
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

WHAT

JAMES A. MOORE

FIRST PRINTING JUNE 1965

THIS WORK WAS SUPPORTED BY THE
ADVANCED RESEARCH PROJECTS AGENCY OF THE

OFFICE OF THE SECRETARY OF DEFENSE:
CONTRACT SD-146

CARNEGIE INSTITUTE OF TECHNOLOGY

ACKNOWLEDGEMENTS

The publication of this manual represents the
combined efforts of several people. The manual was
written under the direction of Professor Robert
Braden; the author gratefully acknowledges his advice
and encouragement.

The WHAT language was added to ALGOL-20 by Ronald
Bushyager with assistance from David Blocher.

The author is deeply indebted to Professor
Braden, Arthur Evans Jr., Jan Fierst, Ron Bushyager and
Dave Blocher for invaluable advice concerning form
and technical content of the manual.

Finally, as a result of the similarities between
WHAT and THAT, the author borrowed heavily from portions
of the THAT manual.

TABLE OF CONTENTS

I. ELEMENTS OF WHAT 1

1.1 Symbols 4

1.2 WHAT Symbols 5

1.2.1 Label Symbols 7

1.2.2 Region Symbols 8

1.2.3 The "A" Symbols 9

1.2.4 Scope of Definition 9

1.2.5 Precedence of Definition 10

1.3 Expressions 11

II. SOURCE PROGRAM FORMAT 14

2.1 Language Field 14

2.2 Location Field 15

2.3 Operation Field 17

2.4 Mode Field 18

2.5 Address Field 18

2.6 Index Field 19

2.7 Comment Field 20

III. WHAT/ALGOL INTERACTION 21

3.1 Direct Access of ALGOL Symbols 21

3.2 Indirect Access of ALGOL Symbols 22

3.2.1 Forward and Cross-Block Transfers 22

TABLE OF CONTENTS

(continued)

3.2.2 Subscripted Variables

3.2.3 Formal Parameter Called by Name

3.3 Cross-Block Transfers

3.4 Index Allocation

3.5 Statement Termination

IV. SUDO INSTRUCTIONS IN WHAT.

V. ERROR MESSAGES

5.1 Errors Detected During Compilation

5.1.1 Errors in G-20 Instructions

5.1.2 Errors in Sudo Instructions

5.2 Errors Detected During Running

APPENDICES

A. G-20 ALPHABET

B. G-20 'WHAT1 OPCODES

C. SUDOS IN ,WHAT f

D. G-20 SHIFT MULTIPLIERS

OCTAL - DECIMAL TABLE

E. SAMPLE WHAT/ALGOL PROGRAM

CHAPTER 1 - ELEMENTS OF WHAT

WHAT Is a symbolic assembly program designed to permit the use of

G-20 machine code within an ALGOL program, in order to achieve efficiencies

and/or capabilities unavailable in ALGOL alone. This manual describes the

WHAT language and the associated assembly program developed at the Carnegie

Institute of Technology Computation Center. The reader is referred to the

G-20 reference manual ("Central Processor/Machine Language Manual", CDC

G-20 Publication #611) for information on the logical organization, word

formats, arithmetic rules, addressing schemes, and operations of the

Central Processor. SECTION 2 of the Computation Center Use^s Manual des

cribes the hardware modifications which have been made to the Carnegie Tech

system, converting it from a G-20 to a G-21. Finally, it is assumed that

the user is familiar with ALGOL-20, the C.I.T. implementation of ALGOL-60.

(See "ALGOL-20, A Language Manual", C.I.T. C.C., Jan Fierst, Editor.)

If during compilation the ALGOL compiler reads a card with "WH" in

the language field, control is transferred to the WHAT assembler. The as

sembler reads the source cards containing code in the WHAT language and

translates ("assembles") them into binary machine language in core memory.

This translation process is generally one-for-one; thus, each WHAT statement,

occupying a separate line or "card image" of the source program, is gen

erally translated into a single binary instruction or data word. When the

WHAT assembler reads a card with "AL" in the language field, the ALGOL

compiler resumes operation. See Appendix E for an example of a WHAT/ALGOL

program.

WHAT code may appear only where a statement or a declaration is

permitted. In any other context, the use of WHAT code will be treated as

an error condition, but it will be assembled anyway. With this exception,

WHAT cards have no effect on the ALGOL compiler. (See Section 3.5, p.27) •

Like the rest of the ALGOL compiler, the WHAT Assembler performs the

translation with only one pass over the source deck, assembling the absolute

instructions directly into core memory without the use of an intermediate

"scratch tape". Instructions from the source program are (normally)

assembled into the core locations from which they will subsequently be

executed; at present there is no provision for automatic relocation. As

each card image of the source program is processed, its image is listed on

the printer along with the address in octal of the core location into which

the corresponding binary instruction is assembled. Printing may be sup

pressed with the appropriate "SY" card. (See ALGOL Manual, Chapter 4.)

The WHAT language is "symbolic", meaning that symbols may be used for

machine addresses and mnemonic names may be used for operation codes. Since

it operates in a single pass, the WHAT Assembler may encounter address

fields which contain WHAT symbols which have not yet been defined. The

Assembler keeps lists of all such occurrences of undefined address symbols,

and when the symbol is subsequently defined all references to it are properly

"fixed up" in the assembled instructions in core memory. There are some

important restrictions on the use of such undefined symbols; see Section 1.3,

p. 11.

The index field of a WHAT statement is further restricted; all symbols

must be defined before being encountered in an index field. There is no

provision for "fixing up" undefined symbols used in .the index field.

In general, each line of WHAT code includes an operation code —

usually as a three-letter mnemonic but possibly in absolute octal form.

These mnemonics must be one of the following:

(1) A standard G-20 machine language opcode mnemonic, as listed in Appendix

B of this manual; or

(2) A "sudo" (pseudo-instruction) mnemonic. A sudo does not stand for an

actual machine command but is rather an instruction to the WHAT Assem

bler, to be executed when the sudo is encountered during the assembly

process. All WHAT sudos are listed in alphabetical order with an

explanation, in Chapter 4 of this manual, page 28.

1.1 SYMBOLS

There are two kinds of symbols available for use within WHAT:

(1) WHAT symbols.

These are declared and defined by WHAT coding and may be used

only within WHAT.

(2) ALGOL symbols.

These are declared and defined by ALGOL declarations and may be

used in either ALGOL or WHAT.

For the remainder of this chapter, all references to "symbol" will mean a

WHAT symbol.

1.2 WHAT ipfMBOLS

The purpose of symbols is three-fold: (1) The programmer may refer

symbolically to an address which will not be known until the entire program

has been written and assembled. (2) The programmer may parameterize his

program and assign values to the parameters at assemlby time, so that sizes

of buffers, data storage blocks, program segments, etc, may subsequently

be changed by simple reassembly runs. (3) The symbols may give some mnemonic

value to the program, aiding the programmer in the task of writing, debugging,

and changing the program.

Each WHAT symbol has the form of a class name followed by an integer;

the integer is referred to as the "subscript" part of the symbol. Class

names are one character, and may be any of the 26 letters or one of the four

special characters: -s <-> n, or | . These rules are summarized by the follow

ing syntax: (See Users Manual, Section 2.346 for details on B.N.F.)

<class name> :?= <letter> | *- \ -* | -i | <the mark "|f^>

<subscript> ::= <integer> | <empty>

<symbol> <class name> <subscript>

Notice that the subscript may be omitted; in this case a subscript of zero is

assumed except in the case of the "LBL", "CHK", "PRT" and "REL" sudos where

the maximum declared subscript is assumed.

Some symbols, with class name tL-i" and "|", are predefined at the begin

ning of each translation. These symbols give the programmer access to rou

tines and information in both the monitor and the running ALGOL program environ

ment. The symbols JO to 139 are defined in the THEM THINGS write up, and

provide reference to the monitor. |40 to |99 (the "upper bars") are available

to Computation Center staff members and certain others for monitor references

needed by system programmers. For information, see the User Consultant. The

symbols from |200 up are used for certain quantities connected with the ALGOL

input/output system, and are described in p. 0.15 of the ALGOL Manual. The
,l-i,f symbols are defined to let the user refer to many of the routines and

switches of the ALGOL run-time environment. They are listed in the ALGOL

Manual, p. 0.14, although in many cases an understanding of some of these

symbols requires more information about ALGOL-20 than appears in any document.

Examples of WHAT symbols:

L4

-i27

|3

T (same as: TO, except in "LBL", "REL", "PRT" and "CHK" sudos)

Thte possible symbols are divided into 30 classes by the class names. All

symbols of a particular class will be either:

Label symbols, whose values may be defined independently and in any

order; or

(2) Regional symbols, which bear a fixed relationship to each other, and

so are all defined when any member of the class is defined.

These two kinds are discussed in Sections 1.2.1 and 1.2.2, below. The one

class name "A" has special significance, and is discussed in Section 1.2.3.

