NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

3 ™ "1 1 7y 7Tt 777 T T Ty T O T Y Tr T 1 1

A PRELIMINARY SKETCH OF FORMULA ALGOL

by

Alan J. Perlis
Renato Iturriaga
Thomas Standish

Revised July 21, 1965

The regearch reported here was supported by the
Advanced Research Projects Agency of the Department of
Defense under the Contract SD-146 to the Carnegie Institute
of Technology.

B

7Y Ty Ty 7y T 7TTYY T 7T T)

L R B |

INTRODUCTION

In the information processing sciences a central role is played
by programming languages and by the complex information processing
programs that we can write from them, The power of programming

languages available to the programmer often determines whether or not

a given programming task can be accomplished without prohibitive

expense, As the power of available programming languages increases
both the variety of information processing tasks that can be pro-
grammed and the ease with which they can be programmed increage
correspondingly.

In earlier years algebraic languages, list processing languages
and string manipulating languages have existed separately from one
another. Recently, formula manipulating languages have evolved, and,

in addition, there have been efforts to combine various different kinds

of processing in one language.* The design of Formula Algol represents

an effort in this direction, Specifically, Formula Algol is an exten-
sion to Algol providing formula manipulating, list processing, and
limited string processing capabilities.A Thus, Formula Algol is a
language in which the advantages of these various different kinds of
proéeasing are combined, but we anticipate that Formula Algol will be

particularly well adapted to algebraic symbol manipulating processes.

* For example: FLPL-[I] . FORMAE'[i], ALPAK [i], the earlier
version of FORMULA ALGOL (4), and AMBIT [57.

1 Y 71 1

D S |

1

R R B B BN

I R

M

-

L S |

TABLE OF CONTENTS

I. Expressions

II.Pormula Manipulation in Formula Algol

A., Data Structures for Formulas
(1) Conditional Formulas
(2) Assignment Formulas
(3) Procedure Formulas
(4) Array Formulas

B. Operators for Formulas
(1) Construoctors
(2) Predicates and Selectors
(3) BEvaluation Rules

C. Remarks

III. List Proocessing in Formula Algol

A, Symbolle Data Structures
1) Symbols
2) List Structures
(3) Description lists

B. Operators for Accomplishing
1ist Processing
1) Constructors
2) Selectors
(3) Predicates
(4) Other Operators and
Statements

C. Remarks

IV. Examplesn

A. Pormula Procedure to Compute
Derivatives Iteratively ,
B, Formula Prooedure to Compute
General Taylor Series Expansion
of a Formula with respeot to
N variables

11

page

@@ FOOO NMNAFWN N -

38

page
Examples Continued

C. Program to Compute the Path
of Minimum Length in a Connected
Graph with Edges of Positive
Length 39

D. Program to Translate Arithmetic
Expressions in Infix Notatlon
into Arithmetic Expressions in
Polish Prefix Notation 41

E. The Wang Algorithm |)

V. The Backus Normal Form Syntax
of Formula Algol bsg
VI. References 52

111

-1 1 71 T3 M

YT TT}Y Y OTTYS O OTTYT OTTY T

L |

B

1T

EXPRESSIONS

There are seven different kinds of expressions in
Formula Algol. The firét three kinds of expressions, namely
designational expressions, arithmetic expressions, and
Boolean expressions are those of Algol,

In addition, there are four other kinds of expresaions

in Formula Algol which are not in Algol. These aret

(1) Formula Expressions,
(2) Pattern Expressions,
(3) S8ymbolic Expressions, and

(4) Tree Expressions.

Every expression has a value. These values have assoc-
iated types. Types INTEGER, REAL, and BOOLEAN, are already
defined in Algol. In addition to these Formula Algol has
two new types, FORM and SYMBOL. A, varjiable declared of type
fORM will ‘take on two properties. First, formulas and
patterns may be stored inte it. Second, it may be used within
formula and pattern expressions. Likewise, a variable declared
of type SYMBOL may contain lists and may occur in symbolic
expressions and tree expressions.

Whereas arithmetic and Boolean expressions have valuesa
whose types are always arithmetic and Boolean respectively,

such is not the case for formula expressions, pattern

II.

2.

expressions, symbolic expressions, and tree expressions.

By contrast, formula expreassions and pattern expressions

may take on not only values of type FORM but also any one of
the others. Likewlse, symbolic expressions and tree express-
ions may take on not only values of type SYMBOL but also any
one of the others. [Note: This means that formula express-
ions and pattern expressions may take on values of type
SYMBOL, and that symbolic expressions and tree expressions

may take on values of type FORH.]

FORMULA MANIPULATION IN FORMULA ALGOL
A, Data Structures for Formulas

In addition to the data structures already in Algol,
Formula Algol introduces some new data structures. Formulas
are one of these additional new data structures.

A formula is represented as a list structure composed

~ B i e

as follows: The representation is either

(1) an atomic formula variable, or
(2) an atomic constant, or else it is
(3) a combination, consisting of a binary operator,
a left half, which is a formula, and
~a right half, which is a formula (or which
1s empty in the case of a unary operator which

is a binary operator with an empty right half)

A R B

R

-1

—

M

YY)

1

T

I B

For example:
If X and Y have been declared of type FORM, then the
expreasion 3 X SIN (X) + (X +Y) t 2 is represented by

the following list structure:

+ .
X / \/1\
3 SIN ’//+\\ 2
X \:hpty X Y
Formulas need not be only arithmétic and Boolean. In
addition, there are four other types of formulas:
(1) conditional formulas (2) assignment formulas (3) proced-
ure formulas, and (4) array formulas. The internal computer
representation of all of these formulas i{s the same. In
analogy to the internal representation of arithmetic and Boolean
formulas, additional types of binary operators are introduced
allowing us to represent conditionals, assignment statements,

procedures, and array elements. This 1s done as follows:

(1) Conditional Formulas

Suppose we have the statement

F « .IF B THER G ELSE H;

“'-
where F i8 of type FORM and where the type of B, G and H is

immaterial. This creates a formula which we may represent by

EITHER

{n which - and EITHER are internal binary operators (meaning
that these operators are not part of the alphabet of the

source language). The formula is stored into F, causing the
value of F to become a conditional formula. Later, when we
discuss the evaluation of formulas, we will see that the
conditional action represented by this formula can be executed
when the EVAL operaﬁor is applied to F. Here G will become the
value of F if B is found to be true and H will be the value of

F otherwise.

(2) Assignment Formulas
Suppose we have the statement F « G. « A + B; where F is
of type FORM and the types of G, A and B are any type other

than symbol. This creates a formula, which

1 71

=~ 7 M /7 /7 Y 1 7 &Y /1 —/ /))

;
L

I R S

we may represent by

é// \\\\+
R

in which .« is a binary operator, and this formula is
stored into F. Hence, the value of F 18 an assignment
formula. If, at a later time, we apply the EVAL operator
to F, the assignment of A + B to be the contents of G
takes place. Thus, at one point in a program, we may
describe the skeleton of an assignment, and at a later
time, as a result of some unpredictable running experience,
the program may fill in the details and carry out the
agsignment, The essential theme of this is that we may
specify at any point to any desired degree of detail a
partial schema for a computation, postponing until later
the specification of details dependent on the outcome of

further computation which details we cannot predict.

(3) Procedure Formulas
Suppose we have the statement F « TAYLOR.{ G,X,N);

where F,G,X, and N are of type FORM. Executing this

6.

gtatement creates & formula which we may represent by
.PROCEDURE

TAYLOR ,
¢\
x” \\ N

in which .PROCEDURE is a binary operator, and this formula
is stored in F. As in the previous case, applying the EVAL

operator to F causes the actual execution of the procedure

TAYLOR.

(4) Array Formulas

Executing the statement F & B.[I,J,K]; causes the

N\
A\,
J//’\\K

formula

to be stored in F, where .ARRAY is a binary operator.
F must be of type FORM, B can be of any type; but it must
be the identifier of a previously declared array. Applying

the EVAL operator to F with values for I, J, and K

Y

)

M

-

-H;]

D B B

R

D I

L

1 Ty)

-3

causes the execution of the array access. For example,

executing the statements

A «1.[3,4);
P « TAYLOR. (F,X,N);
G « .IF B THEN A ELSE P;

F « L.c<G;

causes the following formula to be assigned the value of F

A\
Aﬁ§::, \\T:;OCEDURE
ZUIVZN
L !,\4 TAYLOR i /\

The value of F thus represents a postponed assignment
to L of a postponed conditional which if B is true represents
the postponed array access_L[3;AJ, and if B is false the

postponed procedure execution TAYLOR (F,X,N).

8.
B, Operators for Formulas
Having added formulas as a new type of data structure

certain classes of operators are immediately suggested. -

(1) Constructors

A formula is always created by writing directly the
linearized algebralc expression which represents it. For
example, if the formula, 3 sinx + (x + y)2, is going to

be stored in the formula variable Z, we shall write:
Ze3%*SINX +(X+Y) t 2

After the execution of this statement, Z is a formula variable
having a formula value represented by the list structure
described on Page 3.

As we will see later the EVAL operator is also capable

of being used as a constructor.

(2) Predicates and Selectors

If as a result of some computation a formula has been
built up whose structure cannot be predicted in advance, we
may precisely determine its structure by the use of predicates.
These predicates are sufficient in the sense that, whatever
constructions are used to create a formula, the process may be

reversed by the choice of a sequence of predicates. In the

1

/1 T T T

-

-y Tr vy Y Ty T

-9

1)

-

case of formulas, we call these predicates "patterns”.

Patterns are defined by the following BNF syntax equations:

<patterm>::= <formula expression> == <pattern structure>
<formula expression> >> <pattern structure>|
<identifier>: <formula expression > >>

<ldentifier>: <pattern structure>

In this definition, a formula expression is compared with a
"pattern structure" to determine whether the expression is an
;xact instance of the pattern structure or whether the
expression contains an instance of the pattern structure.
Thus, we writel<formu1a expression> == <pattern structure> to
mean "Is the formula expression an instance of the pattern
structure?", and we write <formula expression> >>

<pattern structure> to mean "Does the formula expression
contain an instance of the pattern structure?" The use of the
<identifier>'s in the definition of a pattern will be explained

later. Pattern structures are defined as follows:

<pattern structﬁré>::=
<a formula in which some of the primaries may have
beenr replaced by pattern primaries and some of the

operators may have been replaced by [<wariab1é>] >

10.
<pattern primary>::= <unlabelled pattern primarj>]
<variable> : <unlabelled pattern primary>

<unlabelled pattern primary> ::= <type> | OF (<vartable>) JATOM

The colon used in the definition of pattern primaries is
an extraction operator. It extracts the part of the formula
matching the corresponding unlabelled pattern primary. A copy
of the extracted part of the formula isg assigned as the value

of the identifier found to the left of the colon.

Suppose R is a variable declared of type SYMBOL for which

the following assignment statement has been executed:

R e—/ [index: J] [operator: +,-,/] [comm: true,false,false];

The effect of executing this statement (as will be explained
later when we introduce the list proceseing features of Formula
_ Algol) isrto assign R a description list whose attribute value
l1ist follows the first occurrence of the mark / in the above
assignment atatement; Here, each attribute precedes the colon
inside each pair of square brackets and the value list associated
with that attribute follows the colon,

Consider now the pattern F == A : INTEGER |R| B:FORM. This

pattern will be true in any of the two following cases:

1 Y Ty Y Y 71T Ty T Y TTY ™)

D R |

e

M

1.,
(1) The first operand of F is an integer and the second 1is
a formula and the main operator is either +, -, or /.
(2) The first operand of F is a formula and the second

operand of F 18 an integer and the operator is +.

In case 1, assuming there was a match, A is assigned‘ the value
of the integer, B 1s assigned the value of the formula, the index J
is set to 1, 2, or 3 according to whether the main operator was +,
-, O / respectively, and this main operator 1s stored as a data
term in the contents of R. 1In case 2, since the value of the attri-
bute "comm' on the description 1list of R is the list
[true, false, false], the pattern also stands for commutative
instances of the right and left operands about any of the operators
+, -, or / whose corresponding Boolean values following the attri-
bute "comm'" are set to true. Thus, in this case, + i5 a commutative
operator and - and / are not. ‘Therefore, only commutative instances
about the operator + are considered. We note that
[comm: true, false, falae] need not appear on the description list of
R at all, in which case no commutative instances of any operator will
be considered. Later we can use the construction |<R>| in an expres-
sion 1n place of an operator. The operator that |<R>| stands for is
exactly the one which was extracted during previous pattern matching.
Alternatively, R may be assigned any operator by the assignment state-

ment R «+ ; and]<R>| may be used in the same fashion.

12.

The following are examples of patterns:

Example 1. Let A,B,X,Y, and Z be declared of type
FORM, and let R be declared of type REAL. Suppose the

statement

Xe3*SIN(Y) + (Y-2)/R+2%R;

has been executed.

Consider now the statement:

IF X >> A : INTEGER * B: SIN(FORM)

THEN Z « 2 * B + A ;

Since the pattern X>> A:INTEGER * B:SIN(FORM) 1is true, the
aggignment Z « 2 * B + A will be executed, aassigning as the
value of Z the formula 2 * SIN (Y) + 3 because A has the

value 3 and B the vﬁlue SIN(Y).

Example 2. Let X be of type SYMBOL, A,B,Y ,M,T,G, and P
be of typé FORM, and let D be of type BOOLEAN. Then executing

the statements:

X « [REAL,INTEGER ,BOOLEAN] ;
GeY+8*% (M-T) ;
P«FORM+ A : OF (X) * B: FORM ;

D(-—G::P;

—y = _— _—

|

T

R R B R |

7

M

13,

causes D to be set to true because the pattern G == P is
true, and causes A to be set to B and B to be set to M - T.
in this example, we observe that in the definition of a
pattern primary a type may be replaced by a symbol having
a list of types as contents.

SBuppose that we wish to extract either the name or the
parameters of a procedure formula or that we wish to extract
either the name or the subscripts of an array fo?mula. To do

these, we may write patterns of the form

F = X: FORM. (PLl:FORM,P2:FORM)

F == X: FORM. [X1:INTEGER,X2:INTEGER]

Here X will contain the name of the procedure or array and

P1,P2,X1l, and X2 will contain the paraﬁeters or subscripts in

‘the event that there is a match. Extraction from conditional

formulas and assignment formulas is entirely analogous.
We now explain by means of an example the function of the

colen in patterns of the form

<identifier> : <formula expressiom> >>

<identifier> : <pattern structure>

Suppose we have executed the statements

14,

F « 2% (SIN(Xt2 + Yt2) + COS(Xt2 - Yt2)) /5;

G « SIN(FORM) + COS(FORM),

wvhere all variables used are of type FORM. Then

A: F>> T: G 1is a pattern with value true. The value

of T will replace the first instance of G in F, {.e., the
expression SIN(Xt2 + Yt2) + COS(Xt2 - Yt2) [this being
the first sub-expression of F matching the pattern GJ and
A is assigned the expression 2* T /5. 1In this case, the

atomic symbol T is contained in the formula

%*
2// \7 stored in A.
/

£

Thus, A i{s the same as F with the first sub-expression of F

matching G replaced by the value of T.

3. Evaluation Rules

We may think of formulas as abstractions of computations.
By manipulating formulas we alter the computations they
represent. At some point in the execution of a program, we
may wish to carry out the computation represented by a formula.
To do this, we could substitute values for those variables
whose values are not assigned, and those values will be combined

according to the computation expressed by the formula resulting

- 7Y Ty M

D B

A T B I IR R R I R B B

-9

15.
in an evaluated formula. In order to accomplish the above
we have the EVAL operator.

If we have a formula consisting of formula varfables
joined by arithmetic operators, then, if we asaign each of
the formula variables a numerical value, the result of
evaluation of the formula will be a number. Hence, the
evaluation of an arithmetic formuls by complete substitution
of numbers for formula variableslia a computation carrying the
set of numbers substituted into a number. Analagously,
substitution of Boolean values for formula variables in a
Boolean formula produces a Boolean value.

On the other hand, we need not substitute arithmetic or
Boolean values for formula variables, but rather, we can
gubstitute other formulas. Thus, in thia case, evaluation of
the formula, instead of collapsing it to a single value,
expands 1t to an enlarged formula. Hence, EVAL may be used as
a constructor.

A third use of EVAL is that of producing trivial simpltfi¥
cations in a formula without altering its value and without
gubstitution.

A final use of EVAL is to carry out the array access or
procedure call indicated By a "dot array formula" or a "dot pro-
cedure formula", or to carry out the assignment of a value or the
choice of a value indicated by a "dot assigopment formula™ or a

"dot 1f formula'.

16.

For example: If the formula X has the value

X =

Then the expression EVAL X will produce the number 11 as value,
as in the example V « 3 + EVAL X, after which V has the value
14, X is not altered by EVAL X.

These uses of EVAL represent extreme cases. In a
given application they may be combined. Thus evaluation of a
formula may produce partial collapsing, partial expansion, and
some trivial algebraic simplification simultaneously. [Note:
substitution is always :1mu1taneoua.]

The Synta# and interpretation of evaluation formulas is

as follows:

<EVAL formula> ::= EVAL <variable> |

EVAL <bound variables> <expression> <list of values>
<list of values> ::= (<actual parameter list>) | (E<variab1e>a)
<bound variables> ::= (<variable list>) | (E(variab1e>ﬂ)

<variable list> ::= <variable> | <variable list> , <variable>

R

R R R |

)

D DR B B

-

YTy ™)

|

B |

17.

Consider a statement of the form:
D EVAL (X, Xy couy XD F (¥, ¥,y w0y ¥) (1]

where n2> 1, and m2 1,

Then it is the case that:

(a) F must be a variable declared of type FORM; neverthelessa
at execution time it may become any type.

(b) If the current value of F is not an‘expression, then
the effect of [1) is precisély that of D « F.

