABULATE({express i o n } , { n u m b e r } ,

{ t a b l e i d e n t i f i e r }) ;
NAME and PRINT s t a t e m e n t s
STOP;
READIN({procedure i d e n t i f i e r ^ ,

{ l a b e l }) ;
NAME and PRINT s t a t e m e n t s
P R T . F A C ({ n u m b e r } , { f a c i I i t y i d e n t i -

f i e r } , { s t r i n g }) ;
PRT • ST ({numbe r } , { s t o r e i d e n t i f i e r } ,

{ s t r i n g }) ;
P R T . T A B ({ n u m b e r } , { t a b l e i d e n t i f i e d ,

{ s t r i n g }) ;

1 4 0 1 C A R D L I S T

J Y S T L I S T M I N 0 0 0 5 P G S 0 2 0 0 C D S O O O O T A P H A N S E N * . S 0 L

S Y P A G E S O L T E S T P R O G R A M . . .

^ B E G I N . . . _ 1
R E A L L I N E . C O M P U T E R ; I F A C I L I T I E S 2
S W I T C H P R O C E S S E S : » C 0 M T R 3 L • U S E R S * P B U * D T H S R * P B U S I J D E C L A R E _ P R Q C S * , . . 3

^ I N T E G E R A R R A Y P R O C * P R I • [I * 4] ; | P R I O R I T Y T A B L E F O R P R O C E S S E S 4
S Y L I B R A R Y S O L 5
A L R E A L A R R A Y T U [i : 6] / S B [i : 3] ; | F A C I L I T I E S 6

R E A L A R R A Y 0 U E U E [1 * 6] ; I S T O R E S _ 7
* - . I N T E G E R A R R A Y T U S T A T E • S B N U M B E R « T U M E S S A G E [I : 6) } 6

H A L F A R R A Y T A B [1 : 2 1 O t 2 7 • t : 6] ; | T A B L E S 9
I N T E G E R I ; | G L O B A L I N D E X C O U N T E R 10
L A B E L S T A R T # S C A N • C O M P U T A T I O N • C O M P U T E ? I D E C L A R E T R A N S A C T I O N S 1 1

* ~ R U N • E R R O R (R E S U L T S t • T I M R •) ; 12
F O R I • t S T E P I U N T I L 6 D O B E G I N _ 13

S T D R E (Q U E U E [I] t 1 0) ; | D E C L A R E S T O R E S 14
T A B L E (I • T A 3 » 2 0 0 0 » 5 0 0 t 1 5 0 0 0) ; | D E C L A R E T A B L E S 15

^ E N D ; 16
F O R I • 1 S T E P 1 U N T I L 4 D O . : 1 7

P R O C * P R I O [I] «• 0 ; I S E T P R I O R I T I E S F O R P R O C E S S E S 16
^ S T A R T * S I M U L A T I O N ; 1 9

i C O N T R O L ! B E G I N _ 2 0
I N T E G E R i ; | D U M M Y D E C L A R A T I O N T O M A K E P R O C E S S A B L O C K 21

r>* S B N U M 8 E R [1] • 1 ; S B N U M 3 E R [2] • 2 | _ _ ^ 2 2
S B N U M B E R [3] •» I ; S B N U M B E R [4] • 2 ; ~ ~ 2 3
S B N U M B E R [5] «• l ; S B M U M B E R [6] • 3 J _ 2 4
W A I T ! 1 5 * 6 0 * 1 0 0 0) ; S T O P ; | S T O P S I M U L A T I O N 2 5

< ~ E N D ; 2 6
I

. U S E R S : B E G I N . . . _ _ 2 7
I N T E G E R Q * S T A R T * T I M E * M E S S A G E * T Y P E \ 2 8

P H A L F A R R A Y T Y P S [i : i O] | 2 9
j T Y P E [1] T Y P E [2] • 1 ; 3 0

F O R I * 3 S T E P 1 U N T I L 7 D O T Y P E [I } + 2 | . _ 31
T Y P £ [e] • T Y P E [9] • T Y P E [1 0] • 3 . 3 2
N E W . T R A N S A C T I O N S T A R T) ; N E W * T R A N S A C T I O N C S T A R T) ; 3 3
O R I G I N : N E W • T R A N S A C T I O.M < S T A R T) ; * A I T < U N I F O R M * o • s o o o)) ; 3 4

G O T O O R I G I N ; 3 5
r * S T A R T : Q • U N I F O R M C l » 6) ; E N T E R < O U E U E [Q] # I) ; 3 6

M E S S A G E * T Y P E • R A N D C 1 0 1 T Y P E) 5 3 7
S E I 2 E (T U [Q] # 0) ; 3 8
T U M E S S A G E [Q] «• M E S S A G E * T Y P E ; 3 9

f~ W A I T (U N I F O R M (6 0 0 0 * 8 0 0 0)) * 4 0
S T A R T * T I M E • T I M E ; . 4 1
M A M E (0 * M E S S A G E * T Y P E * T I M E) ; " 4 2

^ P R I N T (< 1 0 8 * ' T U « * 2 D » 1 B « ' S E N D M E S S A G E • • 2 0 . 1 B t • A T T I M E • . 1 B • 7 D • 4 3
1 3 • E > > ; 4 4

T U S T A T E [o 3 • I ; 4 5
W A I T * U N T I L (T U S T A T E [Q 3 * 0) ; 4 6
R E L E A S E (T U [Q 3) ; L E A V E (Q U E U E [Q 3 » l) ; 4 7
f A B U L A T E ((T I M E — S T A R T • T I M E) » Q • T A B) ; 4 8
N A M E (O • T I M E) » 4 9

P B U : B E G I N 5 3
I N T E G E R S * T . W O R D S ; 5 4
N E W . T R A N S A C T I O N C S C A N) » T «• 3 ; 5 5
S C A N : T T . T • I ; I F T > 6 „ T H E N T » I : W A I T (I) : 5 6

s «• S B N U M B E R [T] ; 5 7
S E I Z E (L I N E . O) ; 5 8
W A I T (5) ; I F B U S Y ! S B [S]) T H E N B E G I N 5 9

W A I T (A O) ; R E L E A S E (L I N E) ; G O T O S C A N E N D ; 6 0
^ S E I Z E (S B [S] « 0) ; W A I T ! 1 5) ; I F T U S T A T E [T] # 1 T H E N B E G I N 6 1

W A I T (6 5) ; R E L E A S E ! L I N E) ; R E L E A S E ! S B [S]) ; 6 2
G O T O S C A N E N D ; 6 3

W A I T C 2 2 5) ; . . . 6 4
" ~ S E N D : W A I T ! 1 7 0) ; I F P R < 0 . 0 2) T H E N B E G I N 6 5

W A I T (2 0) ; G O T O S E N D E N D ; 6 6
N E W . T R A N S A C T I O N ! C O M P U T A T I O N) ; W A I T ! 2 0) ; R E L E A S E ! S B [S J) ; 6 7
R E L E A S E (L I N E) ; T U S T A T E [T 2% 6 8

^ C A N C E L ; 5 9
C O M P U T A T I O N : S E I Z E C C O M P U T E R . O) ; W O R D S T T V J S S ; S » A G J E £ T] 7 0

W A I T ! I F W O R D S A 3 T H E N 2 5 0 E L S E I F W O R D S « 4 T H E N 3 0 0 E L S E 7 1
4 0 0) ; 1 _ 7 2

R E L E A S E ! C O M P U T E R) ; • 7 3
O U T P T : W A I T ! 1) ; S E I Z E ! L I N E . 0) ; W A I T ! 5) J : 7 4 _

I F B U S Y (S B [S]) T H E N B E G I N 7 5
W A I T (8 0) ; R E L E A S E ! L I N £) # G O T O O U T P T E N D ; 7 6

S E I Z E (S B [S] * 0) ; W A I T I 7 5) ; 7 7
R E C E I V E : W A I T ! 8 0) ; I F P R ! 0 * 0 1) T H E N B E G I N 7 8 _

W A I T (2 0) ; G O T O R E C E I V E E N D ; 7 9
R E L E A S E (L I N E) ; 8 0 _
W O R D S + W O R D S - L ; 8 1
I F W O R D S « 0 T H E N N E W * T R A N S A C T I O N ! S C A . N J _ 1 _ 8 2
W A I T ! 3 2 5) ; R E L E A S E ! S B [S]) ; W A I T ! 1 7 0) ; 8 3
I F W O R D S > 0 T H E N 03 T O O U T P T ; 8 4
T U S T A T E [T] • 0 ; 8 5
C A N C E L ; 8 6

— E N D ; 8 7

O T H E R . P B U S : B E G I N 8 8
I N T E G E R I ; H A L F A R R A Y W A I T S [L M O] ; _ 8 9 _

P W A I T S [L] «• W A I T S [2] «• 2 5 0 ; 9 0
_ F O R I 3 S T E P 1 U N T I L 7 D O W A I T S L J I 1 • 3 0 0 ; 9 1 _

' W A I T S [8] • W A I T S [9] «• W A I T S [L O] • 4 0 0 ; 9 2
1 * 6 ; 9 3

P C R E A T E : N E W * T R A N S A C T I O N ! C O M P U T E) » 9 4
| I • I - I ; I F I > 0 T H E N G O T O C R E A T E ; C A N C E L ; 9 5

C O M P U T E : W A I T ! U N I F 0 R M ! 3 2 0 0 * 5 0 0 0)) ; S E I Z E ! C O M P U T E R * 0) ; 9 6
W A I T ! R A N D ! 1 0 . W A I T S)) ; 9 7

P R E L E A S E ! C O M P U T E R) ; G O T O C O M P U T E ; 9 8
• E N D ; 9 9

R E S U L T S : I O O
C O P R I N T F R A C T I O N O F T I M E U S E D B Y F A C I L I T I E S 1 0 1

F O R I S T E P 1 U N T I L 6 D O _ I 0 2

P R I N T ! < 2 0 B * « T U « . 2 0 . 1 3 . • R E C E I V E S R E P L Y A T T I M E • • I B . T O • I B * E >) T 5 0
C A N C E L ; . . . S I

E N D ; 5 2

r
i

p
i

r

r

P R T # F A C (l . T U [I T U * > ; 1 0 3
FOR I «• 1 STEP 1 UNTIL 3 0 0 . 1 0 4

P R T . FAC(I . S 3 [I S B M ; 1 0 5
P R T . F A C C O . L I N E . » L I N E ») ; _ 1 0 6
P R T . F A C C 0 . C O M P U T E R . f C O M P f) ; 1 0 7

CO PRINT INFORMATION ON STORES 1 0 8
FOR 1 * 1 STEP 1 UNTIL 6 DO 1 0 9

P R T . S T (I » QU£UE[I] i | O U E M j •' 11.0.
CO PRINT S T A T I S T I C S ON TABLES 111

FOR I «• 1 STEP 1 UNTIL 6 DO _ 1 1 2
P R T . T A B < I . T A B . • T A B *) ; 1 1 3

END; . 114..

TU CM
 SsND

TU 4 SEND
TU 3 SEND
TU 1 SEND

TU 5 SEND
Tij 4 SEND
TU 6 SEND

TU 1 SEND
TU 2 SEND

TU 3 SEND
TU 4 SEND
TU 5 SEND

TU \ SEND
TU 2 SEND
TU 3 SEND
T_*J_ 4 SEND

TU 5 SEND

TU 6 SEND
TU 1 SEND

TU 2 SEND
TU 3 SEND
TU 4 SEND

TU 5 SEND

TU 6 SEND
TU 2 SEND
TU 3 SEND"
T.J 4 SEND

Tu 5 SEND

^EsSAHE 1 At TI MB 7752
MESSAGE 2 AT TImE 7784
ME SS A6E" 2 AT~ ~ TImE " 10302"
TU 2 RECEIVES REPLY AT TIME
MESSAGE 2 AT TImE " 140 5 2 "
TU 3 RECEIVES REPLY AT TIME
TU '4 RECEIVES "REPLY AT" TIME
rU 1 RECEIVES REPLY AT TIME
MESSAGE 2 AT T Im£ 19792
MESSAGE 2 AT TImE 21169
MESSAGE 3 AT TImE 23988
TU 5 RECEIVES REPLY AT TIME
TU 4 RECEIVES REPLY AT TIME
MESSAGE 2 AT TImE 25935
MESSAGE 1 AT TImE 26675
rU 6 RECEIVES REPLY AT TIME
'TU 1 RECEIVES REPLY AT TIME
TU 2 RECEIVES REPLY AT TIME
MESSAGE 3 AT TlMc 31488
MESSAGE 3 AT TImE 31842
MESSAGE 3 AT TImE 32952
•rU 3 RECEIVES REPLY AT TIME
rU 4 RECEIVES REPLY AT TIME
MESSAGE 2 AT TImE 36767
i'U 5 RECEIVES REPLY AT TIME
MESSAGE 2 AT TImE 41957
MESSAGE 1 AT TImE 42977
MESSAGE 3 AT TImE 43320
rU 1 RECEIVES REPLY AT TIME
TU 2 RECEIVES REPLY AT TIME
MESSAGE 3 AT TImE 46994
fU 3 RECEIVES REPLY AT TIME
TU 4 RECEIVES REPLY AT TIME
MESSAGE 3 AT TImE 49811
MESSAGE 2 AT TImE 52131
TU 5 RECEIVES REPLY AT TIME
rU 6 RECE IVES REPL Y AT f I ME'"
MESSAGE 2 AT TImE 54502
MESSAGE 1 AT TImE 54982
MESSAGE 1 AT TImE 55320
TU 1 RECEIVES REPLY "AT TIME
FU 2 RECEIVES REPLY_AT TIME_
MESSAGE*3 AT TImE 60533
TU 3 RECEIVES REPLY AT TIME
rU 4 RECEIVES REPLY AT TIME
TU 5 RECEIVES REPLY AT TIME
MESSAGE 1 At TImE 66013
MESSAGE 2 AT TImE_66100
~MESS AGE~3~A T~T FmE 6 7310
MESSAGE 2 AT TImE 68017
TU 6 RECEIVES REPLY AT TIME
fU 2 RECEIVES REPLY AT TIME
MESSAGE 3 AT T I m E 7 2 2 8 9
iU 3 RECEIVES REPLY AT TIME