Symbols are most frequently used to represent addresses with values

between 0 and 2 1 5-1. However, a symbol may be defined (by a "DEF" sudo)
21

to have any value between 0 and 2 -1.

All symbols with a particular class name may be declared to be label

symbols with an "LBL" ("LaBeL") sudo instruction. The MLBL , f sudo contains

the class name character followed by the maximum subscript integer which

labels of the class will be allowed. For example:

LBL K20

declares a set of 21 label symbols: KO, Kl, K2, ..., K20. These symbols

are free and arbitrary and may be defined in any order with any set of values.

Label symbols are defined in one of two ways:

(1) explicitly, with a , fDEF M sudo, or

(2) implicitly, by appearing in the location field of an instruction.

In this case the symbol is defined to be equal to the current value

of the Assembler1s location counter for that instruction.

The symbols of the class are related only in that at assembly time they

occupy adjacent positions in the symbol table created by the Assembler. This

fact may be of importance to the programmer who needs to reuse symbols or

reclaim label table space during assembly of very large programs; see the

sudo instructions "CMC", "LBL" and "REL" in Chapter 4 for more information.

The maximum subscript given in the "LBL" declaration is used by the Assembler

to allocate label table space.

A class name denotes a region If:

(1) that class has not previously been declared as consisting of label

symbols (by a "LBL" sudo instruction), and if

(2) any symbol in that class is given a value (by a ,fDEF,f sudo instruction) .

All symbols with the same regional class name refer to the same area of

memory, and their values are related in a fixed way: the symbol whose sub

script part is the integer n stands for the nth memory address of the region.

Thus, defining any one symbol of the class defines them all. For example,

assume that R has not appeared in a "LBL" declaration. Then the line:

DEF RO = 4000

will make R a region whose first cell is address 4000. Then all R symbols

will be defined; e.g. R9 = 4009 and in general Rn 4000 + n where n is any

integer. The following "DEF" operation would have the same effect:

DEF R9 = 4009

The expressions R0 + 23 and R + 23 are equivalent to the symbol R23, if R

is a region.

A class of symbols which has been used as a region may later be declared

in a "LBL" sudo instruction and thereafter be used as independent label sym

bols. Conversely, a class name which has been used for labels may be changed

into a region by releasing it from its role as a label class with an instruc

tion of the form:

REL <class name>

and subsequently defining a member of the class with a "DEF" sudo. Regional

symbols need not (and may not) be "RELeased" for redefinition.

The symbols In class "A" have special significance in the WHAT language

and may not be used as label symbols. The symbol "A" or "AO" always has

as value the current value of the Assembler's location counter; i.e. the

memory location into which the current instruction is to be assembled.

After processing each line of the source program, the Assembler increments

the value of ,fA,f by the number of words it has loaded into memory. The

value of f lA , f at the beginning of processing each line is printed if the

assembly of that line changes that value.

The "A" symbols other than "AO" behave as if f,A,f were a region name;

that is, "An" has the value: "A" + n.

Example:

TRA A + 3 (or: TRA A3)

has the same effect as:

LI TRA LI + 3

where L is a label class name.

1.2.4 SCOPE OF DEFINITION

Once a symbol has been defined, its definition is available for use,

within WHAT, until it is explicitly redefined, or, if it is a label, until

its class is released. The scope of definition of a symbol is not affected

by any number of intervening ALGOL cards, regardless of their content.

Consequently, WHAT symbols are not subject to ALGOL block structure. (See

Section 3.3, p. 26.)

1.2.5 PRECEDENCE OF DEFINITION

Some symbols are legal In both WHAT and ALGOL. If a symbol Is defined

differently in the two languages, the definition which takes precedence

depends on the language being used. In WHAT, the WHAT definition is used;

in ALGOL, the ALGOL definition takes precedence. In ALGOL, WHAT definitions

are never available so the conflict does not arise. When WHAT encounters

a symbol of the form: <letter> or <letter> <integer> it first looks for

the symbol in the WHAT symbol table. If this search succeeds, the WHAT

definition is used; if not, WHAT uses the ALGOL definition.

Example:

AL real A, B, C, D ;

index X, Y, Z j
• . .

WH DEF B7 = /1007 ;

WH CLA B, X ;

The "B" used in WHAT has the value of / 1000 and is not related to the real

variable declared in ALGOL. However, the "X" refers to the ALGOL index

variable if "XO" is not defined in WHAT.

1.3 EXPRESSIONS

Symbols may be used to build expressions, whose syntax may be defined

as follows:

<octal digit> ::= 0|1|2|3|4|5|6]7

<digit> ::= <octal digit> |8|9

<integer> ::= <digit> | <integer> <digit>

<octal integer> ::= /<octal digit> | <octal integer> <octal digit>

<number> : :« (as defined in ALGOL-60 report)

<8 octal> : : = 8Kinteger> | 8R<integer> | 8F<number> — (See ALGOL Manual
<octal constant>,
p. 6e.l)

<power of two> ::= $<integer>

<operator> ::=+|-|*|/

<primary> : := <defined symbol> | <integer> | <octal integer>

|<power of two> | <8 octal>

<temi> ::=<primary> | <term> <operator> <primary>

<expression > ::= <tern> | <WHAT symbol> | <ALGOL symbol> | <empty>

(Note that these definitions are for the purpose of this manual only, and

are not necessarily related to similiar definitions for ALGOL.)

Examples:

418

/77 * $12

LI -6-L0*/3

Here <defined symbol> means a WHAT symbol whose value has been defined pre

viously in the assembly. The symbol must have been defined in one of the

following ways:

(1) It may be a regional or label symbol which has received a value

from a r,DEF,f sudo.

(2) It may be a label symbol which has appeared in the location field

of a previous instruction.

(3) It may be a pre-defihed or ,f|,f symbol.

An expression defined by these rules may be used in the address or index

fields of a line of WHAT code. The meaning of an expression is obtained by

performing the indicated operations from left to right with no hierarchy

and truncating to 32 bits after the entire expression has been evaluated.

Thus, 2 + 3*4 = 2 0 . An empty expression has the value zero.

Expressions are generally used to represent G-20 (or G-21) addresses, so

their values will usually be positive integers less than 2tl5.

The term ^ n 1 1 , where n is an integer less than 32 t 0, has the value 2tn;

i.e. '^n 1 1 stands for a one in bit position n of a logic word.

The value of a floating octal constant (8F<number>) is determined by

concatenating the <number> as an octal number and multiplying it by the

appropriate power of 8, treating the number which follows the w as an octal

integer. For example:

SF^IO = 8t8

8Fll10-5 = 9*8t-5

The value of a left (right) justified octal constant (8Kinteger>,

8R<integei>) is determined by prefixing (suffixing) to the <integer> enough

zeros to give eleven octal digits. This number is then concatenated and

stored as a 32-bit logic word. Since eleven octal digits require thirty-

three bits for representation, the leftmost bit of the leftmost octal digit

is lost. Thus, 8L4 = 0 and 8L7 - 8L3. ,.,/<integer>n is equivalent to

"SfKintege^".

The character-pairs 8L, 8R and 8F are treated by the translator as

single entities and must be punched in adjacent columns without interven

ing blanks. The translator does not treat the digits 8 and 9 in octal

constant8 as erroneous but will interpret them as 10g and llg, respec

tively. Thus 8R495 ~ 8R515.

All WHAT symbols which are not yet defined may appear in an expression

only if the expression consists of that symbol alone.

Likewise, ALGOL symbols should not be used in expressions except by

themselves. Violations of this last restriction will not be error-flagged

but will generally give undesired results.

The value of an expression is computed in double-precision arithmetic

format. Address, index, command and mode fields are evaluated, shifted to

the appropriate position, united, and the resulting 32-bit logic

word is stored in the program being assembled. It is the programmer's

responsibility to see that the value of the address expression does not

exceed 2 ^ - 1 and the index expression does not exceed 63,0, since the

Assembler does not check for this condition.

CHAPTER 2 - SOURCE PROGRAM FORMAT

A line of WHAT language source code contains Information in some or

all of the following fixed fields:

Contents Cols.

1. Language 1 - 2

2. Location 4 - 1 2

3. Operation 15 - 17

4. Mode 20

5. Address, Index; Comments 24 - RIGHT MARGIN

The RIGHT MARGIN is initially set to column 72 but may be changed with the

appropriate "SY11 card. (See ALGOL-20 Manual, Chapter 4.)

Example:

(cols.)
1 2 2

1 |4 |5 |0 J4

WH |E4 fCLA |0 |/77, R2; GET NEXT VALUE.

2.1 LANGUAGE FIELD (Columns 1-2)

When card images are typed-in from a remote, the language field is used

to set the meaning of the TAB key for the language. The mnemonic "WH" will

set the TAB columns for WHAT card images as follows:

Tab Column Field

1 4 Label
2 15 Opcode
3 20 Mode
4 24 Address, Index; Comments
5 40 Comments (See Section 2.7,

p. 20.)
For more details, see SECTION 2 of the User fs Manual.