(¢} 1If the current value of F is an expression, then D will
have the value obtained by the execution of the piece of code
produced by the interpretation of F as an arithmetic or Boolean

expression, in which were substituted Y, for all of the corres-

i

ponding occurrences of Xi in F, for all { < wm, The subatitution

i8 made in accordance with the following rules, If

Xi is not of type FORM, xi is8 ignored; or if

Ki is of type FORM, but does not occur in F, Xi is

is ignored, or if

X, is of type FOEM, and it occurs in F, but { > n,

i
Xi is ignored, or if
X1 is of type PORM, and it occurs in F, with { < n,
then X, 1s replaced by Yi'

i

18.

(d) Y, may be an expression of any type.

(e) The expression F is not changed as a consequence of the
execution of EVAL,

(f) D wmust be of type FORM, unless the evaluation of F
produces a numerical or logical value,

The evaluation process creates a new expression which may be
ultimately of any type, depending on current values.

Executing EVAL F where F is an assigmment formula, a pro-
cedure formula or an array formula, respectively, causes the
assignment to be executed, the procedure to be evaluated, and the
array element to be accessed respectively,

When evaluating a conditional formula, only if the Boolean
formula in the if clause collapses to a Boolean value will the
conditional formula be executed. This process requires substitu-~
tions. If, on the other hand, the Boolean formula does not collapse
to a single value, then another conditional formula is constructed

with the corresponding substitutions.

C. Remarks
When the value of a formula is given by an assigmment statement
later assignment statements do not alter the originally assigned

formula. Assignments are not retroactive, For example,

Y « A+ B;
XY+ 3;

Y «F + G;

)

Y 7Y 7%y Y Ty ¢

-y

19,
After the execution of these statements X has as {its value the

formula and not
N\, N\,
/\ 2N
A B ¥

In symbol manipulation the reverse is true, As we will see
later, during the discussion of the list processing features of
the language, after the execution of the following three state-
ments:

Y [4,8]);

xe(v,3);

Ye[rc]);

the value of the expreasion <FIRST OF <X> >, which means "the

" contents of the first element of the list stored as the contents

of X", will be the list [F,G] and not the list [A,B).
Experience indicates that those with a background in list
processing languages confuse the above mentioned point when

dealing with Formula Algol for the first time.

I1I.

20.
LIST PROCESSING IN FORMULA ALGOL
A. Symbolic Data Structures
There are three kinds of symbolic data structures: symbdls,
1list structures, and description lists,
(1) Symbols
A variable, 8, in Formula Algol, which is declared to be
a symbol acquires the following properties:
(a) S names a storage location into which symbolic data
structures may be stored,
(b) S may have a description list attached to it into which
attributes and values may be entered and retrieved,
(c) S may be used as an atom in constructing symbolic data
structures.
Note: Unlike other types of variables in Formula Algol, S does
not have a value. The contents of S i8 not the value of S.
Instead, the contents must be accessed by applying an operator to
S, namely, by enclosing 8 in contents brackets, <5>. Whereas
writing the real variable R in a stafement such a8 T « 2 * R;
causes the value of R to be used, writing the symbol S in the list
[A, B, C, Q] causes S itself to be entered into the list, and not
some value or structure which S stands for.
{(2) List Structures

Symbols may be concatenated into a list by writing them one

-

o

T 7Y 1)

7T Y T T

R D R B

]

1

21,
after another, and by separating them with commas. This list may
be assigned as the contents of another symbol by executing an
agsignment statement, E,g. VOWEL e-[A, E, I, 0, lﬂ;

An item concatenated into a list need not be a symbol., It
may be any expression legal in Formula Algol, For example:
let X, ¥, and Z be formulas, let A, B, and C be Boolean, let U, V,
and W be real, and let R, S, and T be symbols, Then the following
asgigmment statement is legal.

5« [X+ SIN (Y), 3 + 2*U, IF B THEN R ELSE T, [R,T,R], -36];
At the time this statement is executed, each expression on the |
right is evaluated, and the list of values is stored into the con-
tents of S, In effect, automatic data term declaration results
from storing non-symbolic values into list structures. Note that
the second from the last item in the above expression is the

quantity [R, T, ﬂ]. This becomes a sublist of the list stored into

8. Hence, the expression stored into S is, in reality, a list struc-

ture. For this reascn, the expression on the right hand side of the
above statement is called a tree expression. Tree expressions
represent list structures into which values of any type may be
entered and retrieved. The operators for manipulating tree expres-
sions will be introduced subsequently,

(3) Description Lists

A description list is a sequence of attributes and values,

22.
Each attribute is followed by a list of values associated with it,
This value list may contain more than one member, it may coatain
only one member, or it may be empty. A description list is always
attached to a symbol and becomes permanently bound to it. Any
symbel may become an attribute, and, in addition to symbels, the
value of any expression legal in Formula Algol may become a value.
Let AI, A2, and A3 be symbols used as attributes, and let me,
for m and n integers, stand.for values, Then an example of a des-
cription 1list is

[(8y 5 Vg Vyge Vg [y 2 vy) Ay 2 vy, Vap, V45, V)
The operators for entering and retrieving attributes and values in

description 1lists will be introduced subsequently.

B. Operators for Accomplishing List Processing

The introduction of symbolic data structures into Formula Algol
makes mandatory the existence of certain classes of operators among
which are first, constructors, to create them; second, selectors,
to gain access to various parts of them; and third, predicates; to
determine the structure of those whose structure is unknown.
1. Constructors

The most elementary and direct method of creating both tree
expressions and description lists is to write them out linearly and

to store them into the contents of some symbol. E.g. Assume that

L I R R |

- T

1

W‘T-\L. _) N

23.

all identifiers in the following statement are symbols:

s« ([4a,B,0,0];

8 e/[typea: mu, pi, rho] [anceators: orthol, paraS] [color:

green) ;

The first statement creates the list [A,B,C,D] and stores it as
the contents of 8. The second creates the description list
/ [types: mu, pi, rho] [ancestors: orthol, para5] [color: greeﬁ]'
and attaches it to the symbol S,

Methods of creating and altering both tree expressions and
description lists by means of editing statements and value entry
statements will be introduced after the introduction of selectors.
2, Selectors

Symbolic expreasiohs may, upon evaluation, yield both symbols
and lists of symbols as values. They may also, upon evaluation,
yield arithmetic, Boolean, and formula values. Anywhere a symbol
appears it may be replaced by a symbolic expression, which, upon
evaluation, yields a symbol as a result., Likewise, anywhere a list
of symbols appears it may be replaced by a symbolic expression,
which, upon evaluation, ylelds a liat of symbols as a result,
Seléctors are operators which are applied to a symbolic data struc-
ture to gain access to a part of that data structure. The following

classes of selectors are available:

24.

(a)

(b)

Retrieval of the contents of a symbol.

Suppose 8§ « [A,B,C]; has been executed. Then 5
contains the list [A,B,C] + To acceps the contents of
S we form the expression < S >, This is read "the con-
tents of S", It is a symbolic expression whose value {s,
in this case, the list [A,B,C] . If we execute the state-
ments: T « S; and S ¢ [A,B,C]; then < T > {5 a single
valued symbolic expression with value S, and << T > > {8
a list valued symbolic expression with value [A,B,C] .
The angular brackets, < >, may be nested arbitrarily
many times to give arbitrarily many levels of indirection.
Retrieval of values from a description list.

Suppose the statement
8 &« /[types: -mu, pi, rho] [anceat:ors: orthol, paraS]

[color: green];
has been executed causing a description list to have been
created and to have been attached to 5. Suppose we wish
to determine the values of the attribute "ancestors" on
the description list of S. To do this we write "THE
ancestors OF S, This is a list valued symbolic express-
ion having the list [orthol, para5] as value, The

expression "THE color OF S§" is a single valued symbolic

-

I DR

1 T

M

B

-1 Y T 7Y Y T

D R

(c)

25,
expression having the symbol “green" as value.
Retrieval of elements and sublists of a list.
Suppose the statement 8 « [X,A,X,A,A,X,A,A,A,X];

has been executed causing the list shown to be stored as

‘the contents of 8. We may acceas the various symbols on

this 1list by means of "selection expressions". Selection
expressions consist of selector operators applied to list
valued symbolic expressions. We know already that < § >
1s a list valued symbolic expression having the list
[X,A,X,A,A,X,A,A,A,x] as a value., Hence, the expression
3RD OF < 8 > 18 a single valued symbolic expression having
the value X. Likewise, LAST OF < S > has the value X,
whereas 2ND BEFORE LAST OF < S > has the value A, and
whereas 2ND BEFORE 3RD X OF < S > has the value A.
Selection expressions need not have single values. For
example: the expression FIRST 4 OF < S > has the list
[X,A,X,A] as value, and the expression

BETWEEN FIRST X AND 1ST BEFORE LAST X OF < S > has the
list [A,X,A,A,X,A,A] as value. Selectors may be com-
pounded to access sublists and their elements. Suppose
the statement S <-[A, [x,x, [A,A), x], A]. has been

executed. Then the expression 2ND OF < 8§ > is a list

26,

valued symbolic expression with the list EX; X, [A,A.], Xﬂ

as value, whereas the expression 3RD OF 2ND OF < S > has

the list [A,Aj] as value, and whereas the expression

LAST OF 3RD OF 2ND OF < S > is a single valued symbolic

expression witﬁ the value A,
3. Predicates

Predicates for determining the structure of lists and list
structures are of two kinda: "1ist patterns" and "relations", List
patterns use the mechanisms found in COMIT to test whether a linear
list is an instance of a certain linesr pattern, The constituent
selector list describes the pattern being tested for, and is composed
of a sequence of constituent selectors separated by commas. The
symbols §, and $n may be used as constituent selectors with the same
significance as in COMIT [viz. $ stands for any arbitrary number of
gsuccessive constitutents, and $n stands for n consecutive arbitrary
constituenté]. If a symbolic expression is used as a constituent
selector, its value is firat computed, and if that value is a list,
each element of the 1list becomes one of the consecutive constituent
gselectors in the constituent selector list. Other kinds of elements,
to be introduced later, may also become constituent selectors.
A list pattern compares the list determined by a 1list valued

symbolic expression to a linear pattern described by a constituent

I D R B R DR

YT

27,

selector list to see if the list is an instance of the pattern. The
list pattern is a Boolean primary with wglues true and false and
thus may be combined with other Boolean expressions by means of
logical connectives,

A list pattern has the syntax

<list pattern> !:= <list #alued symbolic expression> HAS

<constituent selector list>

By looking at two examples these conceptslwill become clear.
Example 1. Suppose the statement 8 e—[A,B,C,D] has been executed,
where all variables involved have been declared to be symbols.
Consider now the statement

TF<5>HAS §1, B, $THER T« [<T>, B) ELSE

T[<T> LASTOF<S>];

Since the contents of §, which is the list [A,B,C,ﬂa, ie an instance
of the pattern $1, B, § (which is read " a single arbitrary consti-
tuent, followed by a B, followed by any number of arbitrary consti-
tuents ") the predicate " < S > HAS §1, B, $ " 1s true. Therefore,
T e—[<T>, B:] is executed, which has the effect of appending a
B to the end of the list stored as the contents of T,

As with the pattern expressions used to determine the structure
of formulas, 1list patterns may also function as selectors. The same

mechanism i8 used to accomplish this. If any constituent selector in

28.

a constituent selector list is preceded by a variable declared of
type SYMBOL followed by a colon, then the corresponding constituent
in the list being tested, im the event that there is a match, is
inserted intc the contents of that symbol variable., The contents
may be accessed at any later point in the program.
Example 2. As in the previous example, suppose the statement
S e—[A,B,C,D] has been executed ﬁhere all variableas are symbols.
Then executing the statement
IF < £ HAS T: $2, V: $2 THENS « [< V>, <T>];
changes the contents of S to be the list [Cc,D,A,B]. Furthermore, -
< T> is the 1ist [A,B), and < V> 1s the 1ist [C,D].
Relations constitute a second class of predicates, The
following kinds of tests are available:
(a) Equality Relations
If we have two symbolic expressions we may test
whether their values are equal by means of the relation
<symbolic expression> = <symbolic expression>. The
values of the symbolic expressions may be single symbols,
lists of symbols, formulas, or values of any other type.
Naturally if the values of the two symbolic expressions
are non-conformable data structures the result of the

predicate will be false,

7y 77y 7Ty Ty 7Y Ty Ty T

)

)

- Y T I I

|

(b)

(c)

29,
Testing for types
A single valued symbolic expression having a value
whose type 18 uninown may be used in the relation

<symbolic expression> IS <restricted type> in order to

determine the type. A restricted type is either

REAL, INTEGER, BOOLEAN, HALF, LOGIC, FORMULA, SYMBOL,
or SUBLIST,

For example: Suppose R is m, B is BOOLEAN, F
is FORM, and A,B,s, and T are SYMBOL. Suppose further
that the statement 8 « [R,B,F, [A,B] s T]; has been
executed., Then

the relation 18T OF < 8 > IS REAL is true

the relation 2ND OF < 8 > IS REAL {8 false

the relatiqn 3RD OF < § > IS FORM is true

the relation 4TH OF < S > IS SUBLIST is true, and

the relation LAST OF < S > IS SYMBOL is true.

Testing for membership in a class

Formula Algol permits sets to be defined by means

of class definitions. For example, suppose the statement

Ve [A,E,I,O,U] has been executed. Then the statement
LET (| VOWEL |) = [X | amone (x,v) J;
defines the set of all vowels, (| VOWEL |), where

AMONG (P,Q) is a Boolean Procedure which is true 1if P

30.

is an element of the list contained in Q, and false other-
wise, Let us now suppose that, having sometime previously
executed the statement S e—[A,B,C], we execute the state-
ment

IF 1 ST OF<S>1IN (| VOWEL |) THEN GO TO exit;
The relation 1 ST OF < § > IN (| VOWEL |) will be evalua-
ted by first computing the value of the expression 1 ST OF
< S8 >, which is the symbol A, and second by substituting A
for the formal parameter X in the class definition of
(| VOWEL |). This results in the Boolean procedure
AMONG (A,V) being executed, the value of which is true,
Thus A is in the class (| VOWEL |), and the relation
1STOF<S > IN (| VOWEL |) is true. This causes us to
GO TO exit in the above statement,

Class definitions may consist of Boolean combinations
of other defined classes. E.g. LET (|A|) = (|B|]) A (|C]);
is legal provided (|B|) and (|C|) are elsewhere defined.
Another example of a class definition would be

LET (|EMPTY|) = [X | false);
This defines the empty set.
Clasas definitions may be used as constituent selectors

in list patterns. When this is done, the constituent

D B

M

7Yy T Ty Y T T

1

)

1 T

4,

duced,

i1,
matching the class definition is tested for membership in
the class. If the result is true the list pattern contin-
ues to be matched against the list being tested, If the
result is false, the list pattern fails to match the list
being tested. E.g.
<8>HAS D, (| VOWEL |), § is a legal liet pattern
which tests the list contained in 5§ to see if it is of the
form D, followed by a vowel, followed by any arbitrary

number of arbitrary constituents.

Other Operators and Statements
There are four species of statements which remein to be intro-

These are "value entry statements", "editing statements",

"push down and pop up statements", and some additional new types

of "for statements". We will discuss them in the order given.

(a) Value entry statements

" Value entry statements enter values on description
lists. They supplement the role performed by assignment
statements in this regard. Suppose that S «-/[types: m,
pi, rhé] [color: red] has been executed., Then if we
execute the statement: THE color OF S IS green; we
replace the value of the attribute "color" on the des-

cription list of S with the new value "green", This

32.

(b)

yields the altered description list /[types: mu, pi, rho]
[color: green] as a result, On the other hand, we could
have executed the statement: THE color OF S IS ALSO green.
Instead of replacing the color "red" with the value "green"
the latter statement appends the value "green" to the
value list following the attribute "color". This yields
/[types: mi, pi, rho] [color: red, green] as a result.
Finally, we may use value entry statements to delete
values from value lists of aspecific .attributes. Executing
the statement: THE types OF S IS NOT pi; alters the above
description list to be of the form /[typea: mu, rho:l
[color: green] .

Editing statements

Editing statements are used to transform, permute,

alter, and delete elements im lists. Suppose S « [X,A,A,x}
has been executed. Then the statement INSERT Y BEFORE LAST

OF < S > changes < § > to look like [X,A,A,Y,X). Similar-

ly, the statement INSERT [Y,z] (AFTER IST OF, BEFORE LAST

OF)< S > changes < S > to look 1ike [X, [¥,2), A,A, [Y,Z2],

X). The statement DELETE 3RD BEFORE LAST OF < S > alters
< S8 > to look like [A,A,X], and DELETE ALL A OF < § >

causes < § > to be changed to [XX] . In a similar vein,

1 (01 o) —~y T 1 1 1 1 r— - —

£t~

£

|

I D |)]

-

ey

Y TTY Y T

R D R B |

7

(c)

33.
the statement ALTER ALL AOF <3S > TO [C,C] changes
< 8> to look 1ike [X, [c,c], [c,c], x]. Finally,
the statement COPY FIRST 3 OF < S > AFTER LAST OF < T >

would have the effect of appending [X,A,A:] to the tail

.0of the list given by < T >, These examples do not exhaust

all possible syntactic combinations permissible in editing
statements, rather, they exemplify some of the editing
operations that are possible.
Push down and Pop up Statements

The contents of any symbol may be regarded as a push
down stack, If S e—[A,B,C] has been executed., Then IS
is a statement, which when executed, pushes the entire con-
tents of § dowﬁ one level, Picturing the contents of 8 as
a description 1ist / [CONT: A,B,C], we may also picture
the effect of IS, which is to insert a stack marker on top
of the contents, transforming the above picture to
/ [CONT: |A,B,C }. 1f we now execute S ~[c,p]), the
latter picture transforms to / [CONT: C,D | A,B,C]. Here,
the value of < 8 > is the list [C,D']. The lower levels
of the push down stack are inaccessible to the operation of
extracting contents until a pop up statement has been per-

formed. Executing the statement tS then tranaforms

34.

