
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

r

r

AN INTRODUCTORY COURSE IN

COMPUTER PROGRAMMING

j- Course Material Developed for the Discrete System Concepts Project.

Robert T. Braden
Alan J. Perlis
Computation Center
Carnegie Institute of Technology

^ M o n o g r a p h No. 7

This is a publication of the Discrete System
Concepts Project—funded by the National

f Science Foundation under Grant No. GE-2546,
involving:

- Carnegie Institute of Technology
1 Case Institute of Technology

Illinois Institute of Technology
Polytechnic Institute of Brooklyn

•T Rensselaer Polytechnic Institute

15 June 1965

F O R E W O R D

The course described herein is the means by which a university stu­
dent is introduced to complex computation. This first contact should
happen at the earliest possible time in his college education, and the
contact should be analytical, not descriptive. Together with courses
in mathematics and natural language, this course should contribute to
his development of fluency in the use of Intellectual tools.

It is hoped that the material presented here will be helpful in
organizing a first one-semester course in computing. Because this course
is limited to one-semester, it does not contain many things that a pro­
gramming course should. Succeeding courses involve the student in sym­
bol manipulation, oer se, and in the details of designing real and, hence,
complex computer syTt-ernl.

The operation of this course is supported by a digital computer and
its associated programming systems. Since the intent is to make the com­
puter a natural tool for the engineer and scientist, the student should
be allowed to make use of the computer in his other technical courses
during succeeding semesters.

A few comments about the operation of the computers at Carnegie
Tech might be in order. The current system is a Control Data Corporation
G-21 possessing two processors,a large core storage (6 5 , 0 0 0 words) and
disc files having 48,000,000 characters of storage.

While everyone must compose and prepare his own program, the computer
processing of programs is accomplished by a professional staff. Thus, ex­
perience in equipment tending is not part of the education arising from
this course.

The student is treated in no way differently from faculty or staff
in the nature of, duration of, or frequency of his contact with the pro­
cessing capacity of the computer. One of the by-products of the course
is familiarity with the administrative system that inevitably surrounds
access to every large computer system — familiarity with the many com­
puter languages, library routines, input teletypes, etc.

This course is an introduction to the fledgling subject of computer
science and should be followed by access to baccalaureate (and doctoral)
programs in this area. Carnegie provides this access through options in
the mathematics and electrical engineering programs. Both are described
in the school catalogue.

C O N T E N T S

r

r

r

Part I.

Part II.

Part III.

Part IV.

Part V.

Introduction 1

Outline of Lectures for an Introductory Programming
Course 5

Supplementary Course Material -- 7

Notes and illustrative problems

1. Algorithms and Flowcharts 7

2. Data Structures: Data Organization and
Representation 35

3. Subroutines and Procedures 65

4. Backus Normal Form: Language vs. Meta-Language

Programming Problems and the TEACH System 81

1. The Use of TEACH Procedures for Student
Programming Problems 81

2. A Collection of Programming Problems 86

A. Combinatorial Problems 87

B. Geometry Problems 93

C. Representation Problems 97

D. Numerical Computation Problems 99

3. A Complete Example of a TEACH Program 102

sn:rr.:::.!!.̂ .̂...„9
Bibliography 122

PART I - INTRODUCTION

The time is approaching when ail undergraduate majors in engineer­
ing and the physical sciences will be expected to receive at least an
introductory course in computer programming. This is simply a reflec­
tion of the increasingly important role of computing machines in the
professional work of these fields. For example, the new interest In
the discrete system approach to engineering problems is due in consid­
erable measure to the availability of modern high-speed computing
machines to perform the extensive numerical computations which these
methods frequently entail. Hence a programming course must form an
essential part of a curriculum including discrete system concepts.

A course in computer programming can be taught from any one of
many different points of view, depending upon its function in the
curriculum. Thus, a course in any of the following three areas could
be considered a "course in introductory computer programming:"

(1) Applied Numerical Analysis.
This would be partly or entirely a mathematics course, per­

haps included in the standard n-semester sequence of analytic
geometry, calculus, and differential equations. Such a course
might teach just enough programming to allow students to use a
computer to solve problems in approximation, numerical quadrature,
numerical solution of differential equations, etc.

(2) Problem Solving.
Such a programming course would consist almost entirely of

a set of problems whose solution required the student to employ
analytic and creative thinking to develop a suitable algorithm.
This course would attempt to develop general problem-solving
skills in the student, with computer programming serving only as
a source of problems to be solved. The computer Itself would sit
in final judgment, determining quite objectively the success of
the student's intellectual effort.

(3) Theory and Techniques of Programming.
This course would focus on programming as a distinct field

of knowledge with its own concepts and techniques (without, how­
ever, losing sight of the idea of a computer as a computational
tool). The course would explore methods of organizing data and
programs, of defining computer languages, and of dealing with
the severe limitations of machine time and memory space which
plague "real" programming problems.

Most Introductory programming courses will contain some mixture of
these three components. This monograph describes a course* developed
to emphasize the last two components: problem solving, and program­
ming theory and techniques.

The central task in such an introductory programming course is
to teach the students a working knowledge of an algorithmic program­
ming language; we have chosen to use the language ALGOL-60, for
reasons discussed later. Such a "higher level" language has several
essential pedagogic advantages over machine language for an introduc­
tory course. Using a language like ALGOL, the students can understand
and create relatively complex algorithms and programs and can solve
meaningful problems almost immediately on the computer; furthermore,
the instructor can explain important concepts of data and program or­
ganization -~ for example: arrays, mapping functions, name and value
parameters, and dynamic storage allocation -- much more easily.
Machine language should enter such a course only in simplified,
"cleaned-up" form, as background for understanding the meaning and
implementation of ALGOL constructs. For those students who wish to
study programming further, there should be advanced courses covering
machine language as well as compiler construction, monitor systems,
and list processing languages.

The course which we are describing would be organized with class
meetings divided between formal lectures and small discussion sections.
A suggested outline for the lectures appears in Part II; in general,
they should cover introductory material on programming and computation,
including the following topics: algorithms and their pitfalls, flow
charts, ALGOL, data structures, program organization, computer organi­
zation and machine language, and the precise specification of mechani­
cal languages. The discussion sections, containing at most 20 to 25
students each, would be largely devoted to explanation and discussion
of the specifics of ALGOL programming.

A suitable basic textbook for the programming course would be "A
Guide to ALGOL Programming", by Daniel D. McCracken; this and other
suitable books are listed in the Bibliography, Part V. McCracken's
text is a clear introduction to ALGOL, and contains a good set of ex­
amples drawn from the fields of engineering and physical science. How­
ever, we feel that it Is desirable to supplement this text, going more
deeply into areas including the following:

* The prototype of the course described in this monograph is a
course (S205) taught for the past five years at Carnegie Institute of
Technology.

*1. Flow charts and algorithms.

2. The grammatical structure of an ALGOL program; for example:
explanation of the punctuation rules in terms of the syn­
tactic structure of statements, compound statements, etc.;
conditional expressions; and the "dangling else" ambiguity
in ALGOL.

*3. Data structures: arrays, mapping functions, access tables,
and trees.

*4. Procedures and subroutines.

5. Block structure and dynamic array storage allocation.

6. Machine language and, in particular, the machine language
representation of an ALGOL program.

*7. Backus Normal Form for definition of programming language
syntax.

Supplementary notes have been prepared to cover the topics in this
list which are prefixed with an asterisk; these notes are contained
In Part III of this report, together with some sample homework and
examination problems related to each topic.

Programming is a skill which is best taught with a balanced com­
bination of (1) lectures and text book readings, and (2) experience
gained through solving programming problems. Therefore, it is of
fundamental importance that students in an introductory course write
ALGOL programs to solve 5 to 15 practice problems and debug their
programs on a computer. In general, these problems can be divided
into two classes: (1) programming technique problems, which in con­
junction with the lectures are Intended to teach the student particu­
lar concepts; and (2) algorithmic problems, which are exercises in
analyzing the structure of problems and in developing suitable algo­
rithms for their solution. It is the latter problems which provide
the "problem solving" component of the course. A sample of suitable
problems, ranging from very easy to very difficult, is contained in
Part IV.

The students are provided with library procedures, called "TEACH"
procedures, to aid them in debugging their programs on the computer.
A TEACH procedure supplies test data to their program and checks their
results; the same TEACH procedure is also used to mechanically grade
the problem solutions. The use of TEACH procedures is explained in
Part IV.

We should comment upon the choice of the language ALGOL for
teaching an introductory programming course- In fact, the students
must learn two dialects of ALGOL: the official language ALGOL-60 as
well as the particular hardware representation which is available to
them on the computer. The differences between these dialects should
be minor; if so, the Instructor should avoid emphasizing the distinc­
tion but instead treat the two languages as members of a family of
nearly identical languages, all simply "ALGOL". For example, ALGOL-20*
allows the symbol "<-" to be used interchangeably with the ":=" symbol
of ALGOL-60 as an assignment operator. In this monograph, "<-" has
been used in preference to ":=" even when the text Is nominally the
Reference Language ALGOL-60. It has been observed over four semesters
that students readily accept this mild linguistic schizophrenia.

Since ALGOL was designed as a publication language and is there­
fore quite readable, it is useful for describing algorithms and pro­
gramming concepts even if a completely different language is taught
to the students for actual programming. Before an ALGOL translator
was available at Carnegie Tech, the introductory programming course
taught a locally-developed FORTRAN-like language called GATE; even
at that time ALGOL was introduced in the lectures as a natural and
efficient way of stating algorithms. Thus, it was much easier
write:

to

for I <- 1 step 1 until 20 do <- Aj_ 2 + 4 ;

or

Y «~ (if X > Y then X else Y)

than to draw the corresponding flowcharts on a blackboard; very little
explanation was needed to give the students a reading knowledge suffi­
cient to interpret these statements.

Several other advantages of ALGOL for an Introductory course can
be cited. ALGOL is an international standard language for publishing
algorithms; many important algorithms have been and will be published
in this form. Hence it is useful for a student to have at least a
reading knowledge of the language. The ALGOL language has a simple
and logically clean structure, but is a rich language; furthermore,
it has established a standard nomenclature which is very useful for
talking about computer programming and other computer languages.

r * "ALGOL-20" is the hardware representation of ALGOL-60 developed at
Carnegie Institute of Technology for the CDC G-20 computer.

r

PART II - AN OUTLINE OF LECTURES FOR AN INTRODUCTORY PROGRAMMING COURSE

A. Algorithms. (4 lectures)

B.

C

1.
2.

Necessity of algorithms for numerical computation.
Algorithmic languages: flow charts, ALGOL.
a. Flow charts.

(1). Execution of a flow chart.
(2). Flow charts within flow charts: hierarchy, down to

"primitive" flow charts which use only the "basic"
arithmetic and test operations.

(3). Examples of simple flow charts; loops.

b. ALGOL.
(1). The dual role of ALGOL — communicating algorithms

and programming a computer.
(2). ALGOL program: sequence of statements (commands).
(3). Order of execution; rules for determining successor.

GO TO and IF statements. Compound statements.
(4). ALGOL syntactic structure: Identifiers, expressions,

statements, declarations.

Programs and Computers.
1.

(2 lectures)
memory, arithmetic unit, and control

2 "
3.
4.

Organization of computer:
unit.

Fetch/Execute cycle. Sequential execution.
Relationship of ALGOL names to computer memory. Addresses.
Translation vs. execution of ALGOL program. Existence of a

machine language representation" of the source program.

Data structures and representations. (3-4 lectures)
1. Arrays, the primary data structure of ALGOL.

a. ALGOL subscripted variables:
Declarations, subscript bounds, dimensions.

[

c. The memory mapping functions for ALGOL arrays.
Access tables.

2. More general data structure.
a. General access tables, "jagged" arrays.
b. Trees.

c- ^i^ri^^x^^ corapact storage*
Program Structures: Subroutines, Procedures and Blocks. (3-4 lectures)
1. Subroutine: Segment of program which can be executed as a single

"statement" (or instruction) in a "master" program.
a. Subroutine linkage.
b. ALGOL: Declaration vs. call of procedure.

2. Generalization of procedures by parametrization.
a. Formal, actual parameters.
b. Name, value parameters.
c. Calculated call-by-name.

3. Subroutines for program organization.
a. Definition of new (non-primitive) "elementary processes."
b. Independent subprograms: "Black Boxes", local variables.

Publication of algorithms as ALGOL procedures.
c. Examples of the use of procedures for complex program or­

ganization.
d. Recursive procedures.

4. ALGOL Block structure.
a. Local vs. global names.
b. Level of nesting.
c. Dynamic storage allocation; block administration.

Computing machine structure and operation. (2-3 lectures)
1. Number representations, and conversion of radix.
2. Elementary machine language.
3. Machine language representation of ALGOL programs.

4. The concepts of immediate, normal, and indirect addressing.
5. Machine language meaning of subroutines, call-by-name, call-

by- value, and array accessing.

F. Mechanical Languages. (1-2 lectures)
1. Meta- vs. object-languages.
2. Backus Normal Form.

PART III - SUPPLEMENTARY LECTURE MATERIAL
/—

*~ 1 ' ALGORITHMS AND FLOWCHARTS

A. The Nature of a Computer

In order to understand computer programming, one must under­
stand clearly the basic organization and nature of a computer. As

_ used in this course, the term "computer" is really short for the
complete expression: "general purpose automatic digital computer".
We could have further lengthened this title by inserting the ad­
jective "electronic"; all modern digital computers do operate with

" electronic circuitry although in the past they have been built of
mechanical and electromagnetic parts and in the future they might
be pneumatic, hydraulic, or optical. In any case, they could be
made of Erector Sets or green cheese as far as we are concerned
here; we are only interested in how they are organized and instruct­
ed to perform calculations.

A digital computer is a machine which performs numerical com­
putations — that is, ordinary arithmetic — on numbers represented
in a discrete (or "digital") notation; thus, a digital computer is
a descendant of a mechanical adding machine, each of whose dials

' has ten discrete positions, rather than of a slide rule which is a
continuous (or "analog") computer. A digital computer has a parti-

p. cular set of elementary operations wired in; we will refer to these
operations as "primitive". Most computers include the following
primitive operations:

r 1. The normal arithmetic operations: addition, subtraction, multi-

2.

3.

plication and division, symbolized by:

+ - x /

Test operations to choose between alternate sets (or"branches")
of commands to be executed; the choice depends upon the outcome
of an arithmetic test on input data or intermediate results.
Any one of the six possible arithmetic relations between two
quantities could be tested: less than (<) , less than or
equal to (̂), greater than (>) , greater than or equal to
(^) , equal to (=) , and unequal to (ft) .

Input and output commands to "read" information into the com­
puter from an external source such as a deck of punched cards
and to record the results on an external medium such as a
printed sheet of paper or a new deck of punched cards.

Different models of computers have slightly different sets of
primitive commands wired in, but these three categories are basic
to every modern digital computer.

To perform a computation with a digital computer, a human pro­
grammer must first prepare a detailed list of step-by-step commands
for the machine. This list of commands, called a program, is "read"
into the machine; when the "start button" is pressed, the computer
executes the commands in a precisely defined order, operating auto­
matically and without intervention (assuming, of course, that the
program contains no catastrophic errors!). The program instructs
the machine to read input data, to perform the desired primitive
arithmetic operations, to use test operations to perform other
operations selectively and repetitively, and finally to print the
answers.

The task of preparing such a program for an automatic digital
computer is called programming and is the subject of the course
described in this Monograph. A computer program must be:

Explicit -- the machine does exactly what the program commands,
not necessarily what the programmer meant;"wishful
thinking", a common error of beginning programmers,
doesn't help.

Detailed — all the primitive operations must generally be
specified, although there are some clever ways of
reducing the terrible burden of details in pro­
gramming.

Precise and unambiguous — a computer IS only a machine and
it blindly executes your program, right or wrong.

We have implied that a computer can perform a different cal­
culation if given a different program; this is certainly true.
This is why the machine is called a general purpose automatic digital
computer. Some special purpose digital computers have been built in
the past with complete programs wired permanently into their circuits;
however, they have generally proven to be uneconomical because the
simplest change in their "program" requires rewiring.

In principle , a general purpose digital computer can perform
(almost) any, calculation, given a suitable program to control the
execution. There are, of course, practical limitations of computa­
tional speed and memory space to keep many problems from being solved
on even the largest and fastest computers available today. There are
also some theoretical limitations on what a computing machine can
compute; a relatively new branch of mathematical logic created in
the last few years deals with this question of "computability".
But the fact that certain logical problems are in principle unsolv-
able on a computer has no practical implications for the ordinary
numerical computations for which computers are mostly employed today;
on the other hand, the practical limitations of speed and size of
machine can be very burdensome, indeed.

B. Composing a Program

Most computer programs are quite lengthy and complex; it is
not unusual for a program to contain 10,000 or even 100,00 individual
primitive commands, each of which must be exactly correct and
correctly placed in the sequence of instructions. The mind boggles
at the thought of writing and removing the errors from all these
commands. Fortunately, the complete program can generally be or­
ganized into a series of tasks, each of which has sub-tasks, which
in turn have sub-sub-tasks, etc. This hierarchy of tasks is the
basic principle of organization for most large programs; without
it we could hardly write the complex and lengthy programs which are
common today.

But how do we write a program for even the smallest sub-task
in the hierarchy? There are two general steps to composing a pro­
gram:

1. Deciding upon an algorithm.

2. Expressing the algorithm in a programming language for
the machine. An algorithm is a complete and unambiguous description

of the steps necessary to perform some (sub) task. Thus, it is a
set of instructions, complete and detailed enough for a human —
or even a machine to execute. Like a program, an algorithm
must be precise and unambiguous.

But how complete is "complete", i.e., how detailed must an
algorithm be? Depending upon circumstances, different levels of
detail are appropriate in an algorithm. Suppose someone asks for
an algorithm to compute the mean of N numbers, and the answer Is
given, "add them up and divide by N " . This answer has probably
described the algorithm sufficiently completely for the use of a
human (but not a machine). The algorithm could be dressed up
with some mathematical notation: "given a set of N numbers,
Xj, X 2, ... XJJ, the mean is given by the formula:

N
1 "
N X S X i • " 1=1 1

but no more detail would haye been supplied. In either case, the
algorithm Mas assumed that the operation or adding a numbers:

N
S X
i=1 1

is primitive.

The most detailed algorithms are those which use only the
primitive operations built into a computer; we will call these
primitive algorithms. The fact is that the operation:

N

i=1 1

is not primitive in most computers; in the next section we will
give a primitive algorithm for this computation. McCracken in
Chapter 1 of A Guide to ALGOL Programming* uses the square-root
operation as if it were primitive; it is not primitive in most
computers, and,in fact,McCracken gives a primitive algorithm
for square root in Section 4.1 of his text. Raising an expression
to an integer constant power -- e.g., W 3 or (a + 3b) 2 -- will be
considered primitive, since it is just shorthand for a product
which could be written explicitly -- " W x W x W " or "(a + 3b) x
(a + 3b) " . On the other hand, X N, where N is a variable, is not

* See Bibliography, Part V.

primitive; we would not know how many factors of X to write since
the value of N would not generally be known when the algorithm
was prepared.

C. Flow Charts - A Language for Expressing Algorithms.

Before we discuss programming languages, we want to clarify
the requirements for an algorithm, and particularly for a primi­
tive algorithm; we will therefore take up a language for describ­
ing algorithms, known as "flow charts" (also called "block dia­
grams") . Flow charts are not a programming language, largely
because they are two dimensional and pictorial, and there is no
convenient way of reading them into the computer. This situation
will almost certainly change, since graphical input devices
using large cathode ray tubes are now being developed for compu­
ters; but for the present, flow charts are limited to expressing
algorithms. They are extremely useful for organizing complex
programs since the programmer can use any level of detail he wants
in his flow charts. For example, he can draw a general flow chart
which shows only the outline of the program, with each principal
task as a single box; at the other extreme, he can prepare a
primitive flow chart, giving the algorithm in complete detail
using only the primitive operations of the computer.

A flow chart uses boxes and arrows to show pictorially the
"flow", or order of execution, of a program. It has three essen­
tial types of components: Computation Boxes, Arrows, and Test
Boxes. These will now be described in turn.

A statement, group of statements, or more generally the name
or description of a "complete step" in the computation (or
an input/output operation) is represented inside a rectangular
computation box.

1

1.

Computational
or

Input/Output
Step

2. A flow chart describes the order of the steps of a computation;
arrows are used to indicate the order in which boxes are to be
considered and their contents executed. An arrow leads from

each box to its successor, i.e., to the box which is to be
executed next. Since a computation box can have only one
successor, it will have only one arrow drawn leaving it; how­
ever, it can have any number of arrows entering since it
itself be the successor to any number of boxes.

can

3. The successor can be chosen conditionally by an oval test box.
This box contains a condition or test which can be true or
false, and has an arrow leaving from each end:

CONDITION

If the condition is true, the successor of the test box is
indicated by the arrow from the "T" (true) end; otherwise,
the arrow from the "F" (false) end points to the successor.
A flow chart should always uniquely specify a successor to
each box, or else we have not defined the algorithm suffi­
ciently precisely and explicitly. Here is a very simple
example, a flow chart which describes the general algorithm
of most computer programs: V

Read Input
Data Set

1 Compute
Answers

Print
Answers

Last Data rTN
of Set? f J

Now let us imagine we had a computer which could execute flow
charts directly — i.*., a computer whose primitive machine
language was flow charts. The basic execution cycle would be:
(1) fetch, from the flow chart stored in the computer memory,
the next box to be executed, and (2) execute it; fetch the

box, execute it, fetch the next box, etc. The fetch next
cess would be accomplsihed
cessor box. The * —

by
cessor box. The computer would start at t
(Y) and stop at the "exit" sign (©) .

pro-
following the arrow to the suc-
J the "entrance" symbol

This alternation

2.

of fetching the next command and then executing it, called
the "Fetch/Execute" cycle, is fundamental to automatic com­
puters.

We will sometimes find it convenient to indicate arrows im­
plicitly by "labeling" the successor box (we will use a colon
to attach the label to the box) and using a "GO TO" box in
the form of a circle or oval containing the label.

It is now time to define exactly the form of a primitive
flow chart. A computation box of a primitive flow chart contains
only basic computational instructions; each of these instructions
is executed in two phases:

1. The primitive arithmetic operations +, -, x, and / are per­
formed on variables and numbers, to calculate a new number;
and

The result is substituted for, or "assigned to", a variable.
Note that an algorithm must assign to a variable each inter­
mediate result which is to be saved for later use in the cal­
culation; a computer value can be referred to only if it "has
a name".

These two phases are summarized in an assignment statement, which
has the following form:

!f<r- £

where: Vis any variable name (which may have a subscript),

and £ is any mathematical expression or formula which
defines a value to be computed using only primi­
tive operations. We will use £ for such an
arithmetic expression.

This is an imperative to compute the value of the expres­
sion , and then assign it to the variable named 1/ . For
example, the asslgnme^F statement:

Y «- 3A + B 2

should be considered as a command to compute the value of the
expression 3A + B 2 using the current values of the variables A
and B, and then substitute the result for Y, replacing whatever
value Y had previously. The variable Y can have a subscript, as
can any of the variables in the expression.

A flow chart contains no statement of facts, only commands.
It is important that we recognize the difference between mathe­
matical equations which are passive assertions of fact, and
assignment statements which are imperatives.

