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FOREWORD

The coursge described herein is the means by which a university stu-
dent is introduced to complex computation. This first contact should
happen at the earliest possible time in his college education, and the
contact should be analytical, not descriptive. Together with courses
in mathematics and natural language, this course should contribute to
his development of fluency in the use of intellectual tools.

It is hoped that the material presented here will be helpful in
organizing a first one-semester course in computing. Because this course
is limited to one-semester, it does not contain many things that a pro-
gramming course should. Succeeding courses involve the student in sym-
bol manipulation, per se, and in the details of designing real and, hence,
complex computer systems.

The operation of this course is supported by a digital computer and
its assoclated programming systems. Since the intent 1s to make the com-
puter a natural tool for the engineer and scientist, the student should
be allowed to make use of the computer in his other technical courses
during succeeding semesters.

A few comments about the operation of the computers at Carnegie
Tech might be in order. The current system is a Control Data Corporation
G-21 possessing two processors,a large core storage (=~ 65,000 words) and
disc files having 48,000,000 characters of storage.

While everyone must compose and prepare his own program, the computer
processing of programs is accomplished by a professional staff. Thus, ex-
perience in equipment tending is not part of the education arising from
this course.

The student is treated in no way differently from faculty or staff
in the nature of, duration of, or frequency of his contact with the pro-
cessing capacity of the computer. One of the by-products of the course
is familiarity with the administrative system that inevitably surrounds
access to every large computer system ~~ familiarity with the many com-
puter languages, library routines, input teletypes, etc.

This course is an introduction to the fledgling subject of computer
science and should be followed by access to baccalaureate (and doctoral)
programs in this area. Carnegie provides this access through options in
the mathematics and electrical engineering programs. Both are described
in the school catalogue.
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PART I - INTRODUCTION

The time is approaching when all undergraduate majors in engineer-
ing and the physical sciences will be expected to receive at least an
introductory course in computer programming. This is simply a reflec-
tion of the increasingly important role of computing machines in the
professional work of these fields. For example, the new interest in
the discrete system approach to engineering problems is due in consid-
erable measure to the avalilability of modern high-speed computing
machines to perform the extensive numerical computations which these
methods frequently entail. Hence a programming course must form an
esgential part of a curriculum including discrete system concepts.

A course in computer programming can be taught from any one of
many different points of view, depending upon its function in the
curriculum. Thus, a course in any of the following three areas could
be considered a "course in introductory computer programming:"

(1) Applied Numerical Analysis.

This would be partly or entirely a mathematics course, per-
haps included in the standard n-semester sequence of analytic
geometry, calculus, and differential equations. Such a course
might teach just enough programming to allow students to usge a
computer to solve problems in approximation, numerical quadrature,
numerical solution of differential equations, etc.

{2) Problem Solving.

Such a programming course would consist almost entirely of
a gset of problems whose solution required the student to employ
analytic and creative thinking to develop a suitable algorithm.
This course would attempt to develop general problem-solving
skills in the student, with computer programming serving only as
a source of problems to be solved. The computer itself would sit
in final judgment, determining quite objectively the success of
the student's intellectual effort.

(3) Theory and Techniques of Programming.

. This course would focus on programming as a distinct field
of knowledge with its own concepts and techniques (without, how-
ever, losing sight of the idea of a computer as a computational
tool). The course would explore methods of organizing data and
programs, of defining computer languages, and of dealing with
the severe limitations of machine time and memory space which
plague "real" programming problems.




Most introductory programming courses will contain some mixture of
these three componente., This monograph describes a course* developed
to emphasize the last two components: problem solving, and program-
ming theory and techniques.

The central task in such an Introductory programming course is
to teach the students s working knowledge of an algorithmic program-
ming language; we have chosen to use the language ALGOL-60, for
reasona discussed later. Such a "higher level” language has several
easential pedagogic advantages over machine language for an introduc-
tory course. Using a language like ALGOL, the students can understand
and create relatively complex algorithms and programe and can solve
meaningful problems alwoat {mmediately on the computer; furthermore,
the instructor can explain important concepts of data and program or-
ganization -- for example: arrays, mapping functions, name and value
parameters, and dynamic atorage allocatfon -- much more easily.
Hachine language should enter such a course only in simplified,
"cleaned-up" form, as background for understanding the meaning and
implementation of ALGOL constructs. For those students whe wiash to
study programming further, there should be advanced courses covering
machine language as well as compiler construction, monitor systems,
and list procesaing languages.

The course which we are describing would be organized with class
meetings divided between formal lectures and -amall discussion sections.
A suggested outline for the lectures appears in Part II; in generzl,
they should cover introductory material on programming and computation,
including the following topica: algorithms and théir pitfalls, flow
charts, ALGOL, data structures, program organization, computer organi-
zation and machine language, and the precise specification of mechani-
cal languages. The discussion sections, containing at most 20 to 25
students each, would be largely devoted to explanation and discusaion
of the specifics of ALGOL programming.

_ A sultable basic textbook for the programming course would be "A
Guide to ALGOL Prograeming”, by Daniel B, McCracken; this and other
suitable books are listed in the Bibliography, Part V. McCracken's
text is8 a clear introduction to ALGOL, and contains a good set of ex-
amples drawvn from the flelds of engineering and physical sclence. How-
ever, we feel that it 1e deairable to supplement this text, geing more
deeply into areas including the following: :

* The prototype of the course described in this moncgraph 18 a
course (5205} taught for the paat five years at Carnegle Institute of
Technology.
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*]1, Flow charts and algorithms,

2. The grammatical atructure of an ALGOL program; for example:
explanation of the punctuation rules in terma of the syn-
tactic atructure of statements, compound statements, etc,;
conditional expressions; and the "dangling elge' ambiguity
in ALGOL.

*3, Data structures: arrays, mapping functions, accesgs tables,
and trees.

*4. Procedures and subroutines,
5. Block structure and dynamic array storage allocation,

6. Machine language and, in particular, the machine language
representation of an ALGOL program.

*7, Backus Normal Form for definition of programming language
gyntax. ’

Supplementary notes have been prepared to cover the topics in this

list which are prefixed with an aaterisk; these notes are contained
in Part III of this report, together with some sample homework and

examination probleme related to each topic.

Programming is a skill which is best taught with a balanced com-
bination of (1) lectures and text book readings, and (2) experience
gained through solving programming problems. Therefore, it ig of
fundamental importance that students in an introductory course write
ALGOL programs to solve 5 to 15 practice problems and debug their
programs on a computer. In general, these problems can be divided
into two classes: (1) programming technique problems, which in con-
Junction with the lectures are intended to teach the student particu-
lar concepts; and (2) algorithmic problems, which are exercises in
analyzing the structure of problems and in developing sujitable algo-
rithme for their solution. It is the latter problems which provide
the "problem solving" component of the course. A sample of suitable
problems, ranging from very easy to very difficult, is contained in
Part IV.

The astudents are provided with library procedures, called "TEACH"
procedures, to ald them in debugging their programs on the computer,
A TEACH procedure supplies test data to their program and checks their
results; the same TEACH procedure is also used to mechanically grade
the problem solutions. The use of TEACH procedures is explained in
Part IV.
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We should comment upon the choice of the language ALGOL for
teaching an introductory programming course. In fact, the students
mist learn two dialects of ALGOL: the official lanpuapge ALGOL-60 as
well as the particular hardware repragentation which is available to
them on the computer. The differences between these dialects should
be minor; 1f se, the instructor should avold emphasizing the distinc-
tion but instead treat the two langnages as members of a family of
nearly identical languages, all simply "ALGOL"., For example, ALGOL-20%
allowas the symbol " to be used interchangeably with the ":=" symbol
of ALGOL-60 as an assignment operator. In this monograph, "' has
been used in preference to ":=" even when the text is nominally the
Reference Language ALGOL-60. It has been observed over four semesters

thact students readily accept this mild linguistiec schizophrenia.

Since ALGOL was designed aa a publication language and is there-
fore quite readable, it is useful for describing algorithms and pro-
gramming concepta even 1f a completely different language is taught
to the students for actual programming. Before an ALGOL translator
was avallable at Carnegie Tech, the introductory programming course
taught a locally-developed FORTRAN-like language called GATE; even
at that time ALGOL was introduced in the lectures as a natural and
efficient way of atating algorithms. Thus, it was much easier to
write:

for T 1 step 1 until 20 do AI-I AL, H b
oT
Ye«(1if X>Y then X else Y)

than to draw the corresponding flowcharts on a blackboard; very little
explanation was needed to give the students a reading knowledge sufff-
clent to Interpret these stztements,

Several other advantages of ALGOL for an introductory course can
be cited, ALGOL is an internatfonal standard language for publishing
algorithme; many important algorithms have been and will be published
in this form. Hence it is uvseful for a student to have at least a
reading knowledge of the language. The ALGOL language has a simple
and logically clean structure, but is a rich language; furthermore,
it has established a standard nomenclature which is very useful for
talking about computer programming and other computer languages,

* MALGOL-20" is the hardware representation of ALGOL-60 developed at
Carnegle Institute of Technology for the CDC G-20 computer.

A




PART II - AN OUTLINE OF LECTURES FOR AN INTRODUCTORY PROGRAMMING COURSE

A.

Algorithms. (4 lectures)

1,
2-

Necessity of algorithms for numerical computation,
Algorithmic languages: flow charts, ALGOL.
a. Flow charts.

(1). Execution of a flow chart.

(2). Flow charts within flow charts: hierarchy, down to
"primitive" flow chartes which use only the "basic"
arithmetic and test operatioms.

(3). Examples of simple flow charte; loops.

b, ALGOL.

(1), The dual role of ALGOL -- communicating algorithms
and programming a computer,

(2). ALGOL program: sequence of statements (commands).

(3). Order of execution; rules for determining successor.
GO TO and IF statements. Compound statements.

(4) . ALGOL syntactic structure: Identifiers, expressions,
statements, declarations,

Programs and Computers., (2 lectures)

1-

Organization of computer: memory, arithmetic unit, and control
unit,

2, Fetch/Execute cycle. Sequential execution,

Relationship of ALGOL names to computer memory. Addresses.

Translation va. execution of ALGOL program. Existence of a
"machine language representation” of the source program.

Data structures and representations, (3-4 lectures)

1,

Arrays, the primary data structure of ALGOL,

a., ALGOL subscripted variables:
Declarations, subscript bounds, dimensions,




b. Examples of the use of arrays in ALGOL programs.
kepresentations of tables, complex numbers, polynomials.

¢. The memory mapping functions for ALGOL arrays.
Accesgs tables.

2. More general data structure.
a. General access tables, "lagged” arrays.
b, Trees.
c¢. The problem of variable length Information: compact storage,
insertion, and deletion; list atructures.
Program Structures: Subroutines, Procedures and Blocka. (3-4 lectures)

1. Subroutine: BSegment of program which can be executed as a single
"atatement' (or instruction) in a "msaster” program.

g. Subroutine linkage.
b, ALGOL: Declaration ws. call of procedure.

2. Generalization of procedures by parametrization.
a., Formal, actual parameters.
b, HName, value parameters,
c¢. Calculated call-by-name.

3. Subroutines for program organization.

a, Definition of new (non-primitive) "elementary processes.'

5. Independent subprograms: "“Black Boxes", local variables.
Publication of aslgorithms as ALGOL procedures.

¢. Examples of the use of procedures for complex program or-
ganization,

d. Recursive procedures,
4, ALGOL Block atructure.

a, Local wvs. global names.

b. Level of nesting.

¢. Dynamic storage allocation; block administration,

Computing machine structure and operation. {(2-3 lectures)
1. Number representations, and conversion of radix,

2. Elementary wmachine language.

3. Machine language representation of ALGCL programs.
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F.

4. The concepts of lmmediate, normal, and indirect addressing.

5. Machine language meaning of subroutines, call-by-name, call=-
by-value, and array accessing.

Mechanical Languages. {1-2 lectures)

1. Meta- va, object-languages.

2. Backua Kormal Form.

PART IIL - SUPPLEMENTARY LECTURE MATERIAL

ALGORITHMS AND FLOWCHARTS

The Hature of z Computer

In order to understand computer programming, one must under-
stand clearly the basic organization and nature of a computer. As
used in this course, the term ''computer™ is really. shert for the
complete expression: "general purpose adtomatic digital computer'.
We could have further lengthened thie title by inserting the ad-
jective Yelectronic"; all modern digital computeras do operate with
electronic circuitry although in the past they have been built of
mechanical and electromagnetic parts and In the future they might
be pneumatic, hydrawlic, or optical. In ary case, they could be
made of Erector Sets or green cheese as far as we are concerned
here; we are only interested in how they are organized and instruct-
ed to perform calculations,

4 digital computer {8 a machine which performs numerical com-
putations ~- that i{s, ordinary arithmetic -- on numbera represented
in a discrete (or "digital') notation; thus, a digital computer is
a descendant of a mechanical adding machine, each of whose dials
has ten discrete positions, rather than of a slide rule which ia a
continuous (or "analog™) computer, A digital computer has a parti-
cular set of elementary coperations wired in; we will refer to these
operationa as "primitive”. Most computers include the following
primitive cperations:

1. The normal arithmetic operations: addition, subtraction, multi-
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plication and division, symbolized by:
+ - x /

2. Test operations to choose between alternate sets (or'branches)
of commands to be executed; the choice depends upon the outcome
of an arithmetic test on input data or intermediate results,
Any one of the six possible arithmetic relations between twe
quantities could be tested: less than ( <), less than or
equal to ( £ ), greater than ( > ), greater than or equal to
(Zz ), equal to ( = ), and unequal to ( # ).

3. Input and output commands to "read" information into the com-
puter from an external source such as a deck of punched cards
and to record the results on an external medium such as a
printed sheet of paper or a new deck of punched cards.

Different wodels of computers have slightly different sets of
primitive cowmmands wired in, but these three categories are basic
to every modern digital computer.

To perform a computation with a digital computer, a human pro-
grammer must first prepare a detailed list of step-by-step commands
for the machine. This list of commands, called a program, is "read"
into the machine; when the "start button" is pressed, the computer
executes the commands in a precisely defined order, operating auto-
matically and without intervention (assuming, of course, that the
program contains no catastrophic errors!). The program instructs
the machine to read input data, to perform the desired primitive
"arithmetic operations, to use test operations to perform other.
operations selectively and repetitively, and finally to print the
answers,

The task of preparing such a program for an automatic digital
computer is called programming and is the subject of the course
described in this Monograph. A computer program must be:

Explicit -- the wachine does exactly what the program commands,
not necessarily what the programmer meant;"wishful
thinking", a common error of begimning programmers,
doesn't help.

Detailed -~ all the primitive operations must generally be
specified, although there are some clever ways of
reducing the terrible burden of details in pro-
gramming.,




Precise and unambiguous -- a computer IS only a machine and
it blindly executes your program, right or wrong.

We have implied that a computer can perform a different cal-
culation if given a different program; this is certainly true,
This is why the machine is called a general purpose automatic digital
computer. Some special purpose digital computers have been built in
the past with complete programs wired permanently into their circuits;
however, they have generally proven to be uneconomical because the
simplest change in their "program" requires rewiring.

In principle , a general purpose digital computer can perform
(almost) any calculation, given a suitable program to control the
execution, There are, of course, practical limitations of computa-
tional speed and memory space to keep many problems from being solved
on even the largest and fasteat computers available today. There are
also some theoretical limitations on what a computing machine can
compute; a relatively new branch of mathematical logic created in
the last few years deals with this question of "computability".

But the fact that certain logical problems are in principle unsolv-
able on a computer has no practical implications for the ordinary
numerical computations for which computers are mostly employed today;
on the other hand, the practical limitations of speed and size of
machine can be very burdensome, indeed.

Composing a Program

Most computer programs are quite lengthy and complex; it is
not unusual for a preogram to contain 10,000 or even 100,00 individual
primitive commands, each of which must be exactly correct and
correctly placed in the sequence of instructions. The mind boggles
at the thought of writing and rewoving the errors from all these
commanda. Fortunately, the complete program can generally be or-
ganized into a series of tasks, each of which has sub-tasks, which
in turn have sub-sub-tasks, etc, This hierarchy of tasks is the
bagsic principle of organization for most large programs; without
it we could hardly write the complex and lengthy programs which are
common today.

But how do we write a program for even the smallest sub-task
in the hierarchy? There are two general steps to composing a pro-
gram;

1. Deciding upon an algorithm.

2. Expressing the algorithm in a programming language for

the machine. An algorithm is a complete and unambiguous description
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of the steps necessary to perform some (sub) task. Thus, it is a
get of Instructions, complete and detatled enough for a human ~-
or even a machine -- to execute, Like a program, an algorithm
migt he precise and upambiguous.

But how complete ia "complete”, i.e,, how detailed must an
algorithm be? Depending upon circumatances, different levels of
detail are appropriate in an algorithm. Suppose somecone asks for
an algorithm to compute the mean of N numbere, and the anawer is
given, "add them up and divide by N", This anawer has probably
described the algorithm sufficiently completely for the use of a
human (but not a machine). The algorithm could be dressed up
with some mathematical notation: "given a set of N numbers,

Xl, Xz, - XN, the mean 1ls given by the formula:

N
x ¥ X, ,
j=1 &

but no more detail would have been supplied. In either casge, the
. algorithm has asgsumed that the operation of adding N numbers:

=Z|—-

X

1I-I..T."Jz

1
is primitive.
The most detailed algorithms are those which use only the

"primitive operations built into a computer; we will call these
primitive algorithms, The fact i{s that the operation: '

1s pot primitive in most computers; in the next section we will
give a primitive algorithm for this computation., McCracken in
Chapter 1 of A Guide to ALGOL Programming* uses the square.root
operation ag if it were primitive; it i{s not primjitive in most
computers, and,in fact ,MecCracken gives a primitive algorithm

for square root in Section 4.1 of his text. Raising an expression
to an integer constant power -- e.g.,, W3 or (a + 3b)2 -- will be
considered primitive, since it is just shorthand for a product
which could be written explicitly -- "W x Wx W™ or "(a+ 3b) =
( a+ 3b)". On the other hand, XN, where N is a variable, is not

* See Bibliography, Part V.
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primitive; we would not know how many factors of X to write since
the value of N would not generally be known when the algorithm
wag prepared,.

