
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

GENERATING A RECOGNIZER

FOR A BNF GRAMMAR

BY

JAY EARLEY

Carnegie Institute of Technology
Pittsburgh, Pennsylvania

June 1, 1965

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (SD-146).

This paper describes an algorithm which takes the BNF definition of the

grammar of a language and constructs a set of productions for recognizing

sentences of the language. These productions, as introduced by Floyd [4] and

modified by Evans [3] , constitute a language in which may be written a one-pass,

one-push-down-8tack recognizer, which involves no closed subroutines. Thus it

goes directly from the basic definition of the grammar of a programming language

to an efficient parser for the language which could easily be incorporated into a

compiler.

Production Language*. The production language consists of a set of produc

tions of the form

LO a b c I -* G I *G1

Let us assume we are parsing a sentence by productions. Each time we scan a

character, it is placed at the top of a push down stack known as the syntax stack.

Then we sequence through the productions, comparing the top few characters in the

syntax stack to each production. The first bar in the production represents the

top of the stack, and the characters stretching immediately to its left (known as

the stack of the production) represent the top few characters of the syntax stack.

A a in a production stack represents any single character in the syntax stack.

When a production stack first matches the corresponding topmost characters of the

syntax stack, we apply the production to the syntax stack. This transforms these

topmost characters into what is represented by the second bar and the characters

to its immediate left. If the stack is to be left unchanged, there will be no ->

or second stack. Then we examine the link of the production to see what to do

* Linguists often use "production" for an alternative of a BNF definition and
"reduction" for the parser. With this in mind our terminology should not cause
confusion.

next. If there is an * ve scan the next character. In any case, we then transfer

to the label in the link of the production and start sequencing down the produc

tions again. Any of the productions may have labels.

This production language is the basis for at least one working Algol compiler

[3] and also comprises a significant part of FSL> a language for writing compilers

[5] .

Definitions and Conventions. A BNF grammar consists of a set of BNF defini

tions. Each definition consists of a non-terminal character followed by ::= and

a 8et of alternatives separated by bars |• The non-terminal is known as the

definition of each of its alternatives. The characters in the alternatives may

be non-terminals or terminals—actual symbols from the alphabet of the language.

Non-terminals will be represented by English capitals, terminals by English lower

case, and strings by Greek letters; X, Y, and Z will stand for either terminals

or non-terminals. A string 0 is a substring of a if there exist strings 9 and ¥

such that a * cp3Y. A sub stack of a stack is defined analogously. A head of a

string is a substring which Includes the first character. A tail is a substring

which Includes the last character. A is the empty string. We will also adopt

some terminology from Floyd, [l]

We are interested in simple phrase structure grammars, and our BNF is equiv

alent to a simple phrase structure grammar if we require that there be exactly

one non-terminal R which does not appear to the right of ::= in any definition.

This character, which we call the root, defines the sentential forms of the

grammar. We also require that every character which appears in the BNF must be

used in the derivation of a sent ence from R. We will only consider unambiguous

grammars--that is, grammars in which no sentence has more than one derivation.

The Algorithm. The algorithm which constructs the productions will not

work correctly for all allowable grammars. If a grammar contains two or more

alternatives which have a certain relationship, then it will not work. These are

called culprit strings. After explaining the algorithm, it will be shown how

these can be detected and deleted from the grammar.

Two sets of productions can be constructed corresponding to each character

of the grammar. A set of productions is a section of the productions which acts

as a unit because only its first production has a label which can be transferred

to. The 0-productions for a character X (labeled X0) are constructed so as to

appear at the point in the parse where we expect to find an instance of X in the

sentence starting with the last symbol scanned. These will be constructed only

for non-terminals. The 1-productions for a character X (labeled XI) are con

structed to appear at the point in the parse When X is second in the syntax stack,

and we need to decide what to do next according to Its context.

