NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

B B BEame B B R B R B

- Ty 1

R B |

Ty Y 7Y)

B

L 3
h

#

JAMES A. MOORE

FIRST PRINTING JUNE 1965

THIS WORK WAS SUPPORTED BY THE
ADVANCED RESEARCH PROJECTS AGENCY OF THE
OFFICE OF THE SECRETARY OF DEFENSE:
CONTRACT SD-146

CARNEGIE INSTITUTE OF TECHNOLOGY

ACKNOWLEDGEMENTS

The publication of this manual represents the -
combined efforts of several people. The manual was
written under the direction of Professor Robert
Braden; the author gratefully acknowledges his advice
and encouragement.

The WHAT language was added to ALGOL-20 by Ronald
Bushyager with assistance from David Blocher.

The author is deeply indebted to Professor
Braden, Arthur Evans Jr., Jan Fierst, Ron Bushyager and
Dave Blocher for invaluable advice concerning form
and technical content of the manual.

Finally, as a result of the similarities between
WHAT and THAT, the author borrowed heavily from portions
of the THAT manual,

~

- T T3

)

L

Y)

3 7y 7Y Ty TTYY Ty)

I.

11,

II1I.

TABLE OF CONTENTS

ELEMENTS OF WHAT

1.1

1,2

1.3

Symbols

WHAT Sywbols

1.2.1 Label Symbols

1.2.2 Region Symbols
1.2.3 The "A" Symbols
1.2.4 Scope of Definition

1.2.5 Precedence of Definition

Expressions

SOURCE PROGRAM FORMAT

2.1
2.2
2.3
2.4
2.5
2.6

2.7

Language Field
Location Field
Operation Field
Mode Field
Address Field
Index Field

Comment Field

WHAT /ALGOL INTERACTION

3.1

3.2

Direct Access of ALGOL Symbols

Indirect Access of ALGOL Symbols

3.2.1 Forward and Cross-Block Transfers

10

11

14

14
15
17
18
18
19
20

21

21

22

22

IV,

V.

3.3

3.4

3.5

TABLE OF CONTENTS

(continued)

3.2.2 Subscripted Variables

3.2.3 Formal Parameter Called by Name

Cross-Block Transfers

Index Allocation

Statement Termination

SUDO INSTRUCTIONS IN WHAT.

5.1

5.2

ERROR MESSAGES

Errors Detected Buring Compilation
5.1.1 Errors in G-20 Instructions

5.1.2 Errors in Sudo Instructions

Errors Detected During Running

APPENDICES

G-20 ALPHABET

G-20 'WHAT' OPCODES

SUDOS IN 'WHAT'

G-20 SHIFT MULTIPLIERS

OCTAL - DECYMAL TABLE

SAMPLE WHAT /ALGOL PROGRAM

24

2¢

2¢

2;

2t

.3

3¢

3¢

3¢

&
41
46

47

4

L S IR B |

M

-

Y T

-

— 1

CHAPTER 1 - ELEMENTS OF WHAT

WHAT is a symbolic assembly program designed to permit the use of
G-20 machine code within an ALGOL program, in order to achieve efficiencies
and/or capabilities unavailable in ALGOL alone, This menual describes the
WHAT language and the associated assembly program developed at the Carnegie

Institute of Technology Computation Center. The reader is referred to the

G-20 reference manual ("Central Processor/Machine Language Manual', CDC

G-20 Publication #611) for information on the logical organization, word
formats, arithmetic rules, addressing schemes, and operations of the
Central Processor. SECTION 2 of the Computation Center User's Manual des-
cribes the hardware modifications which have been made to the Carnegie Tech
system, converting it from a G-20 to a G-21, Finally, it is assumed that
the user is familiar with ALGOL-20, the C.I.T, implementation of ALGOL-60,
(See "ALGOL-20, A Language Manuval", C,I,T, C.C., Jan Fierst, Editor.)

I1f during compilation the ALGOL compiler reads a card with "WH" in
the language field, control is transferred to the WHAT assembler. The as-
sembler reads the source cards containing code in the WHAT language and
translates ("assembles”) them into binary machine language in core memory.
This translation process is generally one-for-onme; thus, each WHAT statement,
occupying a separate line or "card image" of the source program, is gen-
erally translated into a single binary instruction or data word. When the
WHAT assembler reads a card with "AL" in the language field, the ALGOL
compliler resumes operation. See Appendix E for an example of a WHAI/ALGOL

program.

WHAT code may appear only whefe a statement or a declaration is
permitted. In any other context, the use of WHAT code will be treated as
an error condition, but it will be assembled anyway. With this excepticen,
WHAT cards have no effect on the ALGOL compiler. (See Section 3.5, p.27).

Like the rest of the ALGOL compiler, the WHRAT Assembler performs the
translation with only one pass over the source deck, assembling the absolute
instructions directly into core memory without the use of an intermediate
"scratch tape“, Instructions from the gource program are (normally)

. assembled into the core locations from which they will subsequently be
executed; at present there is no provision for automatic relocation. - As
each card image of the source progfam is processed, its image is listed on
the printer along with the address in octal of the core location into which
the corresponding binary instruction ls assembled. Printing may be sup-
‘pressed with the appropriate "SY" card, (See ALGOL Manual, Chapter 4.)

The WHAT language is "symbolic", meaning that symbols may be used for
machine addresses and mneﬁdnic names may be used for operation codes. Since
it operates in a single pass, the WHAT Assembler may encounter address
fields which contain WHAT symbﬁls which have not yet been defined. The
Assembler keeps lists of all such occurrences of undefined address symbols,
and when the symbol is subsequently defined all references to it are properly
"fixed up" in the assembled instructions in core memory. There are some
important restrictions on the use of such undefined symbols; see Section 1.3,
p. 11,

Thé index field of a WHAT statement is further restricted; all symbols

must be defined before being encountered in an index field. There is no

1

I R EE B |

L D |

L D B |

YT T Y T Y

-y

3.

provision for "fixing up" undefined symbols used in the index field.

In general, each line of WHAT code includes an operation code -~
usvally as a three-letter mnemonic but possibly in absolute octal form.
These mnemonics must be one of the following:

(1) A standard G-20 machiﬁe lénguage opcode mnemonic, as listed in Appendix

B of this wanual; or
(2) A "sudo" (pseudo-instruction) mnemonic. A sudo does not stand for an

actval machine command but is rather an instruction to the WHAT Asaem-

bler, to be executed when the sudo is encountered during the assembly
process. All WHAT sudos are listed in alphabetical order with an

explanation, in Chapter 4 of this manual, page 28,

&I

1.1 SYMBOLS
There are two kinds of symbols available for use within WHAT:
(1) WHAT symbols,
These are declared and defined by WHAT coding and may be used
only within WHAT.
(2) ALGOL symbols.
These are declared and defined by ALGOL declaraﬁions and may be
used in either ALGOL or WHAT,
For the remainder of this chapter, all references to "symbol" will mean a

WHAT symbol.

71 T

B |

P

R R N |

M

D B |

1T

b Ml

)

R B |

1.2 WHAT §!HBOLS

The purpose of symbols is three-fold: (1) The programmer may refer
symbolically to an address which will not be known until the entire program
has been written and assembled. (2) The programmer may parameterize his
program and assign values tq the parameters at assemlby time, so that sizes
of buffers, data storage blocks, program segments, etc., may subsequently
be changed by simple reassembly runs. (3) The symbols may give some mnemonic
value to the program, aiding the programmer in the task of writing, debugginé,
and changing the program.

Each WHAT symbol has the form of a class name followed by an integer;
the integer is referred to as the "subscript” part of the symbol. Class
namés are one character, and may be any of the 26 letters or one of the four
apeciai characters: - ¢« -1, Or |. These rules are summarized by the follow-
ing syntax: (See Users Manual, Section 2.346 for details on B,N.F.,)

<class name> ::= <letter> | « | - | = | <the mark "|'>

<subscript> ::= <integer> | <empty>

. <gymbol> t:= <class name> <sub#cr£p€>

Notice that the subscript may be omitted; in this case a subscript of zero {s

" assumed except in the case of the "LBL", "CHK", "PRI" and "REL" sudos where

the maximum declared subscript is assumed,

Some éymbols, with cla;s name ' and "|", are predefined at the begin-
ning of each translation., These symbols give the programmer access to rou-
tines and information in both the monitor and the running ALGOL program environ-
ment. The symbols |0 to |39 are defined in the THEM THINGS write up, and
provide reference to the monitor. |40 to |99 (the "upper bars") are available
to Computation Center staff members and certain others for monitor references

needed by system programmers. For information, see the User Consultant. The

symbols from |200 up are used for certain quantities connected with the ALGOL
inpﬁt/output system, and are described im p. 0.15 of the ALéOL Manual. The
""" symbols are defined to let the user refer to many of the routines and
switches of the ALGOL run-time environment. They are listed in the ALGOL
Manual, p. 0,14, although in many cases an understanding of some of these
symbols requires more information about ALGOL-20 than appears in any document.
Examples of WHAT symbols:
L4
—27
3
T (same as: TO, except in "LBL", "REL", “PRT" and "CHK" sudos)
The possible symbols are divided into 30 classes by the class names, All
symbols of a particular class will be either:

(1) Label symbols, whose values may be defined independently and in any

order; or

(2) Regional symbols, which bear a fixed relatiomship to each other, and

so are all defined when any member of the class is defined.
These two kinds are discussed in Sections 1.2.1 and 1.2,2, below. The one
class name "A" has special significance, and is discussed in Section 1.2,3.