2.2 LOCATION FIELD (Columns 4-12)

In general the location field will be blank unless a reference is

made to that line of code. The location field may contain any of the

following:

1. Blank

2. A label which is currently undefined. The effect is to define that

label by giving it the current value of the location counter ("A").

3. An expression which equals the current value of the location counter.

This may be used for explanatory or documentary purposes.

4. A <string of operators, letters or numbers>. This may be used as

a comment•

Examples:

(case 2)

MPY M5 ; shift rt 5 octals
. . .

M5 105 1 ; shift constant

(case 2)

LXP 0 20, I ; SET UP TO

E2 STZ P0, I ; ZERO A LOCATION

SXT 0 1, I ; DECREMENT AND TEST

TRA E2 LOOP

(case 4)

A-3 CLA 0 X,I ; get ith Y

SUX 0 1,1 ; step i

FGO EO ; compare w/EO

TRA A-3 ; loop If greater

(case 3)

L2 TRA A7 ; transfer around

LWD 1,2,3,4,5,6 ; table of Integers

L2 + 7 TRM Q5

f

2.3 OPERATION FIELD (Columns 15-17)

The operation field may contain one of the following:

1. Blanks. The line will be processed as a "COM" sudo, i.e., a com

ment card.

2. An octal integer (without the preceding slash). In this case, it

will be interpreted as the operation part of a 6-20 instruction and

the octal integer will occur right-justified in bits 29 to 21 of

the assembled instruction.

3. The three-letter mnemonic for a G-20 operation. The corresponding

octal code will be loaded into bits 29 to 21 of the assembled instruc

tion. G-20 mnemonics are listed in Appendix B.

4. The mnemonic for a WHAT sudo. The action taken for the possible

sudos is described in Chapter 4.

The operation field must be either 3 letters. 3 digits or 3 blanks.

Any mixture of these will generate garbage and may not be error-flagged.

2.4 MODE FIELD (Column 20)

Each G-20 mnemonic has associated with it a "normal" mode for that

operation as described below. If the normal mode is desired, the mode field

should be left empty; otherwise, the desired mode: 0, 1, 2, or 3, must be

punched. A mode punch always supercedes the normal mode. The mode field of

a sudo is checked for error but is otherwise ignored.

All G-20 mnemonics have a normal mode of 2 except the following, which

have a normal mode of 0.

ST I STL TRA REP

STS STZ TRM

STD

2.5 ADDRESS FIELD (Columns 24 - RIGHT MARGIN)

The address field contains the operand or the address of the operand.

Blanks in the address field are ignored (except in "ALF" and "NAM" sudos).

The address is terminated by a comma, a semi-colon, or RIGHT MARGIN + 1

(which is not scanned), whichever occurs first. If it is terminated by a

comma, an index is then expected.

If the operation field of a line contains a G-20 mnemonic or an octal

integer, the following applies to the address field:

1. If it is blank, the address (bits 14 - 0) of the assembled instruc

tion will be zero.

2. If it is a single symbol which is already defined, the value of

the symbol will be placed in the address (bits 14 - 0) of the

assembled instruction. If the symbol is a label which is not yet

defined, its value will be placed in the address when it is

defined.

3. If it is an expression, the value of the expression will be entered

as the address in the assembled instruction. It is a detectable

error if any symbol in the expression has not been defined pre

viously. See 5.1.1, p. 39.

The value of the expression in the address should be less than 2T15,

but no assembly error will result from a larger value.

2.6 INDEX FIELD (Columns 24 - RIGHT MARGIN)

If any index register is to be specified, the address field must be

terminated by a comma, followed by a symbol (or expression) whose value is

the address of an index register. Blanks in the index field are ignored, and

the field is terminated by a semi-colon or the RIGHT MARGIN +1 (which is not

scanned), whichever occurs first.

The value of the expression in the index field is loaded right-justified

into bits 20 - 15 of the assembled instruction. If the value is not defined,

an error message will be printed. No error message will be printed if the

value of the index field is greater than 63.

Since the monitor and ALGOL are both doing things behind the use^s

back, it is unsafe for a user to choose his own index registers. It is

strongly recommended that only ALGOL variables of type index be used in the

index field. (See Sections 3.1 and 3.4, p 21 and 26.)

2.7 COMMENT FIELD (Columns 24-80)

All columns to the right of the first semi-colon in the address-index

field are ignored by the Assembler, and may therefore be used for comments,

which may extend to Column 80. All columns of the input line including the

AND sequence number are printed. A tab to column 40 is included in the tab

table to allow the user to align his comments. However, columns 40 - RIGHT

MARGIN are part of the address-index field unless a has appeared previous

ly.

3.1 DIRECT ACCESS OF ALGOL SYMBOLS

In four cases ALGOL symbols may be referenced directly In WHAT codei

1) Simple variables

2) Index variables

3) Backwards transfers within the same block

4) Formal parameters called by value.

EXAMPLE:

AL begin

real ALPHA;

index BETA;

GAMMA:

WH LXP 0 1, BETA;

CLA 3 ALPHA, BETA;

TRA GAMMA;

AL end

The only precaution necessary in these cases is that the type of access

(single, double, logic, index, transfer address) matches the type of the ALGOL

symbol referenced.

CHAPTER 3 - WHAT/ALGOL INTERACTION

3.2 INDIRECT ACCESS ALGOL SYMBOLS

Three cases require special treatment:

1) Forward and cross-block transfers

2) Subscripted variables

3) Formal parameters called by name

3.2.1 FORWARD AND CROSS-BLOCK TRANSFERS

A forward or cross-block transfer in WHAT to an ALGOL label will not

assemble properly and may not be detected as an error. This problem may

be skirted in one of two ways:

If the MTRA f t and the ALGOL label are at different block levels, the

"TRA11 must be replaced by an ALGOL ff£o to" statement.

EXAMPLES:

WH TRA ALPHA;

AL begin real X;

ALPHA:

must be replaced by:

WH ...

AL go to ALPHA;

WH

AL begin real X;

ALPHA:

V

Repeat:
This will
not work

J

The "go to11 compiles into two locations and must not follow a test instruction,

If the transfer does not cross block boundries, It may be effected by

"TRA" In WHAT to a WHAT label which Is defined to have the desired value.

The following two forms are equivalent:

EXAMPLES:

• • •

WH TRA L7;

• • •

WH L7 COM DEFINE L7

AL ALPHAS

• • •

- - — o r - - - -

• • •

WH TRA L7;

• • •

AL ALPHA:

WH DEF L7 = ALPHA;

AL • • •

3.2.2 SUBSCRIPTED VARIABLES

To access a subscripted variable, the best method is to use the available

ALGOL machinery. To place the value of a subscripted variable into the

accumulator, use the reserved identifier, "ACC":

WH

AL ACC <-<subscripted variable>;

WH ... ; accumulator = desired value.

To store the value of the accumulator into a subscripted variable, use:

WH ...

AL TEMP *- ACC;

Subscripted variable> «-TEMP;

WH ...

where TEMP is a simple variable having the same type as the subscripted variable.

Note that the construction:

...

AL Subscripted variable> <-ACC;

• • •

will not work since ALGOL uses the accumulator to evaluate the address of the

subscripted variable.

3.2.3. FORMAL PARAMETERS CALLED BY NAME

Within a procedure, formal parameters called by name may not be accessed

directly. Again, the easiest method of referencing these is via the f,ACC,f

symbol. To load the accumulator with the value of a formal parameter, use:

WH ...

AL ACC <-<formal parameter>;

WH ...

To store the accumulator in a formal parameter, use:

WH

AL TEMP «- ACC;

<formal parameter> «- TEMP;

WH ...

where TEMP and the formal parameter have the same type.

As with subscripted variables, the construction:

WH ...

AL <formal parameter> <-ACCj

WH ...

will not work.

3.3. CROSS-BLOCK TRANSFERS

Since intervening ALGOL cards have no effect on the scope of definition

of WHAT symbols, WHAT is entirely independent of ALGOL block structure.

(However, WHAT code may only reference those ALGOL symbols defined in the

block containing the WHAT code.) As a result, a programmer may have tables

and machine-code subroutines which may be accessed by any part of his WHAT/ALGOL

program.

Great care must be exercised by the programmer who uses cross-block

transfers via WHAT code. Two rules must be strictly adhered to:

(1) When transferring control to a subroutine in any block different

from the current block, the subroutine may only access those ALGOL

symbols which are defined identically in both blocks.

(2) The order in which begin1s and end's are encountered must not be

altered by the addition of WHAT coding.

Cross-block transfers are completely contrary to the philosophy of ALGOL

and have implications which are beyond the scope of this manual.

3.4. INDEX ALLOCATION

Whenever an ALGOL index variable loses definition due to a block exit,

the index register to which it was assigned is also released for later index

variables. This feature may be utilized in a large WHAT program as an aid

to the programmer in assigning/releasing his index registers. No more than 28

index variables may be defined at any time.