(D)

/ [coNr: c,p | A,8,C] into / [coNT: A,B,C], and now
the value of < 8 > is [A,B,C J. Whenever the contents
of S i8 empty, the expression < 5 > has the value NIL,
Thus, should S5 be popped too many times, nothing will
remain in the push down stack and the contents of § will
be NIL, The push down operator, !, and the pop up
operator, t, may be applied any number of times in suc-
cession, as in the examples ttt3, and I!5, There 18 no
limit to the number of levels a push down stack may have.
Additional Types of For Statements

We may wish to generate the elements of a 1list one
by one in order to assign them to the controlled variable
in a for-statement. For this purpose the for-1list elements,
ATTRIBUTES OF S, and ELEMENIS OF < S > are introduced. Here
attributes on the description list of S are generated in
the order they occur by ATTRIBUTES OF 8, and ELEMENTS OF
< 8 > generates the successive elements of the list < S >,
In the latter case < S > may be replaced with any list
valued symbolic expression,

Parallel generation is also permissible. If S e-[A,
B,C], T e—[D,E],.and U e—[F,G,H,I] have been executed,

then executing the statement

1

Ty 7Y)

)

Ty T)

1

YTy T

3

35,
PARALLEL FOR (I,J,K) « ELEMENTS OF (<>, <>, <U>) DO
Lel[<, <p, <b, <&
causes the following to happen. Firsﬁ, all first elements
of the lists contajined in S, T, and U respectively are
generated and placed in the contents of the controlled
variables I, J, and K respectively, Control then passes
to the statement following the DO, and when finished with
the execution of the statement found there returns., On the
gecond cycle, all second elements of 3, T, and U are gener-
ated and placed in I, J, and K respectively, Control then
passes to the statement following the DO and returns. On
the third cycle all third elements are generated, on the
fourth cycle all fourth elements are generated, and so on.
If any list runs out of elements before any of its neighbors,
NIL keeps getting generated as the Nth element of that list
whenever N exceeds the number of elements on the list, The
parallel generation stops on the first cycle before a NIL
would be generated from all lists.
C. Remarks
It is legal to declare FORMULA arrays and SYMBOL arrays as well
as FORMULA procedures and SYMBOL procedures, Iﬁ the case of the first

two, the array elements are of types FORM and SYMBOL respectively.

36.

In the case of the last two, the procedures have FORM and SYMBOL
values respectively.

There will be available to the programmer a number of standard
1ist processing library functions such as COUNT(L), which counts ‘the
number of elements on the list L and gives the result as its value,
. EMPTY(L) which is true if <I> is empty and false otherwise, AMONG
(X,L) which is true {f X is an element of the list contained in L
and false otherwise, CREATE(n,L) which inserts a list of n created
internal symbols as the contents of L, these symbols being taken
from the list of available space, ERADL(S) which erases the des-
cription list of 8, and several others,

In addition to having values, formulae may have description
lists attached. This is done by assignment statements, E.g.

F e-/ [properties: continuous, differentiable].

As in the case of symbols, value retriéval statements and value
entry statements may be used to alter and retrieve attributes and

values from such description lists.

B

Y OTFYTTY Y)

B

— -—

)

R I

- o)

~

FORM PROCEDURE DERV(G,X)3 FORM G,X3

COMMENT: THIS PROCEDURE COMPUTES THE DERIVATIVE OF G WITH RESPECT
TO X (TERATIVELY, ¢ IN REFERENCE[4) A RECURSIVE OIFFERENTIATION
ROUTINE WAS GIVEN). THE BASIC STRATEGY OF THE PROCEDWRE IS THIS,
WE HAVE TWO FORMULA ARRAYS, F AND D. FUI) CONTAINS A FORMULA

TO BE DIFFERENTIATED, AND DI} WILL CONTAIN THE EXPRESSION OF

ITS DERIVATIVE, THIS DERIVATIVE IS CONSTRUCTED, IN GENERAL,

IN TERMS OF THE DERIVATIVES OF THE OPERANDS OF F(l}, THESE
OPERANDS WILL BE STORED IN SOME OTHER F{K] AND F[J] WITH K,J>1,
IN THE EXPRESSION OF DEI] WE DO NOT USE THE VALUES OF O(K]

AND D(J] RATHER WE USE THE ACCESSING FUNCT{ONS (FORMULA ARRAY
EXPRESSIONS Yo ULTIMATELY THE PROCESS OF DIFFERENTIATION REDUCES
TO DIFFERENTIATION OF X AND OF CONSTANTS, THUS CAUSING IT TO TERMINATE,
WHEN THIS HAPPENS WE COLLECT BACKWARDOS BY MEANS OF EVALS

BEGIN SYMBOL T,ANY3 INTEGER 1,J,K3 FORM ARRAY F,D(12100]3
SWITCH L « L1,L2,L3,L4,L53

T« / TINDEXSK)ILOPERATOR $+y= %, /, 113

ANY « (REAL, INTEGER,HALF ,FORM]}

FI1leGy Je13
FOR | « 1 STEP 1 UNTIL J DO
BEGIN
IF FOV) IS ATOM THEN D[] « IF FUE)=X THEN 1 ELSE O ELSE
BEGIN '

IF FUIY == FLJ+1)e OFCANY) |T] FLJ42)30F CANY) THEN
GO TO LK) ELSE GO TO ERROR3 h
E£NDs
GO TO CONTINUES
L12 BUI] « D [J+1] + D [U4+2])3 GO TO NEXT3
t22 D013 « D (J+1) =~ D IH2)3 GO TO NEXTS
L32 DY) « DolH1IFIH2) + DIJH2)1 [J+1)3 GO TO NEXTS
Lz O01) « (FIH21MD [H1] = FLIH)0 (H42)) FTH2]1123 GO TO NEXTS
L5: DOIY &« FLJH2)IMFTHTITCFISH2) = 1) + LNCFIJHI D (1 14D, {H2]3
NEXT: J « J + 23 .
CONTINUE: 3
END OF LOOP3
FOR | « J STEP =1 UNTIL 1 DO
DOI1) «~ EVAL D11}
DERV « DI[1)3
END PROCEDURE 3

37.

38.

FORMULA PROCEDURE TO COMPUTE THE GENERAL TAYLOR SERIES
EXPANSION OF A FORMULA WITH RESPECT TO
N VARIABLES

FORM PROCEDURE TAYLORCF,U,V,M,N)3
FORM F3; SYMBOL U,V3 INTEGER M,Ng
COMMENT: LET F BE THE FORMULA TO BE EXPANDED, LET U BE A SET OF INITIAL
VALUES, LET V BE A SET OF VARIABLES IN F8 X1,X2,5e0eyETC., LET W
BE ;HE NUMBER OF TERMS DESIRED, AND LET N BE THE NUMBER OF VARIABLES
IN Fo

BEGIN SYMBOL W,S,R3 FORM Z,G3 FORM ARRAY T,H[1sN)3 INTEGER |,J3
FOR | « 1 STEP 1 UNTIL N DO BEGIN
INSERT | THOF V= 1 TH OF U AFTER LAST OF <W>3
INSERT Ho[)] AFTER LAST OF <S>3
INSERT T.[1] AFTER LAST OF <R>3 END3
I« EVAL(<V>)F(R>)3 FACT + 13
TAYLOR « EVAL(<R>)Z(<U>)}
FOR | « 1 STEP 1 UNTIL M DO BEGIN
G-03 FACT « FACT*I 3END§
FOR J « 1 STEP 1 UNTIL N DO
BEGIN 6 « 6 + H.IJ)HERV(Z,T.[JI)3 2+G3 END3
TAYLOR « TAYLOR + EVAL(<S>,<R>)Z(<W>,<V>)/FACT}
END PROCEDWRES

-

D D B |

Y 7Y

R

Y 71 7Y TTY O

1

39.
PROGRAM TO COMPUTE THE PATH OF MINIMUM LENGTH

IN A CONNECTED GRAPH WITH EOGES OF POSITIVE LENGTH

BEGIN

COMMENT: THIS PROGRAM FINDS THE MINIMUM PATH AND PRINTS THIS PATH
TOGETHER WITH ITS LENGTH. THE GRAPH IS ENTERED AS A SET OF NODES
WITH DESCRIPTION LISTS ATYACHED TELLING THE OTHER NODES YO WHICH
EACH NODE 1S IMMEDIATELY CONNECTED (ATTRIBUTES) AND TELLING THE
LENGTHS OF THE EDGES THAT FORM THOSE CONNECTIONS (VALUES), FURTHER,
AN INDEX 1S ATTACHED TO EACH NODE WHICH 1S ZERO FOR THE ORIGIN
AND A NUMBER GREATER THAN THE SUM OF ALL EDGE LENGTHS IN THE
GRAPH FOR THE OTHER NODES, AN ALGORITHM, GIVEN IN BERGE **GRAPH
THEORY®® §S USED WHEREBY IF INDEX[A] IS THE INDEX OF NODE A, IF
L[A,B} IS THE LENGTH OF THE EDGE FROM A TO B, AND IF

INDEX[A] + L{A,B] < INDEX[B] THEN THE INDEX OF B IS REPLACED

8Y THE NUMBER [INDEXCA] + L[A,B] AND THIS PROCESS IS CONTINUED
UNTIL NO NODE HAS AN INDEX THAT CAN BE FURTHER DIMINISHED. THE
INDEX OF THE TERMINUS HAS THEN BEEN DECRTASED MONOTONICALLY AND
THERE MUST HAVE BEEN A NODE LAST USED FOR THIS PURPOSE. THIS

IS THE SECOND TO LAST NODE IN THE MINIMUM PATH. LIKEWISE, THE
INDEX OF THE SECOND TO LAST NODE HAS BEEN DECREASED MONOTONICALLY
AND THERE MUST HAVE BEEN SOME NODE LAST USED FOR THIS PURPOSE.
THIS 1S THE THIRD TO LAST NODE IN THE MINIMUM PATH. |1TERATING WE
FIND THE MINIMUM PATH CONNECTING THE ORIGIN TO THE TERMINUS

{ FGR A PROOF SE £ BERGE ,0P.CIT,}. HERE WE TAKE AS AN EXAMPLE
THE FOLLOWINE GRAPH WITH ORIGIN AO AND TERMINUS A53

?

A\AT
I .
Ao /; I/‘ 2

;I.M‘7.4g
‘Adq

REAL N3 SYMBOL AO,A1,A2,A3,A4,A5, I NDEX ,LAS TNODE ,NODELIST,MINPATH,S, T}
BOOLEAN ITERATE; LABEL AGAIN,ALPHA,BYPASS;

RE

NODELIST « [AO,A1,A2,A3,A4,A5]3

AD « /7 T A121){A222)[A327)EALS3Y(INDEX20)3
Al / [AD311[A2311TA333]1(INDEX210013
A2 « 7 1 ADS2)TA13111A32 1 [A422)1A526) [INDEXS10013
AS« /7 [A1313IA231)[A522)[INDEX210013
A « 7 [AD231[A232)IA523JCINDEXS100]s
AS « / [A332)(A2361[A4331LINDEXs100]3
AGAIN: ITERATE « FALSES
FOR S « ELEMENTS OF <NODELIST> DO
FOR T « ATTRIBUTES OF <8> DO
BEGIN

IF <> = |NDEX v <T> = LASTNODOE THEN GO TO BYPASS}

N « THE INDEX OF <T> + THE <T> OF <S>

IF N < THE INDEX OF <S> THEN

BEGIN
ITERATE « TRUE3; THE INDEX OF <S> IS N3
THE LASTNODE OF <S> |S <T> %
END3
BYPASS: 3
END FOR LOOP3

IF ITERATE = TRUE THEN GO TO AGAINS
COMMENT 2 HERE WE PRINT THE RESULTS:

40.

PRINTC <"THE LENGTH OF THE MINIMUM PATH 1S*>)3
N« THE INDEX OF AS3

NAMECAS)3 PRINTC < 2R,10>)3

MINPATH « [AD,AS] 3

X « A53
ALPHAS IF THE LASTNODE OF <X> == NIL THEN
BEGIN INSERT THE LASTNODE OF <X> 1ST BEFORE LAST OF <MINPATH>}

X « THE LASTNODE OF <X>3 6O TO ALPHA3 END
PRINT ¢ <€>, <"THE MINPATH IS *>) 3 -
MAMECMINPATH)$ PRINTC < E, 1LIST>) 3
END PROGRAM

1 ™

1T 7Y Ty T

B

R R I R

)

1T Y Ty)

)

41,

PROGRAM TO TRANSLATE ARITHMETIC EXPRESSIONS IN
INFIX NOTATION INTO ARVTHMETIC EXPRESSIONS N POLISH PREFIX NOTATION

BEGIN
COMMENT: ASSUME THAT WE ARE GIVEN A CLASS OF EXPRESSIONS DEFINED 8Y

THE FOLLOWING BACKUS NORMAL FORM SYNTAX EQUATIONS.

<ARIJTHMETIC EXPRESSION> $2= <TERM> | <b=> < TERM> | <ARITHMETIC EXPRESSION>
<t=> < TERM >

< TERM > gtz <FACTOR> | <TERM> < %/ > <FACTOR >

< FACTOR > 2:= <PRIMARY > | <FACTOR> t <PRIMARY>

< PRIMARY > 23= < |DENTIFIER > | (<ARITHMETIC EXPRESSION>)

WE ARE TO TRANSLATE THIS CLASS OF EXPRESSIONS INTO CORRESPONDING INFiX
EXPRESSIONS IN THE CLASS DEFINED BY THE FOLLOWING BACKUS NORMAL FORM

EQUATIONS.

< PREFIX A E > 33= < TERM > | NEG < TERM » | <+=> PREFIX A E > < TERM >
< TERM > 28= < FACTOR > | < %/ > < TERM > < FACTOR > '

< FACTOR > 23= < PRIMARY > | t < FACTOR > < PRIMARY >

< PRIMARY > 33= < |DENTIFIER > | < PREFIX A E >

HERE NEG 1S A UNARY NEGATION OPERATOR, WE SEE THAT A UNARY MINUS
PRECEDING A TERM IN AN INFIX EXPRESSION IS PERMITTED AND MUST BE
TRANSLATED INTO THE PREFIX UNARY OPERATOR NEG FOLLOWED BY THE TERM,
THUS THE EXPRESSION =(A4B)¥(12 + ExD WOULD BE TRANSLATED AS

+ NEG *+ AB tC 2 xE D, THE PROGRAM FIRST READS A SOURCE STRING
TO BE TRANSLATED AND STORES THIS EXPRESSION ITEM BY ITEM IN A LIST
FOUND AS THE CONTENTS OF THE SYMBOL °'INPUT'*, A SIMULATION OF A
FLOYO-EVANS PRODUCTION TRANSLATOR 1S THEN USED TO ACCOMPLISH THE

TRANSLATION;

SYMBOL S,STACK 1 NPUT,X,L1,L2,L.3,U,V,¥,Y ,PM,T0, | DENT,LF TPAREN,P ,F,T,AE}
LABEL AEQ,AE1,P1,F1,T1;
PROCEDURE REVERSE; SYMBOL Q3
BEGIN Q ~ < STACK > § * STACK; INSERT <> AFTER LAST OF <STACK> ENDj
PROCEDURE SCAN3
COMMENT: THIS PROCEDURE SCANS THE NEXT CHARACTER FROM THE LIST STORED IN THE
ONTENTS OF THE SYMBOL "°INPUT®® AND STACKS 1T LAST IN THE WORKSPACE S3
BEGIN INSERT 1ST OF <INPUT> AFTER LAST OF <S> DELETE 1ST OF <INPUT>END3
PROCEDURE APPENDOPERATOR 3
~BEGIN INSERT <X> BEFORE 1ST OF <STACK>j ENOj
COMMENT: CLASS DEFINITIONS;
L1« 1 4,- 1
LET ¢JPM[> = € U] AMONGCU,L1) 13
L2« [%,/ 13
LET ¢|TD]) ="t V| AMONGC(V,L2) 1;
LET CLIDENT]) = T W | <W> IS SYMBOL 13
LET CILFTPAREN]) = € Y| <¥> = °(* 13

42,

COMMENT ¢ HERE WE READ AND STORE THE EXPRESSION TO BE TRANSLATED INTO THE
CONTENTS OF THE SYMBOL INPUT, THE CONTENTS OF iNPUT ARE READ OFF CONSECUTIVELY
%g%ﬂ; BY ELEMENT EACH TIME THE PROCEDWRE SCAN IS CALLED DURING THE
1 d

NMAMECINPUT)3 READC <E > , < 1 LIST >) 3
SCANg COMMENT: INITIALLY WE START THE TRANSLATION BY SCANNING THE FIRST

CHARACTER IN THE INPUT STRING;
GO TO AEQ3

COMMENT: ENTER THE TRANSLATOR:
AEO: IF LAST OF <S> IN (|PM|) THEN SCAN AND GO TO AEOC}
IF LAST OF <S> IN (]IDENT|) THEN BEGIN
1STACK3 STACK + LAST OF <S>
DELETE LAST OF <S>; INSERT P AFTER LAST OF <S>3
SCAN; GO TO AEO; END;
IF LAST OF <S> IN (JLFTPAREN|) THEN SCAN AND 60 TO AEO ELSE GO TO ERROR}
P1t IF LAST & OF <S> HAS F,X2t,P,$7 THEN BEGIN
REVERSE3 APPENDOPERATORS
DELETE BETWEEN 3RD BEFORE LAST AND LAST OF <S>3 60 TO F13END;
IF LAST 2 OF <S> HAS P,$1 THEN DELETE 1ST BEFORE LAST OF <$> AND
INSERT F 1ST BEFORE LAST OF <S> AND GO TO F1 ELSE GO TO ERROR;
F1: IF LAST 2 OF <S> HAS F,t THEN SCAN AND GO TO AEO3
IF LAST 4 OF <S> HAS T,x ¢JT0}>,F,$1 THEN BEGIN
REVERSE sAPPENDOPERATOR 3 DELETE BETWEEN 3RD BEFORE LAST
AND LAST OF <S>3; GO TO T1; ENDs
)F LAST 2 OF <S> HAS F,$1 THEN DELETE 1ST BEFORE LAST OF <S>
AND INSERT T 1ST BEFORE LAST OF <S> AND GO TO T1 ELSE GO TO ERROR}
T1t |F LAST 2 OF <S> HAS T,(JTD]) THEN SCAN AND GO TO AEO;
IF LAST & OF <S> HAS AE,X:(IPMI) T,$1 THEN BEGIN
REVERSE; APPENDOPERATOR DELETE BETWEEN 3RD BEFORE LAST AND
LAST OF <S>3 GO TO AE1; END;
IF LAST 3 OF <S> HAS Xt (IPMI),T $1 THEN BEGIN
If <X> = "=" THEN X « NEG3 APPENOOPERATOR3
DELETE BETWEEN 3RD BEFORE LAST AND LAST OF <S>
INSERT AE 1ST BEFORE LAST OF<S>3 GO TO AE1; END3
IF LAST 2 OF <S> HAS T,$1, THEN DELETE IST BEFORE LAST IN <S>
AND INSERT AE 1t EFORE LAST IN <S> AND GO TO AE1 ELSE GO TO ERROR}
AE1s IF LAST 3 OF <S> HAS (,AE,) THEN DELETE LAST 3 OF <S> AND
AND INSERT P 1ST AFTER LAST OF <S> AND SCAN AND GO TO P1j
IF LAST 2 OF <S> HAS AE,(]PM|) THEN SCAN AND GO TO AEOj
IF LAST 2 OF <S> HAS AE $1 THEN 60 TO EXIT ELSE G0 TO ERROR

fRROR ¢ PRINT(<"ERRONEOUS SOURCE STRING®,E>)3
EXIT: NAMEC<STACK>)§ PRINT(<E>,<1LIST>,<€>)}
END OF PROGRAMj;

-(A+BI)Y*xCt2+E %D 3 COMMENT: « INPUT TEXT;
EXPECTED OUTPUT IS + NEG x+A B tC 2 *xED .