Symbols are most frequently used to represent addresses with values

between 0 and 215-1. However, a symbol may be defined (by a "DEF" sudo)

to have any value between 0 and 221-1.

YTy %Yy)Y OTTYOTTY T

e

)

YT

1.2.1 LABEL SYMBOLS

All symbols with a particular class name may be declared to be label
symbols with an "LBL" ("LaBel") sudo instruction. The "LBL" sudo contains
the class name character followed by the maximum subscript integer which
labels of the class will be allowed. For example:

LBL K20
declares a set of 21 label symbols: KO, K1, K2, ..., K20, These symbols
are free and arbitrary and may be defined in any order with any set of values,
Label symbeols are defined in one of two ways:

(1) explicitly, with a "DEF" sudo, or

(i) implicitly, by appearing in the location field of an instruction.

In this case the symbol is defined to be equal to the current value
of the Assembler's location counter for that instruction.

The symbols of the class are related only in that at assembly time they
occupy adjacent positions in the symbol table created by the Assembler. This
fact may be of importance to the programmer who needs to reuse symbols or
reclaim label table space during assembly of very large programs; see the
sudo instructions "CHK", "LBL'" and "REL" in Chapter 4 for more informationm,
The maximum subscript given in the "LBL" declaration is used by the Assembler

to allocate label table space.

1.2.2 REGION SYMBOLS

A class name denotes a region if:
(1) that class has not previously been declared as comsisting of label
symbols (by a "LBL" sudo instruction), and if
(2) any symbol in that class is given a value (by a "DEF" sudo instruction).
All symbols with the same regional class name refer to the same area of
memory, and their values are related in a fixed way: the symbol whose sub-
script part is the integer n stands for the nth memory address of the region.
Thus, defining any one symbol of the class defines them all., For example,
assume that R has not appeared in a "LBL" declaration. Then the 1iné:
DEF RO = 4000
will make R a region whose first cell is address 4000, Then all R symbols
will be defined; e.g. R9 = 4009 and in general BRn = 4000 4+ n where n is any
integer. The following "DEF" operation would have the same effect:
DEF R9 = 4009
The expressions RO + 23 and R + 23 are equivalent to the symbol R23, if R
is a region.
A class of symbols which has been used as a region may later be declared
in a "LBL" sudo instruction and thereafter be used as independent label sym-

bols., Conversely, a class name which has been used for labels may be changed

. into a region by releasing it from its role as a label class with an instruc-

tion of the form:

REL <class name>
and subsequently defining a member of the class with a "DEF" sudo. Regional

symbols need not (and may not) be "RELeased" for redefinition.

R

M

1

M

-

R

1.2,3 THE "A" SYMBOLS

The symbols in class "A"™ have special significance in the WHAT language
and may not be used as label symbols. The symbol "A" or "AO" always has
as value the current value of the Assembler's location counter; i.e. the
memory location into which the current instruction is to be assembled.
After processing each line of the source program, the Assembler increments
the value of "A" by the number of words it has loaded into memory., The
value of "A" at the beginning of processing each line-is printed {f the
assembly of that line changes that value,

The "A" symbols other than "A0" behave as if "A" were a region name;

that is, "An" has the value: "A" + n,

Example: ‘
TRA A+ 3 (or: TRA A3)
has the same effect as:

L1 TRA L1 + 3
where L. is a label class name.

1.2.4 SCOPE OF DEFINITION

Once a symbol has been defined, its definition is available for use,

within WHAT, until it is explicitly redefined, or, if it is a label, until

its class 1s released. The scope of definition of a symbol is not affected

by any number of intervening ALGOL cards, regardless of their content.
Consequently, WHAT symbols are not subject to ALGOL block structure. (See

Section 3.3, p. 26.)

10,
1.2,5 PRECEDENCE OF DEFINITION

Some symbols are legal in both WHAT and ALGOL. If a symbol is defined
differently in the two langusages, the definition which takes precedence
depends on the language being used, In WHAT, the WHAT definition is used;
in ALGOL, the ALGOL definition takes precedence. In ALGOL, WHAT definitions
are never available so the conflict does not arise. When WHAT encounters
a symbol of the form: <letter> or <letter> <integer> it first looks for
the symbol in the WHAT symbol table., If this search succeeds, the WHAT
definition is used; if not; WHAT uses the ALGOL definition.

Examplé:

AL real A, B, C, D ;

index X, Y, Z ;

WH DEF B7 = /1007 ;

WH CLA B, X ;

The "B" used in WHAT has the value of /1000 and 1s not related to the real
variable declared in ALGOL. However, the "X" refers to the ALGOL index

variable if "X0" is not defined in WHAT,

)

Y

.- ._]

™ Y

)

i

e

11.

1.3 EXPRESSIONS

Symbols may be used to build expressions, whose syntax may be defined
as follows:
<octal digit> ::= 0|1}2|3]4|5|6|7
<digit> ::= <octal digit> |89
<integer> ::= <digit> | <integer> <digit>
<octal integer> ::= [<octal digit> | <octal integer> <octal digit>
<number> ::= (as defined in ALGOL-60 report)
<8 octal> ::= Bi<integer> ‘ 8R<integer> | BF<number> ~- (See ALGOL Manual

<octal constant>,
p. 6e.l)

<power of two> ::= $<integer>

l<operator> pi= +|-|*|/

<primary> ::!= <defined symbol>] <integer> | <cctal integer>
|<power of twa> | <8 octal>

<term> ::= <primary> | <term> <operator> <primary>

<expression > ::= <term> | <WHAT symbol> | <ALGOL symbol> | <empty>

(Note that these definitions are for the purpose of this manual only, and

are not necessarily related to similiar definitions for ALGOL.)
Examples:
418
J77 * $12
L1 -6-10%/3
Here <defined symbol> means a WHAT symbol whose value has been defined pre-

ﬂously in the assembly. The symbol must have been defined in one of the

following ways:

12.

(1) It may be a regional or label aymbol which has received a value

from a "DEF" sudo,

(2) It may be a label symbol which has appeared in the location field

of a previous instruction. |

(3) 1t may be a ﬁre-defihed ¥ oor "|" symbol,

An expression defined by tﬁese rules may be used in the address or index
fields of a line of WHAT code, The meaning of an expression is obtained by
performing the indicated operations from left to right with no hierarchy
and truncating to 32 bits after the entire expression has been evaluated.
Thus, 2 + 3% = 20, An empty expression has the value zero,

Expressions are generally uaed‘to represent G-20 (or G-21) addresses, so
their values will usually be positive integers less than 2t135,

The term "$n", where n is an integer less than 32,, has the value 2tn;
1.e. "$n" stands for a one in bit position n of a logic word.

The value of a floating octal constant (8F<ﬁumbeﬁ>) is detérmined by
concatenating the <mumber> as an octal number and multiplying it by the
appropriate power of 8, treating the number which follows the w &8 an octal
integer. For example:

8F,10 = 818
8F11,-5 = 9%8t-5

The value of a left (right) justified octal constant (8I<integer>,
8R<integer>) is determined by prefixing (suffixing) to the <integer> enough
qefos to give eleven octal digits. This number is then céncatenated and
stored as a 32-bit logic word, Since eleven octal digits require thirty-

three bits for representation, the leftmost bit of the leftmost octal digit

hun B B R B

1

R

e

13,

{s lost. Thus, 8L4 = O and 8L7 = 8L3, "/<integer>" is equivaleant to
"8R<integer>". ”

The character-palrs 8L, B8R and 8F are treated by the translator as
single entities and must be punched in adjacent columns without interven-
ing blanks. The translator does not treat the digits 8 and 9 in octal
constants as erroneous but will interpret them as 108 and 118, respec-
tively. Thue B8R495 = 8R515.

All WHAT symbols which are not yet defined may appear in an expression

. only if the expression consists of that symbol alonme.

' Likewise, ALGOL symbols should not be used in expressions except by
themselves. Violations of this last restriction will not be error-flagged
but will generally give undesired results,

The wvalue of an expression is computed in double-precision arithmetic
format, Address, index, command and mode fields are evaluated, shifted to
the appropriate position, united, and the resulting 32.bit logic |
word is stored in the program being assembled, It is the programmer's
responsibility to see that the value of the address expression does not
exceed 215 - 1 and the index expression does not exceed 63,,, since the

Asgembler does not check for this condition.