Flow Charts - A Language for Expressing Algorithms.

Before we discuss programming languages, we want to clarify
the requirements for an algorithm, and particularly for a primi-
tive algorithm; we will therefore take up a language for describ-
ing algorithms, known as "flow charts" (also called "block dia-
grams'). Flow charts are not a programming language, largely
because they are two dimensional and pictorial, and there is no
convenient way of reading them into the computer. This situation
will almost certainly change, since graphical input devices
using large cathode ray tubes are now being developed for compu-
ters; but for the present, flow charts are limited to expressing
algorithms. They are extremely useful for organizing complex
programs since the prograwmer can use any level of detail he wants
in his flow charts. For example, he can draw a general flow chart

-which shows only the outline of the program, with each principal

task as a single box; at the other extreme, he can prepare a
primitive flow chart, giving the algorithm in complete detail

using only the primitive operations of the computer.

A flow chart uses boxes and arrows to show pictorially the
"flow", or order of execution, of a program. It has three essen-
tial types of components: Computation Boxes, Arrows, and Test
Boxes. These will now be described in turn.

1. A statement, group of statements, or more generally the name
or description of a "complete step" in the computation (or
an input/output operation) is represented inside a rectangular
computation box.

Computational

or

Input/Output
Step

v

2. A flow chart describes the order of the steps of a computation;
arrows are used to indicate the order in which boxes are to be
considered and their contents executed. An arrow leads from:
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each box to its successor, i.e., to the box which is to be
executed next., Since a computation box can have only one
successor, it will have only one arrow drawn leaving it; how-
ever, it can have any number of arrows entering since it can
itself be the successor to any number of boxes.

The successor can be chosen conditionally by an oval test box.
This box contains a condition or test which can be true or
false, and has an arrow leaving from each end:

i

T CONDITTON . h

If the condition is true, the successor of the test box is
indicated by the arrow from the "I" (true) end; otherwise,
the arrow from the "F" (false) end points to the successor.
A flow chart should always uniquely specify a successor to
each box, or else we have not defined the algorithm suffi-
ciently precisely and explicitly. Here is a very simple
example, a flow chart which describes the general algorithm

of most computer programs: I
ead Input

Data Set
Compute
Answers

Print
Answers

sle_
T Last Data
of Set?

Now let us imagine we had a computer which could execute flow
charts directly -- i.,e,, a computer whose primitive machine
language was flow charts. The basic execution cycle would be:
(1)’ fetch, from the flow chart stored in the computer memory,
the next box to be executed, and (2) execute it; fetch the
next box, execute it, fetch the next box, etc, The fetch pro-
cess would be accomplsihed by following the arrow to the suc-
cessor box. The computer would start_at the "entrance" symbol
( Y' ) and stop at the "exit" gign ( ). This alternation
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of fetching the next command and then executing it, called
the "Fetch/Execute" cycle, is fundamental to automatic com-
puters.

We will sometimes find it convenient to indicate arrows im-
plicitly by "labeling" the succezsor box (we will use a colon
to attach the label to the box) and using a "GO TO" box in
the form of a circle or oval containing the label.

It 18 now time to define exactly the Form of a primitive
flow chart., A computation box of a primitive flow chart contains
only basic computational instructions; each of these inatructiona
is executed in two phases:

1. The primitive arithwetic operations +, -, x, and / are per-
fotmed on variables and mumbers, to calculate a new number;
and

2, The result is substituted for, or "Massigned to", a variable.
Note that an algorithm must ageign to a variable each inter-
mediate result which ia to be saved for later use in the cal-
culation; a computer value can be referred to only if it "has
a name".

These two phases are summarized In an sssignment statement, which
has the following fotm:

/A K

where: pris any variable name (which may have a subscript),

and 6 18 any mathematical expression or formula which
defines a value to be computed using only primi-
‘tive operationa, We wiltl use & for such an
arithmetic axpreasion,

This is an jmperative to compute the value of the expres?
sion & s and then assign it to the variable named 2/ . For .
example, the assigmment statement:

Y «3A+ fB2

should be considered as a command to compute the value of the
expression 3A + B2 using the current values of the variables A
and B, and then substitute the result for ¥, replacing whatever
value Y had previously. The varfable Y can have a subacript, as
can any of the variables in the expresgion,
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A flow chart contains no statement of facts, only commands.
It is Important that we recognize the difference between mathe-
matical equations which are passive assertions of fact, and
agsignment statements which are imperatives.

Mathematics:
Y = sz + BX + ¢

Algorithm:
Y e—sz + BX + C

Mathematics:
I=I+1

Algorithm:
I «I+1

T e |x]

A primitive test box can

form: .

(T3

4

This 1s a statement of mathema-
tical fact. When A, B, C, or X
changes, so does ¥ (or else the
assertion becomes false).

This 15 a command to first compute
the value of AX? + BX + C and then
agsign this value to the variable
Y. Subsequently changing A, B, or
C does not change Y, unless this
assignment statement 1s executed
again,

This is nonsense.

This is an operation fundamental
to programming since it counts by
1.

Thia 15 not primitive, since we
did not incliude absolute value
among the primitive operations.

contain only simple conditions of the

G ADS

where é?; and é:z are expressions as defined earlier, and V4
is any one of the six possible arithmetic relatioms: <, =, =, >, =,
or #. For example, the following test boxes are primitive:
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T|X >Y +2 |F
_/

T ISN 1 | TA/IOEBz-ltAC F

Examples of Algorithms as Flow Charts.

The first two examples we will give, Absolute Value and Trun-
cation, are built into many computing machines as primitve opera-
tiong, and could therefore be considered tc be primitive in flow
charts,

EXAMPLE 1: Absolute Value.

If is not primitive, then it can be found from
the primitive algor{thm:

T X<0 19'—

Y =X Y «4X

) 5

EXAMPLE 2: Truncation,

The Truncation operator is symbolized by a down arrow (" i");
it removes the fractional part of a number, leaving only the integer
part. For example, 1(3.76) = 3, and 1(-3.76) = -3. To make a
primitive flow chart for trumcation, we must subtract 1 repeatedly
until the result is less than l; therefore, our algorithm needs a
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loop, which is traversed repeatedly until a condition is met. The
following primitive flow chart will compute: Y « IX; note, how-
ever, that this algorithm is absurdly inefficient.

Y «0
A(——IX[

'l

l
____(E A< F

A«A -1
Ye¥Y +1

N2

4 N @

EXAMPLE 3: Summing N numbers.

Suppose we are given a set of N numbers, in the variables
X], Kz, ey KN, and we need to compute their sum:
' N

Y= X, =X

I % P FE e+ X

If N is a small constant, we can write a single assignment state-
ment; for example, f{f N = 3, the complete algorithm is:

1 2 3

Y<X +%,+X

But suppose N 1s large so that we don't want to write out all the
terms, or, as is common in programming, the value of N is variable
and may be different each time the algorithm is executed. Unfor-
tunately, we can't use the three dota of mathematics in an algo-
rithm or a program since this is not explicit enough for a machine.
Instead, we must use a loop. The following loop will work:
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SUM <0

i1

SUM « SUM + X

l

i

1 «1+1

This algorithm can be explained in the following way: 1t
executes the process: "add X; to the sum-so-far" {(i.,e., "S5UM «
SUM + X{")} N timea, with i taking each of the values 1, 2, 3, etc.,
uvp to (and including) N. The result is to compute the sum of the
N mumbers and leave the result in the wariable SUM.

Without explaining i{ts exact meaning at this state, we can
polnt out the plausible ALGOL notation which is equivalent te this
flow chart:

SUM « 0

for 1«1 step 1 until N do SUM < SUM + X[1);

Thie can be read as follows: ™assign 0 to SUM; then for values of

i starting at | and increasing in steps of 1, until N is reached,
do the assignment: SUM « SUM + X",

The flow chart for summing N numbers is a particular example
cof a very general cless of algorithms containing a loop. We can
abastract the general features of all of these flow charts by as-
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suming that there is some '‘basic process' depending upon i and sym~
bolized by 191 , to be executed for 1 = 1, 2, ..., N:

!

initialize

1«14

The box containing " 491" can represent any complete sub-flow chart.
Notice carefully the general features of this generic flow chart:
(1) First an “initialization box" sets things up.
(2) A test is made for completion; if N = 0, one ugually
doesn't want f91 executed even once, so it is better to
test for completion before going to step (3).
(3) Execute the basic process .
(4) Step to next i value, and go back to (2).

This general loop flow chart can help in developing particular
algorithms; one answers the question, "what basic process, if exe-
cuted for { =1, 2,...,N, will accomplish the desired task?" This
ia essentially an algorithm for making up algorithms, and is a very
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useful approach, as we will now {llustrate.
EXAMPLE 4: Finding the Largest of N Numbers.

.Suppose we wish to find the largest {the "maximum") of a set
of N numbers: X;, X;,...,Xy. Since N is a variable, we need to
apply the general loop flow chart, The following basic process
will find the maximum if executed for i =1, 2, 3,..., N: "If X4
is larger than the biggest-found-so-far, then use Xa as the biggest-
found-so-far". 1If the variable BIGST contains the "biggest-found-
so-far", this basic process is defined by the following flow chart:

I

T Xi > BIGST F

BIGST « X

Note that the entrance (" 1r ") and exit (“(:) ") symbols stand
for the "local" entrance and exit of this sub-flow chart, not the
entrance and exit of the bigger flow chart of which it is a single
box. Thus, we will generally assume that every flow chart (call it
"F1") only represents a single box of a larger, less detailed, flow
chart (call it "Fp"); then the entrance symbol in Fy stands for
arrows in Fg from predecessors of the Fy box, while the exit symbol
in Fy stands for arrows to the successor in Fj;. Substituting the
sub-flow chart for BIGST into the general loop gives a complete
algorithm for finding the largest value of the N numbers.
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l

BIGST «-Xl
1 «2
T iS N F
T Xi > BIGST F
BIGST « X 11 +1

We have initialized BIGST to Xy, and started the loop with 1 = 2 in-
stead of 1 =1,

EXAMPLE 5. Sorting N Numbers into Ascending Order.

A very simple (but inefficient)method of sorting N numbers
X715 Xoy.0.,Xy into order is the following: find the largest of the
N numﬁers and interchange its value with Xy, so the largest 1is at
the end of the list where it belongs; then find the largest of
Xjs++-3XN-1» and exchange its value with Xy ;; this is continued
until all are sorted. It is convenient to consider the basic process
to be executed for j = N, N-1, N-2, ... , 3, 2; the process is:

Firat, find the (largest) subacript L such that X;j is the largest
among X ,...,X {the unsorted values), then interchange the value
of Xp, wlth the value of xj

Thua, the sorting algorithm is given by the following flow chart:
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I

j «N

2

ol
jE 2

Find largest subscript
L such that:

xL = maX(x-l ,Xz, e .Xj)

Process "P," executed for

| 3
\L j = N, N~1, ..., 3, 2

2. Exchange values

X °k

l

}ed -1

N

This is not a primitive flow chart since the boxes labeled 1 and 2
" are not primitive, We can give primitive flow charts for each of
them, however. Box 1 is essentially the algorithm of EXAMPLE 4,
except that we are now finding not the maximum value, but the sub-
script of the maximum value; X; takes the place of the variable
BIGST,
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'Find largest L such that %
= mx(x ) X y *eug X ) ie 2
! 2 i L «1

N
!
—

Finally, the algorithm of box 2 requires no loop; however, an extra
temporary variable T ia needed if the two values are to be inter-

changed.
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The Dual Nature of ALGOL,

We have discussed the use of flow charts for expressing algo-
rithms. There is another language suitable for algorithma: ALGOL,
Unlike flow charts, ALGOL is designed to be not only an algorithmic
language but also a programming language; that is, an algorithm
written in ALGOL can be executed on a computer as a program.

This dual purpose of ALGOL is the fundamental reason for the
importance and usefulness of this language. Unfortunately, the
needs of an algorithmic language and a programming language confliect
somewhat, and therefore ALGOL 1s not a perfect language for either
application. ALGOL is generally slightly more verbose and less con-
cise than one sometimes desires in a programming language, in order
that ALGOL programs, or algorithms, can be easily and clearly read
by people. However, considered in its duwal role, ALGOL is the best
algebraic computer language available today.

One of the most important uses of ALGOL is for the internatiomnal
publication of algorithms. There are generally many different algo-
rithms known for most computing tasks, all differing in speed, computer
memory requirements, and accuracy. Many of these algorithms for im-
portant computing tasks are being published along with comments on
experience with them; in the ALGOL language; the publication of algo-
rithms is one of the important results of the development of ALGOL
in 1960, From these published algorithms one can build a library
of tested, certified programs for a great variety of tasks, which
can be called and used by one or two ALGOL statements,

Even if one does not have an ALGOL compiler available and uses
a different language for programming the computer, it is still import-
ant to know ALGOL in order to be able to read published algorithms
(or even to publish them oneself). At the very least, the published
algorithms are a valuable source of ideas and techniques.

The Syntactic Structure of ALGOL.

- If we analyze the structure of a page of English prose, we find
letters formed into words which in turn are formed into gsentences
and into paragraphs, etc., An ALGOL program is built up in an analo-
gous manner from the basic characters, which are put together to
form numbers and variables, to form expressions, and finally state-
ments and declarations. Let us briefly describe each of these levels
of grammatical structure of an ALGOL program.

1. Numbers. We have been using numbers, that is, constants,
without comment in our flow chart., There are specific rules
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for forming correct numbers in ALGOL; see chapter 2 of
McGracken's text. The following are examples of correct
numberas in ALGOL:

137.05, 1, 6.02,,23

1
Variables. Both simple and subscripted variablea can be
used in an ALGOL program, with the same meaning that they
had in flow c¢hartas. I, BIGST, and X1 are examples of ALGOL
simple variables, Since ALGOL programs must be punched into
carda, a subscript cannot be lowered below the line but in-
stead must be inside square brackets, For example,

x{1], x[13, and alx, 342, ©
are ALGOL subscripted variables,

The name of a variable in ALGOL is called an identifier;
In fact, all names in ALGOL programs are identifiers. An
ALGOL jdentifier must have the form of a letter, possibly
followed by one or more letters or digits, The identifier
"X1" could represent a simple variable; the "1" 1is part of
the identifier (that is, the name) of the simple variable;
however, "X[l]" is a subscripted variable, "X-sub-one".
When we write an ALGOL program,the identifiers can be chosen
88 we please; however, the same identifier may not be uged
for both a simple variable and a subscripted variable in the
game program {or, more precisely, in the same block).

Expresaions. We define an expression as: a rule for com-
puting a value, There are different kinds of expressionms,
with different kinds of valuea. The most obvious kind of
value fa arithmetic, and ALGOL contains arithmetic expres-
sions, The complete rules for forming ALGOL arithmetic ex-
pressions are discussed in Chapter 2 of McCracken's text.

In the test boxes of primitive flow charts we had con-
ditions, such as "X > Y". Such a condition is really an
expression which defines a Ytruth" value: ¢true or falge.
An expression which has a true or false value is called a
Boolean expression. A condition is not the only form of
Boolean expression; in Chapter 3 of his text, McCracken
shows that much more complex Boolean expressions are possi-
ble.

Statements. A statement in ALGOL is a complete command, and
generally corresponds to a computation box in a flow chart.
For example, " 1 := I + 1" is an ALGOL assignment statement,
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Assignment statements in ALGOL have the same form as those
we have been using in primitive flow charts. The agsigoment
operator in ALGOL-60 i{s " := "; however, in this monograph
we will use the symbols " := " and " « " jinterchangeably.

Another example of an ALGOL statement 1s the for state-
ment:

for T« 1 step 1 until N do SUM « SUM + X(1] .

A for statement provides a short and concise way of writing a
loop in a program; however, the complete rules for for state-
ments are complex. This is the subject of Chapter 5 of
McCracken's text.

5. Declarations. A flow chart representing an algorithm contains
commands which are to be executed in a particuvlar order.. This
is generally all that is necessary to expreas an algorithm.
However, ALGOL is not only an algorithmic language but also a
programming language; that is, an ALGOL program can be exe-
cuted on the computer. As a result, the programmer has to
put some information into his ALGOL program which 1is not
strictly part of the algorithm. This information, contained
in ALGOL declarations, is necessary eo the program can be
executed more efficiently, and so cholces can be made about
the allocation of the machine's memory to the data of the
program, about the accuracy of the arithmetic, etc, Although
ALGOL statements are commands, ALGOL declaratfons are simply
assertions of fact; that is, they are passive; it is import-
ant to understand this distinction between statements and
declarations.

Let us consider now the forms of ALGCOL statements and the rela-
tion of ALGOL statements to flow charts. That {s, an entire ALGOL
program could be thought of as one long string of characters, formed
into expressions and then into statements. A program is basically
a series of statements written one after another and separated by
semi-colons. Thus, if we represent a general ALGOL statement by"kf'h
then every ALGOL program has the forumt:

AT AL TR 4

To execute the ALGOL program, the computer executes each statement

in turn in left-to-right order, starting with the leftmost statement.
If each statement hgfi corresponds to the contents of one computation
box \<!1 then this statement sequence is identical in meaning to the

* The three open circles are an ellipsis symbol.
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following flow chart:
fe.
B I A B

Although an ALGOL program is logically a one-dimensional string
of characters, most programs are too long to fit on one line, There-
for the program can be punched into any number of cards; the first
column of each card follows logically immediately after the last
column of the preceding card, so that the propgram is still effective-
1y a long-dimensional string of characters. Several short statements
may be punched on one card, or cne statement may be punched on each
card, or one long statement may be spread over many cards, whichever
gives the most readable program., The "machine" (i.e., the ALGOL
translator) ignores all the blank spaces and treats the program as
one long continvous string of characters. Therefore when we speak
of "left-to-right order™, it may actually be "top-to-bottom order”
as punched on the cards,

Since blank spaces are irrelevant to the meaning of an ALGOL
program, many extra blanks can be inserted to space the statements
on the cards in such a way that the program is very readable. Con-
gistent use of thie freedom to make an ALGOL program readable and
transparent is very important if ALGOL is to perform its function
of communicating algorithms to other people.