0-productions. Let B be the non-terminal for which we are constructing

0-productions. Let 1(B) be the set of all terminal characters with which B can

begin. 1(a) is defined for terminals by setting 1(a) = a. We want to construct

one production for each member of 1(B). Therefore, we examine each alternative

in the definition of B in the following way. If it begins with a terminal charac

ter, then we construct a production from that string. If it begins with a non

terminal C, we examine the definition of C to determine 1(C) In the same way that

we examined B. The production which is constructed depends on the context of the

initial terminal character a in the alternative. There are three cases:

(1) If the alternative contains just a ,

G ::= a | ...

the production is

a | -+ G | *G1

(2) If a Is followed by a terminal character,

G • • as ab * « « | • • •

the production is

a | | *al

(3) If a is followed by a non-terminal.

G : Ss: aH... | ...

the production is

a | | *H0

After constructing these productions, we examine them to see if two have the same

stack element. If this is so, we replace these two by one production having the

form of (2).

It is fairly easy to see why the productions are constructed in this way.

In cases (1) and (3) we know that there is only one initial string of B which

begins with a, so we just do what is indicated by the string. In (1) we replace

the a by its definition, scan the next character, and go to Gl with G second in

the stack. In (3) we go to HO, knowing that we must find an instance of H next

in a legal sentence. In (2) or in the case that more than one production has the

same stack, we want to postpone any parsing decision until another character has

been scanned.

1-productIons. Let X be the character for which we are constructing 1-pro-

ductions. Let C(X) be the set of all places in the BNF in which X appears. We

want to construct one 1-production for each member of C(X) according to the

following five cases:

(1) If X is last in the alternative,

G : := orX | ...

the production is

a X a | ->G a | Gl

(2) If X is followed by a non-terminal,

G : := orXH... | ...

F-* one production is constructed for each member 1 of 1(H) . They are of the

form,

^ a. X i | | HO

(3) If X is followed by a terminal character which ends the alternative,

G :: = cfXc | . •.

r- the production is

cr X c | -> G | *G1

(4) If X is followed by two terminals,

G : := orXcd... | ...

the production is

r a X c | | *cl

(5) If X is followed by a terminal and then a non-terminal,

V G : := a X c H . | ...

the production is

a X c | | *H0

^ As with the 0-productions, there is a rule for combining productions which

have similar stacks. However, its explanation must wait until after culprits

have been explained. Unlike the O-productions, the order of the l-productions is

important. This will also be explained later.

Culprits, In the l-productions it is important that if a production should

^ be applied to the syntax stack, another production which precedes it cannot also

be applied to the same syntax stack. In this case we say that the preceding pro-

r" duction precludes the other. If there exist two productions such that whichever

one is placed first will preclude the other, then this will cause serious trouble

in the sets of l-productions. Therefore we want to discover what alternatives will

cause this; these are the culprit strings.

In order to explain culprits, we must define the following:

(1) Let 6 be an alternative with definition 6. Then a string p is a legal

predecessor to 6 if there exists a sentential form . ..pG.... A terminal b is a

legal successor to 6 if there exists a sentential form ...Gb..«.

(2) Two alternatives 5 and y form a head culprit if there exists a common

substring orj such that 6 » a r j . . . , y = a n d 0 is a legal predecessor to 6.

Note that any two alternatives which begin with the same character form a head

culprit (P = A). If two alternatives have the above form, but P is not a legal

predecessor to 6, then they form a head pseudo-culprit but need not be deleted*

(3) Two alternatives 6 and y form a tail culprit if there exists a common

substring <*2 such that either

(a) 6 » ...0f2 and Y 38 • • -<*2

or (b) 6 = •. .<*2 and y = . . .ofjX...

where a member of I(X) is a legal successor to 6•

Two alternatives are culprits if they form a head culprit, a tail culprit,

and the common substrings <*j and c* 2 coincide. Note that two identical alternatives

form a culprit and that the empty alternative must form a culprit with some other

alternative.

In order that no productions will be precluded, the l-productions are ordered

by the following rule, except in one special case. All productions with a%s at the

top of their stacks go last after the others. Within these two categories, the

productions can go in any order unless the stack of one is a substack of the stack

of another. Then the longer one goes first.

We will first examine problems of preclusion between two productions a and P

from the same category. In the a category, for ct to preclude P , (1) a must have a

stack of which 0fs stack is a substack, so that a is ordered first, and (2) the

alternatives from which they were constructed must form a head culprit so that a

can match the same syntax stack as 0.

stack of a = y6o|

stack of 0 ss 6a |

They are culprits.