NOTE: THE WORD "°AND'' HAS BEEN USED IN PLACE OF 3 IN THE ABOVE TEXT 10
CONCATENATE SEVERAL STATEMENTS INTO A COMPOUND STATEMENT WiTHOUT THE USE

OF THE BRACKETS BEGIN--END,

- T T1 ™

Y T

- ~-3

-y 7Y Ty Y DTy T B

-

B |

D

THE WANG ALGOR! THM

BEGIN

COMMENT e THIS ALGORITHM Of HAO WANG {CF.IBM JOURNAL,JAN "60,PP 2-22)
DETERMINES THE VALIDITY OF WELL FORMED FORMULAS OF PROPOSITIONAL
CALCULUS. THE FORMULA TO BE PROVED OR O!SPROVED ENTERS AS A LIST
CONSISTING OF THE MARK -+, FOLLOWED BY THE FORMULA (EXPRESSED IN
FORMULA ALGOL AS A BOOLEAN FORMULA), FOLLOWED BY AN OCCURRENCE OF
THE SYMBOL NIL. THIS LIST IS STORED AS THE CONTENTS OF THE
SYMBOL SEQUENT, WE SEARCH FOR THE FIRST LOGICAL CONNECTIVE IN THE
SEQUENT, |F THERE IS NONE WE TRANSFER TO RULEO WHICH DETERMINES
THE VALIDITY OF THE FORMULA ACCORDING TO A TERMINAL RULE GIVEN BY
WANG. IF THERE WAS A LOGICAL CONNECTIVE, THEN, HAVING NOTED THE POS!TION
OF THE ARROW - (ALL THAT IS NECESSARY 1S TO KNOW WHETHER THE ARROW
CAME BEFORE THE FIRST LOGICAL CONNECTIVE), WE TRANSFER TO THE
APPROPRIATE RULE TO TRANSFORM THE SEQUENT IN ORDER TO ELIMINATE
THE LOGICAL CONNECTIVE, [IF THE RULE SELECTED PRODUCES TWO SEQUENTS
AS A RESULT OF ELIMINATING THE CONNECTIVE, ONE OF THEM IS ENTERED
INTO THE SECOND LEVEL OF THE PUSH DOWN STACK CONTAINED IN THE
SYMBOL SEQUENT, THE OTHER IS PLACED ON THE TOP LEVEL AND IS
PROCESSED NORMALLY. AFTER THE TOP LEVEL HAS BEEN PROCESSED THE LOWER
LEVELS ARE PROCESSED PROVIDED THE PROCESS HAS NOT BEEN HALTED BY
THE DISCOVERY OF AN INVALID SEQUENT. THE ALGORITHM STOPS El THER
WHEN AN INVALID SEQUENT HAS BEEN FOUND OR WHEN , ALL SEQUENTS HAVING
BEEN SHOWN VALID, THE PUSH DOWN STACK IS EMPTY.

43.

FORMULA A,B,F; SYMBOL SEQUENT T,P,Q,!3 INTEGER N,ARROWPOS!TION3BOOLEAN VALIODjg

LABEL ITERATE,AGAIN,RULEO,RULE1,RULE2 ,RULE3,RULE4,RULES,RULE6,RULET,RULES,

RULES,RULE10,TEST1,HALTs SWITCH SWITCHI~RULE1,RULE2 ,RULEJ,RULEN ,RULES,
RULE6,RULET,RULE8,RULE9,RULE10}

PROCEDWRE EXTRACTMAINOP(G,S); FORMULA G; SYMBOL S3

COMMENT: THIS PROCEDURE FINDS THE MAIN OPERATOR OF THE BOOLEAN
FORMULA G AND STORES THIS OPERATOR IN THE CONTENTS OF THE SYMBOL S,
1T ALSO EXTRACTS THE LEFT AND RIGHT HAND SUBEXPRESSIONS, IF ANY,
AND STORES THEM IN A AND B RESPECTIVELYS

BEGIN
If G == ATOM THEN S « NiL ELSE
IF 6 == - ASOF(FORM) THEN S « ®-" ELSE
IF G == AOF(FORM) ~ Bt OF (FORM) THEN S « '~" ELSE
IF G == AOFCFORM) v Bs OF(FORM) THEN § « °*~* ELSE
IF 6 == AOFCFORM) EQL B:OF(FORM) THEN S « "EQL® ELSE
IF G == A:OFCFORM) IMP B3OF (FORM) THEN S « "IMP* ELSE

PRINT(<"ERROR MALFORMED EXPRESSION®,E>)3
END PROCEDURES

INngE?NPROCEDURE WHICHRULE3 SYMBOL L3 INTEGER K3 LABEL ALPHA;

COMMENT: THIS PROCEDURE DETERMINES AN INTEGER TELLING WHICH
RULE TO TRANSFER TO DEPENDING ON THE LOGICAL CONNECTIVE GIVEN
AND WHETHER 17 OCCURRED BEFORE OR AFTER THE ARROW —;

L « [=yn,v, NP, EQL]S

FOR K « 1 STEP 1 UNTIL 5 DO
IF K TH OF <> = <S> THEN GO TO ALPHA;

ALPHA: WHICHRULE « 2 % K - ARROWPOS! TIONg

END PROCEDURE;

44,

BEGIN
<SEQUENT> « [< SEQUENT>,NIL])}
ITERATE? Ne-13 ARROWPOSITION « 0% NAME(SEQUENT);PRINT(<1LIST,E>)!
AGAIN: |F N TH OF <SEQUENT> = "-* THEN BEGIN ARROWPOSITION « 13
NeN+13 GO TO AGAIN3 END ELSE
IF N TH OF <SEQUENT> = NIL THEN GO TO RULEO ELSE
F « N TH OF <SEQUENT>3 EXTRACTMAINOPCF,T)3
IF <T> = NIL THEN BEGIN NeN+13 GO TO AGAINg END ELSE
GO TO SWITCH1(WHICHRULE)3

RULE1: DELETE N TH OF < SEQUENT>3 INSERT A BEFORE 1ST OF <SEQUENT>3
G0 TO ITERATES

RULE2: DELETE N TH OF <SEQUENT>; INSERT A AFTER LAST OF <SEQUENT>3
GO TO | TERATES

RULE3s OELETE N TH OF <SEQUENT>3 Qe<SEQUENT>3 INSERT A AFTER (N=1)ST
OF <SEQUENT>; ¢ SEQUENT; SEQUENT « <Q>3 INSERT B AFTER (N=-1)ST
OF < SEQUENT>3 GO TO ITERATE;

RULE4: DELETE N TH OF <SEQUENT>; INSERT A AFTER (N=1)ST OF <SEQUENT>3
INSERT B AFTER N TH OF <SEQUENT>3 GO TO |TERATES

RULES: COMMENT: SAME AS RULE &3 GO TO RULE4;

RULE6: COMMENT$ SAME AS RULE 33 GO TO RULE3j

RULE7: DELETE N TH OF <SEQUENT>3 INSERT A 1ST BEFORE 1ST *+* OF <SEQUENT>3
INSERT B AFTER N TH OF <SEQUENT>3 GO TO | TERATE;

RULES8: DELETE N TH OF <SEQUENT>3 Q « <SEQUENT>3 INSERT A AFTER LAST OF <SEQUENT>}
4 SEQUENT; SEQUENTe~<Q>; INSERT B AFTER (N-1)ST OF <SEQUENT>;
60 TO ITERATES

RULE9: DELETE NTH OF <SEQUENT>3 Qe-<SEQUENT>3 INSERT B BEFORE 1ST OF <SEQUENT>}
INSERT A AFTER NTH OF <SEQUENT>3 4SEQUENT3 SEQUENTe-<Q>3
INSERT A BEFORE 1ST OF <SEQUENT>3 INSERT B AFTER N TH OF <SEQUENT>3
60 TO I TERATE

RULE10SDELEYE N TH OF <SEQUENT>3 Qe <SEQUENT>3 INSERT A,B AFTER LAST OF
<SEQUENT>3 ISEQUENT3 SEQUENT—<Q>3 INSERT A,B BEFORE 1ST OF <SEQUENT>g
GO TO | TERATE

COMMENT ¢ RULEO CHECKS TO SEE IF SOME ATOM ON THE RIGHY 1S ALSO ON THE LEFT
IN THE SEQUENT}

RULEO: {F <SEQUENT> HAS P23$,~,Q2$ THEN GO TO TEST1 ELSE PRINT(<"ERROR
MALFORMED SEQUENT®,E>)3
TEST1: VALID « FALSE:
FOR | « ELEMENTS OF <P> DO
IF AMONG(<]1>,Q) THEN VALID « TRUE}
NAME(SEQUENT)3 PRINT(<ILIST,E>)3
IF VALID = FALSE THEN BEGIN PRINT(<'THEOREM NOT VALID®,E>)}3
GO TO HALTEND3
tSEQUENT3 IF - EMPTY(SEQUENT) THEN GO TO ITERATE ELSE
PRINT(<"THEOREM VALID® E>)}
HALT: H
END PROGRAMS

Y 7Y Ty Ty Y OTTY)

Y

Y)

|

45,

THE BACKUS NORMAL FORM SYNTAX FOR FORMULA ALGOL

Add to the Revised Algol Report:

<formula expression> ::= <arithmetic expression>|<Boolean expresaiod>|
<an arithmetic expression (Boolean expression) in which some
of the primaries {Boolean primaries) have been replaced
by "procedure formula", "array formula", or "eval formula'>|
<substitution formule>

<conditional formula> ::= ,IF <formula expression> THEN <expression>
ELSE <expression>

<procedure formula> ::= <function designator>.<actual parameter part>

<assignment formula> :!:= . « <expression>

<array formula> ::= <identifier> . E<subscript 1ist>a

<eval formula> ::= EVAL, ,<variable> | EVAL <bound variables>
<expression> <list of values>

<list of values> ::= (<actual parameter list>) | (E(variab1e>ﬂ)

<bound variables> ::= (<variable list>) | (E(variab1e>a)

<variable list> ::= <variable> | <variable list> , <variable>

<expression> ::= <arithmetic expression> | <Boolean expression> |
<designational expression> | <formula expression> |
<pattern expressiom> | <symbolic expression>]
<tree expression>

<unlabelled pattern primary> ::= <type> l OF (<variable>) | ATOM

46.

<pattern primary> ::= <unlabelled pattern primary> |
<variable> : <unlabelled pattern primary>

<pattern structure> ::= <a formula expression in which some of the
primaries may have been replaced by pattern primaries and
some of the operators may have been replaced by
|<variable>|>

<pattern> ::= <formula expression> == <pattern structuré>|
<identifier> :: <formula expression> >>
<identifier> :: <pattern expression> [
<formula expression> >> <pattern structure>

<variable> ;:= <simple variable> | <subscript variable>

. <identifier>

]

D B |

R DD R D R |

R

R R B

1

M

- T

|

47,
<symbolic expression™> ::= <variable> | <function designator>|
<selection expression> | <value retrieval expressioﬁ>|
'<' <symbolic expression> '>'
<list valued symbolic expression> ::= <symbolic expression>

having a list of symbols as value.

In the following syntax equations the syntactic class

<symbolic expression> refers to that subclass of aymbolic expressions,
as defined above, which have single values. The syntactic class
<list valued symbolic expression> refers to that class of symbolic
expressions, as defined above, which have lists of symbols as values.
<symbolic expression list> ::= <symbolic expression> |

<symbolic expression list> , <symbolic expression>
<tree expression> ::= [<tree expression list>]
<tree expression list element> ::= <expression> |

E(tree expression list e1ement>a <description list> |

<symbolic expression> <description list> |
<tree expression list> ::= <tree expression list> ,

<tree expression list element> |

<tree expression list element>
<description 1list> ::= / <attribute value list>
<attribute value list> ::= <attribute value segment> |

<attribute value list> <attribute value segment>
<attribute value segment> ::=

E<symbolic expression> : <expression list>]
<value retrieval expression> ::= THE <symbolic expressior>

OF <symbolic expression>

48.

<value entry statement> 3:= THE <symbolic expression> OF
<symbolic expression> <is phrase> <expression>

<is phrase> ::= IS | IS NOT | IS ALSO

<list patterm> :;:= <list valued symbolic expression> = =
[<constituent selector list>] |
<list valued symbolic expression> = =
<1list valued symbolic expression> | <symbolic expression> = =
<symbolic expressioﬁ>

<constituent selector 1ist> ::= <constituent selector> |
<constituent selector list> , <conatituent selector>

<constituent selector> ::= § | 8 <unsigned integer> |
<class name> | <symbolic expressiorm> | <augmented type>
<list valued symbolic expression> [
<symbolic expression> <description list> |
<label> : <constituent selector>

<class name> ::= (] <symbolic expression> [

<class primary> :i= <class name> | [<class expression>)

<class secondary> ::= <class primary> | -1 <class primary>

<class factor> ::= <class secondary> | <class factor> A
<class secondary>

<class expression> ::= <class factor> [<class expression> V
<class factor>

<class definition> ::= LET <class name> = [<formal parameter> '|’
<Boolean expressiom>] | LET <class name> =

<class expressiorl

I D D B R B

-

D R |

R

Y 7Y Ty 7Ty 7Y MY T

-

49,
<assignment statement> ::= <symbolic expression> « <description list:>|r
<symbolic expression> e—<expression>|
<symbolic expression> ¢« <tree expression list>
<for 1ist element> ::= ... | <symbolic expressiom>|
ELEMENTS OF <list valued symbolic expression> |
ATTRIBUTES OF <symbolic expression>
<for clause> ::= | FOR <symbolic expressiom> « <for list> DO
PARALLEL YOR [<formal parameter 1list>] «
ELEMENTS OF {<symbolic expression 1list>] DO |
PARALLEL FOR <list valued symbolic expression> «
ELEMENTS OF <list valued symbolic expressiom> DO
<unlabelled basic statement> ::= ... | <class definition> |
<value entry statement> [<push down statement> |
<pop up statement> | <editing statement>
<push down operatot‘} tt= 1 | <push down operator> }
<pop up operatoy> ::= t | <pop up operator> t
<push down stat~ment> ::= <push down operator> <symbolic expression>
<pop up statement> ::= <pop up operator> <symbolic expressiom>
<relatiom> :3:= ... |‘<symbolic expression> = = <class name> l
<symboiic expression> = <symbolic expressiom> |
<list valued symbolic expression> =
<list valued symbolic expression> | <list patterm>
<augmented type> ::= REAL | INTEGER | BOOLEAN | FORMULA

SYMBOL | SUBLIST | LOGIC | HALF | TEXT | ATOM |

50.

<selection expression> ::= <selector> QOF
<list valued symbolic expression>

<ordinal suffix> ::= ST | ND | RD | TH

<ordinal selector> ;:= <arithmetic primaryﬁa-<ordinal suffix>
FIRST | LAST

<elementary position> ::= <ordinal selector> | <ordinal selector>
<class name> | <ordinal selector> <expression> |
<ordinal selector> <augmented type>

<position> ::= <e1emenﬁary position> | <arithmetic primary>‘3
<ordinal suffix> BEFORE <elementary positiom> |
<arithmetic primary>, ,<ordinal suffix> AFTER
<elementary position>

<selector> ::= BETWEEN <position> AND <positior> |
ALL AFTER <position> | ALL BEFORE <position> |
FIRST <unsigned integer> | LAST <unsigned integer> |
<position> | ALL <expressilon>] ALL <augmented type> |
-ALL <class name> |

<insertion locator> ::= BEFORE <positiorn> OF |
AFTER <position> OF

<insertion locator lis 1= <insertion locator> |
<insertion locator 1ist> , <insertion locator>

<insertion locateor part> ::= <insertion locator> [

(<insertion locator list>)

51.

<sé1ector list> ::= <selector> | <selector list> , <selector>
<selector part> ::= <selector> | (<selector list>)
éediting statement> ::= INSERT <tree expreséion list>
<insertion locator part> <list valued symbolic expressiotb|
DELETE <selector part> OF <list valued symbolic expressio:b]
ALTER <selector part}> OF <list valued symbolic expression>
TO <expression> | DELETE <symbolic expression>
<expressiom> ::= ...] <arithmetic expression> | <Boolean expreasion>|
| <designationél expression> [<formula expression>|
<symbolic expression> | <tree expressiom>|
<pattern expression>

<expression list> ::= <expression> | <expression 1list> , <expressior>

52,

REFERENCES

Gelernter, H., Hansen, R.R., Gerberich, C.L.: '"A Fortran
compiler List processing Language", Journal ACM, 7,
87 - 101 (April 1960).

Bond, E., et al: "FORMAC, An Experimental Formula Manipulation
Compiler™, Proc 19th National Conference ACM 1964, K2-1.