14,

CHAPTER 2 - SOURCE PROGRAM FORMAT

A line of WHAT language source code contains lanformation in some or

all of the following fixed fields:

Contents
1, Language
2, .Location

3. Operation
4., Mode

5. Address, Index; Comments

Cols,

1 -2

4 - 12

15 ; 17
20
24 - RIGHT MARGIN

The RIGHT MARGIN is initially set to column 72 but may be changed with the

appropriate "SY" card., (See ALGOL-20 Manual, Chapter &.)

Example:
{cols,)
1 2 2
|1 |4 |5 [0 |4
j(]tm | E4 [cLa o [/77, RZ; GET NEXT VALUE.

2.1 LANGUAGE FIELD (Columns 1-2)

When card images are typed-in from a remote, the language field is used

to set the meaning of the TAB key for the language. The mnemonic "WH" will

set the TAB columns for WHAT card images as follows:

Tab Column

1
2
3
4
5

For more details, see SECTION 2 of the User's Manual.

4
15
20
24
40

Field

Label

Opcode

Mode

Address, Index; Comments

Comments (See Section 2.7,
p. 20.)

o e e T D N N)

1 TN

R

YT

T TTY Ty Y Y

-3

made to that line of code.

2.2 LOCATION FIELD (Columns 4-12)

15.

In general the location field will be blank unless a reference is

following:

E2

1. Blank

The location field may contain any of the

2, A label which is currently undefined, The effect 18 to define that

label by giving it the current value of the location counter ("A").

3., An expression which equals the current value of the location counter.

This may be used for explanatory or documentary purposes.

4. A <string of operators, letters or numbers>,

a comment,
Examples:
{(case 2)

MPY M5 ; shift rt 5 octals

105 1 ; shift constant
(case 2)
. LXP 0 20, I ; SET UP TO
STZ PO, I ; ZERO A LOCATION

SXT 0 1, I ; DECREMENT AND TEST

TRA E2 ; LOOP

This may be used as

16.

L2

A-3

(cage 3)

TRA

WD

TRM

A7

1,2,3,4,5,6 -

Q5

{case &)

CLA

SUX

FGO

TRA

0

0

X,1I

1,1

A-3

; transfer around

; table of integers

; get ith ¥

step 1
compare w/EO

loop 1if greater

)

- Y Ty 1

-

D R |

D B R I R R SRR R |

|

17.

2.3 OPERATION FIELD {(Columns 15-17)

The operation field may contain one of the following:

1. Blanks. The line will be processed as a "COM" sudo, i.e., a com-
ment card,

2. An octal integer (Qithout the preceding slash). In this case, it
will be interpreted as the operation part of a G-20 instruction and
the octal integer will occur right-justified in bits 29 to 21 of
the assembled instruction.

3. The three-letter mnemonic for a G-20 operation. The corresponding
octal code will be loaded into bits 29 to 21 of the assembied instruc-
tion. G-20 wmnemonics are listed in Appendix B,

4. The mnemonic for a WHAT sudo, The action taken for the possible
sudos is described in Chapter 4.

The operation field must be either 3 letters, 3 digits or 3 blanks,

Any mixture of these will generate garbage and may not be error-flagged.

18,

2.4 MODE FIELD (Column 20)

Each G-20 mnemonic has associated with it a "normal" mode for that
operation as described below. If the normal mode is desired, the mode field
should be left empty; otherwise, the desired mode: 0, 1, 2, or 3, must be
punched, A mode punch always supercedes the normal mode. The mode field of
a sudo is checked for error but is otherwise ignored.

All G-20 mnemonics have a normal mode of 2 except the following, which

have a normal mode of O.

STI STL TRA REP
STS STZ TRM
-STD

2.5 ADDRESS FIELD (Columns 24 - RIGHT MARGIN)

The address field contains the operand or the address of the operand.
Blanks in the address field are ignored (except in "ALF" and "NAM" sudos).
The address is terminated by a comma, a semi-colon, or RIGHT MARGIN + 1
(which 18 not scanned), whichever occurs first, If it is terminated by a
comma, an index is then expected.

If the operation field of a line contains a G-20 mnemonic or an octal
integer, the following applies to the address field:

1. If it is blank, the address (bits 14 - 0) of the assembled instruc-

tion will be zero.

2. If it is a single symbol which is already defined, the value of

the symbol will be placed in the address (bits 14 - 0) of the

assembled instruction. If the symbol is a label which is not yet

e

)

19,

defined, its value will be placed in the address when it is
defined,

3. If it is an expression, the value of the expression will be entered
as the address in the assembled imnstruction. It Is a detectable
error if any symbol in the expression has not been defined pre-
viously. See 5.1.1, p. 39.

The value of the expreasibn in the address should be less than 2t15,

but no assembly error will result from a larger value.

2,6 INDEX FIELD (Columms 24 - RIGHT MARGIN)

If any index register is to be specified, the address field must be
terminated by a comma, followed by a symbol (or expression) whose value is
the address of an index register. Blanks in the index field are ignored, and
the field is terminated by a semi-colon or the RIGHT MARGIN +1 (which is not
scanned), whichever occurs first.

The value of the expression in the index field is loaded right-justified
into bits 20 - 15 of the assembled instruction. ILf the value is not defined,
an error message will be printed, No error message will be printgd if the
value of the index field is greater than 63.

Since the monitor and ALGOL are both doing things behind the user's

'back, it is unsafe for a ueer to choose his own index registers., It is

strongly recommended that only ALGOL variables of type index be used in the

index field. (See Sections 3.1 and 3.4, p 21 and 26.)

20,

2,7 COMMENT FIELD (Columns 24-80)

All columns to the right of the first semi-colon in the address-index
field are ignored by the Assembler, and may therefore be used for comménts,
which may extend to Colummn 80, All columns of the input line 1nc1ud1ng the
AND sequence number are priﬁ;ed. A tab to column 40 is included in the tab
table to allow the user to align his comments. However, columns 40 - RIGHT

MARGIN are part of the address-index field unless a ";" has appeared previous-

ly.

-

A D R IR

-

CHAPTER 3 - WHAT/ALGOL INTERACTION 21.

3.1 DIRECT ACCESS OF ALGOL SYMBOLS

In four cases ALGOL symbols may be referemced directly in WHAT codes
1) Simple variables
2) Index variables
3) Backwards transfers ﬁithin the same block
4) Formal parameters called by value.
EXAMPLE:
AL begin
real ALPHA;
index BETA;

GAMMA:

WH LXP 0 1, BETA;
CLA 3 ALPHA, BETA;

TRA GAMMA ;

AL end

The only precaution necessary in these cases 1s that the type of access
(single, double, logic, index, transfer address) matches the type of the ALGOL

symbol referenced.

22.

3.2 INDIRECT ACCESS ALGOL SYMBOLS
Three cases require special treatment:
1) Forward and cross-block transfers
2) Subscripted variables

3) Formal parameters called by name

3.2.7. FORWARD AND CROSS-BLOCK TRANSFERS

A forward or cross-block transfer in WHAT to an ALGOL label will not

assemble properly and may not be detected as an error. This problem may

be skirted in one of two ways:
If the "TRA" and the ALGCL label are at different block levels, the
"TRA" must be replaced by an ALGOL "go to" statement.

 EXAMPLES:

WH TRA ALPHA;
Repeat:
This will
not work
Al begin real X; =
ALPHA:

must be replaced by:

WH
AL g0 to ALPHA;
WH

AL begin real X;

ALPHA:

The "go to" compiles into two locations and must not follow a test instruction.

23,

If the transfer does not cross block boundries, it may be effected by a

~ "TRA" in WHAT to a WHAT label which is defined to have the desired value.

The following two forms are equivalent:

EXAMPLES ;

WH TRA L7;

WH L7 COM DEFINE L7
Al ALPHA:

- = = = 0O -7... [

WH TRA L7;

AL ALPHA:

WH DEF L7 = ALPHA;
M‘ LI A)

24,

3.2.2 SUBSCRIPTED VARIABLES

To access a subscripted variable, the best method is to use the available
ALGOL machinery. To place the value of a subscripted variable into the

accumulator, use the reserved identifier, "ACC':

WH
AL ACC < <subscripted variable>;
WH . ; accumulator = desired value.

To store the value of the accumulator into a subseripted variable, use:

WH
AL TEMP <« ACC;

<subscripted variable> « TEMP;
WH

where TEMP is a simple variable having the same type as the subscripted variable.

Note that the construction:

AL <subscripted variable> « ACC;

will not work since ALGOL uses the accumulator to evaluate the address of the

subscripted variable.

o B

-

-9

-9

T 7

—

-

I R |

25,

3.2.3. FORMAL PARAMETERS CALLED BY NAME

Within a procedure, formal parameters called by name may not be accessed
directly. Again, the easiest method of referencing these i{s via the "AcC"
symbol. To load the accumuiator with the value of a formal'parameter, uge:

WH
AL ACC «<formal parameter>;

WH

To store the accumulator in a formal parameter, use:

WH
AL TEMP « ACC;

<formal parameter> « TEMP;
WH

where TEMP and the formal parameter have the same type.