E

r

r

3.5. STATEMENT TERMINATION

When the ALGOL compiler Is prepared to accept a statement and encounters

WHAT code, the "expected" statement is not terminated until a ";" or other

statement terminator is encountered in ALGOL. This is most likely to create

difficulty when WHAT code occurs in the scope of some ALGOL construction.

Examples:

AL for ... do

WH

scope of

for-statement WH

AL

AL

WH

WH

AL

<statement>;

if ... then

scope of then

else <statement>;

r
i

r

AL

WH

WH

AL

begin

... |
• • •

... J

this is treated
as a single statement

end

r

r

CHAPTER 4 - SUDO INSTRUCTIONS IN WHAT

A sudo (pseudo-instruction) is an instruction to WHAT rather than a G-20

command to be assembled for later execution. The mnemonic name of the sudo is

punched in the operation field of the source program card. For all sudos the

following holds:

(1) The location field is first treated as described in Section 2.2 for

machine commands.

(2) The mode field is checked for error but is otherwise ignored.

(3) The action of thi particular sudo takes place.

A sudo may be listable or non-listable. For a listable sudo the parameter

set may be repeated, separated by commas, as many times as desired in the space

provided on the card, up to the RIGHT MARGIN. For a non-listable sudo only one

parameter set is allowed in the address field. The effect of a listable sudo

is the same as if the sudo were repeated on successive lines with one parameter

set per line; the parameter sets are processed in the left-to-right order.

The remainder of Chapter consists of an alphabetical listing of the sudos,

with an explanation and examples of the use of each. The format used in explain

ing the sudos is as follows:

XXX PARAMETER SYNTAX

LISTABLE

••EXECUTE EXTRA EXEC11

The first line gives the three letter sudo name and the type and format of the

parameter set(s). The second line states whether the sudo is listable or

non-listable (for sudos for which the concept is meaningful). The third line

contains a summary of the action of the sudo. Note that the above sudo is only

a hypothetical example.

A L P < BLANK > <CHARACTER STRING>| O I 31 T> < CHARACTER STRING>
NON-LI STABLE

• A L P H A N U M E R I C •

T H E E F F E C T IS T O L O A D T H E G - 2 0 I N T E R N A .
R E P R E S E N T A T I O N O F T H E S T R I N G Or C H A R A C T E R S I N T O S U C C E S S I V E
M A C H I N E L O C A T I O N S * 4 C H A R A C T E R S P E R W O R D . T H 5 D I G I T G I V E S
T H E N U M B E R O F W O R D S T O B E L O A D E D t W I T H A B L A N K B E I N G
T R E A T E D A S 1* A N D 0 B E I N G T R E A T E D A S 1 0 . T H E B L A N K OR
D I G I T M U S T A P P E A R I N T H E F I R S T P O S I T I O N OF T H E A D D R E S S
F I E L D » C O L U M N 2 4 . T H E S T R I N G TO 3 E L O A D E D E X T E N D S F R O M
C O L U M N 2 5 T O C O L U M N (2 5 + 4 K) , W H E R E K IS T H E N U M B E R O F
W O R D S S P E C I F I E D .

examples:
A L F 4 E R R 0 R N U M B E R O N E

T H I S L I N E W I L L C A U S E T H E L O A D I N G O F :
WI E R R O I N T O

R N U I N T O
M B E R I N T O
O N E I N T O

Wl + 1
W l + 2
W l + 3

A N D IS E Q U I V A L E N T T O
W l A L F 1 E R R O

T H E F O U R L I N E S :

A L F JR N U
A L F 1 M B E R
A L F i O N E

CHK < WHAT S Y M 3 0 L >

• CHECK•
THE F U N C T I O N I S TO C H E C K W H E T H E R OR NOT _ A B E _ S W H I C H

H A V E B E E N U S E D ARE DEFI NED* THE S Y M B O L M U S T 3 E A .ABE.•
IF ITS S U B S C R I P T IS ZERO OR 3 L ANK• T H E N THE S U 3 S C R I P T I S
C O N S I D E R E D T O BE THE M A X I M U M A L L O W E D S J B S C R I P T . T H E
L A B E L S F R O M < C _ A S S NAME > 0 T O < C L A S S >l A ME > S U 3 SC R I P T ARE
T H E N C H E C K E D TO S E E IF A L L T H O S E W H I C H H A V E B E E N U S E D A 3 E
D E F I N E D . I N C A S E AN U N D E F I N E D L A3E*. IS E N C O U N T E D * AN
E R R O R * R I N T O U T T A K E S ^ L A C E W I T H THE F O L L O W I N G F O R M !

U N O T 5 2 6 3 4 7

T H I S M E A N S THAT THE LABEl. T 5 IS U N D E F I N E D • AND THAT
IT H A S L A S T 3 E E N U S E D IN L O C A T I O N Z 2 5 3 4 7 .

THE C H E C K I N G W I L L C O N T I N U E U ^ T I L THE L I S T OF
P A R A M E T E R S H A S B E E N E X H A U S T E D •

examples:

•L3L
_ 3 L
L B L

D 5 ;
wi o ;
R 9 0 ,

(P R O G R A M
CHK d»ws*r;

DO TO > 5 . WO T 3 W5« AND RO T O R 9 0 ARE C H E C K E D .

COM <IMMATERIAL)

• COMMENT•

THE LOCATION FIELD IS TREATED AS JSUAL AND THE MODE s I ELD
WILL GET AN ERROR MESSAGE IF IT IS ILLEGAL. OTHERWISE THE LINE

is ignored,

examples:

l B l l i ;
com this is a comment

l i com gee... another comment
these lines wil l 3e printed. two l*s wil l be declared as
labels and l i wil,- be defined as the current value
of -a*. however t no code wil l be compiled.

CPY <EXPRESSION>t<EXPRESS10N>
•C3»Y« NON-LI STABLE

•COPY*

L E T THE VALUE OF THE FIRST AND THE SECOND EXPRESSIONS
B E Nl AND N2f RESPECTIVELY. THEN THE NEXT Nl WORDS WILL 3E
FILLED B Y COPYING F R O M THE LAST N2 WORDS ASSEMBLED. THAT I S .
THE WORDS IN A- N2 * A-N2+1. . . . • A-l WILL B E COPIED REPEATED.Y
UNTIL Nl HAVE 3EEN COPIED. Nl NEED NOT 3E A MULTIPLE
OF Nfe; Nl MUST NOT EQUAL ZERO. A-TER fCPY» HAS BEEN
EXECUTED• THE -OCATION COUNTER *A« HAS BEEN INCREASED
BY N l .

WARNING: IF THE u A S T N2 WORDS CONTAIN ANY
UNDEFINED LABELS t THESE WILL N O T L A T E R B E DEFINED IN THE
COPIES.

examples:

W 8 LWD /737
LWD W53;
CPY 500#2

C W 8) A N D (W B + l) WILL B E COPIED INTO T H E NEXT 500 LOCATIONS.

El LWD o ;
C*Y 499.1;

T H E E F F E C T IS T O S T O R E Z E R O I N T O 5 0 0 - D C A T J O N S
S T A R T I N G AT E l .

<SYMBOL>*<EXPRESSION)
LISTABLE

•DEFINE*

THE VALUE OF THE EXPRESSION WILL 3E CALCULATED AND
TAKEN MODULO 2*21. AND THE SYMBOL. WILL BE GIVEN THIS
VALUE. IF THE LETTER OF THE SYM33L HAS BEEN DECLARED AS A
LABEL. THE PARTICULAR LABEL GIVEN IS THEREBY DEFINED. IF
THE LETTER IS NOT A LABEL. THE CORRESPONDING REGIONAL BASH
IS DEFINED AS

<EXPRESSION> - <SU3SC*IPT>

IN THE USUAL CASE* THE SUBSCRIPT EQUALS ZERO,

EXAMPLES:

LBL B30
DEF B0*/22750

THIRTY-ONE B«S ARE DESIGNATED AS LABELS* AND BO IS GIVEN
THE VALUE /22750. Bl. B2*...* B30 ARE STILL UNDEFINED.

DEF CI0«/7020,

CO IS GIVEN THE VALUE /7006, AND ALL C«S ARE DEFINED.

DMP <EXPRESSI0N>. <EXPRESS I0N>
LI STABLE
PRINTING AFTER EXECUTION

•DUMP F

THE EFFECT IS TO GIVE AN ASSEM8-Y-TI ME OCTAL DUMP ON
THE PRINTER OF THE LOCATIONS FROM THE VALUE OF THE FIRST
EXPRESSION UP TO AND INCLUDING THE VA.UE OF THE SECOND
EXPRESSION.

WARNING: THERE IS NO CHECK THAT THE VALUES ARE PROPER
MACHINE LOCATIONS.

EXAMPLES:

DMP /21000./22000

AN OCTAL DUMP W l L u BE GIVEN OF /1001 WORDS FROM LOCATION
•21000 UP TO AND INCLUDING THE LOCATION /22000.

