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This paper describes an algorithm which takes the BNF definition of the 

grammar of a language and constructs a set of productions for recognizing 

sentences of the language. These productions, as introduced by Floyd [ 4 ] and 

modified by Evans [ 3 ] , constitute a language in which may be written a one-pass, 

one-push-down-8tack recognizer, which involves no closed subroutines. Thus it 

goes directly from the basic definition of the grammar of a programming language 

to an efficient parser for the language which could easily be incorporated into a 

compiler. 

Production Language*. The production language consists of a set of produc 

tions of the form 

LO a b c I -* G I *G1 

Let us assume we are parsing a sentence by productions. Each time we scan a 

character, it is placed at the top of a push down stack known as the syntax stack. 

Then we sequence through the productions, comparing the top few characters in the 

syntax stack to each production. The first bar in the production represents the 

top of the stack, and the characters stretching immediately to its left (known as 

the stack of the production) represent the top few characters of the syntax stack. 

A a in a production stack represents any single character in the syntax stack. 

When a production stack first matches the corresponding topmost characters of the 

syntax stack, we apply the production to the syntax stack. This transforms these 

topmost characters into what is represented by the second bar and the characters 

to its immediate left. If the stack is to be left unchanged, there will be no -> 

or second stack. Then we examine the link of the production to see what to do 

* Linguists often use "production" for an alternative of a BNF definition and 
"reduction" for the parser. With this in mind our terminology should not cause 
confusion. 



next. If there is an * ve scan the next character. In any case, we then transfer 

to the label in the link of the production and start sequencing down the produc

tions again. Any of the productions may have labels. 

This production language is the basis for at least one working Algol compiler 

[ 3 ] and also comprises a significant part of FSL> a language for writing compilers 

[ 5 ] . 

Definitions and Conventions. A BNF grammar consists of a set of BNF defini

tions. Each definition consists of a non-terminal character followed by ::= and 

a 8et of alternatives separated by bars |• The non-terminal is known as the 

definition of each of its alternatives. The characters in the alternatives may 

be non-terminals or terminals—actual symbols from the alphabet of the language. 

Non-terminals will be represented by English capitals, terminals by English lower 

case, and strings by Greek letters; X, Y, and Z will stand for either terminals 

or non-terminals. A string 0 is a substring of a if there exist strings 9 and ¥ 

such that a * cp3Y. A sub stack of a stack is defined analogously. A head of a 

string is a substring which Includes the first character. A tail is a substring 

which Includes the last character. A is the empty string. We will also adopt 

some terminology from Floyd, [l] 

We are interested in simple phrase structure grammars, and our BNF is equiv

alent to a simple phrase structure grammar if we require that there be exactly 

one non-terminal R which does not appear to the right of ::= in any definition. 

This character, which we call the root, defines the sentential forms of the 

grammar. We also require that every character which appears in the BNF must be 

used in the derivation of a sent ence from R. We will only consider unambiguous 

grammars--that is, grammars in which no sentence has more than one derivation. 

The Algorithm. The algorithm which constructs the productions will not 

work correctly for all allowable grammars. If a grammar contains two or more 



alternatives which have a certain relationship, then it will not work. These are 

called culprit strings. After explaining the algorithm, it will be shown how 

these can be detected and deleted from the grammar. 

Two sets of productions can be constructed corresponding to each character 

of the grammar. A set of productions is a section of the productions which acts 

as a unit because only its first production has a label which can be transferred 

to. The 0-productions for a character X (labeled X0) are constructed so as to 

appear at the point in the parse where we expect to find an instance of X in the 

sentence starting with the last symbol scanned. These will be constructed only 

for non-terminals. The 1-productions for a character X (labeled XI) are con

structed to appear at the point in the parse When X is second in the syntax stack, 

and we need to decide what to do next according to Its context. 

0-productions. Let B be the non-terminal for which we are constructing 

0-productions. Let 1(B) be the set of all terminal characters with which B can 

begin. 1(a) is defined for terminals by setting 1(a) = a. We want to construct 

one production for each member of 1(B). Therefore, we examine each alternative 

in the definition of B in the following way. If it begins with a terminal charac

ter, then we construct a production from that string. If it begins with a non

terminal C, we examine the definition of C to determine 1(C) In the same way that 

we examined B. The production which is constructed depends on the context of the 

initial terminal character a in the alternative. There are three cases: 

(1) If the alternative contains just a , 

G ::= a | ... 

the production is 

a | -+ G | *G1 



(2) If a Is followed by a terminal character, 

G • • as ab * « « | • • • 

the production is 

a | | *al 

(3) If a is followed by a non-terminal. 