10690
14/19
"15*4*?
18^4/

23V99
"25*70

28/00
30 53b
30*59

35/1*
36 - 3/
39v46

44l9d
46M3
48/02
49420

53'83_

57192
58U3
60^4!
6 0^8/
65o7S

a

69>4i
70 22V
73*15

CO O t-4

T

r
i
r
i
r
r
r
r
r
r
r
r
r
r

! O
! O
: m

i nri i z
! °

' o
! 0 1

! 3:

i *-

! CO
t o
! 0

! •

: O

G4 O!
CO
m z a
m e
CO
CO

X 3D] <H 3DJ m m m m o o| m rrn m 1 co c 3D : m r

m m| a> a>; o o
ao o

o
rO

VJ >0

o ^
CO CO inirn z j z ! a o c m m cj co co ro co co ca x o m m

co
in
z a
3: m 1 co
CO I

G) 3D O 3D]
m m m m

l{ 0! 0 oj 0 O O 0 O lit-* ni ni ro ro mi ro m m m m ro 04 m •> * <

1:
•—• •—» »—•

:! j>
< ! »> < <

t»
< < »! <:

1; —1 m: m —1 -i m -H m m -* m m •H —4: m ii co! co CO CO CO CO CO CO

J -H 3D| 3D —1 —4 —1 —1

—1 -l; 3D| 3D t—• 3D #—1 3D 3D 3D 3D 30 nrr m 3: mi 31 m m 31 m m JC 3:1 m ' "D TO m m m rr m nn| -o H r~ 1 . f- r~ m nn| r* - < ; -< -< -< -< -<

'iOD 1 00 ao ao CD 00 00!

I "° >C NO CD j> ao j> 0D Vjj x» tl Vfl ro 0 —1 —1 4k -4 0 >o •H]*> [01 ro

0 Oj 11 vi -Hi —1 >o 0 01 -H —1 -*

Ol OOi -1

ijOD
•—«• « VI) CJ VJl *—• »—• >-« ro VJi •—• 31 3L

I] m| m m m m m m m >j ao! 00 CD CD a> 00 00 00
<

00 OD 00 CD >j •*!ro a>! -si 01 ro H> vi V| *• J)
>#:

j vljfO Vl VI ro ro VI \JH O vjni O 0 0 0

CO s
. 3 - . - . : cm;cc

CO
O COLtw rO;

1> 1 3D Oj 3D 3D]
m m m m

co co
rn in
z z : a a
m m
CO CO
CO CO

C75 O
m mi

c: c

3C
m IT
> OD
l Vi VI rv: a

"N"ArtE~OF"-FACrn"ry FRACT!ON "0F~T1 MB" IN USE™

— TUC01J " 0 . 6 6 4 5 "~
TU102J 0 * 7 8 0 2

" T U T 0 3 J 0 . 8 6 3 3
T U I 0 4 J 0 . 8 1 3 7
R O T 0 5 i 0 . 7 2 3 0
T U 1 0 6 I 0 . 8 5 2 9

" " S B t O T l 0 . 5 8 4 3
S 8 I 0 2 J 0 . 4 1 6 6

i ; 2 3 2 7
LINE 0 . 8 7 6 1
COMP 0 . 5 1 6 8

" ~ 1 " ~ 1

0 3 F68 65 _
N A M E O F S T O R E C A P A ' C I T Y M T X L F F U M ^ U S E O A V E R A G E O C C U P A N C Y A V E R A G E U T I L I Z A T I O N

O U E ' F O 0 I " F " 1 0 " "4" 1 7 9 7 9 6 " T 7 L ~ 9 8 0

Q U E L U O .) 1 0 _ _ _ _ _ _ _ 8 _ _ 2 . 4 8 3 9 _ _ 0 _ _ 2 « 8 4

- Q U £ L U 0 3 J 1 0 " 1 0 " 3 . 6 4 8 6 0 . 3 6 4 9

O U E I U 0 4 J 1 0 5 2 , 5 8 3 3 L « L . 2 5 8 3

" O U E T U O S] 1 0 4 1 . 8 5 4 5 0 . 1 8 5 5

Q U E L O O . L 1 0 6 3 . 0 4 4 1 . 0 J . _ 3 _ _ . _ _ L _

A>

C/3

http://0j._3__.__l_

03 FEB 65 •
fABlfe NAME I S TAB 1 0 u I T

NUMBER OF"TABLE ENTRIES 49 SUM OF ALL ENTRY VALUES • 2 5 2 0 9 3 0 0 0 0

MEAM OF TABLE 5 1 4 4 . 7 5 5 1 STANDARD DEVIATION 1 5 0 1 . 1 8 7 0

UPPER CThTT NUMBER PER CENT 7 CUMULATIVE" MULTIPLE OF MEAN

2 0 0 0 . 0 0 0 •0 0 0 . 0 0 0 * 3 8 8 7
250 0 . 0 0 0 . 0 0 0 . 0 0 0 * 4 8 5 9

" "3000 . 0 0 ~0 •TOO " 0 • 00 0 * 5 8 3 1
3 5 0 0 . 0 4 8 . 1 6 8 . 1 6 0 * 6 8 0 3

~* f0 '00T0 ff 1 5 T 3 T V 4 V 4 9 ~~ ~ ~" 0 * 7 7 7 5
4 5 0 0 . 0 _ _ _ _ _ _ 2 ! * 4 1 I 4 ' 9 0 0 * 8 7 4 7

" 5 0 0 0 . 0 ~6~ 1 2 . 2 4 5 7 . 1 4 0 * 9 7 1 9
5 5 0 0 . 0 7 1 4 . 2 9 / 1 . 4 3 1 * 0 6 9 0

" " 6 W 0 70 " " " 3 " " """" "6 .12 77 . 5 5 1 * 1 6 6 2
6 5 0 0 . 0 _ _ 1 2 . 0 4 _ _ Z9 . 5 9 1 . 2 6 3 4

~ 7 0 0 0 . T " " ~ 2 4 . 0 8 ~ " 8 3 . 6 7 1 * 3 6 0 6
_ 7 5 0 0 . 0 P**6 ? 1 * 8 4 1 * 4 5 7 8

8 0 0 0 . 0 " l _ 2 . 0 4 """"" " ' V s . 8 8 1 * 5 5 5 0
8 5 0 0 . 0 1 _ 2 * 0 4 „ ^ 5 . 9 2 1 * 6 5 2 2
9 0 P . D 1 " " " " 2 . 0 4 V7 . 9 6 1 * 7 4 9 4
9 5 0 0 . 0 1 2 . 0 4 1 0 0 . 0 0 1 * 8 4 6 5

T o b o o V d " " o " oToo " ~ ~ l u o . o o ' 1 . 9 4 3 7
1 0 5 0 0 . 0 0 0 . 00 luO.OO 2 * 0 4 0 9
1 1 0 0 0 . 0 " 0 0 . 0 0 l u O . O O 2 * 1 3 8 1
1150_0_._0_ _ 0 0 . 0 0 luO.OO 2 * 2 3 5 3
1 2 0 0 0 . 6 ~ 0 0 . 0 0 1 0 0 . 00 2 • 3 3 2 5
1 2 5 0 0 . 0 _ 0 0 . 0 0 1 0 0 . 0 0 2 * 4 2 9 7
1 3 0 0 0 . 0 " ~ ~ 0 " 0 . 0 0 m o . 0 0 2 * 5 2 6 8
1 3 5 0 0 . 0 0 0 . 0 0 _ lyQ.OO 2 * 6 2 4 0 _
1 4 0 0 0 TO " 0 0 . T 6 i u b . O O 2 * 7 2 1 2
1 4 5 0 0 . 0 0 0 . 0 0 1 U 0 . 0 0 2 * 8 1 8 4
1 5 0 0 0 . 0 0 0 . 0 0 1 0 0 . 0 0 2 * 9 1 5 6

1 "» 1 1 1 1] 1 1 1 1 1 1 I) 1

f e e 65

"NUWEft3F "TABLE" ENTRIES""

TJBlE NAME IS

60"

TAB10U2]

'8ruM"OT"TtL""¥NTftYirALUES 7276"45"16"000"_*06

' Htk'H~W "TABLE"

"IPPSiTTTFITT
" "260 0."0~
2500.0
3"0~00~.0
3500.0
4'OTfOTO
450 0.0
5 Oil 070"
5500.0

" "6UT0.IT
650 0j_0_

""700 0.0
7500.0
8000.0""
8500.0
90ri0.0

_ 9500_0
ioodo.0"
1050 0.0
TiToT. o

1200 0.0
1250010
1300U.0
135O0._0
140 00". 0
14500.0
15000.0

4640.8500

"NIffllET?