Exetcleses on Algorithms and Flowcharts

Exarcise 1:

For each of the following computational tasks, draw a primitive
flow chart representing an algorithm to perform the task.

(a) Assume you are given two numbers X and Y. Compute P by
the rule:

P«1 if X and Y are both less than 6, or if X
and Y are both greater than 6;

P « 0 otherwise.
(b) You are given a set of N numbers X;,...,Xy; assume they
have been sorted into ascending or&er, g0 that:

Kl = X2 ves B KN. Compute the median M by the rule:
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If N is odd, then

M « (the "middle" X value, such that half of
X's are = M and half are Z M);

If N is even, then

M <~ (the average of the two middle wvalues).

Suggestion: in this problem, use the truncation operator
(" I "), assuming it to be primitive {see Example 2).

(c) Given a set of N numbers X;,...,Xy, count how many of them
are positive ( >0 )., Call your result P,

(d) Assume you are given values of N and X, X25.-.3Xy. Find
the smallest subscript L such that X; has the largest
absolute value of any of the X;'s; i.e.,

X, = Max (x|, [X,],..0, [Xg] ).

In this flow chart, assume that absolute value is not a
primitive operator.

(e) Suppose you are given a set of N non-negative numbers
Xy, ¥54+44,Ky, and you wish to compute a new set of numbers
fq, f1, f2,...,fg9 which form a "frequency count™ of the
X's. That is, f; will count how many X's are in the range
1s f; < 1#1, for integers 1 = 0, 1,...,99. Ignore X's
which are >100. You may use " } " as a primitive operator,

(f) Given any real value X and any integer value N, perform the
operation:

P e-XN

by repeated multiplications (or divisions). If N =0 and
X = 0, then execute the box:

PRINT "Error"

and set P 9—1050 to represent "infinity",
Comments on this problem:

To extend this algorithm to compute x! vhere X
and Y are any (real) values, you would need the func-
tions eX and'loge(X); these functions are not primitive,
of course, but can be computed to any desired accuracy
with primitive algorithms., Then combining all these
flow charts, you could draw a single primitive flow
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chart for KY. The algorithm for this flow chart haa
been programmed in the computer's primitive machine
language i{n the form of a "sub-program” or "subroutine”,
In the ALGOL language, the operation XY (written "XtY")
1s considered primitive; an ALGOL program which uses

this operation simply executes the entire x¥ sub-program,
This 18 an example of a general principle in programming
-~ once an algorithm has been written as a sub-program,
this program can be treated as 3 new "primitive" process,
effectively enlarging the instruction repertoire of the
computer, This process of defining new operations can
be carried to any number of levels; for example, sub-
programs can be defined for eX and loge(X), which can

be used in turn as "primitive processes" in defining the
XY algorithm, which can be used as a "primitive process”
in defining other functiona. At the very bottom of the
hierarchy, of course, there must be "truly primitive"
algorithma which use only the operations built into the
computer.

(g) Suppose one needs to compute cos x, accurate to 10 decimal
places, for any angle x.

Exercise 2:

(a) If x is a very amall angle, {x| < 10'3, then the
simple formula:

2
cog X = | - x_

2
is accurate to better than 12 decimals.
(b) Given cos x for any angle x, cos 2x is given by:
cos 2x = 2(cos x)2 -1

Draw the primitive flow chart to compute Y « cos x

for any angle x, using (a) and (b). Simply halve the
angle repeatedly until it is small enough to apply (a).
Then apply (b) often enough to get the cosine of the
original angle.

Draw a flow chart for an algorithm which: (1)} determines if a
given sequence of 0's and 1's contains at least one occurrence of the
sequence 101 and (2) sets a Boolean variable TEST to true if (and
only 1f) 101 does appear. The end of the sequence will be marked by
a 2 and no other 2's will appear.

For example, the sequence
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110010111012
does contain the sequence 101 (twice} while the sequence
1100100112

does mnot.

On the next page ig a flow chart which has some empty hoxea. You
are to fill in these empty boxes so that the flow chart gives an algo-
rithm to solve the problem, You may use no other variables except
DIGIT which holds the next ipnput character, the answer TEST and two
Boolean variables ONE and ONEZERO, Test boxes may contain only
Boolean expressions, and rectangular hoxes may contain only assignment
statements. Use all bozes and do not add any boxes, Only in the box
markaed INPUT may a character of the input string be abtained.

~20.




Exercise 2:

Flow Charts {cont'd)

IStart:

N

INPUT:

d

DIGIT « (next digit from input)
JEND

T DIGIT = 0 |F

« true

A
A
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Exercise 3:

m n
. _ i _z i
Let: Am(X) _z X &, and Bn(x) = X bi
1=0 i=0

be polynomials in X of degree m and n, respectively. Complete the
flow chart on the next page for an algorithm to compute the coeffi-
cients Cpy,...,Cpy,, of the polynomial product of A, (X) and B, (X).
Your algorithm should be such that if it were transformed intc a
computer program, the same memory cell could be used for Cj and b,,
for each j = 1,2,...,n; however, the ai's and bj's must occupy dig—
tinct cells.

Fill in the missing statements but don't add any boxes or lines.
Kote: no additional subscripted variables are necessary in this pro-
blem,

-3} -




\ 4

N

PP+l

-32-

N




Exercise 4:

Consider a sequence of n numbers: vy, v5,...,v,. We are in-
terested in sets of consecutive v's which have the value 0, with
no non-zero values intervening; these sets we will call "runs of
zero" in the v sequence. Thé number of zero values in each run of
zeros is the "length" of the run. A run of zeros is bounded on
each end by either a non-zero v or an end of the complete v sequence.

Example: The sequence of v's: 0,1,0,0,0,1,1,0,0,0,1 contains
three runa of zeros: two runs of length 3, and one of length 1, If
" we also say that each non-zero value is a "run of zeros of length 0",
then there are four runs of length O,

Problem: compute the frequency of oceurrences of runs of each
possible length; i.e., compute f,, f), f,,..., wvhere f; is the number
of runs of zeros of length i in the given sequence of v's. Assume
that the fi'a have already been set to zero before reaching this flow
chart,

Complete the primitive flow chart on the next page for an algo-
rithm to compute the fi's. No additional boxes or arrows are needed.
Some computation boxes may contain more than one assignment statement,
but every box will contain at least one statement. WNote: this pro-
blem is not trivial, but it does have several solutions,
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Exercise 4!

Consider a sequence of n numbers: v, vo,...,v,. We are in-
tereated in sets of consecutive v's which have the value 0, with
no non-zero values intervening; these sets we will call "runs of
zero" in the v sequence. The number of Zero values in each run of
zeros is the "length" of the run, A run of zeros is bounded on
each end by either a non-zero v or an end of the complete v sequence.

Example: The sequence of v'a: 0,1,0,0,0,1,1,0,0,0,1 contains
three runs of zeroa: two runs of length 3, and one of length 1, If

" we also say that each non-zero value is a "run of zeroas of length 0",

then there are four runs of length 0.

Problem: compute the frequency of occurrences of runs of each
possible length; i.e., compute f,, fy, f35+4+, where f, is tha number
of runs of zeros of length i in the given sequence of v's. Assume

that the f;'s have already been set to zero before reaching this flow
cha rt.

Complete the primitive flow chart on the next page for an algo-
rithm to compute the f,'as, No additional boxes or arrows are needed,
Some computation boxes may contain more than one assignment statement,
but every box will contaln at least one statement, Note: this pro-
blem is not trivial, but it does have several smolutions.
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2.

A,

DATA STRUCTURES: DATA ORGANJZATION AND REPRESENTATION.
Arrays

There are two principal intellectual taske in planning a complex
computer program: the organization of the program itself, and the
choice of the beat organization and representation for the data. By
data we mean all the numbers (in particular, variables) stored in the
machine's memory which are not themselves part of the program (i.e.,
are not executed) but are operated upon by the program. Later we
will discuss program atructures, and will point out that the best way
to organize a complex program is (almost) always as a hierarchy of
subroutines. In this chapter we will conslider ways of atructuring
and accessing the data in the computer,

ALGOL is designed for describing and programming complex calcu-
lations on relatively simple data structures: arrays of subscripted
variables. The idea of a subscripted variable is, of course, lifted
directly from mathematical notation, Thus, in mathematics we often
denote an entire sat of ralated variabhles V,, Vaseeny V_ by a common
name (e.g., "V") and use a subscript (e.g., "2", or "i"? to pick out
a particular variable from the set. Such a set of n variables, dia-
tinguished by a single aubscript, can be referred to as a "vector".

We may attach two subscripts to a set of variables: for example,
8190 where the two independent gubgcripts may take on values: 1 =1,
2, ...m,and j =1, 2, ,,.n, Such a set of m x n variables can be
represented pictorially ae a two-dimensional array:

&I‘ le “aw Hln

a

a 22 “en 2“

21 ¢

(A1)

a a saa 8

m2 mn
By convention, the first aubscript is the row Iindex and the second

subscript 18 the column index of an element a4 hence this matrix
has m rows and n columns.

m]

Finally, mathematics considers seta of quantities with any num-
ber of subscripts. The simpleat structure of all {as, of course, a
"simple variable" or "scalar" which has no subscripts.

The subscripted variable of mathematics has been adopted into

-35-




programming as an array of variables, called aimply an array. Fol-
lowing the idea of the two dimensional picture of a matrix, we can
refer to each subacript of an array as a dimension, so that we can
have arrays of one, two , three or generally any number of dimen-
aions, Paralleling the mathematical data atructures: scalar, vec-
tor, and matrix, therefore, we have the program data structures:
simple variable, one-dimensional array, and two-dimensional array,
reapectively. We could furthermore call & simple variable "an array
with no dimensions" (i.e., no subacripts).

In ALGOL, the particular subscripts which distinguish a2 sub-
scripted variable are written after the array name and on the same
line, with the subscripts surrounded by square brackets; thus, the
forom* of an ALGOL subscripted variable is:

<array name> [ <gubscript>, <subscript>, ... , {aubacript}] (A2)

A <gubscript> can be any arithmetic expression , such as "2", or
"I, or "I + 2", or "AEA I+ 1}-33/2". A subscripted variable from
an array with n dimensipns must always have n <subscript>s ; this
is true for all walues of n including n = 0, so that the same vari-
able cannot be used both as a’'eimple variable and as a aubscripted
variable.

The number of dimensions in an array must be specified in an
array declaration. The declaration furthermore indicatea for each
dimension the upper and lower bounds for the corresponding sub-
script, in the form:

lower~, . pper ' lower . UppeEY
Array <name> [<:£ound "<:Eound PEmE bound::b' <:buund:;g' (a3

For example, the declaration: "array Ql1:m, O:r+1]" is short for
the assertion: "Q i3 a two-dimenaional array whose firat aubseript
runs from 1 to m and whose second subscript runs from 0 to n + 1",
We will use ALGOL declarations in the text of this chapter as an
abbreviated notation for such an assertion about an array name.

We can distinguish three different aspects of the use of data
structures in propramming: abstract structure, reptresentation, and
allocation., In this sdction we have discussed the abstract structure

.

of array data structures; by "abstract" we mean: independent of the '

* Note: We are using the meta-brackets < and > of BNF here.
For an explanation of their meaning, see Section 4 of
‘Part II. The three open circles ", _." are an ellipsis
symbol,
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manner in which the arrays are represented in the machine's memory
and of the way that the memory space is allocated to the structure.
Section C and D will investigate the representation of arrays in
memory; 4 complete discussion of allocation of space would require
an understanding of ALGOL block structure.

In Section E we will return to a consideration of abstract data
structures, and introduce some classes of structures which are more-
general than arrays. Representation and allocation for these struc-
tures will be discussed also.

The next section contains some simple examples of important
ways of using arrays in programming.

Programming With Arrays

Suppose we have a program which must evaluate the factorial
function n! many times in the course of execution. An obvious
approach is to write a procedure (subroutine) to evaluate n! , in
the following manner:

real procedure FACTORIAL (N) ; (31)
begin real F; integer I:
Fel; for T «1 step 1 until Ndo F «F * I;
FACTORIAL « F

end ;

If this procedure is called many times, however, a great deal of re-
dundant calculation is performed. A more efficient program results
from computing a table of n! once at the beginning of the program
and storing the values in an array: array FACT [ 0O :m ], in such

a way that EACT[i] = 1!. This array of values could be generated by
the algorithm:

FACT (0] «1 ; (B2)
for I « 1 step 1 until m do
FACT (1) « 1 * Fact (1 - 1];

Once this table is generated, values of n! can be "computed" in the

rest of the program by simply selecting the proper element of the

FACT array.
Consider next the binomial coefficient (n) , defined by

N for 0 S'r S n, The coefficient Can be interpreted
! (n - 1))
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elther as the number of combinations of n things taken r at a time,
or as the coefficient of the term a¥ b™ T {n the binomial expansion
of (atb)?. If a program needs wmany values of the binomial coeffi-
clents, it will be most efficient to pre-compute them. They coul

be atored In an array: array BINCOF Eo:s, 0:5]. Here BINGDF[n,r =
(}) , for 0 5 r S n 5 8, The table of binomial coefficienta can be
generated by the algorithm:

for N « 0 sgtep 1 until § do

for R « 0 step 1 wuntil N do
BINCOF [N,R] « FACT [N}/ (FAct{R]) * rAcT(N-R) );
The beginning of the BINCOF array looks like:

r —

BINCOF (n, r]

=)
fd b el b ed

1
3
6

R T R

1
4 1

The binomial coefficients are called "the triangular numbers" since
each entry in this table is the sum of the entry above plus the

entry above and to the left. Thus there 1s a recurrence relation
among the binomlial coefficients:
BINGOF(n,r) = BINCOF(n-1, r-1] + Bimcor[n-1, =] , (83)

which 1s exploited by the following more efficient algorithm for
computing the BINGOF table:

for N « 0 pgtep 1 until 5 do
begin
for Re1 step 1 until N-1 do (B4)
BINCOF[N,R] « BINCOF[N-1,R-1] + BINCOF(N-1,R];
BINCOF[N,0]) < 1; sINCOF[N,N] 1

end ;

-Algorithm (B4) performs only a single addition in the inner loop,
‘instead of the muwltiplication and diviaion performed by algorithm
(B3) . Recurrence relations used in this way often lead to more ef-
ficient programs,

Another general class of applications of arrays arises from the
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representation of mathematical "quantities" wiaich involve sets of
real numbera: for example, performing the operations of arithmetic
on complex numberg ox on polynomials,

A complex number must be represented in the computer by a pair
of real numbers: the real and the imaginary parts (or the angle 6
and the radius r from the polar form: reia), Thus, a complex
gimple variable Z must be represented as a real array Z [1:2] ; a
vector of complex numbers Wy, Wp, ..., Wyggp ™st be represented by
a matrix real array W{l:2, 1:1000]. In general, representation of
complex numbers in the machine requires an extra dimension in every
" array data structure. Some algebraic compiler languages (e.g.,
FORTRAN 1IV) have complex arithmetic built in so the programmer can
declare variables to be of type complex instead of real or integer;
for example: complex array W[1:10003}. In this case, the compiler
automatically adds the extra dimension to each data structure which
is declared complex, and produces the machine language instructions
to evaluate both the reaul and the imaginary parts of each complex
variable which ig assigned a value,

If pg> Pys ---»> Py are n + 1 numbers (called "coefficient") and
X is a dummy variable, then the formula:

2 n k
P + pIX + p2X + 0. + pnx = & ka (B5)

k=0

1s called a "polynomial form" of degree n. If the highest coeffi-
cient p, # 0, then n is called the exact degree. Elementary mathe-
matics gives rules for adding, subtracting, multiplying, and divid-
ing such polynomial forms by suitable operations on their coeffi-
clents. Polynomial forms are often useful in numerical caleculations,
since many functions which are not polynomials can be approximated

to any desired accuracy by suitable polynomials. The operations

of arlithmetic as well as the operations of calculus (differentiation
and integration) can be performed very simply on polynomial forms,
giving the final result as the coefficients of a new polynomial form.
A numerical answer for any value of X c¢an then be obtained from these
result ccefficients simply by "plugging" the value of X into the form.

A polynomial form of degree n would be represented in the com-
puter by a vector containing its n + 1 coefficients; for example,
the three polynomial forms Pn(X), Qu(X), and R.(X) (of degree n, m,
and t, respectively), could be represented by their coefficients in
the arrays:

real array p[0:n] , q[0:m] , r[o:t] .
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Suppose that Rt(X) of degree (but not necessarily exact degree) t
is to be computed as the sum Pn(X) + Qm(x); the algerithm would be
as follows:

te 1f m>n then m gelse n;
for 1«1 gtep 1 until t do (B6)
elt) « (4f t=n chen p[t] else 0)
+(4if ism then qf1] else 0);

A polynomlal form is best evaluated for a particular value X = €
in the "factored form':

P(C) = ooellp  *#C+p D *¥C+p ) *C+...) *C+p; (B

The algorithm ia:
SUM p[nJ H (B8)
for 1+ n-1 step -1 until 0 do SUM«SUM* C +p i[i];

The Mapping Function

The internal memory of all modern digital computers is organized
into cells each of which will store a numerical value. These cells
are generally referred to in a program by consecutive serial numbers
‘called addresses. For example, many large scientific computers have
an internal memory of 32,768 cells, with addresses 0,1, 2,...,32767.
The peculiar number "32,768" is a power of 2, because the internal
representation of nuwbers in these machines is binary (or "base 2").
However, the particular internal number system is irrelevant to our
current discussion of data structures; one needa only to underatand
that a memory ecell contains some representation of a number,

It is convenient to picture the machine'é memory as a vector
of celle; then we can invent a pseudc one-dimensional ALGOL array
MEM: :

array MEM [0:32767) (c1)

to saymbolize the memory. Thus, the vatue stored in the cell with
addreas 1376 can be referred to as MEM|1376), and we can use
(pseudo-) ALGOL statements to describe the machine's cperations
on this cell.