As with subscriptéd variables, the construction:

m{ * B
AL <formal parameter> « ACC}
WH

will not work.

26,
3.3. CROSS-BLOCK TRANSFERS

Since intervening ALGOL cards have no effect on the scope of definition
of WHAT symbols, WHAT is entirely independent of ALGOL block structure,
(However, WHAT code may only reference those ALGOL symbols defined in the
block containing the WHAT code.) As a result, a programmer may have tables
and machine-code subroutines which may be accessed by any part of his WHAT/ALGOL
program.

Great care must be exercised by the programmer who uses cross~block
transfers via WHAT code. Two rules must be strictly adhered to:

(1) VWhen transferring control to a subroutine im any block different
from the current block, the subroutine may only access those ALGOL
symbols which are defined identically In both blocks.

(2) The order in which begin's and ggg's are encountered must not be
altered by the addition of WHAT coding.

Cross-block transfers are completely contrary to the philosophy of ALGOL

and have implications which are beyond the scope of this manual.

3.4. INDEX ALLOCATION

Whenever an ALGOL index variable loses definition due to a block exit,
the index register to which it was assigned is also released for later index
variables. This feature may be utilized in a large WHAT program as an aid
to the programmer in assigning/releasing his index registers. No more than 28

index variables may be defined at any time.

27.
3.5. STATEMENT TERMINATION

when the ALGOL compiler is prepared to accept & statement and encounters.
WHAT code, the "expected' statement is not terminated until a ";" or other
statement terminator is encountered in ALGOL. This is most likely to create

difficulty when WHAT code occurs in the scope of some ALGOL constructionm.

Examples:
AL for ... do
WH)
scope of
WH . r for-statement

AL if then
WH e
s scope of then
m{ L
AL else <statement>;
AL begin
WH LN
this is treated
vt as a single statement
W.H * e
AL end

28,
CHAPTER 4 - SUDO INSTRUCTIONS IN WHAT

A sudo (pseudo-instruction) is an instruction to WHAT rather than a G-20
command to be assembled for later execution. The mnemonic name of the sudo is
punched in the operation field of the source program card. For all éudos the
following holds:

(1) The location field is first treated as desgcribed in Section 2.2 for

machine commands.

(2) The mode field is checked for error but is otherwise ignored.

(3) The action of the particular sudo takes place.

A sudo may be listable .'r non-listable. For a listable sudo the parameter

set may be repeated, separated by cdmmas, as many times as desired in the space
provided on the card, up te the RIGHT MARGIN. For a non-listable sudo qnly one
parameter get is allowed in the address fleld. The effect of a listable sudo
18 the same as 1f the sudo were repeated on successive lines with one parameter
Bet per line; the parameter sets are processed in the left-to-right order.

The remainder of Chapter consists of an alphabetical listing of the sudos,
with an explanation and exaﬁples of the use of each. The format used in explain-

ing the sudos is as follows:

X PARAMETER SYNTAX
LISTABLE
"EXECUTE EXTRA EXEC"
The first line gives the three letter sudo name and the type and format of the
parameter set(s). The second line states whether the sudo is listable or
non-listable (for sudos for which the concept 18 meaningful). The third line

contains a summary of the action of the sudo. Note that the above sudo is only

a hypothetical example.

D DR B EERG IER I B

I D DD R I DR D SRR

R

R B |

ALF

CBLANKY> (CHARACTER STRINGYJ<DISITY» (THAARACTER STRING)
NON-LISTABLE

*ALPHANUMERIC?

THZ ZFFECT IS TO LOAD THE G-20 [INTERNA_
REPRESSNTATION OF THE STRING OF CHARIACTSRS INTD SUCCESSIVE
MACHINS LIJICATLONS: 4 CHARACTERS PSR WORDe THE DIGIT GIVES
THE NUMBER OF WORDS TO BE LODADED, WITH A BLANXK BEING
TREATED AS 1., AND O BEING TREATED AS 10« THE BLANK DR
DIGIT MUST APPEAR IN THE. FIRST POSITION DOF TH2 ADDRESS
FIELDs COLUMN 24. THE STRING TO 3E LDADED EXTINDS FROM
CI.UMN 25 TO CDLUMN (25+44K), WHERE K IS THE NUMBER OF
WORDS SPECIFIED

EXAMPLES:

wi ALF . 4ERROR NUMBER ONE

THIS LINE WILL CAUSE THE LODADING OF:

ZRRO INTO w1

R NU INTO Wi+l
MBER INTOD W1l+2
ONE INTO Wl+3

AND IS5 EQUIVALENT TO THE FOUR LINEZS:

Wi ALF 1ERQD
ALF 1R NU
ALF {MBER
ALF 1 ONE

29

30

CHK

CWHAT SYM30OL>
LISTABLE

*CHECK®

THZE SUNZTION 1S T CHECK WHETHZR JR NOT _AO0S_S wWHICH
HAVE BZEN USED ARI DEFINED. THE SYVBOL MUST 3E A _ABZ_.
IF ITS SU3SCRIPT IS ZERD OR 3LANK. THIN THE SU3SCRIPT 1S
CONSIDZRED TO 8F THS MAXIMUM AL_LODWNED SJBSCRIPT, THZ
LASELS FRIM (C_ASS NAMZE>0 TO (LZLASS NAME>YSU3ISIIPT A=
THEN CHICKED TO S=Z IF ALL THOSE wHICH HAVE BEZN JUSED ARE
DEFINED,. IN CASE AN UNDEFINED LA3Z. [IS ENCOUNTED, AN
ERROR 2RINTY OUT TAKES 2LACZZE WITH THZ FOLLOWING FORM:
UND TS 26347

THIS MEANS THAT THE LABE_ T5 15 UNDEFTINZIDs AND THAT
IT HAS LAST BEEN JSED IN LOCATION 725347.

THE CHECKING WILL CONTINUZ UNTIL THEZ LIST OF
"PATIAMETERS HAS BEIN ZXHAUSTED.

EXAMPLES:

i D53

-3l wlo;

8L ROO;

(PROGRAM)

CHK DeW3R}

D0 TD D5+ WO T3 wWSs AND RO TD R90 AREI CHECKED.

L R R D R |

R D D B

-1

~

1

Y Oy Ty TTRYROOTTY T

-9

Com

cPy
1 cIoyy

31
CIMMATERIAL)D

*COMMENT®

THE LOCATION FIELD IS TREZATED AS JSUAL AND THE MODE FIELD
WILL GET AN SRROR MESSAGE IF IT IS ILLEGALe OTHERWISE THE LINE

IS IGNODRED.

EXAMPLES:

L 8L L13
COM THIS 1S A COMMENT
Ll CIM GEEsse ANOTHER COMMEINT

THESE LINES WILL 3Z PIINTED. TWO L*S wiLL BE DECLARED AS
LABELS AND L1 WIL. BE DEFINED AS THIZI CURRENTY VALUE

"OF YAY, HOWEVER, ND CODE WILL BE CDMPILED.

CEXPIESSIONI » {ZSXPRESSI1DN?
NMON-LISTABLZ
*COPY?®

ET THE VALUZ OF THI FIRST AND THI SECOND EXPRESSIONS
BE N1 AND N2, RESPEICTIVELY. THEN THEZ NEXT N1 WORDS wllio 3=
FILLED BY COPYING FROM THE LAST N2 WDRDS ASSEMBLED. THAT IS,
THE WORDS IN A~N2s A-N2+1ls esee » A=-1 WILL BE COPIZD RZIEATED.Y
UNFIL N1 AAVE 3EEN COPIEDe N1 NEZD NIT 3E A MULTIPLE
JF N2; N1 MUST NOT SQUAL ZERO. ATTEIQ 'CPY' HAS BZIEN
EXZCUTEDs THE _OCATION. CDUNFEZER *A*' HAS BEEN INCREASED
BY Nl

WARNING? IF THE _AST N2 WwWIRDS CONTAIN ANY
UNDEFINED LABELS. THESZ WILL NOT LATZR BE DEFINED IN THE

COPIES.

EXAMPLES:

wa LwD /737
LWD w53;
cPY 500, 2

(wWwB) AND (wWB+l) WILL BE COPIED INTO THZ NEXYT 500 iL.JCATIDONS.