STANDARD DEVIATION 1365.2080

CUMULATIVE " s u r n p c E - w M E x r

0
0

--J-
5

TT
12

~~~6~ 

5 
~ I " 
3 

0.00 
0.00 
T."6o~" 
8.33 

0.00 

"5".0T 
13.33 

0.4310 
0*5387 
"0V6464" 
_.7542 
"0.8619 
0.9696 
1.0774" 
1.1851 
"1.2929" 
1.4006 
1.5083 
1.6161 
1.7238 
1.8316 
i."9393 
2.0470 
2.1548" 
2.2625 
2.3703 
2.4780 
2.5857 
2.6935 
2.8012 
2_.?08?_ 
"3.0167 
3.1244 
3.2322 

26.67 
20.00 
~13"."3"3" 
8.33 
1.67" 
5.00 

40.00 
60.00 
73.33 
yi.67 
"83."33" 
.8.33 

2 
2 
"1" 
0 
"2" 
0 

3.33 
3.33 
1^67" 
0.00 
"3.33" 
0*00 

0 
0 
"0" 
_0 
0 
0 

0.00 
0.00 
o.oo 
0.00 
o'.oo 
0.00 
0.00 
o o_o 
o.oo 
0.00 
o.oo" 

91.67 
V5.00 
96.67" 
V6.67 

100.00 
_ioo_.oo 
10 0.00" 
100.00 
i7fo roT 
100.. 00 
100.00 
J.O0.00 
100.00 
1.Q0..00 
luO.OO 
100 ._oo 
10 0.00 



03 FEB 65 
- Y t t L ^ N A M t n I T "TAB t 0 03 J 

NUMBER OF TABLE ENTRIES 65 "SUM ""OT'TfLU" E N T R r"VALUK"T3^ 3 5 i T 0 W"V * 0"6" 

MEAN OF TABut 4974.0154 S f AN DA R D " "D E VIA tlO N i298".i"72"8" 

UPPER LIMIT NUMBER PER CENT CUMULATIVE MULTIPLE OF MEAN 

2000.0 0 """o"."6"d 0700"" ' "o";"4"6"2~i~ 
2500.0 0 0 . 0 0 0 . 0 0 0 . 5 0 2 6 
3000.0 ^ ___ "1.54 " 0 7 6 6^1 
3500.0 1 1.54 3 . 0 8 0 * 7 0 3 7 
4000.0 - - 13 20.00 23 . 0 8 0 * 8 0 4 2 
4500.0 15 23.08 46 . 1 5 0 * 9 0 4 7 
5000.0 "13.85 "60.00" 1 . 0 0 5 T ~ 
5500.0 9 13.85 Z3 . 8 5 1 * 1 0 5 7 _> 
6000.0 ^ "7.69" """ "«1.~54~~ 1 * 2 0 6 3 
6500.0 3 4.62 86 . 1 5 1 . 3 0 6 8 
700 0.0 3 4.62 90 . 7 7 1 * 4 0 7 3 a 
7500.0 3 4.62 95 . 3 8 1 . 5 0 7 8 X 
8000.0 i " T . 5 4 " "96 .92 " " " " 1 7 6 0 8 4 M 8500.0 0 0.00 96 . 9 2 1 . 7 0 8 9 M 

9000.0 "I "":1.54 98.46 1 7 8 W 4 " " 
9500.0 l 1.54 100.00 1 . 9 0 9 9 

i o o o o . o 0 0.00 loO.00 2 . 0 1 0 4 
10500.0 0 0 . 0 0 100 . 0 0 2 . 1 1 1 0 
1100 0.0 0 " " O T o l "100.00 2 7 2 1 1 5 
11500.0 0 0 . 0 0 100 . 0 0 2 . 3 1 2 0 
"12000.0 0.00 100 . 0 0 2 . 4 1 2 5 
12500.0 0 0 . 0 0 l o o . o o 2 . 5 1 3 1 
13000.0 0 0.00 100 . 0 0 2.6136 
13500.0 0 0 . 0 0 100 . 0 0 2 . 7 1 4 1 
14 00 0.0 " 0 0.00 1 0 0 . 0 0 2". 8 1 4 6 " 
14500.0 0 o . o o 1 0 0 . 0 0 2 * 9 1 5 1 
15000.0 0 " " " o . T d i T o . o o " 3 7 0 1 5 7 " 

CO 



1 1 1 1 "» 1 1 1 1 1 1 1 1 1 1 I 1 ) 1 

03 FEB 65 
T A ^ L E ~ N ^ 1 " T S " T T 6 1 0 0 4 T 

NUMBER DF TABLE ENTRIES 5 9 SUM OF ALLENTRY"VALUES . 3 0 9 5 4 5 0 1 0 0 " » * 0 6 ' 

ME Am Or TABuE 5 ~ 2 4 6 7 5 ? 5 4 St~* ND ARD"DEVI ATTON 1 5 9 5 7 8 3 2 4 " " 

UPPER LIMIT NUMBER PER CENT CUMULATIVE MULTIPLE OF MEAN 

"2"000 .ff __ 0700" ______ 07T8r2 
2 5 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 4 7 6 5 
3 0 0 0 , 0 " __. DTOO" " "0"."B"(J "" 0 . 5 7 1 8 
3 5 0 0 . 0 2 3 . 3 9 3 . 3 9 0 * 6 6 7 1 
40fir.no 10 1 6 . 9 5 2 0.34 0 * 7 6 2 4 
4 5 0 0 . 0 1 2 2 0 . 3 4 4 0 . 6 8 0 * 8 5 7 7 
5 0 0 0 . 0 "ITT T 6 7 9 5 " "577~63 - (T .9530 
5 5 0 0 . 0 6 1 0 . 1 7 67 . 8 0 1 * 0 4 8 3 •> 

" 6 0 0 0 .0" " _ 4 -6 .78" 7 4 . W 1 . 1 4 3 6 - - - - - •5 
6 3 0 0 . 0 4 6 . 7 8 31 . 3 6 1 * 2 3 8 9 <T> 

7 0 0 0 . 0 2 3 . 3 9 94 . 7 5 1 * 3 3 4 2 U 
7 5 0 0 . 0 2 3 . 3 9 8 8 . 1 4 1 * 4 2 9 5 K 

" "800 0 . 0 4 6 : 7 8 " " " 9479~_r 1 7 5 2 4 8 
8 5 0 0 . 0 0 0 . 0 0 94 . 9 2 1 . 6 2 0 1 M 

" 9 D W . T " T 1 . 6 9 " 96 . 6 1 i " . " 7 i 5 4 
9 5 0 0 . 0 0 0 . 0 0 96 . 6 1 1 * 8 1 0 7 

1 0 0 0 0 . 0 1 1 . 6 9 98 . 3 1 1 * 9 0 6 0 
1 0 5 0 0 . 0 0 0 . 0 0 98 . 3 1 2 * 0 0 1 3 
1 1 0 0 0 . 0 1 1 . 6 9 1 0 0 . 0 0 2 * 0 9 6 6 
1 1 5 0 0 . 0 0 0 . 0 0 luO.OO 2 * 1 9 1 9 

T 2 0 0 0 . 0 0 0 . 0 0 1 0 0 . 0 0 2 * 2 8 7 2 
1 2 5 0 0 . 0 0 0 . 0 0 1 0 0 . 0 0 2 * 3 8 2 5 
1 3 0 0 0 7 0 0 0 . 0 0 1 0 0 . 0 0 2 * 4 7 7 8 
1 3 5 0 0 . 0 0 0 . 0 0 1 0 0 . 0 0 2 * 5 7 3 1 
1 4 0 0 0 . 0 o " " 0 . 0 0 1 0 0 . 0 0 2 * 6 6 8 4 
1 4 5 0 0 . 0 0 0 . 0 0 1 0 0 . 0 0 2 * 7 6 3 7 
1 5 0 0 0 . 0 " " 0 0 7 0 0 lUO.FO " 2 7 8 5 9 0 

M. 

http://40fir.no


> 1 1 ) 1 ) 1 1 1 1 1 1 1 > } 1 

r 6 B 65 
ta "b i6 name i s 

Number " 3 T " t * T O " f n t f t € S " 54" ~ ~ 

TAB 1 0 0 5 ) 

S _ U M " 0 r - m - E _ R T R r " V " A r u E " S " T 2 7 7 W 0 0 " 0 i r " V * ] r 5 " 

MfcAN OF TABLE 

UPPER LIMIT 

5 1 3 0 . 2 ? 2 2 STANDARD DEVIATION 1 5 5 8 . 6 9 3 6 

NUMBER PER CENT CUMULATIVE MULTIPLE OF MEAN 

2 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 3 8 9 8 
2 5 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 4 8 7 3 
3 0 0 0 . 0 2 3 . 7 0 "3770" " 0 7 5 8 4 8 " " 
3 5 0 0 . 0 5 9 . 2 6 1 2 . 9 6 0 . 6 8 2 2 
4 0 0 0 . 0 5 9 . 2 6 2 2 . 2 2 0 . 7 7 9 7 
4 5 0 0 . 0 1 1 2 0 . 3 7 4 2 . 5 9 0 . 8 7 7 2 
5 0 0 0 . 0 " 6 f l ~ . l l 5 3 . 7 0 _ _ _ _ _ _ _ _ j r _ _ _ -

5 5 0 0 . 0 7 1 2 . 9 6 6 6 . 6 7 1 . 0 7 2 1 
6 0 0 0 . 0 "5" _ _ _ _ _ _ 7 5 7 9 3 1 . 1 6 9 5 
6 5 0 0 . 0 4 7 . 4 1 8 3 . 3 3 1 . 2 6 7 0 i 

7 0 0 0 . 0 4 7 . 4 1 9 0 . 7 4 1 . 3 6 4 5 
7 5 0 0 . 0 1 1 . 8 5 9 2 . 5 9 1 . 4 6 1 9 • 

_ _i 
8 0 0 0 . 0 1 1 . 8 5 9 4 . 4 4 1 . 5 5 9 4 
8 5 0 0 . 0 1 1 . 6 5 9 6 . 3 0 1 . 6 5 6 8 I 
9D~0 0 . l t 1 T . 8 5 " ~ 9 8 . 1 5 1 7 7 5 4 3 1 

9 5 0 0 . 0 0 0 . 0 0 9 8 . 1 5 1 . 8 5 1 8 
1 0 0 0 0 . 0 0 0 . 0 0 9 8 . 1 5 1 . 9 4 9 2 
1 0 5 0 0 . 0 0 0 . 0 0 9 8 . 1 5 2 . 0 4 6 7 
1 1 0 0 0 . 0 

„ 
1 . 8 5 1 0 0 . 0 0 2 7 1 4 4 2 

1 1 5 0 0 . 0 0 0 . 0 0 1 U Q . 0 0 2 . 2 4 1 6 
1 2 0 0 0 . 0 0 0 . 0 0 1 0 0 . 0 0 2 . 3 3 9 1 
1 2 5 0 0 . 0 0 0 . 0 0 1 0 0 . 0 0 2 * 4 3 6 5 
1 3 0 0 0 . 0 0 0 . 0 0 1 0 0 . 0 0 2 . 5 3 4 0 
1 3 5 0 0 . 0 0 0 . 0 0 1 0 0 . 0 0 2 . 6 3 1 5 
1 4 0 0 0 . 0 0 0 . 0 0 1 0 0 . 0 0 - 2 . 7 2 8 9 " 
1 4 5 0 0 . 0 0 0 . 0 0 1 0 0 . 0 0 2 . 8 2 6 4 
1 5 0 0 0 . 0 "0 " " o. 'oo 1 0 0 . 0 0 " 2 7 9 2 5 8 " 

"TD 

http://fl~.ll
http://9D~0
http://0.lt


1 > 1 ) 1 1 1 1 ) 1 } •-) \ ) > > 1 

0 3 F E B 65 
T « L E N A M E I S ~ 

N U M B E R D F T A B L E " E N T R I E S 6 4 

"~W£A'H O F ~ T A B . E 4 8 6 9TO" O " 0 " 0 " " " " 

~ W P 6 ff~CT'HTT N U M B E R " "PERHCENr 

TA~B7006l 

SUM OF ALL ENTRY VALUES . 3 1 1 6 1 6 0 0 0 0 . * 0 6 

"STANDARD DEVI At ION " 1 3 1 0 .2~439 

CUMULATIVE MULTIPLE'OF MEAN 

2 0 0 0 . 0 __ 0 7 0 0 6700" 0 ; - 4 i 0 8 
2 5 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 5 1 3 5 

~3O~0~O7D ~ "" 0 " " " " DTOO - " "0700 0 . 6 1 6 1 -
3 5 0 0 . 0 3 4 . 6 9 4 . 6 9 0 . 7 1 8 8 
4 0 0 0 . 0 1 0 1 5 . 6 3 2 0 . 3 1 0 . 8 2 1 5 ~ 
4 5 0 0 . 0 2 5 3 9 . 0 6 ? 9 . 3 8 0 . 9 2 4 2 
" 5 0 0 0 7 0 " 3 7 1 2 " 6 2 . 5 0 1 . 0 2 6 9 
5 5 0 0 . 0 1 1 1 7 . 1 9 Z 9 . 6 9 1 . 1 2 9 6 
6 D W ; T 5 7 7 8 1 8 7 . 5 0 1 . 2 3 2 3 
6 5 0 0 . 0 1 1 . 5 6 3 9 . 0 6 1 . 3 3 5 0 
7 0 0 0 . 0 1 1 . 5 6 9 0 . 6 2 " 1 . 4 3 7 7 
7 5 0 0 . 0 1 1 . 5 6 9 2 . 1 9 1 . 5 4 0 4 
i00T) .O 2 -37"i2 9 5 7 3 1 - ~ 1 . 6 4 3 0 
8 5 0 0 . 0 2 3 . 1 2 9 8 . 4 4 1 . 7 4 5 7 
9 0 W . B " 0 . 0 0 " " " 9 8 . 4 4 " " ~ 1 V 8 4 8 4 
9 5 0 0 . 0 0 0 . 0 0 9 8 . 4 4 1 . 9 5 1 1 

1 0 0 0 U . 0 1 1 . 5 6 l u o . o o 2 . 0 5 3 8 
1 0 5 0 0 . 0 0 0 . 0 0 1 0 0 . 0 0 2 . 1 5 6 5 
1 1 0 0 0 . 0 "07"0d 1 0 0 . 0 0 2 . 2 5 9 2 
1 1 5 0 0 . 0 0 0 . 0 0 1 0 0 . 0 0 2 . 3 6 1 9 

""" 12"0T0 .0 0 0 . 0 0 luO.OO 2 . 4 6 4 6 
1 2 5 0 0 . 0 0 0 . 0 0 1 ) 0 . 0 0 2 . 5 6 7 3 
1 3 0 0 0 . 0 0 0 . 0 0 luO.OO 2 . 6 7 0 0 
1 3 5 0 0 . 0 0 0 . 0 0 1 0 0 . 0 0 2 . 7 7 2 6 
1 4 0 0 0 . 0 0 " ' 0 . 0 0 1 !i 0 . 0 0 2 . 8 7 5 3 
1 4 5 0 0 . 0 0 0 . 0 0 1 0 0 . 0 0 2 . 9 7 8 0 
1 5 0 0 0 " . 0 0 0 . 0 0 luO.OO 3 . 0 8 0 7 

a 

T H E USED: 00 : 4 4 : 06 PAGES USED I 2 6 0 2 : 2 4 t 0 3 CO 



SOL—A Symbolic Language for General-Purpose 
Systems Simulation 

D. E. K N U T H A N D J. L. McNELEY 

Summary—Thi* paper illustrates the use of SOL, a general-
purpose algorithmic language useful for describing and simulating 
complex systems. Such a system is described as a number of indi­
vidual processes which simultaneously enact a program very much 
like a computer program. (Some features of the SOL language are 
directly applicable to programming languages for parallel computers, 
as well as for simulation.) Once a system has been described in the 
language, the program can be translated by the SOL compiler into an 
interpretWe code, and the execution of this code produces statistical 
information about the model. A detailed example of a SOL model for 
a multiple on-line console system Is exhibited, Indicating the nota­
tions! simplicity and intuitire nature of the language. SIMULATION by computer is one of the most im­

portant tools available to scientists and engineers 
who are studying complex systems. The first com­

puter programs of this type were especially designed to 
simulate some particular model; but afterwards the 
authors of several of these programs abstracted the es­
sential features of their program organization and pre­
pared general-purpose simulation programs. The most 
extensively used general-purpose programs of this type 
have apparently been the SIMSCRIPT compiler of 
Markowitz, Ha user, and Karr [ l ] , and the GPSS (Gen­
eral-Purpose Systems Simulator) routines of Gordon 
[2]-[4] . 

Although SIMSCRIPT and GPSS are both general-
purpose simulation programs, they are built around 
quite different concepts because of their independent 
evolution, and so they bear little resemblance to each 
other. SOL (Simulation-Oriented Language) is another 
general-purpose simulation routine, in which we have 
attempted to incorporate the best features of the other 
languages. After a careful study of SIMSCRIPT and 
GPSS, and after having implemented a version of GPSS 
for another computer, we found that it would be possible 
to generalize the characteristics of the former programs, 
while at the same time the language became simpler 
and more convenient for the preparation of models. This 
simplification was achieved by extracting the essential 
characteristics of GPSS and recasting them into a sym­
bolic language such as SIMSCRIPT. There are, of 
course, a great many ways in which this can be done, 
and we are not sure that the compromises we have 
chosen have been optimal; but a year of experience with 
the SOL language, after applying it to a number of 
problems of different kinds, indicates that SOL is a 

Manuscript received January 3, 1964. 
D. E. Knuth is with the California Institute of Technology, 

Pasadena, Calif. 
J . L. McNeley is with the Burroughs Corporation, Pasadena, 

Calif. 

quite powerful and flexible way to describe systems for 
simulation. We also found that the increased generality 
available in SOL was actually simpler to implement 
into a computer program than the previous routines 
were. 

A complex system can be represented as a number of 
individual processes, each of which follows a program 
very much like a computer program. For example, if we 
were simulating traffic in a network of streets, we might 
have one program describing a typical automobile (or 
perhaps two programs, one which describes all of the 
women drivers and one which describes all of the men), 
another program which represents the action of traffic 
signals, and possibly some other programs representing 
pedestrians, etc. Each program depends not only on 
quantities which are specified in advance, but also on 
random quantities which describe a probabilistic be­
havior; thus, we can specify the probability that a driver 
will turn left, the probability that he will switch lanes, 
the distribution of speeds, etc. Although each program 
represents only a single entity (such as a single auto­
mobile), there can be many entities each carrying out 
the same program, each at its own place in the program. 

Because of these considerations, SOL is a language 
which is in many respects very much like a problem-
oriented language such as ALGOL or FORTRAN. 
There are three major points of difference between SOL 
and conventional compiler languages. SOL provides 

1) mechanisms for parallel computation, 
2) a convenient notation for random elements within 

arithmetic expressions, 
3) automatic means of gathering statistics about the 

elements involved. 

On the other hand, many of the features of problem-
oriented languages do not appear in SOL, not because 
they are incompatible with it, but rather because they 
introduce more complication into this scheme than 
seems to be of practical value for simulation processes. 

A program written in the SOL language is punched 
onto cards and it is then compiled by the SOL compiler 