Each machine language command typically contains (1) an
"operation code", such as "ADD", or "MULTIPLY", or "STORE" {coded
numerically), and (2) a single numerical memory address, We could
explain the operation of each operation code in the machine using
ALGOL-1like assignment statements and the pseudo memory array MEM.
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For example, the machine language instructions
ADD 1376 ; BTO 1221 ;

might mean, in pseudo-ALGOL:
Ac — Ac + MEM[1376) ; MEM[1221] < AC.

Here the "variable" AC represents the arithmetic register (called the
"ACcumulator”™) of the computer,

An important conclusion from the MEM array analogy is that the
type of data astructure intrinsic to the machine iz the one-dimensional
array; arrays of two or more dimensiong are artificial structures
built up by programming. Consider the subscripted variable
D[i,j,k,l : for each set of allowable values of its subseripts {,]j,k,
and 1, there is a corresponding cell in the computer memory and there-
fore a corresponding element in the MEM array. This correspondence
between the four subscripts and the one-dimensional MEM array is con-
tained in the "mapping function” mapfet (i,j,k,1):

D[l,j,k,l} is stored in MEM[IDC]
where: loc = mapfet (i,3,k,1) .

A mapping function is generally involved in any use of an array of
two or more dimensions in a computer program. Wherever a two-dimen-
sional subscripted variable appears in an ALGOL program, for example,
the ALGOL compiler inserts the machine language commands necessary to
evaluate the mapping function into the object program. When the ob-
ject program is executed, this mapping function must be evaluated
each time the subscripted variable is referenced; thus, every refer-
ence to a subscripted. variable in aun ALGOL program cost some execu-
tion time. It should be emphasized, however, that this execution
time is a cost, but not in general 2 waste; the time involved is
often a negligible fraction of the entire computation, while the use
of arrays generally pays large dividends in ease of programming and
fewer programming errors, There are zituations, however, when sub-
scripted variables are used in the inner-most loop of a program and
avaluation of the mapping functions accounts for most of the execu-
tion time; this is generally true for matrix inversion routines, for
example, In this situation, the computation of mapping functions

can be made more efficient at the cost of additional programming com-
plexity, as will be described later in this section.

The mapping function for an array contains in effect both the
representation of the array structure in memory and the allocation
of memory space to the array. In the simplest and mozt common sitva-
tion in programming, each array is stored in its own block of conti-
gucus memory cells; in this case, the mapping function can be a simple
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arithmetic formila, ag we shall see in the remainder of this section.
When an array does occupy contiguous cells, the allocation of memory
space involves only two numbera: the lowest memory address occupied
by tha array, called the "bape address™, and the total number of
cella occupled by the drray. These two quantities are calculated
when the array is declared, by an algorithm which will be diecussed
later, For the momant, assume that a suitable allocation process
has assigned base addresses to each array in the program (or, more
accurately in ALGOL, to each array which is currently defined);

the base address thus determined will be symbolized by the pseudo-
ALGOL variable BASE,

How let use look at the mapping functions for array data struc-
tures occupying contiguous memory space. Buppose that V i{a & one-
dimensional array: fptemer array V |a: H therefore requires
m -at+l cells. If Viaj {s storgd in MEM{BASE| and Lf V is stored
in consecutive celle, then t#] ig stored in HEH[n&EE + 1-a} for
i=a, a+l,..., m. That {s, the mapping function for one-dimensicnal
arrays is almply additive. The sum (BASE - a) can be computed and
stored when the array 1s declared, so only one addition need be per-
formed when the array is accessed.

Two-dimensional arrays are generally stored in a computer in
order either by row* or by columm** because this leads to the
slmplest form of the mapping function. For example, consider an
array: array All:a, 1:nj. If A is in order by aw, the ele ente
of ﬂ.wuul be_stored in the order: A i s1) seae A 2 1,...,402, n],
eev mul),ee., Alm,n T. Again, aaaume that A l 1 1s stored in
HEH[B&SE} and succesgive elements are stored in couaecutiva mamoxry
cells; then it ia easy to see that:

A[1,1) is stored in MEM[BASE + (i-1)*n + j-1]

Notice that r is the number of columns in the array. The wapping
function 1s given by: :

mapfct (i,3) = BASE + (i-1)*n + -1 (€2)

The declaration of the array determines the two values: m and
?&SE-n ~1), so that evaluation of the mapping function to access
requires one multiplication and twe additions.

The mapping function for a two-dimensional array can be applied
to accessing a three-dimeneional array. Assume that:

* Aa in ALGOL-20 ,
%% An in FORTRANR on an IBM 7090
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1

array C[1:1, 1:m, 1:n]
This can ba pictured as a rectangular aolid figure:

L
LZ""
d

Let the first subscript vary most slawl ag we move through suc-
cesgive addresses; i.e., first comea C I,j,k for all j and k, then
clz, j,kJ, ete., until clf, 3, kf Thus each value of the first sub-
script 1 of C[i,j k] fixes & parttcular {i,k) plane, which is a two-
dimensional array whose mapping function ias given by Eq. (C2). Since
each plane contains w*n elements, the three-dimensioral mapping func-
tion can be written:

mapfct (1,7,%k) = BASE + (i-1) * mhn + (§-11* n + k-1
This can be factored inte the form:
mapfct (1,j,%) = BASE + {({i-1)* m + j-1)* n + k-1 {C1)

Thie expression {ilustrates the general rule for conatruction of a
mapping function for an n-dimensional array in "row-order":

mapfet (1,],...p,q) = BASE + {(.,.({i-1)* &, + J-1)y* (ca)

* ~]1)* -
by + L% 5, +p-DD* 5+ q-]

for an array: array G[l:ﬁl, 1:52,..., l:BIJ.

Eiﬁﬁﬂﬂﬁﬂﬁﬂﬂﬂﬂﬂﬂﬂ?ﬁ

AN

In all these mapping functions, we have used 1 as the lower
bound for all subacripts. The lower bound could be any number, chang-
ing the mapping functicon in an obvious way. In the general case,
suppose:

array H[ 11: By s 12:|J.2 ’ ...,ln:un ]

so that the lower bounds are Xy,... A, and the upper hounds are
Hiseee ppe Then the "dimensions" 8154y 5, are given by:

ﬁ[:“l-l]+],52=_|.i2'12+11"'35:un-ln-l-l" ({:5)

n

drd the mapping function 1is:

43 -




mapfet (1,3,...,p,q) = BASE + ((...({1 - l]) * 52 + ] - 12} * (C6)

* - * -% .
By + e) X8 kP -A NSt -R

3 -1

This formula can he rewritten as:
mpfct (i,j._tco,p.q} = BASE + ((tua(i*ﬁz + j} * 53 + ...)* (C?)

ﬁn_l+p}*6n+q+ﬂ

where

L= {{ot-(("}ll}* 62 - T'Lz)* 63 + ...}* 6 - ln")* 511 - X .

n-1 n

S8ince C depemds onuly on % and 5, the quantitf {BASE 4+ C) need be
evaluated only once when the array 1s deciared. Then evaluation
of (C6) requires {n-1) multiplications and n additions.

More complicated mapping fumnctions are possible, and sometimes
usaful, vhetre the added execution time to evaluate them 18 more than
compennated by the saving in memory space. For example, it sometimes
- happene {e,g. the PINCOF array in section B) that we don't need all

the elements ﬁ[i,j of a matrix, but need only those on or below the

diagonal; that ias, we need the eléments which satlafy the relation:
0< jJ=x1=<n. This can be plctured as the unshaded area in:

and e called the lower trlangle of the matrix. We might wish each
row of the matrix in memery tc be one element lonmger than the pre-
ceding row 8o as not to waste any memory epace. Thus, successive
memory cella would contain the n { o+ 1) elements:

2

By
8210 Ba2»
8392 By3s 833

B o+

nl* #n22 fmarecee 84,
The mapping functlion for array A[l:m, ]:d] would be given by:
mapfet (1,]1) = BASE + _liii;_ll, +1 -1 (cB)

(see Section 6.7 In McCracken's text). Such a mapping function is
not built into the ALGOL translator (although it could be If there
were sufficient need for 1t); therefore, to use it the programmer
must write the mapping expreesion explicitly himself. For example,
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he could declare an array L[]:‘Egﬂft_ll ) (i.e., a vector) instead of
the array A; whenever he wanted A[i,j] in his program he would use:
Lt * /2 + 3] .

We have seen that the mapping function for an n-dimensional
array stored in consecutive memory cells requires n-1 multipiications,
On most machines, unfortunately, multiplication is relatively costly
in time, To speed the evaluation of mapping functions, some compiler
systems* use subsidiary data structures called access tables, which
are the subject of Section D, We will find that access tables not
only save multiplications, but are in fact much more flexible than
the simple arithmetic functions such as Bq. (C4); they will give us
a convenient representatinn for more general abstract structures, and
will allow us to relax somewhat the requirement of strictly contiguous
memory space for an entire array.

Before we consider access tables, however, we should observe
that there is another approach to program efficiency in the evalua-
tion of array mapping functions: partial pre-evaluation. This is
nothing more than an application of the simple principle of effi-.
ciency that any part of a calculation that doesn't change within a
loop should be_performed once, outside the loop. Suppose that the
variable A[i,j] is to be accessed within an inner-most loop of a
program and that this loop is stepping through values of j with 1
fixed; then the quantity: BASE + (i-1)* n - 1 could be evaluated
outside the loop, and the single addition of j would complete the
evaluation inside the loop.

For example, we could apply this technique explicitly to make
the binomial coefficient program (B4) more efficient, Each time
the binomial recurrence relation there is evaluated, there are three
multiplications to be performed, hidden in the mapping function of
the two-dimensional BINCOF array. If algorithm (B4) is executed
many times so that utmost efficiency is important, the programmer
can save these multiplications by explicit pre-evaluation of the
mapping function. Thus, the programmer could define a one-dimensional
array: .

* For example, the ALGOL-20 compiler at Carnegie Tech.
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array BCID [G: {a+1}2—1}, where BIﬂEﬂ?[u,r] corresponds
to BCID [[s+!}*n + r}. The algorithm would then become:

Cl «(s+l1) + 1 ; C2 « (341}
for n«0 step 1 until s do (C9)

begin p f-n*{s+l};
forr «0 step 1 until n do

begin SUBS « p + 13}
sc1p{suBs] < scin[suss-c1] + Bcin{suBs-cz)
end ;

end ;

Notice that: (1) the constants C] and C2 are computed only once, and
(2) the single multipiication n*(s+l1} in the mapping function is in-
dependent of r and has therefore been moved out of the inner-most loop.

In making this change, the programmer has gained efficiency but
has given up the simplicity and clarity of the matrix notation; he is
liable to have more trouble debugging an algorithm like (C9) then one
like (B4). Fortunately, some compilers automatically check for in-
variant calculations and move them outside inner lcops, and would com-
pile ar object program which uses the algorithm (C9), given the source
program {B4), Using one of these optimizing compilers, a programmer
can have an efficient program without giving up the simplicity of the
general array notetion. There iz an associated cost, of course; an
cptimizing compiler must make a complex apalysls of the source pro-
gram to determine which parts of the calculation are Lnvariant, and
therefore such a compiler will be significantly slower than a com-
piler which performs n¢ optimization but simply produces an object
proegram which re-evaluatesa the complete mapping function for each
ArTRY access.

An optimizing compiler will generally perform another type of
optimization of mapping function evaluation to take advantage of
machine registers called "index registers”. We will not discusa this
further, except to note that this use of index registers is an appli-
cation of the general array mapping function, Eq. (C4}.

Acceas Tables
To introduce access tables, we will again consider two-dimenaional
arrays in cgntiguous storage space. We found earlier that the functilon

for array Afl:m, 1:&] was given by the rule:
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A[1,}] is stored in HEH[BABEA_+ (1-1)*n+ 3 - 17,

Suppose we declare an auxiliary array:; array Al[1:m], and f£ill it
with pre-computed values of (BASEj + (i-1)* n - 1 .

A][i] = BASEA, + (1-1)* ﬂ"] fDr i = ]’ 2, “a oy m (D‘)

The A[I,i] is stored in MEM[MEM[ (BASE,1 = 1) +i] +i] so the array
mapping function (C2) can be evaluateﬁ by:

mapfet (1, 1) = MEM[(BASE,, - 1) + 1] + J, (D2)

which requires no multiplications. The Al array is called an access
table, or access vector; it containas one word for each xow of the
matrix A.

Conelder next a three-dimensional array: sarray B[1: L, 1:m, 1:n].
Applying the access table jdea, we can create a two-dimensional access
table array Bi[1: J 1:m], and fill it with pre-computed values: (D3)

BI{1,§] = BASE; + ((1-1)* m + J-1)*n, for i = 1,...,d and
J= Veeaegtt o

But Bl is itself a two-dimensional array whua& mapping function can
be evaluated with the aid of an access vector array B2[1: L1, where

B2(1] = BASE , + (L-D*m - 1, for L = 1,000, L. (D&)

Putting a1l thege together, we get a mapping function for B[i,j,k]
which requires no multiplications:

mapfet (4,3,k) = MEM{MEM[(BASE;, - 1) +i] +3] + k (D5)

Claarly the game principle can be applied to accessing arrays with
any number of dimensions., An n-dimensional artray requires n-1 access
tables with

8y (Byx0,), (8yu8,8,),00u, (8% yxfx. o 1) (D6)

elements, respectively; the sum of thease terms gives the total memory
space raquired by the acceas tables.

Notice that the use of access tables saves execution time, but

‘the tables require their own memory space. Thus, the decision to use
access tables for subscripted variables involves a trade-off which is
frequently possible in programming: executjon time vs, memory space.
In general, however, the cost in memory space for an access table is
small. A square n x n matrix and its accesg table require n(n+l)
calls, and n? < n(n+1) <. (n1)2 Thus, sufficient space for an access
vector can always be obtained merely by reducing the maxjimum gize of a
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square matrix by one. A similar argument applies to arrays with more
dimensions - the space for accesa tables at worst reduces the possible
range of each subseript position by one (assuming that the array is
approximately NxNx.,.xN). The situatfon is aomewhat different £ff one
or more subscripts have a much larger range than the others. For
example, the access vector for array C{1:2, 1:1000] requires 2 extra
cells, while the acceas vector for array C[1:1000, 1:2], with the rows
and columns interchanged, requires 1000 extra cells. Therefore, if
one is short of memory space for data and has such a "long, thin"
array, Lt is best to use the "thin'" dimension in the first subscript
position.

It is important to realize that an ALGOL system* which uses
access tables for array mapping functions does so completely auto-
matically; the user need consider these implicit access tables only
if he needs to account for the memory space they use. When an
n-dimensional array is declared, the system automatically declares
the corresponding n-1 access tables and generates the proper inte-
gers in these tables, This task will be performed by a run-time
subroutine which we will call "RAD" for Run-time Array Declarations;
on the next page there is a pseudo-ALGOL verslon of RAD. When an
array declaration contains a list of M identifiers with one common
get of bounds;

{identifierl>, tas {identifierﬁ} [ < 1owe; bound., > : < upper bound

>

1 1

. v y<lower houndﬁ> : <upper boundﬁ> ]

then RAD creates only one set of access tables common te all M arrays.
The first array, <identifier >, in the set is accessed the normal way;
any other array in the set is accessed by evaluating the common
mapping function (giving the mapping for <identifier;> and then adding
an origin shift or "offset" term to get the final memory address in
the desired array.

One of the functions of RAD is to reserve (or "allocate) memory
cells for the access tables and arrays; the function of LEVEL and
AVAIL in this allocation process can be fully explained only when
ALGOL block structure has been covered.**

* (e.g. The ALGOL-~20 system at Carnegie Tech).

** See, for example:
Sattley, K., "Allocation of Storage for Arrays in ALGOL 60",
Comm, Assoc, Comp, Machinery, 4 (January 1961), pp. 60-64,
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Comment ALGOL-20 Run-Time Array Declaration Routine, in pseudo-ALGOL;
begin
array MEM[0:32767), AvAIL[1:64) ; fnteger LEVEL;
comment MEM is pseudo-array repfesenting G-20 mémory,
AVAIL[LEVEL] is first available location in array
storage in current block;
procedure RAD (DBLPREC, M, N, ), u, DOPE) ;
Boolean DBLPREC; integer M, N ;
integer array A, u, DOPE ;

comment

DBLPREC = true if array 1s of type real, falae
otherwise,

M = Number of arrays declared together,
N = Number of dimenaions,

a[1:)
wl1:x]

DOPE[]:H, 1:4) = Set of M 4-element "dope vectors",
to be computed;

Vector of lower bounds,

Vector of upper bounds,

begin
integer array §, s1ZE[1:N);

integer BASE, I, J, K, PROD, SPACE, VO ;
PROD « 1; SPACE « O ;
for K1 step 1 until N do
begin
o[} «ulK] - alk) +1;
312E(k] « PROD « PROD * &(K] ;
1f K < N then SPACE «— SPACE + FROD

end ;

comment Now SPACE {8 total wemory space required
for all of the N-1 access tables;

if DBLPREC then
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begia
SIZE[N] « 2 * s1zE[N] ;
s(] 2% s{n) ; aA[M] <2 % A[x]
end adjustment for double precision;
SPACE « SPACE + M * s1Ze{N] ;

comment SPACE is now the total number of
memoxry¥ cells for M arrays and their
Accesa Tables;

AVAIL[LEVEL] « AVAIL(LEVEL) - SPACE ;
VO « BASE « AVAIL[LEVEL] + 1 ;

comment VO = the address of the firat cell of
Accees Table ;

comment Now build up the N-1 access tables;
for K« 1 gtep 1 wuntil N-T do
begin

comunent Accesa Table K has 1ita firat
entry in HEH[BASE H

MEM[BASE] « BASE + SI1ZE{K] - a[x + 1];
for I«1 step 1 until SIZE[(K] -1 do

MEM[I + BASE]  MEM[I + BASE - 1]
+5 [k+1];

BASE « BASE + SIZE[(K]

end generation of Access Table K ;
comment HNow set Dope Vectors ;
for J 1 step 1 untii K do
begin
DOPE[J,1] « VO - A[1] ;

comment This is origin address for
the mapping function;

DOPE[J, 2} « (I-1) * SIZE[N] ;

compment This is final "offset" for
the Jth array;
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DOPE[J,3] « BASE + DOPE[J,2] - 1 ;

comment This 18 & lower limit of
array, for bound check;

DOPE[J,4] « DOPE[J,3] + SIZE[N] ;

comment Thia is upper limit of
array, for bound check;

end
end RAD;

comment s
1. Example: The declaration: integer array 4,B,C,[1:10, -6:8]
compiles a call of RAD of the form:
RaD(false, 3, 2, ), u, DOPE)
where:
ACT) = 1, A{2] = -6
w11 = 10,  u[2] = 8.