El LwD 03
coy 499413

THE EFFECT IS TO STORE ZERD INTD 500 _JCATJIONS
STARTING AT El. '

32
DEF

¢(SYMBOL >=¢EXPRESSION)
LISTABLE
IDEFINE® \

THE VALUE OF THE EXPRESSION WILL 3E CALCULATED AND
TAKEN MODULD 2+21, AND THE SYMBOL WIL. BE GIVEN THIS
VALUE. IF THE LETTER DF THE SYM3JL HAS BEEN JDICLARSD AS A
LABELs THZ PARTICULAR LABEL GIVEN IS THMEREBY DEFINED. IF
THE LETTER IS NOT A LABELs THE CORRSSPINDING REGIONAL BASS
1S DEFINED AS S

CEXPRESSIDN) - <(SU3SCRIPT)
IN THE USUAL CASE, THE SUBSCRIPT ZQUALS ZERO.
EXAMPLES?
LBL B30
DEF B0=/22750

THIRTY-ONE 8°'S ARE DESIGNATED AS LABELS, AND BO IS GIVEN
THE VALUE /722750« Bls B2sesses B30 AIZ STILL UNDEFINED.

DEF C€10=/7020;

CO 1S GIVEN THE VALUE /7006s AND AL. C*S ARE DEFINED.

Y 7Y T T

D D

D B

|

R DR R B B |

33

DMpP CEXPRESSION>»s CEXPRESSIOND
LISTABLE
PRINTING AFTEX EXECUTION

*DUMP?
THE EFFECT IS TO GIVE AN ASSEMB.Y-TIME OCTAL DUMP ON
THE PRIINTER DOF THE LOCATIONS FROM TH4Z VALUE OF THZ FIRST

EXPRESSION UP TO AND INCLUDING THE VALUE OF THE SECOND
EXPRESSION.

WARNING: THERE IS5 NO CHECK THAT THE VALUES ARE PRDAER
MACHINE LOCATIONS.

EXAMPLES?
DMP /721000,/722000

AN DCTAL DJUMP WwIL. BE GIVEN OF /71001 wORDS FROW LIOCATION
/721000 UP TO AND INCLUDING THE LOZATION /722000,

Dmp A=100.A-13

AN OCTAL DJUMP OF THI LAST 100 LOTZATIONS WILL BE GIVEN.

ENT CIMMATERIAL>
CENTRY®*
THE EFFECT IS5 TO ASSEM3BLE AN ALL ZEID WODRD. THIS 5uD0D
MAY BE USZD FOR ENTRY INTD A SUBRJOUTINZ. A LABEL
APPEARING IN THE _DCAVION FIELD wliL. OEZ DEFINED AS USUAL.
EXAMPLES?
Pl ENT SUBROUTINE

THIS DESIGNATES THE ENTRY INTO A SUBROUTINE THAT 15
REFERREZD TO BY THZ LABEL Pl. ZERJ IS _OADED INTD THE
LOCATION Pl

34

FPC

HPC

CTERM)

. LISTABLE
‘FULL PRECISION CONSTANT?®

THE FUNCTION IS TO LOAD THE DJCTA. REPIESENTATION OF
THE DECIMAL NUMBER INTO THE NEXT TWD LIDCATIONS.
WARNING: THE ABSJLUTE VALUE OF THE NUMBER MUST BE LESS
THAN 3.,450873173389,69 AND THE EXPONINT LESS THAN 70, 22
AN EXPONENT OVERFLOW WILL DCCUR AT ASSIMABLY TIMEZ.

EXAMPLES?

wi0 FPC 10+4.000159,16
Wil FPC ~205+3.48863,-5

WIL0O AND W10+1 WILL BE LOADED WITH 10y WIO0+2 AND W10+3

lﬂILL BE LOADED WITH 4.000159%10+15, Wil AND wWill+]l wiLL BE

LOADED WITH -2#]10+5, AND Wll+2 AND wWili1+3 WILL BE _OADE)D

"WITH 3.44463%10+-5, ALL IN STANDARD G~20 FULL PRECISION

FORM. W10 AND W1l MUST BE LABZILS, SINCE THEY ARE NOT
IN ADJACENT LOCATIONS.

CTERMD
. LISTA3LE
*HALF PRECISIDN CONSTANT?

THE SUNCTION IS TO LOAD THE OCTAL REPRESENTATION OF
THE DECIMAL NUMBER INTO THE NEXT _OTATION. THZ MANTISSA
OF THE NUMBER IS5 ROUNDED YO SEVEN (DITAL) DIGITS 3EFORE
STORING.

EXAMPLES:
wilz HPC 0+s1+2:3;
HPC 815,63

Os 1s 24 34 AND =-2.15%10+-6 WILL BE LOADED INTO FIVE
CONSECUTIVE LOCATIONS STARTING AT wil2. ‘

WARNING:Z THE ABSOLUTE VALUE DF THE NUMBER MUST BE L_ESS

“THAN 3.450873173389,69 AND THE EXJP0ONENT LESS THAN 70s OR

AN EXPONENT OVERFLOW WILL OCCUR AT ASSZMBLY TIME.

D D B

Y T}

]

Yy T)

7Y Y YT

—y

)

Lau

CWHAT SYMBOL)>
LISTABLE
_LABEL?

THZ CLASS 15 DECLARED YO BE A LAB:EL C_AS5S. IF THZ CLASS NAMZ

HAS NOY PRIEVIOUSLY APPEARED IN A *"L3L' SUDO. THEN THE
SUBSCRILIPT IS THE MAXIMUM SUBSCRIPTY WHICH MAY BI USED
FOR THAT L_ABEL.

17 THE CLASS NAME HAS PREVIOUSLY APPEARED IN AN
*LBL® SUDOs THE FODOLLOWING ACYIDNS TAKZ PLACE:

FIRST. THE OPZRATION OF A *CAK* SJUDO 13 DINE ON THE
SYMBOL. THEN THE LABELS FROM <«CLZTTZ>0 TO
CLETTERDICSUBSCRIPT> ARE CLEARED TD JS5Z AGAIN, WHI_E ANY
LABELS GREATER THAN THZ SUBSCRIPT APPZARING IN
CLETTERPC(SUBSCRIPT> ARI LEFT UNTDUCHZ O,

IF THE SU3SCRIPT IS5 ABSENT. THZI MAXIMUM SUBSCRIPT
FOR THAT CLASS 15 ASSUMED.

IN CASE *CHK* FINDS ONE OR MOIZ UNDEFINED LABELS
AN ERROR MESSAGE wlILL BE PRINTED (SEZ 'CHK®*) AND THE VA_UE
DF THE LADEL wlILL BE CLEARED 50 THAT IT MAY BE REJDEFINED.

EXAMPLES:

LBL 010
DO THROUGH D10 WI_L BE PERMITTID “0R USE AS LA3EZLS.

(PROGRAM }
L3l D7
{ PRDOGRAM)

THE LABELS DO THRDIUGH b? WItLL BE CLEARED FOR REDEFINITION
AS NEW LABELSs WITH AN ALARM MISSAGZ 2IINTED
IF ANY ARE UNDZIFINED»

36
LIN CEXPRESSION)D
NON-_ISTAB.Z
CARD IMAGE NOT PRINTZD
*LINE"
I® N IS THE VA_UE OF THE EXPIESSIONs N B_ANK L_INES
ARE PRINTED, IF PRINTING IS DN.
IF N = 0 DR THE ADDRESS FIELD IS B_ANKs 1 _INE UPSPACE
WILL OCCURe {THE EFFECT IS5 SIMILIAR TD *SY LINE'.)

EXAMPLES:
CLA : P93
LIN 25
EXL K213

ABOVE ARE THZ CARDS AS THEY WEIS PUNCHED. BEILOW IS
THE COMPILATION OF THE CARDS.

CLA P93

EXvL K213

NITICE THAT 2 LINES WERE SKIPPZD AND THE 'L IN?
SUDD WAS NOT PRINTED.

LwD CZXPRESSION?
NON-LISTABLZE
* _0OGIT wORD*

THE EFFECT IS TO LDAD THE VALUE OF THE EXPRESSION
INTO THE NEXT MACHINE _LOCATION AS A _OGIC WDRD
{1eE« WITH AN *ST_LY CIMMAND)e ANY PUNTHING IN THE
MODE FIELD WILL BZ CHECKED FOR ERROR BUT WILL OFHZIRWISZ
BE IGNDOREDa N

ND CHECKS ARZ MADE TO SEE IF THZ VALUES OF THE
EXPRESSIONS ARE WITHIN THE LIMIT JF YHZ FIELDS.

EXAMPLES?
8L E2%
£0 LwD /350 + S$4;
= LwD /TTTT+%1;
g2 LwD STTTTITTTITTT;

NbTE! D0 NOT ASSEMBLE ANY _OGIC WORD WITH BIF 30 = 1. THIS WILL
CONFUSE THE ALGIL RELOCATOR. I TH1S BIT IS NZIZDED, IT MUST)
BE ADDED AT RUN-TIME,. {SEZ WRITEUP OF =1+ =2, =~3: ALGOL MANUAL 2s Qelfe)

1

R R

1

1)

D R |

D |

1

17T T

D R |

NAM

PAG

PRT

CSTRING?
NON~-LISTABLE

NAME"

THE EFFECT 1S TD PACK THE SIX BIT REPIESENTATION OF
THE S CHARACTERS IN COLUMNS 24 TD 28 INTD THE RIGHTMOST
30 BITS D= THE NEXTY MACHINE LOCZATION. ANY PUNCHING IN
THE MODE FIELD WILL BE CHECKED FORX ZRAIR BUT WILL DTHERWISE
BE IGNOREDe.