However, since they are cr-productions with Identical tails, they form a tail

culprit. These conditions make them culprit strings, so we don't need to worry

about them because they will have been deleted. In the other category, for

preclusion to occur, again one production stack must be a substack of the other,

and they must form a head culprit. In this case, the alternatives are not

necessarily culprits, since both production stacks have a terminal at the top.

However, since they both have the same terminal at the top, we can postpone the

parsing decision until we scan the next character. So we construct just one pro

duction in place of these two, using the smaller stack and having the form of type

(4) 1-productions. This is analogous to combining O-productions with identical

stacks.

stack of cr B y&b|
stack of 0 = 6b|

Replace by: 6b| | *bl

This just leaves us to consider possible problems between two productions

from different categories. First of all, the alternative of the a production a

must have as one of its legal successors the top stack element of the other pro

duction 0. This means the alternatives will be tail culprits. Now if of, which

goes last, is a substack of 0 except for their top symbol, then as before they

must be culprit strings to produce preclusion. But if 0 is the substack, then it

will preclude a whether or not they form a head culprit.

stack of P = 6b|

stack of a = y ^ l

Put a before p•

This is the one special case to the ordering rule* When there are two productions

such that their alternatives form a tail culprit, a head pseudo-culprit, and the

shorter one would normally go first, reverse their order.

Again, with careful examination, it is now obvious why we have the five cat

egories under 1-productions. In all cases except (4), we know that this is the

only production with this stack, so we can again replace the string by its defini

tion in (1) and (3), and go to the appropriate 0-productions in (2) and (5). The

attentive reader may notice that some of the types of 0- and l-productions can be

omitted with some loss in efficiency.

It is assumed that all sentences will be preceded by K and followed by H. So

the Dl productions will consist of

Dl J. D A | | SUCCESS EXIT

Also, we add, after every set of productions, the production

a | | ERROR EXIT

In parsing a sentence with the productions, the parser starts by scanning f- and

the first character and transferring to DO, So in constructing the productions

we start by constructing the DO productions, and then examining the links of all

productions to see what other sets should be constructed. This is continued until

a set is constructed for each distinct link. Since all sets are closed with

respect to the rest of the productions, their order in the total set of productions

is irrelevant.

Theorems 1 through 5 at the end of the article prove that the algorithm con
structs a recognizer for any culprit-free grammar.

Deleting Culprits. We have explained how the algorithm works, and what

culprits are; now we must show how they may be deleted without changing the

grammar appreciably. Let us assume that we have found two alternatives to be

culprit8 and have chosen to delete one of them, a.

A •:= .«• \ & | • • •

We are going to remove a from the definition of A, so we must find every place in

the BNF in which A appears. At each of these places we add to the definition of

the alternative 0 which contains A, an extra alternative having the same form as

0, with A replaced by or.

0 added
B ... | IYXT 1| ... | ̂ S T ^

If A occurs n times in 0, 2n-l extra alternatives must be added. After making

these additions, we delete a from A. Note that one of these 09s may be a Itself,

if A is recursively defined.

These additions are made so that the deletion not only preserves the sentences

which the BNF generates, but only changes the structure of the parse of any sen

tence in a minor way. That is, in the above example, at first the derivation was:

B -> y At> -+yab. After the deletion, it is B -+yab. In fact, if desirable, the

string yotb which was added could be tagged in such a way as to indicate that a

should be parsed first as an A. Then the production set in which the parsing

occurs would contain:

cl yAto | -* B a | Bl [from 0]

yado | -» y A 6 a | cl [from added string]

where c is the last character of 6. This means that the structure of the parse for

the changed BNF is exactly the same as the original. Of course, if A had been the

root, then we would have changed the grammar by this deletion, since we would be

deleting a class of sentences from the language, but it is not necessary to make

deletions from the root to remove a culprit.