Brown, W,S., "The ALPAK System for Non-numerical Algebfa on a
Digital Computer", Bell Telephone Laboratories, Inc.,
Murray Hill, New Jersey, internal publication,

Perlis, A,J., and Iturriaga, R.: '"An Extension to Algol for
Manipulating Formulae', Communications of the ACM, 7,
127 - 130, (February 1964).

Christensen, Carlos: "AMBIT, A Programming Language for
Algebraic Symbol Manipulation', Paper CA-64-4-R, Computer
Associates, Inc., Wakefield, Massachusetts.

MTHAT ASSEMBLER FOR THE CDC G-21

Daniel Ross

(Computation Center, Carnegle Institute of Technology)

~ This manual is a reference guide for MIHAT. As reference material, the
various features of MTHAT are organized by their functions. An alphabetical
listing of sudos 18 also included.
This manual is designed to be used in coordination with:

Bendix G-20 Central Processor Machine Language Manual, available through

Control Data Corporation.

The following papers are also needed as references for the Assembly
Language Code on the Carnegie Tech, CDC G-21. The papers may be obtained by
writing to the Documentation Office, PH118-P, Department of Computer Sciences,
Carnegle Institute of Technology, Pittsburgh, Pa., 15217,

"Specifications for the Use of Routines in the Carnegie Tech Monitor
'"THEM THINGS'", code C00-42.1 (The 'THEM THINGS' write-up is also
included in the 1965 User Manual, page 291.) '

"Monitor References for Staff Members", code CID-47

YExecute OPCODE" (December 11, 1963)

"Scatter Repeat and Indirect Block-Length Addressing" (January 15,
1964)

"Special Registers'" (March 26, 1964)

"CC-11" (March 30, 1964)

The research reported here was supported by the Advanced Research Projects
Agency of the Department of Defense under the Contract SD-146 to the Carnegie
Institute of Technology.

MTHAT Assembler for the CDC G-21

CONTENTS

1. Introduction

2. Input cards

3, Card format

4, Input parameters

5. Regions, labels, and free names

6. G-21 instYuctions

7. Controlling the assembly listing

8. Leaving MTHAT to execute assembled code
9. Controlling region and label definitions
10, Assembling G-21 instructions

11, Assembling integers, addresses, and Boolean data
12. Assembling floating point numeric data
13, Assembling alphanumeric data

14. Altering the location or contents of assembly
15. Concordance

16. Free names

17. Macros

18. Error detection and correction

9. Assembly-time fteration

20. Parallel tables

2], Controlling input cards

22, Saving assembled code

23, User-declared sudos

24,
25.
26.
27.
28.
29,
30.
31.
32.

33,

Run-time features

Control congole interaction

Hardware registers and line commands

Other sudos

List of G-21 instructions and standard modes
List of alphanumeric characters

List of G-21 shift multipliers

Octal-decimal conversion tables

Index of sudos

List of predefined labels

MTHAT

1, INTRODUCTION

MTHAT {8 a one-pass symbolic assembler for the CDC (formerly
Bendix) G-21 computer. It is designed to be used in conjunction with
the Carnegie Tech G-21 monitor system.

The input to MTHAT is a set of punched cards, or the images of
punched cards obtained from either the G-21 control console or the
remote teletype units. The outputs are G-21 machine code in the
computer memory, usually one word of code for each card input, and a
.printéd assembly listing., There also are provisions for communication
between MIHAT and.an operator or programmer at the G-21 control console.

MTHAT 1s_called & one-pass assembler because usually each input

card 18 processed once only.

2. INPUT CARDS

The input cards or card images to MIHAT may be classified into

four categories.

1l

Cards to be listed only. The images of these cards are
printed on the assembly listing, but the cards are otherwise
ignored by MTHAT, For more details, see the LIS sudo,

G-21 instruction words. MIHAT translates the card images
into the proper machine code, and stores the qode in the
computer memory for execution after the MTHAT assembly has
been completed.

MTHAT pseudo-instructions, called "sudos." These sudos are
executea immediately by the MTHAT system. However, some of
them result in the storage of G-21 machine code, for use
after the MIHAT assembly has been completed.

MTHAT macro-instructions. The appeérance of a single macro
card may result in the assembly of several other cards. The
choice of which other cards are assembled is determined by
the user when he writes the macro declaration. More details

appear in the discussion of macros.

3.

CARD FORMAT

The columns on.the input cards are grouped into fields, which
contain specific types of information. The most important fields
are as follows: |

Columns 1 to 2: Language field., This field is ignored by MTHAT,
but 18 used by the Carnegle Tech G-21 monitor system.

Columns 4 to 12: Label field, If the name of an undefined region
appears in this field, then the region is aseigned the value
of the Current Location Counter, A. If the region 1s given
a nonzere subscript, then the reglonal base is assigned the
value: A - the value of the subscript. If the name of an
undefined label appears in this field, then the label is
assigned the value of A, If a defined value (such as a
conetant,” or the name of a defined region or label, or an
expression) appears in this field,-then a check 1s made to
verify that the defined value equals the value of A. A
blank label field is ignored.

Column 13: Flag field, Usually blank. When nonblank, this
column usually contains the digits 0, 1, 2, or 3. Other
charactefs may appear in this column for various aéecial
purposes.

Columns 15 to 17: Opcode field. Thié field contains the three
characters of a G~21.instruction, an MTHAT sudo, or an
MTHAT macro. If this field is blank, the card is treated as
& comment card (See COM sudo, Section 7).

Column 20: Mode field. This column usually is blank or containa
the digits 0, 1, 2, or 3. Other characters may appear in

this column for various special purposes.

Columns 24 to 67: Parameters field. The parameters appropriate
to the opcode appear here. The parameters are separated by
commas, and terminated by a semicolon. Everything to the
right of the semicolon is treated as comments, If a semicolon
is used to terminate the parameters before the specified
number of parameters have been supplied, then the remaining
parameters are treated as blanks. Blank parameters are
interpreted as zeroes, unless specified otherwiﬁe.
All other columns: Immaterial
Some opcodes do not use all the fields listed above. Also, some
opcodes use other fields which are not listed above., -All opcodes use
the label and opcode fields. Those opcodes which require parameters
use the parameters fleld, unless specified otherwise, The other fields
are used only where specificd.
MTHAT processes cards by sranning first the label field, then the
opcode field, ;hen the other fields as appropriate, Thus the label
field is processed even on cards which do not cause the assembly of

G-21 code, such as COM sudo cards.

4. INPUT PARAMETERS
Unless specified otherwise, parameters are expressions consisting
of constants and variables, and operators on the constants and variables.
The types of constants are as follows:

1, Blank, Blank parameters are interpreted as zeroes, unless
specified otherwise.

2, Decimal integer. One or more decimal digits.

3. Octal integer. A slash, /, followed by one or more octal
digits.

4, Power of 2. A dollar sign, $, followed by a decimal integer.
The allowable range is from $50=1 to $31=/20000000000.

5. The numeric value of alphanumeric characters. A greater than,
>, followed by 4 characters in the next &4 columns of the card.
The internal representations of the characters (See Section 29)
are concatenated in the standard 4-character-per-word, 8-bit
format. The value of the constant is taken to be the value
of the resulting 32-bit integer; Blank characterg in the
séecified 4 columns are significant. -If the 4 columns would
extend past the end of the field on the card, the trailing
charactefa are treated as blanks.

6. The contents at assembly time of a specified location. An
‘expression whose value equals the desired address is surrounded
by parentheses or by square bracketa. If surrounded by paren-
theses, & numeric access is made of the named location, If
surrounded by brackets, a logic access is made of the named
location. It is not possible to nest sets of parentheses or

brackets within each other,

The types of variables are as follows:

7. Region. Described in Section 5.

8. Label, Described in Section 5.

9, Free name. Described in Secticm 5.

10. Greater variable. There are six greater variables:
£, B>, O, II>, B>, and P>, They are used primarily as
formal,parameterq for macros, although they may be used else-
where if desired. They are described in Section 17.

The operators used in expressions are as follows:

+ add
- subtracf
* multiply

: divide.... by convention, 0:0=0
A Boolean bit intersection
The character V has a special use in both constants and variables, as
described in Section 19. Blank spaces between nonblank characters forming
a constant or variable are ignored completely, except In item 5 above.
Expressions are evaluated strictly from left to right, with no heirarchy
among the operators. Thus l+g*3=9, and 5: -7 produces an error because 5 is
divided by O, |
Expressioq evaluation is performed in double precision floating point
arithmetic until a final value is obtained. The type of storage used for the
final value depends upon the specific use of the parameter. If an integer is
required, the floating point number is converted to an integer by trunéation.
All the variables in an expression must have defined values at the time

the expression is evaluated, unless specified otherwise.

Some sudos have listable parameters, or listable sets of parameters.
Sudos with listable sets of parameters allow the parameters to be repeated
several times on a single card, separated by commas. The action of the

sudo is performed once for each set of parameters.

5. REGIONS, LABELS, AND FREE NAMES
A region 18 a sequential area within the computer memory. The
base of the region is the address of the first word in the region. If,
N for example, B is the name of a region, the B15=B0+15,
A label is a name given to some particular location or value. The
values of adjacent labels are not necessarily related. For example, if
L0 to L20 are labels, it is possible for L12=5 and L13-=200.
The syntax of regions and labels is the same for both: a letter
or one of the other characters listed below (called "identifiers")
followed by a decimal integer (called the "subscript'"). If no subscript
follows, then a subscript of 0 is assumed. The possible identiffers are:
ABCDEFGHIJRKLMNOPQRSTUVWIRYZ| «anF<it ',
Regions and labels are distinguished from each other by their
first use in a program. If an identifier first appears in the label
flield of a card (See Section 3) or in a DEF sudo (See Section 9), then
the identifier names a region. If the {dentifier first appears in a
LBL sudo (See Section 9), then the identifier is used to name labels.
The.iaentifier A 18 predefined by the MTHAT system tco be a regionm,
whose initial value is /30000, A is used as the Current Location
Counter for MTHAT;l the value of A automatically is incremenfed by 1-
for each word assembled.
Labels |0 to [100 are predefined by MIHAT. Except for |36 and |37,
. their values are the locationé of subroutines and tables in the monitor,
Labels '0 to '24 and |36 and |37 are predefined as the locations of
subroutines and tables in MTHAT, or other references within MTHAT. A
complete list is given in Section 33,
In some cilrcumstances a label may be used whose value has not yet

been defined at the time the card is processed. The use of undefined

labels is described in detail where it applies. Regions must always
be defined before they are used. However, the use of regions is dis-
couraged, No goncordénca is available for regione (See Section 15),
and everything that can be done with regions can be done just as well
with labela. For example, the regional reference D10 could just as
well be written D0H+10, where DO is a label,

Any combination of identifiers, digits, and the characters /
$ V which do not fit the syntax of constants or regions or labels
maﬁ be used as a free name, The first 8 nonblank characters of a free
name are significant; the remaining characters (if any) are ignored.
Free names are put into a table (See Section 16) in the order in which
they are encountered. The position of a free name in the table
determines a subscript for the "period" identifier. For example, the
5th free name encountered is processed in exactly the same manner as
though .5 had been written instead, If .0 to .200 have been declared
as labels by the LBL sudo, and if the LFN sudo has been used, then
200 free names may be used instead of labels.

Regioﬁs and labels may be defined to have integer values between

0 and /177777 inclusive.

6.

G-21 INSTRUCTIONS

When & G-21 insetruction is assembled, the opcode fleld of the
card (See Section 3) may contain either the 3 characters of the opcode
mnemonic (See Section 28) or the octal integer value of the opcode, with
the slash (indicating an octal constant) omitted. For each G-21
instruction, MTHAT has defined a standard mode (See Section 28)., If
the opcode field contains a mnemonic and the mode field is blank, then
the standard mode is assembled. Any punching in the mode field over-
rides the use of the standard mode. If the opcode field contains an
octal integer, the standard mode alwﬁya is 0.

There are two parameters to an instruction. The first is the
addreas, whose value muat be between O aﬁd /177777 inclusive. A single
undefined label may be used for the address, if desired. When the
value of the label is later defined, that value automatically will be
stored in the instruction word that had the undefined label. No
operators or constants or other variables may be used in the expression
if an undefined label is used. The second parameter is the index,
whose value must be between O and /77 inclusive. All variables used
in the index expression must be defined when the card is processed.

The flag fiela is processed, but it is an error for a G-21
inastruction to have a flag 1 or flag 3. A blank flag field {s freated
as flag 0,

If anything is punched iﬁ columns 22 or 23 of the card, then the
G-21 internal representation of the characters in these two columns
(See Section 29) 1s used as the address for the inatructioﬁ word, and
the index is set =0. The parameters field of the card, where address

and index usually are found, is ignored.

The G-21 instructions which use hardware registers or line
comnands are processed by MTHAT as special sudos, so that register
mnemonics and line command mneﬁonics may be used. These {nstructions
normally are of use only when programming a monitor syatem for the
G-21.

The sudo ADC 1s processed like an OCA instruction, with standard

mode =0.

7. CONTROLLING THE ASSEMBLY LISTING

The following sudos determine what is printed on the assembly
listing, but do not affect the assembled code.
COM sudo - comment
no parameters

The contents of the card, except for the label field, are
treated as comments only.
TOP sudo - type or print
2 parameters, nonligtable

If the first parameter ::0, subsequent assembly continues with all
printing of card images, octal dumps, etc., suppressed. If the first
parameter =1, subﬁequent assembly continues with all printing enabled.
Initialiy MTHAT has printing enabled.

The second parameter controls the printing of error messages, as

follows:
parameter value | error message appearance |
0 'unchggggg from previous state
1 assembly listing only |
2 aggembly listing and control console
3 control console only

If an error message appears on the console, then a single card image is

expected to be typed in by the operator at the control console to correct
the error, before normal asgsembly resumes. The first TOP parameter does
not affect the printing of error messages. Initially MTHAT error messages
appear on the assembly listing only.

TOP card images always are printed.

LIN sudo - line
1 parameter, nonlistable

The printer is upspaced the designated number of blank lines.
The LIN sudo card image nevér prints. A blank parameter is treated
ag LIN 1.,
PAG sudo - page
no parameters

The printer is upspaced to thg top of the next page before the
card image is printed. Page titling and numbering initiated by the
TOF sudo is turned off.
TOF sudo - top of form
alphanumeric¢ string in columns 25 to 72

The printer is upspaced to the top of the next page. The TOF
card image 18 not printed, but the string on‘the TOF card is printed
as a page title at the top of this and subsequent pages. The pages
are sequence numbered. This process is terminated by a PAG sudo or
another TOF sudo.
LIS sudo - list
no parameters

The LIS card image is not printed. Columms 5 to 80 of subsequent
card images are printed on the assembly listing, but are not processed
by MTHAT in any other way. Listing terminates and normal processing re-
sumes when a card is encountered with the single word THAT in coluﬁns

5 to 8, The THAT card image is not printed.

4

The LIS sudo terminates macro declarations in the same manner as

the FIN sudo,
DMP sudo - octal dump
2 parameters, iistable; mode

The firat parameter is the starting location and the second
parameter isrthe.ending location for an octal dump of the contents of
memory. The dump may atarf slightly before the specified starting
location, and may end slightly after the specified ending location.
Lines of dump which would contain all zeroes are not printed. A blank
line is printed after the dump.

The value of RXA is added to the specified starting and ending
locations, unless some nonblank character is punched in the mode field.
OCT sudo - octal liating
no parameters

The value of A printed to the left of subsequent card images will
be in octal, 1Initially A is printed in octal.

DEC sudo - decimhl listing
no parameters

The value of A printed to the left of subsequent card images will
be in decimal,.

PVE sudo - print value of expression
1 parameter, listable
The value of the parameter is printed. It is not an error if the

parameter is a single undefined label. If the PVE card image came from

the control console, then the value of the parameter is typed back on
the console, as well as being printed on the assembly listing.
TIM sudo - time
no parameters
The time is printed since the last occurrence of a TIM sudo, or
since the last job card if there were no preceding TIM sudos.
OPM sudo - operator message
no parameters
The standard monitor operator méssége is printed.
ERR sudo - errors

See Section 18.

LEAVING MTHAT TO EXECUTE ASSEMBLED CODE

our ui;;lly is used to terminate assembly. If MIHAT is retained
in the computer memory after the end of an assembly, and is called
again as a subroutine in the-uaer's program, then either OUT or RET may
be used to return control to the user's program. MIT usuaily is used to
execute user-written subroutines during the course of assembly,
OUT sudo - leave MIHAT
1 parameter, nonlistable

Control is transferred.to the location named. Before dbing 80,
various assembly statistics are printed. This includes printing the
concordance table, if one was generated (See Section 15), and printing
the free name table, if free names were used (See Sections 5 and 16).

If error messages appear on the control console (See TOP sudo,
Section 7), then the type-in task OK 18 required before OUT is ex-
ecuted (See Section 25),

Upon leaving MTHAT, all user index registers are cleared to zero.

In order to safeguard against executing code in which assembly
errors have occurred, the user should check all his labels using either
the CHK or PRT sudos (See Seétion 9), and exit from assemblf with the
following code:

PIE
OUT |o0; halt

OUT = ~-v-- ; desired location

MIT sudo - mark tranafer to
1 parameter, nonlistable

MTHAT executes a TRM at assembly time to the location named. If
the user wishes to force the appearance of an assembly error, his sub-
routiné should return to the mark. Otherwise his subroutine should
return to the mark +1.

The user's subroutine should not usé the same index registers as
are used by MTHAT. Curreﬁtly MTHAT uses index registers /30 to /55,
but this is subject to (gradual) change.

The MIT card image is printed on the assembly listing after
execution of the MIT,
RET sudo - return
no parameters

MTHAT returns control to the mark of the routine which called it.

MTHAT must have been called by a routine by executing TRM |37.

9.

CONTROLLING REGION AND LABEL DEFINITIONS

See Section 5 for the distinction between regions and labels. The
values of reglons and labels may be defined either by the DEF sudo, or
by the name of the region or label appearing in the label field of a card
(See Section 3). Redefinition of the value of an already defined region
or label can be done only by the DEF sudo, unless the region or label
has been released by REL or LBL, All labels that are used in assembling
code must be defined before they are released or before the end of

assembly, but it is not an error for an unused label to remain undefined.