EXAMPLES:

NAM PN3.$

THE 6 -BIT REPRESENTATIONS OF THE CHARACTERS Ps Ns 35 o
AND $ WiLi BE LDADED INTO THE NEXT MACHINE LOCATIONa
THIS 1S5S THE SAME AS

LwWD 720 16 43 53 653

CIMMATERIALY
PRINTING AFTER EXECUTION
"PAGE?
IF PIINTING 1S TURINED ON, THZE PADSR IN THE PRINTER
WILL BE MOVED TD THE NEXT PAGE.
(SYM3OL)>
LISTABLE
PRINTING BEFJIE EXECUTION
*PRINT®
THE FUNCTION IS SIMILAR TD *CHK®, BUT IN ADDITION,
IF THE PRIINTING 15 ON, THE VALUES OF ALL USED L_ABZ_S wiLL
B8E LISTED ON THE PRINTER.
EXAMPLES?®

!ar We Py De QLO}

ALL THE USED LABE._S OF THE SYM30LS We. 2, D AND QO TD Q10 AND THE

LOCATIDNS TD wHICH THEY HAVE BEEN ASSIGNED ARE _ISTED ON
THZ PRINTERS

38

REL {SYMBOoL)>
LISTABLE
*RELEASE"®

THE -FUNCTION IS TD RELEASSE LABZLS LaEaes TI CLEAR
THE DIFINITION OF A LETTER A5 A _ABE. SO THAT 1T
CAN BE USED THEREAFTER AS A REZGION (03I A NEW LLABZL).

FIRST *LHK? IS PERFDRMED. IF NJ UNDEFINED _ABE. IS

ENCOUNTEREDs THE LETTERI IS THEN MARKED AS UNUSEDe. UNDER
CZRTAIN CIRCUMSTANCES THE SPACE USED FIR THE _ABE_ TAB_E
WILL A_LSD BE RELEASEDe THIS WILL OCCUR IF THE LETTER

BEING RELZASED 1S THE LAST LETTER DEZLARED aS A LABELs OR

IF ALL LETTERS DEC_ARED SINCE HAVZ 3J3EZN RE_EASED AND THZIR

SPACE RECLAIMED.

IF AN UNDEFINZD LABEL IS ENCOUNTZIRED BY YCHK', AN
ERROR MESSAGE WIL_ BE PRINTEDs, AS WITH *CHK', AND THE
"'RELEASEt* WlLL BE PERFORMED ANYWAY.

EXAMPLES?
LBL R10
(PRDGRAM)
REL R
LBL R11

THZ SET DF LABELS RO THROUGH R10 IS RE_EASED AND THEN
A NEW SET OF LABELS RO THROUGH R11 1S DEFINED.

WRD CSIGNED EXPRESSION)D
LISTABLE
wORD
THE EFFECTYT IS TD STORE THZ VALUE OF THE EXPRESSION

INTO THZ CORE LDCATION SPECIFIED BY THZ _OCATION JOUNTER
IF THE VA_UE DF THE EXPRESSION IS NEGATIVE, *wRD* wIlIlLL
STORE IT INTD MEMORY AS AN INTEGER, PRIIVIDED THAT IT
IS (2+21 IN VALUE. {I.E« USING AN *ST{* COMMAND); IF
POSITIVE,. IT WILL BE STORED AS A LOGIC WORD WITH AN *STL?
CIMMAND . '

EXAMPLES?
wa wD -/735+8
W8 WILL BE LDADED WITH THé NEGATIVE INTEGER /725
W10 WD ITTTTTTIT7 77
W10 wILL BE LDADED WITH THE LOGIC WORD /Z77777777777.

NDTE: AS WITH *LWD*, BIT 31 MAY NJIT 3 USED.

“av,

1 1

L

-

]

39
CHAPTER 5 -~ ERROR MESSAGES

Se1 ERRORS DETECTED DURING COMPILATION

ANY ERROR DEITECTED BY *WHAT® DURING THE PROCESSING IF A
LINE WILL CAUSE A PRINT OUT OF THE LINZ 0 CODE PRECEEDED B8Y AN
‘ERROR MESSAGE, AS FOLLOWS.

Selel

AD v

1 U

LABL

MODE
DPER
902

900

Sele2

AD U

=BLD>

TERM

WHAT

Taw

ERROIS IN G-20 INSTRUCTIONS

UNDZFINED CONSTRUCZTION IN ADDRESS FIE.D OF G~20
INSTRUCTION

UNDEFINED CONSTRUCTION IN INDEX FIELD OF A G-20
INSTRUCTIDN ’

ERROI IN LOCATEION FIELD

ZRROR IN THE MODE FlELD OF A%G-ZO INSTRUCTION

ZRROR IN DOPERATION FIELD

| ERRDR MESSAGE

}
) FO__.0OwsS
} ERROR LINE

ILLEGAL USE J3F | DR END OF CARD

CATCH-ALL FOR SEVIRAL DTHIR ZRRIIS

ERRORS IN SUDD INSTRUCTIONS

UNDEFINED CONSTRUCTION WHEREZE AN ZXPRESSION IS
NZEZDED IN THZ ADDRESS FIELD 3F A SUDD.

‘At IS NOT WITHIN BOUNDS 3F JUSZIItS MIMORY. (UPON
STORING A WORD)

A SUBSCRIPT DN A LABEL SYMBD_ IS GREATER THAN A__JWE)D

UNDEFINED CONSTRUZTION WHERI A SYMBOL IS WANTED IN
THZ ADDRESS FIELD OF A SuJuDO.

A LETTER WHICIH HAS NUT BEZIN JECLAIED AS A LABEL
APPLCARS IN A S5YMBOL IN THZI ADDRESS FIELD OF A SUDD
WHERZ A LABE. SYM30L IS REQULRZD.

SPACE IN LADZ_ TA3JLE IS5 ZXHAJSTED

5.2 ERRIRS DITECTED DURING RUNNING

AL -
THE

RUN=TIMZ Z3IRORS ODCIURRING IN *WHAT* ARI HANDLED EXACTLY

AS IN ALGOL. (5EE ALGOL=-20 MANUAL, CHAPTZIR 63.)

40

"S5YMBOL
SPACE

Jd + 2 —NAXECC-MNIO VODIZIZIINrXe=IONMMONDD >

THE INTZRNAL

NOTE 13
NOTE .23

APPENDIX A

G-20

ALPHABET

INTZNAL CARD CODE
00 NOQ PUNCH

01

o2

03

o4

05

co6

o7

10

11
12

13 -
14 -
15 -
16 -
17 -
20 -
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37

L I S R

FtONOCOOOOOCOCO |
WU NGO ENDOE L LWUNLOTITNEEAPUN= OSSN SWN -

o+

[s o0

NOTE
NOTE
NOTE
NOTE

— et e pme

SYMBOL [INTERNA_ CARD CJD
40
at
42
43
a4
a5
46
a7
50
51
52
53
S4
55
56
57
60
61 .
62
63
64
65
66
67
70
71
72
73
74
75
76
77

* * 8 QONOOOFSWUN=O
[
w

* L+ O 0VDNOUVPUWUN-DO

H o~ w |
§

*+ WO}
VNN,

TCNNGERPOOOLCT WU

+
o
DV O®

& @® E @

[»]

LRI R I e N R N o 3R . 3K 1
@x

NO+~N+OCCSO P

REPRESENTATIONS ABDVE ARE DCTA. INTZGIRS.

MUST BE PUNCHED USING THE MULTIP_Z APUNCH SUTTON
THE KZY MARKED QUOTE ON THE KIYIUNIH ATTUALLY PUNCAZS
THE 4-8 COMBINATION. THE G-20

THZ SEMI-COLON
CHARACTER QUOTE

MUST BE

MU_TI-PUNCHEZED AS 5-~8.