Mathematics:
Y : AX • + BX + C

Algorithm:
Y «- AX + BX + C

This is a statement of mathema­
tical fact. When A, B, C, or X
changes, so does Y (or else the
assertion becomes false).

compute
2 + BX + C and then

This is a command to first
the value of AX 2

assign this value to the variable
Y. Subsequently changing A, B, or
C does not change Y, unless this
assignment statement is executed
again.

Mathematics:
1 = 1 + 1 This is nonsense.

Algorithm:
I <- I + 1

form:

This Is an operation fundamental
to programming since it counts by
1.
This is not primitive, since we
did not include absolute value
among the primitive operations.

A primitive test box can contain only simple conditions of the

L

where cfl and < £ 2 are expressions as defined earlier, and ?£.
is any one of the six possible arithmetic relations: <, 5, £, >,
or A For example, the following test boxes are primitive:

X > Y + 2 X J 5-

I S N A/10 S B - 4 AC
5-i

D. Examples of Algorithms as Flow Charts.

The first two examples we will give, Absolute Value and Trun­
cation, are built into many computing machines as primitve opera­
tions, and could therefore be considered to be primitive in flow
charts.

EXAMPLE 1: Absolute Value.
I f I Y «- |X| J Is not primitive, then it can be found from
>rimitive algorithm: the primitj

X < 0

EXAMPLE 2: Truncation.

The Truncation operator is symbolized by a down arrow (" i") ;
It removes the fractional part of a number, leaving only the intege
part. For example, 4(3.76) = 3, and I(-3.76) = -3. To make a
primitive flow chart for truncation, we must subtract 1 repeatedly
until the result Is less than 1; therefore, our algorithm needs a

F

i

loop, which is traversed repeatedly until a condition is met. The
following primitive flow chart will compute: Y IX; note, how­
ever, that this algorithm is absurdly inefficient.

It
Y <- 0

A <- |X|

A < 1

x < o

EXAMPLE 3: Summing N numbers.
6

Suppose we are given a set of N numbers, in the variables
Xj, X 2, XJJ, and we need to compute their sum:

N
Y = S X^ X1 + X 2 +

If N is a
ment; for

... + Xjj

small constant, we can write a single assignment
example, if N = 3, the complete algorithm is:

state-

Y «- x 1 + x 2 + x 3

But suppose N is large so that we don't want to write out all the
terms, or, as is common in programming, the value of N is variable
and may be different each time the algorithm is executed. Unfor­
tunately, we can't use the three dots of mathematics In an algo­
rithm or a program since this is not explicit enough for a machine.
Instead, we must use a lpo£. The following loop will work:

SUM <- SUM + X±

I «- I + 1

1

i * N

SUM <- 0

r

i <— 1

This algorithm can be explained in the following way: it
executes the process: "add X t to the sum-so-far" (i.e., "SUM <¬
SUM + Xt") N times, with i taking each of the values 1, 2, 3, etc.,
up to (and including) N. The result is to compute the sum of the
N numbers and leave the result in the variable SUM.

Without explaining its exact meaning at this state, we can
point out the plausible ALGOL notation which is equivalent to this
flow chart:

SUM «- 0 ;
for i «- I step 1 until N do SUM <- SUM + x[i] ;

This can be read as follows: "assign 0 to SUM; then for values of
i starting at t and increasing in steps of 1, until N is reached,
do the assignment: SUM «- SUM + Xt

n.

The flow chart for summing N numbers is a particular example
of a very general class of algorithms containing a loop. We can
abstract the general features of all of these flow charts by as-

suming that there is some "basic process" depending upon i and sym­
bolized by f>± , to be executed for 1 « 1, 2, H:

I

f

Pi

r

i <- i +1

•q J.

initialize

t

i < — 1

©

The box containing " Pt" can represent any complete sub-flow chart.
Notice carefully the general features of this generic flow chart:

(1) First an "initialization box" sets things up.
(2) A test is made for completion; if N = 0, one usually

doesn't want /> t executed even once, so it is better to
test for completion before going to step (3).

(3) Execute the basic process Ot.
(4) Step to next i value, and go back to (2) .

This general loop flow chart can help in developing particular
algorithms; one answers the question, "what basic process, if exe­
cuted for i = 1, 2,...,N, will accomplish the desired task?" This
is essentially an algorithm for making up algorithms, and is a very

useful approach, as we will now illustrate.

EXAMPLE 4: Finding the Largest of N Numbers.

Suppose we wish to find the largest (the "maximum") of a set
of N numbers: Xi , X 7,...,X N. Since N is a variable, we need to
apply the general loop flowchart. The following basic process
will find the maximum if executed for i = 1, 2, 3,..., N: "If Xt

is larger than the biggest-found-so-far, then use X, as the biggest-
found-so-far". If the variable BIGST contains the "biggest-found-
so-far", this basic process is defined by the following flow chart:

X £ > BIGST

Note that the entrance (" Y ") and exit ("® ") symbols stand
for the "local" entrance and exit of this sub-flow chart, not the
entrance and exit of the bigger flow chart of which it is a single
box. Thus, we will generally assume that every flow chart (call it

" «-„ „ „ J 1 « 1 ~ e " 1 1 flow "Fi") only represents a single box of a larger, less detailed, i
chart (call it " F 0 ") ; then the entrance symbol in Fj stands for
arrows in F 0 from predecessors of the Fj box, while the exit symbol
in Fj stands for arrows to the successor in F Q . Substituting the
sub-flow chart for BIGST into the general loop gives a complete
algorithm for finding the largest value of the N numbers.

stead of i = 1.
initialized BIGST to X,, and started the loop with i
i = 1 .

2 in-

EXAMPLE 5. Sorting N Numbers into Ascending Order.

A very simple (but inefficient)method of sorting N numbers
Xj, X 2,...,X N into order is the following: find the largest of
N numbers and interchange its value with X N, so the largest is
the end of the list where it belongs; then find the largest of

N_,, and exchange its value with X N - 1 ; this is continu.

the
N numbers and interchange
the end of the list where ^ .
*1»• • •»%-! » a«d exchange its value with X N - 1 ; this is continued
,.»+4i „ii « „ - d. I t i 8 convenient to consider the basic process

j = N, N-l, N-2, ... , 3, 2; the process is:

First, find

L wicn theJvalue of Xj.

Thus, the sorting algorithm is given by the following flow chart:

until all are sorted
to be executed for

find the (largest) subscript L such that X L is the largest
among X,,...,X. (the unsorted values); then interchange the value
of X T with t h e 3 " - " — -

I
j *-N

1:

j £ 2

2:

Find larges
L such that

^ o max(X1,

t subscript

x2,...xj)

•s
Exchange values

\1/

J <- J - 1

Process "P." executed for

j » N, N-1, 3» 2

This is not a primitive flow chart since the boxes labeled 1 and 2
are not primitive. We can give primitive flow charts for each of
them, however. Box 1 is essentially the algorithm of EXAMPLE 4,
except that we are now finding not the maximum value, but the sub­
script of the maximum value; X, takes the place of the variable
BIGST.

Find largest L such that
^ = max(X1, X 2, X) i <- 2

L <- 1

U

<i i = j

X i S X L

L «- i

6
i <- i + 1

Finally, the algorithm of box 2 requires no loop; however, an extra
temporary variable T is needed if the two values are to be inter­
changed.

J

Z.'

T <-

*L«- XJ

X^ <-T

Exchange ^ » Xj

E. The Dual Nature of ALGOL.

we have discussed the use of flow charts for expressing algo­
rithms. There is another language suitable for algorithms: ALGOL.
Unlike flow charts, ALGOL is designed to be not only an algorithmic
language but also a programming language; that is, an algorithm
written in ALGOL can be executed on a computer as a program.

This dual purpose of ALGOL is the fundamental reason for the
importance and usefulness of this language. Unfortunately, the
needs of an algorithmic language and a programming language conflict
somewhat, and therefore ALGOL is not a perfect language for either
application. ALGOL is generally slightly more verbose and less con­
cise than one sometimes desires in a programming language, in order
that ALGOL programs, or algorithms, can be easily and clearly read
by people. However, considered in its dual role, ALGOL is the best
algebraic computer language available today.

One of the most important uses of ALGOL is for the international
publication of algorithms. There are generally many different algo­
rithms known for most computing tasks, all differing in speed, computer
memory requirements, and accuracy. Many of these algorithms for im­
portant computing tasks are being published along with comments on
experience with them, in the ALGOL language; the publication of algo­
rithms is one of the important results of the development of ALGOL
in 1960. From these published algorithms one can build a library
of tested, certified programs for a great variety of tasks, which
can be called and used by one or two ALGOL statements.

Even if one does not have an ALGOL compiler available and uses
a different language for programming the computer, it is still import­
ant to know ALGOL in order to be able to read published algorithms
(or even to publish them oneself). At the very least, the published
algorithms are a valuable source of ideas and techniques.

F. The Syntactic Structure of ALGOL.

If we analyze the structure of a page of English prose, we find
letters formed into words which in turn are formed into sentences
and into paragraphs, etc. An ALGOL program is built up in an analo­
gous manner from the basic characters, which are put together to
form numbers and variables, to form expressions, and finally state­
ments and declarations. Let us briefly describe each of these levels
of grammatical structure of an ALGOL program.

1. Numbers. We have been using numbers, that is, constants,
without comment in our flow chart. There are specific rules

r

r

for forming correct numbers in ALGOL; see chapter 2 of
McCracken's text. The following are examples of correct
numbers in ALGOL:

p 137.05, 1, 6.02 1 Q 23

2. Variables. Both simple and subscripted variables can be
used In an ALGOL program, with the same meaning that they
had in flow charts. I, BIGST, and XI are examples of ALGOL
simple variables. Since ALGOL programs must be punched into
cards, a subscript cannot be lowered below the line but in­
stead must be inside square brackets. For example,

X[l], X[I], and A[l, J+2, k]
are ALGOL subscripted variables.

The name of a variable in ALGOL is called an identifier;
in fact, all names in ALGOL programs are identifiers. An
ALGOL identifier must have the form of a letter, possibly
followed by one or more letters or digits. The identifier
"XI" could represent a simple variable; the "1" is part of
the identifier (that is, the name) of the simple variable;
however, "x[l]» is a subscripted variable, "X-sub-one".
When we write an ALGOL program,the identifiers can be chosen
as we please: however, the same identifier may not be used
for both a simple variable and a subscripted variable in the
same program (or, more precisely, in the same block).

Expressions. We define an expression as: a rule for com­
puting a value. There are different kinds of expressions,
with different kinds of values. The most obvious kind of
value is arithmetic, and ALGOL contains arithmetic expres­
sions. The complete rules for forming ALGOL arithmetic ex­
pressions are discussed in Chapter 2 of McCracken's text.

In the test boxes of primitive flow charts we had con­
ditions, such as "X > Y". Such a condition is really an
expression which defines a "truth" value: true or false.
An expression which has a true or false value is called a
Boolean expression. A condition is not the only form of
Boolean expression; in Chapter 3 of his text, McCracken
showB that much more complex Boolean expressions are possi­
ble.

4. Statements. A statement in ALGOL is a complete command, and
generally corresponds to a computation box in a flow chart.
For example, " I := I + 1" is an ALGOL assignment statement.

Assignment statements in ALGOL have the same form as those
we have been using in primitive flow charts. The assignment
operator in ALGOL-60 is " : = 11; however, in this monograph
we will use the symbols " := " and " <- " interchangeably.

Another example of an ALGOL statement is the for state­
ment:

for I ±- 1 step 1 until N do SUM «- SUM + x[l] .
A for statement provides a short and concise way of writing a
loop in a program; however, the complete rules for for state­
ments are complex. This is the subject of Chapter 5 of
McCracken's text.

5. Declarations. A flow chart representing an algorithm contains
commands which are to be executed in a particular order. This
is generally all that is necessary to express an algorithm.
However, ALGOL is not only an algorithmic language but also a
programming language; that is, an ALGOL program can be exe­
cuted on the computer. As a result, the programmer has to
put some information into his ALGOL program which is not
strictly part of the algorithm. This information, contained
in ALGOL declarations, is necessary so the program can be
executed more efficiently, and so choices can be made about
the allocation of the machine's memory to the data of the
program, about the accuracy of the arithmetic, etc. Although
ALGOL statements are commands, ALGOL declarations are simply
assertions of fact; that is, they are passive; it is import­
ant to understand this distinction between statements and
declarations.

Let us consider now the forms of ALGOL statements and the rela-
tion of ALGOL statements to flow charts. That is, an entire ALGOL
program could be thought of as one long string of characters, formed
into expressions and then into statements. A program is basically
a series of statements written one after another and separated by
semi-colons. Thus, if we represent a general ALGOL statement by
then every ALGOL program has the form*:

U ; v4 ; ...; ^
To execute the ALGOL program, the computer executes each statement
in turn in left-to-right order, starting with the leftmost statement.
If each statement ^ ± corresponds to the contents of one computation
box ^J?

i then this statement sequence is identical in meaning to the

* The three open circles are an ellipsis symbol.

r

following flow chart:

J,

G.

Although an ALGOL program is logically a one-dimensional string
of characters, most programs are too long to fit on one line. There­
for the program can be punched into any number of cards; the first
column of each card follows logically immediately after the last
column of the preceding card, so that the program is still effective­
ly a long-dimensional string of characters. Several short statements
may be punched on one card, or one statement may be punched on each
card, or one long statement may be spread over many cards, whichever
gives the most readable program. The "machine" (i.e., the ALGOL
translator) ignores all the blank spaces and treats the program as
one long continuous string of characters. Therefore when we speak
of "left-to-right order", it may actually be "top-to-bottom order"
as punched on the cards.

Since blank spaces are irrelevant to the meaning of an ALGOL
program, many extra blanks can be inserted to space the statements
on the cards in such a way that the program is very readable. Con­
sistent use of this freedom to make an ALGOL program readable and
transparent is very important if ALGOL is to perform its function
of communicating algorithms to other people.

Exercises on Algorithms and Flowcharts

Exercise 1:

For each of the following computational tasks, draw a primitive
flow chart representing an algorithm to perform the task.

(a) Assume you are given two numbers X and Y. Compute P by
the rule:

P <- 1 if X and Y are both less than 6, or if X
and Y are both greater than 6;

P *- 0 otherwise.

(b) You are given a set of N numbers Xi,...,X N; assume they
have been sorted into ascending order, so that:

X 1 * X 2 ... s Xjj. Compute the median M by the rule:

If N Is odd, then
M *- (the "middle" X value, such that half of

X's are 5 M and half are =: M);
If N is even, then

M <- (the average of the two middle values).

Suggestion: in this problem, use the truncation operator
(" i ") , assuming it to be primitive (see Example 2).

(c) Given a set of N numbers X,,...,XN, count how many of them
are positive (X)) . Call your result P.

(d) Assume you are given values of N and Xj, X 2 X«. Find
the smallest subscript L such that X L has the largest
absolute value of any of the X t's; i.e.,

X L = Max (IXjl, |xj,..., |ig).
In this flow chart, assume that absolute value is not a
primitive operator!

(e) Suppose you are given a set of N non-negative numbers
X|, X2,...,XN, and you wish to compute a new set of numbers
f 0, fi, f2,...,fQq which form a "frequency count" of the
X V That Is, fi will count how many X ^ arTTn" the range
i 5 ft < i+1, for integers 1 » 0, 1,...,99. Ignore X*s
which are >100. You may use " I " as a primitive operator.

(f) Given any real value X and any integer value N, perform the
operation:

P <- x N

by repeated multiplications (or divisions). If N £ 0 and
X = 0, then execute the box:

PRINT "Error"

and set P <- 1 0 5 0 to represent "infinity".
Comments on this problem:

To extend this algorithm to compute X^ where X
and Y are any (real values you would need the func­
tions e* and log e(X); these functions are not primitive,
of course but can be computed to any desired accuracy
with primitive algorithms. Then combining all these
flow charts, you could draw a single primitive flow

chart for X . The algorithm for this flow chart has
been programmed in the computer's primitive machine
language in the form of a "sub-program" or "subroutine".
In the ALGOL language, the operation X Y (written "XtY")
is considered primitive; an ALGOL program which uses
this operation simply executes the entire X Y sub-program.
This is an example of a general principle in programming
-- once an algorithm has been written as a sub-program,
this program can be treated as * new "primitive" process,
effectively enlarging the instruction repertoire of the
computer. This process of defining new operations can
be carried to anjr number of levels! for example, sub­
programs can be defined for e& and log e(X), which can
be used in turn as "primitive processes" in defining the
X Y algorithm, which can be used as a "primitive process"
in defining other functions. At the very bottom of the
hierarchy, of course, there must be "truly primitive"
algorithms which use only the operations built into the
computer.

(g) Suppose one needs to compute cos x, accurate to 10 decimal
places, for any angle x.

(a) If x is a very small angle, |xj < 10" , then the
simple formula:

2
cos x a 1 - x

2
Is accurate to better than 12 decimals.

(b) Given cos x for any angle x t cos 2x is given by:
cos 2x = 2(cos x) 2 - 1

Draw the primitive flow chart to compute Y <- cos x
for any angle x, using (a) and (b). Simply halve the
angle repeatedly until it is small enough to apply (a).
Then apply (b) often enough to get the cosine of the
original angle.

Exercise 2:

Draw a flow chart for an algorithm which: (1) determines if a
given sequence of O's and 1's contains at least one occurrence of the
sequence 101 and (2) sets a Boolean variable TEST to true if (and
only if) 101 does appear. The end of the sequence will be marked by
a 2 and no other 2's will appear.

For example, the sequence

110010111012
does contain the sequence 101 (twice) while the sequence

1100100112
does not.

On the next page is a flow chart which has some empty boxes. You
are to fill in these empty boxes so that the flow chart gives an algo­
rithm to solve the problem. You may use no other variables except
DIGIT which holds the next input character, the answer TEST and two
Boolean variables ONE and 0NEZER0, Test boxes may contain only
Boolean expressions, and rectangular boxes may contain only assignment
statements. Use all boxes and do not add any boxes. Only in the box
marked INPUT may a character of the input string be obtained.

r

Exercise 2: Flow Charts (cont'd)
Start

Exercise 3;
— — — m n
tet: A^CX) x l a i a n d B

n ^ = £ x l b l
i=0 i=0

be polynomials in X of degree m and n, respectively. Complete the
flow chart on the next page for an algorithm to compute the coeffi­
cients C f l,...,C m 4 H, of the polynomial product of A„(X) and B„(X) .
Your algorithm shSuld be such that if it were transformed into a
computer program, the same memory cell could be used for C* and b*,
for each J = l,2,...,n; however, the a.*s and b,'s must occupy dis­
tinct cells. J

Fill in the missing statements but don't add any boxes or lines.
Note: no additional subscripted variables are necessary in this pro­
blem.

Exercise 4:

Consider a sequence of n numbers: Vt, Vo,...,v n. We are in­
terested in sets of consecutive v's which have the value 0, with
no non-zero values intervening; these sets we will call "runs of
zero" in the v sequence. The number of zero values in each run of
zeros is the "length" of the run. A run of zeros is bounded on
each end by either a non-zero v or an end of the complete v sequence.

Example: The sequence of v's: ,(U .,0,0.0^1.1 jO.0.0,.1 contains
three runs of zeros: two runs of length 3, and one of length 1. If
we also say that each non-zero value is a "run of zeros of length 0",
then there are four runs of length 0.

Problem: compute the frequency of occurrences of runs of each
possible length; i.e., compute f Q, f], f w h e r e f± is the number
of runs of zeros of length 1 in the given sequence of v's. Assume
that the f^s have already been set to zero before reaching this flow
chart.

Complete the primitive flow chart on the next page for an algo­
rithm to compute the f i's. No additional boxes or arrows are needed.
Some computation boxes may contain more than one assignment statement,
but every box will contain at least one statement. Note: this pro­
blem is not trivial, but it does have several solutions.

Exercise A:

Consider a sequence of n numbers: v, , v 2 v . We are in­
terested in sets of consecutive v's which have the value 0, with
no non-zero valueB intervening; these sets we will call "runs of
zero" in the v sequence. The number of zero values in each run of
zeros is the "length" of the run. A run of zeros is bounded on
each end by either a non-zero v or an end of the complete v sequence.

Example: The sequence of v's: ,0,.1jQ.0.0ltl .1 J.O.Oul contains
three runs of zeros: two runs of length 3 f and one of length 1. If
we also say that each non-zero value is a "run of zeros of length 0",
then there are four runs of length 0.

Problem: compute the frequency of occurrences of runs of each
possible length; i.e., compute f Q, fj, f? where f, is the number
of runs of zeros of length 1 in the given sequence of v's. Assume
that the fj/s have already been set to zero before reaching this flow
chart.

Complete the primitive flow chart on the next page for an algo­
rithm to compute the f^s. No additional boxes or arrows are needed.
Some computation boxes may contain more than one assignment statement,
but every box will contain at least one statement. Note: this pro­
blem is not trivial, but it does have several solutions.

r

2. DATA STRUCTURES: DATA ORGANIZATION AND REPRESENTATION.

A. Arrays

There are two principal intellectual tasks in planning a complex
computer program: the organization of the program Itself, and the
choice of the best organization and representation for the data. By
data we mean ail the numbers (in particular, variables) stored in the
machine's memory which are not themselves part of the program (I.e.,
are not executed) but are operated upon by the program. Later we
will discuss program structures, and will point out that the best way
to organize a complex program is (almost) always as a hierarchy of
subroutines. In this chapter we will consider ways of structuring
and accessing the data in the computer.

ALGOL is designed for describing and programming complex calcu­
lations on relatively simple data structures: arrays of subscripted
variables. The idea of a subscripted variable is, of course, lifted
directly from mathematical notation. Thus, in mathematics we often
denote an entire set of related variables V,, V,,..., V„ by a common
name (e.g., "V") and use a subscript (e.g-.S", or "i"? to pick out
a particular variable from the set. Such a set of n variables, dis­
tinguished by a single subscript, can be referred to as a "vector".

We may attach two subscripts to a set of variables: for example,
a t 1 , where the two independent subscripts may take on values: 1 = 1 ,
2, ... m, and J « 1, 2, ...n. Such a set of m x n variables can be
represented pictorially as a two-dimensional array:

a11 a 1 2 aln
a21 a22 **• a2n

aml Sm2 *"' amn

(A1)

By convention, the first subscript is the row index and the second
subscript is the column index of an element a,,; hence this matrix
has m rows and n columns. J

Finally, mathematics considers sets of quantities with any num­
ber of subscripts. The simplest structure of ail is, of course, a
"simple variable" or "scalar" which has no subscripts.

The subscripted variable of mathematics has been adopted into

programming as an array of variables, called simply an array. Fol­
lowing the idea of the two dimensional picture of a matrix, we can
refer to each subscript of an array as a dimension, so that we can
have arrays of one, two , three or generally any number of dimen­
sions. Paralleling the mathematical data structures: scalar, vec­
tor, and matrix, therefore, we have the program data structures:
simple variable, one-dimensional array, and two-dimensional array,
respectively. We could furthermore call a simple variable "an array
with no dimensions" (i.e., no subscripts).

In ALGOL, the particular subscripts which distinguish a sub­
scripted variable are written after the array name and on the same
line, with the subscripts surrounded by square brackets; thus, the
form* of an ALGOL subscripted variable is:

<array name> [<subscript>, <subscript>, ... , <subscript>] (A2)
A <subscript> can be any arithmetic expression , such as "2", or
"I", or "I + 2", or "A[A[l + l]-3']/2". A subscripted variable from
an array with n dimensions must always have n <subscript>s ; this
is true for all values of n including n = 0, so that the same vari­
able cannot be used both as a' simple variable and as a subscripted
variable.