DMP A - I O O . A - U

AN OCTAL DUMP OF THE LAST 100 LOCATIONS WILL BE GIVEN.

ENT <IMMATERIAL >

• ENTRY•

THE EFFECT IS TO ASSEM3LE AN ALL ZE*0 WORD. THIS SUDO
MAY BE USED FOR ENTRY INTO A SUBROUTINE. A LABEL
APPEARING IN THE -OCATION F I E u D WILL BE DEFINED AS USUAL.

EXAMPLES:

PI ENT SUBROUTINE

THIS DESIGNATES THE ENTRY INTO A SUBROUTINE THAT IS
REFERRED TO BY THE LABEL PI. ZERO IS -OADED INTO THE
LOCATION PI.

FPC < TERM >

HPC < TERM >
LI STABLE

•HALF PRECISION CONSTANT*

THE FUNCTION IS TO LOAD THE OCTAL REPRESENTATION OF
THE DECIMAL NUMBER INTO THE NEXT -OCATION. THE MANTISSA
OF THE NUMBER IS ROUNDED TO SEVEN (OCTAL) DIGITS 3EF0RE
STORING.

EXAMPLES:

W12 HPC 0*1*2*3;
HPC -4.15,0-6;

Ot 1* 2* 3* AND -4.15*10*-6 WILL BE LOADED INTO FIVE
CONSECUTIVE LOCATIONS STARTING AT W12.

WARNING: THE ABSOLUTE VALUE OF THE NUMBER MUST BE LESS
THAN 3.450873173389^69 AND THE EXPONENT LESS THAN 70* OR
AN EXPONENT OVERFLOW WILL OCCUR AT ASSEMBLY TIME.

•FULL PRECISION CONSTANT'

THE FUNCTION IS TO LOAD THE DCTA- REPRESENTATION OF
THE DECIMAL NUMBER INTO THE NEXT TWO LOCATIONS.
WARNING: THE ABSOLUTE VALUE OF THE NUMBER MUST BE LESS
THAN 3 . 4 5 0 8 7 3 1 7 3 3 8 9 , 0 6 9 AND THE EXPONENT LESS THAN 7 0 * OR
AN EXPONENT OVERFLOW WILL OCCUR AT ASSEMBLY TIME.

EXAMPLES:

W 1 0 FPC 1 0 , 4 . 0 0 0 1 5 9 * 1 6
W l l FPC - 2 „ 5 * 3.44463,0-5

W 1 0 ,AND W 1 0 + 1 WILL BE LOADED WITH 1 0 * W 1 0 + 2 AND W 1 0 + 3
WILL BE LOADED WITH 4 . 0 0 0 1 5 9 * 1 0 + 1 5 * W l l AND W U + I WILL BE
LOADED WITH - 2 M 0 + 5 . AND W l l + 2 AND W l l + 3 WILL BE -OADED
WITH 3 . 4 4 4 6 3 * 1 0 * - 5 * ALL IN STANDARD G - 2 0 FULL PRECISION
FORM. WIO AND W l l MUST BE LABELS* SINCE THEY ARE NOT
IN ADJACENT LOCATIONS.

r

< WHAT SYM90L>

•LABEL*

THE CLASS IS DECLARED TO BE A LABEL C A S S . IP THE CLASS MAM
HAS NOT PREVIOUSLY APPEARED IN A •L3L* SUDOT THEN THE
SUBSCRIPT IS THE MAXIMUM SUBSCRIPT WHICH MAY BE USED
FOR THAT LABEL.

IF THE CLASS NAME HAS PREVIOUSLY APPEARED IN AN
•LBL• SUDO* THE FOLLOWING ACTIONS TAKE PLACE!

FIRST* THE OPERATION OF A •CHK* SJDO IS DONE ON THE
SYMBOL. THEN THE LABELS FROM <LETTER>0 TO
< LETTER> < SUBSCRIPT > ARE CLEARED TO USE AGAIN* WH!_£ ANY
LABELS GREATER THAN THE SUBSCRIPT APPEARING IN
< L E T T E R X S U B S C R I P T > ARE LEFT UNTOUCHED.

IF THE SUBSCRIPT IS ABSENT* THE MAXIMUM SUBSCRIPT
FOR THAT CLASS IS ASSUMED.

IN CASE *CHK* FINDS ONE OR MORE UNDEFINED LABELS
AN ERROR MESSAGE WILL BE PRINTED (SEE *CHK*) AND THE VA^UE
OF THE LABEL WILL BE CLEARED SO THAT IT MAY BE REDEFINED.

EXAMPLES:

LBL DIO

DO THROUGH DIO WI_L BE PERMITTED R O R USE AS LA3ELS.

(PROGRAM)
L3L D7
(PROGRAM)

THE LA3ELS DO THROUGH D7 WILL BE CLEARED FOR REDEFINITION
AS NEW LABELS* WITH AN ALARM MESSAGE PRINTED
IF ANY ARE UNDEFIMED.

EXL K21;

NOTICE THAT 2 LINES WERE SKIPPED AND THE *LIN*
SUDO WAS NOT PRINTED.

LWD <EXPRESSION>
NON-LI STABLE

• l O G I C W O R D *

THE EFFECT IS TO LOAD THE VALUE OF THE EXPRESSION
INTO THE NEXT MACHINE LOCATION AS A _OGIC WORD
(I.E. WITH AN *STL* COMMAND). ANY PUNCHING IN THE
MODE FIELD WILL BE CHECKED FOR ERROR BUT WILL OTHERWISE
BE IGNORED.

NO CHECKS ARE MADE TO SEE IF THE VALUES OF THE
EXPRESSIONS ARE WITHIN THE LIMIT OF THE FIELDS.

EXAMPLES:

LBL E2;
EO LWD /350 + SA;
El LWD /7777+Si;
£2 LWD Z7777777777;

NOTE: DO NOT ASSEMBLE ANY _DGIC WORD WITH 3IT 30 = 1 . THIS WILL
CONFUSE THE ALGOL RELOCATOR. IF THIS BIT IS HEEDED• IT MUST
BE ADDED AT RUN-TIME. (SEE WRITEUP OF -*1 * -t2. -»3* ALGOL MANUAL 0.14.)

LIN <EXPRESSION>
NON-_ISTAB_E
CARD IMAGE MOT PRINTED

•LINE*
I E N IS THE VALUE OF THE EXPRESSION* N B.ANK LINES

ARE PRINTED* IF PRINTING IS ON.
IF N s 0 OR THE ADDRESS FIELD IS 8..ANK. 1 .1NE UPSPACE
WILL OCCUR. (THE EFFECT IS SIMILIAR TO •SY L I N E 1 .)

EXAMPLES:

CLA pg;
LIN 2;
EXL K2i;

ABOVE ARE THE CARDS AS THEY WERE PUNCHED. BELOW IS
THE COMPILATION OF THE CARDS.

CLA P9;

r

PAG <IMMATERIAL >
PRINTING AFTER EXECUTION

•PAGE*
IF PRINTING IS TURNED ON* THE PA^ER IN THE PRINTER

WILL BE MOVED TO THE NEXT PAGE.

PRT <SYM30L>
LISTABLE
PRINTING BEFORE EXECUTION

•PRINT*

THE FUNCTION IS SIMILAR TO •CHK'* BUT IN ADDITION*
IF THE PRINTING IS ON* THE VALUES OF ALL USED LABELS WILL
be listed on the printer,

examples:
PRT W. P* D* QIO;

ALL THE USED LABELS OF THE SYM30LS W* => * D AND QO TO QIO AND THE
LOCATIONS TO WHICH THEY HAVE BEEN ASSIGNED ARE -ISTED ON
THE PRINTER.

• NAME f

THE EFFECT IS TO PACK THE SIX BIT REPRESENTATION OF
THE 5 CHARACTERS IN COLUMNS 24 TO 28 INTO THE RIGHTMOST
30 BITS 0= THE NEXT MACHINE LOCATION* ANY PUNCHING IN
THE MODE FIELD W I w L BE CHECKED FOR ERROR BUT WILÎ . OTHERWISE
BE IGNORED.

examples:

NAM PN3.S

THE 6 -BIT REPRESENTATIONS OF THE CHARACTERS Pi N* 3* •
AND S WILL BE LOADED INTO THE NEXT MACHINE LOCATION.
THIS IS THE SAME AS

L W D /20 16 43 53 6 5 ;

NAM <STRING>

WRD < SIGNED EXPRESSION)
LI STABLE

•WORD«
THE EFFECT IS TO STORE THE VALUE OF THE EXPRESSION

INTO THE CORE LOCATION SPECIFIED BY THE LOCATION COUNTER
IF THE VA.UE OF THE EXPRESSION IS NEGATIVE* •WRD• WILL
STORE IT INTO MEMORY AS AN INTEGER* PROVIDED THAT IT
IS < 2 * 2 l IN VALUE. (I.E. USING AN •STI^ COMMAND); IF
POSITIVE* IT WILL BE STORED AS A LOGIC WORD WITH AN •STL•
COMMAND.