NOTE

NOT=
NOTE
NJTE
NDYV =

NOTE
NOTE

NATE
NDYE

NOTZ
NOTE
NOTZ
NOTE

— N - Pk pms b s

N—.—.—

-

)

Y 7Y 7Y OTTY Ty ™M)

APPENDIX B

ADDRESS PREPARATION

oca
0cCs
CAD
osu
OSN
DAN
OAA
OSA

000
020
040
060
120
100
140
160

ADD AND SUBTRACT

CLA
cLS
ADD
suB
ADN
SUN
ADA
SUA

005
025
0as
065
105
125
145

G-20 *WHAT' OPCODES
X + (0A)
=X * (DA)
(ACC) + X + (OA}
(ACC) — X *+ {0A)
~{ACC) * X + {(UA)
~(ACC) - X + (DA}
JCACC)Y + X| =+ (DA)
| (ACC) - X| =+ (0A)
X +» (ACC)
- X + (ACC)
(ACCY + X + (ACC)
{ACC) - X + (ACC)
- (ACC) - X » (ACC)
—{ACC) + X » (ACC)
| (ACC) + X]| + (ACC)

165 {{ACC) = X| » (ACC)

ARITHMETIC TESTS #

FOM
FOopP
FLO
FGO
FuO
FSM
FSN
FsP

021
001
121
061
161
101
141
041

X < 0
X >0
(ACC)

{ACC) -

(ACC)
tACC)
(ACC)
(ACC)

L I N VN
XX XX WMn
»x X

v KA

MULTIEPLY AND DIVIDE
MPY 077 (ACC)

RDY 057 X /

DIV 053 (ACC)

® X 4
(ACC) »

/X 3

LOGIC OPERATIONS

CAL
cCcL
ADL
SuL
EXL
ECL
UNL
ucL

015
035
055
075
115
135
155
175

X +
X *
(ACC)
{ACC)
(ACC)
{ACC)
(ACC)
{ACC)

LOGIC TESTS *

10z
1Cc2
ISN
IUO
IEZ
I1EC
IucC
1uz

o011
031
051
071
111
131
171
151

X = 0
--X =
(ACC)
(ACC)
(ACC)
(ACC)
{ACC)

(ACC) v

(ACC)

(ACC)

+ X +
X +
X 4

>

A X

v X *

v X

o

< > !
4 3 xxx
> X

H %%

x
it

[= 3= =

(ACC)
(ACC)
(ACC)

(ACC)
(ACC)
(ACC)

(ACC)

It w
[o K=/

(ACC}

(ACC)

o ——————— . . —— . ~{ " " T —— o ——— T —— —————————— .

S

S

STORE
STL
STD
5Ts
STl
STZ

173
153
113
133
or3

41

(ACC) * X

(ACC) » Xs X + 1
(ACCY + X

(ACC) + X

0 + X

INDEX REGISTER CODES

LXP
LXM
ADX
SUX
XPeT
XMT
AXT
SXT

o012
o3z
o2
oz2
cto
036
006
026

TRANSFER
TRA 017
SKP 137
TRM 177

SPECIAL
REP 013
XEQ 010

ZWN~-Q

®FOR AlLL TESTS,

X + (1)

-X + (I)

(1) + X + (1)

(1) -~ X » (1)

X + (1) (TEST(L)#0)=
-X * (1) (TEST{I)Y20)#+
(1) + xX» (I) (TEST(1)#0)»
(1) - X +» (I) (TEST(1)#0)=

OF CONTROL
X + (NC})

{NC) + X »
{(NC) *+ (X))}

(NC)

X+1 + (NC)

REPEAT
EXECUTE X

(1) + (OA) + ADORESS

(1) + (DA) + (ADDRESS)
=((I) + (OA) + ADDRESS)

((I) + (0A) + (ADDRESS))

: (Z) = CONTENTS OF 2

DO NEXT IF

CONDITION INDICATED IS TRUES
SKIP IF FALSE.

TI
TS5

STD
5TL

"WHAT* ASSEMBLES ALL COMMANDS
IN MODE 2 EXCEPT THE FOLLOWING
WHICH ARE ASSEMBLED IN MODE 03

TRA
TRM
REP
5TZ

42

000
001
002
005
006
0190
011
ol12
0i3
015
016
o7
020
021
022
025
026
031
032
035
036
040
041}
045
051
053
055
057
060
061
065
071
073

Q75

or7

OCA
FDP
ADX
CLA
AXT
XEQ
I0Z
Xe
REP
CAL
xXpT
TRA
acs
F DM
SuUX
CLS
SXT
1cz
LXM
cC.
XMT
DAD
F5P
ADD
ISN
Div
AD_
RDV
osu
FGO
SuU3
U0
STZ
SU.
MPY

COMMANDS IN NUMZIRICAL

DPERAND CLEAR ADD

IF DPZIAND PLUS

ADD TO INDEX

CLEAR ADD

ADD TO INDEX AND TEST
EXECUTE OPERAND

IF OPEIAND ZERD

LOAD INDEX PLUS

REPIAT

CLEAR ADD LOGIC

LOAD INDEX PLUS AND TEST
TRANSFER

OPZRAND CLEAR SUBTRACT
IF JPZRAND MINUS
SUBTRACT FROM INDEX
CLEAR SUBTRACT

SUSTRACT FROM INDEX AND TEST

IF COMPLEMENT ZERD
LDAD INDEX MINUS

CLEAR ADD COMPLEMENT LUGIC

LOAD INDEX MINJUS AND TEST
OPERAND ADD

IF SUM PLUS

ADD

IF SUM NON-ZERD

DIVIDE

ADD. LOGIC

REVZIRSZ DIVIDE

OPEIAND SUSTRALT

IF GREATER THAN OPERAND
SUBTRACT

IF UNEQUAL OPERAND
STDIE ZERD

SUBTRACT LOGIC

MULTIPLY

QIDER

X + (0A)

TEST X > O

(1) + X » (1)

X *+ (ACC)

(1) + X +» (1) (YESST(E)#*0)
EXECUTE X

TZST X = 0

X » (I}

RZIPEAT

X + (ACC)
X » (1) ({TEST(1)+£0)
X + {NC)

- X + (0DA)

TEST X ¢ 0O

(1Y - x » (1}
- X *+ {(ACC)
(L} - X + (I) (T=ST{I)#0}
TEST =X = O
X + (1)
X * (ACLC)

- X *» (1) (T=ST{1)+#0)
(ACC) + X +» (0DA)

TZST (ACC) + X > O

(ACC) + X *» [(ACC)

TZST (ACC)Y + X # 0

(ACC) /7 X +» (ACC)

(ACC) ¢ X » (ACC)

X /7 (ACC) + (ACC)

(ACC) - X + (DA)

T=ZST (ACC) > X

(AZC)Y - X + (ACC)

TZST (ACC) # X

0 * X

{ACC) -~ X * (ACC)

{(ACC) ®= X + (ACC)

- Ty T 1 T

]

43
190 ORN OPERAND ADD AND NEGATE - (ACC) - X + (DA)
101 FSM 1F SUM MUNUS TEST (ACC) + X ¢ 0
105 ADN ADD AND NEGATE = (ACC) - X + (ACC)
113 FEZ IF EXTRACT ZERJD TEST (ACC)} A X = D
13 STS STORE SINGLE (ACC) + X
115 EXL EXTRACT LOGIC (ACC) » X » (ACC)
120 DOSN OPERAND SUBTRACT AND NEGATE - (ACC) + X + (DA)
121 FLD IF LESS THAN OPERAND TEST (ACC) ¢ X
125 SUN SUBTRACT AND NEGATE - (ACC) + X + (ACC)
131 IEC IF SXTRACT COMPLEMENT ZERD TEST (ACC) A ~ X = 0
133 STI STIRE INTEGER (ACC) + X
135 EC. EXTRACT COMPLEMENT LOGIC (ACC) A -X + (ACC)
137 SKP SKIP : {NC) + X 9+ (NC)
140 DAA OPERAND ADD AND ABSOLUTE - JtACC) + X} % (DA) .
141 FSN IF SUM NON-2ERO ' TEST (ACC) + X 2 0
148 ADA ADD AND ABSOLUTE : ‘ J{ACC) + X] + (ACC)
151 IUZ IF UNION ZERD TEST (ACC) v X = 0
153 STD STYORE DOUBLE) , (ACC) + Xy X ¢+ 1
155 UN. UNITE LOGIC (ACC) v X & (ACC)
160 DSA DPZRAND SUBTRACT AND ABSOLUTE | tACC) - x| + (DA)
161 FUD IF UNEQUAL DPERAND TEST (ACC) # X
165 SUA SUBTRACT AND ABSOLUTE jtacc) - x} » tAcCC)
171 IUC IF UNION COMPLEMENT ZERD TEST (ACC) v = X = O
173 ST. STOIE LOGIC (ACC) » X
175 UCL UNITE COMPLEMENT LOGIC (ACC) v =~X *+ (ACC)
177 TRM TRANSFZR AND MARK (NC) » (X) § X + 1 + {(NC)

T Ty ™Y

R B |

)

44

185
045
055
105
o002
006
015
005
035

025
053
135
115
061
121
021
001
101
141
041
161
031
131
111
o111
051
171
071
151
032
012
07?7
150

040
100

ADA
ADD
AD_
ADN
ADX
AXTY
CA_
CLA
cCcL
c.sS
DIV
ECu
EXL
FGO
F.0
FOM
FopP
FSM
FSN
FS5p
FuUD
ICZ
1EC
IEZ
i0z
I5N
| gV ol
1UD
iuz
LXM
LXP
MPY
DAA
DAD
OAN