The number of dimensions in an array must be specified in an
array declaration. The declaration furthermore indicates for each
dimension the upper and lower bounds for the corresponding sub­
script, in the form:

For example, the declaration: "array Q[l :m, 0:n+l]" is short for
the assertion: "Q is a two-dimensional array whose first subscript
runs from 1 to m and whose second subscript runs from 0 to n + 1".
We will use ALGOL declarations in the text of this chapter as an
abbreviated notation for such an assertion about an array name.

We can distinguish three different aspects of the use of data
structures in programming: abstract structure, representation, and
allocation. In this section we have discussed the abstract structure
of array data structures; by "abstract" we mean: independent of the * ̂ ,...

Note: We are using the meta-brackets < and > of BNF here.
For an «••»••»i «• — — - — c—»-•<— '•
Part II
symbol.

For an explanation of their meaning, see Section 4 of
Part II. The three open circles "..."are an ellipsis

manner in which the arrays are represented in the machine's memory
and of the way that the memory space is allocated to the structure.
Section C and D will investigate the representation of arrays in
memory; a complete discussion of allocation of space would require
an understanding of ALGOL block structure.

In Section E we will return to a consideration of abstract data
structures, and introduce some classes of structures which are more
general than arrays. Representation and allocation for these struc­
tures will be discussed also.

The next section contains some simple examples of important
ways of using arrays in programming.

B. Programming With Arrays

Suppose we have a program which must evaluate the factorial
function n! many times in the course of execution. An obvious
approach is to write a procedure (subroutine) to evaluate n! , in
the following manner:

real procedure FACTORIAL (N) ; (Bl)
begin real F; integer I;

* «- 1 ; iojr I <- 1 step 1 until N do F *- F * I;
FACTORIAL «- F

end ;
If this procedure is called many times, however, a great deal of re­
dundant calculation is performed. A more efficient program results
from computing a table of n! once at the beginning of the program
and storing the values in an array: array FACT [0 : m] , in such
a way that FACT[i] = l!. This array of values could be generated by
the algorithm:

FACT [0] <- 1 ; (B2)
for I <- t step 1 until m do

FACT [i] «- I * FACT [i - l];
Once this table is generated, values of n! can be "computed" in the
rest of the program by simply selecting the proper element of the
FACT array.

Consider next the binomial coefficient (n) , defined by
n! for 0 3 T 3 n. The coefficient can be interpreted

rl (n - r)I

either as the number of combinations of n things taken r at a time,
or as the coefficient of the term a r b n ~ r in the binomial expansion
of (a+b) n. If a program needs many values of the binomial coeffi­
cients, it will be most efficient to pre-compute them. They could
be stored in an array: array BINCOF [0:S, 0:Sj. Here BINC0F[n,r] =
(r) > for 0 £ r S n * S. The table of binomial coefficients can be
generated by the algorithm:

for N <- 0 step 1 until S do
for R *- 0 step 1 until N do

B I N C O F [N,R] *-FACT [N]/ (F A C T [R] * FACTOR]) ;
The beginning of the B I N C O F array looks like:

r —>

n
I

1
1 1
1 2 1 BINCOF [n, r]
1 3 3 1
1 4 6 4 1

The binomial coefficients are called "the triangular numbers" since
each entry in this table is the sum of the entry above plus the
entry above and to the left. Thus there is a recurrence relation
among the binomial coefficients:

BINCOF[n,r] = B I N C O F [n-1 , r-l] + B I N C O F[n-l, r] , <B3)

which is exploited by the following more efficient algorithm for
computing the B I N C O F table:

for N « - 0 step 1 until s do
begin

for R «- 1 step 1 until N-1 do (B 4)

B I N C O F [N , R] - B I N C O F [N - I ,R-l] + B I N C O F [N - I , R] ;

B I N C O F [N,0] «- 1 ; B I N C O F [N , N] 1

end ;
Algorithm (B4) performs only a single addition in the inner loop,
instead of the multiplication and division performed by algorithm
(B3). Recurrence relations used in this way often lead to more ef­
ficient programs.

Another general clasB of applications of arrays arises from the

real numbers: for example, performing the operations of arithmetic
on complex numbers or on polynomials.

A complex number must be represented in the computer by a pair
of real numbers: the real and the imaginary parts (or the angle 0

vector of complex numbers Wj, H 2 W , 0 0 0 n t be represented by

array data structure. Some algebraic compiler languages (e.g.,
FORTRAN IV) have complex arithmetic built in so the programmer can
declare variables to be of type complex Instead of real or integer:
for example: complex array WTI:10001. In this case, the compiler
automatically adds the"e^t7a dimension to each data structure which
is declared complex, and produces the machine language instructions
to evaluate both the real and the imaginary parts of each complex
variable which is assigned a value.

If Pn. Pi. P n are n + 1 numbers (called "coefficient") and
X is a dummy variable, then the formula; q

p. + p-X + p,X 2 + ... + p X n = 2 p k X k (B5)
n k=0

is called a "polynomial form" of degree n. If the highest coeffi­
cient p n ? 0, then n is called the exact degree. Elementary mathe-

dents. Polynomial forms are often useful In numerical calculations,
since many functions which are not polynomials can be approximated

o f a r l t ^ c ^ ™ ^ ^ ^

£.irr reLS ir^i:^i%lyj: ĵ LS"̂ .
A numerical answer for any value of X can then be obtained from these
result coefficients simply by "plugging" the value of X into the form.

A polynomial form of degree n would be represented in the com­
puter by a vector containing its n + 1 coefficients; for example,

the arrays:
real array p[0:n] , q[0:m] , r[o:t] .

Suppose that Rfc(X) of degree (but not necessarily exact degree) t
is to be computed as the Bum P (X) + Q m(X); the algorithm would be
as follows:

t <- if m > n then m else n;
for i «- 1 step 1 until t do (B6)

r[i] «- (if i ̂ n then p[i] else 0)
+ (if 1 5 m then q[i] else 0) ;

A polynomial form is best evaluated for a particular value X = C
in the "factored form":
p (C) = (. . . ((p * C + p .) * C + p „) * C + . . .) * C + p ; (B7) r n n n-1 n-2 o
The algorithm Is:

SUM*-p[n] ; <B8)
for I «- n-t step -1 until 0 do SUM «- SUM * C +p [i] ;

C. The Mapping Function

The internal memory of all modern digital computers is organized
into cells each of which will store a numerical value. These cells
are generally referred to In a program by consecutive serial numbers
called addresses. For example, many large scientific computers have
an internal memory of 32,768 cells, with addresses 0,1, 2,...,32767.
The peculiar number "32,768" is a power of 2, because the internal
representation of numbers in these machines is binary (or "base 2").
However, the particular internal number system is irrelevant to our
current discussion of data structures; one needs only to understand
that a memory cell contains some representation of a number.

It is convenient to picture the machine's memory as a vector
of cells; then we can invent a pseudo one-dimensional ALGOL array
MEM:

array MEM [0:32767] (CI)
to symbolize the memory. Thus, the value stored in the cell with
address 1376 can be referred to as MEM[l376j, and we can use
(pseudo-) ALGOL statements to describe the machine's operations
on this cell.

Each machine language command typically contains (1) an
"operation code", such as "ADD", or "MULTIPLY", or "STORE" (coded
numerically), and (2) a single numerical memory address. We could
explain the operation of each operation code in the machine using
ALGOL-like assignment statements and the pseudo memory array MEM.

For example, the machine language instructions
ADD 1376 ; STO 1221 ;

might mean, in pseudo-ALGOL:
AC - AC +MEM[l376] ; MEM[l22l] - AC.

Here the "variable" AC represents the arithmetic register (called the
"Accumulator") of the computer.

An important conclusion from the MEM array analogy is that the
type of data structure intrinsic to the machine is the one-dimensional
array; arrays of two or more dimensions are artificial structures
built up by programming. Consider the subscripted variable
n[i,j,k,l]; for each set of allowable values of its subscripts i,j,k,
and 1, there is a corresponding cell in the computer memory and there­
fore a corresponding element in the MEM array. This correspondence
between the four subscripts and the one-dimensional MEM array is con­
tained in the "mapping function" mapfct (i,j,k,l):

D[i,j,k,l] is stored in MEM[loc]
where: loc = mapfct (i,j,k,l) .

A mapping function is generally involved in any use of an array of
two or more dimensions in a computer program. Wherever a two-dimen­
sional subscripted variable appears in an ALGOL program, for example,
the ALGOL compiler inserts the machine language commands necessary to
evaluate the mapping function into the object program. When the ob­
ject program is executed, this mapping function must be evaluated
each time the subscripted variable is referenced; thus, every refer­
ence to a subscripted variable in an ALGOL program cost some execu­
tion time. It should be emphasized, however, that this execution
time is a cost, but not in general a waste; the time involved is
often a negligible fraction of the entire computation, while the use
of arrays generally pays large dividends in ease of programming and
fewer programming errors. There are situations, however, when sub­
scripted variables are used in the inner-most loop of a program and
evaluation of the mapping functions accounts for most of the execu­
tion time; this is generally true for matrix inversion routines, for
example. In this situation, the computation of mapping functions
can be made more efficient at the cost of additional programming com­
plexity, as will be described later in this section.

The mapping function for an array contains in effect both the
representation of the array structure in memory and the allocation
of memory space to the array. In the simplest and most common situa­
tion in programming, each array is stored in its own block of conti­
guous memory cells; in this case, the mapping function can be a simple

arithmetic formula, as we shall see in the remainder of this section.
When an array does occupy contiguous cells, the allocation of memory
space involves only two numbers: the lowest memory address occupied
by the array, called the "base address", and the total number of
cells occupied by the array. These two quantities are calculated
when the array is declared, by an algorithm which will be discussed
later. For the moment, assume that a suitable allocation process
has assigned base addresses to each array in the program (or, more
accurately in ALGOL, to each array which is currently defined);
the base address thus determined will be symbolized by the pseudo-
ALGOL variable BASE.

Now let us look at the mapping functions for array data struc­
tures occupying contiguous memory space. Suppose that V Is a one-
dlmenslonal array: integer array V [a:m] ; V therefore requires
m -a+1 cells. If vjaj is stored in M E M (B A S E J and if V is stored
in consecutive cells, then v[i] is stored in MEM[BASE + i-a] for
i = a, a+1,..., m. That is, the mapping function for one-dimensional
arrays is simply additive. The sum (BASE - a) can be computed and
stored when the array is declared, so only one addition need be per­
formed when the array is accessed!

Two-dimensional arrays are generally stored in a computer in
order either by row* or by column** because this leads to the
simplest form of the mapping function. For example, consider an
array: array A[l:m, 1 :nj . If A is in order by row, the elements
of A w o u l T b i stored in the order: A[l,l] A[l,nL A[2,lJ , . . . , A[2,n],

... , ACm.l] A[m,nj. Again, assume that A[l ,l] is stored in
M E M [B A S E J and successive elements are stored in consecutive memory
cells; then it is easy to see that:

A[i,j] is stored in MEM[BASE + (i-l)*n + j-l] .
Notice that n is the number of columns in the array. The mapping
function is given by:

mapfct (i,j) = BASE + (i-1)*n + j-l (C2)
The declaration of the array determines the two values: m and
(BASE-n-1), so that evaluation of the mapping function to access
A[i,j] requires one multiplication and two additions.

The mapping function for a two-dimensional array can be applied
to accessing a three-dimensional array. Assume that:

* As in ALGOL-20
** As in FORTRAN on an IBM 7090

array c[l:i. l:m, 1:n] .
This can be pictured as a rectangular solid figure:

m m m n m m n m

Let the first subscript subscript vary most slowly as we move through suc­
cessive addresses; i.e.. first comes cflj.kj for all 1 and k, then
C[2, j,k], etc., until c[l, j,kj. Thus each value of the first sub­
script i of cCiJ.k] fixes a particular (j,k) plane, which is a two-
dimensional array whose mapping function is given by Eq. (C2) . Since
each plane contains m*n elements, the three-dimensional mapping func­
tion can be written:

mapfct (i,j,k) ^ BASE + (i-1) * m*n + (J-l)* n + k-1
This can be factored into the form:

mapfct (i,j,k) = BASE + ((i-1)* m + j-l)* n + k-1 (C3)
This expression illustrates the general rule for construction of a
mapping function for an n-dimensional array in "row-order":

mapfct (i,j,...p,q) BASE + ((...((i-1)* 6 2 + J-l)* (C4)
6 3 + . . .) * 6 n_ 1 + p-D* 6 q + q-1

for an array: array gFi :6 1. 1:6,,,..., 1:6J

In all these mapping functions, we have used 1 as the lower
bound for all subscripts. The lower bound could be any number, chang­
ing the mapping function in an obvious way. In the general case, ing the mapping function in
suppose:

array H[X }: jij , \2:\x2 , Xn:u,n]

so that the lower bounds are Xj,... X n and the upper bounds are
111',... p,n. Then the "dimensions" 6,,..., 6 n are given by:

61 = " *1 +]» 6 2 = ^2 " X 2
 + 6n = ^n " X n

and the mapping function is:

+ 1 (C5)

mapfct (i,,j,...,p,q) = BASE + ((...((i - X,) * 6 2 + J - Xg) * (C6)
6 3 + . . .) * 6 n _ 1 + P - X n . 1) * 6 n + q - X „ .

This formula can be rewritten as:
mapfct (i,J,...,p,q> = BASE + ((...(i*«2 + j) * 63 + . . .) * (C7)

6n-i + p) •* •„ + q + c

where
C = ((...((-Xj)* 6 2 - X 2) * 63 + . . .) * 6 n l - X n _]) * 6 n - X n .

Since C depends only on X and 6, the quantity (BASE + C) need be
evaluated only once when the array is declared. Then evaluation
of (C6) requires (n-1) multiplications and n additions.

More complicated mapping functions are possible, and sometimes
useful,where the added execution time to evaluate them is more than
compensated by the saving in memory space. For example, it sometimes
happens (e.g. the BINCOF array in section B) that we don't need all
the elements A[i,jJ of a matrix, but need only those on or below the
diagonal; that is, we need the elements which satisfy the relation:
O i j s B a . This can be pictured as the unshaded area in:

and is called the lower triangle of the matrix. We might wish each
row of the matrix in memory to be one element longer than the pre­
ceding row so as not to waste any memory space. Thus, successive
memory cells would contain the n (n + 1) elements:

2

H21' a22«
fl31> a32' a33*

a n r an2' ^ 3 ann
The mapping function for array A[l :m, 1 :n] would be given by:

mapfct (i,j) « BASE + - i L L z - H + j - 1 ; (C8)
(see Section 6.7 in McCracken's text). Such a mapping function is
not built into the ALGOL translator (although it could be if there
were sufficient need for it); therefore, to use it the programmer
must write the mapping expression explicitly himself. For example,

he could declare an array l.[l : n ^ n
2

+])] (i.e., a vector) instead of
the array A; whenever he wanted A[i,j] in his program he would use:

L[(i* (i-l))/2 + j] .

We have seen that the mapping function for an n-dlmensional
array stored in consecutive memory cells requires n-1 multiplications.
On most machines, unfortunately, multiplication is relatively costly
in time. To speed the evaluation of mapping functions, some compiler
aysterns* use subsidiary data structures called access tables, which
are the subject of Section D. We will find that access tables not
only save multiplications, but are in fact much more flexible than
the simple arithmetic functions such as Eq. (C 4) ; they will give us
a convenient representation for more general abstract structures, and
will allow us to relax somewhat the requirement of strictly contiguous
memory space for an entire array.

Before we consider access tables, however, we should observe
that there is another approach to program efficiency in the evalua­
tion of array mapping functions: partial pre-evaluation. This is
nothing more than an application of the simple principle of effi­
ciency that any part of a calculation that doesn't change within a
loop should be performed once, outside the loop. Suppose that the
variable A[i,j] is to be accessed within an inner-most loop of a
program and that this loop is stepping through values of j with i
fixed; then the quantity: BASE + (i - 1) * n - 1 could be evaluated
outside the loop, and the single addition of j would complete the
evaluation inside the loop.

For example, we could apply this technique explicitly to make
the binomial coefficient program (B4) more efficient. Each time
the binomial recurrence relation there is evaluated, there are three
multiplications to be performed, hidden in the mapping function of
the two-dimensional BINCOF array. If algorithm (B4) is executed
many times so that utmost efficiency is important, the programmer
can save these multiplications by explicit pre-evaluation of the
mapping function. Thus, the programmer could define a one-dimensional
array:

* For example, the ALGOL-20 compiler at Carnegie Tech.

array B C 1 D [O : (s+l)2-l], where BINCOF[n,r] corresponds
to B C 1 D [(s+1)*n + r]. The algorithm would then become:

C I <- (s+1) + 1 ; C 2 (s+1) ;

for n *- 0 step 1 until s do (C 9)

begin p <- n*(s+l);
for r «- 0 step 1 until n do

begin S U B S <- p + r;
B C I D [S U B S] < - B C I D [S U B S - C I] + B C I D [S U B S - C 2]

end ;
end ;

Notice that: (1) the constants C I and C 2 are computed only once, and
(2) the single multiplication n*(s+l) in the mapping function is in­
dependent of r and has therefore been moved out of the inner-most loop.

In making this change, the programmer has gained efficiency but
has given up the simplicity and clarity of the matrix notation; he is
liable to have more trouble debugging an algorithm like (C 9) then one
like (B 4) . Fortunately, some compilers automatically check for in­
variant calculations and move them outside inner loops, and would com¬

-1_ J A. _J_ 1 _1_ 1 J 1.1 ZOO\ — 4-1 pile an object program which uses the algorithm (C 9) , given the source
program (B 4) . Using one of these optimizing compilers, a programmer
can have an efficient program without giving up the simplicity of the
general array notation. There is an associated cost, of course; an
optimizing compiler must make a complex analysis of the source pro­
gram to determine which parts of the calculation are invariant, and
therefore such a compiler will be significantly slower than a com­
piler which performs no optimization but simply produces an object
program which re-evaluates the complete mapping function for each
array access.

An optimizing compiler will generally perform another type of
optimization of mapping function evaluation to take advantage of
machine registers called "index registers". We will not discuss this
further, except to note that this use of index registers is an appli­
cation of the general array mapping function, Eq. (C 4) .

D . Access Tables

To introduce access tables, we will again consider two-dimensional
arrays in contiguous storage space. We found earlier that the function
for array A[l :m. 1:n] was given by the rule:

A[i,j] is stored in MEM[BASE^.+ (i - 1) * n + j - 1] .

Suppose we declare an auxiliary array: array Al[l:m], and fill it
with pre-computed values of (BASEA + (i - l F r - 1 .

A1[i] = BASE A + (i - 1) * n -1 for i = 1 , 2 , ..., m (Dl)
The A[I,j] is stored in MEM[MEM[(BASE.^ - 1) +i] +j] so the array
mapping function (C 2) can be evaluatedby:

mapfct (1 , j) = MEM[(BASE A 1 - 1) + i] + j, (D 2)

which requires no multiplications. The Al array is called an access
table, or access vector; it contains one word for each row of the
matrix A. _

Consider next a three-dimensional array: array B M : I, 1:m, 1:n].
Applying the access table idea, we can create a two-dimensional access
table array BlM:JL. 1:m], and fill it with pre-computed values: (D 3)

Bl[i,j] = BASE, + ((i - 1) * m + j-1)*n, for i = 1,... piand
B 4 1

j = i,... ,m .
But Bl is itself a two-dimensional array whose mapping function can
be evaluated with the aid of an access vector array B 2 [1 : /] , where

B2[i] a BASE B 1 + (i - 1) * m - 1 , for 1 » 1 X . (D 4)

Putting all these together, we get a mapping function for B[I,j,k]
which requires no multiplications:

mapfct (l,j,k) = MEM[MEM[(BASEB2 - 1) +i] +j] + k (D 5)

Clearly the same principle can be applied to accessing arrays with
any number of dimensions. An n-dimensional array requires n -1 access
tables with

t v (fijXOg), (6 1x6 26 3),...,(5 1x6 2x^x...x6 n_ 1) (D 6)

elements, respectively; the sum of these terms gives the total memory
space required by the access tables.

Notice that the use of access tables saves execution time, but
the tables require their own memory space. Thus, the decision to use
access tables for subscripted variables involves a trade-off which is
frequently possible in programming: execution time vs. memory space.
In general/however, the cost in memory space for an access tlble is
small. A square n x n matrix and its access table require. n(n+l)
ceU., and »* < „(•*!) < OH-l)* . Thu., aufficient Spac. for an accsaa
vector can always be obtained merely by reducing the maximum size of a

square matrix by one. A similar argument applies to arrays with more
dimensions - the space for access tables at worst reduces the possible
range of each subscript position by one (assuming that the array is
approximately NxNx...xN). The situation is somewhat different if one
or more subscripts have a much larger range than the others. For
example, the access vector for array CP:2, 1:1000] requires 2 extra
cells, while the access vector for arra^ C[1:1000, 1:2], with the rows
and columns interchanged, requires 1000 extra cells. Therefore, if
one is short of memory space for data and has such a "long, thin"
array, it is best to use the "thin" dimension in the first subscript
position.

It is important to realize that an ALGOL system* which uses
access tables for array mapping functions does so completely auto­
matically; the user need consider these implicit access tables only
if he needs to account for the memory space they use. when an
n-dimensional array is declared, the system automatically declares
the corresponding n-1 access tables and generates the proper inte­
gers in these tables. This task will be performed by a run-time
subroutine which we will call "RAD" for Run-time Array Declarations;
on the next page there is a pseudo-ALGOL version of RAD. When an
array declaration contains a list of M identifiers with one common
set of bounds:
<identifier1>, ... <identifier^> [< lower bound] > : < upper bomw^ >,

...,<lower bound^ : <upper bound^]

then RAD creates only one set of access tables conmon to all M arrays.
The first array, identifier >, in the set is accessed the normal way;
any other array In the set is accessed by evaluating the common
mapping function (giving the mapping for identifier^ and then adding
an origin shift or "offset" term to get the final memory address in
the desired array.

One of the functions of RAD is to reserve (or "allocate") memory
cells for the access tables and arrays; the function of LEVEL and
AVAIL In this allocation process can be fully explained only when
ALGOL block structure has been covered.**

* (e.g. The ALGOL-20 system at Carnegie Tech).

** See, for example:
Sattley, K., "Allocation of Storage for Arrays in ALGOL 60",
Comm. Assoc. Comp. Machinery, 4 (January 1961), pp. 60-64.