EXAMPLES:

W8 WRD -Z735+8

W8 WILL BE LOADED WITH THE NEGATIVE INTEGER / 7 2 5

WIO WRD Z7777777777

W10 WILL BE LOADED WITH THE LOGIC WORD Z7777777777.

note: AS WITH 'LWD** BIT 31 MAY NOT 3E USED.

• RELEASE•

THE FUNCTION IS TO RELEASE LABELS; I.E.. TO CLEAR
THE DEFINITION OF A LETTER AS A uABE. SO THAT IT
CAN BE USED THEREAFTER AS A REGION (OR A NEW LABEL)*

FIRST 'CHK' IS PERFORMED. IF NO UNDEFINED .ABE. IS
ENCOUNTERED* THE LETTER IS THEN MARKED AS UNUSED. UNDER
CERTAIN CIRCUMSTANCES THE SPACE USED FOR THE .ABE. TAB.E
WILL ALSO BE RELEASED. THIS WILL OCCUR IF THE LETTER
BEING RELEASED IS THE LAST LETTER DECLARED m S A LABEL * OR
if all letters declared since have been re-eased and their
space reclaimed.

if am undefined label is encountered by ' chk ' * an
error message wil. be printed* as with 'chk 9* and the
•release' will be performed anyway.

examples:

LBL RIO
(PROGRAM)

. REL R
LBL R l l

THE SET OF LABELS RO THROUGH RIO IS RE.EASED AND THEN
A NEW SET OF LABELS RO THROUGH R l l IS DEFINED*

REL <SYMBOL>

C H A P T E R 5 - E R R O R M E S S A G E S

5»1 E R R O R S D E T E C T E D D U R I N G C O M P I L A T I O N

ANY E R R O R D E T E C T E D B Y • W H A T • D U R I N G T H E P R O C E S S I N G OF A
L I N E W I L L C A U S E A P R I N T O U T O F T H E LINE 0 S C O D E P R E C E E D E D BY AN
E R R O R M E S S A G E * A S F O L L O W S .

5. 1 • 1

AD U

E R R O R S IN G - 2 0 I N S T R U C T I O N S

U N D E F I N E D C O N S T R U C T I O N IN A D D R E S S F I E . D OF G - 2 0
I N S T R U C T I O N

IR U U N D E F I N E D C O N S T R U C T I O N IN INDEX F I E L D OF A G - 2 0
I N S T R U C T I O N

L A B L

M O D E

OP E R

902
900

E R R O R I N L O C A T I O N F I E L D

E R R O R I N T H E M O D E F I E L D OF A G - 2 0 I N S T R U C T I O N

E R R O R IN O P E R A T I O N F I E L D

I L L E G A L U S E OF | OR E N D OF CARD) E R R O R M E S S A G E
) F O . . O W S

C A T C H - A L L FOR S E V E R A L O T H E R E R R O R S) E R R O R L I N E

5#t.2 E R R O R S IN S U D O I N S T R U C T I O N S

AD U U N D E F I N E D C O N S T R U C T I O N W H E R E AN E X P R E S S I O N IS
N E E D E D IN THE A D D R E S S F I E L D OF A S U D O .

A U • A F IS N O T W I T H I N B O U N D S OF JSER*~5 M E M O R Y . (U P O N
S T O R I N G A W O R D)

u B L >

TERM

A S U B S C R I P T ON A L A B E L S Y M B O L IS G R E A T E R THAN A O W E D

U N D E F I N E D C O N S T R U C T I O N W H E R E A S Y M B O L I S W A N T E D IN
T H E A D D R E S S F I E L D OF A S U D O .

WHAT A L E T T E R W H I C H HAS N O T B E E N D E C l A R E D AS A L A B E L
A P P E A R S I N A S Y M B O L IN THE A D D R E S S F I E L D OF A S U D O
W H E R E A L A B E . S Y M 3 0 L IS R E Q U I R E D .

T B L > SPACE IN LAOEw T A 3 L E IS EXHAUSTED

5.2 E R R O R S D E T E C T E D D U R I N G R U N N I N G

A L . R U M - T I M E E R R O R S O C C U R R I N G IN •WHAT• ARE H A N D L E D E X A C T L Y
THE S A M E AS IN A L G O L . (S E E ALG0u.-20 M A N U A L * C H A P T E R 6 3 .)

APPENDI X A

G-20 ALPHABET

SYMBOL INTERNAL CARD CODE SYMBOL INTERNA. CARD CODE
SPACE 00 NO PUNCH 0 40 0

A 01 1 1 41 1
B 02 2 2 42 2
C 03 3 3 43 3
D 04 4 4 44 4
E 05 5 5 45 5
F 06 6 5 46 6
G 07 7 7 47 7
H 10 8 8 50 8
I 1 1 9 9 51 9
J 12 - 1 w 52 0 7 8 NOTE 1
K 13 - 2 • 53 •f 3 3
L 14 - i •

54 4-
M 15 - i • - 55 -N 16 - 5 * 56 - 4 8
0 1 7 - 6 57 0 1
P 20 - 7 = 60 3 8
0 21 - 3 V 61 *• 7 8 NOTE 1
R 22 9 t 62 - 2 8 NOTE 1
S 23 0 2 63 6 3 NOTE 1
T 24 0 3 < 64 - 5 8 NOTE 1
U 25 0 4 65 - 3 3
V 26 0 5 > 66 - 6 8 NOTE 1
VI 27 0 6 •

•
67 4 8 NOTE 2

X 30 0 7 < 70 0 4 8
Y 31 0 8 [71 0 5 3 NOTE 1
z 32 0 9] 72 0 6 8 NOTE 1
1 33 2 8 NOTE 1) 73 + 4 a
+ 34 6 8 NOTE 1 + 74 7 8 NOTE 1
+ 35 - 7 8 NOTE 1 *• 75 2 8 NOTE 1

36 5 8 NOTE 1 • • 76 0 2 8 NOTE 1
t 37 0 3 8 * 77 5 8 NOTE 2

THE INTERNAL REPRESENTATIONS ABOVE ARE OCTA. INTEGERS.

NOTE IX MUST BE PUNCHED USING THE MULTIPLE PUNCH BUTTON
NOTE 2: THE KEY MARKED QUOTE ON THE KEYPUNCH ACTUALLY PUNCHES

THE SEMI-COLON - THE 4-8 COMBINATION. THE G-20
CHARACTER QUOTE MUST BE MU.TI-PUNCHED AS 5-8.

t- -

APPENDIX B
G-20 •WHAT• OPCODES

ADDRESS PREPARATION
OCA 000 X * (OA)
OCS 020 -X * (OA)
OAD 040 (ACC) + X * (OA)
OSU 060 (ACC) - X • (OA)
OSN 120 -(ACC) • X + (OA)
OAN 100 -(ACC) - X •> (OA)
OAA 140 |(ACC) I X| ^ (OA)
OSA 160 |(ACC) - X| •> (OA)

ADD AND SUBTRACT
CLA 005 X • (ACC)
CLS 025 - X * (ACC)
ADD 045 (ACC) + X • (ACC)
SUB 065 (ACC) - X • (ACC)
ADN 105 - (ACC) - X * (ACC)
SUN 125 -(ACC) + X • (ACC)
ADA 145 |(ACC) + X| • (ACC)
SUA 165 |(ACC) - X| • (ACC)

ARITHMETIC TESTS *
FOM 021 X < 0
FOP 001 X > 0
FLO 121 (ACC) < # K
FGO 061 (ACC) > J$ *
FUO 161 (ACC) * X
FSM 101 (ACC) • X < 0
FSN 141 (ACC) + X * 0
FSP 041 (ACC) 4- X > 0

STORE
STL 173 (ACC) • X
STD 153 (ACC) • X t
STS 113 (ACC) • X
ST I 133 (ACC) •> X
STZ 073 0 • X

X + 1

INDEX REGISTER CODES
LXP 012
LXM 032 -X
ADX 002 (I)
SUX 022
XPT 016
XMT 036 -X •> (I)

• (I)
+ (I)
* X •>

(I) - X •
X •> (I)

(I)
(I)

(TEST(I)*0)»
(TEST(I)*0)»

AXT 006 (I) • X* (I) (TEST(I)*0)»
SXT 026 (I) - X • (I) (TEST(I)*0)«

TRANSFER OF CONTROL
TRA 017 X •> (NO
SKP 137 (NO + X •> (NO
TRM 177 (NO •> (X); X+l • (NO

SPECIAL
REP 013 REPEAT
XEQ 010 EXECUTE X

MULTIPLY AND DIVIDE
MPY 077 (ACC) * X V (ACC)
RDV 057 X / (ACC) * (ACC)
DIV 053 (ACC) / X -> (ACC)

LOGIC OPERATIONS
CAL 015 X -> (ACC)
CCL 035 -*X • (ACC)
ADL 055 (ACC) + X •
SUL 075 (ACC) - X ->
EXL 115 (ACC) A X 4
ECL 135 (ACC) A

UNL 155 (ACC) v
UCL 175 (ACC) v

(ACC)
X -> (ACC)
X 4 (ACC)
-.X -> (ACC)
X * (ACC)
-tX * (ACC)

LOGIC TESTS *
IOZ Oil X - 0
ICZ 031 -*X = 0
ISN 051 (ACC) +
IUO 071 (ACC)
IEZ 111 (ACC)
IEC 131 (ACC)
IUC 171 (ACC)
IUZ 151 (ACC)

X * 0
X t 0
X = 0
-,X = 0
-*X s 0
X = 0

MODE INTERPRETATION

0 X=(I) • (OA) + ADDRESS
1 X=(I) • (OA) + (ADDRESS)
2 X=((I) + (OA) + ADDRESS)
3 X=((I) + (OA) + (ADDRESS))
NOTE: (Z) = CONTENTS OF Z

*FOR ALL TESTS * DO NEXT IF
CONDITION INDICATED IS TRUE•
SKIP IF FALSE.