If AVAIL[LEVELY = 20,000 before BRAD is called, the result
wil]l be to compute the 3 DOPE vectors:

DOPE[1,...] = 1954¢, 0, 19550, 19700.

DOPE[2,...] = 19540, 150, 19700, 19850.

DOPE[3,...] = 19540, 300, 19850, 20000,
th

2. General Mapping for I, array out of set of M array ildentifiers
declared together:

mapfct( £ v 82,..., Sn) = MEM[MEM[ . . .MEM[MEM[ DOPE
L1+ &3+ &£,1...]
+ & 11 + (1f DBLPREC
then 2 * (& ) else & )
+ DOPE[L,2];

]

end of pseudo-ALGOL RAD Explanation

We have described the manner in which some ALGOL systema uae
access tables for the efficient evaluation of the normal subscript
mapping functions, Eq. (C4). The programmer who needs a more complex
or more general mapping function than Eq. (C4) can often achieve con-
siderably greater efficiency and simplicity in his program by using
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access tables which he has explicitly created for his purpose. If he
is writing his program directly in a machine-language representation
(that 1s, in "assembly" language), he can create and use access tables
directly in the MEM "array", as we have been describing. If he is
writing in ALGOL, however, he will need to declare one-dimensional
ALGOL arrays for his data array and access tables; as we have seen, a
one-dimensional array is related to the MEM array by a very simple
additive mapping function: essentially, the BASE address is added to
the subscript,

For example, refer again to the lower triangular array considered
on page 44. Suppose we declare a vector ¢ which will contain the in-
formation which would have been in the A matrix, and also an access
vector AT:

array Qf1: (N * (N + 1N/2)7; integer array AT[1:N];

At the beginning of execution we will execute a lpop to fill AT with
suitable values:

AT[1] «0; for I «2 step 1 until N do AT[1] « (D7)

I + AT(I-1] - 13 '

Then: AT[i] = 1(-] , for 1 = 1,2,...,N. Wherever A[I,J] would
have appeared in the program, we use the access table AT explicitly,
in the form:

Q [AT [I] + J]. ({D8)

As another example of the general use of access tables, suppose
we interchange two single entries say, A1[1] and A1[j], in the access
table Al of Eq. (D1). A little thought will show that the effect is
to interchange the ith row with the jth row, without physically moving
any of the data words in the matrix A. Thus, we have an efficient way
of interchanging entire rows of a matrix at once, which is an import-
ant problem in programming. For example, several good algorithms for
solving large sets of simultaneous linear equations require inter-
changing entire rows of the matrix of coefficlents to prevent excesgsive
round-off error. Another example is provided by data processing tasks
which require sorting n items, each consisting of m words. Each multi-
word item can conveniently be represented as a single row of an
m-column array DATA[1:n, it:m]. Sorting these m-word items may require
interchanging pairs of items - but since each item i{s an entire row
of m words, this can be costly in time. Instead, we set up an access
vector, each element of which "points to" the beginning of the corre-
sponding item in memory; then the items can be sorted by reordering
only the pointer words in the access vector.

Access tables can.provide considerable flexibility in allocation
of space in the computer memory. The mapping functions for multi-
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dimensional arrays discussed in Section C assumed that an array was
stored in "row-order" in one contiguous block of memory cells. The
idea of interchanging rows of a matrix by interchanging access vec-
tor elements suggests that if access tables are used the rows could
be in arbitrary order and could be placed anywhere in memory. Each

comglete row must, of course, still have contiguous storage assigned
to it.

It is even possible that some or all of the rows of a matrix
may not have any core storage allocated to them at all - these rows
may be on a magnetic tape or magnetic disc file. Many real-life pro-
blems require a great deal more data storage than is available in the
machine's high-speed memory. When a program requires a matrix which
18 too large to fit entirely into high-speed memory, one solution is
to allocate high-speed memory space only for one or a few rows which
are currently being used. The elements of the access vector corre-
sponding to the rows currently in memory would, of course, point to
these rows; all the other access vector elements, corresponding to
rows currently on a magnetic tape (for example) would contain an
"interrupt flag". When the ALGOL program attempted to access a row
which was not in memory, the machine's circuitry would detect the in-
terrupt flag on the access vector element and automatically take
special action; the result would be to interrupt the program in pro-
gress long enough to execute an administrative program which would
read the missing row into high-speed memory, allocate space to it
(writing another row out, if necessary, to make room), adjust the
access vector to reflect the new state of affairs, and then finally
return to the suspended program and complete the array access.

Jagged Arrays, Trees, and Lists

In Sections C and D we considered the memory representation of
arrays of subscripted variables which have 2 very simple abstract
structure; we will now discuss some more complex and general abstract

data structures.

We will begin by generalizing array structure in a very simple
way: we will allow each row of a matrix to have a different length,
each plane of a three-dimensional array to have a different number
of rows, etc. This generalization is easy to implement if access
tables are used for the mapping function; with suitable changes in
the contents of the access tables, the mapping functions of Eq. (D2)
and Eq. (D5) will work perfectly for these arrays with "jagged edges
To see this, it is helpful to think of the mapping function (D5} in

terms of the following picture:
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There is no way to declare a jagged array in ALGOL-60 -- we would need
for clauses within the array declarations, in some form such as:

integer array TEXT[for S « 1 step 1 until NSENT do (8,
for We 1 step 1 until NW[S] do (W, 1:NL[W,$1]))]1; (E3)

On the other hand, the programmer can explicitly build his own access
tables for TEXT in a manner analogous to the lower triangle mapping
function of Eq. (D8).

Access tables lead naturally to a much more significant change in
abstract structure than a jagged array. The accessing operation, shown
pictorially in (E1) for the case of a three-dimensional array, generally.
goes through n-1 levels of access tables for an n-dimensional array.
Suppose that for some values of the subscripts we cut short the access-
ing process at fewer than n levels, so that the element of an access
table at which we terminate contains the data value we want, rather
than a pointer to the next level of accessing. Thus, we remove the
rigid distinction between an access table and the final data array;
an access table will now contain & mixture of data words, and pointers
to deeper levels of subscripting. Such a structure is called a tree.

We have just described the mémory representation of a tree, before
giving it abstract structure. To describe its abstract structure, we
need a new notation. Consider first the simple array structure
array A[1:2, 1:3]; its abstract structure could be described by listing
all its elements and using parentheses to group the elements of a row
(or in the general case, the rows of a plane, the planes of a..., etc.),
as follows:

@190 2120 84305 (@995 255, 8p3)- (E4)

In this representation, each left parenthesis corresponds to one level
of addressing, i.e., following a pointer from one access table to
another. 1In the case of simple ALGOL array structures and gimple jagged
arrays with n dimensions, each data element ay; will lie within n-1
pairs of parentheses. The generalization to tiee structures gsimply re-
moves this restriction on the number of parentheses. For example, we
could have the following abstract tree structure F: {(E5)

(Fiys Frgo Fy3)s Fyo ((Fyqqs Fypps Faq3)s Fyps (Fygq5F335,F433)).

The reason this is called a tree is that it can conveniently be visu-
alized as the following tree-like structure;
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(E6)

0] «— data array F

+~ access matrix/
data matrix

« access vector/data vector

F

Here the square nodes signify data words, while the dots signify
pointers to the next level of accessing, The method of accessing
‘this tree structure can be shown in a picture analogous to (E1).

(E7)
/’—\‘
,,r~\\\hh-_-“";%?. Bl Faz | Fis
Fa
s "\ F32 N
"Data Array"
Fa31| F332{ Fa33

311| Fa12 F314
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We can define the abstract structure of a tree in the following
way: a tree is a list (or vector) of terms, each of which may be
either an elementary data value or else another tree,

Finally we will give a particular example of the tree structure
of (E5) and (E6) , a representation of the ALGOL arithmetic expression:

A* B+ (C+ D) * 2tA (E8)

Applying the precedence rules, we find that both the sum (C+D) and the
power 21A must be evaluated before the product (C+D)*2tA, and both pro-
ducts must be performed before the final sum. This structure is repre-
sented in a natural manner by the following tree, which has an abstract
structure identical to (E6).

(E9)

"Growing from" each dotted node are an operator and two operand
branches; the operation at this node can be performed only after all
operations above it along either of its operand branches have been
performed; when the operation has been completed at the node marked
"Expression", the entire expression has been evaluated. The represen~
tation of this expression in memory looks as follows:

_‘/~—> A * | B (E10)
-
3\__3’. 2 1 A




Tree atructures are fundamental to many complex information pro-
cessing problems including, forexample, 'lanpuage translation, mechani-
cal theorem proving, and chess playing programs. These problems are
gencrally characterized by very large and complex data structures
which grow, shrink, and change many times during the calculation, The
result 1s that dynamic allocation of memory space to the data structure
bacomes the central problem. The usual solution to the allecation pro-
blem employs '"binary branching" tree structures which have exactly two
branches growlng from each node; it can be seen that this makes every
Maccess table" exactly two words long. The resulting representation 1s
called a list; there are several list processing languages, including
IPL and LISP, which use this list structure exclusively.

Exercise on Data Structures
Exercise 1:

A physicist wrote an ALGOL program to compute a 7 x 13 array of
numbers CLH vwhere; ‘

1A

0 L=6
-6 = M5 46

Furthermore, the C_ .. 's were always zero unless M satisfied

LM
-LEMS L,

s0 he stored the 49 non-zero Cypy's compactly in elements Q[1],...,Q[49]
of a one-dimensional array Q. The Cyy's were mapped into Q in the
order:

Cog® Cyopr © Chpns Cpys ©

0o* 1 10* ©11° Ca.20 Cooye
with Q1] = c00 and Qf49] = Cﬁ

20° C21° Capr +vr > Cgg o
6"

To evaluate the mapping function, he dafined his own access vector
INDEX[0:6] and stored Cyy in Q[INDEX[L] + M]. What values were needed
in INDEX?

Exercise 2:

Agpume that A is an N x N array such that A[i,j] = 0 when
|[1=3| > K; such an array is called (2K + 1) - diagonal. The N + 2NK -
K(K+1) non-zero elements of A are to be stored compactly in an array
Q and accessed viz an access vector AT as in equation (D8). Determine
the values which must be in the access vector AT.
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Exercise 3:

Assume that you have been given a tree structure, represented by
mixed access tablef/data arrays as described in Section E above, in an

inteper array TREE[1:500] (analogous to the MEM array). A particular
word TREE[I] containa the following:

1f TREE[I] = 0 then TREE[I]
if TREE[I] < © then  ~TREE[I]

TREE[-TREE[I] + 1] is the first word of the access/data table
for the next access lewvel.

a data value;

i

an access pointer - L.a.,

Assume that subscripts always run from 1 up, so that an accegs polnter
i1s actually the address one before the address at which it "points".
For example, the F array, (E7} in the notes, might appear in TREE as

follows:
I=o 1 2 3 4_5_6 7 8 9 1o 11 12 13 14 15
TREE[1] = | -3{¥2|-6|F11[ F12|F13|-9| r32}-12| 7311 F312| F313 F331]F332| F333
' A -

where the F's represent data values (which must be positive integers).

Consider an element of the F array with L subscripts having the
particular values ey, e, ... , e1; this element would be stored in
TREE[m], where:

m = =TREE [... -TREE[ -TREE[E1] + &2] eas 1+ e -

Here L, the nunber of subscripts used, is called the level of accessing
for m. - It is useful to compute m by the above access formula for
valuese of L less than the level of the corresponding data term; the
result would be a {negative) polnter tc the next acceas level. On the
other hand, it '1a meaningless to evaluate m for L greater than the
level of the data term.

You are to write a declaration for an ALGDL, procedure TREE.MAP
which, given subscript values ey, e, ... , ey and a value for the
level 1L, evaluates the mapping formmia above for m., The result for
m %8 to be the value of the integer function designator TREE.MAP.

Assume:

integer procedure TREEMAP ( TREE, E, L ) ;

where:

TREE = integer array containing tree being accessed,
E = integer array containing subscript values:
E[1] = e E[2] = ey, etc.
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L = integer simple variable, called by name

If a data term (i.e., a non-negative value in TREE...) is encountered
at a level lower than the value of L when TREE.MAP is called, then
TREE .MAP should change the given value of L to the level of the data
term and TREE.MAP should have as value the m for the new L (i.e.,
TREE{m] should be the data term).

Notice that L is used both as an input and as an output parameter.
Since TREE.MAP is a function designator, it is used as an operand in an
arithmetic expression; calling TREE.MAP, however, may change the actual
parameter substituted for L; this is called a "side-effect" of the
procedure call,

Exercise 4:

A good example of data having the abstract structure of a tree is
provided by ALGOL arithmetic expressions, considered as strings of sym-
bols. Each operator has one or two operands, each of which in turn can
by any arbitrary arithmetic expression; this hierarchical structure is
typical of a tree, each branch of which can be the "trunk" of an entire
subtree. The tree representation of a symbolic arithmetic expression
shows each complete operand of each operator, without any parentheses;
therefore, the tree form is called "parentheses-free" (although a tree
is not the only parentheses-free form for an arithmetic expressiomn).

For example, the expression A *(B + A tZ/B) has the tree representa-
tion:

1
G3311 €3312 G331 Level
A 7 2 4
- Ga39 G333
/ B 3
G
¢ 32
31 =
+
G, G,y
A * 1
0

This diagram also shows the data terms labeled as subscripted vari-
ables.
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In this problem, you are given a tree representation of a sym-
bolic arithmetic expression in an integer array TREE, as well as a
" real array VAL which contains & specific value for each variable
appearing in the expression. You are to write a program which
evaluates the given expression, using the given set of values. The
tree 18 represented in TREE in the form discussed in Exercise 3.
The positive integer data values are coded as follows to represent
variables and operatora:

A value K in TREE[1], where K > 0, represents:

1< K< 100: a variable or constant whose value is stored

in VAL[K];
K = 101: operator (binary) +
K = 102; operator (binary) -
K = 103: operator *
K = 104; operator [
K = 105: operator t

Tree[1] will be the "trunk" of the expression tree. For example, the
expression ~ A *(B + At2/B) might look as follows

1 2 3 4 5 6 7 8 9 10 n 12 13

+1 | +103 |-3 +2 | +101 =6 | ~9 | +104 | +2 ;tl +105| +3

\\f l\_/-ﬁ LY

if VAL[1] = A, VAL[2] = B, and VAL[3] = 2.

We suggest the following algorithm for evaluating the expression.
Use the TREE,MAP procedure written in Exercise 3 to step through all
data terms of the tree in order, as if one were stepping through all
elements of an array. TREE.MAP tells the level of each term, indicat-
ing which subscript to step next., When values are known both operands
of a particular operator - i.e., both opérands are variables or have
been evaluated previously - perform the operation. Then place the new
value in an unused cell in the VAL array, and insert a new variable
corresponding to this element of VAL into TREE, replacing the access
pointer which was the root of the subtree you have now evaluated.
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Example:

The expresaion A *(B + A12/B) used earlier would be evaluated in

the followling etepa:

"Array Element"

__ accesned Value Action

1. G] (A) none

2. GZ % none

3. 331 (B) none

4, 632 + none

5. 633'1 (A) nong

6. (:33‘2 t none

7. G3313 2 Evaluate TI = At2; put ir in VAL

and make 0331 a pointer to it.

8. G33! (T1) none

9 g9 / none

10. G414 (B) Evaluate T, = 1'1[3, put it in

VAL, and mZke 333 a pointer to 1t.

11. Gy () none

12. G32 + none

13. G {T.,) Evaluate T, = B + T,, put into

33 2 VAL, and mgke G3 a pointer to it.

14, G1 {A) aone

15, G2 * none

16, G3 (T3) Evaluate ﬁ*Ta. Finished.
Exerclse 5:

Write an ALGOL program which, given a value X and the tree repre-
sentation of an arithmetic expression (as in Exercise 3}, determines
whether the expressten is an even function, an odd function, or

nejther, of the variable

whose value is stored in VAL{K]. Treat

all other variables as conatanta whose values are given In the VAL

array.
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Note: a function £{X) is: .
an even function if f(-X) = £(X),
an odd function 1f f{-X) = =-£(X).
We suggest an algorithm very similar to that used in Exercise 4.
Using an array parallel to TREE, put & three-valued flag at each node
of the expressicn to indicate whether the complete sub-expression

sprouting from that ncde 13 even, odd, or neither. Sequence through
the nodes just as in Exercise &,

Exerclse 6:
Write a program which, given K and the tree representation cof an

expression, produces a new tree which {8 the partial derivative of the
given expression with respect to the variable Xy stored in VAL[K].