G : Ss: aH... | ... 

the production is 

a | | *H0 

After constructing these productions, we examine them to see if two have the same 

stack element. If this is so, we replace these two by one production having the 

form of (2). 

It is fairly easy to see why the productions are constructed in this way. 

In cases (1) and (3) we know that there is only one initial string of B which 

begins with a, so we just do what is indicated by the string. In (1) we replace 

the a by its definition, scan the next character, and go to Gl with G second in 

the stack. In (3) we go to HO, knowing that we must find an instance of H next 

in a legal sentence. In (2) or in the case that more than one production has the 

same stack, we want to postpone any parsing decision until another character has 

been scanned. 

1-productIons. Let X be the character for which we are constructing 1-pro-

ductions. Let C(X) be the set of all places in the BNF in which X appears. We 

want to construct one 1-production for each member of C(X) according to the 

following five cases: 

(1) If X is last in the alternative, 

G : := orX | ... 

the production is 

a X a | ->G a | Gl 



(2) If X is followed by a non-terminal, 

G : := orXH... | ... 

F-* one production is constructed for each member 1 of 1(H) . They are of the 

form, 

^ a. X i | | HO 

(3) If X is followed by a terminal character which ends the alternative, 

G :: = cfXc | . •. 

r- the production is 

cr X c | -> G | *G1 

( 4 ) If X is followed by two terminals, 

G : := orXcd... | ... 

the production is 

r a X c | | *cl 

(5) If X is followed by a terminal and then a non-terminal, 

V G : := a X c H . | ... 

the production is 

a X c | | *H0 

^ As with the 0-productions, there is a rule for combining productions which 

have similar stacks. However, its explanation must wait until after culprits 

have been explained. Unlike the O-productions, the order of the l-productions is 

important. This will also be explained later. 

Culprits, In the l-productions it is important that if a production should 

^ be applied to the syntax stack, another production which precedes it cannot also 

be applied to the same syntax stack. In this case we say that the preceding pro-

r" duction precludes the other. If there exist two productions such that whichever 

one is placed first will preclude the other, then this will cause serious trouble 



in the sets of l-productions. Therefore we want to discover what alternatives will 

cause this; these are the culprit strings. 

In order to explain culprits, we must define the following: 

(1) Let 6 be an alternative with definition 6. Then a string p is a legal  

predecessor to 6 if there exists a sentential form . ..pG.... A terminal b is a 

legal successor to 6 if there exists a sentential form ...Gb..«. 

(2) Two alternatives 5 and y form a head culprit if there exists a common 

substring orj such that 6 » a r j . . . , y = a n d 0 is a legal predecessor to 6. 

Note that any two alternatives which begin with the same character form a head 

culprit (P = A). If two alternatives have the above form, but P is not a legal 

predecessor to 6, then they form a head pseudo-culprit but need not be deleted* 

(3) Two alternatives 6 and y form a tail culprit if there exists a common 

substring <*2 such that either 

(a) 6 » ...0f2 and Y 38 • • -<*2 

or (b) 6 = •. .<*2 and y = . . .ofjX... 

where a member of I(X) is a legal successor to 6• 

Two alternatives are culprits if they form a head culprit, a tail culprit, 

and the common substrings <*j and c* 2 coincide. Note that two identical alternatives 

form a culprit and that the empty alternative must form a culprit with some other 

alternative. 

In order that no productions will be precluded, the l-productions are ordered 

by the following rule, except in one special case. All productions with a%s at the 

top of their stacks go last after the others. Within these two categories, the 

productions can go in any order unless the stack of one is a substack of the stack 

of another. Then the longer one goes first. 

We will first examine problems of preclusion between two productions a and P 

from the same category. In the a category, for ct to preclude P , (1) a must have a 



stack of which 0fs stack is a substack, so that a is ordered first, and (2) the 

alternatives from which they were constructed must form a head culprit so that a 

can match the same syntax stack as 0. 

stack of a = y6o| 

stack of 0 ss 6a | 

They are culprits. 