into an interpretive pseudocode. The SOL interpreter is 
another machine program, which executes this pseudo­
code and produces the results. (The SOL system has 
been implemented for the B5000 computer, but at the 
present time it is being used only for research within the 
Burroughs Corporation, and it is not currently available 
for distribution.) 

A self-contained, complete description of SOL ap-



S0L.IIIo2 

August 

pears in another paper [5]. The definition there is rather 
terse since it is intended primarily as a reference de­
scription; we will introduce the language here by means 
of an example, discussing the significance of each state­
ment in an intuitive fashion. 

EXAMPLE: COMMUNICATION WITH 
REMOTE TERMINALS 

The following example has been chosen not only to 
illustrate most of the features of SOL, but also because 
it is a practical application in which SOL has been used 
to evaluate the design of an actual system of some com­
plexity. 
Consider the configuration shown in Fig. 1. This 

represents one of four similar groups of devices which 
all share the processor shown at the right. The "TUV 
are terminal units which may be thought of as inquiry 
stations or typewriters. There are three groups of type­
writers, with three in the first group (TU[l], TU[3], 
TU[5]), two in the second group (TU[2], TU[4]) and 
only one in the third (TU[6]). These groups are located 
many miles from each other and from the central proces­
sor. People come in at the rate of about five or six per 
minute to use each typewriter, and they wait in the 
appropriate queue until the typewriter is free. 
These people will send one of three kinds of messages. 

Message Frequency Compute time Number of Re­sponse Words 
A 20 per cent 250 msec 3 
B 50 per cent 300 msec 4 
C 30 per cent 400 msec 5 

Each message type has a different frequency and re­
quires a different amount of central processor time. 
Communication between the typewriters and the 

processor is handled by site buffers SB [l ], SB [2 ], SB [3], 
one at each remote site, and by two processor buffers 
PBU's, which receive the information and transmit it to 
the computer. These processor buffers sequentially scan 
TU[1], TU[2], • • • , TU[6], TU[1], • • • until locat­
ing a typewriter ready to transmit information; this 
scanning is done by sending control pulses to all lines, 
then receiving a "positive" response from the SB if the 
appropriate TU is ready. Then a message is transferred 
from SB to the PBU and from there to the processor; 
after computing the answer, the processor refills the 
PBU, and the appropriate number of words is sent back 
to the SB and is typed on the TU (one word at a time). 
Further details will be given as we discuss the program. 
We will compose three programs. 
1) A program which describes the action of each per­

son who uses the remote typewriters. 
2) A program which describes the action of each of 

the two PBU's. 
3) A program which simulates the action of the other 

six PBU's, which share the central processor with 
the configuration shown in Fig. 1. 

Fig. 2 shows these three programs together with the con­
trol information, as a complete SOL model. 
The independent quantities which enact the programs 

as the simulation proceeds are called transactions. (Much 
of the terminology used in SOL is taken from Gordon's 
simulator [2]-[4] J As simulation begins, there are only 
three transactions: one for each of the programs 1), 2), 
3). Therefore, these programs describe not only the ac­
tion of the quantities mentioned above, they also de­
scribe the creation and dissolution of new transactions. 
Each transaction contains local variables which have 

values that can be referred to only by that transaction. 
There are also global variables, and some other types of 
global quantities, which can be referred to by all trans­
actions. Thus, transactions can interact with each other 
by setting and testing global quantities. Only one 
"copy" of each global variable is present in the system, 
but there are in general many copies of each local vari­
able (one for each transaction). 
Program 1), which represents the people using the 

typewriters, might begin as follows: 
process USERS; 
begin integer Q, START TIME, MESSAGE TYPE; 
new transaction to START; new transaction to START; 
ORIGIN: new transaction to START; wait 0:5000; go to 

ORIGIN; 
START: 

The first line merely identifies a process (i.e., a program) 
with the name "USERS. n The language resembles 
ALGOL, and we distinguish control words by putting 
them in bold-face type. The second line states that there 
are three local variables in these transactions, having the 
names Q, START TIME and MESSAGE TYPE. The statement 
"new transaction to START" describes the creation of a 
new transaction whose local variables have the same 
values as the local variables of the parent transaction (in 
this case zero, since all local variables are automatically 
set to zero at the beginning of a process), and this new 
transaction begins executing the program at the state­
ment labeled START. The statement "wait 0:5000* 
means an amount of simulated time, chosen randomly 
from 0 to 5000, is to elapse before the next statement is 
executed. In general, the statement "wait E,n where E 
is some expression, means that E units of time are to 
pass before excuting the next statement. The expression 
EilE* always denotes a random integer chosen between 
Ei and Ej, and therefore "wait 0:5000" has the meaning 
stated above. A unit of time in this case represents 
X msec in the simulated model. 
The reader should now reread the above sequence of 

coding before proceeding further. The essential action it 
describes is that three transactions will begin executing 
the program beginning at the statement called START, 
and thereafter a new transaction (i.e., a new user enter-



6 > — H T U P ) 

® — » J T U [ S ] 

( 5 > — H T U K I 

( 4 > — * { T U M 

(ft—»{TUM 
T«r»lml 
Unit* 

•1U 
Buffer* 

ComimlMilon T*of*ar Stiff** 

FIG. 1—MULTIPLE CONSOLE ON-LINE COMMUNICATION SYSTEM. 

BEGIN 
FACILITY T U [ 6 ] , S B [ 3 ] , LINE, COMPUTER; 
STORE 1 0 QUEUE [ 6 ] ; 
INTEGER TUSTATE[6], SBNUMBER[6], TUMESSAGE[6]; 
TABLE ( 2 0 0 0 STEP 5 0 0 UNTIL 1 5 0 0 0 ) TABLE [ 6 ] ; 
PROCESS MASTER CONTROL; 
BEGIN SBNUMBER[1]<—1; SBNUMBER[2]<—2; 

SBNUMBER[3]« -1 ; SBNUMBER[4]<—2; 
SBNUMBER[5]<— 1 ; SBNUMBER[6]<—3; 

WAIT 6 0 X 6 0 X 1 0 0 0 ; STOP END; 
PROCESS USERS; 
BEGIN INTEGER Q, START TIME, MESSAGE TYPE; 
NEW TRANSACTION TO START; NEW TRANSACTION TO START; 
ORIGIN: NEW TRANSACTION TO START; WAIT 0 : 5 0 0 0 ; GO TO 

ORIGIN; 
START : Q<— 1 : 6 ; ENTER QUEUE [ Q ] ; 
MESSAGE T Y P E < - ( 1 , 1 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 3 ) ; 
SEIZE T U [ Q ] ; 
TUMESSAGE [Q ] «—MESSAGE TYPE; 
WAIT 6 0 0 0 : 8 0 0 0 ; 
START T I M E T I M E ; 
OUTPUT #TU#, Q, #SENDS MESSAGE^, MESSAGE TYPE, 

#AT TIME#, TIME; 
TUSTATE [Q]«— 1 ; 
WAIT UNTIL TUSTATE [Q ] = 0 ; 
RELEASE T U [ Q ] ; LEAVE QUEUE [ Q ] ; 
TABULATE (TIME—START TIME) IN TABLE[Q] ; 
OUTPUT #TU#, Q, ^RECEIVES REPLY AT TIME#, TIME; 
CANCEL END; 
PROCESS PBU; BEGIN INTEGER S, T, WORDS; 
NEW TRANSACTION TO SCAN; T<—3; 
SCAN: T « - T + L ; I F T > 6 THEN T<—1; WAIT 1 ; 
S<—SBNUMBER[T]; 

SEIZE LINE; 
WAIT 5 ; IF S B [ S ] BUSY THEN (WAIT 8 0 ; RELEASE LINE; GO TO 

SCAN) ; 
SEIZE S B [ S ] ; WAIT 1 5 ; IF TUSTATE [T] 5^1 THEN 
(WAIT 6 5 ; RELEASE LINE; RELEASE S B [ S ] ; GO TO SCAN); 
WAIT 2 2 5 ; SEND: WAIT 1 7 0 ; IF PR(0.02) THEN (WAIT 2 0 ; GO TO 

SEND) ; 
NEW TRANSACTION TO COMPUTATION ; WAIT 2 0 ; RELEASE SB [S ] ; 
RELEASE LINE; TUSTATE[T]«-2 ; CANCEL; 
COMPUTATION: SEIZE COMPUTER; WORDS<—TUMESSAGE[T] 

+ 2 ; 
WAIT (IF WORDS = 3 THEN 2 5 0 ELSE IF W O R D S = 4 THEN 3 0 0 

ELSE 4 0 0 ) ; 
RELEASE COMPUTER; 
OUTPUT: WAIT 1 ; SEIZE LINE; WAIT 5 ; 
IF SB [S] BUSY THEN (WAIT 8 0 ; RELEASE LINE; GO TO OUTPUT) ; 
SEIZE S B [ S ] ; WAIT 7 5 ; 
RECEIVE: WAIT 8 0 ; IF PR(0.01) THEN (WAIT 2 0 ; GO TO 

RECEIVE) ; 
RELEASE LINE; 
WORDS «—WORDS — 1 ; 
IF WORDS = 0 THEN NEW TRANSACTION TO SCAN; 
WAIT 3 2 5 ; RELEASE SB [ S ] ; WAIT 1 7 0 ; 
IF WORDS > 0 THEN GO TO OUTPUT; 
TUSTATE [T ] < - 0 ; CANCEL END; 
PROCESS OTHER PBUS; 
BEGIN INTEGER I ; I«—6; 
CREATE: NEW TRANSACTION TO COMPUTE; 

— 1 ; IF I > 0 THEN GO TO CREATE; CANCEL; 
COMPUTE: WAIT 3 2 0 0 : 5 0 0 0 ; SEIZE COMPUTER; 
WAIT ( 2 5 0 , 2 5 0 , 3 0 0 , 3 0 0 , 3 0 0 , 3 0 0 , 3 0 0 , 4 0 0 , 4 0 0 , 4 0 0 ) ; 
RELEASE COMPUTER; GO TO COMPUTE END; 
END. 

FIG. 2—COMPLETE SOL PROGRAM FOR THE ON-LINE SYSTEM* 

1964 Knuth and McNeley: SOL—-Symbolic Language for System* Simulation 



ing the system) will be created at intervals of about 2.5 
sec. We have started the system with three transactions 
so that it will not take it very long to arrive at a more or 
less stable condition. 

The program now proceeds as follows: 

START: Q * - 1 : 6 ; enter QUEUE[Q); 

The statement "Q<— 1:6" means that local variable Q is 
set to a random number between 1 and 6; thus the user 
is assigned to one of the six typewriters. The "enter" 
statement refers to one of six global quantities. 
QUEUE[1], • • • , QUEUE[6]. At the conclusion of the 
simulation, data will be reported giving the average 
number of people in each queue at a given time, and 
also the maximum number. 

MESSAGE TYPE<— (1,1,2,2,2,2,2,3,3,3); 

The expression (Eu E 2 , • • • , En) denotes a random 
choice selected from among the n expressions. There­
fore, the given statement means that the local variable 
MESSAGE TYPE receives the value 1 with probability 20 
per cent, 2 with probability 50 per cent and 3 with 
probability 30 per cent; this represents the choice of 
message A, B or C as stated earlier. 

seize T U [ Q ] ; 

This statement refers to one of the global quantities 
TU[1], • • • , TU[6], which are classified as facilities. A 
facility is seized by one transaction, and then it cannot 
be seized by another transaction until it has been re­
leased by the former transaction. Therefore, if transac­
tion X comes to a seize statement, where the correspond­
ing facility is busy (i.e., has been seized by transaction 
30, transaction X stops executing its program until 
transaction Y releases the facility. If several transac­
tions are waiting for this event, they are processed in a 
first-come-first-served fashion. 

Thus, the statement "seize T U [ Q ] " expresses the situ­
ation that the user takes control of typewriter number 
Q, after possibly waiting in line for it to become avail­
able. 

TUMESSAGE [Q ] ^-MESSAGE TYPE; 

This statement says that the global variable TUMES-
SAGE[Q] is set to indicate the type of message. This 
global variable is used to communicate with the PBU 
process which is described below. 

wait 6000:8000; 

This statement simulates the time of 6 to 8 sec, taken 
by the man to type his request on the terminal unit. 

START TiME«-time; 

We now set the local variable START TIME equal to 
"time," the current value of the simulated clock. 

Output #TU#, Q, #SENDS MESSAGE^, MESSAGE TYPE, 
#AT TIME#, time; 

August 
This statement causes the printing of a line during the 
simulation, having the form "TU 3 SENDS MESSAGE 2 AT 
TIME 12610." The " # " symbols indicate a string inserted 
into the output. 

TUSTATE [Q]<—1; 

Another global variable TUSTATE [Q] is now set to 1 to 
indicate that the typed message is ready to send. 
TUSTATE [Q] has three possible settings. 

TUSTATE = 0 means the TU is free. 
TUSTATE = 1 means the message has been typed. 
TUSTATE = 2 means the answer message may be typed. 

The next statement 

wait until TUSTATE[Q] = 0 ; 

means the transaction is to stop at this point until 
TUSTATE [Q] has been set to zero (by some other trans­
action). This indicates that we are to wait until the 
answer message has been fully received. When that oc­
curs, the transaction finishes its work ad follows: 

release T U [ Q ] ; leave QUEUE [ Q ] ; 
tabulate (time—START TIME) in TABLE[Q]; 

The latter statement is used for statistical data; 
TABLE [Q] is a global quantity which receives "readings" 
by means of "tabulate" statements. At the end of simu­
lation, this table is printed out giving the mean, the 
standard deviation and a histogram of the data it has 