Thus:
13— VAL[K} = 1 ; 13— VAL[I} = 0 for all I # K.
X% X%

Assume that at every node containing an t operator between sub-
expressions ¢« and P 5 8

the exponent expresuiou B will not depend upon Xgx: bence the deriva-
tive of this node will be the tree:|-|
B

where § 13 the derivative of the subtree o .

- Do not try to simplify the resulting tree by combining constants
or eliminating products with 1, sums with 0, etc. For exnmple, if the
tree shown in Exercise & for the expression A *(B + AZ/B) i{s differen-
tiated with respect to A (i1.e., K = 1), the result should be:
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Exercise 7:

Write a program which, given K and a tree produced by the differ-
entiation program of Exercise &, simplifies it by applying the follow-
ing algebraic rules:

(1) 0*A=0, A*0=0
(2) 1*A=4, A*1aa
(3) D+A=A, A+0D=2A
(4) At 1=a4a
(5) At 0=1

.




Also, evaluate numerically the power expression at each t node,
using values in the VAL array. For example, simplifying the tree
shown in Exercise 6 would yield the following tree expression:

7 M &
A 1 E] 5] [ 5] [ L2
71 B 7
5] Bl W L

PROCEDURES AND SUBROUTINES

Subroutine Linkage

You may recall from Section 2 on flow charts that an entire flow
chart may be used as a single computation box in another "higher level"
flow chart; conversely, any computation box may contain a (non-
primitive) sub-process which is defined by an-entire lower level sub-
flow chart. Thus, a complicated computing process can be represented
at all ievels of detail by a whole series of flow charts, sub-flow
charts, etc. As an example, suppose we have defined the summation
process: N

Y « & A[K]
K=1

by the flow chart:
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(a1)

TT &4

-

o

This identical process, although defined only once, can be "used"
(i.e., executed) in any number of places in a higher level flow chart,
as in the example:

1: : | (A2)

N
4 L A[K
Y <—-—K=] (K]

ok
5: |
Boxes 1, 3, and 5 in this examsle contain other computing processes,
which could be themselves entire complex flow charts; since the parti-
cular processes are irrelevant, we have simply left these boxes empty.

This notation allows the same subprocess to be executed at several
points in the overall flow chart (A2) while the detailed flow chart
(A1) which actually defines the subprocess need be drawn only once,
Thus, the subprocess notation can save writing and simplify the form
of a flow chart. '

When we discussed primitive flow charts, we gave explicit (and
simple) rules for their execution. The basic idea was contained in
the "fetch/execute" cycle, which required the determination of a suc-
cessor to each box executed. This successor is quite obviocus in a
primitive flowchart: one merely follows the unique arrow leaving
each box. However, if we examine the explicit successor rules implied
by the example flowchart (A2) above, we find that a new kind of suc-
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cessor relation has been introduced. Both box 1 and box 3, which pre-
cede executions of the sub-flowchart (A1}, clearly have the sub-flow
chart itself (that is, the first box of the sub~flow chart) as their

successors; however, the sub-flow chart does not have a fixed successor.

We can think of X in the exit symbol as a variable whose value 1s the
{numerical) labe! of the successor box. Executing the sub-process as
a single box of the main flowchart involves two steps:

(1) Setting the "exit variable™ X equal to the label of the next
box in order in the main flowchart (A2);

(2) Executing a go to box, so that the first box of the sub-flow
chart {Al1) will be executed next. When execution of the sub-
flowchart has finished, the go to box " CS“returns to
execute the next box .in (A2) after the place which jumped
off to the sub-flowchart. Thus, 1f the successor relatiom
is made explicit, then the flow chart {42) would become:

1:

N

X «3

©

V)

XKe5

©
54 ]

A part of a program which co?responds to the sub-flowchart {Al)
is called a subroutine. In general, a subroutine is:

a segment of program which, once defined, can be executed
as a single "statement" or instruction from any place in
a "master" program.

The master program may in turn be & subrouvtine for an ever higher
level program, etc; subroutines, therefore, Introduce into program-
ming a hierarchy of levels of command corresponding to the levels of
detall of flowcharts. No matter how complex its definition, a subas
routine is executed as a single statement; thus, the subroutine de-
finition effectively creates a new elementary or “primitive"™ process
for the master program.

Like the sub-flow chart discussed eariier, the subroutine has a

-67-



http://niirvrr.ii1~.Ti

variable successor which must be aet each time the subroutine is exe-
cuted. A subroutine is executed, or "called", by the main program
using the same two-step process used to execute & sub-flowchart;

(1) 8et the exit "label" (actually, the next memory address of
the main program);

(2} Execute a "“"go to" which tranafers control to the first in-
struction of the subroutine.

This two~step process is frequently callied a 'subroutine jump'. At
the completion of execution of each subroutine a 'variable go to" is
executed, returning control to the first instruction in the main pro-
gram past the point from which the subroutine jump was performed.

The programming mechanism which realizes the subroutine jump and
the subsequent return to the next instruction in the master program
is called "subroutine linkage'. The subroutine linkage is so important
that most computers include in their set of primitive operations a
"gubroutine jump" command which sets the "exit label”™ (the address of
the next instruction in memory) and also transfers control to the sub-
routine.

Notice that the master routine and the subroutine need only agree

" upon the "name'" (that is, memory address) of the variable X which holds

the exit label, and upon the first location of the subroutine itself.
Except for these agreements, the subroutine is independent of its
master program,

We can now cite two important advantages of subroutines for pro-
gramming:

(1) Subroutines save repetitive writing of identical program
segments.

(2) Subroutines provide a natural way of dividing a complex pro-
gram into sub-tasks, both parallel and nested, which can be
programmed &nd debugged independently of the other sub-tasks.

Procedures: ALGOL Subroutines

Every important computer programming language has provision for
subroutines. In ALGOL, subroutines are called procedures, to empha-
8ize their performance of independent tasks. The structure of ALGOL
procedures is very general and powerful, and is one of the most sig-
nificant features of the ALGOL language. We will now concentrate
upon ALGOL procedures; bear in mind, however, that most of the prin-
ciples of procedures are applicable to the subroutines of other pro-
gramming languages.
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Each procedure has a name, which has the form of an Ldentifier.
Like most other kinds of ALGOL identifiers, a procedure {dentifier
must appeay in a declaration -- a procedure declaration -~ at the.
beginning of the program. A procedure declaration doee more than in-
dicate that the name is a procedure ldentifier,however: the declara-
tion also gives the definition of the procedure. Thus, the declara-
tion contains a "body" of one or more statements which will be executed
when the procedure is called, 1t is ifmportant to understand that the
statements within the body of the procedure declaration are executed
only when the procedure is called, not when it is declared. Corre=
sponding to each procedure declared ia a program, the ALGOL compiler
a8s9igns a memory cell to contain the variable exit address X. Each
call for the procedure is tranalated into machine language as a sub-
routine jump Lnstruction.

There are two distinct ways in which an ALGOL procedure can be
used;

(1) To execute a complete computational proceas - 1.e,, as a
single flow chart box; or

(2) To define a value - i.e., to be used as an operand in an
arithmetic expression,

A procedure which performs a complete process.ls executed as a state-
ment, called a "procedure call statement". The execution of a pro-
cedure call statement means simply a subrotitine jump to the procedure
declaration. Followlng execution of the body of the declaration, con-
trol returns to execute the next astatement after the call statement.

For example, here 1s part of an ALGOL program using & procedure
DOSUM which performs the algorithm of flow chart (Al):

begin
real Y; integer K, P;

real array A[1:100] ;

heading} R procedure DOSUM ;
begin
& Y «0;
procedure for K1 step 1 until N do
declaration -
Y «Y + A[K] ;
) end DOSUM ;
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procedure DOSIM ;
call <

statements

1f P> 3 then DOSUM else N « 0 ;

S
end Procedure Example 1;

Here the procedure declaration has the form:

< procedure declaration >~ < heading > <« body > ,

The <« body > can be any simple statement or c0q¥9und statement (or,
more accurately, any block). e simplest form of < heading > 1is:

procedure < procedure identifier > ;

The final end of the procedure body (or the semicolon after the entire
declaration if there is no final end) {mplies a subroutine return to
the first statement in the master program after the procedure call
statement, which consists simply of the procedure identifier DOSUM.

A procedure which defines a value is called a functiom, and its
name is a function designator. To make DOSUM into a function desig-
nator, we place the type declarator word real before the word pro-
cedure in the declaration. Somewhere in the body of the procedure,
we asalgn the desired result to the procedure name DOSUM.

real TEMP ;
real procedure DOSUM ;
begin
TEMP «- 0 ;

for K« 1 step 1 until N do
TEMP « TEMF + A[K] ;
DOSUM « TEMP
end DOSUM ;

This declaration defines a function designator DOSIM which ¢an be
used as an operand in any arithmetic expression. Evaluating the

operand means a call for the procedure; when control subsequently
passes the final end of the procedure body, it returns to continue
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evaluation of the arithmetic expression, with the value which has been
assigned to DOSUM being taken as the value of the operand. For
example, execution of the statement:

Y «3 * DOSUM t 2 + COS(DOSUM) ;

will cause two separate executions of DOSUM; since the same sum will
be computed twice, this is an inefficient use of function designators.

We have discussed the idea of a subroutine and the simplest kind
of procedures. There are several other important concepts in ALGOL
procedures which we will now mention but not discuss fully. McCracken's
text introduces these ideas on a fairly simple level; for more complete
treatment of procedures, we recommend the tutorial article on ALGOL by
Bottenbruch and the book by Dijkstra listed in the Bibliography, Part V.

'The power and usefulness of ALGOL procedures lies in two abilities
they give to a programmer:

(1) An algorithm can be generalized by parametrization. Thus, an
algorithm can be developed to perform any one of an entire
family of related computing tasks; the particular task is
selected by the choice of actual parameters in the procedure
call, which are substituted for the dummy names or formal
parameters in the procedure declaration.

(2) A procedure can be a "black box", an independent program to
which the programmer can communicate only via parameters.
Once declared, it can be called with appropriate inputs via
actual parameters and results returned via parameters and
perhaps a function designator, without otherwise disturbing
the calling program. Furthermore, the programmer who writes
the call for such a procedure might not even understand the
algorithm used by the declaration, yet he can use the algo-
rithm 1if he knows what actual parameters are required in the
call. In effect, he passes inputs through slots in the top
of the box and turns the crank on the side; after a certain
amount of wheezing and groaning, the black box returns the
results through another slot.

One important use of "black box" procedures is for
algorithm publication; all algorithms which are published
in ALGOL are in fact written as "black box" procedures.
The published procedures can be kept in libraries of useful
algorithms; their declarations can be inserted into any pro-
gram (either symbolically or in a suitable machine language
form obtained from previous compilation) and called as needed.
Making a procedure a black box requires three concepts:

(1) The subroutine, already discussed.
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(2) Parametrization.

(3) Declaration of ALGOL names which are purely
local to the procedure, as opposed to global
variables such as K and N in DOSIM. Notice
that execution of DOSUM changes K in the
master program. If the programmer has also
used K for another purpose, this change of K
by DOSUM could be very anmoying! By declaring
X to be local to the procedure, he can create
two independent K's and avoid an undesirable

conflict.
Exercises on Procedutres.
Exercise 1: (Specifiers and Name vs. Value)

We wish to generalize from the following for statement:
L1: for®<—@ step (3 * 1) while (T < 73) do

@@ © stn GO 5

by letting all 8 of the circled syntactic units be formal parameters
and making 1t a procedure FORSTATE. With suitable calls, this pro-
cedure will perform either the statement labeled I.1 above, or the
statement L2 below.

L2: for X < A[I] step -.01 while X> 0 A sin (X)
< X/2 do A[A[I]] « sqrt (abs(l - X));
Assume that the variables in L1 and L2 have been declared by:

real I, X ;

real array A[1:100] ;
Note that sin and sqrt are function designators: 1i.e., real procedures.

Copy the following declaration of FORSTATE and fill in the speci-
fiers for all formal parameters, and the value part (if any). Make as
many parameters called-by-value as possible without losing the ability
to handle the L1 and L2 statements.

procedure FORSTATE (A, B, C, D, E, F, G, H) ;
begin
for A «B step C while D do E [F] « G(H) ;
end FORSTATE ;

-72-




T - S R e

Brercise 2: (Neme vs. Value Parameters)

An ALGOL program begine as follows; the statement labeled L3
has been laft blank.

begin
real I, J;
real array A[1:100] ;
real procedure PHI(I} ; real I ;

begin
I « L&l ; PHI « A[I+2]
end PHI ;
real procedure FOE (I) ; value I ; real I;
begtn
Y1 « I+ ; FOR « A [I42)
end FOE;
Ll: for J« 1 step 1 until 100 do A[J) «2%J ;
L2: I «~3; 13 | ]

Suppose one of the following aix statements is chosen as statement 13;
give the values of the wvariables I and J in the main program after
execution of L3,

(a) L3: J «PRI (I)
{(b) 13: J «PHI (A[I])

(¢) 13: J «PHI (I) + PHI (I)
(d) 13: J «FOE (1)

(e) 13: J «PHI (A [I])

(£) L3: J «FOB (A [I])

Exerclse 3:

The precedure WOE has been declared as followa:
real procedure WOE (B, GONE) ;
real GONE, B;
WE «1f 2 < GONE then Bt2 else B - GONE ;
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Apgume X =3 and Y = 2. Find the value of the following arithmetic
expressiont

WOE(X, 2%Y) + 2 /WOE (1f X =Y then X else 2 * Y, X - ¥).
Exercise 4:

Write a procedure named MAX, which, given a set of n points, finda
the distance between those two of the points which are farthest apart.
MAYX is to be a function desipgnator whose value will be the desired dis-
tance. It 18 toc have three formal parameters, as follows:

X: an array with subscripts from 1 to N,

Yt an array with aubscripta from 1 to N,

MN: an integer - the number of points.
The coordinates of the kth point are (X[k}, Y[k]).

Exerclse 5:

The following ALGOL procedure is declared in an ALGOL program.
In the calls for TABLE(A,X,Y), the actual parameter substituted for A
will be a complicated expression. '

Rewrite the procedure declaration so that its execution will re-
quire as little time as possible, while leaving the same values in the
loput and output parameter areas. You may declare additional local
variable storage.

procedure TABLE (4,X,Y¥) ;
real A; array X,Y ;
begin integer I ;
fnteger array 2Z[1:40] ;
for I «1 step 1 wuntil 40 do
Z[1] « 1 ;
for I «A -1 satep 1 until %A +9 do
Y[I+1] « -Z[I+1] t 3/(X[I+1] t 2 + At2)
t (1/2) - 2{THT t 6/(3*(X[IH1} t 2 t 2)
t (3/2)) + SQRT{A?2 + 1) +3.2* 10 ¢ -2
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BACKUS NORMAL FOBM: LANGUAGE va. META-LANGUAGE

A reference manual for a programming language should define the
language precisely, explicitly, and unambiguoualy, It must specify
both:

(1) the rules of grammar, or syntax, for legal programe in the
language, and

(2) the meaniung, or semantice, of amy legal program.

In the pagt, programming manuals have fulfilled these objectivea
. by giving descriptiona, in English, of the language and its meaning.
As computer languages have become more complex, however, such descrip-
tions have become less and less adequate. Even well written descrip-
ticns have frequently been found, on ¢lose examination, to leave am-
biguous certain points about the language belug defined.

From an abstract viewpoint, the definition of the syntax is simply
a set of rules by which one can decide whether any given string of
charactera ia, or 1a not, a legal program in the language. The defini-
tion of the ayntax must first specify (by listing it) the alphabet of
the language. It must then show how the larger elements of the
language are made up from the alphabet. It fa here that a difficulty
arises. The alphabet of the language being defined (the "object
language"), overlaps the alphaber of the language in which the defini-
tion 18 written (the “meta-language"); thus the reader frequently can-
not tell whether & given piece of text is an example of the cbject
language or {8 a peart of the descriptive meta-langusage.

With these conaiderations (and othera) in mind, J. W. Backus"z
has devised a rechaique for specifying the syntax of programming
languages. He hes defined a language, which has come toc be called
"Backus Normal Form" (abbreviated “ENF") to be used as a meta-language
for the clear and unambiguous definition of object languages, Indeed,
BNF wae devised specifically for the purpose of describing ALGOL-60
syntax. The following paragraphs contain a descriptfon of BNF with
some exampies of its use.

J. W. Backus, The Syntax and Semantics of the Proposed Internaticnal

Language of the Zurich ACM-GAMM Conference.  ICIP Paris, June 1959.

J. W. Backus, et al, Revised Report on the Algorithmic Language
ALGOL-60. Comomnications of the Assoclation Eor Computing Machinery,
Vol. 6, No. 1, (January 1963), 1-17.
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In BNF the following four meta-linguistic symbols are introduced:
< > | =

These are called "meta-linguistic symbols' since they must not be in-
cluded in the alphabet of the object language. The characters < and
> are uged as brackets to surrounding strings of meta-language charac-
ters. Such a bracketed string of characters is called a meta-linguis-
tic variable and is the name of a class of strings in the object lan-
guage.

The mark may be read as "or', and the mark ::= (to be re-
garded as a single symbol) may be read as "is defined as". The use of
these symbols is best illustrated by example.

Example 1:
< digit > ::= 0]1|2[3|4]|5[6]7|8]9
This meta-linguistic formula may be read:

“A member of the meta-linguistic class < digit > 1is defined as
Oor 1or 2or3 or 4or 50or 6or7o0r 8 or 9." Thus an occurrence
of < digit > in a meta~linguistic formula stands for any cne decimal
digit.