However, since they are cr-productions with Identical tails, they form a tail 

culprit. These conditions make them culprit strings, so we don't need to worry 

about them because they will have been deleted. In the other category, for 

preclusion to occur, again one production stack must be a substack of the other, 

and they must form a head culprit. In this case, the alternatives are not 

necessarily culprits, since both production stacks have a terminal at the top. 

However, since they both have the same terminal at the top, we can postpone the 

parsing decision until we scan the next character. So we construct just one pro

duction in place of these two, using the smaller stack and having the form of type 

(4) 1-productions. This is analogous to combining O-productions with identical 

stacks. 

stack of cr B y&b| 
stack of 0 = 6b| 

Replace by: 6b| | *bl 

This just leaves us to consider possible problems between two productions 

from different categories. First of all, the alternative of the a production a 

must have as one of its legal successors the top stack element of the other pro

duction 0. This means the alternatives will be tail culprits. Now if of, which 

goes last, is a substack of 0 except for their top symbol, then as before they 

must be culprit strings to produce preclusion. But if 0 is the substack, then it 

will preclude a whether or not they form a head culprit. 



stack of P = 6b| 

stack of a = y ^ l 

Put a before p• 

This is the one special case to the ordering rule* When there are two productions 

such that their alternatives form a tail culprit, a head pseudo-culprit, and the 

shorter one would normally go first, reverse their order. 

Again, with careful examination, it is now obvious why we have the five cat

egories under 1-productions. In all cases except (4), we know that this is the 

only production with this stack, so we can again replace the string by its defini

tion in (1) and (3), and go to the appropriate 0-productions in (2) and (5). The 

attentive reader may notice that some of the types of 0- and l-productions can be 

omitted with some loss in efficiency. 

It is assumed that all sentences will be preceded by K and followed by H. So 

the Dl productions will consist of 

Dl J. D A | | SUCCESS EXIT 

Also, we add, after every set of productions, the production 

a | | ERROR EXIT 

In parsing a sentence with the productions, the parser starts by scanning f- and 

the first character and transferring to DO, So in constructing the productions 

we start by constructing the DO productions, and then examining the links of all 

productions to see what other sets should be constructed. This is continued until 

a set is constructed for each distinct link. Since all sets are closed with 

respect to the rest of the productions, their order in the total set of productions 

is irrelevant. 

Theorems 1 through 5 at the end of the article prove that the algorithm con
structs a recognizer for any culprit-free grammar. 



Deleting Culprits. We have explained how the algorithm works, and what 

culprits are; now we must show how they may be deleted without changing the 

grammar appreciably. Let us assume that we have found two alternatives to be 

culprit8 and have chosen to delete one of them, a. 

A •:= .«• \ & | • • • 

We are going to remove a from the definition of A, so we must find every place in 

the BNF in which A appears. At each of these places we add to the definition of 

the alternative 0 which contains A, an extra alternative having the same form as 

0, with A replaced by or. 

0 added 
B ... | IYXT 1| ... | ̂ S T ^ 

If A occurs n times in 0, 2n-l extra alternatives must be added. After making 

these additions, we delete a from A. Note that one of these 09s may be a Itself, 

if A is recursively defined. 

These additions are made so that the deletion not only preserves the sentences 

which the BNF generates, but only changes the structure of the parse of any sen

tence in a minor way. That is, in the above example, at first the derivation was: 

B -> y At> -+yab. After the deletion, it is B -+yab. In fact, if desirable, the 

string yotb which was added could be tagged in such a way as to indicate that a 

should be parsed first as an A. Then the production set in which the parsing 

occurs would contain: 

cl yAto | -* B a | Bl [from 0] 

yado | -» y A 6 a | cl [from added string] 

where c is the last character of 6. This means that the structure of the parse for 

the changed BNF is exactly the same as the original. Of course, if A had been the 

root, then we would have changed the grammar by this deletion, since we would be 

deleting a class of sentences from the language, but it is not necessary to make 

deletions from the root to remove a culprit. 