received. 

OUtpUt #TU#, Q, ^RECEIVES REPLY AT TIME#, time; 
cancel end; 

The last statement, "cancel," causes the disappearance 
of the transaction, and the word "end" indicates the 
end of the program for this process. 

Program 2), which runs simultaneously with 1) and 
3), describes the action of the PBU's. 

process PBU; begin integer s, T, WORDS; 
new transaction to SCAN; T * - 3 ; 
SCAN: 

We have three local variables, s, T and WORDS. At the 
beginning, two transactions (representing the two 
PBU's) start at SCAN, one with its variable T = 0, the 
other with T = 3 . 

SCAN: T « - T + 1 ; if T > 6 then T«-1 ; wait 1; 

These statements represent the cyclic scanning process 
which we assume takes 1 msec. The variable T repre­
sents the number of the TU which the PBU will be 
referencing. 

S«-SBNUMBER[T] ; 

"SBNUMBER" is a table of constants, which is used to 
tell which SB corresponds to the TU scanned. 

seize LINE; 



1964 
W E N O W S E I Z E T H E FACILITY LINE, W H I C H REPRESENTS T H E 
L O N G - D I S T A N C E C O M M U N I C A T I O N LINES. ( I F T H E O T H E R P B U 
H A S S E I Z E D LINE A L R E A D Y , W E M U S T W A I T UNTIL IT H A S B E E N 
R E L E A S E D . ) 

W A I T 5 ; I F SB [ S ] B U S Y T H E N 
( W A I T 8 0 ; R E L E A S E LINE; G O TO SCAN); 

W E W A I T 5 M S E C FOR A CONTROL SIGNAL TO P R O P A G A T E TO T H E 
S B U N I T . H E R E S N [ S ] IS A FACILITY; IF IT IS B U S Y (i.e., H A S 
B E E N S E I Z E D B Y T H E O T H E R P B U ) W E W A I T 8 0 M S E C M O R E , 
R E C E I V I N G N O SIGNAL B A C K , SO W E RELEASE T H E L I N E A N D RE­
T U R N TO SCAN T H E N E X T T U . 

S E I Z E S B [ S ] ; W A I T 1 5 ; I F TUSTATE [ T ] S * 1 T H E N 
( W A I T 6 5 ; R E L E A S E LINE; R E L E A S E S B [ S ] ; G O TO SCAN); 

I F S B [ S ] R E C E I V E D T H E CONTROL S I G N A L , IT IS B R O U G H T U N D E R 
T H E CONTROL O F THIS P B U . F I F T E E N M I L L I S E C O N D S LATER, T H E 
N U M B E R T H A S B E E N T R A N S M I T T E D ACROSS T H E L I N E , A N D IT 
T A K E S 65 M S E C FOR T H E S B TO D E T E R M I N E IF TU[T] IS R E A D Y 
TO T R A N S M I T O R N O T . I F N O T , W E RELEASE T H E S B A N D T H E 
L I N E , A N D SCAN A G A I N . 

W A I T 2 2 5 ; SEND: W A I T 1 7 0 ; I F P R ( 0 . 0 2 ) T H E N 
( W A I T 2 0 ; G O TO SEND); 

I T T A K E S 2 2 5 M S E C FOR T H E S B TO G E T R E A D Y TO T R A N S M I T 
T H E M E S S A G E A N D TO S E N D A W A R N I N G SIGNAL ACROSS T H E 
L I N E TO T H E P B U . T H E N 1 7 0 M S E C A R E R E Q U I R E D TO S E N D T H E 
I N P U T M E S S A G E . T H E CONSTRUCTION W I F P R ( 0 . 0 2 ) W M E A N S 
"2 P E R C E N T O F T H E T I M E , " A N D SO THIS S T A T E M E N T I N D I C A T E S 
T H A T , W I T H P R O B A B I L I T Y 0 . 0 2 , A P A R I T Y ERROR I N T H E TRANS­
M I S S I O N IS D E T E C T E D ; I N S U C H A C A S E , W E S E N D B A C K A SIGNAL 
CALLING FOR RETRANSMISSION OF T H E M E S S A G E . 

N E W TRANSACTION TO COMPUTATION ; WAIT 2 0 ; R E L E A S E SB [S ] ; 
R E L E A S E LINE ; TUSTATE [T ] +-2; C A N C E L ; 

A T THIS P O I N T T W O PARALLEL PROCESSES T A K E P L A C E . A S T H E 
P B U TRIES TO S E N D T H E M E S S A G E TO T H E C O M P U T E R , IT ALSO 
S E N D S A " M E S S A G E R E C E I V E D " SIGNAL ACROSS T H E LINES TO T H E 
S B , A N D , 2 0 M S E C LATER, T H E S B A N D T H E LINES A R E R E L E A S E D . 
T H E TUSTATE IS A D J U S T E D , A N D T H E N THIS P O R T I O N OF T H E 
TRANSACTION IS C A N C E L L E D . 

COMPUTATION: S E I Z E COMPUTER; 
WORDS*—TUMESSAGE [T] + 2 J 

W A I T (IF WORDS = 3 T H E N 2 5 0 E L S E 
I F WORDS 

= 4 T H E N 3 0 0 E L S E 4 0 0 ) ; 
R E L E A S E COMPUTER; 

H E R E W E S E N D T H E M E S S A G E TO T H E C O M P U T E R FACILITY, 
P O S S I B L Y W A I T I N G FOR IT TO B E C O M E A V A I L A B L E . T H E LOCAL 
V A R I A B L E WORDS IS SET TO T H E N U M B E R O F WORDS O U T P U T 
FOR T H E CURRENT M E S S A G E , A N D W E ALSO W A I T T H E A P P R O P R I ­
A T E A M O U N T OF C O M P U T E R T I M E . A T THIS P O I N T , T H E O U T P U T 
M E S S A G E H A S B E E N C R E A T E D B Y T H E C O M P U T E R , A N D IT H A S 
B E E N S E N T B A C K TO T H E P B U . T H E FINAL J O B IS TO O U T P U T 
THIS M E S S A G E , O N E W O R D AT A T I M E : 

OUTPUT: WAIT 1 ; S E I Z E LINE; WAIT 5 ; 
I F SB [ S ] B U S Y T H E N ( W A I T 8 0 ; R E L E A S E LINE; G O TO OUTPUT) ; 

A CONTROL WORD IS S E N T O U T TO INTERROGATE T H E S B , AS I N 
T H E CASE OF I N P U T A B O V E . 

S E I Z E S D [ S ] ; WAIT 7 5 ; 
RECEIVE: W A I T 8 0 ; IF P R ( 0 . 0 1 ) T H E N 

( W A I T 2 0 ; G O TO RECEIVE); 
R E L E A S E LINE; 

W E H A V E O U T P U T O N E W O R D T O T H E S B ; T H E R E W A S P R O B A ­
BILITY 1 P E R C E N T THAT A TRANSMISSION ERROR WAS D E T E C T E D . 

WORDS <—WORDS — 1 ; 
I F WORDS = 0 T H E N N E W TRANSACTION TO SCAN; 
WAIT 3 2 5 ; R E L E A S E S B [ S ] ; WAIT 1 7 0 ; 

A F T E R T H E LAST W O R D HAS B E E N T R A N S M I T T E D , A PARALLEL 
A C T I V I T Y STARTS W I T H A N O T H E R S C A N . I T T A K E S 3 2 5 M S E C FOR 
T H E S B TO S E N D T H E W O R D TO T H E T Y P E W R I T E R , A N D A N O T H E R 
1 7 0 M S E C A R E R E Q U I R E D FOR T H E T Y P E W R I T E R TO FINISH ITS 
T Y P I N G . 

I F WORDS > 0 T H E N G O TO OUTPUT ; 
T U S T A T E [ T ] * - 0 ; C A N C E L E N D ; 

W H E N T H E O U T P U T HAS ALL B E E N T Y P E D , TUSTATE IS RESET TO 
Z E R O ( T H U S A C T I V A T I N G T H E USER TRANSACTION) A N D THIS 
PARALLEL B R A N C H OF T H E P R O G R A M D I S A P P E A R S . 

P R O G R A M 3 ) IS U S E D TO D E S C R I B E T H E TRAFFIC W H I C H T A K E S 
P L A C E AT T H E C O M P U T E R , B Y C R E A T I N G SIX S I M U L A T E D P B U ' S 
AS FOLLOWS: 

PROCESS OTHER PBUS; 
B E G I N I N T E G E R I ; I <—6; 
CREATE: N E W TRANSACTION TO COMPUTE; 
I*—I — 1 ; I F I > 0 T H E N G O TO CREATE; C A N C E L ; 
COMPUTE: WAIT 3 2 0 0 : 5 0 0 0 ; S E I Z E COMPUTER; 
WAIT ( 2 5 0 , 2 5 0 , 3 0 0 , 3 0 0 , 3 0 0 , 3 0 0 , 3 0 0 , 4 0 0 , 4 0 0 , 4 0 0 ) ; 
R E L E A S E COMPUTER; G O TO COMPUTE E N D ; 

O U R E X A M P L E P R O G R A M IS N O W A L M O S T C O M P L E T E . W E 
P R E C E D E T H E T H R E E PROCESSES G I V E N A B O V E B Y T H E FOLLOWING 
C O D E , W H I C H DECLARES T H E GLOBAL Q U A N T I T I E S . T H E R E IS ALSO 
A FOURTH PROCESS W H I C H A C C O M P L I S H E S T H E I N I T I A L I Z A T I O N 
A N D W H I C H STOPS T H E S I M U L A T I O N AFTER 1 H O U R OF S I M U L A T E D 
T I M E . 

FACILITY T U [ 6 ] , S B [ 3 ] , LINE, COMPUTER; 
STORE 1 0 QUEUE [ 6 ] ; 
I N T E G E R TUSTATE [ 6 ] , SBNUMBER [ 6 ] , TUMESSAGE [6] ; 
T A B L E ( 2 0 0 0 S T E P 5 0 0 UNTIL 1 5 0 0 0 ) TABLE [ 6 ] ; 
PROCESS MASTER CONTROL; 
B E G I N SBNUMBER[1 

SBNUMBER[3 
SBNUMBER[5 

- 1 ; S B N U M B E R [ 2 ] * - 2 
- 1 ; S B N U M B E R [ 4 ] * - 2 
- 1 ; SBNUMBER[6]«—3 

WAIT 6 0 X 6 0 X 1 0 0 0 ; STOP E N D ; 

REMARKS 

W E H A V E P U R P O S E L Y C H O S E N A RATHER C O M P L E X E X A M P L E 
TO S H O W H O W S O L C A N B E U S E D TO SOLVE A N ACTUAL P R O B L E M 
O F PRACTICAL I M P O R T A N C E , A N D TO S H O W I N W H A T A NATURAL 
M A N N E R T H E S Y S T E M C A N B E D E S C R I B E D I N T H E L A N G U A G E . 

F I G . 3 IS A S A M P L E OF S O M E OF T H E O U T P U T RESULTING 
F R O M T H E P R O G R A M OF T H E P R E C E D I N G SECTION. 

Knuth and McNcley: SOL—Symbolic Language for Systems Simulation 



TU 6 StNOS MESSAGE I AT TIME 6566 
TU 4' SCNOS MESSAGE 1 AT TIME 7152 
TU 5 SCNOS MESSAGE 2 AT TIME 7295 

TU 6 RECEIVES REPLY AT TIME 9973 
TU 4 RECEIVES REPLY AT TIME 10305 
TU 5 RECEIVES REPLY AT TIME 13353 

TU 6 SCNOS MESSAGE 3 AT TIME 16908 
TU 2 sEnos MESSAGE 2 AT TIME 17476 
TU S StNOS MESSAGE I AT TIME 19405 

TU 6 RECEIVES REPLY AT TIME 21166 
TU 2 RECEIVES REPLY AT TIME 2H12 

TU 3 SENDS MESSAGE 2 AT TIME 21646 
TU 5 RECEIVES REPLY AT TIME 24229 

TU 1 s£nos MESSAGE 2 AT TIME 25424 
TU 3 RECEIVES REPLY AT TIME 27959 

TU a StNOS MESSAGE 1 AT TIME 30442 
TU 5 SCNOS MESSAGE 2 AT TIME 3U09 

TU 1 RECEIVES REPLY AT TIME 31609 
TU 4 RECEIVES REPLY AT TIME 33278 

TU 3 StNOS MESSAGE 3 AT TIME 3*067 
TU 2 StNOS MESSAGE 3 AT TIME 34476 

TU 5 RECEIVES REPLY AT TIME 35046 
TU 2 RECEIVES REPLY AT TIME 38958 
TU 3 RECEIVES REPLY AT TIME 39376 

TU 1 SCNOS MESSAGE 1 AT TIME 40472 
CLOCK TIME AT EnO OF SIMULATION WAS 3600000 

NUMBER OF TIMES LABELS *ERE ENCOUNTERED 
LABEL * COUNT LABEL • COUNT LABEL 

ORIGIN - 1455 START • 1457 SCAN 
SENO • 1477 COMPUTATION - 1446 OUTPUT 

RECEIVE - 5990 CREATE • 6 COMPUTE 

NAME OF FACILITY FRACTION OF TIME IN USE 

Tutoon 0.8316 
TUC002] 0.8055 
TUC003] 0.7887 
TUC004] 0.8085 
TUC005) 0.6302 
TUC0061 0.7585 
sBCoon 0.6051 
SBC0021 0.4221 
SBC0031 0.2120 

LINE 0.8649 
COMPUTER 0.550V 



name or STORE CAPACITY MAXIMUM USEO AVERAGE OCCUPANCT AVERAGE UTILIZATION 
OUEUECOOH 
•JUEUEC0021 
QUEUEC003) 
0UEUEC004] 
OUEUEC005] 
0UEUEC006) 

10 
10 
10 
10 
10 
10 

10 
10 
10 

7 
8 
5 

2.5272 
2.4255 
2.3835 
1.7696 
2,1644 
1.4971 

0.2527 
0.2426 
0.2364 
0.1770 
0.2164 
0.1497 

TABLE NAME IS TA8LEC 003] 

NUMBER OF TABLE ENTRIES ?35 SUM or ALL ENTRY VALUES 1201076 

MEAN Or TABLE 5110.9617 STANOARO OEVIATION 14.41,51124 
UPPER LIMIT NUMBEK PER CENT CUMULATIVE MULTIPLE Or MEAN 

2000 0 0.00 0.00 0.3913 
2500 0 0.00 0*00 0.4691 
3000 5 2.13 2/13 0.5670 
3500 I* 5.96 6.09 0.6648 
4000 36 15.32 23.40 0.7826 
4500 32 13.62 

19.57 37.02 0.8805 
5000 46 

13.62 
19.57 56.60 0.9763 

5500 23 9.79 66.38 1.0761 
6000 25 10.64 77.02 1.1739 
6500 18 7.66 84.66 1.2718 
7000 12 5.11 69.79 1.3696 
7500 to 4.26 94.04 1.4674 
6000 5 2.13 96.17 1.5653 
6500 1 0.43 96.60 1.6631 
9000 4 1.70 96.30 1.7609 
9500 I 0.43 98.72 1.8567 

10000 1 0.43 99.15 1.9566 
10500 1 0.43 99.57 2.0544 
11000 0 0.00 99.57 2.1522 
U500 I 0.43 100.00 2.2501 
12000 0 0.00 100.00 2,3479 
t2500 0 0.00 100.00 2.4457 
liOOO 0 0.00 100.00 2,5436 
t3500 0 0.00 100.00 2.6414 
14000 0 0.00 100.00 2,7392 
14500 0 0.00 100.00 2,8370 
15000 0 0.00 100.00 2,9349 

Fig. 3 (pp. 406-407)—Samples of the output obtained. 



Appendix III 

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS 

The ideas used in SOL for creating and canceling 
transactions have applications in the design of languages 
for highly parallel computers. 
The techniques which are used in the implementation 

of SOL will be the subject of another paper. It should be 
indicated here, however, that the implementation gives 
a rather efficient program because separate lists are 
kept for transactions which are waiting for different 
reasons. Those which are waiting for time to pass are 
kept sorted on the required time. Those which are wait­
ing for a condition such as "wait until A = 0," for some 
global variable A, are kept in a list associated with A; 
this list is interrogated only when the value of A has 
been changed. 
The SOL system has proved to be especially advan­

tageous for simulating computer systems since "typical 

programs," which we assume are to be run on the simu­
lated computers, are easily coded in SOL's language. 

Ac KNO WLICDGM ENT 

The authors wish to express their appreciation to J. 
Merner for many helpful suggestions. 

REFERENCES 
|1| H. M. Markowitz, B. Manner, ami H. W. Karr, "SIMSCRIPT— A Simulation Programming language." Prentirc-Hall, Inc., Knglewood Cliffs, N. J.; 1963. {2] G. Gordon, "A general purpose systems simulation program," 

Proc. Eastern Joint Computers Con/., pp. 87-104; December, 1961. (31 , "A general purpose systems simulation program,1* IBM 
Systems vol. 1, pp. 18-32; September, 1962. 14) "Reference Manual, General Purpose Systems Simulator I!,* IBM Corp., White Plains, N. Y.; 1963. (51 D. E. Knuth and J. L. McNeley, "A formal definition of SOL," this issue, page 409. 16) M. R. Lacktter, "Toward a general simulation capability," Proc. 
Spring Joint Computer Conference, pp. 1-14; May, 1962. 



A Formal Definition of SOL 

D. E . KNUTH AND J . L . M c N E L E Y 

Summary—This paper gives a formal definition of SOL, a general-
purpose algorithmic language useful for describing and simulating 