•WHAT* ASSEMBLES ALL COMMANDS
IN MODE 2 EXCEPT THE FOLLOWING
WHICH ARE ASSEMBLED IN MODE 0:
STI TRA
STS TRM
STD REP
STL STZ

C O M M A N D S IN N U M E R I C A L O R D E R

0 0 0 OCA O P E R A N D C L E A R ADD
00 1 F O P IF O P E R A N D P L U S
0 0 2 ADK A D D T O INDEX
0 0 5 C l A CLEAR A D D
0 0 6 A X T ADD T O I N D E X AND T E S T
0 1 0 X E Q E X E C U T E O P E R A N D
0 1 1 IOZ IF O P E R A N D Z E R O
0 1 2 L X P L O A D INDEX P L U S
0 1 3 R E P R E P E A T
0 1 5 CAL C L E A R A D D L O G I C
0 1 6 X P T L O A D I N D E X P L U S AND T E S T
0 1 7 TRA T R A N S F E R
0 2 0 O C S O P E R A N D CLEAR S U B T R A C T
0 2 1 FOM IF O P E R A N D M I N U S
0 2 2 SUX S U B T R A C T F R O M I N D E X
0 2 5 C L S C L E A R S U B T R A C T
0 2 6 S X T S U B T R A C T F R O M I N D E X A N D T E S T
03 1 ICZ IF C O M P L E M E N T ZERO
0 3 2 LXM L O A D I N D E X M I N U S
0 3 5 C C L C L E A R A D D C O M P L E M E N T L O G I C
0 3 6 XMT L O A D I N D E X M I N U S AND T E S T
0 4 0 OAD O P E R A N D A D D
041 F S P IF SUM P L U S
0 4 5 A D D A D D
051 ISN IF S U M N O N - Z E R O
0 5 3 D I V D I V I D E
0 5 5 A D - A D D L O G I C
0 5 7 RDV R E V E R S E D I V I D E
0 6 0 O S U O P E R A N D S U B T R A C T
061 F G O IF G R E A T E R T H A N O P E R A N D
0 6 5 S U 3 S U B T R A C T
0 7 1 IUO IF U N E Q U A L O P E R A N D
0 7 3 S T Z S T O R E ZERO
0 7 5 S U . S U B T R A C T L O G I C
0 7 7 M P Y M U L T I P L Y

X • (O A)
T E S T X > 0
(I) + X + (I)
X • (A C C)
(I) • X • (I)
E X E C U T E X
T E S T X = 0
X r (I)
R E P E A T
X • (A C C)
X • (I)
X • (N O
- X * (O A)
T E S T X < 0
(I) - X + (I)
- X * (A C C)
(I) - X • (I)
T E S T -*X = 0
- X * (I)
-%X -> (A C C)
- X • (I)
(A C C) + X • (
T E S T (A C C) +
(A C C) + X •> (
T E S T (A C C) +
(A C C) / X •> (
(A C C) • X • (
X / (A C C) • (
(A C C) - X • (
T E S T (A C C) >
(A C C) - X • (
T E S T (A C C) *
0 * X
(A C C) - X • (
(A C C) * X + (

(T E S T (I) * 0)

(T E S T (I) * 0)

(T t S T (I) * 0)

(T E S T (I) * 0)
O A)
X > 0
A C C)
X * o
A C C)
A C C)
A C C)
O A)
X
A C C)
X

A C C)
A C C)

i + e 0 * N O P E R A N D ADD A N D N E G A T E - (A C C) " X • (O A)
101 F S M IF S U M M U N U S T E S T (A C C) • X < 0
1 0 5 A D M

ADD At*} N E G A T E
- (A C C) - X • (A C C)

1 1 1 I E Z IF E X T R A C T Z E R O T E S T (A C C) ,A X « 0
r i 3 S T S S T O R E S I N G L E (A C C) • X
1 1 5 E X L E X T R A C T L O G I C (A C C) A X • (A C C)
1 2 0 O S M O P E R A N D S U B T R A C T A N D N E G A T E - (A C C) f X • (O A)
121 F L O IF L E S S T H A N O P E R A N D T E S T (A C C) < X
1 2 5 S U M S U B T R A C T A N D N E G A T E - (A C C) • X • (A C C)
131 I E C IF E X T R A C T C O M P L E M E N T Z E R O T E S T (A C C) A •» X « 0
1 3 3 S T I S T O R E I N T E G E R (A C C) • X
1 3 5 E C E X T R A C T C O M P L E M E N T L O G I C (A C C) A -»X • (A C C)
1 3 7 S K P S K I P (N O • X •». (N O
1 4 0 O A A O P E R A N D A D D A N D A B S O L U T E I (A C C) • X | * (O A)
141 F S N IF S U M N O N - Z E R O T E S T (A C C) • X * 0
1 4 5 A D A A D D A N D A B S O L U T E | (A C C) • X | • (A C C)
151 I U Z IF U N I O N Z E R O T E S T (A C C) v X s 0
1 5 3 S T D S T O R E D O U B L E (A C C) • X . X • 1
1 5 5 U N u U N I T E L O G I C (A C C) v X • (A C C)
1 6 0 O S A O P E R A N D S U B T R A C T A N D A B S O L U T E | (A C C) - X | • (O A)
161 F U O IF U N E Q U A L O P E R A N D T E S T (A C C) * X
1 6 5 S U A S U B T R A C T A N D A B S O L U T E | (A C C) - X | • (A C C)
171 I U C IF U N I O N C O M P L E M E N T Z E R O T E S T (A C C) v -« X = 0
1 7 3 S T L S T O R E L O G I C (A C C) • X
1 7 5 U C L U N I T E C O M P L E M E N T L O G I C (A C C) v -*X • (A C C)
1 7 7 T R M T R A N S F E R A N D M A R K (N O • (X) ; x + i •

C O M M A N D S I N A L P H A B E T I C A L O R D E R

1 4 5 ADA ADO A N D A B S O L U T E
0 4 5 ADD A D D
0 5 5 A D . ADD L O G I C
1 0 5 A D N ADD A N D N E G A T E
0 0 2 A D X ADD TO I N D E X
0 0 6 A X T ADD T O I N D E X AND T E S T
0 1 5 C A ^ CLEAR A D D L O G I C
0 0 5 CLA C L E A R A D D
0 3 5 C C L C L E A R A D D C O M P L E M E N T L O G I C
0 2 5 C L S CLEAR S U B T R A C T
0 5 3 DI V D I V I D E
1 3 5 E C . E X T R A C T C O M P L E M E N T L O G I C
1 1 5 E X L E X T R A C T L O G I C
0 6 1 F G O IF G R E A T E R T H A N O P E R A N D
121 F w O IF w E S S T H A N O P E R A N D
0 2 1 FOM IF O P E R A N D M I N U S
0 0 I F O P IF O P E R A N D P L U S
101 F S M IF SUM M I N U S
141 F S N IF SUM N O N - Z E R O
0 4 1 F S P IF SUM P L U S
161 F U O IF U N E Q U A L O P E R A N D
0 3 1 ICZ IF C O M P L E M E N T ZERO
131 IEC IF E X T R A C T C O M P L E M E N T Z E R O
1 1 1 IEZ IF E X T R A C T ZERO
O i l IOZ IF O P E R A N D Z E R O
0 5 1 ISN IF SUM N O N - Z E R O
171 IUC IF U N I O N C O M P L E M E N T . Z E R O
0 7 1 IUO IF U N E Q U A L O P E R A N D
151 IUZ IF U N I O N Z E R O
0 3 2 LXM L O A D I N D E X M I N U S
0 1 2 L X P L O A D I N D E X P L U S
0 7 7 M P Y M U L T I P l Y
1 4 0 OAA O P E R A N D A D D A N D A B S O L U T E
0 4 0 OAD O P E RAND A D D
1 0 0 OAN O P E R A N D A D D AND N E G A T E