We must now ask, does this deletion remove the culprit? The answer is: not 

necessarily. What we have done is to increase the context in which or appears in 

BNF. This is a step in the right direction, but it could easily take more than 

one deletion to remove the culprit, if it can be removed at all. The problem is 

that these deletions may only increase the context of or in one direction. How

ever, one may introduce other transformations on the BNF which will increase a fs 

context in the other direction while still preserving the properties of the 

grammar. It seems probable that a second type of culprit deletion could be 

formalized, and it could be proven that, using the two, all culprits can be re

moved from any bounded context grammar, [l] However, the important point is that 

in most if not all practical cases (useful programming languages) the culprits will 

not only be removable, but it will only take a few deletions to produce a culprit-

free grammar. This fact, plus the proven usefulness of the production language, 

makes the algorithm a powerful aid in compiler writing. 

Practical Conslderations. In any practical applications, such as a program 

to write productions from BNF, there are many heuristics which can be added to 

make both the algorithm and the productions more efficient than they might have 

seemed so far. Metacharacters may be included in the BNF and productions, which 

stand for any one of a specified set of terminal characters. These are imperative 

for type (2) l-productions. It would also be helpful to combine the O-productions 

for non-terminals having similar sets of initial terminal characters. A very use

ful tool would be an algorithm to separate the BNF into relatively independent 

subsets and apply the algorithm to each of these separately. The culprit deletion 

routine should also be provided with a means of choosing the most profitable order 

for deleting strings. 



Example: The following Is an illustration of how the algorithm works on a 

small algebraic language. 

B is < block > AE 

H is < head > T 

D is < declaration > F 

TL is < type list > P 

statement > > S is < statement > i 

B ::= H end 

H ::= begin | begin D | H ; S 

r 
D ::= real TL | D ; real TL 

TL ::» i | TL , i 
CO

 : := i <- AE 

AE : := T I ± T 1 AE ± T 
1 1 

T ::= F | T */ F 

P ::= P | F t P 

P ::= i 1 ( AE ) 

"BEGIN D" forms a culprit with "D; real TL," and the two "i"'s form a culprit. 

After deleting "begin D" and the first "i", the changed lines of the grammar are 

B ::= H end | begin D end 

H ::= begin | H ; S | begin D ; S 

D ::= real TL | D ; real TL | real i | D ; real i 

TL ::= TL, i | i , i 

The algorithm then constructs the following productions: 

BO begin | 

° I 
B61 begin real | 

begin a \ H a | 

*BG1 

ERROR EXIT 

DO 

HI 



a 

DO real 

a 

HI H end 

H ; 

a 

RL1 D; real i 

real 1 

a 

Bl M -I 

a 

SO 1 

a 

11 i . 

1 «-

D ; real 1 o* 

real 1 a 

TL , 1 a 

i , i a 

i a 

a 

, 1 TL , i 

i . 1 
a 

<- 1 1 <-± 

1 - ( 

B 

D a 

D a 

TL a 

TL a 

P a 

TL 

TL 

ERROR EXIT 

*RL1 

ERROR EXIT 

*B1 

*S0 

ERROR EXIT 

*11 

*ll 

ERROR EXIT 

SUCCESS EXIT 

ERROR EXIT 

*ll 

ERROR EXIT 

* . 1 
* .-1 

Dl 

Dl 

TL1 

TL1 

PI 

ERROR EXIT 

*TL1 

*TL1 

ERROR EXIT 

AEO 

AEO 



Dl begin D end 

D ; 