complex systems. SOL is described using meta-linguistic formulas 
as used in the definition of ALGOL 60. The principal differences be­
tween SOL and problem-oriented languages such as ALGOL or 
FORTRAN is that SOL includes capabilities for expressing parallel 
computation, convenient notations for embedding random quantities 
within arithmetic expressions and automatic means for gathering 
statistics about the elements involved. SOL differs from other simu­
lation languages such as SIM SCRIPT primarily in simplicity of use 
and in readability since it is capable of describing models without 
including computer-oriented characteristics. 

I. GENERAL DESCRIPTION SOL IS an algorithmic language used to construct 
models of general systems for simulation in a 
readable form. The model builder describes his 

model in terms of processes whose number and detail 
are completely arbitrary and definable within the con­
straints of the language elements. A SOL model con­
sists of a number of statements and declarations which 
have a character similar to that found in programming 
languages such as ALGOL. 

The model is not built to be executed in a sequential 
fashion as ordinary programming languages require. 
Rather, the processes are written and executed as if all 
were running in parallel. Control between processes is 
maintained by the interaction of global entities and by 
control and communication instructions within the 
different processes. At the initiation of the simulation 
all processes are begun simultaneously. 

Variables declared within a process are called local 
variables. Within a given process it is possible to have 
several actions going on at once; therefore, we may 
think of several objects on which the action takes place 
each in its own place in the process at any given time. 
These objects will be referred to as transactions. A set of 
local variables corresponding in number to those de­
clared in the process is "carried with" each transaction 
of that process. Transactions situated within one proc­
ess may not refer to the local variables of another proc­
ess nor to the local variables of another transaction in 
the same process. 

Global quantities are of three major types: global 
variables, facilities and stores. Global variables can be 
referenced or changed by any transaction from any 
process in the system, and the variable possesses only 
one value at any given time. 

Manuscript received January 3, 1964. 
D. E. Knuth is with the California Institute of Technology, 

Pasadena, Calif. 
J. L. McNeley is with the Burroughs Corporation, Pasadena, 

Calif. 

A facility is a global element which can be controlled 
by only one transaction at a time. Associated with each 
request for the facility is a "control strength,n and if a 
requesting transaction has a higher strength than the 
transaction controlling the facility, an interrupt will 
occur. Interrupts may be nested to any depth. If the 
requesting transaction is not of greater strength than 
the controlling transaction, then the requesting transac­
tion stops and waits for the facility until the controlling 
transaction releases its control. When a transaction is 
interrupted, it cannot advance to any other position in 
its program until it regains control of the facility. 

Stores are space-shared rather than time-shared global 
elements, and they are assigned a specific storage capac­
ity. As long as there is sufficient storage to accommodate 
the requesting transaction the request for space is satis­
fied; otherwise, the transaction waits until the space it 
is requesting becomes available. In this sense, a facility 
may be regarded as a store which has a capacity of one 
unit only, except for the fact that no interrupt capabil­
ity is provided for stores. 

Simulated time passes in discrete units indicated in 
"wait statments.w The model builder requires the trans­
actions to wait a proper number of time units at the 
appropriate places in the p-ocesses, and this specifies 
the time element. The interpretation of the physical 
significance of a unit of time is immaterial in the SOL 
language; if all time interval specifications are multi­
plied by a factor of ten it will not decrease the speed by 
which the model is simulated. 

Control within or between processes is also introduced 
into the simulation by allowing a transaction to wait 
until a global variable or expression obtains a certain 
value. A transaction may also be forced to wait until a 
space- or time-shared element attains a certain status. 

Output statements which display the progress of the 
simulation may be inserted at will in the model. Special 
types of statistics are automatically available, such as 
the per cent of utilization of a facility, the average and 
maximum number of elements in a store at a given 
moment, etc. Another type of global quantity, called a 
table, is introduced to record statistical information 
about desired data. The mean, the standard deviation 
and a histogram are provided for all data recorded in a 
table. 

Processes initiate parallelism within themselves by 
using a duplication operation. The transaction makes an 
exact copy of itself and sends the copy to a specified 
location in the process while the original continues in 
sequence. A transaction is taken out of the system when 
it executes a "canceln statement. 



August Other operations available in SOL are similar to those of existing algorithmic languages, but these portions of the language are at the present time less powerful than the features available in a large scale programming lan­guage. A detailed example of a complete SOL model appears in a companion paper in this issue [2]. 
II. SYNTAX AND SEMANTICS OK SOL We will define the syntax of SOL using meta-linguistic formulas as given in the definition of ALGOL 60 [l]. Certain things which have been carefully defined in ALGOL 60 will not be redefined here but will merely be stated to have the came interpretation as given by ALGOL. We will use the abbreviation *(A)* to mean "a list of (A),w i.e., 

*<A)*::=<A»*<A>*, <A> Comments may be written in the form "comment (string without semicolons);'' as in ALGOL 60. 
A. Identifiers and Constants (letter): :=aJB|C|D| • - • |Z <digit>::-0|l|2|3| • • • |9 (number):: = (constant)| (decimal constant) (constant):: = *(digit)* (decimal constant):: = (constant).(constant) (identifier):: = (letter)) (identifier)(Ietter)| (identifier) (digit) Identifiers are used as the names of variables, statisti­cal tables, stores, facilities, processes, procedures and statements. The same identifier can be used for only one purpose in a program. Constants are used to represent integer numbers. Decimal constants represent real num­bers. Identifiers must be declared before they are used elsewhere. 
B. Declarations (declared item):: = (identifier)) (identifier)[(constant)] (variable declaration):: =integer * (declared item)*| 

real* (declared item)* (facility declaration):: = facility * (declared item)* (store declaration):: = store * (constant )(declared item)* (table declaration):: = table *((number)step(number) 
until (number))(declared item)* (monitor declaration):: = monitor *(identifier)* If the declared item is simply an identifier, it means that a single item of that name is being declared. The other form, e.g., A[10], means 10 similar items called A[1], A[2], • • • , A[10] are being declared. The variable declaration is used to specify variables (either local or global, depending on where the declara­tion appears). All variables are initially set to zero when declared. "Integer'' variables differ from "real" variables in that when a value is assigned to them it is rounded to the nearest integer. 

When a facility is declared, it is initially "not busy"; at the end of the simulation run, statistics are reported giving the per cent of time each facility was in use. A store declaration gives the capacity of each store (the number preceding the identifier). At the end of the simulation run statistics are given on the average and the maximum number of items occupying the store (as a function of time). Stores are empty when first declared. A "table" is used to gather detailed statistical in­formation of any desired type; readings are tabulated and afterwards the mean, the standard deviation, histo­gram distribution, etc., are output. The constants pre­ceding the table name give the starting point for histo­gram intervals, the increment between intervals and the highest value. A monitor declaration names items which already have been declared, with the understanding that these identifiers are to be "monitored.* This means that when­ever a change in the state of the corresponding quantity is detected, a line will be printed giving the details. This capability is especially useful when checking out a model, and it can also be used to advantage for output during a regular simulation run. 
C. Expressions and Relations 

(name):: = (identifier)) (identifier)[(expression)] By (variable name), (facility name), etc., we will mean that the identifier in the name has appeared in a (variable declaration), (facility declaration), etc., re­spectively. (primary):: = (variable name)) (store name)) (constant)) (decimal constant)) time) (* (expression)*) | abs( (expression)) | max(*(expression)*) [ mi n(* (expression)*) | normal ((expression), (expression))) exponential ((expression)) | poisson( (expression)) | * geometric ((expression))) random 
(term):: = (primary) (term) -f- (primary) (term) X (primary) | (term)/(primary) | (term )rnod(primary) (sum):: = (term)| +(term)| — (term)) (sum)+(term)| (sum) —(term) (unconditional expression):: = (sum)) (sum): (sum) (expression):: = (unconditional expression)) if (relation) then (expression) else (expression) The meaning of the arithmetical operations inside ex­pressions is identical to the meaning in ALGOL 60. The new elements here are ua mod bt

n the. positive remainder obtained upon dividing a by b; "max(*i, • • • , eH)n and "min(ci, • • • , ej," which de­note the maximum and minimum values, respectively, of the n expressions; and there are also notations for ex­pressing random values. The expression "(ei, • • • , cH)n indicates that a random selection is made from among the n expressions with equal probability of choosing any 



1964 

Appendix III 

Knuth and McNeley s A Formal Definition of SOL 

expression. The expressions normal(M, S), poisson(M), 
geometric(M) and exponential(M) indicate random 
values with special distributions which occur frequently 
in applications. A random number drawn from the nor­
mal distribution with mean M and standard deviation 
S is denoted by normal(M. S) and is a real (not neces­
sarily integer) value. A number drawn from the ex­
ponential distribution with mean M is denoted by ex­
ponential^) and is also of type real. The poisson 
distribution signified by poisson(M), on the other hand, 
yields only integer values; the probability that pois-
son(M)«n is (eruM*/n\). The geometric distribution 
with mean M, denoted by geometric(M), also yields 
integer values, where the probability that geometric(M) 
* n is 1 / M ( 1 ~ 1/M)"- 1. The symbol random denotes a 
random real number between 0 and 1 having uniform 
distribution. Finally, we have the notation ex\e*% which 
denotes a random integer between the limits C\ and e%\ 
more formally 

,*) 
ei > e» 

ci it et. 

The normal, exponential, poisson and geometric dis­
tributions are mathematically expressible in terms of 
random as follows: 

normal(M,S) « S X V - 2 In (random) X sin (2T random) + M 
exponential(M) » — M In (random) 
poisson(M) « n i f e - M ( l + M + — + • • • + 1 

\ 2! (̂n-i)i/ 
g random < e~M ^1 + M + • • • + —J 

geometric(M) « £ l + In (random)/ln ^1 — 
(The poisson distribution should not be used for 

values of M greater than 10.) As examples of the use of 
these distributions, consider a population of customers 
coming to a market with an average of one customer 
every M minutes. The distribution of waiting time be­
tween successive arrivals is exponential(M). On the 
other hand, if an average of M customers come in per 
hour, the distribution of the actual number of customers 
arriving in a given hour is poisson(M). If an individual 