Comment ALGOL-20 Run-Time Array Declaration Routine, in pseudo-ALGOL;
begin

array MEM[0:32767], AVAIL[l ,64] ; integer LEVEL;
comment MEM is pseudo-array representing G-20 memory,

A V A I L [L E V E L] IS first available location in array
storage in current block;

procedure RAD (DBLPREC, M, N, X , u., DOPE) ;
Boolean DBLPREC; integer M, N ;
integer array X . JJ,, DOPE ;

comment
DBLPREC = true if array is of type real, false

otherwise,
M = Number of arrays declared together,
N = Number of dimensions,
x[l:N] = Vector of lower bounds,
u.[l IN] = Vector of upper bounds,
DOFE[l:M, 1:4] = Set of M 4-element "dope vectors",

to be computed;
begin

integer array 6. S I Z E [1 :N] ;

integer BASE, I, J, K, PROD, SPACE, VO ;
PROD <- 1; SPACE *- 0 ;
forK<-l step 1 until N do

begin
«M *-nM - X [K] + 1 ;
S I Z E [K] <-PROD - P R O D * 6 [K] ;

if K < N then SPACE - SPACE + PROD
end ;

comment Now SPACE is total memory space required
for all of the N-1 access tables;

If DBLPREC then

r

begin
S I Z E [N] .-2 * S I Z E [N] ;

6[N] - 2 * 6[N] ; \ [N] - 2 * X&O
end adjustment for double precision;

SPACE - SPACE + M * S I Z E [N] ;

comment SPACE is now the total number of
memory cells for M arrays and their
Access Tables;

A V A I L [L E V E L] - A V A I L [L E V E L] - SPACE ;
VO - BASE - AVAIL [LEVEL] + 1 ;

comment VO = the address of the first cell of
Access Table ;

comment Now build up the N-1 access tables;
for K - 1 step 1 until N-1 do

begin
comment Access Table K has its first

entry in M E M [B A S E] ;

MEM[BASE] - BASE + S I Z E [K] - X & C + l] ;
for I - 1 step 1 until S I Z E [K] - 1 do

MEM[l + BASE] - MEM[l + BASE - l]
i 6 [K + l] ;

BASE - BASE + S I Z E [K]

end generation of Access Table K ;
comment Now set Dope Vectors ;

for J - 1 step 1 until M do
begin

D0PE[J,1] - V O - X[l] ;
comment This is origin address for

the mapping function;
D0PE[J,2] - (J-l) * SIZE[N] ;

comment This is final "offset" for
the Jth a r r a y .

t

D0PE[J,3] <-BASE + D0PE[J,2] - 1 ;
comment This is a lower limit of.

array, for bound check;
D0PE[J,4] <-D0PE[J,3] + SIZE[N] ;

comment This is upper limit of
array, for bound check;

end
end RAD;

comment s:

1. Example: The declaration: integer array A,B,C,[1:10, -6:8]
compiles a call of RAD of the form:
RAD(faise, 3, 2, \, p,, DOPE)

where:
X[1] = 1, X[2] = -6
H[U = 10, u[2] = 8.

If AVAIL[LEVEL] = 20,000 before RAD is called, the result
will be to compute the 3 DOPE vectors:

DOPE[l,...] = 19540, 0, 19550, 19700.
DOPE[2,...] = 19540, 150, 19700, 19850.
D0PE[3,...] - 19540, 300, 19850, 20000.

2. General Mapping for L array out of set of M array identifiers
declared together:

f mapfct(£ 1, e i ej- MEM[MEM[.MEM[MEM[DOPE

P + ^ n . t] + (if DBLPREC
then 2 * (£ n) else g^)

+ D0PE[L,2];
end of pseudo-ALGOL RAD Explanation

We have described the manner in which some ALGOL systems use
access tables for the efficient evaluation of the normal subscript
mapping functions, Eq. (C4). The programmer who needs a more complex
or more general mapping function than Eq. (C4) can often achieve con­
siderably greater efficiency and simplicity in his program by using

access tables which he has explicitly created for his purpose. If he
is writing his program directly in a machine-language representation
(that is, in "assembly" language), he can create and use access tables
directly In the MEM "array", as we have been describing. If he is
writing in ALGOL, however, he will need to declare one-dimensional
ALGOL arrays for his data array and access tables; as we have seen, a
one-dimensional array is related to the MEM array by a very simple
additive mapping function: essentially, the BASE address is added to
the subscript.

For example, refer again to the lower triangular array considered
on page 44. Suppose we declare a vector Q which will contain the in­
formation which would have been In the A matrix, and also an access
vector AT:

array Q[1 : (N * (N + l)/2)]; integer array AT[1:N];
At the beginning of execution we will execute a loop to fill AT with
suitable values:

AT[1] «-0; _for I «-2 step 1 until N do A T [1] - (D7)
I + AT[I-1] - 1;

Then: AT[i] = -JShll , for i = 1,2,...,N. Wherever A[I,J] would
have appeared in tKe program, we use the access table AT explicitly,
in the form:

Q [AT [I] + J]. (D8)
As another example of the general use of access tables, suppose

we interchange two single entries say, Al[i] and Al[j], in the access
table A1 of Eq. (Dl). A little thought will show that the effect is
to interchange the i t h row with the j t h row, without physically moving
any of the data words in the matrix A. Thus, we have an efficient way
of interchanging entire rows of a matrix at once, which is an import­
ant problem in programming. For example, several good algorithms for
solving large sets of simultaneous linear equations require inter­
changing entire rows of the matrix of coefficients to prevent excessive
round-off error. Another example is provided by data processing tasks
which require sorting n items, each consisting of m words. Each multi­
word item can conveniently be represented as a single row of an
m-column arrav DATAN-n 1-ml Sortine these m-word items mav reciuire
interchanging pairs of items - but since each item is an entire row
of m words, this can be costly in time. Instead, we set up an access
vector, each element of which "points "to" the beginning of
sponding item in memory 5 then the items can be sorted by reordering
only the pointer words in the access vector.

Access tables can provide considerable flexibility in allocation
of space in the computer memory. The mapping functions for multi-

r
r

r

r

r

r

r

r

r

r

r

r

r

dimensional arrays discussed in Section C assumed that
f 8 t o r e d i n "row-order" in one contiguous block of memory cells The

idea of interchanging rows of a matrix by interchanging access vec­
tor elements suggests that if access tables are used the rows could

r be in arbitrary order and could be placed anywhere in mem^rv Each
) complete row must, of course, still c o S ™ . * TtorlTe assigned

to it. n it is even possible that some or all of the rows of a matrix
may not have any core storage allocated to them at all - these rows
may be on a magnetic tape or magnetic disc file. Many real-life pro-n blems require a great deal more data storage than is available in the
machine's high-speed memory. When a program requires a matrix which
is too large to fit entirely into high-speed memory, one solution is
to allocate high-speed memory space only for one or a few rows which
are currently being used. The elements of the access vector corre­
sponding to the rows currently in memory would, of course, ooint to
these rows; all the other access vector elements, corresponding to
rows currently on a magnetic tape (for example) would contain an
"interrupt flag". WheS the ALGOL program attempted to access a row
Which was not in memory, the machine's circuitry would detect the in­
terrupt flag on the access vector element and automatically take
special action; the result would be to interrupt the program in pro¬
gress long enough to execute an administrative program which would
read the missing row into high—speed memory, allocate space to it
(writing another row out, if necessary, to make room), adjust the
access vector to reflect the new state of affairs, and then finally
return to the suspended program and complete the array access.

E. Jagged Arrays, Trees, and Lists

In Sections C and D we considered the memory representation of
arrays of subscripted variables which have a very simple abstract
structure; we will now discuss some more complex and general abstract
data structures.

We will begin by generalizing array structure in a very simple
way we will allow each row of a matrix to have a different length,
each plane of a three-dimensional array to have a different number
of rows etc. This generalization is easy to implement if access
tables are used for the mapping function; with suitable changes in
the contents of the access tables, the mapping functions of Eq. (D2)
and Ec (D5) will work perfectly for these arrays with "jagged edges"
To see * this, it is helpful to think of the mapping function (D5) in
terms of the following picture:

There is no way to declare a jagged array in ALGOL-60 --we would need
for clauses within the array declarations, in some form such as:

integer array TEXTFfor S - 1 step 1 until NSENT do (S,
for W - 1 .step 1 until NW[S] do (W, 1 :NL[W,S]))]; (E3)

On the other hand, the programmer can explicitly build his own access
tables for TEXT in a manner analogous to the lower triangle mapping
function of Eq. (D8).

Access tables lead naturally to a much more significant change in
abstract structure than a jagged array. The accessing operation, shown
pictorially in (El) for the case of a three-dimensional array, generally
goes through n-1 levels of access tables for an n-dimensional array.
Suppose that for some values of the subscripts we cut short the access­
ing process at fewer than n levels, so that the element of an access
table at which we terminate contains the data value we want, rather
than a pointer to the next level of accessing. Thus, we remove the
rigid distinction between an access table and the final data array;
an access table will now contain a mixture of data words, and pointers
to deeper levels of subscripting. Such a structure is called a tree.

We have just described the memory representation of a tree, before
giving it abstract structure. To describe Its abstract structure, we
need a new notation. Consider first the simple array structure
array AH:2, 1:3]; its abstract structure could be described by listing
all its elements and using parentheses to group the elements of a row
(or in the general case, the rows of a plane, the planes of a..., etc.),
as follows:

(a n , a 1 2 , a ^) , (a 2 1, a ^ , a ^) . (E4)

In this representation, each left parenthesis corresponds to one level
of addressing, i.e., following a pointer from one access table to

c. In the case of simple ALGOL array structures a
with n dimensions, each data element a** will lie

another. In the case of simple AICOL array structure, and s^ple Jagged
arrays with n dimensions, each data element a±, will lie within n-1
pairs of parentheses. The generalization to tree structures simply re-

we moves this restriction on the number of parentheses. For example,
could have the following abstract tree structure F: (E5)

(F 1 T F12' F 1 3 } * F 2 ' (< F311» F312' F313>' F32'< F331• F332' F333))'
The reason this is called a tree is that it can conveniently be visu­
alized as the following tree-like structure:

F311 F312 F313 F331 F332 F333

(E6)

data array F

access matrix/
data matrix

access vector/data vector

Here the square nodes signify data words, while the dots signify
pointers to the next level of accessing. The method of accessing
this tree structure can be shown in a picture analogous to (El).

(E7)

F F
r 12

F
*13

F *2

r"*
F32

"Data Array"

F

We can define the abstract structure of a tree in the following
way: a tree is a list (or vector) of terms, each of which may be
either an elementary data value or else another tree.

Finally we will give a particular example of the tree structure
of (E5) and (E6) , a representation of the ALGOL arithmetic expression:

A * B + (C + D) * 2IA (E8)
Applying the precedence rules, we find that both the sum (C+D) and the
power 2TA must be evaluated before the product (C-H))*2tA, and both pro­
ducts must be performed before the final sum. This structure is repre­
sented in a natural manner by the following tree, which has an abstract
structure identical to (E6).

(E9)

"Growing from" each dotted node are an operator and two operand
branches; the operation at this node can be performed only after all

whTtni s=
"Expression", the entire expression has been evaluated. The represen­
tation of this expression in memory looks as follows:

(E 1 0)

Tree structures are fundamental to many complex information pro­
cessing problems including, forexample, language translation, mechani-

r e s u ^ I ^
becomes the central problem. The usual solution to the allocation pro­
blem employs "binary branching" tree structures which have exactly two
branches growing from each node; it can be seen that this makes every
"access table" exactly two words long. The resulting representation is
called a list; there are several list processing languages, including
IPL and LISP, which use this list structure exclusively.

Exercise on Data Structures

Exercise 1:

A physicist wrote an ALGOL program to compute a 7 x 13 array
numbers C T„ where:

0 S 1 5 6
-6 5 M 5 +6

Furthermore, the C^'s were always zero unless M satisfied

of

-L 5 M = L,
so he stored the 49 non-zero C L M ' S compactly in elements Q[1] , . . . , Q[49]
of a one-dimensional array Q. The Cm's were mapped into Q in the
order:

C00' C1-1» C10' C11> C2-2* C2-r C20> C21> C22> — > C66 •
with Q[l] = C 0 () and Q[49] = C 6 F I .

To evaluate the mapping function, he defined his own access vector
INDEX[0:6] and stored C m in Q[INDEX[L] + M] . What values were needed
in INDEX?

Exercise 2:

Assume that A is an N x N array such that A[i,j] = 0 when
|i-Jl > K; such an array is called (2K + 1) - diagonal. The N + 2NK -

Q ^ d ^ s " ^ determine
the values which must be in the access vector AT.

Exercise 3:

Assume that you have been given a tree structure, represented by
mixed access table/data arrays as described in Section E above, in an
integer array TREE[1:500] (analogous to the MEM array). A particular
wordTREE[ircontains the following:

if TREE[I] * 0 then TREE[I] = a data value;
if TREE[I] < 0 then -TREE[I] = an access pointer - i.e.,

TREE[-TREE[I] + 1] is the first word of the access/data table
for the next access level.

Assume that subscripts always run from 1 U P . so that
J - „ ^ J 1 1 „ I.!.. „ J J 1 C - ~ J J „f Til.

an access pointer
i • — it is actually the address one before the address at which it "points".

For example, the F array, (E7) in the notes, might appear in TREE as
follows:
I = -> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TREE[I] -3 F2 -6 F11 F12 F13 -9 F32 -12 F311 F312 F313 F331 F332 F333

where the F's represent data values (which must be positive integers).

Consider an element of the F array with L subscripts having the
particular values 6 ^ 6 2 , ... , e L; this element would be stored in
TREE[m], where:

m = -TREE [... -TREE[-TREE[e..] + e 2]] + e .

Here L, the number of subscripts used, is called the level of accessing
for m. It is useful to compute m by the above access formula for
values of L less than the level of the corresponding data term; the
result would be a (negative) pointer to the next access level. On the
other hand, it is meaningless to evaluate m for L greater than the
level of the data term.

You are to write a declaration for an ALGOL procedure TREE.MAP
which, given subscript values e i , e 2 e L and a value for the
level L, evaluates the mapping formula above for m. The result for
m is to be the value of the integer function designator TREE.MAP.

Assume:

where:
integer procedure TREEMAP (TREE, E, L) ;

TREE = integer array containing tree being accessed,
E = integer array containing subscript values:

E[1] = e , E[2] = e , etc.

* • »

L integer simple variable, called by name
If a data term (i.e., a non-negative value in TREE...) is encountered
at a level lower than the value of L when TREE.MAP is called, then
TREE.MAP should change the given value of L to the level of the data
term and TREE.MAP should have as value the m for the new L (i.e.,
TREE[m] should be the data term).

Notice that L is used both as an input and as an output parameter.
Since TREE.MAP is a function designator, it is used as an operand in an

p a ^ a m e ^ ^ u b s ^
procedure call.

Exercise 4:

structure of a tree is
f sym-

turn can

A good example of data having the abstract
provided by ALGOL arithmetic expressions, considered as strings o
bols. Each operator has one or two operands, each of which in tu
by any arbitrary arithmetic expression; this hierarchical structure is
typical of a tree, each branch of which can be the "trunk" of an entire
subtree. The tree representation of a symbolic arithmetic expression
shows each complete operand of each operator, without any parentheses;
therefore, the tree form is called "parentheses-free" (although a tree
is not the only parentheses-free form for an arithmetic expression).

A *(B + A t2/B) has the tree representa-

tree
only parenthe

For example, the expression
tion:

G3311 G3312 G3313 Level

< 4

«—3

<-0

This diagram also shows the data terms labeled as subscripted vari­
ables.

a sym-
as a

In this problem, you are given a tree representation of i
bolic arithmetic expression in an integer array TREE, as well
real array VAL which contains a specific v " a T u e f o r each variable
appearing in the expression. You are to write a program which
evaluates the given expression, using the given set of values. The
tree is represented in TREE in the form discussed in Exercise 3.
The positive integer data values are coded as follows to represent
variables and operators:

A value K in TREE[I], where K > 0 , represents:
1 £ K £ 100: a variable or constant whose value is stored

in VAL[K];
K = 101:
K = 102:
K = 103:
K = 104:
K = 105:

operator (binary) +
operator (binary) -
operator *
operator /
operator t

Tree[l] will be the "trunk" of the expression tree,
expression A *(B +At2/B) might look as follows

1 2 3 4 5 6 7 8 9

For example, the

10 1 1 12 13

if VAL[1] = A, VAL[2] = B, and VAL[3] = 2.

We suggest the following algorithm for evaluating the expression.
Use the TREE.MAP procedure written in Exercise 3 to step through all
data terms of the tree in order, as If one were stepping through all
elements of an array. TREE.MAP tells the level of each term, indicat­
ing which subscript to step next. When values are known both operands
of a particular operator - i.e., both operands are variables or have
been evaluated previously - perform the operation. Then place the new
value in an unused cell in the VAL array, and insert a new variable
corresponding to this element of VAL into TREE, replacing the access
pointer which was the root of the subtree you nave now evaluated.

- • +

Example:

The expression A *(B + At 2/B) used
following steps:

""acce.se?""

earlier would be evaluated in
the

1 .
2.
3.
4.
5.
6.
7.

8.
9.
10.

11.
12.
13.

14.
15.
16.

Gl
6

G

G :
G

6

2
331
•32
S3311
S3312
G3313

G331
G332
G333

1
^3 2
G33

}i i
G 2
G 3

Value Action
(A) none
* none
(B) none
+ none
(A) none
t none
2 Evaluate T. =

and make
none

/ none
(B) Evaluate T„ =

VAL, and mike
<B) none
+ none
<T 2) Evaluate T, =

VAL, and make
(A) none
* none
(T 3) Evaluate A*T 3

B + Winter to it. into

Exercise 5:

Write an ALGOL program which, given a value K and the tree repre­
sentation of an arithmetic expression (as in Exercise 3), determines
whether the expression is an even function, an odd function, or
neither, of the variable X* whose value is stored in VAL[K]. Treat
all other variables as constants whose values are given in the VAL
array.

a

4- I

Note: a function f(X) is:
an even function if f(-X) - f(X),
an odd function if f(-X) « -f(X).

We suggest an algorithm very similar to that used in Exercise 4.
Using an array parallel to TREE, put a three-valued flag at each node
of the expression to Indicate whether the complete sub-expression
sprouting from that node is even, odd, or neither. Sequence through
the nodes just as in Exercise 4.

Exercise 6:

Write a program which, given K and the tree representation of an
expression, produces a new tree which is the partial derivative of the
given expression with respect to the variable Xg stored in VAL[K].
Thus:

VAL[K] 1 ;

Assume that at every node containing an t
expressions a and B —

VAL[I] = 0 for all I ̂ K.

operator between sub-

t h e e x p o n e n t e x p r e s s i o n 8 w i l l n o t d e p e n d u p o n % : h e n c e t h e d e r i v a ­

t i v e o f t h i s n o d e w i l l b e t h e t r e e : [T)]

w h e r e V i s t h e d e r i v a t i v e o f t h e s u b t r e e or

Do not try to simplify the resulting tree by combining constants
or eliminating products with 1, sums with 0, etc. For example, if the
tree shown in Exercise 4 for the expression A *(B + A 2/B) is differen­
tiated with respect to A (i.e., K = 1), the result should be:

Exercise 7:

entiation
Write a program which, given K and a tree produced by the difffer-
tion program of Exercise 6, simplifies it by applying the follow-

ing algebraic rules:
(1) 0 * A = o, A 0 = 0
(2) 1 * A = A, A * 1 = A
(3) 0 + A = A, A + 0 = A
(4) A t 1 = A
(5) A t 0 = 1

i I

Also, evaluate numerically the power expression at each t node,
using values in the VAL array. For example, simplifying the tree
shown in Exercise 6 would yield the following tree expression:

3. PROCEDURES AND SUBROUTINES

A. Subroutine Linkage

You may recall from Section 2
k _ „ „ u„ ..„„., »„ - ilng}"

any

on flow charts that
chart may be used as a single computation box in another "higher level'
flow chart; conversely, any computation box may contain a '
primitive) sub-process which is defined by an entire lower

entire flow
higher
(non-
level sub-

represented
•proce

flow chart. Thus, a complicated computing process can _
at all levels of detail by a whole series of flow charts, sub-flow
charts, etc. As an example, suppose we have defined the summation
process:

N Y <- E
K=l

A[K]

by the flow chart:

10:
I

Y «- 0
K <- 1

(3

(Al)

K S N

Y *-Y + a [K]
K «-K + 1 6

This identical process, although defined only once, can be "used"
(i.e., executed) in any number of places in a higher level flow c]

Is in the example: 1.

2:

3:

A:

5:

1

"IT

Y ^ S A[R]

chart,

T T "
2 A[K]
1

Icti

Boxes 1, 3, and 5 in this example contain other computing processes,
which could be themselves entire complex flow charts; since the parti,
cular processes are Irrelevant, we have simply left these boxes empty.

This notation allows the same subprocess to be executed at several
points in the overall flow chart (A2) while the detailed flow chart
(Al) which actually defines the subprocess need be drawn only once.
Thus, the subprocess notation can save writing and simplify the form
of a flow chart.

When we discussed primitive flow charts, we gave explicit (and
simple) rules for their execution. The basic idea was contained in
the "fetch/execute" cycle, which required the determination of a suc­
cessor to each box executed. This successor is quite obvious in a
primitive flowchart: one merely follows the unique arrow leaving
each box. However, if we examine the explicit successor rules implied
by the example flowchart (A2) above, we find that a new kind of suc-

cessor relation has been introduced. Both box 1 and box 3, which pre­
cede executions of the sub-flowchart (Al), clearly have the sub-flow
chart itself (that is, the first box of the sub-flow chart) as their
successors; however, the sub-flow chart does not have a fixed successor.
We can think of X in the exit symbol as a variable whose value Is the
(numerical) label of the successor box. Executing the sub-process as
a single box of the main flowchart Involves two steps:

0)
(2)

Setting the "exit variable" X equal to the label of the next
box in order In the main flowchart (A2);
Executing a go to box, so that the first box of the sub-flow
chart (Al) will be executed next. When execution of the sub-
flowchart has finished, (x)" returns to
execute the next box in (A2) after the place which jumped
off to the sub-flowchart. Thus, if the successor relation
is made explicit, then the flow chart (A2) would become:

1 :

f
X t- 3

"5
3:

X <- 5

5:
A part of a program which corresi

is called a subroutine. In general, a subroutine is;
sponds to the sub-flowchart
a niirvrr.ii1~.Ti.?. - I s .

(Al)

a segment of program which, once defined, can be executed
as a single "statement" or instruction from any place in
a "master" program.

The master program may in turn be a subroutine for an even higher
level program, etc; subroutines, therefore, introduce into program­
ming a hierarchy of levels of command corresponding to the levels of
detail of flowcharts. No matter how complex Its definition, a sub­
routine is executed as a single statement; thus, the subroutine de­
finition effectively creates a new elementary or "primitive" process
for the master program.

Like the sub-flow chart discussed earlier, the subroutine has a

http://niirvrr.ii1~.Ti

s exe-variable successor which must be set each time the subroutine i
cuted. A subroutine is executed, or "called", by the main program
using the same two-step process used to execute a sub-flowchart:

(1) Set the exit "label" (actually, the next memory address of
the main program);

(2) Execute a "go to" which transfers control to the first in­
struction of the subroutine.

This two-step process is frequently called a 'subroutine jump". At
the completion of execution of each subroutine a 'Variable go to" is
executed, returning control to the first instruction in the main pro­
gram past the point from which the subroutine Jump was performed.

The programming mechanism which realizes the subroutine jump and
the subsequent return to the next instruction in the master program
is called "subroutine linkage". The subroutine linkage is so important
that most computers include in their set of primitive operations a
"subroutine jump" command which sets the "exit label" (the address of
the next instruction in memory) and also transfers control to the sub­
routine .

Notice that the master routine and the subroutine need only agree
upon the "name" (that is, memory address) of the variable X which holds
the exit label, and upon the first location of the subroutine itself.
Except for these agreements, the subroutine is Independent of its
master program.