a 

TL1 D ; real TL a 

real TL a 

TL , 

a 

Pi F t P a 

P a 

AEO 

TO 

a 

± 

i 

( 

a 

i 

( 

a 

D 

H 

begin D 

real 

i 

1 

a 

SI begin D ; 8 a 

H ; S a 

B 

D a 

D a 

F a 

F a 

HCT 

H a 

AEO 

ERROR EXIT 

*B1 

; 1 
ERROR EXIT 

Dl 

Dl 

* , 1 
ERROR EXIT 

Fl 

Fl 

ERROR EXIT 

*T0 

*P1 

•AEO 

ERROR EXIT 

*P1 

*AEO 

ERROR EXIT 

*RL1 

SO 

SO 

ERROR EXIT 

HI 

HI 

ERROR EXIT 



Fl F t | *PO 

T */ F a | —» T a | Tl 

F a | -» T a | Tl 

o ERROR EXIT 

PO i —> P | *P1 

( *AEO 

a ERROR EXIT 

Tl T */ *F0 

AE ± T o —» AE a | AE1 

± l a —» AE a | AE1 

T a —• AE a | AE1 

a ERROR EXIT 

FO 1 —» P | *P1 

( | *AEO 

a ERROR EXIT 

AEl ( AE ) P | *P1 

AE ± *T0 

1 <- AE a —> S a | SI 

a ERROR EXIT 

Outline of Proof. We want to prove that in parsing any legal sentence, we 

must leave by the success exit. We define proper conditions for entering a set 

of 0- or 1-productlons and prove by induction that these exist when entering all 

sets of productions. Then we show that if proper conditions hold when entering a 

set of productions, one of the productions must be applied, so we can't leave by 

an error exit. This coupled with the fact that we must exit eventually, proves 

the theorem. 



Definition: The parse time T is initialized at 0 when RO is first entered 

and is incremented by one each time a set of productions is entered. 

Definition: An alternative y is a correct parse at a certain parse time if 

we have part of y in the syntax stack and we know that instances of the rest must 

follow immediately in any legal sentence. 

Definition: The syntax stack corresponds (m,n) to an alternative if the 

substack of m elements found below the top n elements of the syntax stack is the 

same as the first m elements of the alternative which is a correct parse at the 

time. "Corresponds (m, 1)" will be abbreviated "corresponds.11 

Conditions: (1) Let or be ah alternative with definition G. Then previous  

conditions hold if, for all a and for all previous parse times T j£ 1 in which 

the syntax stack corresponded (1,1) to a, the syntax stack also corresponded (m,2) 

to an alternative 0 which had G or C as its (m 4- 1) symbol (where G begins some 

C-derivative). (2) Proper conditions for entering a set of 0-productions CO hold 

if either T = 0 or the syntax stack corresponds to an alternative which has C 

as its (m + 1) character. (3) Proper conditions for entering a set of l-produc

tions hold if either the syntax stack =hD H or it corresponds to an alternative. 

Definition: An initial string of a non-terminal C is an alternative which 

is a head of some C derivative. 

Theorem 1. In parsing a legal sentence, if proper and previous conditions 

hold when entering a set of O-productlons CO at time T, then they will hold at 

T + 1. 

Proof: There are two possibilities: (1) C is the root and we are entering 

RO with h and a member of I(R) in the syntax stack. (2) The syntax stack corre

sponds to an alternative which has C as its (m + 1) element. In this case the 

top character in the syntax stack must be a member of 1(C) . So, in either case, 



since each 0-product ion stack contains one of the members of 1(C), the syntax 

stack must match one of the 0-productions. 

Case 1. If it matches a 0-production of type (1), with top stack element a, 

then we transform the a in the syntax stack to its definition G. We then scan 

the next character X and enter Gl with the syntax stack = either hGX or ... GX. 

Now, because of the method of search in constructing 0-productions, G must be 

either C or the first character in one or more Initial strings of C. 

Case 1A. If G is C, and C is the root, then the syntax stack will be hRX, 

and X must be -t. Therefore, proper conditions hold in this case. 

Case IB. Otherwise, if G is C, then the syntax stack will correspond (mfl,l) 

to the same alternative which it did on entering CO. This is because we have just 

replaced the previous top element with C (the (m + 1) character in the alternative) 

and added the next character. So proper conditions hold. 

Case 1C. If G is the first character in one or more initial strings of C, 

then the syntax stack will correspond (1,1) to one of them, so proper conditions 

hold again. Now we must show that previous conditions still hold after this (1,1) 

correspondence. The definition of this string is either C or the first-symbol in 

a C-derivative. Oh entering CO, by proper conditions the syntax stack corre

sponded (m, 1) to an alternative which had C as its (m + 1) symbol. Since then we 

have just added a character to the syntax stack, so now it corresponds (m,2) as 

we want. 

Case 2. If it matches a 0-production of type (2), with top stack element a, 

then there are one or more initial strings of C which begin with a. We scan the 

next character and enter al. The syntax stack will correspond (1,1) to one of 

them, so proper conditions are satisfied. Previous conditions also hold for 

exactly the same reasons as in the last case. 



Cage 3 . If It matches a O-production of type (3) with top stack element a, 

then the alternative a from which this production was constructed is the only 

initial string of C which starts with a. We scan the next character and go to 

HO. The syntax stack must correspond (1 ,1 ) to a and we know H is its second 

character so proper conditions are again satisfied. Previous conditions hold 

also, by the same reasoning as before. 