An especially useful feature of BNF - indeed, its reason for exist-
ence - 18 that a definition using this meta-language may be recursive.
A recursive definition, for our purpcses, may be thought of as one in
which the object being defined is included, either directly or indirect-
ly, in its definition.

Example 2
< integer > ::= < digit > | < integer > < digit >
The meta-linguistic formula in this example may be read as:

"A member of the meta-linguistic class <« integer > 1is defined
as {(either) a member of the meta-linguistic class <« digit > , or a
member of the meta-linguistic class < integer > followed by a member
of the meta-linguistic class < digit > ."

More briefly, one might say:

"An < integer > 1is either a < digit > or an < integer >
followed by a <« digit > ." The recursive nature of this definition
of <« integer > 1is seen in the occurrence of the meta-linguistic vari-
able < Integer > on both the left side and the right side of the for-
mula. Let us now consider a more complex case. '
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Example 3:
<ab> 1= (|[|] < ab> (| < ab> < digit >

This meta~linguistic formula defines the clasa < ab >. The reader
should satisfy himself that the following are members of < ab >

(137
(12345¢(
((«C
[86
and that the following are not members of < ab >
213

(LI
[t

The following example, taken from the ALGOL-60 Report [2], illus=-
trates the use of recursiveness for the definition of the syntax of
< arithmetic expression > . Notice how the definitions are buillt up
in steps corresponding to the rules of precedence of the operators:
a < primary > 1s evaluated before a < factor > which is evaluated
before a < term > which is evaluated before a < simple arithmetic
expression > , etc. Thus, the syntax has been defined to parallel the
semantics of the language.

Example 4:
< adding operator > ::= + | -
< multiplying operator > ::= X I / l -

< primary > ::= < unsigned number > | < variable > |
< function designator > |
(< arithmetic expression >>)

< factor > ::= < primary > | < factor > { < primary >

< term > :3= < factor > | < term > < multiplying operator >
< factor >

< simple arithmetic expression > ::= < term > l
< adding operator > < term > | < simple
arithmetic expression > < adding operator >
< term >

< if clause > ::= if < Boolean expression > then

< arithmetic expression > ::= < simple arithmetic
expression > | < 1f clause > < simple arithmetic
expression > else < arithmetic expression >
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A careful examination of this esyntax will show that the following
are correct instances of the indicated meta=-linguistic classes:

< primary >
£.02,23
THETA
cas (THETA 1‘-2)
(3*Y + THETA t 2)

< factor >
THETA
THETA t 2.3
THETA t Y t cos{THETA t 2)

<tem.>
Y
k1
THETA * Y / (3%Y + THETA ¢ 2)

<« simple arithmetic expreasion >
k¢
3%Y + THETA t+ 2
THETA t 2/3.2 1 Y 4 cos(THETA t 2) - 3%y

< arfthmetic expreassion >
I*Y + THETA t 2
1f Y>3 then 3*Y else THETA t 2
1f ¥ <3 then

(1f THETA >0 then 3*Y else Y + 2)
else THETA

Exercise 1:

ALGOL programs are constructed of the following syntactic unita:

-78-




1. Array Declaration 7.  Number

2. Type Declaration 8. Simple Variable

3. If Statement 9. Subscripted Variable

4. For Statement 10. Arithmetic Expression

5. Assignment Statement 11. Boolean Expression

6. Go To Statement 12. Conditional Arithmetic
Expression

For each of the particular ALGOL constructions listed below, give
the number(a) of all the syntactic units listed above, of which the
entire construction (not its constituents) is an example.

a. Xl

b. A[P, Q]

c. A[P, Q] «SIN (P +Qt2) t 2

1f P> Q then P +2 else Q+2

P=Q

~f. real P, Q, X |
1f P> Q then Xl «P +2 else X1 «Q+2
real array A[1:10, -5:5]

X1 «(1if P> Q then P else Q) + 2

X1> (if P> Q then P else Q) + 2
GOTOL + GOTOL + 3

L

B o = oM

Exercise 23

(a) Consider the following meta-linguistic classes:
< pop > :i= (< pop >, < primary >) | < primary >
< primary > 3:= < letter > | [< pop >]
< letter > ::= a|b|c|d|e|£]|g{h|i]|]]|k|1

For each of the following, indicate whether or not it fs a < p0p >
and whether or not it i{s a <« primary > .

a (c,d) ([a,b])
[a] ((a,b), ) [[fa]l]]
(a) (a, (b, c)) | ((a, b), (c, d))

[a,b] [ (a, b]) ((a, b), [(e, d)])
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(b) Consider the following meta-~linguistic classes in addition
to those defined in (a):

<cat > 1= (|) | , | <cat ><cat >
< dog > ::= [|] | < empty >

<fish> ::= <cat> | <dog> | <cat> <dog> | <dog> <cat> |
<cat> <dog> <cat>

< bop > ::= < fish > a < fish > b < £ish > ¢ < fish >
It is clear that there are < bop >s which are not < pop >8 and
< pop >s which are not < bop >s8. List all < bop >s which are
< pop >8.

(c) Consider the following:

<cow>zi= () | (]3], | < cow><cow>

< boop > t:=<cow >a <cow >b <cow>c < cow >
< Boop >s include more than < bop >a. Write a < boop > which is not
a < bop >. Are there any < bop >s which are not < boop >s? Why would
it have been undesirable had you been asked to list all < boop >s

which are < pop >87 Give an example. (This can easily be answered
ia one sentence.)
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PART IV - PROGRAMMING PROBLEMS AND THE TEACH SYSTEM

1-

THE USE OF TEACH PROCEDURES FOR STUDENT PROGRAMMING PROBLEMS

For each programming problem assigned in the course, the instruc~
tor can write a corresponding "“"TEACH" procedure to be placed into the
ALGOL program library.* " when called from the library by a student's
program, a TEACH procedure supplies several different sets of input
data to the program and checks whether the results it computes are
correct. TEACH also prints the data supplied, the student's results,
the correct answers if the student's are wrong, perhaps some diagnos-
tic information to ald the student in finding his errcr(s), and a
score for the problem,

The TEACH procedures are used both by the students to help debug
their programs and by the instructors to grade the finished product.
Thus, a student will normally prepare his program (in the form shown
below) to call the TEACH procedure; during each debugging run, TEACH
will supply test data and check his answers., When he is satisfied
that the program is working correctly, the student hands it in, still
set up to call TEACH. All the program decks for the problem are then
batched and run for grading by the instructors, and the scores printed
by TEACH during this run are recorded as the grades for the problem.

During the grading run, the TEACH procedure is modified to supply
different data values ("grading data') than the values ("debug data™)
supplied to the student for his debugging runs. The grading data, of
course, is chosen to thoroughly test the program and includes all
special and boundary cases.

For the first few problems, the debugging data generally givee a
fairly complete test of the program; for the later ones, however, the
debugging data is sufficient only to ensure that the solution generally
does what is desired. This is to encourage the students to complete
the debugging process themselves, supplying their own data sets (in a
manner explained below) to test all special cases. When the deck is
handed in for grading, however, it must contain none of the student's
own test statements but must be set up in the standard manner shown
below to call the TEACH procedure for grading.

*

This section describes the TEACH procedures as they are used in the
5205 course at Carnegie Institute of Technology.
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The following example shows a student's deck set up to call the

procedure TEACH4, The statement of a TEACH problem detalls the formal
parameters to the corresponding TEACH; the student can choose the actual
parameter names as he wishes (although most students simply use the
formal parameter names).

Card Ho. Column 1, 2 Column &...72
1 comment JOHN DOE, < student number >,
PROBLEM 4;
2 begin
3 real X, XMIN; Student's Declarations
4 integer T ;
5 sY LIBRARY TEACH4 = "System Card"
6 GRADE: TEACH (< student numbsr >, X, XMIN);
"call" TEACH4

. (Now comes hia program, Student's
. followed hy:) Program

n-1 Eg Lo GRADE ;
n end

When this program is executed, the following sequence of events occurs:

(1)
(2)

(3}

(4)

(5)

TEACH4 {8 called by the statement on card 6.

TEACH4 executes assignment statements which place a aset of
input data wvalues into the proper input variables,

TEACH4 returns control to the student's program which then
executes with the data in the input variables.

"go to GRADE" returns control to TEACH4 which checks the re-
sults which the student'e program has left in the output
variables. The input data and the student'a answers are
printed along with a message telling which, 1if any, results
are wrong. TEACH4 also prints its own anawers 1if they differ
from the student's anawers.

Steps {2}, (3), and (4) are repeated for esach data set.
Finally, TEACH4 concludes with the message:

STUDENT NUMBER < student number > SCORES < score >
OUT OF < number >
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1f the student's program creates a run-time error - e.g., an
"exponent overflow" (which includes dividing by zero) or an illegal
argument tc a transcendental aubroutine, control will return to the
TEACH procedure. The current data set will be marked wrong, a suit-
able message will be printed, and the next data set will be supplied.

Each TEACH procedure should allow the student's program to com-
pute for a fixed maximum time on each data set. If control has not
returned to TEACH at the expiration of that time, the current data
set will be marked wrong, a message will be given, and the next data
set will be supplied.

In the example program shown above, card 5, with "SY" in columms
1 and 2, is a "SYstem" card which causes the TEACH4 procedure to be
loaded into the G=20 along with the student's program. The details
of the manner in which this is done are not relevant to the present
discussion,

The standard structure of a TEACH procedure is shown in more
.detail in the flow chart which follows.
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Simplified Flow Chart for TEACH.Procedure
D = Data Set Number (initially = 0)
N = Total Number of Data Sets

—@ 0 ) )

Print: input data.
Print: student's_answers,

¥
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T{ Student's answers l F
correct? |
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LgiPrint heading: "DATA SET D" ' SCORES <score>
‘ OUT OF N "
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There are several aspects of this flow chart which are worth noting.

The variables D ( = Data Set number)} and SCORE (the cumulative score
for the run) should be own variablea, local to TBACH*,

In most cases, the TEACH procedure contains its own (presumably) cor-
rect solution te the problem; this solution is executed sach t{me TEACH
is re-entered, to determine the correct answer. We could, of course,
pre=compute the answers and store them in a flle on disc or tape memory
from which they could be retrieved for each student run. However, .the
actual computing time for solving a TEACH problem is usually negligible;
most of the time is spent in compiling and printing. Therefore, the
simpler technique of re-computing the correct answers each time ia
generally quite efficient.

Furthermore, re-computing the answers each time provides considerable
flexibility in posing problems. For example, some TEACH procedures
written at Carnegle Institute of Technology have contained non-construc-
tive solution-checking algorithms rather than solution algorithma
paralleling the student's program, either because the problem did not
have 2 unique answer or because checking was far simpler than computing
the answers. Forcing a problem to have a unique answer sometimes re-
quires extraneous assumptions and restrictions to be explained to (and
comprehended by) the student; in such cagses it 1s better to simply let
the result be non-unique.

The correct solution (or solution-checker) within TEACH takes its input
values from the same variables (or, more accurately, from the formal
parametera corresponding to the actual parameters) which are used by
the student's program, although TEACH must use a different (and local)
set of output variables. The correct solution (or the solution-checker)
is executed after the student's program has executed; therefore, the
student may supply his own data for debugging via statements assigning
new valuea to the input variables, after calling TEACH; TEACH will then
use the student's data te check his answers, and will print his data
and results, A result of this provision is that the atudent's program
must not change the input variables in the process of solving the pro-
blem.

0f course, 1t is not necessary for the student to use TEACH at
all for debugging runs; however, if he does not use TEACH, he must
write zll1 his own print statementa. At least for the first few problems,
printing the data and results requires more complicated programming than
does solving the problem itself; hence, the student is well-advised to
let TEACH do the printing.

It is interesting to note that our TEACH procedures are able to use
these own variables only because ALGOL-20 initializes all own variables to
zero,
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Before it returns control to the student's program, TEAGH normally
"bugs" the output variablea with distinctive values so that when
next re-entered it can test for the student's failing to initialize
variables, assigning no value to an output variable, or storing into
elements of any output array which are not fncluded in the limits of
the data. In each case, appropriate diagnostic messages can be
printed.

It should be apparent that the TEACH procedures provide only a
very s8imple measure of the quality of a student's program: whether
or not it works correctly. Unfortunately, it cannot judge the clarity,
elegance, simplicity, cleverness, or sophistication of a program, On
‘the other hand, it is possible to choose data sets and design a TEACH
preocedure to judge a program more finely than simply: "right or wrong".

For example, for most problems there exist (and some atudents will
discover) woefully inefficient algorithms; these can be detected by a
suitable cholce of the time limits for the data sats. By setting the
time limit at two or three times the time required by TEACH's solutionm,
we can detect poor algorithms as distionguished from minor differences
of inefficlency due to trivial coding variations. We feel that this
emphasis upon generally efficient algorithms rather than upon coding
details is appropriate for a college programming course, Furthermore,
in actual programming factors of two in efficlency are usually importe-
ant only in inner-most loope; more frequently factors of 10, or of
N/log N are the Important considerations in programming.

Choosing data sets for grading a problem requires a great deal of
care. Generally one gives a number of data sets, each of which tests
gome different aspect, special case, or boundary condition of the pro-
blem. It is important to keep these sets as nearly "orthogonal" i.e.,
independent, as possible, so that the total score will be a true and
fair reflection of how thoroughly the student undexrstood and solved
the problem. If data sets are chosen badly, all students will get
either 100 or 0 on the problem; if they are well-chosen, on the other
hand, the scores will show & normal distribution - although in practice
it is very difficult to avoild a skew towards the high end, sfnce it ia
hard to choose a problem which most students will be able to do partial-
ly but which only a few students can do perfectly.

A COLLECTION OF PROGRAMMING PROBLEMS

This section contains a collection of programming problems - or
more accurately, ketnels of programming problems - suitable for an in-
troductory programming course at the college level.* Most of the pro-

Many of the problems stated below have, in fact, been given to students
in the course 5205 at Carnegle Institute of Technology over the past
four years.
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blem statements contained here would (or did) need significant expan-
sion or elaboration before they could be assigned to a class. The pro-
blem as stated to the students ought to include a careful definition
of unfamiliar terminology, perhaps illustrative diagrams and drawings,
a complete speclification of the parameters to be used to call the

TEACH procedure or equivalent control program, and explicit statements
concerning possible ambiguities in the problem statement.

Furthermore, an instructor who uses one of these "problem kernels™
as a basis of a programming problem is likely to want to increase or
decrease the difficulty of the problem to match his students, the level
and purpose of the particular programming course, and his own feelings
about proper pedagogical technique. The perceptive reader should have
no trouble thinking of variations, perhaps endless variations, on each
of the problems listed here.

The 1list has been categorized (approximately) into the following
four groups:

Combinatorial problems,

-~}

Geometry problems,
C. Representation problems,
'D. Numerical Computation problems.

It will be clear that many of them could appear in several of these
categories, but this division still gives some useful indication of
the nature of the problems.

Combinatorial Problems.
Al. "The Change Problem':
Suppose you have an unlimited number of coins of denominations
1, 2, 5, 10, 25, and 50 cents. Given a number of cents C, compute

how many different ways there are to total C cents using only coins
of these denominations.

. How is the algorithm altered if the coins have a general set
of denominations Mo Bogs coe s o with 0 < By <pp < eee <y ?

A2. Compute all partitions of a given integer number n; i.e., find
all sets of positive integers which sum to n.

A3. Count the unique numbers in a list of n numbers.




A4,

A6.

Suppose you have N objects labeled 1, 2, ..., N, placed counter-
clockwise 1n a cirecle. Starting at object labeled X, tag the Lth
object around the circle; tag the next Lth remaining object, and
continue tagging every LEh object (of those remaining untagged)
until only one remains. If an object is already tagged, shift
counter~-clockwise until the first untagged one is encountered or
there are none left untagged. Write a program which, given values
for N, L, and K, determines the label of the last object tagged.

You are given a sequence of M numbers Xy, Xz, ..., Xy; from these
M, your program should select a subsequence of N numbers:

Xi15 Xi,y «++y X4.. The subsequence must satisfy all of the fol-
lowing Conditions:

(a) Adjacent numbers have opposite signs:

X, * X <0fork=1, 2, ..., N1,
k k+1

(b) The order of the original set is preserved:
ip < iq if and only 1if p < q.

(c) The difference between largest and smallest members:

k k k k

must be as large as possible.

Furthérmore, the value you use for N must be the iargest integér
for which properties (a) and (b) and (¢) hold. Given M and
X], vy xM’ your program should compute N and 11, ceey iN.

"The Calendar Problem':

Write a program to compute how often the Fourth of July
falls on a Thursday. Assume a calendar with the following pro-
perties; 365 days per year with 7 days per week; starting at
year 1t

a. Every Lth year is a leap year (i.e., it has 366 days,
the extra day being February 29) except -

b. Every (L * M)th year 1is an ordinary year (i.e., not a
leap year) except - '

c. Every (L * M * P)th year I8 a leap year.

This calendar is simply a generalization of our Gregorian
calendar which uses L = 4, M = 25, P = 4.
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Suppose we number the days of the week as follows:
S5un Mon Tue Wed Thu Fri  Sat
0 1 2 3 4 5 6
With this information, we may state the exact problem.

For the span of years 1, 2, ..., (L**P) and assuming the
Fourth of July falls on day D in year 1, compute how many times
the Fourth of July falls on a Thursday,

Notice that in the specilal case where L, M, and P have the
values for our Gregorian calendar, the following are true:

(a) The product (L¥M*P) 18 400. The answer to the problem
is not simply 400/7 because, e.g., this is not an inte-
ger. In other words, the Fourth of July does not fall
with equal frequency of each day of the week.

(b) Over the entire 400 years, there are the same number of
each day of the week. This means the Gregorian calen-
dar is cyclic, 1.e., repeats itself every 400 years
{but not sconer!). Thus, the same answer would result
independent of the year with which we started.