We can now cite two important advantages of subroutines for pro­
gramming:

(1) Subroutines save repetitive writing of identical program
segments.

(2) Subroutines provide a natural way of dividing a complex pro-

B. Procedures: ALGOL Subroutines

size their performance of Independent tasks. The structure of ALGOL
procedures Is very general and powerful, and is one of the most sig­
nificant features of the ALGOL language. We will now concentrate
upon ALGOL procedures; bear in mind, however, that most of the prin­
ciples of procedures are applicable to the subroutines of other pro­
gramming languages.

Each procedure has a name, which has the form of an identifier.
Like most other kinds of ALGOL identifiers, a procedure identifier
must appear in a declaration ~ a procedure declaration ~ at the
beginning of the program. A procedure declaration does more than in­
dicate that the name is a procedure identifier,however: the declara­
tion also gives the definition of the procedure. Thus, the declara­
tion contains a "body" of one or more statements which will be executed
when the procedure is called. It is important to understand that the
statements within the body of the procedure declaration are executed
only when the procedure is called, not when it is declared. Corre­
sponding to each procedure declared in a program, the ALGOL compiler
assigns a memory cell to contain the variable exit address X. Each
call for the procedure is translated into machine language as a sub­
routine jump instruction.

used:
There are two distinct ways in which an ALGOL procedure can be

(1) To execute a complete computational process - i.e., as a
single flow chart box; or

(2) To define a value - i.e., to be used as an operand in an
arithmetic expression

A procedure ocedure which performs a complete process is executed as a state­
ment, called a "procedure call statement". The execution of a
cedure call statement means simply a subroutine jump to the procedure
declaration. Following execution of the body of the declaration, con­
trol returns to execute the next statement after the call statement.

DOSUM
For example, here is part of an ALGOL program using a procedure
: which performs the algorithm of flow chart (Al):
begin

heading}

procedure
declaration

>

real Y; Integer K, P;
real array A[1:100] ;
procedure DOSUM ;

begin
Y *- 0 ;
for K <- 1 step 1 until N do

Y «- Y + A[K] ;
end DOSUM ;

r
procedure
call <
statements '

DOSUM ;

If P > 3 then DOSUM else N «- 0 ;

end Procedure Example 1 ;

Here the procedure declaration has the form:
< procedure declaration > < heading > < body > .

The < body > can be any simple statement or compound statement (or,
more accurately, any block). The simplest form of < heading > is:

procedure < procedure identifier > ;
The final end of the procedure body (or the semicolon after the entire
declaration if there is no final end) implies a subroutine return to
the first statement in the master program after the procedure call
statement, which consists simply of the procedure identifier DOSUM.

A procedure which defines a value is called a function, and its
name is a function designator. To make DOSUM into a function desig­
nator, we place the type declarator word real before the word pro­
cedure in the declaration. Somewhere in the body of the procedure,
we assign the desired result to the procedure name DOSUM.

real TEMP ;
real procedure DOSUM ;

begin
TEMP «- 0 ;
for K <- 1 step 1 until N do

TEMP «- TEMP + A[K] ;
DOSUM <- TEMP

end DOSUM ;
This declaration defines a function designator DOSUM which can be
used as an operand in any arithmetic expression. Evaluating the
operand means a call for the procedure; when control subsequently
passes the final end of the procedure body, it returns to continue

evaluation of the arithmetic expression, with the value which has been
assigned to DOSUM being taken as the value of ^ J

, 1 _ t- J C 1-1 i. . example, execution of the statement:
Y «- 3 * DOSUM t 2 + COS(DOSUM)

the operand. For

will cause two separate executions of DOSUM; since the same sum will
be computed twice, this is an inefficient use of function designators.

We have discussed the idea of a subroutine and the simplest kind
of procedures. There are several other important concepts in ALGOL
procedures which we will now mention but not discuss fully. McCracken's

n. 4v -I -tarn t- 4a -J * • N M .A >t J A A .A a-h f M J <M 1 vat n J i 1M 1 A _ KM l a f ._. *a> .« —_ -a. « i i 1 A l-n te text Introduces these ideas on a fairly simple level; for more completi
treatment of procedures, we recommend the tutorial article on ALGOL by
Bottenbruch and the book by Dljkstra listed in the Bibliography, Part V.

The power and usefulness of ALGOL procedures lies in two
they give to a programmer:

abilities

0) An algorithm can be generalized by parametrlzation. Thus,

the particular task is

an

(2)

algorithm can be developed to perform any one of an en
family of related computing tasks; the particular task
selected by the choicl of actual parameters in the procedure
call, which are substituted for the dummy names or formal
parameters in the procedure declaration.
A procedure can be a "black box", an independent program to
which the programmer can communicate only via parameters.
Once declared, it can be called with appropriate inputs via
actual parameters and results returned via parameters and
perhaps a function designator, without otherwise disturbing
the calling program. Furthermore, the programmer who writes
the call for such a procedure might not even understand the
algorithm used by the declaration, yet he can use the algo­
rithm if he knows what actual parameters are required in the
call. In effect, he passes inputs through slots in the top
of the box and turns the crank on the side; after a certain
amount of wheezing and groaning, the black box returns the
results through another slot.

One important use of "black box" procedures is for
algorithm publication; all algorithms which are published
in ALGOL are in fact written as "black box" procedures.
The published procedures can be kept in libraries of useful
algorithms; their declarations can be inserted into any pro­
gram (either symbolically or in a suitable machine language
form obtained from previous compilation) and called as needed.

Making a procedure a black box requires three concepts:
(1) The subroutine, already discussed.

•

(2) Parametrization.
(3) Declaration of ALGOL names which Declaration of ALGOL names which are purely

^ivh^tz<
that execution of DOSUM changes K in the
master program. If the programmer has also
used K for another purpose, this change of K
by DOSUM could be very annoying! By declaring
K to be local to the procedure, he can create
two independent K's and avoid an undesirable

Exercises on Procedures.

Exercise 1: (Specifiers and Name vs. Value)

We wish to generalize from the following for statement:
LI: for (l) <- (Q) step (3 * ij while (i < 73j do

® [©] «- sin (CgTog)) ;
by letting all 8 of the circled syntactic units be formal parameters
and making it a procedure FORSTATE. With suitable calls, this pro­
cedure will perform either the statement labeled Ll above, or the
statement L2 below.

L2: for X*-A[I] step -.01 while X > 0 A sin(X)
< X/2 do A[A[I]] <- sqrt (abs(! - X));

Assume that the variables in Ll and L2 have been declared by:
real I, X ;
real array A[l:100] ;

Note that sin and sqrt are function designators: i.e., real procedures.

Copy the following declaration of FORSTATE and fill in the speci­
fiers for all formal parameters, and the value part (if any). Make as
many parameters called-by-value as possible without losing the ability
to handle the Ll and L2 statements.

procedure FORSTATE (A, B, C, D, E, F, G, H) ;
begin

for A <-B step C while D do E [F] <-G(H) ;
end FORSTATE ;

Exercise 2: (Name vs. Value Parameters)

An ALGOL program begins as follows; the statement labeled L3
has been left blank.

begin
real I, J ;
real array A[l:100] ;
real procedure PHI(I) ; real I ;

begin
I <-I+t ; PHI <- A[I+2]

end PHI ;
real procedure FOE (I) ; value I ; real I;

begin
I «- 1+1 J FOE +- A [1+2]

end FOE;
Ll: for J<-1 step 1 until 100 do A[J] *-2*J ;
L2: I <- 3 ; L3: | |
Suppose one of the following six statements is chosen as statement L3;
give the values of the variables I and J In the main program after
execution of L3.

(a) L3: J •-PHI (I)
(b) L3: J <- PHI (A[I])
(c) L3: J *-PHI (I) + PHI (I)
(d) L3: J <-F0E (I)
(e) L3: J «- PHI (A [I])
(f) L3: J «-F0E (A [I])

Exercise 3:

The procedure HOE has been declared as follows:
real procedure WOE (B, GONE) ;

real GONE, B;
WOE «-if B < GONE then Bt2 else B - GONE ;

Assume X = 3 and Y = 2. Find the value of the following arithmetic
expressiont

WOE(X, 2*Y) t 2 / WOE (if X » Y then X else 2 * Y, X - Y).

Exercise 4:
Write a procedure named MAX, which, given a set of n points, finds

the distance between those two of the points which are farthest apart.
MAX is to be a function designator whose value will be the desired dis­
tance. It is to have three formal parameters, as follows:

X: an array with subscripts from 1 to N,
Y: an array with subscripts from 1 to N,
N: an integer - the number of points.

The coordinates of the kth point are (X[k], Y[kJ).

Exercise 5:

The following ALGOL procedure is declared in an ALGOL program.
In the calls for TABLE(A.X.Y), the actual parameter substituted for A
will be a complicated expression.

Rewrite the procedure declaration so that its execution will re­
quire as little time as possible, while leaving the same values in the
input and output parameter areas. You may declare additional local
variable storage.

procedure TABLE (A,X,Y) ;
real A; array X,Y j

begin integer I ;
integer array Z[1:40] ;
for I «- 1 step 1 until 40 do

Z[I] *- I ;
for I <-A - 1 step 1 until 2*A + 9 do

Y[I+1] «--Z[I+l] t 3/(X[I+1] t 2 +At2)
t (1/2) - Z[I+1] t 6/(3*(X[I+1] t 2+A t 2)
t (3/2)) + SQRT(Af2 .+ 1) + 3.2 * 10 t -2

end ;

4. BACKUS NORMAL FORM: LANGUAGE vs. META-LANGUAGE

A reference manual for a programming language should define the
language precisely, explicitly, and unambiguously. It must specify
both:

(1) the rules of grammar, or syntax, for legal programs in the
language, and

(2) the meaning, or semantics, of any legal program.

In the past, programming manuals have fulfilled these objectives
by giving descriptions, in English, of the language and its meaning.
As computer languages have become more complex, however, such descrip­
tions have become less and less adequate. Even well written descrip­
tions have frequently been found, on close examination, to leave am¬
biguous certain points about the language being defined.

From an abstract viewpoint, the definition of the syntax is simply
a set of rules by which one can decide whether any given string of
characters is, or is not, a legal program in the language. The defini­
tion of the syntax must first specify (by listing it) the alphabet of
the language. It must then show how the larger elements of the
language are made up from the alphabet. It is here that a difficulty
arises. The alphabet of the language being defined (the "object
language"), overlaps the alphabet of the language in which the defini­
tion is written (the "meta-language"); thus the reader frequently can­
not tell whether a given piece of text is an example of the object
language or is a part of the descriptive meta-language.

With these considerations (and others) in mind, J. W. Backus 1' 2

has devised a technique for specifying the syntax of programming
languages. He has defined a language, which has come to be called
"Backus Normal Form" (abbreviated "BNF") to be used as a meta-language
for the clear and unambiguous definition of object languages. Indeed,
BNF was devised specifically for the purpose of describing ALGOL-60
syntax. The following paragraphs contain a description of BNF with
some examples of its use.

J. W. Backus, The Syntax and Semantics of the proposed International
Language of the Zurich ACM-GAMM Conference. ICIP Paris. June 1959.

J. W. Backus, et al, Revised Report on the Algorithmic Language
ALGOL-60. Communications of the Association for Computing Machinery,
Vol. 6, No. 1, (January 1963), 1-17.

In BNF the following four meta-linguistic symbols are introduced:
< > | ::=

These are called 'meta-linguistic symbols' since they must not be in­
cluded in the alphabet of the object language. The characters < and
> are used as brackets to surrounding strings of meta-language charac­
ters. Such a bracketed string of characters Is called a meta-linguis­
tic variable and is the name of a class of strings in the object lan­
guage .

The mark I may be read as "or", and the mark ::= (to be re­
garded as a single symbol) may be read as "is defined as". The use of
these symbols is best illustrated by example.

Example 1 :

<digit> ::= 0|1|2|3|4|5|6|7|8|9
This meta-linguistic formula may be read:

"A member of the meta-linguistic class < digit > is defined as
0 or 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9." Thus an occurrence
of < digit > in a meta-linguistic formula stands for any one decimal
digit.

An especially useful feature of BNF - indeed, its reason for exist­
ence - is that a definition using this meta-language may be recursive.
A recursive definition, for our purposes, may be thought of as one In
which the object being defined is included, either directly or indirect­
ly, in its definition.

Example 2:
< integer > ::= < digit > | < integer > < digit >

The meta-linguistic formula in this example may be read as:
"A member of the meta-linguistic class < integer > is defined

as (either) a member of the meta-linguistic class < digit > , or a
member of the meta-linguistic class < integer > followed by a member
of the meta-linguistic class < digit > ."
More briefly, one might say:

"An < integer > is either a < digit > or an < integer >
followed by a < digit > ." The recursive nature of this definition
of < integer > is seen in the occurrence of the meta-linguistic vari­
able < integer > on both the left side and the right side of the for­
mula. Let us now consider a more complex case.

Example 3:
< ab > : := (|[j < ab > (j < ab > < digit >

This meta-lingulstic formula defines the class < ab >. The reader
should satisfy himself that the following are members of < ab >

[<(0(37(
(12345(
(((
[86

and that the following are not members of < ab >
213
[[[
tt

The following example, taken from the ALGOL-60 Report [2], illus­
trates the use of recursiveness for the definition of the syntax of
< arithmetic expression > . Notice how the definitions are built up
in steps corresponding to the rules of precedence of the operators:
a < primary > is evaluated before a < factor > which is evaluated
before a < term > which is evaluated before a < simple arithmetic
expression > , etc. Thus, the syntax has been defined to parallel the
semantics of the language!

Example 4:
< adding operator > ::= + | -
< multiplying operator > x | / j t
< primary > ::= < unsigned number > | < variable > |

< function designator > j
« arithmetic expression >)

< factor > : := < primary > | < factor > f < primary >
< term > : := < factor > | < term > < multiplying operator >

< factor >
< simple arithmetic expression > ::= < term > I

< adding operator > < term > | < simple
arithmetic expression > < adding operator >
< term >

< if clause > ::= if < Boolean expression > then
< arithmetic expression > ::= < simple arithmetic

expression > | < if clause > < simple arithmetic
expression > else < arithmetic expression >

A careful examination of thia syntax will show that the following
are correct instances of the indicated meta-linguistic classes:

< primary >
6.02*23
THETA
cos (THETA t 2)
(3*Y + THETA t 2)

< factor >
THETA
THETA t 2.3
THETA t Y t cos(THETA t 2)

< term >
Y
3*Y
THETA * Y / (3*Y + THETA t 2)

< simple arithmetic expression >
3*Y
3*Y + THETA t 2
THETA t 2/3.2 t Y + cos(THETA t 2) - 3*Y

< arithmetic expression >
3*Y + THETA t 2
if Y > 3 then 3*Y else THETA f 2
if Y < 3 then

(if THETA >0 then 3*Y else Y + 2)
else THETA

Exercise 1:

ALGOL programs are constructed of the following syntactic units;

1. Array Declaration
2. Type Declaration
3. If Statement

For Statement
Assignment Statement
Go To "*--*- *"

4.
5.
6. Statement

7.
8.
9.
10.
11.
12.

Number
Simple Variable
Subscripted Variable
Arithmetic Expression
Boolean Expression
Conditional Arithmetic
Expression

For each of the particular ALGOL constructions listed below, give
the number(s) of all the syntactic units listed above, of which the
entire construction (not its constituents) is an example.

a. XI
b. A[P, Q]
c. A[P, Q] t~ SIN (P + Qt2) t 2
d. if P > Q then P + 2 else Q + 2
e. P = Q
f. real P, Q, XI
g. if P > Q then X l « - P + 2 else XI <- Q + 2
h- real array Af 1210, -5:5]
i. XI «- (if P > Q then P else Q) + 2
j. XI > (if P > Q then P else Q) + 2
k. GOTOL +-GOTOL + 3

Exercise 2:

(a) Consider the following meta-Unguistic classes:
< pop > ::= « pop >, < primary » | < primary >
< primary > ::= < letter > | [< pop >]
< letter >::= a|b|c|d|e|fjg|h|i|j|k|l

For each of the following, indicate whether or not it Is a < pop >
and whether or not it is a < primary > .

a
O]
(a)
[a.b]

primary
(c,d)
((a,b), c)
(a, (b, c))
[(a, b])

([a,b])
[[[*]]]
((a, b), (c, d))
((a, b), [(c, d)])

r

(b) Consider the following meta-linguistic classes in addition
to those defined in (a):

< cat >::=(]) | , | < cat > < cat >
< dog > ::= [j] | < empty >
<fish> ::= <cat> j <dog> | <cat> <dog> | <dog> <cat> |

<cat> <dog> <cat>
< bop > < fish > a < fish > b < fish > c < fish >

It is clear that there are < bop >s which are not < pop >s and
< pop >s which are not < bop >s. List all < bop >s which are
< pop >s,

(c) Consider the following:
< cow >::«(]) | [|] |, | < cow > < cow >
< boop > ; := < cow > a < cow > b < cow > c < cow >

< Boop >s include more than < bop >s. Write a < boop > which is not
a < bop >. Are there any < bop >s which are not < boop >s? Why would
it have been undesirable had you been asked to list all < boop >s
which are < pop >s? Give an example. (This can easily be answered
in one sentence.)

PART IV - PROGRAMMING PROBLEMS AND THE TEACH SYSTEM

*

1. THE USE OF TEACH PROCEDURES FOR STUDENT PROGRAMMING PROBLEMS

For each programming problem assigned in the course, the Instruc­
tor can write a corresponding "TEACH" procedure to be placed into the
ALGOL program library.* When called from the library by a student's
program, a TEACH procedure supplies several different sets of input
data to the program and checks whether the results it computes are
correct. TEACH also prints the data supplied, the student's results,
the correct answers if the student's are wrong, perhaps some diagnos­
tic information to aid the student in finding his error(s), and a
score for the problem.

The TEACH procedures are used both by the students to help debug
their programs and by the instructors to grade the finished product.
Thus, a student will normally prepare his program (in the form shown
below) to call the TEACH procedure; during each debugging run, TEACH
will supply test data and check his answers. When he is satisfied
that the program is working correctly, the student hands It in, still
set up to call TEACH. All the program decks for the problem are then
batched and run for grading by the instructors, and the scores printed
by TEACH during this run are recorded as the grades for the problem.

During the grading run, the TEACH procedure is modified to supply
different data values ("grading data") than the values ("debug data")
supplied to the student for his debugging runs. The grading data, of
course, is chosen to thoroughly test the program and includes all
special and boundary cases.

For the first few problems, the debugging data generally gives a
fairly complete test of the program; for the later ones, however, the
debugging data is sufficient only to ensure that the solution generally
does what is desired. This is to encourage the students to complete
the debugging process themselves, supplying their own data sets (in a
manner explained below) to test all special cases. When the deck is
handed in for grading, however, it must contain none of the student's
own test statements but must be set up In the standard manner shown
below to call the TEACH procedure for grading.

This section describes the TEACH procedures as they are used in the
S205 course at Carnegie Institute of Technology.

r

r
r
r
r
r

The following example shows a student's deck set up to call the
procedure TEACH4. The statement of a TEACH problem details the formal

formal parameter names).

Card No. Column 1. 2 Column 4...72

1
2
3
4
5
6

comment

begin

JOHN DOE, < student number >,
PROBLEM 4;

SY

real X, XMIN;
integer I ;
LIBRARY TEACH4

GRADE: TEACH (< s

Student's Declarations

"System Card-
student number >, X, XMIN);

"Call" TEACH4

n-1

(Now comes his program, Y
followed by:) t

go to GRADE ;

Student's
Program

end

O)
(2)

(3)

(4)

a set of

which then

re-

Hhen this program is executed, the following sequence of events occurs:
TEACH4 is called by the statement on card 6.
TEACH4 executes assignment statements which place
input data values into the proper input variables.
TEACH4 returns control to the student's program
executes with the data in the input variables.
"go to GRADE" returns control to TEACH4 which checks the
suits which the student's program has left in the output
variables. The input data and the student's answers are

from the student's answers.
Steps (2), (3) and (4) are repeated for each data set.
Finally, TEACH4 concludes with the message:

STUDENT NUMBER < student number > SCORES < score >
OUT OF < number >

(5)

r

If the student's program creates a run-time error - e.g., an
"exponent overflow" (which includes dividing by zero) or an Illegal
argument to a transcendental subroutine, control will return to the
TEACH procedure. The current data set will be marked wrong, a suit­
able message will be printed, and the next data set will be supplied,

Each TEACH procedure should allow the student's program to com­
pute for a fixed maximum time on each data set. If control has not
returned to TEACH at the expiration of that time,the current data
set will be marked wrong, a message will be given, and the next data
set will be supplied.

In the example program shown above, card 5, with "SY" in columns
1 and 2, is a "SYstem" card which causes the TEACH4 procedure to be
loaded into the G-20 along with the student's program. The details
of the manner in which this is done are not relevant to the present
discussion.

The standard structure of a TEACH procedure is shown in more
detail in the flow chart which follows.

D
N

Simplified Flow Chart for TEACH.procedure
= Data Set Number (initially = 0)
= Total Number of Data Sets qf

D = 0

Print: Input
Print: stud*

f .

. data.
snt's answers.

f

TEACH's solution to problem

Student's answers
correct?

Print: "THESE ARE
CORRECT"

Input variables «- (Data Set D)

"Bug" output variables

Print heading: "DATA SET D"

Print: indication of
which are wrong

Print: TEACH* s answers
Print: Any relevant

diagnostic in­
formation
hints

or

Tally Score

^ D D + 1

0I IP
Print:

" S T U D E N T <No.>
S C O R E S <score>
OUT OF N J J "

(Exit to Monitor)

There are several aspects of this flow chart which are worth noting.
1 . The variables D (= Data Set number) and SCORE (the cumulative score

for the run) should be own variables, local to TEACH*.
2. In most cases, the TEACH procedure contains its own (presumably) cor­

rect solution to the problem; this solution is executed each time TEACH
is re-entered, to determine the correct answer. We could, of course,
pre-compute the answers and store them in a file on disc or tape memory
from which they could be retrieved for each student run. However, the
actual computing time for solving a TEACH problem is usually negligible;
most of the time Is spent in compiling and printing. Therefore, the
simpler technique of re-computing the correct answers each time is
generally quite efficient.

Furthermore, re-computing the answers each time provides considerable
flexibility in posing problems. For example, some TEACH procedures
written at Carnegie Institute of Technology have contained non-construc­
tive solution-checking algorithms rather than solution algorithms
paralleling the student's program, either because the problem did not
have a unique answer or because checking was far simpler than computing
the answers. Forcing a problem to have a unique answer sometimes re­
quires extraneous assumptions and restrictions to be explained to (and
comprehended by) the student; in such cases it Is better to simply let
the result be non-unique.

3. The correct solution (or solution-checker) within TEACH takes its input
values from the same variables (or, more accurately, from the formal
parameters corresponding to the actual parameters) which are used by
the student's program, although TEACH must use a different (and local)
set of output variables. The correct solution (or the solution-checker)
is executed after the student's program has executed; therefore, the
student may ^ p T y his own data for debugging via statements assigning
new values to the input variables, after calling TEACH; TEACH will then
use the student's data to check his answers, and will print his data
and results. A result of this provision is that the student's program
M U B T not change the input variables in the process of solving the pro­
blem.