Theorem 2 . In parsing a legal sentence, if all culprits have been removed, 

and if proper conditions exist when entering a set of 1-productions, bl, so that 

the syntax stack corresponds to an alternative 0 , then a production which was 

constructed from 0 will be applied to the syntax stack. 

proof: Let the syntax stack be ... a b c |. Then 0 is a b... where c is 

a legal successor to the ab in 0 . If a production of type ( 3 ) , ( 4 ) , or (5) was 

constructed from 0 alone, its stack will be a b c and it will apply. If a type 

(2) production was constructed from 0 , it means that 0 is cr b H... where ccI(H), 

and since one type (2) production is constructed for each member of 1(H), one 

of them must apply. If a type (4) production was constructed from combining 0 

and other alternatives, it means the 0 is one of the two above cases, and the 

production is y b c where y Is a substack of a; so the production will apply. 

If a type (1) production was constructed from 0 , then its stack is aba and it 

will apply. Thus we have shown that one of the productions constructed from the 

alternative which corresponds to the syntax stack will always be applied, unless 

there is another production which precludes it. Let us examine an arbitrary 

production under bl to which the stack can be applied to see if there can exist 

any production which precludes it. 

Case 1. If the production has a terminal at the top of its stack, (is of 

the form or be) then it came from one or more alternatives of the form ...<ybc... . 



It can't be precluded by productions with o'a at the top, because they will be 

after it (except for the special case, see Case 2B(2).). It can't be precluded 

by a production unless it has a stack of which <ybc is a substack, because pro

ductions whose 8tack8 are substacks of abc will be after it, and others could 

not match the same syntax stack. So, let this other production be pabc. We now 

ask, Can this other production be applied to the same syntax stack to which abc 

can? This means, find the longest alternative from which abc was constructed 

yabc... . Is y * tall of 0, and is p - y a legal predecessor to yabcl This is 

obviously only true if the alternatives form a head culprit, but in this case, 

by the algorithm, only one production will be constructed here, so this is impos

sible. 

Case 2. If the production has a a at the top (is of the form a b a ) , then it 

came from a string of the form a b . 

Case 2A. We will first consider preclusion by another production with a 

at the top. The alternative of this production must form a tail culprit with 

a b . As before, we need only consider productions which have a stack of which 

aba is a substack, and as before, the only way there can be preclusion is if the 

alternatives also form a head culprit. However, this makes them culprits, and 

this is impossible. 

Case 2B. We now consider preclusion by a production with a terminal c at 

the top (3be). Since both productions must apply to the same stack, c must be 

a legal successor to orb. This means that the alternatives form a tail culprit. 

In this case, since the terminal production always goes before the o production 

despite their stacks, we must examine productions with stacks both longer and 

shorter than a b a . (1) If a is a substack of 0, then as before the strings must 

form a head culprit for preclusion to exist. Since we have also shown that they 



form a tail culprit, this is impossible. (2) If 0 is a subs tack of cr, then 

jibe will preclude aba even if they don't form a head culprit. But they do form 

a head pseudo-culprit, so their order will be reversed. Now we must ask, can 

aba preclude 0bc. And as before, the answer now is: Only if their alternatives 

form a head culprit, and again this makes them culprits. 

So we have shown for all cases that preclusion cannot occur. 

Theorem 3. In parsing a legal sentence, if proper and previous conditions 

hold when entering a set of l-productlons XI at time T, then they will hold at 

T + 1. 

Proof: If the syntax stack « t» D -4 , then we will be entering Dl, and 

the production will be \> D A | -> | SUCCESS EXIT So we will exit. Otherwise, 

the syntax stack corresponds to an alternative, and by Theorem 2, the productions 

which is applied to the syntax stack was constructed from this alternative. 

Case 1. If a production of type (1) is applied, with stack orXo, we know 

that it was constructed from just one alternative 0 = crX , so we replace aX with 

its definition G and transfer to Gl. By previous conditions, when the syntax 

stack corresponded (1,1) to 0 it also corresponded (m,2) to another alternative 

which had G or C (where some C-derivative starts with G) as its (mfl) character. 

Case 1A. If G was the (mfl) character in the alternative, the syntax stack 

will now correspond (mfl,l) to that same alternative becuase we have just 

replaced 0 in the stack by G and added another character. 