We must now ask, does this deletion remove the culprit? The answer is: not

necessarily. What we have done is to increase the context in which or appears in

BNF. This is a step in the right direction, but it could easily take more than

one deletion to remove the culprit, if it can be removed at all. The problem is

that these deletions may only increase the context of or in one direction. How

ever, one may introduce other transformations on the BNF which will increase a fs

context in the other direction while still preserving the properties of the

grammar. It seems probable that a second type of culprit deletion could be

formalized, and it could be proven that, using the two, all culprits can be re

moved from any bounded context grammar, [l] However, the important point is that

in most if not all practical cases (useful programming languages) the culprits will

not only be removable, but it will only take a few deletions to produce a culprit-

free grammar. This fact, plus the proven usefulness of the production language,

makes the algorithm a powerful aid in compiler writing.

Practical Conslderations. In any practical applications, such as a program

to write productions from BNF, there are many heuristics which can be added to

make both the algorithm and the productions more efficient than they might have

seemed so far. Metacharacters may be included in the BNF and productions, which

stand for any one of a specified set of terminal characters. These are imperative

for type (2) l-productions. It would also be helpful to combine the O-productions

for non-terminals having similar sets of initial terminal characters. A very use

ful tool would be an algorithm to separate the BNF into relatively independent

subsets and apply the algorithm to each of these separately. The culprit deletion

routine should also be provided with a means of choosing the most profitable order

for deleting strings.

Example: The following Is an illustration of how the algorithm works on a

small algebraic language.

B is < block > AE

H is < head > T

D is < declaration > F

TL is < type list > P

statement > > S is < statement > i

B ::= H end

H ::= begin | begin D | H ; S

r
D ::= real TL | D ; real TL

TL ::» i | TL , i
CO

 : := i <- AE

AE : := T I ± T 1 AE ± T
1 1

T ::= F | T */ F

P ::= P | F t P

P ::= i 1 (AE)

"BEGIN D" forms a culprit with "D; real TL," and the two "i"'s form a culprit.

After deleting "begin D" and the first "i", the changed lines of the grammar are

B ::= H end | begin D end

H ::= begin | H ; S | begin D ; S

D ::= real TL | D ; real TL | real i | D ; real i

TL ::= TL, i | i , i

The algorithm then constructs the following productions:

BO begin |

° I
B61 begin real |

begin a \ H a |

*BG1

ERROR EXIT

DO

HI

a

DO real

a

HI H end

H ;

a

RL1 D; real i

real 1

a

Bl M -I

a

SO 1

a

11 i .

1 «-

D ; real 1 o*

real 1 a

TL , 1 a

i , i a

i a

a

, 1 TL , i

i . 1
a

<- 1 1 <-±

1 - (

B

D a

D a

TL a

TL a

P a

TL

TL

ERROR EXIT

*RL1

ERROR EXIT

*B1

*S0

ERROR EXIT

*11

*ll

ERROR EXIT

SUCCESS EXIT

ERROR EXIT

*ll

ERROR EXIT

* . 1
* .-1

Dl

Dl

TL1

TL1

PI

ERROR EXIT

*TL1

*TL1

ERROR EXIT

AEO

AEO

Dl begin D end

D ;

a

TL1 D ; real TL a

real TL a

TL ,

a

Pi F t P a

P a

AEO

TO

a

±

i

(

a

i

(

a

D

H

begin D

real

i

1

a

SI begin D ; 8 a

H ; S a

B

D a

D a

F a

F a

HCT

H a

AEO

ERROR EXIT

*B1

; 1
ERROR EXIT

Dl

Dl

* , 1
ERROR EXIT

Fl

Fl

ERROR EXIT

*T0

*P1

•AEO

ERROR EXIT

*P1

*AEO

ERROR EXIT

*RL1

SO

SO

ERROR EXIT

HI

HI

ERROR EXIT

Fl F t | *PO

T */ F a | —» T a | Tl

F a | -» T a | Tl

o ERROR EXIT

PO i —> P | *P1

(*AEO

a ERROR EXIT

Tl T */ *F0

AE ± T o —» AE a | AE1

± l a —» AE a | AE1

T a —• AE a | AE1

a ERROR EXIT

FO 1 —» P | *P1

(| *AEO

a ERROR EXIT

AEl (AE) P | *P1

AE ± *T0

1 <- AE a —> S a | SI

a ERROR EXIT

Outline of Proof. We want to prove that in parsing any legal sentence, we

must leave by the success exit. We define proper conditions for entering a set

of 0- or 1-productlons and prove by induction that these exist when entering all

sets of productions. Then we show that if proper conditions hold when entering a

set of productions, one of the productions must be applied, so we can't leave by

an error exit. This coupled with the fact that we must exit eventually, proves

the theorem.