COMMANDS IN ALPHABITICAL DRDER

ADD AND ABSDLUTE

ADD

ADD LDGIC

ADD AND NEGATE

ADD TO INDEX _
ADD TO INDEX AND TFEST
CLZAR ADD LOGIC

CLEAR ADD

CLEAR ADD COMPLEMENT LOGIC
CLEAR SUBTRACT

DIVIDE

EXTRACT COMPLEMENT LDGIC
EXTRACT LOGIC

IF GREATER THAMN OPERAND
IF _ESS THAN OPZRAND

IF DPERAND MINUS

IF OPERAND PLUS

IF SUM MINUS

IF SUM NON-ZERD

IF SUM PLUS

IF UNEQUAL OPERAND

IF COMPLEMEINT ZZ=RO

IF ZIXTIACT CUMPLEMENT ZERO
IF IXTRACT ZERD

IF DPERAND ZERD

IF SUM NON~ZERD

IF UNION COMPLZMENT. ZERD
IF UNEQUAL DPERAND

iF UNION ZZRO

LOAD INDEX MINJS

LOAD INDEX PLUS
MUL_TIPLY

OPERAND ADD AND ABSOLUTE
DPEIAND ADD

OPERAND ADD AND NEGATE

1¢CACC) + x| » (ACC)
(ACC) + X + (ACC)
{ACC) + X » (ACC)

- {ACC) -~ X * (ACC)
(f) + x » (I

(1) + X » (1) (TEST(1)20)

X + (ACC)

X » (ACC)

=X + {(ACC)

- X % {ACT)

(ACC) 7 X * (ACC)
(ACC) ~ ~X + (ACC)
(ACC) ~» x » (ACC)
TEST (ACC) > X
TEST (ACC) ¢ X
TSEST X ¢ O
TEST X > 0
TEZST (ACC)
TZST (ACC)
TEST (ACC)
TEST (ACC)
TEST =X = 0
TZST (ACC)
TEST (ACC) X = 0
TIST X = O
TZ5T (ACC)
TEST (ACC)
TSST (ACC)
¥EST (ACC)
- X + (1)
X + (1)
(ACC) = X + (ACC)
l(ACC) + x| + (DA)
(ACC) + X + (DA)

- {ACC) - X * (0A)

LYK B R
x x XK X
]

(=]

» >
x
]

€ W< +
x x J x

D R R |

]

) B I B

}

) Ty)

.

)

000
020
160
120
060
057

013

137
153

133
173

113
073
065

165

075
125
022
026
017
177
175

. 155

010
ote
036

OCA
0Cs
OSA
OSN

.Qsv

ROV
REP
SKP
STD
5T1
STu
STS
sTZ
SUA
sSuB
SJL
SUN
SuUX
SXT
TRA
TRM
vt
UNiL
XEQ
XPT
XMT

OPERAND CLEAR ADD
OPERAND CLEAR SUBTRACT

"OPERAND SUBTRACT AND ABSOLUTE

DPERAND SUBTRACT AND NEGATE
OPERAND SUBTRACT

REVERSE DIVIDE

REPEAT

SKIP

STORE DOOUBLE

STORE INTEGER

STORE LOGIXC

STORE SINGLE

STORE ZEROD

SUBTRACT AND ABSOLUTE
SUBTRACT

SUBTRACT LOGIC

SUBTRALZT AND NEGATE
SUBTRACT FROM INDEX
SURTRACT FRDM INDEX AND TEST
TRANSFER

TRANSFER AND MARK

UNITE COMPLEMENT LOGIC
UNITE LO0GIC

EXZCUTE OPERAND

LOAD INDEX PLUS AND TEST
LOAD INDEX MINUS AND TEST

a5
X + (DA)
- X + (DA)
JCACC) = X| + (0A)
~ {ACC) + X + (DA)
(ACC) -~ X + (0A)
X /7 (ACC) + (ACC)
REPEAT
{NC) & X + (NC)
{(ACC) *» Xo X + 1
(ACC) + X
(ACC) » X
(ACC) + X
0+ X
JtACC) = X| + (ACC)
(ACC) - + {ACC)
{acc) - + (ACC)
~ {ACC) X + (ACC)
(1) - x (1
(1) - x (1) (TEST(1)20)
X 4 (NC)
(NC) + (X} 3 X + 1 » (NC)
(ACC) v =X + (ACC)
(ACC) v X + (ACCT)
EXECUTE X AS COMMAND
X + (I) (TEST(I)#0)
- X * (1) (TEST{1)20)

v & XXX

46

ALF
CHK
COM
cepy
DEF
DMP
ENT
FPC
HPC
LBL
LIN
LwWD
NAM
PAG
PRT
REL
WRD

APPENDIX C
SUDDS IN "WHAT?®

ALPHANUMERIC INFORMATION
CHECK

CIMMINT

capPy

DEF INE

bump

" ENTRY
- FULL PREZCISION CONSTANT

HALF PRECISION CONSTANT
LABEL

LINE

LIGIC WDRD

NAME

PAGE

PIINT

RELEASE

‘WORD

B

I D B A R B

D R BN

YTy 7Y Ty Y T

B

T

05

0S5
05
06
06
06
o7
o7
07
10
10
10
11
11
11
12
12

00
00
00
00
00
00
00
00
0o
00
00
00
00
00
00
00
0o

G-20 SHIFY MULTIPLIERS

- LEFT SHIFT

1

2

4

10

20

40
100
200
400
1000
2000
4000
10000
20000
40000
00001
00002
30004
0001
00002
00004
00001
00002
00004

00001

00002
00004
00001
00002
0000a
00001
00002

APPENDIX O

NUMBER

DRNOGPLWN-O

RIGHT

000
101
101
104
102
102
102
103
103
103
104
104
104

105

105
105
106
106
106
107
107
107
110
110
110
111
111
111

112

112
112
113

00
00
00
00
00
00
00
Q0
00
00
00
00
0o
00
00
00
00
00
00
00
00
00
oo
00
o0
00
LHI
00
oo
oo
00
00

SHIFT

00001
00004
00002
00001
00004
ooo002
00001
00004
00002
00001
00004
00002
00001
00004
00002
00001
00004
ooo0o02
00001
00004
00002
00001
00004
ooocoz
00001
0000a
00002
Cco001
00004
00002
0001
00004

48

DECIMAL

WENDOO L UWN™

10
20
30
40
50
60
70
80
30

100
200
300
400
500
600
700
800
900

000
000
000
000
000
0C0O
000
0oco
000

000
000
000
000
000
000
000
co0
0co
o000

BRIEF DECIMA_-DCTAL CONVERSIIN TABLE

D

- e

23

47

T2
I16
a1l
165
210
234
257
303

CTAL

12
24
36
50
62
74

106

120

132

144
310
454
620
764
130
274
440
604

750
720
670
640
. 610
560
530
500
450

420
040
460
100
520
140
560
200
620
240

1

OCTAL

100
200
300
400
500
600

700

000

10
20
30
40
50
50
70

100
200
300
400
500
600
700

000
o0¢C
000
000
000
000
000

000
000
0090
000
000
000
0o

000
000
000
000
000
000
000
000

DECIMAL

W W NN o= -

12
16
20
24
28

32
55
8
131
163
1906
223
262

8
16
24
32
40
48
56

64
128
192
256
320
384
448

512
024
536
048
560
ovr2
5814

096
192
288
384
480
576
672

768
536
304
072
840
608
376
144

-

D R

Y 7Y)

Y)

Y 7Y 7Y)

)

Y T

M

-

logic procedure
boolean B;
logic array C;

‘begin

comment

If B is true, return first character of text buffer.

next character;
logic L:

own integer I;

own index Jj
WH LBL
AL if B then begin
end
AcC —c1);
W MPY
EXL 0
STL

AL NEXTCHAR « L;

WH SXT 0

TRA

APPENDIX E
SAMPLE WHAT /ALGOL PROCEDURE

NEXTCHAR (B,C);
|| 1£B=T, initialize, else continue.

I} clo]

1lst word of text.

|| temp storage.
|| word pointer.

| | character pointer.

Ml ; will need two labels.
| | L€ B = true

I<0; - ||reset word and

J. e« &; | | character
| |pointers.

||fetch appropriate word.

MO, J s shift to right-justify.
/377 ; mask’ out garbage.
L ; save for ALGOL store.

| | value of procedure = L.
1, J ' ; step to next character,

A2 ; test for shift to new word,

49,

If B {s false, return

50.

M1

end

TRA Ml ; no shift, exit,
XPT 0 4, J ; shift req'd, reset
CLA I ; character pointer
ADD 0 1 ; and word pointer
STIL I ; then
TRA Ml ; exit.

shift constants
LWD $24, $16, $8, $0;

exit from procedure
of NEXTCHAR