performs an experiment repeatedly with a chance of 
success, 1/M on each independent trial, the number of 
trials needed until he first succeeds is geometric(M). 

The special symbol "time" indicates the current time; 
intially, time is zero. The value of a store name is the 
current number of occupants of the store. 
(relational operator): :« » | r*| <| 31 >| £ 
(relation primary):: » (unconditional expression) 

(relational operator)(unconditionai expression)! 
(facility name) busy | (facility name) not busy] 
(store name) full | (store name) not full) 
(store name) empty) (store name) not empty) 
pr( (expression)) | ((relation)) 

(relation):: ** (relation primary)) 
(relation primary)V(relation primary)! 
(relation primary) A (relation primary)) 
"~")(relation primary) 

These relations have obvious meanings except for the 
construction "pr(e) f f which stands for a random condi­
tion which is true with probability e. (Here e must be 
less than or equal to 1.) Thus we might say 

if pr(0.12) then (12 per cent of the time) 
else (88 per cent of the time). 

III . STATEMENTS 

A. Processes 

As this simulator operates, any number of processes 
written in the language may be in use at once. We may 
think of several objects, each in its own place in the 
process at any given time. These objects are referred to 
as transactions. In this section, we describe the various 
manipulations that transactions can perform in the lan­
guage. 

(process description):: »process (identifier); 
(statement)) 
process (identifier); begin 
(process declaration list); (statement list) end 

(process declaration):: «(variable declaration)) 
(procedure declaration)) (monitor declaration) 

(process declaration list) : : «(process declaration)) 
(process declaration list); (process declaration) 

There are two kinds of variables, global variables (not 
declared in a process) and local variables (those which 
are declared in a process). All transactions can refer to 
the global variables, and a global variable has only one 
value at any given time. But a local variable is "carried 
with" each transaction within a given process, and there 
is in general, a different value for a local variable de­
pending on which transaction is using it. Transactions 
situated within one process may not refer to the local 
variables of another process, nor can the local variables 
of one transaction within a process be reached directly 
by other transactions in that same process. Communica­
tion between processes is accomplished solely with the 
help of global quantities. 

B. Labels 

A statement may be named by any identifier as fol­
lows: 
(statement):: = (unlabeled statement)) 

(identifier): (statement) 



Appendix III 
IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS August 

By the designation (label) we will mean the name of a 
statement. 

C. Creation of Transactions 
At the beginning of simulation, there is one transac­

tion present for each process described. Each of these 
initial transactions starts at time zero and is positioned 
at the beginning of the process. More transactions may 
be created by using "start statements." 

(start statement):: =new transaction to (label) 

This statement, when executed, creates a new transac­
tion (whose local variables are the same in number and 
value as those of the transaction which created it). The 
new transaction begins executing the program at (label) 
while the original transaction continues in sequence. 
New transactions are also created by input statements 
(Section III-T). 

D. Disappearance of Transactions 
Transactions "die" when they execute a cancel state­

ment. 
(cancel statement):: = cancel 

An implied cancel statement is at the end of every 
process, so cancel statements need not always be ex­
plicitly written. 

E. Replacement Statements 
(replacement statement):: = (variable name) 

•-(expression) 

This replaces the value of the variable by the value of 
the expression. The variable may be global or local, but 
not the name of a store. If the variable is an integer 
variable, the expression is rounded. 

F. Priority 
Time is measured in discrete units, so it may happen 

that by coincidence two transactions want to do some­
thing at precisely the same time. They may be in con­
flict, e.g., they may both want to seize a facility, or 
to change the value of the same global variable or one 
may want to change it while the other is using its value. 
Actually, in such cases of conflict, the simulator does 
choose a specific order for execution; no two things 
actually happen at the same instant, as we deal more 
properly with infinitesimal units of time between the 
discrete units. The choice of order is fairly arbitrary ex­
cept when a difference of priority is specified; in that 
case, the transaction with higher priority will be acted 
on first. Each transaction has a priority, which is ini­
tially zero; priority is changed by the statement 

PRIORITY*—(expression). 

The declaration "integer PRIORITY" is implied at the 
beginning of each process, i.e., PRIORITY is treated as a 
local variable. In the present implementation of SOL, 
the priority must be between 0 and 63. The effect of 
priority is spelled out further in Section IV. 

G. Wait Statements 
(wait statement):: = wait (expression) 

The expression is rounded to the nearest integer, and 
then this statement advances "time" by max(0, 
(expression)), as far as this transaction is concerned. All 
time delays in a simulated process are. in the last analy­
sis, specified by using wait statements. 

H. Wait-Until Statements 
(wait-until statement):: = wait until (relation) 

This causes the transaction to freeze at this point 
until the relation becomes true (because of action by 
other transactions). The relation must not involve ex­
pressions which have a random value; e.g., it is not legal 
to write "wait until pr(10)" or "wait until A [ 1 : 4 ] « 0 , " 
etc. 

I. Enter Statements 
(enter statement):: = enter (store name)| 

enter (store name), (expression) 

The first form is an abbreviation for "enter (store 
name), 1." The value of the expression, rounded to the 
nearest integer, gives the number of units requested of 
the store. The transaction will remain at this statement 
until that number of units is available and until all 
other transactions of greater or equal priority which 
have been waiting for storage space have been serviced. 

J. Leave Statement 
(leave statement):: » leave (store name)| 

leave (store name), (expression) 

The first form is an abbreviation for "leave (store 
name), 1." This statement returns the number of units 
equivalent to the value of the (rounded) expression.. 

K. Seize Statements 
(seize statement):: = seize (facility name)| 

seize (facility name), (expression) 

The first form is equivalent to "seize (facility name), 
0." This statement is usually rather simple, but there 
are situations when complications arise. If the facility 
is not busy when this statement occurs, then it becomes 
busy at this point and remains busy until later released 
by this transaction. (Note: If this transaction creates 
another transaction by means of a start statement, the 
new transaction does not control the facility.) 

The expression appearing above represents the "con­
trol strength" which is normally zero. Allowance is 
made, however, for one transaction to interrupt an­
other. If the facility is busy when the seize statement 
occurs, let Ex be the control strength with which the 
facility was seized and let £ 2 be the control strength 
of this seize statement. If 'Et£Elt the transaction waits 
until the facility is not busy. If £2>Ei, however, inter­
rupt occurs. The transaction T\ which had control of 



1964 Knuth and McNeley: A 
the facility is stopped wherever it was in its program, 
and the present transaction 1\ seizes the facility. When 
T% releases the facility, the following occurs: 
1) If Ti was executing a wait statement when inter­

rupted, the time of wait is increased by the time 
which passed during the interrupt. 

2) There may be several transactions not waiting to 
seize this facility. If any of these has a higher 
control strength than Eu then T\ is interrupted 
again. The transaction which interrupts is chosen 
by the normal rules for deciding who obtains con­
trol of a facility upon release, as described in the 
next section. 

The control strength in the present implementation of 
SOL must be an integer between 0 and 4095. This al­
lows interrupts to be nested up to 4095 deep. 
L. Release Statements 

(release statement):: = release (facility name) 
This statement is permitted only when the transac­

tion is actually controlling the facility because of a pre­
vious seizure. When the facility is released, there may 
be several other transactions waiting because of seize 
statements. In this case, the one which gets control of 
the facility next is chosen by a consideration of the fol­
lowing three quantities in order: 
1) highest control strength, 
2) highest PRIORITY, 
3) first to request the facility. 

M. Go To Statements 
(go to statement):: =go to (label)) 
go to (*(Iabel)*), (expression) 

This statement is used to transfer to another point in 
the program; statements are usually executed sequen­
tially. In the second form, the expression is used to 
select which statement to transfer to; if there are n 
labels, the expression, when rounded to the nearest 
integer, must have a value between 0 and n. Zero means 
continue in sequence, 1 means go to the first statement 
mentioned, and so on. 
N. Compound Statements 
Several statements may be combined into one, as 

follows: 
(statement list):: = (statement)) (statement list); 

(statement) 
(compound statement):: = begin (statement list) end) 

((statement list)) 
0. Conditional Statements 
(conditional):: — if (relation) then (unconditional 

statement)) 
if (relation) then (unconditional statement) else 
(statement) 

Formal Definition of SOL 
The meaning is the same as in ALGOL; testing of the 

relation requires no simulated time. 
P. Tabulate Statements 
(tabulate statement):: = tabulate (expression) in 
(table name) 

The value of the expression is recorded as a statisti­
cal observation in the table specified. 
Q. Output Statements 
(carriage control):: = (empty))page)line) double 
(string):: = (any sequence of characters excluding u# n) 
(output list item):: = #(string)#| (expression)! 
(store name)| (table name)) (facility name) 

(output statement):: = output *(carriage control) 
(output list item)* 

Output occurs for all items listed, in turn, after doing 
the appropriate carriage control positioning. The out­
put for a string is the string itself. An output for an ex­
pression is the value. For a store, table or facility, the 
appropriate statistical information is output. At the 
conclusion of an output statement, the final line is 
printed out. 

R. Stop Statements 
(stop statement):: =stop 

A stop statement causes simulation to terminate im­
mediately, and all transactions cease. The statistics for 
all stores, tables and facilities are output as in the. out­
put statement, as well as the final time, the number of 
times each labeled statement was referenced and the 
number of transactions which appeared in each process. 

S. Procedures 
(proceduredeclaration):: = procedure (identifier); 

(statement) 
(procedure statement):: = (procedure name) 
A procedure is simply a subroutine used to save cod­

ing. Parameters are not allowed, but their effect can be 
achieved by setting local variables in the transactions 
before calling the procedure. There are local procedures 
and global procedures (the latter are declared outside 
of a process). Global procedures cannot refer to local 
variables. A go to statement may not lead out of a pro­
cedure body. Procedures may be used recursively. 

T. Transaction Input-Output 
(transaction read statement):: =read (constant) to 
(label) 

(transaction write statement):: = write (constant) 
The read statement inputs a set of values of local 

variables for a transaction of the same type as the one 
executing the read statement; this set of values is used 