Definition: The parse time T is initialized at 0 when RO is first entered

and is incremented by one each time a set of productions is entered.

Definition: An alternative y is a correct parse at a certain parse time if

we have part of y in the syntax stack and we know that instances of the rest must

follow immediately in any legal sentence.

Definition: The syntax stack corresponds (m,n) to an alternative if the

substack of m elements found below the top n elements of the syntax stack is the

same as the first m elements of the alternative which is a correct parse at the

time. "Corresponds (m, 1)" will be abbreviated "corresponds.11

Conditions: (1) Let or be ah alternative with definition G. Then previous

conditions hold if, for all a and for all previous parse times T j£ 1 in which

the syntax stack corresponded (1,1) to a, the syntax stack also corresponded (m,2)

to an alternative 0 which had G or C as its (m 4- 1) symbol (where G begins some

C-derivative). (2) Proper conditions for entering a set of 0-productions CO hold

if either T = 0 or the syntax stack corresponds to an alternative which has C

as its (m + 1) character. (3) Proper conditions for entering a set of l-produc

tions hold if either the syntax stack =hD H or it corresponds to an alternative.

Definition: An initial string of a non-terminal C is an alternative which

is a head of some C derivative.

Theorem 1. In parsing a legal sentence, if proper and previous conditions

hold when entering a set of O-productlons CO at time T, then they will hold at

T + 1.

Proof: There are two possibilities: (1) C is the root and we are entering

RO with h and a member of I(R) in the syntax stack. (2) The syntax stack corre

sponds to an alternative which has C as its (m + 1) element. In this case the

top character in the syntax stack must be a member of 1(C) . So, in either case,

since each 0-product ion stack contains one of the members of 1(C), the syntax

stack must match one of the 0-productions.

Case 1. If it matches a 0-production of type (1), with top stack element a,

then we transform the a in the syntax stack to its definition G. We then scan

the next character X and enter Gl with the syntax stack = either hGX or ... GX.

Now, because of the method of search in constructing 0-productions, G must be

either C or the first character in one or more Initial strings of C.

Case 1A. If G is C, and C is the root, then the syntax stack will be hRX,

and X must be -t. Therefore, proper conditions hold in this case.

Case IB. Otherwise, if G is C, then the syntax stack will correspond (mfl,l)

to the same alternative which it did on entering CO. This is because we have just

replaced the previous top element with C (the (m + 1) character in the alternative)

and added the next character. So proper conditions hold.

Case 1C. If G is the first character in one or more initial strings of C,

then the syntax stack will correspond (1,1) to one of them, so proper conditions

hold again. Now we must show that previous conditions still hold after this (1,1)

correspondence. The definition of this string is either C or the first-symbol in

a C-derivative. Oh entering CO, by proper conditions the syntax stack corre

sponded (m, 1) to an alternative which had C as its (m + 1) symbol. Since then we

have just added a character to the syntax stack, so now it corresponds (m,2) as

we want.

Case 2. If it matches a 0-production of type (2), with top stack element a,

then there are one or more initial strings of C which begin with a. We scan the

next character and enter al. The syntax stack will correspond (1,1) to one of

them, so proper conditions are satisfied. Previous conditions also hold for

exactly the same reasons as in the last case.

Cage 3 . If It matches a O-production of type (3) with top stack element a,

then the alternative a from which this production was constructed is the only

initial string of C which starts with a. We scan the next character and go to

HO. The syntax stack must correspond (1 ,1) to a and we know H is its second

character so proper conditions are again satisfied. Previous conditions hold

also, by the same reasoning as before.

Theorem 2 . In parsing a legal sentence, if all culprits have been removed,

and if proper conditions exist when entering a set of 1-productions, bl, so that

the syntax stack corresponds to an alternative 0 , then a production which was

constructed from 0 will be applied to the syntax stack.

proof: Let the syntax stack be ... a b c |. Then 0 is a b... where c is

a legal successor to the ab in 0 . If a production of type (3) , (4) , or (5) was

constructed from 0 alone, its stack will be a b c and it will apply. If a type

(2) production was constructed from 0 , it means that 0 is cr b H... where ccI(H),

and since one type (2) production is constructed for each member of 1(H), one

of them must apply. If a type (4) production was constructed from combining 0

and other alternatives, it means the 0 is one of the two above cases, and the

production is y b c where y Is a substack of a; so the production will apply.