Of course, it is not necessary for the student to use TEACH at
all for debugging runs; however, if he does not use TEACH, he must
write all his own print statements. At least for the first few problems,
printing the data and results requires more complicated programming than
does solving the problem itself; hence, the student Is well-advised to
let TEACH do the printing.

* It is interesting to note that our TEACH procedures are able to use
these own variables only because ALGOL-20 initializes all own variables to
zero.

4.

In the limits of
ssages can be

Before it returns control to the student's program, TEACH normally
"bugs" the output variables with distinctive values so that when
next re-entered it can test for the student's failing to Initialize
variables, assigning no value to an output variable, or storing into
elements of any output array which are not included *- ^ -
the data. In each case, appropriate diagnostic m e s E

printed.
It

very si
or not it works correctly. Unfortunately, it cannot judge the
elegance, simplicity, cleverness, or sophistication of a program. On
the other hand, it is possible to choose data sets and design a TEACH
procedure to judge a program more finely than simply: "right or wrong".

For example, for most problems there exist (and some students will
discover) woefully inefficient algorithms; these can be detected by a
suitable choice of the time limits for the data sets. By setting the
time n™**- »*• « ™ «- m ^ . i ^ A k „ TO*™i= a „ 1 „ H ™

we
of

[t should be apparent that the TEACH procedures provide only a
simple measure of the quality of a student's program: whether
: it works correctly. Unfortunately, it cannot judge the clarity,

limit at two or three times the time required by TEACH's solution,
can detect poor algorithms as distinguished from minor differences
inefficiency due to trivial coding variations. We feel that this

emphasis upon generally efficient algorithms rather than upon coding
details is appropriate for a college programming course. Furthermore,
In actual programming factors of two in efficiency are usually import­
ant only in inner-most loops; more frequently factors of 10, or of
N/log N are the important considerations in programming.

Choosing data sets for grading a problem requires a great deal of
care. Generally one gives a number of data sets, each of which tests
some different aspect, special case, or boundary condition of the pro­
blem. It is important to keep these sets as nearly "orthogonal" i.e.,
independent, as possible, so that the total score will be,a true and
fair reflection of how thoroughly the student understood and solved
the problem. If data sets are chosen badly, all students will get
either 100 or 0 on the problem; if they are well-chosen, on the other
hand, the scores will show a normal distribution - although in practice
it is very difficult to avoid a skew towards the high end, since it is
hard to choose a problem which most students will be able to do partial,
ly but which only a few students can do perfectly.

2. A COLLECTION OF PROGRAMMING PROBLEMS

This section contains a collection of programming problems - or
more accurately, kernels of programming problems - suitable for an in­
troductory programming course at the college level.* Most of the pro-

* Many of the problems stated below have, in fact, been given to students
in the course S205 at Carnegie Institute of Technology over the past
four years.

blem statements contained here would (or did) need significant expan­
sion or elaboration before they could be assigned to a class. The pro­
blem as stated to the students ought to include a careful definition
of unfamiliar terminology, perhaps illustrative diagrams and drawings,
a complete specification of the parameters to be used to call the
TEACH procedure or equivalent control program, and explicit statements
concerning possible ambiguities in the problem statement.

Furthermore, an instructor who uses one of these "problem kernels"
as a basis of a programming problem is likely to want to increase or
decrease the difficulty of the problem to match his students, the level
and purpose of the particular programming course, and his own feelings
about proper pedagogical technique. The perceptive reader should have
no trouble thinking of variations, perhaps endless variations, on each
of the problems listed here.

The list has been categorized (approximately) into the following
four groups:

A. Combinatorial problems,
B. Geometry problems,
C. Representation problems,
D. Numerical Computation problems.

It will be clear that many of them could appear in several of these
categories, but this division still gives some useful indication of
the nature of the problems.

A. Combinatorial Problems.

Al. "The Change Problem":

Suppose you have an unlimited number of coins of denominations
1 , 2, 5, 10, 25, and 50 cents. Given a number of cents C, compute
how many different ways there are to total C cents using only coins
of these denominations.

How is the algorithm altered if the coins have a general Set
of denominations p^, p^, ••• » P^* w i t n 0 < H] < < • • * ^ '

Compute all partitions of a given integer number n; i.e., find
all sets of positive integers which sum to n.

A2.

A3. Count the unique numbers in a list of n numbers.

A4.

A5.

Suppose you have N objects labeled 1 , 2 N, placed counter­
clockwise in a circle. Starting at object labeled K, tag the L t n

c o n t i n u ^ t a ^ (of t^se'remainingtntaggedf
until only one remains. I f an object is already tagged, shift
counter-clockwise until the first untagged one I s e n c o u n t e r e d or
there are none l e f t untagged. Write a program which, given values
for N, L, and K, determines the label o f the last object tagged. N,

You are given
M, your

, X,„. The subsequence must satisfy all of

from these

l o w i n g C o n d i t i o n s *

(a) Adjacent numbers have opposite signs;
* x < 0 f o r k = 1 , 2, . X * X

k k+1
N -1 .

(b) The order of the original set is preserved:
1 < i if and only if p < q. p q r

The difference between largest and smallest members:
max
k

(X.) min
k V

must be as large as possible.
Furthermore, the value you use for N must be the largest Integer
for which properties (a) and (b) and (c) hold. Given M and

r^ryour'program^hould compute N and
A6. "The Calendar Problem":

Write a program to compute how often the Fourth of July
falls on a Thursday. Assume a calendar with the following pro¬
perties: 365 days per year with 7 days per week; starting at
year 1 :

a. Every L t h year is a leap year (i.e., it has 366 days,
the extra day^being February 29) except -

b * Every (Ij ^ yesir is oxi ordinary ye sir (i + e« 4 not s.
leap year) except -

til
c. Every (L * M * P) year Is a leap year.
This calendar is simply a generalization of our Gregorian

calendar which uses L = 4, M = 25, P = 4.

Suppose we number the days of the week as follows:
Sun Mon Tue Wed Thu Frl Sat
0 1 2 3 4 5 6

With this information, we may state the exact problem.

For the span of years 1, 2 (L*M*P) and assuming the
Fourth of July falls on day D in year 1, compute how many times
the Fourth of July falls on a Thursday.

Notice that in the special case where L, M, and F have the
values for our Gregorian calendar, the following are true:

(a) The product (L*M*P) is 400. The answer to the problem
is not simply 400/7 because, e.g., this is not an inte­
ger. In other words, the Fourth of July does not fall
with equal frequency of each day of the week.

(b) Over the entire 400 years, there are the same number of
each day of the week. This means the Gregorian calen­
dar is cyclic, i.e., repeats Itself every 400 years
(but not sooner!). Thus, the same answer would result
Independent of the year with which we started.

A7. Program one of the algorithms for ordering or "sorting" N numbers.
The common elementary algorithms include:

(a) Exchanging, also called "shuttle sort": Exchange mem¬
bers of each adjacent pair which is out of order, re­
peating until entire set is sorted.

(b) Linear selection with exchange: This is the algorithm
used in the lecture notes in Section 1 of Chapter II.

(c) Radix (or "pocket") sort: Sorting digit-by-dlgit in
the manner of an IBM card sorting machine.

< d) Binary merge sort: forming sorted substrings of length
2, 4, 8, l5, 2t entler (LN(N)).

In addition, there are non-elementary sorting techniques involving
tree structures which form a plausible introduction to list pro­
cessing.

References on sorting techniques:
Sorting on Electronic Computers, E. H. Friend, JACM, 3,

pp. 134-168 (July 1956).

Analysis of Internal Computer Sorting, Ivan Flores, JACM, 8,
pp. 41-80, (January 1961).

Trees, Forests, and Rearranging, P. F. Windley, Computer J.,
3, pp. 84-98, (July 1960)7

A8. This is a sequence of four simple problems which lead the student
naturally to writing a recursive procedure in part (d). If re­
cursion is not available, the statement of part (d) can easily be
modified to instruct the student to do his own stacking of para­
meters and an exit switch. A solution to part (d) is given.

It may be of interest that this problem is related to a
famous unsolved question in number theory which is being empirical­
ly tackled on computing machines. See, for example; Fraser, W.,
and Gottlieb, C. C , A Calculation of the Number of Lattice Points
in the Circle and Sphere. Mathematics of Computation. 16 (1962),
pp. 282-290.

(a) A circle of radius r is centered at the origin of a
plane Cartesian coordinate system. Each point (u, v) in this
plane whose coordinates u and v are positive, zero, or negative
Integers is called a "lattice point."

Write an ALGOL procedure CIRCL to compute L, the number
of lattice points lying within or on a circle of radius r centered
at the origin. That is, count the number of pairs (p, q) of inte­
gers such that p 2 + q 2 £ r2 . Make CIRCL a function whose value
is L with the value of r 2 (not r) as a formal parameter.

Count points only for one quadrant, but be careful not
to count the axes or the origin point more than once.

(b) A sphere of radius r is centered at the origin of a
three-dimensional Cartesian coordinate system. A "lattice point"
In this space is any point (u, v, w) whose coordinates u, v, and
w are integers.

Write an ALGOL procedure SPHER to compute M, the number
of lattice points in three-dimensions which lie within or on the
surface of a sphere of radius r centered at the origin.

Make SPHER a function having r 2 as a formal parameter.
Use CIRCL as a subroutine in SPHER. Count the points in the
northern hemisphere only, doubling the result to include the
"southern hemisphere"; but be careful not to count the points in
the equatorial plane twice.

(c) A four-dlmensional hypersphere of radius r is centered
at the origin of a four-dimensional coordinate system. Every
quadruplet (u, v, w, x) of integers defines the coordinates of a

A9.

lattice point in this four-dimensional space.
Write an ALGOL procedure HYPER to compute N, the number

of lattice points lying within or on the surface of the four di­
mensional hypersphere of radius r. Make HYPER a function with the
value of r 2 as a formal parameter.

Use SPHER as a subroutine in HYPER. Count the points in
the "northern hemihypersphere" but be careful not to count the
"equatorial" sphere twice.

(d) Write a recursive ALGOL procedure POINT (P, n). POINT
counts the lattice points in n dimensions which are within or on
the surface of an n-dimensional sphere of radius r = /F . For
example, POINT (P, 2) should give the same result as CIRCL (P).
POINT should be a recursive procedure calling itself to count
points in n-1 dimensions, etc., just as HYPER used SPHER which in
turn used CIRCL.

Make POINT a function. Count points in only half of each

r̂ /̂ŝ r- and doubU: but don't count

Note: Here is a solution to Part (d):
integer procedure POINT (RHO, N) ;

value RHO, N; integer N; real RHO;
begin

real SUM ; integer I ;
If 11= 0 then POINT <- 1
else

begin
SUM - POINT (RHO, N-1);
if RHO g 1 then

for I «- 1, 1 + 1 while It 2 * RHO do
SUM - SUM + 2 *

POINT (RHO - It2, N-1) ;
POINT - SUM

end
end POINT () ;

Write an ALGOL program to find a "stable" set of marraiges for a
given group of N boys and N girls. Each boy has ordered the girls

All.

according to his preferences,
array BOY in which

and you are given the results as an

BOY. . = (the number of the girl who is the kth choice of
1 , k boy i).

Similarly, the girls have
GIRL, in which

indicated their preferences in an array

GIRL, . = (the number of the boy who is the kth choice of
girl 1).

A set of marriages Is unstable if a man and woman exist who
are not married to each other but prefer each other to their
actual mates. If there are no such discontent couples, then the
set of marriages is stable.

One possible algorithm for solving this problem is contained
in the following article:

Gale, D. and Shapley, L. S. . College Admissions and the
Stability of Marriages; American Mathematical
Monthly, 69 (January 1962), pp. 9-15.

use
s

con-

A10. A painting has been p-oduced in a rectangular frame with the
of three colors, or of any color that can be obtained by mixture
of these colors; call these colors red, yellow, and blue. We c
sider the painting divided Into unit squares with N columns and M
rows. You are given three matrices R, B, and Y; Rij is a real
number indicating the amount (in some units) of red points in the
square (i,j); similarly, Bij and Yij indicate the amounts ot blue
and yellow paint, respectively, in square (i,j). Define a square
to be reddish if it has more red paint than yellow and blue to-
gether, similarly blueish and yellowish.

„ t h e — r " o „ Compute the number REDDISH, the proportion of the picture that
is reddish, i.e., the number of reddish squares divided by the
total number of squares. Similarly compute BLUEISH and YELLOWISH.

If -~' — • » - U 1 -
4 cents

squares.
red paint costs 2 cents a unit, blue 3 cents, and yellow
and if there is an additional charge of 50 cents for each

different mixture used, compute also the total cost of the paint
in dollars. You can assume that two squares were painted with the
same mixture if the ratio of red paint to blue paint to yellow
paint used in each square Is the same (to within a tolerance de­
termined by the accuracy of representation of real numbers in the
machine). A pure red or blue or yellow does not count as a mixture.

Given a painting as represented in problem 10 and the coordinates
(X, Y) of a particular square, compute the number of squares
painted using the same color of paint (i.e., the same pure color,
red or blue or yellow, or the same mixture as defined in problem
10) as in square (X, Y) and connected to it by a chain of squares

of the same color. A chain of squares is obtained by any combi­
nation of horizontal and vertical moves, but not diagonal moves.

B. Geometry Problems.

Bl.

B2.

B3.

B4.

Given a circle C defined by the triplet of values (X, Y, R) with
R the radius and X, Y the coordinates of the center, and a point
P defined by coordinates (U, V). Determine whether or not P is
inside C, and set a Boolean variable INSIDE accordingly.

You are given two triangles A and B defined by the coordi­
nates of their vertices:

A defined by (X., Y ^ , (X 2 > Y 2) , and (X^
B defined by (X,, Y,), (X,., Y,.), and (X,,

Compute the area of the triangle A.

Y
3) ;

V •

Given two triangles A and B defined as above, determine whether
A can be fitted inside B or made to coincide with B, using only
translation and rotation.

Given two circles Ci and C 2, each defined by triplets (X ^ Y ^ R ^ ,
and (X2,Y2,R2) as in problem Bl, compute the number of common
tangents.

B5. Given the coordinates (XT, Yj), (X N , Y N

polygon, compute its area.
(X N, Y N) of N vertices of a

B6. Given N circles C
1 •»

p C 2, C N defined by triplets (X,, Yj, R.),

B7.

B8.

Given four points P. = (X l t Y^.i » 1, 2, 3, 4, calculate the co­
efficients M and B lor the equation; y = MX + B of the line join-

..1. of segment P 1 P 2 with the midpoint of segment P 3 P 4 .

ariables UNIQUE and SOLUTION as follows:

efficients
ing the midpoint
Set the Boolean var

SOLUTION = true if
rv .

there
y = MX + B, false otherwise.

exists an equation of the form

UNIQUE true if SOLUTION = true and the computed M and B
values are unique, false otherwise.

Given two squares A and B defined by the coordinates of their
vertices, compute their common area!

B9. Given a square defined by the coordinates of two diagonally
opposite vertices, and given the coordinates of a point P, de­
termine whether P lies inside the square. Set a Boolean vari­
able PINSIDE to true if P lies inside, false otherwise.

B I O .

B11.

Assume a sequence of squares SQ, Si, S^, ...
such that each S k is centered on the origin and has area
(1 + k)A 2, for k i 0. Given a value for A and for the c

smallest

are constructed

for k £
(X, Y) of a point P,
S, .

Given
compute the

and for the coordinates
k such that P is inside

a square of side L
Assume a particl

two gaps A and B in the base,
s fired from a point on the

You are given a square of side L with
each of length 6. Assume a particle i
base, x units from the left side, at an angle tt > 9 > 0. The
particle rebounds elastically from the walls. Compute the distance
d, traveled by the particle before it exits through one of the
gaps. If the particle will never exit through one of the gaps,
set d to -1. Hint: Consider space filled by stacks of identical
boxes with perfectly ethereal walls.

B12. Parts (a) through (e) which follow form a unified sequence of
problems. In general, the solution to each part is useful as a
subroutine in the parts which follow It in sequence. Before
starting the problems, we give some definitions:

Two line segments Intersect if they have exactly one point
in common; they overlap if they have a line segment in common.
A line segment always has non-zero length, so that a point is
not a segment.

A polygon (or n-gon) is a set of n line segments (i.e.,
sides) such that one can trace a closed path oveTsegments which
(1) passes through each endpoint half as many times as the end-
point appears in a list of the segments, and which (2) passes
along each segment exactly once.

r
Polygons

Non-polygons

B12. (continued)

(a) Given a line segment L a b defined by the coordinates (Xa, Y a) ,
(Xb, Y b) of its endpoints, determine whether the point
P = (Xp, Y v) Lies on the segment (between a and b) and set
a Boolean variable~ONLINE accordingly.

(b) Given two line segments L, and L, defined by the coordinates
of their endpoints, compute the coordinates (Xp, Y p) of their
point of intersection, and set the Boolean variable INTERSECT
to be true". If, however, L-j and L 2 do not intersect (within
their lengths), then set INTERSECT to false and Xp and Y p to
0.

Assume that the two line segments have at most one point
in common, i.e., they do not overlap.

(c) You are given J line segments Lj Lj, represented by the
coordinates of their endpoints; thus for each i « 1, J,
Li is represented by ((X u, Y u) , (X 2 i , Y 2 i)) . Find all
points P a b of Intersection of pairs of segments L a, L b from
the given set. Your result should include the number m of
such intersections and a list of their coordinates, in the
following order:

B12. (cont'd) (1) If a < c . then p . is listed before P

(d)

(e)

(2) If b < d , then I s listed before P a (j*

As in Part (b), assume that no segments overlap.

Given J line segments L i , Lj represented as in Part (c),
determine whether they form a polygon (N-gon) when all N seg­
ments are included, and set a Boolean variable ISPOLYGON
accordingly. To determine whether the segments do form a
polygon (according to the definition given earlier), you must
traverse the segments in some order. If the segments do form
a polygon, your program must not only set ISPOLYGON to true
but also reorder the segments to correspond to the order in
which you traced them. It should also exchange endpoints of
segments in the reordered list L ^ ..., L j If necessary so
that the second endpoint of each segment Ifc coincides with
the first endpoint of the next segment L ^ .

Given J line segments as in Part (d), compute N, the greatest
integer such that an N-gon can be constructed from some sub-

„-C „ ~-i „ »-„ m l M- - i i _j <.„ i set of the given segments
be used, and 0 = N 5 J
Examples:

Thus, not all given segments need

J = 9
N = 6

B13. "The Triangle Problem":

You are given N line segments L T, % defined by the
coordinates of their endpoints. Find the first triangle, if any,
which can be formed from these segments. We define "first" by
the ordering:

(Lfl, L b, L c) comes before (Lj, L,, L f)

if a < d
or if a = d and b < e
or if a = d and b = e and c < f.

If no triangles can be formed, set a Boolean variable NONE to true.

B14. You are given the vertices of two triangles A and B, such that
triangle A encloses triangle B. Compute d, the minimum dis­
tance from any point on A to any point on B.

B15. Given a non-reentrant polygon of N sides defined by the N vertices
(Xi, Y,),..., (X„, Yvj) and a point P = (X«, Y,,), determine whether
P Is iAside or outside the polygon.

B16. Given a non-reentrant polygon of N sides defined as in problem B15,
tag those of its vertices which are also the vertices of the con­
vex hull of the polygon.

C. Representation Problems.

CI. Write programs to add, subtract, multiply, and divide Roman Numerals.
A Roman Numeral can be represented by a sequence c w, c t c t

of codes, where each c t will be 1, 2, 3, 4, 5, or 6 ^represent 1

I, V, X, L, C, or M, respectively. The code c, is the lowest-order
(i.e., the right-most character in the Numeral.)

C2. You are given two ordered triples (Mi, Di, Y,) and (M~, D 2 , Y ?)
which represent calendar dates by (month, day, year) numbers/ Com­
pute the total number of days included by these two dates. If,
however, either or both given triples do not represent legitimate
expressions for dates, set the number of days spanned to -1.

C3. Find all convex polygons of area 8 whose sides are either parallel
to the coordinate axes and have integer lengths, or are 45 6 dia­
gonals with lengths equal to an Integer multiple of XT. Polygons
differing only In translations from the origin are to be considered
the same polygon.

C4. Consider an abstract network composed of N nodes connected together
by lines. If the nodes are numbered 1 through N, then the network
is defined by its Boolean connection matrix C, where:

Q = (if there is a line connecting node i directly to node j

eTsflllfe),
for all (i, j) = 1, 2, N. Write a program which, given such

a connection matrix for a network, computes the corresponding
Boolean path matrix P, defined by:

P = (if there is a path, through any number of intervening
3 nodes, from node i to node j then true,

else false).

C5. A maze can be represented as an abstract network specified by a
connection matrix as defined In problem C4. Assume you are given
the connection matrix for a maze as well as the entrance node
number E and goal node number G. Find the shortest path through
the maze from E to G.

C6. A directed graph can be thought of as a set of nodes connected by
unidirectional lines or arrows. The Boolean connection matrix C
for an N-node directed graph can be defined as:

C t = (if there is an arrow directed from node i to node j
then true, eUTfalsir

for all 1, j = 1, 2, ..., N. Write a program which determines
whether or not a given directed graph, defined by its connection
matrix, contains any closed loops. If there are any loops, com­
pute a new connection matrix which contains only those arrows of
the original graph which are contained in at least one of the
loops.

C7. A topological ordering of the nodes of a directed graph is an
ordering in which node i precedes node j if there is a path
through the network from node i to node j. Write a program to
find a topological ordering for the nodes of an N-node directed
graph specified by its connection matrix, and set ORDERED to
true. If, however, there are one or more loops in the graph then
Topological order cannot be found and you should set ORDER to
false. Note: Topological ordering is the basis of the "PERT"
(Program Evaluation and Review Technique) for management of com­
plex industrial activities.

C8. An abstract group of order N is defined by its "multiplication
table". If the elements of the group are e^, e„, then the
multiplication table can be written as a matrix M, vtiere M u = p
if and only if eie, = e . Write a program which determines
whether or not a given NxN matrix M is the multiplication table
for a group of order N, by checking the four group postulates:

(1) The group must be closed under the operation and the
operation must be unique.

C9.

(2) There must be a left identity element in the group.
(3) For every element in the group there must be a left-

inverse in the group.
(4) The operation must be associative.

Postulate (1) is guaranteed by the M matrix which will be given
to you; if the other three hold also, set ISGROUP to true.

The commutator of any two elements e. and e^ of an abstract group
G is the element

1 • 1

e i e I e j"
Given a group defined as in problem C8 by its M matrix, construct
the multiplication table products of all commutators from G. The
new multiplication table itself defines a group G' which is there­
for a subgroup of G. Determine the order of G'.

CIO. Write a program which, given the multiplication table for a group G,
computes the multiplication table •> c n it
such a subgroup exists.

for a subgroup G' of G, if

Numerical Computation Problems.

Di. Find a zero of a given function by one of the standard methods:
(a) bisection.
(b) regula falsi.
(c) a method for calculating

D2.

D3.

D5.

Given N, count the number of primes < N.

Solve the general cubic equation:
3 2

Ax + B x + C x + D = 0, where A ^ 0
u"r• Solve N ~ r

N simultaneous linear equations.
e q u a t i u u o .

Perform numerical integration using the trapezoidal formula or
Simpson's rule.

D7. Assuming there is no subroutine available, program the exponentia­
tion operation X n in one of the following cases:

(a) n an integer
(b) n a real number

D7.