in the creation of a new transaction which begins exe-



curing the program at the statement mentioned. The 
write statement writes the current values of the local 
variables of the transaction onto the unit specified and 
does not cancel the present transaction. The constant 
in each refers to a tape or card unit number. The same 
tape should not be used for both input and output in 
the same simulation run. 

U. Summary of Statements 
(unlabeled statement):: = (unconditional statement)! 
(conditional) 

(unconditional statement):: = (start statement)! 
(cancel statement)] 
(replacement statement)! (wait statement)) 
(wait-until statement)) (enter statement)! 
(leave statement)) (seize statement)) 
(release statement)) (go to statement)! 
(compound statement)! (output statement)) 
(tabulate statement)) (stop statement)) 
(transaction read statement)) (procedure statement)! 
(transaction write statement)) (empty) 

IV. THE MODEL AS A WHOLE 

(model):: = begin (global declaration list); (process list) 
end. 

(declaration):: = (variable declaration)! 
(facility declaration)) 

(store declaration)) (table declaration)) 
(monitor declaration)) (procedure declaration) 

(global declaration list):: » (declaration)) 
(global declaration list); (declaration) 

(process list):: = (process sdescription)| 
(process list); (process description) 
Initially all variables are zero, all facilities are "not 

busy," all stores are "empty,* the time is zero, one trans­
action appears for each process described and the simu­
lator is in the "choice state." 
When the simulator is in "choice state," each trans­

action is either positioned at a wait statement, a wait-
until statement, a seize or enter statement or else it has 

just been created. (We will dispense with the latter case 
by assuming a "wait 0" statement has been inserted just 
before the present position when a new transaction is 
created.) If there arc no transactions which can move 
at this time, the time is advanced to the earliest com­
pletion time for a wait statement. Now, from the set of 
transactions able to move, that one is selected which has 
the highest PRIORITY, and in case of ties, which has 
been waiting the longest. (If there is still a tie, an arbi­
trary choice is made.) The selected transaction is acti­
vated, and it continues to execute its statements until 
encountering a cancel or stop statement, a priority as­
signment statement, a wait statement, a wait-until 
statement with a false relation or a seize or enter state­
ment which cannot take place at that time. We examine 
all other transactions which are stopped because of a 
wait-until statement involving global quantities 
changed by the present transaction. If the correspond­
ing relation is now true, these transactions become free 
to move at the current time. Then we have once again 
reached "choice state." Note that all release statements 
which are passed during the time the selected transac­
tion was moving are processed immediately in such a 
way that the facility becomes not busy only if no other 
transaction were interrupted or were waiting to seize it; 
if other transactions are in the latter category, the choice 
of successor and the transfer of control described in 
Section III-L takes place immediately as the release 
statement is executed. Therefore, it is conceivable that 
the statement "wait until FAC not busy" may never be 
passed if other transactions are always ready to seize the 
facility FAC. Similar remarks apply to the leave state­
ments. 
Since this paper was written, a few additions have 

been made to the SOL language, including "synchron­
ous" variables, and some additional diagnostic capabili­
ties. 

REFERENCES 
[1] "Revised report on the algorithmic language ALGOL 60, * Comm. 

ACM, pp. 1-17; January 6, 1963. [2J D. E. Knuth an4 J. L. McNeley, "SOL—A symbolic language for general-purpose systems simulation,0 this issue, page 401. 



ERRATA for SOL-20 

Since the publication of the SOL-20 manual, changes have been made to im­

prove the SOL system as implemented. The major changes were: (1) the addition 

of procedures which may contain SOL statements, (2) changing TIME to type real 

instead of integer, (3) increasing the run time speed of the system, and (4) 

eliminating the need to recompile the SOL system for every SOL program. The 

system is now callable from a job card under the name 'SOL1. 

As a consequence of the aforementioned improvements, some of the documen­

tation is incorrect. This errata explains all the changes and additions to 

the manual. 

NOTE: In this etrata, positive line numbers (e.g. 7, 11, etc.) indicate lines 

from the top of the page; negative numbers (e.g. -10, -7, etc.) indicate 

lines from the bottom. 



Page 2.1 
line -10: 

<table declaratiorO ::= real array <identifier> 

line -7: 

of the table plus 1 while the... 

line -6: 

...the same identifier. This number is 1 if there is only one table, 

line -1: 
line 9: real array TAB[l :2,0:28,1: o] ; | tables 

Page 2.3 
line 7: 

is a global variable. It is of type real, not integer, 

line 11: 
real procedure RAND(N,E); value N; integer N; 

line 12: 
real array E; 

line -11: 
—M 

poisson (M) = 0 if random < e 

Page 2.4 
lines 2,3: 

If the result is to be of type integer then COLON is used. 
integer procedure COLON (E1,E2); value E1,E2; Integer El, E2; 
otherwise 
real procedure UNIFORM (E1,E2); value El,E2; real E1,E2; 

line 5: 
line 36: Q <- C0L0N(1,6) ; 

page 2.5 

line 2: 

Processes are declared by a switch statement 

line 4: 
switch < switch identifier > : = *<process identifier>*-



Page 2.5 (cont) 
line 18: 

•..name of transactions appearing in a new transaction statement 
must be 

Page 2.6 
line 15: 

line -10: 
procedure WAIT (WAIT. TIME) ; value WAIT.TIME; real WAIT.TIME; 

Page 2.8 
line 5: 

real EXPRESSION: integer Q; real array TABLE; 

line -12: 
procedure STOP (<label>); 

line -7: 
<label> and occurs... 

line -4: 
line 25: STOP(RESULTS); 

Page 2.9 
line -15: 

real array TABLE; string NAME; 

lines -6, 5: 
A SOL-procedure is defined to be exactly the same as an ALGOL-20 pro­

cedure, except it contains a wait, wait until, seize, enter, or cancel 
statement. The SOL-procedure is thus constructed the same as Algol pro­
cedure. However, there are some restrictions on the structure and usage 
of procedures containing the aforementioned SOL statements. 

1. No own variables may be declared as local variables in the SOL-
procedure body. 

2. No arrays may be declared as local variables in the SOL-procedure 
body. However, arrays may be passed as parameters. 



3. Local variables are undefined in the usual Algol-20 sense, i.e., 
upon entering the procedure, their values are undefined. 

4. SOL-procedures may contain nested blocks which in turn may contain 
SOL code. No arrays may be declared in the block. 

5. A SOL-procedure may not be used as an input parameter to a pro­
cedure, SOL or Algol. Also, a SOL-procedure cannot be called from 
any procedure. In general then, a SOL-procedure may not be nested 
inside another procedure. 

6. for statements with SOL statements in their scopes must not have 
multiple for lists. 

7. A jjo t£ statement may lead out of a procedure body, but must be 
into the transaction that called the procedure. 

8. A NEW. TRANS ACT ION or a READIN statement cannot occur in the pro­
cedure body. 

9. SOL-procedures and Algol procedures are non-recursive. 

10. SOL-procedures may have input parameters. 

Page 2.10 
lines 13-21: 

The SOL system is written in ALGOL and has been precompiled. There­
fore, the SOL program18 first card must have an 'AL1 in the language 
field and the program must provide the matching 'END1 (Since the SOL 
system in an ALGOL program, it starts with a BEGIN). The system is called 
from a job card using the mnemonic SOL. The integer array for process 
priorities, the switch statement for processes and all facilities, stores, 
and global SOL variables must be declared. Facilities and stores that 
are simple variables must be declared as real variables. 

All labels used as parameters to the procedures NEW.TRANSACTION, STOP, 
and READIN must be declared.•. 

line -9: 
Also the vector for process priorities must be initialized. 



line -7: 
START.SIMULATION«simple variable>,<array identif ier>,<switch identi­
fied) ; 

The <simple variable> is the last global scalar declared in the pro­
gram before the procedure call START.SIMULATION. If procedure declara­
tions immediately precede this call, then some scalar must be declared 
between the last declaration and the call (The order of array and scalar 
declarations is not relevant). The <array identifier> is the vector de­
clared previously that will contain the priorities for the processes. 
The < 8 W i t c h identifier> is the identifier of the switch statement pre­
viously declared that lists the processes. 

Page 4.1 
Add to the lists of errors: 

Error 1; PROCEDURE CALL NESTED INSIDE A PROCEDURE 
A SOL-procedure is called from another procedure or SOL-pro-

cedure. 

The following errors have been changed: 
Error 2, Error 3, Error 4, Error 5: TABLE SPACE EXCEEDED 

The simulation has exhausted the space allocated by the system 
for tables. 

Error 8: TRANSACTION INTERRUPTING ITSELF 
A transaction presently controlling a facility is reseizing 

the facility with a higher control strength. 

Page 4.2 
lines -2, 1: 

the outermost block of the SOL program: 
RUN. ERROR(<1 abe 1>, 'TIMR1) ; 

where <label> is the start of the procedure calls for outputting the 
statistical results of the simulation. 

Page 5.1 
The following identifiers are no longer reserved: 

MOVE, MT.TAB, PROCESSES, PUSH, RESULTS, RETURN 



Page 5.1 (cont) 
The following identifiers are now reserved: 

B.LINK1, B.LINK2, COLON, HH2, T.CNT, UMARK, XI, X2 

Page 1.1 
line 10: 

real array *<identif ier>[l :2 

line 23: 
UNIFORM....; COLON(<humber>, <numbet>) ; 

Page 1.2 
line 4: 

switch <switch identifier> := *<process 

line 6 : 
integer array <array identifier>[l:<number>] ; 

line -10: 
STOP«label»; 

add: procedure <identifier> Same as in Algol. For SOL-procedure restric-
<procedure statement> tions, see SOL.2.9, section 5 on procedures. 

Add page II.0 
A few critical features of the test program are worthy of mention. 

- the program does not start with a BEGIN, this is provided by the 
system. 

- the program provides the matching END. 
- the first card of the program must have an 'AL1 in the language 

field. 

Additional statistical information is now automatically provided by 
the system. 

1. facilities: 
- utilization: the number of times the facility was seized, not 

including interrupts, over the simulation run. 

- average utilization: total time the facility was busy divided 
by the utilization. 



r 

2. stores: 
- number of entries: the total number of units entered in the store. 

3. tables: 
- deviation from mean: the upper limit of the histogram interval 

minus the mean, all divided by the standard 
deviation. 

- all entries that exceed the last histogram limit are indicated by 
the word OVERFLOW printed in the limit field. Anything less than 
the first limit goes into the first cell. 

The average occupancy of a store is calculated as follows: Let 
L & length of time for which the store remained at its current value. 
U as total unit-occupancy = EL* (storage contents) 
Then average occupancy = u / total time of run 

Hence, this figure is a weighted average of the number of transactions 
in the store. Average utilization is then average occupancy divided by 
the capacity. 

Pafie II.l 
The following 'program' will correct the test program. 
ALTER 1 TO 2; 

REAL LINE, COMPUTER; | FACILITIES 
ALTER 5 TO 6; 

REAL ARRAY Tu[l: 6] , SB[l:3]; | FACILITIES 

ALTER 9; 
REAL ARRAY TAB[l:2,0:28,1:6] ; | TABLES 

INSERT AFTER 11; 
LABEL RESULTS; 

ALTER 19; 
START.SIMULATION(I,PROC.PRIO,PROCESSES); 

ALTER 25; 
WAIT(15*60*1000); STOP(RESULTS); | STOP SIMULATION 

ALTER 28 TO 29; 
INTEGER Q, MESSAGE.TYPE; REAL START.TIME; 
REAL ARRAY TYPE[l:10] ; 

ALTER 36; 
START: Q <- C0L0N(1,6) ; ENTER (QUEUE [ o j , 1) ; 



ALTER 8 9 TO 9 0 ; 
INTEGER I; REAL ARRAY WAITS [ l : l o ] ; 
WAITS[ l ] .-WAITS[2] . - 2 5 0 ; 