If a type (1) production was constructed from 0 , then its stack is aba and it

will apply. Thus we have shown that one of the productions constructed from the

alternative which corresponds to the syntax stack will always be applied, unless

there is another production which precludes it. Let us examine an arbitrary

production under bl to which the stack can be applied to see if there can exist

any production which precludes it.

Case 1. If the production has a terminal at the top of its stack, (is of

the form or be) then it came from one or more alternatives of the form ...<ybc... .

It can't be precluded by productions with o'a at the top, because they will be

after it (except for the special case, see Case 2B(2).). It can't be precluded

by a production unless it has a stack of which <ybc is a substack, because pro

ductions whose 8tack8 are substacks of abc will be after it, and others could

not match the same syntax stack. So, let this other production be pabc. We now

ask, Can this other production be applied to the same syntax stack to which abc

can? This means, find the longest alternative from which abc was constructed

yabc... . Is y * tall of 0, and is p - y a legal predecessor to yabcl This is

obviously only true if the alternatives form a head culprit, but in this case,

by the algorithm, only one production will be constructed here, so this is impos

sible.

Case 2. If the production has a a at the top (is of the form a b a) , then it

came from a string of the form a b .

Case 2A. We will first consider preclusion by another production with a

at the top. The alternative of this production must form a tail culprit with

a b . As before, we need only consider productions which have a stack of which

aba is a substack, and as before, the only way there can be preclusion is if the

alternatives also form a head culprit. However, this makes them culprits, and

this is impossible.

Case 2B. We now consider preclusion by a production with a terminal c at

the top (3be). Since both productions must apply to the same stack, c must be

a legal successor to orb. This means that the alternatives form a tail culprit.

In this case, since the terminal production always goes before the o production

despite their stacks, we must examine productions with stacks both longer and

shorter than a b a . (1) If a is a substack of 0, then as before the strings must

form a head culprit for preclusion to exist. Since we have also shown that they

form a tail culprit, this is impossible. (2) If 0 is a subs tack of cr, then

jibe will preclude aba even if they don't form a head culprit. But they do form

a head pseudo-culprit, so their order will be reversed. Now we must ask, can

aba preclude 0bc. And as before, the answer now is: Only if their alternatives

form a head culprit, and again this makes them culprits.

So we have shown for all cases that preclusion cannot occur.

Theorem 3. In parsing a legal sentence, if proper and previous conditions

hold when entering a set of l-productlons XI at time T, then they will hold at

T + 1.

Proof: If the syntax stack « t» D -4 , then we will be entering Dl, and

the production will be \> D A | -> | SUCCESS EXIT So we will exit. Otherwise,

the syntax stack corresponds to an alternative, and by Theorem 2, the productions

which is applied to the syntax stack was constructed from this alternative.

Case 1. If a production of type (1) is applied, with stack orXo, we know

that it was constructed from just one alternative 0 = crX , so we replace aX with

its definition G and transfer to Gl. By previous conditions, when the syntax

stack corresponded (1,1) to 0 it also corresponded (m,2) to another alternative

which had G or C (where some C-derivative starts with G) as its (mfl) character.

Case 1A. If G was the (mfl) character in the alternative, the syntax stack

will now correspond (mfl,l) to that same alternative becuase we have just

replaced 0 in the stack by G and added another character.

Case IB. If C was the (nrfl) character in the alternatives, the stack will

correspond (1,1) to an initial string of C which begin with G, so proper condi

tions hold again. Previous conditions hold here because they held before and

we now have back the same m elements of the syntax stack below the top two.

If a production of type (3) is applied, we can use exactly the same

reasoning to prove the theorem except that we replace orbc with G, and we must

scan a character before going to Gl.