DEF sudo - define
1 parameter, listable

The parameter {8 not just the usual expression, but instead is of
the form:

v;riable = expression

where the variable is either a region or label (or free name). The
variable is defined to have the value of the expression, which must not
itself contain undefined variables. The value of the definition, when
truncated to an integer, must be between O and /177777 inclusive. If
the variable is a label which was used prior to its definition, the
value is filled in to the assembled words which used the label,

The location at which code is assembled may be altered by
redefining A.
CHK sudc - check labels
1 parameter, listable

The parameter is a single label. All the labels with the named

identifier, from subscript 0 to the named subscript, are checked. An

error occurs if any of these labels has been used but not defined. If
the named subscript =0 or if there is no subscript, all the declared
labels of the named identifier are checked. Example:

CHK L5, M;
Labels LD to L5 and all the M labels are checked.
LBL sudo - declare or release labels
1 parameter, listable

The parameter is a single label. If the named identifier is not
a region, and if the identifier has not previously appeared in a LBL
sudo, then the identifier is declared to name labels with subscripts
from 0 to the named subscript. Example:

LBL T7;
New Labels TO to T7 are declared.

On subsequent use of the identifier in a LBL sudo, the labels with
subscripts from 0 to the named subscript are checked as in the CHK sudo,
then released to the undefined state for reuse. If the named subscript
=0 or if there is no subscript, all the declared labels of the named
identifier are checked and released. An error occurs if the named sub-
script is higher than the original subscript used to declare the iabels.
Example:

LBL T7;
Labels TO to T7 are checked and released.
See the CON sudo, Section 15, for a discussion of the effect of

the LBL sudo on the concordance.

'REL sudo - release
1 parameter, listable

The parameter is a s{nglé region or label, If the parameter is a
region, the named identifiér is released for reuse either as a region
or for labels. 1If the parameter is a label, the single named label is
checked as in the CHK sudo, and then released to the undefinéd state
for reuse.

See the CON sudo, Section 15, for a discussion of the effect of the
REL sudo on the concordance.
PRT sudo - print labels
1 parameter, listable

The parameter is a single label. All the labels with the named
identifier, from subscript O to the named subscript, are checked as in
the CHK sudo. The values of all defined labels are printed. If the PUL
switch is8 on, a special notation is made for those labels which are both
undefined and unused. If the named subscript =0 or if there is no sub- -
script, all the declared labels of the named identifier are checked and
printed. Example:

PRT L5, M;

Labels LO to L§ and all the M labels are checked, and their values are
printed.
PUL sudo - print undefined and unused labels
no parameters

Each use of the PUL sudo reverses the state of the PUL switch.

Initially the PUL switch is off. The PUL switch is used by the PRT sudo.

LEN sudo - label and enter
1 parameter, partially listable

The parameter is a single label. The named labels are checked
and released as in the LBL sudo (listable), then a single word of all
zercoes is assembled as in the ENT sudo (nonlistable). The printer is
upspaced two blank lines beforé the LEN card image ias printed on the
assembly listing.
OUI sudo - label, yes concordance
See Section 15.
NON sudo - label, no concordance

See Section 15.

ASSEMBLING G-21 INSTRUCTTIONS

The following sudos assemble G-él instructions for later
execution, See also Section 6 and Section 26.
ENT sudo - enter
no parameters

A word of all zeroes 1ls assembled., The printer is upspaced two
blank lines before the ENT card image is printed on the assembly
listing. |

By convention, ENT is used at tﬁe beginning of a closed sub-
routine. The assembled word holds the return mark of the TRM calling

the subroutine.

LEN sudo - label and enter

See Section 9.

SCP sudo - set character pointer
1 parameter, nonlistable
Two LXP instructions are assembled which will set the monitor
character poinfer to the named column number at run time.
*%% gudo - space for generated instruction
no parameters
A word of all zeroes 1s assembled. By convention, this word will

be written over by an instruction that is generated at run time.

11. ASSEMBLING INTEGERS, ADDRESSES, AND BOOLEAN DATA
LWD sudo - logic word
1 or 2 parameters, nonlistable; flag; mode

The first parameter is assembled and stored with an STL instruction.
The first parameter may be an expression or a single undefined label.
If the first parameter is an e#presaion with value < $16, or if it is
an undefined label, then & second parameter may appear at the user's
option, The second parameter must be an expression with value between
0 and $16-1 inclusive. The second parameter automatically is multiplied
by $16 and united with the first parameter.

The flag and mode flelds ére scanned after the parameters have been
evaluated. The flag, if specified, is united with whatever is in the
flag field of the assembled word due to the parameter evaluation,

The mode, if specified, overrides whatever is in the mode field due to
the parameter evaluation.

WRD 'sudo - word

1 parameter, listable

The parameter mey be an expression, a single undefined label, or
a minus sign f&llowed by a single undefined label. If the resulting
value 18 2 0, it is assembled and stored with an STL instruction., If
the resulting value 18 <0, it is assembled and stored with an STI

instruction.

CLW sudo - complewent logic word
1 parameter, nonlistable; flag; mode

The parameter must be an expression with all variables defined.
The parameter 1is evaluated.lthen the flag and wmode fields processed as
in the LWD sudo. The bit-complement of the result is assembled and
stored with an STL instruction. A FLG sudo (See Section 18) preceding
this will be treated in the usual manner, not complemented.'
ADC sudo - address constant
2 parameters, nonlistable; flag; mode

This sudo is piocessad as an OCA instruction with standard mode
=0. By convention, this sudo is used to assemble addresses in the
15¢1 bit pattern of G-21 instruction word format.
CKS sudo - check;um

See Section 18,

12. ASSEMBLING FLOATING POINT NUMERIC DATA
The parameters to the sudos in Section 12 are not expressions,
but instead are signed floating point numbers of the form: signed
mantissa, followed by a sigﬁed integer power of 8 or 10, (8 for HPL and
FPL, 10 for HPC and FPC,) The radix used in evaluating the mantissa
and exponent is 8 for HPL and FPL, and 10 for HPC and FPC, The ex-
ponent begins with the character , for all four sudos. Exaﬁples:
+25.31,-7 |
.54
-.66,14
1,+3 (omitting the mantissa would result in
a value =0)
2.9 (HPC and FPC only....the octal number
system does not include the digit 9)
HPL sudo - half precision octal
1 parameter, listable
The mantissa is evaluated as an octal number. If an exponent
appears, it is evaluated as an octal integer and 8 is raised to that
power. The resulting number is stored with an STS instruction.
FPL sudol- full precisfion octal
1 parameter, listable |
The parameter 18 evaluated as in the HPL sudo and stored with an

STD instruction.

HPC sudo - half precision decimal
1 parameter, listable

The mantissa is evaluated as a decimal number. If an exponent
appears, it is evaluated as‘a decimal integer and 10 is raised to that
power. The resulting number is stored with an STS instruction.
FPC sudo - full precision decimal
1 parameter, listable

The p#rameter is evaluated as in the HPC sudo and stored with an

STD instruction.

13.

ASSEMBLING ALPHANUMERIC DATA
ALF sudo - alphanumeric
digit in card column 24; alphanumeric string starting in column 25
The digit determines how m#ny words there are in the string, at
4 characters per word. A blank in column 24 means 1 word, a 0 in
column 24 means 10 words. The words are assembled in the standard
8-bit, 4-character-per-word format,
NAM sudo - name
5-character string starting in card column 24; flag; mode
The standard 6-bit representation of the 5 characters is assembled
into bits O to 29 of a word. Then the flag, if specified, is united
with the word. The mode, if specified, overrides whatever is already

in the mode field of the assembled word.

14. ALTERING THE LOCATION OR CONTENTS OF ASSEMBLY

Usually the location of assembly is altered by redefining the
value of the Current Location Counter, A. See the DEF sudo, Section 9.
RXA sudo - relocator
1 parameter, nonlistable

This sudo 13 used to assemble code which will eventually be trans-
ferred to some different locations for execution., The Current Location
Counter, A, should be defined as the location at which the code will
ultimately be executed. The RXA sudo sets the value of RXA, which
initially is zero. Assembled code 1s stored at A+RXA.

The CPY, DMP, and SXX gudos autcmatically compensate for noenzero
RXA. The CKS and PBC sudos do not compensate for nonzero RXA. It
probably is an error to execute an OUT or MIT sudo to code that was
assembled with nonzero RXA, and which has not been tranaferred to its
ultimate location.

All code assembled with nonzero RXA-has the value of A+RXA and
the value of kXA printed at the left edge of the assembly listing.
COA sudo - confinue on assembly
1 parameter, nonlistable

Two operations result from this sudo. First, RXA«AHRXA-
parameter, Then A~ parameter. The result {8 that A is redefined to
the value of the parameter, but RXA is adjusted so that storage at

A+RXA continues in sequence from the previous value of ARXA.

8XX sudo - set storage extracter
1 parameter, nonlistable

During assembly, the previously existing contents of A+RXA are
accesgsed with a CAL instruction and extracted with the storage ex-
tracter. The resulting bit pattern is united with the assembled
word and the result is stored at AMRXA. The SXX sudo sets the storage
extracter, which init{ally is zera.
FLG sudo - flag

See Section 18.

15.

CONCORDANCE

The concordance is a cross-reference showing the cird sequence
numbers of every card that rgferred to a label, named a macro, or
caused an assembly erfor. The concordance is generated during the
assembly, and printed at the end of assembly as part of the OUT sudo
(See Section 8). One word of memory is required to store each con-
cordance reference, There 18 approximately one concordance feferenca
per card input, on the average. The concordance is most useful {f {t
is made on all labels, but it can be made on sélected labels only, 1if
storage apace is scarce, by appropriate use of the OUI and NON sudos.
CON sudo - concordance

1 parameter, nonlistable

Concordance generation is initisted by the first appearance of the

CON sudo, The parameter names the starting locatfon for the table of
references. Table entries continue in sequence unless the table is
repositioned by another use of the CON sudo., If the param;ter =0,
concordance generation ceases, The OUT sudo prints whatever concor-
dance ha; been generated,

An initial LBL sudo which declares new labels (See Section 9) is
not included in the concordance. Labels declared by the LBL auao are
concorded, unless this state is changed by the OUI and NON sudos.
Subsequent use of the LBL or REL sudos for releasing labels does not

alter their current state of whether or not they are concorded.

REF sudo - reference
1 parameter, iistable

This sudo creates a reference in the concordance table to every
label in the parameter, whethér or not the label currently is defined.
Regions snd constants are ignored, and the expression is not evaluated.
The sudo is used for documentation purposes only.
OUL sudo - labal,.yeu concofdance
1 parameter, listable

The paramenter is a label, which is declaredror released for re-
use as in the LBL sudo (See Section 9):. Subsequent references to the
labels designated will be concorded, if a concordance is being generated
at all,
NON sudo - label, no concordance
1 parameter, listable

The parameter is a label, which is declared or released for re-
use as in the LBL sudo (See Section 9). Subsequent references to the

labels designated will not be concorded.

16.

FREE NAMES

See Section 5 for a discussion of what free names are and how they
are used,
LFN sudo - locate free name table
1 parameter, nonlistable

Free names may not be used until a table for their storage has
been located. The parameter fs the base address of the table. Free
names of 2, 3, or 4 characters length require llword of stdrage. Free
names of 5, 6, 7, or B characters length require 2 words of storage.
The LFN sudo may be used only once in a program.
PFN sudo - print the free name table
no parameters

The free name table is printed in both numeric and alphabetic
order. It is not an error if no free name table exists. The free

name table also is printed automatically by the OUT sudo (See Section 8).

17.

MACROS

Each macro consists of several card images that are stored in tﬁe
computer memory during the macro declaration., All the card images of
the macro may subsequently bé read back and processed by MTHAT, at each
appearance of a macro call card. The macro call card has tﬁe name of
the macro in the opcode field (See Section 3), and may have several
actual parameters to the macro in the parameters, flag, and mode fields.
The actual parameters in tﬁe-parameters field of the macro call card
correspond to the formal parameters &>, B>, C, I, Es, and F> that may
be used in the coding of the macro declaration. The "greater" vari-
ables may also be used in other parts of an MIHAT program, but their
primary use ig as formal parameters to macros.

The greater variables are loaded by the up-to-6 actual parameters
appearing on a macro call card or VAR sudo card. The actual parameters
are geparated by commas, and are loaded into &>, B>, C, >, E>, and F>
1n that order. Any actual parameters omitted at the'end of the card,
or left blank between commas, leave the corresponding greater vari-
ables unchanged. If an actual parameter consists of an expression
other than a single region or label, then the expression is evaluated
immediately and ité value is8 loaded into the proper greater variable.
In subsequent use, the greater variable is treated as a constant. If

the actual parameter consists of a single region or label, then the

name of the region or label is loaded into the proper greater variable.

In suﬁsequent ugse, the actual parameter i{s treated as though it wére
the name of that region or label, and is given whatever meaning is
currently assigned to that name.

It also is possible to parameterize the flag and mode fields for

use in macros or elsewhere. There exist within MTHAT two variables

called the "flag temp" and the "mode temp'". These variables are loaded
whenever & macro call card of VAR sudo card is processed, and are read
whenever any other card is processed.
Each of these variables may be in any one of five states:
0
1
2
3
BLANK
The rules for loading the flag and mode temps are summarized in

the following table,

FLAG PUNCH! MODE PUNCH' PREVIOUS STATE OF TEMPl NEW STATE OF TEMP

0,1, 2,3]0,1, 2,3 {mmaterfal 0,1, 2,3
A, B, C, D,| A, B, C, D] immaterial £ A3, B> A3,
E, F E, F © A3, I> A3,
E A3, F> A3
* * 0, 1, 2, 3, BLANK 0, 1, 2, 3, BLANK
0, 2 2
illegal + 1, 2 3
BLANK BLANK
e, 2 0
illegal - 1, 3 1
. BLANK BLANK
blank blank immaterial BLANK

The rules for reading the flag and mode temps are summarized in

the following table.

FLAG PUNCH | MODE PUNCH | STATE OF TEMTI EFFECTIVE FLAG OR MODE
0,1, 2,3 0,1, 2,3 immaterial 0,1, 2,3
A,B,C,D, | A B, C, D,] immaterial £ A3, B> A3,

E, F E, F ' C> A3, I> A3,

B A3, F> A3
0,1, 2,3 0, 1, 2,3
* *
BLANK 0 flag, standard mode
0, 2 2
illegal + 1, 3 3
BLANK standard mode V2
0, 2 0
iilegal ' - i, 3 1
BLANK standard mode Al
blank © blank . immaterial 0 flag, standard mode

where "standard mode" refers to the standard mode of the card being
processed.
VAR sudo - greater variable
6 parameters, nonlistable; flag; mode
The greater variables and flag and mode temps are loaded as

described above.

MAD sudo - macro administration
3 parameters, nonlistable

This sudo may be used at most once in a program, which must be be-
fore the first MAC sudo. Thé firast parameter specifies the maximum
number of macros to be declared, an@ must be < 300, The size of the
MTHAT label table is incremented by twice this value, The second para-
meter is the locgtion where the card images that comprise the macros are
to be stored. Each card iﬁage requires 21 words of storage. The third
parameter, if it appears, is the maximum number of blécks that can be
pushed at any given time by the PSH sudo. These blocks each require
20 words of storage, and are stored at the locatiuvn designated by the
second parameter. Storage of macro card images starts after the end
of these blocks,
MAC sudo -~ declare a macro
macro name in card columns 26 to 28

This sudo starts a macro declaration. Images of the following
cards are stored in core, to be processed when the macro is called.
Macro calls may be stored within the declaration of another macro, in
which case the macro call card and all the card images of the macro
being called are stored again as part of the macro being declared.
This allows nesting of macros to indefinite depth. Macros may not call
themselves.

Any cards may appear in a macro declaration except the following:
LFN, MAC, RET, TB1, TB2, ZRO, Each macro may consist of a maximum of

2535 card images.

FIN sudo - finish macro declaration
character in card column 24

This sudo terminates the declaration of a macro. Until this card
is processed, the macro may not be called. If the character in col-
umn 24 is the digit 0, then all the greater variables are cleared to
zero. Otherwise the greater variables remain unchanged. The FIN
card image is printed twice on the assembly listing, because the card
is both stored as part of the macro declaration, and processed to term-
inate the declaration., However, the label field of the FIN card is
proceased only during a macro call. The LIS sudo also terminates macro

declarations, but it is not recommended for this purpose.

The remaining sudos in this section are designed to simplify the
task of using MTHAT as a macro assembler. The BRA, BRV, and BRD sudos
may appear only inside macros. These three sudos cause branching of
the card processing by MIHAT, That is, after proceséing one of these
sudos, the next card processed by MIHAT may not be the card.that
appears immediately after the sudo. The next card processed is called
the "destination card." Destination cards are marked by having a
"destination numberh punched in column 3. The destination nuﬁber may
be a digit, 0,1,2,3,4,5,6,7,8,9, or it may be the character , . Only
cards within macros, including the FIN card, may be destination cards.

If several macros are nested together, the card branching may go
in and out of the inmer macros, but may not leave the outermost macro.
In other words, the destinations must be nested within the outermost
macro. The destination numbers are treated as local to the ocutermost
macro, and may be reused in any other disjoint macro. Special pre.
cautions must be observed when a destination lies within the scope of

an ITR sudo. (See Section 19)

BRA sudo - unconditional branch
1 parameter, nonlistable

This sudo may appear only inside macros.

The value of the pafameﬁer is the destination number of the next
card to be processed by MTHAT, If the parameter is blank, the next
card proceased will be the card appearing immediately after the BRA
card,

BRV sudo - conditional branch on value
4 parameters, nonlistable

This sudo may appear only inside macros.

The first parameter is evaluated and truncated to a 32-bit signed
integer. The resulting value determinea which of the three possible
destinations,‘in the three following parameters, will be branched to
by MTHAT, If the value is positive, MTHAT will branch to the first
destination. If the value is zero, MTHAT will brancﬁ to the second
destination, If the value i3 negative, MTHAT will branch‘tﬁ the third
destination.