I (A C C) • X| • (A C C)
(A C C) • X • (A C C)
(A C C) • X • (A C C)
- (A C C) - X 4 (A C C)
(I) * X * (I)
(I) + X •* (I) (T E S T (I) * 0)
X -> (A C C)
X • (A C C)
-*X • (A C C)
- X • (A C C)
(A C C) / X • (A C C)
(A C C) A -.X • (A C C)
(A C C) A X • (A C C)
T E S T (A C C) > X
T E S T (A C C) < X
T E S T X < 0
T E S T X > 0
T E S T (A C C) 4- X < 0
T E S T (A C C) • X * 0
T E S T (A C C) • X > 0
T E S T (A C C) * X
T E S T -*X = 0
T E S T (A C C) A X = 0
T E S T (A C C) A X a 0
T E S T X = 0
T E S T (A C C) + X * 0
T E S T (A C C) v -i X = 0
T E S T (A C C) * X
T E S T (A C C) v X = 0
- X -» (I)
X -> (I)
(A C C) * X 4 (A C C)
I (A C C) • X| * (OA)
(A C C) • X -> (OA)
- (A C C) - X • (OA)

0 0 0 O C A O P E R A N D C L E A R A D D X * (O A)
0 2 0 O C S O P E R A N D C L E A R S U B T R A C T - X * (O A)
1 6 0 O S A O P E R A N D S U B T R A C T A N D A B S O L U T E | (A C C) - X| • (O A)
1 2 0 O S N O P E R A N D S U B T R A C T A N D N E G A T E - (A C C) • X, •» (O A)
0 6 0 O S U O P E R A N D S U B T R A C T (A C C) - X • (O A)
0 5 7 R D V R E V E R S E D I V I D E X / (A C C) • (A C C)
0 1 3 R E P R E P E A T R E P E A T
1 3 7 S K P S K I P (N O • X • (N O
1 5 3 S T D S T O R E D O U B L E (A C C) • Xt X • 1
1 3 3 S T 1 S T O R E I N T E G E R (A C C) * X
1 7 3 S T L S T O R E L O G I C (A C C) • X
1 1 3 S T S S T O R E S I N G L E (A C O • X
0 7 3 S T Z S T O R E Z E R O 0 * X
0 6 5 S U A S U B T R A C T A N D A B S O L U T E I (A C C) - X| * (A C O
1 6 5 S U B S U B T R A C T (A C C) - X • (A C C)
0 7 5 S U L S U B T R A C T L O G I C (A C C) - X • (A C O
1 2 5 S U N S U B T R A C T A N D N E G A T E - (A C C) • X • (A C C)
0 2 2 S U X S U B T R A C T F R O M I N D E X (I) - X • (I)
0 2 6 S X T S U B T R A C T F R O M I N D E X A N D T E S T (I) - X • (I) (T £ S T (t) # 0)
0 1 7 T R A T R A N S F E R X • (N O
1 7 7 T R M T R A N S F E R A N D M A R K (N O • (X) } X • 1 • (N O
1 7 5 u c _ U N I T E C O M P L E M E N T L O G I C (A C O v >»X • (A C O
1 5 5 U N _ U N I T E L O G I C (A C C) v X • (A C C)
0 1 0 X E Q E X E C U T E O P E R A N D E X E C U T E X A S C O M M A N D
0 1 6 X P T L O A D I N D E X P L U S A N D T E S T X • (I) (T E S T (I) * 0)
0 3 6 X M T L O A D I N D E X M I N U S A N D T E S T - X • (I) (T E S T (I) * 0)

APPENDIX C
SUDDS IN f WHAT•

ALF ALPHANUMERIC INFORMATION
CHK CHECK
COM COMMENT
CPY COPY
DEF DEFINE
DMP DUMP
ENT ENTRY
FPC FULL PRECISION CONSTANT
HPC HALF PRECISION CONSTANT
LBL LABEL.
LIN LINE
LWD LOGIC WORD
NAM NAME
PAG PAGE
PRT PRINT
REL RELEASE
WRD • WORD

APPENDIX D
G-20 SHIFT MULTIPLIERS

LEFT SHIFT

1
2

10
20
40

100
2 0 0
4 0 0

1000
2 0 0 0
4 0 0 0

1 0 0 0 0
2 0 0 0 0
4 0 0 0 0

05 00 0 0 0 0 1
05 00 0 0 0 0 2
05 00 0 0 0 0 4
06 00 0 0 0 0 1
06 00 0 0 0 0 2
06 00 0 0 0 0 4
07 00 0 0 0 0 1
07 00 0 0 0 0 2
07 00 0 0 0 0 4
10 00 0 0 0 0 1
10 00 0 0 0 0 2
10 00 0 0 0 0 4
11 00 0 0 0 0 1
11 00 0 0 0 0 2
11 00 0 0 0 0 4
12 00 0 0 0 0 1
12 00 0 0 0 0 2

NUMBER RIGHT SHIFT

0 0 0 0 00 0 0 0 0 1
1 101 00 0 0 0 0 4
2 101 00 0 0 0 0 2
3 101 00 0 0 0 0 1
4 102 00 0 0 0 0 4
5 102 00 0 0 0 0 2
6 102 00 0 0 0 0 1
7 103 00 0 0 0 0 4
8 103 00 0 0 0 0 2
9 103 00 0 0 0 0 1

10 104 00 0 0 0 0 4
1 1 104 00 0 0 0 0 2
12 104 00 0 0 0 0 1
13 105 00 0 0 0 0 4
14 105 00 0 0 0 0 2
15 105 00 0 0 0 0 1
16 106 00 0 0 0 0 4
17 106 00 0 0 0 0 2
18 106 00 0 0 0 0 1
19 107 00 0 0 0 0 4
20 107 00 0 0 0 0 2
21 107 00 0 0 0 0 1
22 n o 00 0 0 0 0 4
23 n o 00 0 0 0 0 2
24 1 10 00 0 0 0 0 1
25 1 1 1 00 0 0 0 0 4
26 111 00 0 0 0 0 2
27 111 00 0 0 0 0 1
28 112 00 0 0 0 0 4
29 1 12 00 0 0 0 0 2
30 112 00 0 0 0 0 1
31 113 00 0 0 0 0 4

BRIEF DEC IMAu-OCTAL CONVERSION TABLE

DECIMAL OCTAu OCTAL DECIMAL

10 12 10 8
20 24 20 16
30 36 30 24
40 50 40 32
50 62 50 40
60 74 60 48
70 106 70 56
80 120
90 132 100 64

200 1 28
100 144 300 192
200 310 40 0 256
300 454 500 320
4 0 0 6 2 0 600 384
500 764 70 0 4 4 8
6 0 0 1 130
700 1 274 1 000 512
800 1 440 2 000 1 024
9 0 0 1 604 3 000 1 5 3 6

4 000 2 04 8
1 0 0 0 1 750 5 000 2 560
2 000 3 720 6 000 3 072
3 000 5 670 7 000 3 564
A 0 0 0 7 640
5 0 0 0 11 610 10 000 4 096
6 000 13 560 20 000 8 192
7 0 0 0 15 530 30 000 12 268
8 0 0 0 17 500 40 000 16 384
9 0 0 0 21 450 50 00 0 20 480

60 000 24 5 7 6
10 0 0 0 23 420 70 000 28 672

20 0 0 0 47 040
30 000 72 4 6 0 100 000 32 768
AO 0 0 0 1 16 100 2 0 0 000 55 536
50 0 0 0 141 520 300 000 98 304
60 000 165 140 400 000 131 0 72
70 0 0 0 2 1 0 560 5 0 0 000 163 840
80 000 234 200 600 000 1 96 6 0 8
90 0 0 0 257 620 7 0 0 000 229 376

100 0 0 0 303 24 0 1 000 000 2 6 2 1 44

APPENDIX E

SAMPLE WHAT/ALGOL PROCEDURE

logic procedure NEXTCHAR (B,C) ;

boolean B; || if B = T, initialize, else continue.

logic array C; | | c [o] = 1st word of text.

begin

comment

If B is true, return first character of text buffer. If B is false, return

next character;

'| temp 8torage.

| word pointer,

(character pointer.

Ml ; will need two labels.

| if B = true

I <-0; | | reset word and

J. 4-4; | | character

|pointers.

|fetch appropriate word.

MO, J ; shift to right-justify.

/377 ; mask out garbage.

L ; save for ALGOL store.

| | value of procedure = L.

1, J ; step to next character.

A2 ; test for shift to new word.

logic L;

own integer I;

own index J;

WH LBL

AL if B then begin

end

ACC <-C[l] ;

WH MPY

EXL 0

STL

AL NEXTCHAR <- L;

WH SXT 0

TRA

TRA Ml ; no shift, exit.

XPT 0 4, J ; shift req'd, reset

CLA I ; character pointer

ADD 0 1 ; and word pointer

STI I ; then

TRA Ml ; exit.

MO shift constants

LWD $24, $16, $8, $0;

Ml exit from procedure

AL end of NEXTCHAR