(c)

(d)

(e)

n real or Integer, using a given Boolean variable
ISREAL to determine the type.

r.Vî ssf.irthe most cOTmon cases:

As in (d), but minimizing number of multiplications
when n is an integer. Suggestion: Consider the ex
pansion of n as a binary number.

the operations

(a) Complex numbers, in polar or rectangular form.
(b) Double precision numbers.
(c) Extended floating point numbers.
(d) Polynomials.
(e) Piece-wise linear functions.

D8. Given an (unknown) function f(x) defined by a subroutine, find
a (local) maximum of f to within a specified tolerance. Assume
that there is a penalty associated with evaluations of f and
hence minimize the number of evaluations.

D9. Write a program to compute a transcendental function - for example,
log10(X) - to specified accuracy for any value of X.

(a) Evaluate a best-fit polynomial approximation,
example, Hastings* gives coefficients C,, ...

For
C 9 for

P(X) = l/2 + CjY + C 3Y + C 5Y + C ?Y + C gY'

X+|yjjj differs from log w(X) by less than
with Y =
2 x 10~ 7 for 1 ̂ X s io.
of the polynomial.

Evaluate the factored form

(b) Given any X > 0 , "reduce" it by factors of 10 or l/lO
until it lies in the range 1 £ X 5 10, and then compute
log10(X) using part (a). If X S 0, set an error flag.

* Hastings, C , Approximations for Digital Computers, Princetion Univer­
sity Press, 1955.

D10. Given integers n and c and real value x, evaluate S(n, c, x) by
the recursion relations:

(1) n < 0 , any c: S(n, c, x) = 0 .

(2) n S 0 , c < 0 : S(n, c, x) = (-l)c x" c S(n + c, -c, x).
n K K

SEP" * (K + c)l
(3) n £ 0, c ̂ 0: S(n, c, x) = £ Q f-1) K

 # _J*

Evaluate the sum in factored form. Aside: for n 5 0 and c > 0,
S(n, c, x) is the n t h partial sum of the power series for
x" c J C c 2 yx5.

DTK Given a set of "experimental" data Xj, X ^ compute statisti­
cal measures:

(a) Mean, Median, or Mode
(b) Frequency distribution
(c) Standard deviation
(d) Higher moments

D 1 2 . Compute as accurately as possible a value for the physical quantity
a, called Modeling's constant, for a face-centered cubic ionic
lattice:

+ •*> + * * » + e * *

a = 2 E S M) P + Q + V

p = - o o q = - <vo r = -«*> p z + q^ + r^
You will be given a fixed amount of computer time; since this
series converges very slowly, a great deal of cleverness is
called for.

t

3. COMPLETE EXAMPLE OF A TEACH PROBLEM

A. The Statement of the Problem:

TEACH17 - The Professor Lost in the Woods.

A Carnegie Tech mathematics professor got lost while walking in
the woods one day. When he realized his predicament, he sat down by
the nearest tree and decided upon the following algorithm for finding
his way to one of the two roads which traversed the woods.

(1) He would walk in straight lines from tree to tree until he
found one of the roads. The woods were so dense that he would be able
to see the road only when he was very close to it.

(2) He had a piece of chalk in his pocket (of course). He would
place a chalk mark on each tree he reached so as not to walk in a
circle. This chalk mark could been seen from any direction.

(3) Starting at the tree where he was sitting, and at each tree
he reached, he would:

(a) put a chalk mark on the tree, and then
(b) look around and decide which unmarked tree was closest

to his position; then he would walk in a straight line

to him than any tree, then he would walk directly to
the road at its nearest point.

(4) In deciding upon the nearest tree the professor could only
be sure of distances with an accuracy of 1 percent. That is, if the
distances of two trees differed by less than 1 percent of the larger
of the two distances, then he judged them to be at equal distance.
If it turned out that there was more than one tree at the closest
distance (within the 1 percent error), he would decide among them by
the following rule: he would take the one whose direction was most
nearly North (which he could determine from the position of the sun).
If two happened to make exactly equal angles with North, he would take
the more easterly one (since he was right-handed).

Our professor was lost in a forest of ideal trees with perfectly
straight and infinitely slender trunks, all perfectly perpendicular to
a plane surface. He was ideal, too, with negligible dimensions.

D

Y

• " 8 >• .
Road

to follow the path of the professor. Write an ALGOL program
Assume a forest of N distinct trees whose <x,y) coordinates are
specified by elements 1:N of two real arrays X and Y. The two roads
run north-south and east-west, with coordinates given by x = NSROAD
and y = EWHOAD, respectively. The professor starts at tree K with

, „ <-„•. „ r g - j ^ y o u w i l l b e g i v e n v a i u e s Q f integers " coordinates (X [K], Y [K]). You will be given values of integers N
and K, as well as real numbers NSROAD and EWROAD and real arrays X
and Y. Assume that 1 5 K 3 N 5 200. From this data you are to com­
pute:

(1) The integer NUMBER, the number of trees which the professor
reaches, not counting tree K where he starts.

(2) The contents of an integer array PATH whose successive ele­
ments are the subscripts of the trees which the professor reaches, in
the order in which he reaches them. That is, he walks from:

(X [K], Y [K]) to (X
to (X
to (X and finally

[PATH [1]] , Y[PATH [1]])
[PATH [2]], Y[PATH [2]]), etc.
[PATH [NUMBER]], Y [PATH [NUMBER]]).

(3) A real variable DISTANCE, the total distance he walks
reach one of the roads.

to

To call TEACH17, use the following two cards immediately follow­
ing your declarations:

SY LIBRARY TEACH17
GRADE: TEACH17 (<student number>, N,K,X,Y,NSROAD,EWROAD,

NUMBER, PATH, DISTANCE);

-103-

ir

You can make the following (simplifying) assumptions:
(A) We will give you X and Y elements less than TO 4 in

magnitude.
(B) Ho more than two trees will tie (within 1 percent)

for the smallest distance.

B . C O R R E C T S O L U T I O N T O P R O B L E M 1 7

11150
11151 11162

COMMENT THIS IS A CORRECT SOLUTION TO TEACH17 THE PROFESSOR LOST IN THE WOODS I
BEGIN REAL DISTANCE. DMIN. ROADDISTANCE I INTEGER I, N» NUMBER* S# T# 0 I REAL ARRAY X, Y |1«50) J INTEGER ARRAY PATH tl t Sol)

S Y

15013
15036 1504(1

15044 15045 15047 15051
15114 15134 15152 15163 15801 15204 15217
15231 15244 15264 15266 15274

15301

LIBRARY TEACH17 NEXT I TEACH17 (200* N, S, X, Y, NUMBER, PATH, DISTANCE)!
T * S | COMMENT NUMBER - DISTANCE -

WALKAGAINl BEGIN
REAL DIST.

THE PROFESSOR STARTS AT TREE S I *• 0 I

DX» DY# TEST i INTEGER I J DMIN * .8 I COMMENT CURRENT MINIMUM DISTANCE 0 - 1 I COMMENT BEGIN AT THE FIRST TREE ... FOR I * 1 STEP 1 UNTIL T-l. T.l STEP 1 UNTIL N DO BEGIN COMMENT CONSIDER EACH TREE (EXCEPT T) IN TURN I DX XII] - XIT) | DY Y11! - YlTl l DIST * SQRT(0Xt2 • DY*2> I TEST - ABS(XtOJ - XITI) * DY -< YtQJ - YIT))»ABS(DX) I IF ABS(DIST - DMIN) < .01#DIST • ABS(DI ST - DMIN) < .01*DH1N THEN BEGIN COMMENT DISTANCE OF TREE I AND TREE Q ARE WITHIN 1 PERCENT 1 IF TEST >0 - < TEST.O * XII) > XtQl I THEN GO TO NEWTREE END ELSE IF DIST < DMlN THEN NEWTREEJ BEGIN DM IN * DIST I
P w n n c i i n n s j END OF I LOOP

END BLOCK I
0 «• I END

15302 15332
15336 15341 15344
15353 15361

ROADDISTANCE * ABS(IF ABS<XlTl» > ABS(YIT)) THEN YlTl EL9E X[T])| IF ROADDISTANCE -< DMIN THEN BEGIN
DISTANCE DISTANCE + DMlN l NUMBER XfTl *• NUMBER + 1 I XITI - „10 1 COMMENT THE NEAT WAY TO CHALK THE TREEt TRANSFORM IT OUT TO "INFINITY". SO IT WILL BE IGNORED. A MORE GENERAL METHOD IS TO USE A BOOLEAN VECTOR 'CHALK' T * PATH I NUMBER 1 PATH I NUMBER 1 * '0 WALKAGAIN J GO TO

END STAGGER TO NEXT TREE 15362 ELSE DISTANCE - DISTANCE + ROADDISTANCE

I

r

0 0 T O N E X T

1 5 3 6 6 E N D S O L U T I O N T O P R O B L E M 1 7

^ ^ ^ ^ ^ 0 0 I Q 0 I 4 7

(T H I S I S T H E E N D O F C O M P I L A T I O N . P R O G R A M E X E C U T I O N F O L L O W S O N N E X T P A G E .)

r

04 JUN 65
•/•/•/»/•/•/*/•/«/«/«/*/•/•/»/•/•/•/»/•/»/«/•/•/•/•/«/•/«/•/•/•/•/•/•/•/•/«/*/•

I * FOR DATA SET 1 YOU HAVE BEEN QlyEN N-10 3*10
YOUR PROFESSOR IS LOST IN THE FOLLOWING FOREST! TREE NUMBER

1 2 3 4
5 6 7 S
9 10

COORDINATES
79, 74. 34, 62, 54, 23, 59, 12, 34, 76,

-11) 4) 49) 20) -11) 17) 49) 49) 71) 8)

DATA SET 1 CORRECT
TEACH ANSWERS ARE 'NUMBER'* 1

PATH t 2
•DISTANCE'? 9.65685425 .+00 <END>

I- FOR DATA SET 2 YOU HAVE BEEN GIVEN N-10 S« 3 THE SAME 6L00MY FOREST AS THE LAST SET

DATA SET 2 CORRECT
TEACH ANSWERS ARE •NUMBER'* 2 •DISTANCE" 6.51126994 „*01 PATH I 9, 6 <END>

«/•/*/»/*/«/«/•/«/•/•/•/»/•/•/•/•/«/»/•/•/»/*/«/•/•/•/•/•/•/«/•/•/•/•/•/•/•/•/•
I* FOR DATA SET 3 YOU HAVE BEEN OWEN N- 3 S- 3

YOUR PROFESSOR IS LOST IN THE FOLLOWING FOREST!
TREE NUMBER COORDINATES

1 2 3
(62, 20) (54, -11) (23, 17)

DATA SET 3 CORRECT
TEACH ANSWERS ARE •NUMBER *• 0 •DISTANCE'* 1.70000000 „.0i

PATH I WALK DIRECTLY TO ROAO

I

I* FOR DATA SET 4 YOU HAVE BEEN QIvEN N - 7 S» 7

YOUR PROFESSOR IS LOST IN THE FOLLOWING FORSSTI
TREE NUMBER

1
2
3
4

5

6

7

COORDINATES

5 4 . -11) s:
12. 49)
34. 71)
78. 8)
52. .10)

DATA SET 4 CORRECT

TEACH ANSWERS ARE 'NUMBER'
PATH I

1
1

•DISTANCE'* 1.32360680 .•01
<END>

•/•/»/«/*/»>'»/•/•/•/•/•/•/*/#/«.'»/«/*/•/•/•/•/•/»/•/•/•/•/•/*/•/•/•/•/•/•/•/«/«/•/«/

I* FOR DATA SET 5 YOU HAVE BEEN GIvEN N> 9 5 - 1

YOUR PROFESSOR IS LOST IN THE FOLLOWING FOREST 1

TREE NUMBER COORDINATES
1
2
3
4

5

6
7
8
9

34.
62.
54.
23.
59.
12.
34.
7 8 .

52.

49)
20)

-11)
17)
49)
49)
71)
8)

•10)

DATA SET 5 CORRECT

TEACH ANSWERS ARE * NUMBER'» 2 'DISTANCE*'
PATH! 7. 6 <END>

6.51126984 .+01

S T U D E N T N U M B E R 2 0 0 S C O R E S 5 O U T O F 5

TIME USEDl 00101103 PAGES USED*. 11120104

C . I N C O R R E C T S O L U T I O N T O P R O B L E M 1 7

C O P E R . Y G 0 1 0 4 J U N 6 5 I l t 2 4 t i 8 A L S O L P a G E S i 1 0 T I M E * 1 C A R D S t T A P E I

4 6 7

A t 0 6 A U G 6 4

S Y

1 1 1 5 0

1 1 1 5 1
1 1 1 6 2

1 5 0 1 3

1 5 0 3 6

1 5 0 4 0

1 5 0 4 3

1 5 0 4 4

1 5 0 4 6

1 5 0 5 0

1 5 1 1 3

1 5 1 3 3

1 5 1 5 1

1 5 1 6 2

1 5 2 0 0

1 5 2 0 3

1 5 2 1 6

1 5 2 3 0

1 5 2 4 3

1 5 2 6 3

1 5 2 6 5

1 5 2 7 3

1 5 3 0 0

1 5 3 0 1

1 5 3 3 1

1 5 3 3 5

1 5 3 4 (1

I t 0 6 A U G 6 4 F l 1 3 M A Y 6 5 0 0 1 0 0 1 0 2

T H I S I S A N I * N » C * 0 » R * R * E » C # T S O L U T I O N T O T E A C H 1 7 J C O M M E N T

B E G I N

R E A L D I S T A N C E , D M I N , R O A D D I S T A N C E

I N T E G E R I , N , N U M B E R , S , T , 0

R E A L A R R A Y X , Y (1 > 5 0))

I N T E G E R A R R A Y P A T H 1 1 I 5 0 I j

I

I

L I B R A R Y T E A C H 1 7

N E X T t T E A C H 1 7 (2 0 0 , N , S , X , Y , N U M B E R , P A T H , D I S T A N C E) !

T * S

N U M B E R <

C O M M E N T

T H E P R O F E S S O R S T A R T S A T T R E E S I C O M M E N T

I *• 0 I

• • • • H E D I D N ' T I N I T I A L I Z E D I S T A N C E T O / / /

W A L K A G A I N t

B E G I N

R E A L D I S T , D X , D Y , T E S T I I N T E G E R I !

! C O M M E N T C U R R E N T M I N I M U M D I S T A N C E

C O M M E N T B E G I N A T T H E F I R S T T R E E
T . 4 . T ^ 1 Q T C I

D M I N - . 8

F O R I 1 S T E P 1 U N T I L T - l , T . l S T E P 1 U N T I L N 0 0
B E G I N

C O M M E N T C O N S I D E R E A C H T R E E (E X C E P T T) I N T U R N

D X * X t l) - X I T) l D Y * Y t l l - Y t T I !

D I S T * S O R T (0 X * 2 * D Y t 2) j

T E S T «• A B S < X I O I - X l T J) • D Y

- (Y 1 0 J - Y I T)) * A B S (D X) 1

I F A B S (D I S T - D M I N) < . 0 1 » D I S T

v A B S (D I S T - D M I N) < « 0 1 » D M t N

T H E N
B E G I N C O M M E N T

I P t i t T u t t
D I S T A N C E O F T R E E I A N D T R E E Q

A R E W I T H I N 1 P E R C E N T I
I F T E S T > 0 * (T E S T - 0

t m f m e n T n m P u t b c c

N E W T R E E J
F M I

E L S E

E N D

E N D B L O C K

> 0 * (r E S T - 0 *

T H E N G O T O N E U T R E E

E N D

I F D I S T < D M I N T H E N

B E G I N - " > « t

O F I L O O P

X I 1 1 > X I Q 1)

D M I N d i s t $ o * i e n d

i

R O A D D I S T A N C E

C O M M E N T <
R O A O T l t <

A B S (I F A B S (X l O l) > A B S (Y (O I) T H E N Y f Q t E L S E X [Q]) J
im T U E G l i n a r . D I o T e C u n i t t n U n / c n c c u t i n . u r . n . u i - . • # • # T H E S U B S C R I P T S S H O U L D H A V E B E E N T I N T H E A B O V E I

I F R O A D D I S T A N C E * < D M I N T H E N
B E G I N

D I S T A N C E »• D I S T A N C E • D M I N ;

N U M B E R - N U M B E R + 1 t

0

I

1

15343
15352 15360

XtTI «• .10 t COMMENT THE NEAT WAY TO CHALK THE TREE I TRANSFORM IT OUT TO ''INFINITY1'. SO IT WILL BE IGNORED. A MORE GENERAL METHOD IS TO USE A BOOLEAN VECTOR 'CHALK'I T * PATH(NUMBER I * 0 i GO TO WALKAGAIN J END STAGGER TO NEXT TREE

3196.
15361
15365 WORDS

ELSE DISTANCE GO TO NEXT END SOLUTION TO PROBLEM
DISTANCE • ROADDISTANCE

17
0 0 1 0 0 1 2 9

•no-

0 4 J U N 6 5

F O R D A T A S E T 1 Y O U H A V E B E E N G l y t N N - 1 0 S * 1 0

Y O U R P R O F E S S O R I S L O S T I N T H E F O L L O W I N Q F O R E S T *

T R E E N U M B E R

1

3

4

5
6

7
6

9

1 0

C O O R D I N A T E S

7 9 .

7 4 ,

3 4 ,

6 2 ,

5 4 .

2 3 ,

5 9 .

1 2 .

3 4 .

7 8 .

• 1 1)

4)

4 9)

2 0)

• 1 1)

1 7)

4 9)

4 9)

7 1)

8)

D A T A S E T 1 I N C O R R E C T

Y O U R A N S W E R , ' N U M B E R ' • 0 . I S I N C O R R E C T

D I D Y O U F O R G E T T O I N I T I A L I Z E D I S T A N C E

T H E P A T H W H I C H Y O U T R A C E D O U T I S I

P A T H ! N O N E < E N D >

T E A C H A N S W E R S A R E • N U M B E R ' • 1

P A T H ! 2
• D I S T A N C E ' * 9 . 6 5 6 8 5 4 2 5 - + 0 0

< E N D >

I - F O R D A T A S E T 2 Y O U H A V E B E E N G I V E N N * 1 0 S * 3

T H E S A M E G L O O M Y F O R E S T A S T H E L A S T S E T

D A T A S E T 2 I N C O R R E C T

Y O U R A N S W E R , ' N U M B E R ' . 1 , I S I N C O R R E C T

D I D Y O U F O R G E T T O I N I T I A L I Z E D I S T A N C E

T H E P A T H W H I C H Y O U T R A C E D O U T I S I

P A T H ! 9 , N O N E < E N D >

T E A C H A N S W E R S A R E ' N U M B E R ' * 2 ' D I S T A N C E ' * 6 . 5 1 1 2 6 9 8 4 . . 0 1

P A T H I 9 , 6 < E N D >

• / • / • / • / • / • / • / . / • / • / • / • / • / # / * / # / » / . / » / » / « / . / « / . / » / . / # / . > / . > / . / . / . / . / # / # / # / . / # / # / # / # / . /

) * F O R D A T A S E T 3 Y O U H A V E B E E N G I V E N N - 3 S * 3

Y O U R P R O F E S S O R I S L O S T I N T H E F O L L O W I N G F O R E S T !

T R E E N U M B E R C O O R D I N A T E S

1

2
3

6 2 , 2 0)

5 4 , - 1 1)

2 3 , 1 7)

D A T * S E T 3 I N C O R R E C T

D I D Y O U F O R G E T T O I N I T I A L I Z E D I S T A N C E

T H E P A T H W H I C H Y O U T R A C E D O U T I S t

P A T H I W A L K D I R E C T L Y T O R O A D

T E A C H A N S W E R S A R E • N U M B E R '

P A T H I

0 • D I S T A N C E * * 1 . 7 0 0 0 0 0 0 0 . + 0 1

W A L K D I R E C T L Y T O R O A D

• / * / • / # / * / • / # / • / • / • / • / • / * / « / # / • / # / * / • / • / • / # / # / # / * / » / • / * / # / # / # / « / # / # / # / • / • / « / • / • /

I * F O R D A T A S E T 4 Y O U H A V E B E E N G I V E N N * 7 S « 7

Y O U R P R O F E S S O R I S L O S T I N T H E F O L L O W I N G F O R E S T '

T R E E N U M B E R

1

2

3

4

5

6

7

C O O R D I N A T E S

5 4 , - 1 1)

2 3 , 1 7)

5 9 , 4 9)

1 2 , 4 9)

3 4 , 7 1)

7 8 , 8)

5 2 , - 1 0)

D A T A S E T 4 I N C O R R E C T

D I D Y O U F O R G E T T O I N I T I A L I Z E D I S T A N C E

T H E P A T H W H I C H Y O U T R A C E D O U T I S t

P A T H ! 1 < E N O >

T E A C H A N S W E R S A R E • N U M B E R ' * 1

P A T H . 1

• D I S T A N C E " 1 . 3 2 3 6 0 6 8 0

< E N D >

. + 0 1

I * F O R D A T A S E T 5 Y O U H A V E B E E N G I V E N N « 9 S * 1

Y O U R P R O F E S S O R I S L O S T I N T H E F O L L O W I N G F O R E S T !

T R E E N U M B E R

1

2

3

4

5

6

7

C O O R D I N A T E S

3 4 ,

6 2 ,
5 , .

4 9)

2 0)

5 4 , - 1 1)

2 3 , " " ^
5 9 .

1 2 ,

3 4 ,

1 7)

4 9)

4 9)

7 1)

8 < 7 8 . 9)
9 (5 2 , - 1 0)

D A T A S E T 5 I N C O R R E C T

Y O U R A N S W E R , • N U M B E R ' . 1 , I S I N C O R R E C T

D I D Y O U F O R G E T T O I N I T I A L I Z E D I S T A N C E

T H E P A T H W H I C H Y O U T R A C E D O U T I S t

P A T H I 7 , N O N E < E N D >

T E A C H A N S W E R S A R E • N U M B E R • * 2 - D I S T A N C E ' - 6 . 5 1 1 2 6 9 9 4 . + 0 1

P A T H I 7, 6 < E N D >

S T U D E N T N U M B E R 2 0 0 S C O R E 0 O U T O F 5

T I M E U S E D * 0 0 1 0 0 1 4 5 P A S E S J S E D i 5 1 1 1 2 5 (0 2

D . Listing of the TEACH17 Procedure

C O P E R . Y Q 0 1 0 4 J U N 6 5 1 U 2 0 I 0 5 ALGOL P A G E S I 1 0 T I M E I 1 C A R D S * T A P E I
4 6 7

(The solution shown in C above has been modified here to cause the TEACH procedure Itself to be
printed as it is compiled into the student's program.)