Only the actual destination parameter is evaluated by MTHAT, 1If
the parameter 15 blank or absent, the next card processed will be the
card appearing immediately after the BRV card,.

If thé value of the destination parameter is not between 0 and 10,
inclusive, then an assembly error will result, This may be used to
force the appearance of an error message as the result of an assembly-
time test,

BRD sudo - conditional branch on definition
3 parameters, nonlistable

This sudo may appear only inside macros.

The first parameter must be one of the terms listed in Section 4,
However, the BRD sudo i8s of use only if the first parameter is a term
of Type 7,8,9, or 10.

If the term currently has a defined value, then MTHAT will branch
to the destination indicated by the second parameter. If the term cur-
rently is undefined, then MTHAT wiil branch to the destination indicated
by the third parameter.

Only the acfual destination parameter is evaluated by MTHAT, If
the parameter is blank or absent, the next card processed will be the
card appearing immediately after the BRD sudo.

If the value of the destination parameter is not between 0 and 10,
inclusive, then an assembly error will result. This may be used to
force the appearance of an error message as the result of an assembly-
time test.

PSH sudo - push down macro parameters
no parameters

The greater variables, flag temp, and mode temp are bushed down,
in a block. The maximum number of blocks that can be pushed at any
given time is determined by the third parameter to the MAD sudo.

POP sudo - pop up macro parameters
character in column 24 of card

The last block pushed by the PSH sudo is popped up. The flag and
mode temps are restored, and some of the greater variables are restored.
A letter in column 24 of the card indicates the first of the greater
variables to be restored. For example, iflcolumn 24 contains the
letter C, then C>,D>,E>, and F> are restored, and A> and B> are left

alone, If column 24 is blank, then all the greater variables are

restored., If column 24 contains the digit 0, then none of the greater
variables are restored (but the flag and mode temps are restored).
58C sudo -~ subscript

1 parameter, noniistable

The parameter must be one of therterms listed in Section 4, except
not a term of Type 6. However, the SSC sudo is of use only if the para-
meter is a term of Type 9 or 10, |

If the parameter is a constant, then the sﬁbscript variable v
(see Section 19) is set to the value of the parameter., If the para-
meter is a variable, then v is set to the subscript of the variable,
whether or not the variable currently has a defined value. This sudo
may be used to find the subscript of a . label corresponding to a free

name.

18,

ERROR DETECTION AND CORRECTION

Assembly errors detected by MIHAT immediately terminate processing
of the card on which they were found. The error nessagermay be printed
on the assembly listing, or typed on the control console for correction
by the operator, or both, depending on the second parameter to the TOP
sudo (See Section 7)., If error outpqt appears on the control console,
then the card column number at which the error was detected, and the
current value of A, also are typed out. A single card image 1is requeﬁted
from the operator, to correct the error. If more than one card is re-
quired to correct the error, then the first card image typed in may be
the TYP sudo (See Section 25). If a concordance is being generated, a
refarence is created for each detected assembly error.

In.order to prevent a waste of computer time in the assembly of
"garbage", MIHAT assembly automatically halts if an average.error rate
of one error for every four cards is maintained.

DBG gudo « debug
no parameters

If this sudo appears anywhere in an MTHAT assembly, the monitor
trace subroutine |72 is enabled. This subroutine will trace all
2-flagged instructions in the assembled code.

FLG sudo - flag
1 par#meter, nonlistable

The parameter must evaluate to 0, 1, 2, or 3, This value will be

united with the flag field of the next word assembled. A blank param-

eter is given the value 2, An error occurs if FLG 1 or FLG 3 precedes

a G-21 instruction word, or if any nonzero flag precedes the CKS or
LCB sudos.

Because operand assembly (OA) instructions are not traced,
placing a FLG sudo before an OA instruction causes the next non-0A

instruction to be traced.

ERR sudo - errors
no parameters

A count of all the errors which have not been corrected at the
confrol console 1s printed. ERR card images always are printed, in-

dependent of the parameters to the TOP sudo (See Section 7).

ZEC sudo - zero the error counter
1o parameters
This card is processed in the same manner &g ERR sudo cards, and

then the counter of uncorrected errors is set to zero.

PIE sudo - process if errors
no pirameters
This card is processed in the same manner as ERR sudo cérds. If
the counter of uncorrected errors is nonzeroc, the next card following
is processed in the normal wmanner. If the counter of uncorrected
errors is zero, processing oflthe next card is bypassed. The card image
is printed on the assembly listing with arrows to indicate bypassing.
Normal MTHAT processing resumes with the second card after the PIE sudo.
The PIE sudo is used to prevent execution of code that contained

assembly errors. For further discussion, see the OUT sudo, Section 8.

CKS sudo - checksum
2 parameters, partially listable

The two parameters are the starting and ending locations for a
checksum (listable) formed ﬁsing ADL., A single word ig assembled
(nonlistable) which contains the checksum.
CSR sudo - check status report
I parameter, nonlistable

Changes made to the MTHAT system are summarized in a one-line
status report. The CSR sudo causes printing of_the status report on
the assembly listing. MTHAT also has a "change number", which is in-
cremented whenever a significant change {s made to the system. If a
parameter appears with the CSR sudo, the parameter is tested against
the change number. An error occurs if the parameter is less than the
change number, which indicates that some of the user's code.may be
incorrect because of a change in the system. If the parameter is

blank, no test is made.

19,

ASSEMBLY-TIME ITERATION

The character V, called the subscript variable, serves a special
function in the evaluation of constants and variables. 1Its primary use
1s for assembly-time iteration, but it may be used elsewhere if so
desired. V 18 a double precision variable that may be intermixed with
digits in a constant or in the subscript of a variable. Evaluation is
performed from left to right, with the evaluated portion to the left of
V being multiplied by the value of V, and then the portion to the right
of V being evaluated and added to form the final result., 1In the follow-

ing examples, assume that the current value of V is 5.

PARAMETER VALUE
v 5
Vv o+ 1 6
v L5
W+ 1 L5 + 1
v $5
V1 6
/v 22 /27 = 5 + f22
w1l L6
2v 10
W 25
vl 11
VIV 55
Vvl 56
L2vIV] L56
/10 v 17 /67 = /50 + /17

SET sudo - set V
1 parameter, nonlistable
The double precision sdbscript variable V is set to the value of

the parameter.

ITR sudo - iterate
5 parameters, nonlistable

This sudo allows for iterative processing of card images during

assembly time, Call the parameters H], NZ’ N3, N&’ N5. Nl is the
value which V 1is assigned before iteration begins. N1 is evaluated
and stored into V before the other parameters are evaluated. NZ is the

value of the increment to V which automatically occurs at the end of

each iteration cycle. N] and N2 may be any value, positive or nega-

tive, and are stored in double precision. N3 is the number of cycles

~of iteration to be performed. N3 must be a non-negétive integer.

N4 is the number of cards composing a cycle of the iteratiom. N4 must

5 is the base address of a region in

memory where N4 card images may be stored until the interation is com-

be a strictly positive integer. N

pleted. Each card image requires 21 words of storage space;
The following cards may not appear within the scope of an iteration

(that is, among the N, cards following the ITR card}: ITR, LIS, MAC,

4
TB1, or macro call cards.

The parameters on the ITR card are evaluated only once, before

iteration begins,

If the ITR sudo appears inside a macro, then the 5th parameter,
NS’ must be omitted, since the ;ard images will be stored in the com-
putex memory &s part of the macro declaration. The scope of the iter-
ation must be properly nested within the outermost macrc which contains
the ITR card as part of its declaration. However, the scope of the
iteration may extepnd past the ead of a macro nested within the outer-

most macro. For example, a piece of (uselesa but) valid code might be:

MAC ABC

CoM COMMENT 1 OF APC
ITR 0,0,6,3; USELESS ITERATION
coM COMMENT 2 OF ABC
FIN
MAC XYz
coM COMMENT 1 OF XYZ
ABC
CoM COMMENT 2 OF XYZ

—~ COM COMMENT 3 OF XYZ

FIN

because the declaration of macro XYZ is expanded by MTHAT to:

MAC XYZ

COM COMMENT 1 OF XYZ

ABC

COM COMMENT 1 OF ABC

ITR 0,0,6,3; USELESS ITERATION
coM COMMENT 2 OF ABC

FIN

coM COMMENT 2 OF XYZ

coM COMMENT 3 OF XYZ

FIN

Caution must be exercised when using the branch sudos BRA, BRV,'
and BRD (see Section 17) in conjunction with ITR inside a macroc. Do
not branch into the scope of the iteration from outside the scope un-
less you previously branched out from inside while the iteration still

was in progress. Otherwise erratic card processing might occur.

20.

PARALLEL TABLES

Parallel tables are two or more tables for which the entries
correspond, such as a table of task names and a table of corresPonding
subroutine lecations for executing the tasks. It is possible to put
the corresponding entries for two tables on a single card, beth to
help make the tables self-commenting and to prevent accidental dis-
placement of the entries in one of the tables. If more than two
parallel tables are desired, entries for the first two tables are put
on one card and corresponding entries for the remaining tables are put
on another card that follows immediately.

The two sudos TBl and TB2 are intended to precede and follow the
cards which contain the table entries, in order to delimit the scope of
parallel table processing. The sudo TB3 is used on data cards appear-
ing between TBl1 and TB2, only if there are three or more parallel

tables.

TB1l sudo - table 1
1 parameter, nonlistable

All cards following the TBl card, except TB3 cards, will be
processed in the normal manner, like any other MTHAT cards. Also,
the card images will be stored in the computer memory, starting at the
location named in the parameter. Each card image requires 21 words of
storage space. The following.cards may not appear between TBl and TB2
sudos: ITR, LIS, MAC, OUT, RET, TB1l, and macro call cards.

The label field of TB3 cards will be processed as usual, but

otherwise TB3 cards will be treated as comment cards.

TBZ2 Sudo - table 2

2 parameters, listable

AND

TB3 sudo -~ table 3

variable format

The card images that have been stored in core are read back and

processed again, with print off, in order to form the second parallel

table:
1.

2.

TB3 carda are ignored entirely.

Only a special field is examined on the cards that are
processed. This field starts with a control column (col. 68)
and extends to the last column (col. 80). The remainder of
the card is ignﬁred.

If the control column contains a + or -, then a single
expression is expected in the field. The + or - in the
control column is considered part of the éxpression. The
expression is assembled as ig done by the WRD sudo. The
expression may have all variables defined, or it may consist
of a + or - in the control column and a single undefined
labei.

If the control column contains a digit, them that number of
alphanumeric words are assembled. The characters for the
words are takén from the field, starting in the first column
after the control column, and packed 4 characters per word,
The number of words specified by the digit in the control
column must not require more than 3 characters past the last
column in the field. That is, 1 < digit <

} [[number of last column + 3 - number of control columﬁ]/&].

Characters taken from beyond the last column of the field
are assembled as blanks.

. 5. If the contrel column contains the letter A, then a single
expression is expected in the remainder of the field, starting
in the first column after the control column. The Current
Location Counter, A, is redefined to have the value of this
expression.

6. If the control colummn contains any character except the
characters listed in (3), (4), and (5) above, then the card
image 1s ignored,

Processing continues on these cards until the TB2 sudo card is read
again, Columms 68 to 80 of the TB2 card are not processed. At this

an point, columns 24 to 67 of the TB2 card are scanned for a pair of -
parameters. If the parameters are not found, parallel table proceassing
terminates.

If the parameters are found, then the first pafameter is inter-
preted to be the number of a control column, and the second parameter
is interpreted to be the number of the last column of the field. The
card images that have been stored.in memory are read back and processed
again, with print off, in order to form a third parallel table. This
time only the TB3 cards are processed; all other cards are ignored.

. Processipg follows conventions (2) to (6) above, where the number of
the control celumn and.the number of the last column are determined by
the éxpressions on the TB2 card.

If the TB2 card contains more pairs of expressions, then 4th, 5th,

etc. parallel tables are formed from the data on the TB3 cards.

21.

CONTROLLING INPUT CARDS

Card images may be obtained from the control console (See
Section 25), the card reader, disc, tape, or the computer memory (for
macros, assembly-time iteration, or parallel tables). Each card image
read by MIHAT is sequence numbered. The MTHAT sequence number is
printed on the assembly listing to the left of the card image, and to
the left of the current value of A. Sequence numbers appearing to the
right of the card image were assigned by the AND system. |
CS8 sudo - card source switch
3 parameters, nonlistable

Call the parameters N N.. N, and N, are monitor logical file

0 Ny Mye Ny 2
table entry numbers or else blank; N3 may be any expression or blank.
The CS88 sudo 6perates as follows:
(1) Record the source for subsequent card images in logicai file
table entry Nl (1f the parameter is blank,-no write occurs).
(2) Read from logical file table entry Nz the source.for sub-
sequent card images (if blank, no read).
(3) Reset the source for subsequent.card images as follows:
ﬁs slank, no reset., Subsequent card images cﬁme from:
the source read in (2) above, or from the previous

gource if N, is blank.

2

N3<0, subsequent card images come from the beginning of
AND scratch. The information obtained from tﬁe
read operation in (2) above is lost.

N3=0, subsequent card images come from the card reader.

Nj>0, subsequent card images come from disc or tape,

starting from the source point read in (2) above, or

from the previous disc or tape source if N2 is blank.

In order to understand the operation of OS5, it 1s necessary to
know that the monitor has a single switch which determines whether
cards are read from the card reader or from either disc or tape. The
monitor also has a single pointer to the location of the next card
image coming from disc or tape., This pointer is not altered when cards
are read from the card reader. Both the switch and the pointer may be
~saved by storing their values in any one of the logical file table

entries.

BYP sudc - bypass
3 parameters, nonlistable

Call the parameters N N.,. Normal MTHAT processing of the

1 N M3
card following tbe BYP card is bypassed if the logical proposition
[Nl > Né] = [Na # 0] is true. If the proposition is false, the follow-
ing card is processed as usual. Arrows printed on the assembly listing
indicate that the card has been bypassed. The pafaméters are evaluated
as signed integers. | |
BNC sudo - bypass N cards
1 parameter, nonlistable

The parameter specifies the number of cards following the BNC
card whosg processing ie to be bypassed. Arrows printed on the
assembly listing indicate that the cards have been bypasaed.
PIE sudo - process if errors

See Section 18,

CRD

Bee

BRV

See

BRD

See

sudo - card input
Section 25.
iudo - control console input

Section 25.

sudo — unconditional branch

Section 17.

gsudo - conditional branch on value
Section 17.
sudo - conditional branch on definition

Section 17.

22,

SAVING ASSEMBLED CODE

Asgembled code may be saved on row-binary cards by the PBC sudo,
or on AND records by MTHAT subroutine '22 (See Section 24). There is
no sudo for executing '22, but the proper calling sequence may be set
up and executed by an MIT (See Section 8) 1if desired.

PBC sudo - punch binary cards
3 parameters, nonlistable

The first two parameters are the starting and ending locations
of a region of the computer memory whose contenta are punched on
row-binary cards. If a third parameter =1 appears, the MTHAT symbol
table also is punched. Punching the symbol table allows later altera-
tion of the program using the original regions and labels, when the
program ia read back by RBC.

The use of a concordance, free names, or macros affects the use
of the symbol table. If the symbol table is punched by PBC when any
of these features are in use, the user must also include additional
PBC sudos which punch the concordance table, free name table, and

macro card images.

RBC sudo - read bihary cards
no parameters

The cards punched by therPBC sudo are read back into the locations
from which they were punched. If the MTHAT symbol table was puncﬁed by
PBC, it is read back and completely replaces the current MIHAT symbol

tabie. One RBC sudo is required for each use of the PBC sudo.

The row-binary cards that were punched by PBC should follow
immediately after the RBC card, with no blank cards intervening. Two
blank cards should be placed after the row-binary deck before the

remaining MIHAT cards.

23,

USER-DECLARED SUDOS

Usually any code the user wishes executed at assemﬁly time can be
written so that it {s entered by the MIT sudo (See Section 8). How-
ever; MTEAT has a sudo trap feature which allows the user to write his
own sudos. Sudo processing is so 1n§1mlte1y connected with the
internal mechanism of MTHAT, that the user is strongly urged to contact

the person maintining the MIHAT system before attempting to write his

own sudos.

24,

RUN-TIME FEATURES
Some of the subroutines and tables used by MTHAT during assembl&

may also be of use to the user during run-time. Switch '21 and sub-

routines '18, '19, '22, '23, and '24 are independent of the presence of
the remainder of the MTHAT system. They are located at the bottom of
user memory, and extend up to location '20-1. The remaining tables and

subroutines are scattered throughout the MTHAT system. See Section 33

for a complete list of available tables and subroutines.

Subroutine '17: Convert (ACC) to label for symbolic disassembly.

Input in ACC: A number, presumably an address.

Cutput in ACC: The lacel corresponding to that address.

Operation: If 1 < input < $16, then a search is made through the label
table for the first label whose value = | [input]. If found, the
subroutine exits to the mark + 1 with the label in therACC as
follows:

Bits 0 to 7: alphanumeric representation of the identifier
Bits 8 to 21: subscript stored as an integer
The search is performed in the same order as labels are printed in
the concordance. If no such label 18 found, or if the input is
not within the specified range, the subroutine exits to the mark
with garbage in the ACC.

Storage: Some parts of MTHAT; the label table, and index registers
/30 and /31. |

Subroutine '18: Write a logical file table entry.

Input in index register /30: A logical file table entry number.

Operation: The contents of the switch and pointer in the monitor which
determine the source of subsequent card images are written into

the logical file table entry (See CSS sudo, Sectiom 21},

Exits: RED exit to mark, error, no write performed
GREEN exit to mark + 1
Storage: Below location '20, and index register /30
Subroutine '19: Read a logical file table entry.
Input in index register /30: A logical file table entry number.
Operation: The contents of the logical file table entry are read into
the monitor switch and pointer which determine the source of sub-

sequent card images (See CSS sudo, Section 21).

Exits: RED exit to mark, error, no read performed
GREEN exit to mark + 1
Switch '21: Upper core request.