Case 2, If a production of type (2) is applied, with stack orXc, we know

that it was constructed from just one alternative 0 •> crXH... where c is a member

of 1(H). So we enter HO knowing that the syntax stack still corresponds to 0

with the same m, and H is the next character in 0. So proper conditions hold.

The same argument goes for type (5) productions.

Case 3. If a production of type (4) is applied with stack orXc, it was con

structed from one or more alternatives of the form •••crXc... or ...crXH... (where

c c I (H)), one of which is a correct parse. So we scan the next character and

go to cl.

Case 3A. If ...aXc... is a correct parse, the syntax stack will now corres

pond (mfl,l) to it, and proper conditions will hold.

Case 3B. If ...aXH... is a correct parse, then the syntax stack must now

correspond (1,1) to one of the initial strings of H which begins with c, and

proper conditions hold again. Previous conditions hold because the syntax stack

now corresponds (m,2) to ...aXH....

Therefore, the Theorem is satisfied for all cases.

Theorem 4. A finite sentence will be scanned by the algorithm in a finite

number of steps.

Proof: Let us examine the links of the different types of productions that

can be constructed. The only types of productions which do not scan a new char

acter in their links are 1-productions of types (1) and (2). Productions of

type (2), however, link to a 0-production, and all 0-productions scan a character

in their links. So the only possible troublemaker is a type (1) 1-production.

We want to show that only a finite number of these productions can link to each

other before linking to another type of production, and thus scanning a character*

Each type (1) 1-production transforms one or more characters in the syntax

stack into a non-terminal. The productions which transform more than one element

of the syntax stack are making it smaller. The productions which transform just

one character into a non-terminal are just redefining this character.

We cannot have more than r redefinitions of a character (where r is the

number of non-terminals in the grammar) because if we did, a certain non-terminal

would be redefined as itself. This cycle could then be repeated a different

number of times in different derivations of the same sentence, making the grammar

ambiguous. So after these r redefinitions there must be a production which

reduces the size of the syntax stack. Therefore, if s is the number of elements

in the syntax stack at the time, there can be at most s(r+l) type (1) l-produc

tions before we must link to another type and at most one more before we scan

another character. So, any finite source string must be scanned in a finite

number of steps.

Theorem 5. Given a culprit-free grammar, the algorithm constructs produc

tions which are a recognizer for the grammar.

Proof; (1) First we assume that we are parsing a legal sentence and prove

that we must leave by the success exit.

Theorem 5 says that we must eventually scan the whole sentence so that we

must scan H. There Is only one production which contains A; this is the success

exit. So it must match this, an error exit, or a a-production. But a a-produc-

tion cannot scan a new character or remove the H , so it must eventually match an

exit in parsing all finite sentences.

In parsing a legal sentence, proper conditions hold by definition at T = 0;

theorems 1 and 3 show that if proper and previous conditions hold when entering

a set of productions, at parse time T they will hold at T + 1. So by induction,

proper conditions hold for all sets. We have already shown in the proofs of the

previous theorems that if proper conditions hold upon entering a set of produc

tions, one of the productions of the set must be applied, so we can't leave by

an error exit. Since we must exit, it must be by the success exit for any legal

sentence•

(2) We now assume that we leave by the success exit, and prove that the

sentence we have parsed must have been legal* This is equivalent to proving

that all illegal sentences must go out error exits.

If we have left by the the success exit, it means that we had h D -I in the

syntax stack. The termination symbols show that this is all that is in the stack

and that the sentence has been exhausted. Thus all characters in the sentence

have been transformed into non-terminals which have eventually all been trans

formed into D. Therefore the sentence is legal.

Therefore, (1) and (2) together show that the productions are a recognizer

for the grammar.

References

Floyd, R. "Bounded Context Syntactic Analysis11, Comm. ACM,
February, 1964.

Standish, T. "Generating Productions From a Restricted Class
of BNF Grammars11. Unpublished paper, Carnegie Institute of
Technology Computation Center.

Evans, A. "An Algol 60 Compiler11, National ACM Conference,
Denver, 1963.

Floyd, R. "A Descriptive Language For Symbol Manipulation11,
Journal ACM, October 1961.

Feldman, J. "A Formal Semantics For Computer-Oriented
Languages'1, Doctoral Thesis, Carnegie Institute of Technology,
1964.