11150 BEGIN
REAL DISTANCE, DMIN, ROADDISTANCE I
INTEGER I, N, NUMBER, S, T, Q I

11151 REAL ARRAY X, Y [1150] j
11162 INTEGER ARRAY PATH tl t 50) I

PRINT LIBRARY.
LIBRARY TEACH17
LIBRARY RANDI

11171 REAL PROCEDURE RAND{ R, T) I
VALUE T * INTEGER R J REAL T I COMMENT

RANDOM NUMBER GENERATOR ,

11177
11225
11235
4 A 4 4 4

SETS R TO NEXT PSEUDO-RANDOM NUMBER IN INTERVAL 0->R<2097151
AND RAND(> TO R MAPPED INTO INTERVAL 0-> RAND(» < T |

BEGIN INTEGER I I
I *• R R#1953125 I COMMENT I.E. R MOD (R»5»9,20971521 I
RAND I* (T/2097152) I

11241 END RAND() J

COMMENT THIS IS THE BEGINNING OF THE TEXT COMPILED FOR TEACH17 •

LABEL XOAORP.XQEXPOJLIBRARY PROCEDURE RUNERRORjBOOLEAN MLXPGZl
INTEGER OQO.OCO01

11246 PROCEDURE TEACH17 (STUONO, N, S, X, Y, NUMBER, PATH, DI STANCE)J
VALUE STUDNOl INTEGER STUDNO. N,S,NUMBER] REAL DISTANCE}

REAL ARRAY X,Y| INTEGER ARRAY PATHl
COMMENT THIS TEACH PROCEDURE WAS WRITTEN BY JOHN WHITE l

11270 BEGIN BOOLEAN ISPRINT %
INTEGER I, EST . P, NO,NEXT, R IREAL TOTD, A, B,LENGTH!

11315 BOOLEAN ARRAY CORECTlOUH INTEGER ARRAY TRAlLlltSOU
INTEGER E, IX, IY I

11333 PROCEDURE SETX I
11340 BEGIN IX - I* . 1 , X(lX| * E J IF Ix-N THEN IX*- 0 END I
11365 PROCEDURE SETY t
11372 SHGIN IY ^ I Y ^ 1 j Y J IY1 ^ £ J IF lY'N THEN IY ̂ Q END %

11417 PR0CeDeEGlSEs!lTCH DAT SET * Dl, D2, D3, D4. D5I
11453 ISPRINT «- TRUE J
11455 GOTO DATSETlOOOlf
11457 Dlt Pt-Ol N*-10j S**l0! GOTO WOODS)
11473 D2« P * 0 ! N«-1Q I S * 3 * ISPRINT *• FALSE J GO TO WOODS t
11511 D3l P * N *• S «• 3 | GO TO WOODS I

11523 11537 11551 11553 11616 11646 11651 11653 11716 11746
11776
12062 12016 12036 12056 12060 12075 12111
12124 12125
12164 12165 12212 12235 12262 12312 12327 12342
12344 12347
12351 12356 12374
12376 12377 12404 12414 12450 12467 12504 12517
12551 12554

D4I P*4j N-71 S*7l D5I P*-2j N*9J S«-l; 00 TO WOODS)
WOODS. I «- 01 FOR EST*79.74,34,62,54,23,59»12,34,78,52 DO BEGIN I*I*il A-I-P. IF A>0 THEN XIAKEST* IF A*N THEN GOTO EX1 END I EXlt I - 01 FOR EST--U,4,49,20,-11,17,49.49,71.6,-10 DO BEGIN 1-1*1* A-I-P. IF A>0 THEN Y(AJ-EST* IF A«N THEN GOTO EXIT END. EXIT! XlN+l|-YlN*11-3.45,69| END *

S T R I IF OOO-O THEN BEGIN A*- * (STUD NO/100) I B-STUDNO-100* AI IF A<2 » A>9 THEN GOTO ZORCHI IF A<7 * 8>35 THEN GOTO ZORCHi GOTO OUT* ZORCHt PRINT(<»Y0U HAVE NOT SUPPLIED T E A C H 4 •WITH A VALID STUDENT NUMBER• SORRY, BUT WE •CANT RUN YOUR PROGRAM•*,2E>)I HALT* END) SETDATl i
HUNT) I * TOTD - 01 IF X(SJ*0 v YISI-0 THEN GOTO ROAD*
BEGIN INTEGER XT,YT,CUT»XCCT, ClPCT,I)REAL DCCT,DC1PCT.XDCCT.TD,Q*

DCCT«--50J XT*XIS)| VT*-YlSl * CCT*C1PCT*01 FOR I * 1 STEP 1 UNTIL N DO BEGIN IF I«S v XI I] > 1 . 5 THEN GOTO NXTTRE* TD • SQRT(tXT-XU))t2.(YT-YIII)»2)) IF TD<DCCT THEN BEGIN XCCT«-CCT* XDCCT*DCCT) CCT-Il DCCT-TDl IF XDCCT-DCCT < ,01*XDCCT THEN BEGIN C1PCT*XCCTI DC1PCT*XDCCTJ END ELSE C1PCT-0* GO NXTTREJ END) IF C1PCT|<0 THEN GOTO NXTTRE ELSE IF TD-DcCT < ,01»TD THEN BEGIN ClPCT-Il
nClPCT«-TD) ENDl NXTTREl END I IF CCTHO THEN BEGIN IF C1PCT.0 THEN BEGIN Q*CcTj GOTO SORT END! A*(YICCT]-YT)«ABS(XIC1PCT)-XT); B«-l YI ClPCT 1 - Y T > • ABS < X I C C T 1-XT > * Q - IF ABS(A-B)->1.-8#<A.B+ABS(A-B)) T H E N (IF XICCTOXICIPCTI THEN CCT ELSE ClPCT ELSE IF A>B THEN CCT ELSE ClPCT* SORT I LENGTH*SQRT< (X(Q|-XT)t2+<V(Q|-YT>*2>l NEXT..O* END ELSE NEXT*0* END OF HUNT BLOCK)

12555
12601
1263Q
12645
12664

FOUNDt A - A B S < O • X I S M B - A B S (Y I S) + O > >
I F < A < L E N G T H) « < B < L E N G T H) - (N E X T " 0) THEN GOTO R O A D !

12700
12713
12744
12760
13000
13027
13055
13071
13077
13111
13136
13143
13163

13173
13221
13230
13257
13274
13302
13327
13343
13356

13366
13413
13417
13437
13455
13467
13471
13517
13534
13545

13566
13615
13642
13665
13704
13734
13761
13775
14014

ROAD! NO-Il

XtSl-1.61 I-I+ll
S-NEXTI TRA IL I I) ••Si TOTD-TOTD+LENGTHI
I TOTD*-T3TU+ IF A<B THEN A ELSE 6

GOTO HUNTi
T 0 T D - T 3 T D +

C O M M E N T COMPARE (1) NO TO NUMBER
(2) TRAIL TO PATH (N|
(3) TOTD TO DISTANCE i

CORECTUJ* NO"NUMBERi
C0R6CT12]*TRUE| FO* P - l STEP 1 UNTIL NO DO CORECT I:»!-CORECT I? 1 *

P A T H (P) « T R A I L t PI I
CORECT131- ABS<TOTD-DISTAMCE) <l.-8»TOTDJ
C0RECT14J-TRUE] IF 0<NUMBER * NUMBER<NO THEN

FOR P-l STEP 1 UNTIL NUMBER DO C0RECT|4|-
C0RECTl4!*PATHtPI«TRAlHP)l

C0RECTt4)«--C0RECT(4)i
CORECT tOJ •• CORECT 111 - CORECT 121 * CORECT 13)1
NAME(OOO)! IF -CORECT101 THEN PRINT<< 12C,'DATA SET '.2D,

• INCORRECT',2E>)
ELSE BEGIN OCOO-OCOO+1] PR I NT(<12C,•DATA SET ',2D,

• C0RRECT',2E>)i GOTO P A N S]

ENDl
IF NUMBER<0 THEN PR I NT(<3 0C,•DID YOU FQRGET TO INITIALIZE ',0.

'NUMBtR',Q,E>)l
IF ^CORECTUJ THEN BEGIN NAME < NUMBER) I PR INT < <30C. • YOUR ANSWER, ',

0,'NUMBER',Q,'-»,-3D.', IS INCORRECT«>,
- S U F CORECT (4 J THEN 1 ELSE 0)J
< t <NOT ENOUGH TREES I N PATM>'>,<E>>J

IF CORECTU] THEN PR I NT <' 40C. » ALSO, THAT * ,
•PORTION OF THE PATH WHICH YOU DID TRACE ',
•OUT IS INCORRECT', E>>i

END I

IF DISTANCE <0 THEN PR I NT(<30c.'DID YOU FORGET TO INITIALIZE t,
'DISTANCE',E>>

ELSE IF -CORECT13) THEN BEG IN NAME(DISTANCE)I
PRINT(<30C,'Y0UR ANSWER. •,0,•DISTANCE',
0,••',-lD.BZL.* IS INCORRECT',E>)

END i
PRINT(<30C,'THE PATH WHICH YOU TRACED OUT IS I•,E.30C.'PATHJ « >) |

EST - IF NO< NUMBER THEN NuMBER ELSE NO]
P * IF 15 < EST THEN 15 ELSE EST)

FOR I - 1 STEP 1 UNTIL P DO
IF PATH 111 > -1000
THEN BEGIN NAME{•NONE *)I PR I NT(<4A,•.•>) END
ELSE BEGIN NAME(PATH(IJ > J PR I NT(<-3&,*,* > t END)

IF P » 0 THEN PRINT(<35C.10B,'WALK DIRECTLY TO ROAD',5?B,2E>)
ELSE PRIMTU1L.3B. • <END> •, 2E>) I

PANSl NAME(NQ,TDTD,I*NO(TRAIL!I])))
PRINT(<12C.*TEACH ANSWERS ARE i . i

•DISTANCE',0,»a',.
ARE ',0,•NUMBER•,Q,'a',2D,2B.Q,
-lD.8ZL,E,30C,.»PATHt '>,

*N0<-3D.•»•>>)
IF NO • 0 THEN PRINT(<35C.10B,-WALK DIRECTLY TO ROAD•,528.2E>>

I

F

1 4 0 3 7

1 4 0 5 6

1 4 0 6 4

1 4 1 1 1

1 4 1 5 0

1 4 1 7 2

1 4 2 1 7

1 4 2 3 1

1 4 2 3 3

1 4 3 0 2

1 4 3 2 1

1 4 3 3 4

1 4 3 6 4

1 4 3 7 5

1 4 4 1 5

1 4 4 2 1

1 4 4 2 3

1 4 4 4 1

1 4 4 6 7

1 4 4 7 0

E L S E P R I V T U 1 L . 3 B , ' < E N D > • , 2 E > > I

O U T »
I F 0 0 0 - 5 T H E N S O T O F l N l

P R l N T (- . 6 0 < ' * / ' > # < 2 E >) J 0 0 0 * 0 0 0 + 1 1 S E T l i A T l
F O R I - l S T E P 1 U N T I L 2 0 0 0 P A T H I 1] — 1 0 0 0 1 N U M B E R - D I S T A N C E - 1 0 0 0 J

N A M E (O 0 O , N , S) I

P R I N T U 5 C , •) - . ' , 1 2 C , ' F O R D A T A S E T ' , 1 D , ' Y O U H A V E B E E N G I V E N

• N . ' , 2 D , « S - ' , 2 D , E > H
I F I S P R I N T T H E N

B E G I N N A M E (1 - » N (I , X I 1 1 » Y 1 1 I > > I P F

p H l N T (< 1 2 C , ' Y 0 u R P R O F E S S O R I S L O S T

, ' F O R E S T i • , 2 E , 4 0 C , ' T R E E N U M l

I - N (I , X (1 1 » Y t I 1 > > « P R I N T (< 1 2 0 B , E > > »

I N T H E F O L L O W I N G '

N U M B E R ' .

' C O O R O l N A T E S ' . 2 E > . * N < 4 5 C > 2 D , 5 6 C , • (' . - 4 D . ' , * ,

- 4 D , ') ' , E > , < 2 E >) I E N D

E L S E P R I N T (< 1 6 C , • T H E S A M E G L O O M Y F O R E S T A S T H E L A S T S E T *

, 3 E >) I

G O T O T C H N D I

F l N l N A M E (S T U D N 0 , 0 C 0 0 , O 0 O » i

P R I N T (< 7 3 C , ' S T U D E N T N U M B E R « . 3 Z , ' S C O R E S ' , 2 D , • O U T O F t , 2 D , E > H

H A L T J

T C H N D I

E N D O F T E A C H 1 7 *

< - W H

A L

1 4 4 7 4

1 4 5 0 2

1 4 5 0 3

1 4 5 0 4

1 4 5 1 4

1 4 5 3 5

1 4 5 6 2

1 4 5 7 1

1 4 6 1 2

1 4 6 3 3

1 4 6 5 5

1 4 6 7 0

1 4 7 1 2

1 4 7 3 2

1 4 7 5 2

1 4 7 5 3

1 4 7 7 3

1 5 0 1 3

1 5 0 3 6

1 5 0 4 0

1 5 0 4 3

1 5 0 4 4

1 5 0 4 6

1 5 0 5 0

C O M M E N T T H E F O L L O W I N G S T A T E M E N T S R E C O V E R C O N T R O L

F O R T E A C H I N C A S E O F E X P O N E N T O V E R F L O W A N D A D R O P S I

P R O C E D U R E A D D R E S S . M E S S A G E) B E G I N I N T E G E R T l

C L A 2 1 3 3 , 5 1 G E T A D D R E S S

S T I 0 T | S A V E I N T E M P

N A M E < T U

P R I N T (< 1 2 C , ' T H E A D D R E S S O F T H E C O M M A N D T O B E E X E C U T E D ' ,

• F O L L O W I N G T H E C O M M A N D W H I C H C A U S E D T H E E R R O R I S ' , A D . 2 e >) l E N D l

M L X P Q Z « - F A L S E I O O O * O C O O * 0 | G O T O B C w L X Z l

X Q A D R P l P R I N T < < 1 2 C , ' Y O U R P R O G R A M H A S C A U S E D T H E G - 2 1 T O A T T E M P T ' »

• T O E X E C U T E A N I L L E G A L C O M M A N D , E I T H E R S O M E F O R M A L A N D A C T U A L » ,

' P A R A M E T E R S ' , E , 1 2 C , ' A R E N O T I N C O R R E S P O N D E N C E O R A S U B S C R I P T I S O U T •

• • O F B O U N D S . ' , 2 E >) I A D D R E S S . M E S S A G E ! G O T O B C W L X 7 I

X Q E X P O l P R I N T (< 1 2 C , ' Y O U R P R O G R A M H A S C R E A T E D A N E X P O N E N T O V E R F L O W . ' ,

' P L E A S E C H E C K F O R D I V I S I O N B Y A V E R Y S M A L L N U M B E R ' , E , 1 2 C ,

• O R F O R M U L T I P L I C A T I O N O F T W O V E R Y L A R G E N U M B E R S • ' , 2 E >) I

A D D R E S S , M E S S A G E)

B C W L X Z ! R U N E R R O R < X Q A D * P , ' A D R P ' , M L X P Q Z >)

R U N E R R O R (X Q E X P O , ' E X P O • , M L X P Q Z > I

N E X T I T E A C H 1 7 (2 0 0 . N , S , X , Y , N U M B E R , P A T H , D I S T A N C E) !

T *• S I C O M M E N T T H E P R O F E S S O R S T A R T S A T T R E E S I

N U M B E R *• I *• 0 I

C O M M E N T * # * # H E D I D N ' T I N I T I A L I Z E O I S T A N C E T O 0 / / / I

W A L K A G A I N l

B E G I N

R E A L D I S T , D X , D Y , T E S T) I N T E G E R I I

D M I N » . 8 I C O M M E N T C U R R E N T M I N I M U M D I S T A N C E I

0 1 I C O M M E N T B E G I N A T T H E F I R S T T R E E . . . I

F O R I «• 1 S T E P 1 U N T I L T - i . T + l S T E P 1 U N T I L N D O
B E G I N

C O M M E N T C O N S I D E R E A C H T R E E (E X C E P T T) I N T U R N I

T

1 3 1 1 3

1 5 1 3 3

1 5 1 5 1

1 5 1 6 2

1 5 2 0 0

1 5 2 0 3

1 5 2 1 6

1 5 2 3 0

1 5 2 4 3

1 5 2 6 3

1 5 2 6 5

1 5 2 7 3

1 5 3 0 0

1 5 3 0 1

1 5 3 3 1

1 5 3 3 5

1 5 3 4 0

1 5 3 4 3

1 5 3 5 2

1 5 3 6 0

D X * X | I) - X I T I | D Y •• Y I I J - Y I T)

D I S T »• S Q R T (D X * 2 + D Y * 2) I

T E S T - A B S (X I Q I - X l T I) • D Y

- < Y I O) - Y I T J) « * B S

I F A B S (D I S T - D M I N) < . 0 1 * O I S T
> c i m c t . D M I N) < , 0 1 » D M 1 N * A B S C D I S T

T H E N

A B S C D X !

. 0 3

) <

B E G I N C O M M E N T D I S T A N C E O F T R E E I A N D T R E E Q
C L l l T u l l A R E W I T H I N i P E R C E N T I

I F T E S T > 0 v (T E S T . O * X l l l > X t Q J

T H E N G O T O N E W T R E E

E N D

N E W T R E E t

E N D

E N D

E L S E

O F I L O O P

B L O C K I

I F D I S T < D M I n T H E N
B E G I N D M I N * D I S T } I e n d

R O A D D I S T A N C E * A B S (I F A B S (X l Q l) > A B S < Y (0 1) T H E N Y I O) E L S E X (Q I) J
C O M M E N T • * • # T H E S U B S C R I P T S S H O U L D H A V E B E E N Q I N T H E A B O V E I

I F R O A D D I S T A N C E D M I N T H E N
B E G I N

n t < D I S T A N C E - D I S T A N C E + D m I N

I

X I T)

N U M B E R - N U M B E R • 1

X I T) * . 1 0 I C O M

T R A N S F O R M

A M O R E G E N E R A L

• A T H p

) W A L I 1

E N D S T A G G E R T O N E X T T R E E

C O M M E N T T H E N E A T W A Y T O C H A L K T H E T R E E I

I T O U T T O " I N F I N I T Y " , S O I T W I L L B P I G N O R E D .

E R A L M E T H O D I S T O U S E A B O O L E A N V E C T O R » C H A L K » J
T P A T H I N U M B E R I <

G O T O W A L K A G A I N I

1 5 3 6 1

1 5 3 6 5
3 1 9 6 . W O R D S

E L S E D I S T A N C E * D I S T A N C E

G O T O N E X T

E N D S O L U T I O N T O P R O B L E M 1 7

+ R O A D D I S T A N C E

0 0 1 0 0 1 3 7

0 I

I

4. EXAMINATION PROBLEMS CONCERNING PROGRAMMING

We list here some general classes of problems which convern pro-

tion.

(2) Draw a flow chart for a given ALGOL program.

(3) Write an ALGOL program from a given flow chart.

(5) Detect and correct "semantic" errors in a syntactically cor­
rect program which Is intended to perform a specified task.

(6) Given a specified subset of the ALGOL language, indicate how
the ALGOL constructions which have been omitted from the sub­
set can be replaced by constructions in the subset. To clari-
by this, we will give examples both from ALGOL and from
machine language.

Example 1 : ALGOL Subset

LI'L ALGOL is a programming language similar to ALGOL in every
respect, except that the following ALGOL constructions are not allowed:

for statements
Switches
relations (except that = and > are permitted)
Boolean operators (i.e., A, V)
else

Each algorithm written in ALGOL can also be written in LI'L ALGOL.

For each of the following ALGOL constructions, write a LI'L ALGOL
construction which has the same effect.

(a) if A = B then X <- X + 1 else B <- sin(X) ; NEXT:
(b) if C < D V N t 1 then go to SKIBO ; NEXT
(c) for S -̂ .3, T stej> 1 until 20 do X ; NEXT:
(d) switch G <- LI, L2, L3 ; go to G[I] ; NEXT:

Example 2: Machine Language Subset,

following:

which
consists of the

(1) Each command contains only an o£ code and an address A.
(2) There are only four possible op codes:

Op Code Mnemonic Meaning

CIA
STO
CHS
SOT

CLear and Add
STOre
CHange Sign
Subtract One

and Test

AC *- MEM[A]
MEM[A] <- AC
AC <- -AC
AC «- -AC - 1

if AC < 0

AC is a pseudo-ALGOL variable which represents the "Accumulator". NC
represents the "Next Command" register which contains the address of
the next command to be executed. That is, CHS merely changes the sign
of the accumulator AC. SOT simply subtracts 1 from the AC contents;
If the result is less than 0, then the next command is taken from lo­
cation A instead of from the location following the SOT command.

Here is a section of a program on your simple machine. Assume
that the three names ZERO, Q, and REM stand for addresses of three
data cells, and that cell ZERO always contains the number 0. Draw a
primitive flow chart of the process performed by this program.

Location Opcode Address
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

CLA
SOT
SOT
SOT
STO
CLA
CHS
SOT
CHS
STO
CLA
SOT
(next

REM
1002 —i
1003 J - i

1012 4-1
REM

1008J

Q
ZERO
1000

segment)

t

Below is a list of short problems to be programmed in this simple
machine language. The problems marked with asterisks are harder than
the others. Commands may be placed Into any cells; If additional tem­
porary data cells are needed, call their addresses TEMPI, TEMP2, etc.
The best solutions will be the shortest ones.

(a) If REM < 0 then REM *- -REM else q <- -Q
..v r 0 If REM contains an odd number i Here the cell REM con¬
* ' ll if REM contains an even number. J tains a number * 0.

*(c) Q «-max (q, REM)
*(d) Perform general addition: REM + Q, leaving sum in A C

REM and Q have either sign.

PART V. BIBLIOGRAPHY

General Programming:

Arden, B. W., An Introduction to Digital Computing.

Galler^Bt^.^Th^Lan^uage of Computers: An Introduction.
McGraw-Hill, 1962.

Introduction to ALGOL:

Anderson, C , An Introduction to ALGOL 60.
Addison-Wesley, 1964.

Bauer, Feliciana, and Samelson, Introduction to Algol.
Prentice-Hall, 1964.

Dijkstra, E. W., A Primer of ALGOL 60 Programming.
Academic Press, 1962.

McCracken, D . D . , A Guide to ALGOL Programming.

Other Computer Languages:

McCracken, D . D . , A Guide to FORTRAN Programming.
Wiley, 1961.

Organick, E., A FORTRAN Primer.

Sherman, P. M., Programming and Coding Digital Computers.
Wiley, 1963. This excellent book deals mostly with
machine language.

Introductory Numerical Analysis:

Henrici, P., Elements of Numerical Analysis.
Wiley, 1964.

McCracken,'D. D . and Dorn, W. S., Numerical Methods and

• a w a j S - . S
MacMlllan, 1965.

More advanced treatments of ALGOL:

Pennington. R. Introductory Computer Methods and
Numerical Analysis. MacMlllan, 1965.

Bottenbruch, H., "Structure and Use of ALGOL 60",
J. Assoc. Comp. Mach. 9, (April 1962), 161-221.

Naur, P. (edlTor), "Revisld Report on the Algorithmic Language
ALGOL-60". Comm. Assoc. Comp. Mach. 6, (January 1963), 1-17.

Bottenbruch's tutorial article contains a particularly good treat­
ment of procedures. The report edited by Naur is the basic official
document defining the ALGOL language.

General Technical Journals:

Communications of the ACM, publsihed by the Association for

JournaHf ̂ Se A^^saS'publiaher as CommunicatLs'ab^:
Computer Journal-published by the British Computer Society

^ ^ ^ ^ ^ ^ — °f ^ A880C1-
These journals are a fertile source of ideas and inspirations for
programming problems. We should also point out that the Communi­
cations of the ACM contains an Algorithm section each month, in

rt^sjr«iT"varlety o£ a l 8 o r l t h M f°r n™tlc'1