This switch 1is set by the 64K sudo (See Section 27) and inter-
rogated by subroutine '24., Its value is O if upper core memory has
not been requested or if the request was denied. 1Its value is Irif
the request was granted.

Subroutine '22: Write a disc or tape file.

Several disjoint regions of memory are written to disc or tape.
They may be read back by '23. The file must have been set up and
named in one of the monitor logical file table entries. A buffer
region of length =1 block [320 word&] must be provided. This sub-
routine uses index registers /30, /31, and /32 for temporary stofage.

Calling sequence code:

- Word O: TRM t22
Word 1: 1logical file table entry number
Word 2: location of buffer region
Following pairs of words [at least 1 paitﬂ:
. st word: qgtarting location of data region
to bg written
2nd word: endipg location +1 of data region
to be written
Next word: RED exit error instruction
Next word: GREEN exit instruction and subsequent code
The word pairs designating regions to write are assuhed to continue
until a word is found with some nonzero bits im bit positions 16 to
31. This word is assumed to be the RED exit error instruction.
Therefore, the RED exit error instruction may not be an OCA wode O,
If the subroutine returns through the RED exit, the accumulator com-

tains an Iinteger indicating the error, as follows:

0 error in calling sequence

1 error in 1ogicai file table entry

2 attempt to write into protected area
3 insufficient space in file

The pairs of words in the calling sequence which designate regions are
altered by the subroutine.
. Subroutine '23: Read a disc or tape file.
A file written by '22 is read back into the memory locations from
. which it was written. The file must have been set up and named in

one of the monitor logical file table entries. A buffer region of

length =1 block [320 wordé] must be provided. This subroutine uses
index registers /30, /31, and /32 for temporary storage, Calling
sequence code:

Word O: TRM '23

Word 1: logical file table entry number

Word 2: location of buffer region

Word 3: RED exit error imstruction

Word 4: GREEN exit instruction and subsequent code
If the subroutine returns through the RED exit, the accumulator con-
tains an integer indicating the error, as follows:

0 error.in calling sequence

1 error in logical file table entry

2 data in file was not written by '22

3 read operation completed, but checksum failed
Subroutine '24: Test if (ACC) 18 within user memory;
Input in ACC: A number, presumably an address.
Exits: Mark, (ACC) is not within user memory.

Mark +1, (ACC) 1is within user memory.

Output: Input (ACC) is undisturbed.

25,

CONTROL CONSOLE INTERACTION

System programmers who use the control conscle for on-line
debugging can take advantage of the control console features of MTHAT.
The TOP sudo (See Section 7) allows error messages to be typed auto-
matically on the control console, and the errors to be corrected by
typed-in card images; The OPA sudo allows predetermined messages to
be typed out, and the PFC sudo allows octal parameters to be typed 1in.
Card source switching may be accomplished by the CRD and TYP sudos when
MTHAT is processing cards, or by the ,CRD and ,TYP type-in tasks in
the extended monitor type-in task table. Preprogrammed halts for
execution of type-in tasks may be acdomplished by the MON sudo. Un-
scheduled halts for execution of type-in tasks may be accomplished by
the ,MON type-in task.

Card images typed in from the control console may consist of up
to 40 characters, including blanks and commas. The first 3 commas
scanned act as field delimiters, like the. . TAB keys on a typewriter.
The characters typed in before the first comma are shifted to card
columns starting at column 4, the beginning of the label field on the
card, The first comma typed in dces not appear as part of the card
image, but instéad.acts as a tab to columm 15, the beginningrof the
opcode field. The second comma acts as a tab to column 20, the mode
field. The third comma acts as a tab to co}umn 24, the beginning of
the parameters field. All suﬁaequent comm&s typed in are processed
the same as any other cﬁaracter, and appear in the card image. 'Fbr
example, to type in the card image:

L3 CLA O 5,X7;
the characters to type in are:

L3,CLA,0,5,X7;

When cgrd images are being typed in from the control console for
listing only (S8ee the LIS sudo, Section 7), commas are not given tﬁe
special function described above. All commas appear as part of the
cardAimage.

See Section 18 for a discussion of error messages on.the control
console,

During an MTHAT assembly, the standard monitor type-in task table
18 extended to include the tasks described below. The task names must
not bé typed in after the end of assembly unless the MTHAT system re-

mains undisturbed in the computer memory. The tasks are:

,CRD - Enter MIHAT, read cards from the card reader, disc, or
tape.

,TYP | Enter MTHAT, get card images from the control console.

, PAG Page the line printer, enter MTHAT, get card iﬁages from

the control console.

,MON RET Leave a note for MIHAT to enable monitor type-in when
MTHAT has completed procéssing the current c#rd.

OK Process the current card (See the OUT sudo, Section 8).

CRD sudo - cardlinput

no parameters

Subsgﬁuent card images are taken from the card reader, disc, or

tape,

TYP sudo - control console input

no parameters

Subsequent card images are taken from the control console.

MON sudo - monitor
no parametéra

Normal card processing is halted. When the control console is
free from any input or outpuf tasks initiated previocusly, the monitor
type-in is enabled.
OPA sudo - operator alert
alphanumeric string in card columns 25 to 80

The string is typed out on the control console on a full fnterrupt
baslia, while other card processing by MIHAT continues.
PFC sudo -~ parametere from console
2 parametera, nonlistable

The first parameter, whose value must be either 1 or 2, is the
number of octal parameters to be typed in from the control ﬁonsole and
stored in |62 and |62+1. The second parameter is the location of a
closed subroutine to be executed automaticglly when type-in has been
completed. If the second parameter is absent, blank, or'zero, no sub-
routine will be executed when type-in has been completed.

The typeniﬁ 15 done on a full interrupt basis, whilé other card
processing by MIHAT continues, 'It 18 the responsibility of theruser
to check that type-in has been completed before attempting to utilize
the typed-in parameters. This‘may be done by an MIT to a subroutine
which.in turn calls on |56, the control console busy test in the monitor,
An MIT directly to |56 would cause an assembly error, because |56 would

return to the RED exit of the MIT sudo (See Section 8).

TOP

See

PVE

See

out

See

sudo - type or print

Section 7.

sudo - print value of expression
Sectiomn 7.

suda - leave MTHAT

Section B.

26,

HARDWARE REGISTERS AND LINE COMMANDS

MTHAT has a single table '1l of register and line command mnemonics.
It is the responsibility of the user to guard against conflict between
these mnemonics and the free names in his code, when wfiting code that
utilizes any of the sudos in this Section.
ERA, ERO, EXR, and LDR sudos
2 parameters, nonlistable; flag; mode

These sudos assemble the G-21 instructions ERA, ERO, EXR, and LDR,
The standard mode is mode 2, The firset parameter, which is assembled
into the address field of the G-21 imstruction word, is processed in a
manner identical to other G-21 instructions (See Section 6). The
second parameter, which is assembled into the index field of the G-21
instruction word, is compared with the mﬂemonics in MTHAT table '11,
If it 18 a mmemonic, the corresponding value is loaded into the index
field, If it i8 not a mnemonlc, the second parametef is then processed
in a manner identical to other G-21 instructioms.
TC8, TD8, and RD8 sudos
2 parameters, nénlistable; flag; mode

These sudos assemble the G-21 instructions TC8, TD8, and RDS. The
instructioﬁs are used as the second word of block input/output commands.
The standard mode is mode 0. All other comments pertaining to the ERA,

ERO, EXR, and LDR sudos also apply to the TC8, TD8, and RD8 sudos.

TLC sudo
2 parameters, nonlistablej flag; mode

This sudo assembles the G-2] instruction TLC. The first parameter,
which is assembled into the address fleld of the G-21 instruction word,
is compared with the mnemonics in MTHAT table '11. If it is a mnemonic,
the corresponding value is loaded into the address field, and the
standard mode.of the instruction is mode 0. If it is not a mnemonic,
the first parameter is then procéssed in a manner identical to other
G-21 instructions, and the standard mode of the instruction is mode 2.
The second parameter, which is assembled into the index field of the
G-21 instruction word, is processed inla manner identical to other G-2]
instructions (See Section 6).
LC8 sudo - 8-bit line commands
1 parameter, liatable

This sudo assembles line commands and numeric data in B-bit
characters for transmission over the communication line. If the param-
eter is a mnemonic from MTHAT table '11, the corresponding value is
packed in a single 8-bit character., If the parameter is an expression,
the value of the expression is packed in two characters and numeric
flags added. An error occurs if the value of the expression is not

between 0 and /7777 inclusive,

The resulting characters are assembled four per G-21 word. If the
number of characters generated is not an integer multiple of 4, the
remaining characters are packed left-justified and the rest of the

last word made zero.

27.

OTHER SUDOS
ZRO sudo - zero memory

All of user memory past the current eﬁd of the MTHAT label table
is set to zero, If an upper.core request has been granted, upper core
user memory also is set to zero. In particular, this sudo will destroy
the data gtored in a concordance table, free name table, or stored macro
card images.
CPY sudo - copy
2 parameters, listable

Call the parameters N, N.. The N w;rds last assembled are

2 2

repetitively copied into the next N1 locations. If N2=0, then zeroes

are stored into the next N, locations. N_ must be nonnegative. Both

1 2

parameters must appear on the CPY card. If the last NZ words contain
any undefined labels, these will not 1ater'be defined in the copies.
Example:
L1 WRD 5, 7;
CPY 9, 2;
is the same as;
L1 WﬁD 5,7;
WRD 5,7,5,7,5,7,5,7,5;
SIZ sudo - size of MTHAT
no parameters
The subscript variable V (See Section 19) is set to the current
size of MTHAT, including the MTHAT label table. After executing the
SIZ sudo, '16 + V = the address of the first location after the current

end of MTHAT and the label table.

64K sudo - request use of upper core memory
no parameters

Before the 64K sudo 1s executed, switch '2] contains the value 0.
If the request is granted, the contents of '21 are set to 1. If the
request is denied, the contents of '2l remain at 0 and an assembly
error results.
OPT sudo - option
3 parameters, nonlistable

This sudc just saves an MIT to the monitor option subroutine,

|34. The three-parameters are the same as in the option writeup.

28, LIST OF G-21 INSTRUCTIONS AND STANDARD MODES

145
0060
045
055
105
002
006
033
015
035
005
025
053
135
072
052
115
076
061
121
021
001
101
141
041
161

031

ADA
ADC
ADD
ADL
ADN
ADX
AXT
BTR
CAL
CCL
CLA
CLS
DIV
ECL
ERA
ERO
EXL
EXR
FGO

FLO

FOM

FOP

FSM

FSN

FSP

FUoO

1CZ

(See Section 11)

(See Section 26)

(S5ee Section 26)

(See Section 26)

131
111
011
051

171

071

151
056
032
012
077
140
040
100
000
020
160
120
060
057
120
013
137
153
133
173

113

IEC
IEZ
10Z
ISN
IUC
g0

Wz

LXP
MPY
0AA
0AD
OAN
OCA
0Cs
054
OSN
(0 1:41]
RDV
RDS
REP
SKP
STD
STI1
STL

STs

(See Section 26)

(Sée Section 26)

073
165
065
Q75
125
022
026
140
117
100
157
017
037
177
175
155
010
036

016

STZ
SUA
5UB
SUL
SUN
SUX
SXT
TC8
TDC
TD8
TLC
TRA
TRE
TRM

UCL

XEQ

XPT

o

o

=]

(See Section 26)

(See Section 26)

or 2 (See Section 26)

29. LIST OF ALPHARUMERIC CHARACTERS

G-21 Model 29

Internal Punch Card Keypunch
Representation G-21 Character Hole Pattern Character
00 Space No Punch Space
01 A , +1 A
02 B | +2 B
03 c +3 c
04 D +i D
05 E +5 E
06 F +6 F
07 G +7 G
10 H +8 H
11 I +9 I
12 J -1 J
13 K -2 K
14 L -3 L
15 M -4 M
16 N -5 N
17 0 -6 o
20 P -7 P
21 Q -8 Q
22 R -9 R
23 S 02 S
24 T 03 T
25 U 04 U
26 v : 05 v

27 W 06 W

G=-21 : Model 29
Internal Punch Card Keypunch
Representation G-21 Character Hole Pattern Character

30 X 07 X

3 Y 08 Y

32 Z 09 z

33 28 :

34 « 68 =

35 - -78 -

36 - +58 (

37 , 038 s

40 0] 0

41 1 i 1

42 2 2 2

43 3 3 3

44 4 4 4

45 5 5 5

46 6 6 6

47 7 7 - 7

50 8 8 8

51 9 9 9

52 " 078 ?

53 _ | . 138

54 + + &

55 - - ‘ -

56 * -48 *

57 / 01 /

60 = 38 #

61 v +78 |

62 # -28 !

G=21 Model 29

' Internal Punch Card Keypunch
Representation G-21 Character Hole Pattern Character
63 A 468 +
. 64 < -58)
65 $ -38 $
' 66 > -68 ;
67 H 48% @
70 (048
7 [058 _
72] 068 >
73) +48 <
74 { 78 "
75 t +28 ¢
~ 76 : 028 0-2-8
| 77 ' 58 '
160 Tab +2
161 Car Ret +23
166 Bksp -02
167 Unlock -03
170 ‘ EOM -04
job card $ +-89

* Model 26 keypunch character ' .
Note: The CC-10 and teletypes do not have the character #, so

/62 may be used as a no-~op.

30. LIST OF G-21 SHIFT MULTIPLIERS

Left Shift

05
05
05
06
06
06
07
07
07
10
10
10
11
LR
11
12
12

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

20

40
100
200

400

1000

2000

4000
10000
20000
40000
00001
00002
00004
00001
00002
00004
00001
00002
00004
00001
00002
00004
00001
00002
00004
00001
00002

Number

D ~N ™ e N - O

1t
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3]

Right Shift

000
101
101
101
102
102
102
103
103
103
104
104
104
105
105
105
106
106
106
107
107
107
110
110
110
111
111
111
12
112
n2
113

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00001

00004
00002
00001

00004
00002
00001

00004
00002
00001

00004
00002
000
00004
00002
00001
00004
00002
00601

00004
00002
00001
00004
00002
00001

00004
00002
00001

00004
00002
00001

00004

31. OCTAL-DECIMAL CONVERSION TABLES

Decimal

WOl N W N -

w N -
L= = R =]

10
20
30
40
50
60
70
80
30

100
200
300
400
500
600
700
800
200

000
000
000
000
000
000
000
000
000

600
Hili]
000

Octal

11
T3

15

17
21

23
47
72

12
24
36
50
62
74

106

120
132

144
310
454
620
764
130
274
440
604

750
720

670

640
610
560
530
500
450

420
040
460

QOctal

Ny -

10
20
30
40
50
60
70

100

10
20
30
40
50
60
70

100
200
300
400
500
600
700

000
000
000
000
000
000
000

000
000
000
000
000
600
000

000

W W N N e e

12
16
20
24
28

32

Decimal

8
16
24
32
40
48
56

64
128
192
256
320
384
448

512
024
536
048
560
072
584

096
192
288
384
480
576
672

768

32. INDEX OF SUDOS

Sudo Section Sudo Section Sudo Section

ADC 11 LDR 26 SET 19
ALF 13 LEN 9 812z 27
BNC 21 LFN 16 $SC 17
BRA 17 LIN 7 SXX 14
BRD 17 LIS 7 TB1 20
BRV 17 IWD 1. TB2 20
BYP 21 MAC 17 TB3 20
CHK 9 MAD 17 TC8 26
CKS 18 MON 25 D8 26
CLW 11 MTT 8 TIM 7
COA 14 NAM 13 TLC 26
coM 7 NON 15 TOF 7
CON 15 0CT 7 TOP 7
CPY 27 OPA 25 TYP 25
CRD 25 OPM 7 VAR 17
CSR 18 OPT 27 WRD 11
CcSs 21 oUT 15 ZEC 18
DBG 18 OUT 8 ZRO 27
DEC 7 PAG 7 64K 27
DEF 9 PBC 22 dekede 10
DMP 7 PFC 25 '

ENT 10 PFN 16

ERA 26 PIE 18

ERO 26 POP 17

ERR 18 PRT 9

EXR 26 PSH 17

FIN - 17 PUL 9

FLG 18 PVE 7

FPC 12 RBC 22

FPL 12 RD8 26

HPC 12 'REF 15

HPL 12 " REL 9

ITR 19 RET 8

LBL 9 RXA 14

LCS8 26 SCP 10

33.

LIST OF PREDEFINED LABELS

|0 to |100 Monitor references, except:

|36
|37
o
"
"2
'3

"4

'5

'6

'7

'8

'9

10

1

Base address of MTHAT symbol table

Subroutine entry peoint to MTHAT

Base address of a table of left shift multipliers, from
«15 to 31, inclusive

Base address of a table of right shift multipliers, from
-0 to =31, inclusive

Base address of a table of single bits, from $0 to $31,

inclusive

Base address of a table of flag bits, from FO to F3, inclusive

Base address qf the alﬁhanumeric representations of all the
identifiers used by MTHAT, stored one character per word in
the same order as the MTHAT identifier table

Size of table '4

Base address of a tablé of G-21 instruction mmemonics, the

3 characters of each mnemonic stored right-justified in the
word

Size of table '6

Base addfess of a table of G-21 opcodes and standard modes,

appearing in the same order as table '6

Base address of a table of MTHAT sudo mnemonics, the 3

characters of each mnemonic stored right-justified in the
word

Size of table '9

Base address of a table of G-21 register and line command

mnemonics, stored right-justified in the word

[}]

12

13

"14

15

"6

"7

'18
'19

'20

'21
'22
t23

124

Size of table '%1

Base address of a table of register numbers aﬁd line
commands, appearing in the same order as table '11

Sudo trap transfer location

Base address of MTHAT card image, stored four characters
per word into 21 words

Base address of MTHAT

Subroutine: Convert (ACC) to label for symbolic dis-
assembly

Subroutine: Write a logical file table entry
Subroutine: Read a logical.file table entfy

First location after the end of storage used by the MTHAT
run-time subroutines and tables
Switch: Upper core request
Subroutine: Write a disc or tape file
Subroutine: Read a disc or tape file

Subroutine: Test if (ACC) is within user memory