Case IB. If C was the (nrfl) character in the alternatives, the stack will 

correspond (1,1) to an initial string of C which begin with G, so proper condi

tions hold again. Previous conditions hold here because they held before and 

we now have back the same m elements of the syntax stack below the top two. 



If a production of type (3) is applied, we can use exactly the same 

reasoning to prove the theorem except that we replace orbc with G, and we must 

scan a character before going to Gl. 

Case 2, If a production of type (2) is applied, with stack orXc, we know 

that it was constructed from just one alternative 0 •> crXH... where c is a member 

of 1(H). So we enter HO knowing that the syntax stack still corresponds to 0 

with the same m, and H is the next character in 0. So proper conditions hold. 

The same argument goes for type (5) productions. 

Case 3. If a production of type (4) is applied with stack orXc, it was con

structed from one or more alternatives of the form •••crXc... or ...crXH... (where 

c c I (H)), one of which is a correct parse. So we scan the next character and 

go to cl. 

Case 3A. If ...aXc... is a correct parse, the syntax stack will now corres

pond (mfl,l) to it, and proper conditions will hold. 

Case 3B. If ...aXH... is a correct parse, then the syntax stack must now 

correspond (1,1) to one of the initial strings of H which begins with c, and 

proper conditions hold again. Previous conditions hold because the syntax stack 

now corresponds (m,2) to ...aXH.... 

Therefore, the Theorem is satisfied for all cases. 

Theorem 4. A finite sentence will be scanned by the algorithm in a finite 

number of steps. 

Proof: Let us examine the links of the different types of productions that 

can be constructed. The only types of productions which do not scan a new char

acter in their links are 1-productions of types (1) and (2). Productions of 

type (2), however, link to a 0-production, and all 0-productions scan a character 

in their links. So the only possible troublemaker is a type (1) 1-production. 



We want to show that only a finite number of these productions can link to each 

other before linking to another type of production, and thus scanning a character* 

Each type (1) 1-production transforms one or more characters in the syntax 

stack into a non-terminal. The productions which transform more than one element 

of the syntax stack are making it smaller. The productions which transform just 

one character into a non-terminal are just redefining this character. 

We cannot have more than r redefinitions of a character (where r is the 

number of non-terminals in the grammar) because if we did, a certain non-terminal 

would be redefined as itself. This cycle could then be repeated a different 

number of times in different derivations of the same sentence, making the grammar 

ambiguous. So after these r redefinitions there must be a production which 

reduces the size of the syntax stack. Therefore, if s is the number of elements 

in the syntax stack at the time, there can be at most s(r+l) type (1) l-produc

tions before we must link to another type and at most one more before we scan 

another character. So, any finite source string must be scanned in a finite 

number of steps. 

Theorem 5. Given a culprit-free grammar, the algorithm constructs produc

tions which are a recognizer for the grammar. 

Proof; (1) First we assume that we are parsing a legal sentence and prove 

that we must leave by the success exit. 

Theorem 5 says that we must eventually scan the whole sentence so that we 

must scan H. There Is only one production which contains A; this is the success 

exit. So it must match this, an error exit, or a a-production. But a a-produc-

tion cannot scan a new character or remove the H , so it must eventually match an 

exit in parsing all finite sentences. 

In parsing a legal sentence, proper conditions hold by definition at T = 0; 

theorems 1 and 3 show that if proper and previous conditions hold when entering 



a set of productions, at parse time T they will hold at T + 1. So by induction, 

proper conditions hold for all sets. We have already shown in the proofs of the 

previous theorems that if proper conditions hold upon entering a set of produc

tions, one of the productions of the set must be applied, so we can't leave by 

an error exit. Since we must exit, it must be by the success exit for any legal 

sentence• 

(2) We now assume that we leave by the success exit, and prove that the 

sentence we have parsed must have been legal* This is equivalent to proving 

that all illegal sentences must go out error exits. 

If we have left by the the success exit, it means that we had h D -I in the 

syntax stack. The termination symbols show that this is all that is in the stack 

and that the sentence has been exhausted. Thus all characters in the sentence 

have been transformed into non-terminals which have eventually all been trans

formed into D. Therefore the sentence is legal. 

Therefore, (1) and (2) together show that the productions are a recognizer 

for the grammar. 
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