Program one of the algorithms for ordering or "sorting” N numbers.
The commen elementary algorithms include:

(a) Exchagging, alao called "shuttle sort': Exchange mem~
ers of each adjacent pair which is out of order, re-
peating until entire set is sorted.

(b) Linear selection with exchange: This is the algorithm
used in the lecture notes in Section 1 of Chapter II.

(c) Radix (or "pocket") sort: Sorting digit-by-digit in
the manner of an IBM card sorting machine.

(d) Binary merge sort: forming sorted substrings of length
2, 4, 8, IE, vees 21 entier (LN(N)).

In addition, there are non-elementary sorting techniques involving
tree structures which form a plausible introduction to list pro-
cessing.

References on sorting techaiques:

Sorting on Electronic Computers, E. H. Friend, JACM, 3,
pp. 134-168 (July gggG)
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Analysis of Internal Computer Sorting, Ivan Flores, JACM, 8,
pp- 41-80, (January 1961).

Treeg, Forests, and Rearranging, P. F. Windley, Computer J.,
3, pp. B4-98, (July 5920).

This 15 a sequence of four simple problems which lead the student
naturally to writing a recursive procedure in part (d). If re-
cursion is not available, the statement of part (d) can easily be
modified to fnstruct the student to do his own stacking of para-
meters and an exit switch, A solution to part {(d) 1s given.

It may be of interest that this problem is related to a
famous unsolved question in number theory which is being empirical-
ly tackled on computing machines, See, for exemple: Fraser, W.,
and Gottlieb, C. C., A Calculation of the Number of Lattice Points

in the Circle apd Sphere, Mathematics of Computation, 16 (1932),
pp. 282-290.

(a) A circle of radius r is centered at the origin of a
plane Cartesian coordinate system. Each point (u, v) in this
plane whose coordinates u and v are positive, zero, or negative
integers 18 called a M"lattice point."

Write an ALGOL procedure CIRCL to compute 1L, the number
of lattice points lying within or on a circle of radius r centered
at the origin., That {s, count the number of palrs (p, q) of inte-
gers such that p2 + q2 s r2 , Make CIRCL a function whose value
is L with the value of r? (not r) as a formal parameter.

Count pointa only for one quadrant, but be caraful not
to count the axes or the origin point more than once.

(b) A sphexe of radius r iz centered at the origin of a
three-dimensional Cartesian coordinate system. A M"lattice point"
in this space 18 any point (u, v, w) whose coordinates u, v, and
w are integers,

Write an ALGOL procedure SPHER to compute M, the number
of lattice points in three-dimensions which lie within or on the
surface of a sphere of radius r centered at the origin.

Make SPHER a function having rZ as a formal parameter.
Use CIRCL as a subroutine in SPHER. Count the points in the
northern hemisphere only, doubling the result to inciude the
"southern hemisphere"; but be careful not to count the points in
the equatorial plane twice.

(c) A four-dimensional hypersphere of radius r is centered

at the origin of a four-dimensfonal coordinate system. Every
quadruplet (u, v, w, zx) of integers defines the coordinates of a
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lattice point in this four-dimensional space.

Write an ALGOL procedure HYPER to compute N, the number
of lattice points lying within or on the surface of the four di-
mensional hypersphere of radius r. Make HYPER a function with the
value of r2 as a formal parameter.

Use SPHER as a subroutine im HYPER. Count the points in
the "northern hemihyperaphere” but be careful not to count the
"equatorial"™ sphere twice.

(d) Write a recursive ALGOL procedure POINT (F, n). POINT
counts the lattice points in n dimensions which are within or on
the surface of an n-dimensional sphere of radius r ==JT“. For
example, POINT (P, 2) should give the same result as CIRCL (P).
POINT shotild he a recursive procedure calling itself to count
points in n-1 dimensions, etc., just as HYPER used SPHER which in
turn used CIRCL.

Make POINT a functlion. Count points in only half of each
space, subspace, sub subspace, ..., and double; but don't count
the middle points twice.

Note: Here is a sclution to Part (d):
integer procedute POINT (RHO, N) ;
value RHO, N; integer N; real RHO;
begin

real SiM ; integer I ;
if N =0 then POINT « 1

else
begtn
SUM « POINT (RHQ, N-T1);
if RHO Z 1 then
for T «1, T +1 while It2 = RHO do
SUM «3IIM + 2 *
POINT (RHO - It2, N-1) ;
POINT <« StM
end

end POINT ( ) ;

Write an ALGOL program to find a "stable" set of marraiges for a
given group of N boys and N girls. Each boy has ordered the girls
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A10,

All,

according to his preferences, and you are given the results as an
array BOY in which -

BOY = (the number of the girl who 1s the kth choice of
boy 1).

Similarly, the girls have indicated their preferences in an array
GIRL, in which

GIRL = (the number of the boy who is the kth choice of
girl 1). .

A set of marriages is unstable 1f a man and woman exist who
are not married to each other but prefer each other to their
actual mates. If there are no such discontent couples, then the
set of marriages fs stable.

One possible algorithm for solving this problem is contained
in the following article:

Gale, D. and Shapley, L. 5.y College Admissions and the
Stability of Marriages, American Mathematical
Monthly, 69 (January 1962), pp. 9-15.

1,k

1,k

A painting has been p~oduced in a rectangular frame with the use

of three colors, or of any color that can be obtained by mixtures
of these colors; call chese colors red, yellow, and blue, We con-
sider the painting divided into unit squares with N columns and M
rows. You are given three matrices R, B, and Y; Rij is a real
number indicating the amount (in some units) of red points in the
square (i,j); similarly, Bij and Yij indicate the amounts ot blue
and yellow paint, respectively, In square (1,j). Define a square
to be reddish if it has more red paint than yellow and blue to-
gether, similarly blueish and yellowish.

Compute the number REDPDISH, the proportion of the picture that
is reddish, i.e., the number of reddish squares divided by the
total number of squares. Similarly compute BLUEISH and YELLOWISH.

If red paint costs 2 cents a unit, blue 3 cents, and yellow
4 cents and if there 18 an additional charge of 50 cents for each
different mixture used, compute also the total cost of the paint
in dollars. You can assume that two squares were painted with the
same mixture if the ratio of red paint to blue paint to yellow
paint used in each square is the same (to within a tolerance de-
termined by the accuracy of representation of real numbers in the
machine). A pure red or blue or yellow does not count as a mixture.

Given a painting as represented in problem 10 and the cocordinates
(X, Y) of a particular square, compute the number of squares

painted using the same color of paint (i.e., the same pure color,
red or blue or yellow, or the same mixture as defined in problem
10) as in square (X, Y) and connected to it by a chain of squares
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of the same cclor. A chain of squares is obtained by any combi-
nation of horizontal and vertical moves, but not diagonal moves.

B. Geometry Problems.

B1.

B2.

B3.

B4.

BSI

B6.

B7.

BB,

Given a circle ¢ defined by the triplet of values (X, Y, R) with
R the radius and X, Y the coordinates of the center, and a point
P defined by coordinates (U, V). Determine whether or not P is

inside C, and set a Boolean variable INSIDE accordingly.

You are given two triangles A and B defined by the coordi-
nates of thelr vertices:

A defined by (X], Y1), (XZ’ YZ)' and (X3, Y3) H
B defined by (X,, Y4), (xs, Ys), and (X6, Y6) .

Compute the area of the triangle A.

Given two triangles A and B defined as above, determine whether
A can be fitted inside B or made to coincide with B, using only
translation and rotation.

Given two circles €y and C3, each defined by triplets (Xy,Y7,Ry),
and (X2,Y7,R7) as in problem Bl, compute the number of common
tangents.

Given the coordinates (X1, Yy), «.., (Xy» YN) of N vertices of a
polygon, compute its area.

Given N circles C,, Ci cney C defined by triplets (X,, ¥ys R]),
eeey (XN, Yy ) as 1n problem B4, compute the area o% the
smallest -square which encloses all N circles.

Given four points P, = (X;, Y ),i =1, 2, 3, 4, calculate the co-
efficients M and B %or the equation- = MX + B of the line join-
ing the midpoint of segment PP, with the midpoint of segment P4P.
Set the Boolean variables UNIQUE and SOLUTION as follows:

SOLUTION = true 1f there exists an equaticn of the form
y = MX + B, false otherwise,

true if SOLUTION = true and the computed M and B
values are unique, false otherwise.

i

i}

UNIQUE

Given two squares A and B defined by the coordinates of their
vertices, compute thelr common area.
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BS.

B10,

B11.

B12.

Given a square defined by the coordinates of two diagonally
opposlte vertices, and given the coordinates of a point P, de-
termine whether P lies inside the square. Set a Boolean vari-
able PINSIDE to true if P lies inside, false otherwise.

Assume & sequence of squares Sg, 84, ..., Si, ... are constructed

such that each 8y 18 centered on the origin and has area

(1 + k)AZ, for k = 0. Given a value for A and for the coordinates
(X, ¥) of a point P, compute the smallest k such that P is inside

Sk.

You are given a aquare of aide I with two gaps A and B in the base,
each of length §. Assume a particle is fired from a point on the
base, x units from the left side, at an angle w > 8 > 0. The
particle rebounds elastically from the walls. Compute the diastance,
d, traveled by the particle before it exits through one of the

gaps, If the particle will never exit through one of the gaps,

set d to ~1. Hint: Conaider space filled by stacks of identical
boxes with perfectly ethereal walls,

-+

Parts (a) through (e) which follow form a unified sequence of
problems. In general, the solution to each part is useful as a
subroutine in the parts which follow it in sequence. Before
starting the problems, we give some definitions:

"Two line segments Iintersect if they have exactly one point
in common; they overlap if they have a line segment in common.
A line segment always Eas non-zero length, so that a point is
not a segment,

A polygon (or n-gon) is a set of n line segments (i.e.,
sides) aucE that one can trace a closed path over segments which
(1) passes through each endpoint half as many times as the end-
point appears in a list of the segments, and which (2) passes
along each segment exactly once.




Bl12.

Examples:

Pulxgons

[N =
RIRREARC

{continued)

(a)

{(b)

{e)

Given a line segment L, defined by the coordinates (X,, Y,).
(X, Yp) of ita endpoints, determine whether the point

P = (Xp, Yp) lies on the segment (between a and b) and set

a Boolean variable ONLIKRE accordingly.

Given two line segments Ly and L, defined by the coordinates
of their endpointa, compute the coordinates (X, Yp) of their
point of intersection, and set the Bocolean variable INTERSECT
to be true. Lf, however, Ly and Ly do not intersect (within
their Tengths), then set INTERSECT to false and Xp and Yp to
0.

Assume that the two line segmente have at most one point
in common, l.e., they do not ovexrlap. —

You are given J line segments Ly, ..., Ly, Tepresented by the
coordinates of theilr endpolints; thus for esch i =1, ..., T,
Ly is represented by ((Xy3, Yy5) , ¢ X9y Yp3)). Find 2ll
pelnts Py, of intersection of palrs of asegments L,, L, from
the given set. . Your result should include the number m of
such intersections and a list of their coprdinates, in the
following order:
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B12. (cont'd) (1) If a< ¢ , then Pab 18 listed before Pcd'

B13.

(d)

(e)

(2) 1fb<d, thenP

As in Part (b), assume that no segments overlap.

is listed before Pad‘

Given J line segments Ly, ..., Ly represented as in Part (c),
determine whether they }orm a po{ygon (N-gon) when all N seg-
ments are included, and set a Boolean variable ISPOLYGON
accordingly. To determine whether the segments do form a
polygon (according to the definition given earlier), you must
traverse the segments in some order. If the segments do form
a polygon, your program must not only set ISPOLYGON to true
but also reorder the segments to correspond to the order in
which you traced them. It should also exchange endpoints of
segments in the reordered list Ly, ..., Ly if necessary so
that the second endpoint of each segment Ly coincides with
the first endpoint of the next segment Yet1 e

Glven J line segments as in Part (d), compute N, the greatest
integer such that an N-gon can be constructed from some sub-
get of the given segments. Thus, not all given segments need
be used, and 0 = N = J.

Examples:
J=11
N=7
J=9
N=©56

"The Triangle Problem':

You are given N line segments Ly, ..., Ly defined by the

coordinates of their endpoints. ¥Find the first triangle, if any,
which can be formed from these segments. We define "first" by

the ordering:

(La’ Lb’ Lc) comes before (Ld, Le’ Lf)

if a< d
or 1f a=d and b< e
or if a=d and b=e and ¢ < £.

If no triangles can be Iormed, set a Boolean variable NONE to true.
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c.

Bi&.

B15.

B16.

¥ou are gilven the vertices of two trianglea A and B, such that
triangle A eucloses triangle B. Compute d, the minimum dis-
tance from any point on A tp any point on B,

Y

Glven & non-reentrant polygon of N sides defined by the ¥ vertices
(X1, ¥p)a.ues Ky, Yy) and a point P = (Xp, Yp), determine whether
P is Iinside or outside the polygon.

Given a non-reentrant polygou of N sides defined as in problem B15,
tag thoae of its vertices which are alap the vertices of the con-
vex hull of the polygon.

Representation Problema.

Cl.

C2.

Ch,

Write programs to add, subtract, multiply, and divide Roman Numerals.
A Roman Numeral can be represented by a sequence cg, Cals <o+ €
of codes, where each cq will be 1, 2, 3, 4, 5, or 6 to represent

I, Vv, X, L, C, or M, respectively. The code c; is the lowest-order
(i.e., the right-most character ia the Numeral.)

You are given two ordered triples (M;, Dy, ¥y) and {M2’ Dyy Y5)
which represent calendar dates by (wonth, day, year) numbers. Com-
pute the total number of days included by these two dates. 1If,
however, either or both given triples do not represent legitimate
expreasions for dates, set the number of days spanned to -1.

¥ind all convex polygons of area 8 whose sides are either Barallel
to the c¢oordinate axes and have integer lengths, or are 45° dia-
gonals with lengths equal to an Integet multiple of Jﬁp. Paolygons
differing only Iin translations from the origin are to be considered
the same polygon.

Consider an abstract network composed of N nodes connected togethex
by lines. If the nodes are numbered 1 through N, then the network
is defined by its Boolean connection matrix G, where:

C,. = (Lf there 15 2 line connecting node i directly to node j
then true,
else false),

for all {1, j) =1, 2, ..., N. Write a progream which, given such

1]
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c5.

C6.

c7.

c8.

a connection matrix for a network, computes the corresponding
Boolean path matrix P, defined by: '

Pij = (if there is a path, through any number of intervening
nodes, from node 1 to node j then true,
else false).

A maze can be represented as an abstract network specified by a
commection matrix as defined in problem C4. Assume you are given
the connection matrix for a maze aa well as the entrance node
number E and goal node number G, Find the shortest path through
the maze from E to G.

A directed graph can be thought of as a set of nodes connected by
unidirectional lines or arrows. The Boolean connection matrix C
for an N-node directed graph can be defined as:

C1j = (if there is an arrow directed from node i to node j
then true,

else falsei

for all1 4, j =1, 2, ..., N. Write a program which determines
whether or not a given directed graph, defined by its connection
matrix, contains any closed loops. If there are any loops, com-
pute a new connection matrix which contains only those arrows of
the original graph which are contained in at least one of the
loops.

A topological ordering of the nodes of a directed graph is an
ordering in which node 1 precedes node j if there is a path
through the network from node i to node j., Write a program to
find a topological ordering for the ncdes of an N-node directed
graph specified by its connection matrix, and set ORDERED to
true. 1If, however, there are one or more loops in the graph then
a topological order cannct be found and you should set ORDER to
false. Note: Topological ordering is the basis of the "PERT"
(Program Evaluation and Review Technique) for management of com-
plex industrial activities.

An abstract group of order N is defined by its "multiplication
table". If the elements of the group are ey, ..., ey, then the
multiplication table can be written as a matrix M wgere My

if and only if eje Write a program which determines
whether or not a given ExN matrix M is the multiplication table
for a group of order N, by checking the four group postulates:

(1) The group must be closed under the operation and the
operation must be unique.
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(2) There must be a left identity element in the group.

(3) For every element in the group there muat be a left-
inverse in the group.

{(4) The operation must be associative.

Postulate (1) is guaranteed by the M matrix which will be given
to you; 1f the other three hold also, set ISGROUP to true,

C9. The commutator of any two elements e, and €5 of an abstract group
G is the element _1 -1

i L'j Eiﬂj.
Given a group defined as in problem C8 by its M matrix, construct
the multiplication table products of all commutators from G. The

new multiplication table itself defines a group G' which is there-
for a subgroup of G. Determine the order of G'.

e

C10. Write a program which, given the multiplication table for a group G,
computes the multiplication table for a subgroup G' of G, 1f
such a subgroup exists.

Numerical Computation Problems,

D1. Find a zero of a given function by one of the standard methods:
{a) bisectionm.
(b) regula falsi.
{c) HNewton's method (which requires a method for calculating
the derivative).
D2. Given N, count the number of primes < N.

D3. Solve the general cubic equation:
Ax’ 4+ Bx> +Cx +D = 0, vhere A £ 0 .
D4. Solve N simultaneous linear equations.

D5. Perform numerical integration using the trapezoidal formula or
Simpson's rule,

D7. Assuming there is no subroutine available, program the exponentia-
tion operation X" in one of the following cases:
(a) n an integer

(bY n a real number
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(c)
(d)

(e)

n real or integer, using a given Boolean variable
ISREAL to determine the type.

Az in (c), but optimized for the most common cases:
n = positive integer = 5.

As in (d), but midimizing number of multiplications
when n 18 an integer. Suppestion: Consider the ex-
pansion of n as a binary number.

D7. Program procedures (subroutines) for performing the operations
of arithmetic on data of any of the following classes:

(a)
(b)
(c)
(d)
(e)

Complex numbers, in polar or rectangular form.
Double precision numbers.

Extended floating point numbers.

Polynomiala.

Piece-wise linear functions,

D8. Given an (unknown) function f(x) defined by a subroutine, find
a (local) maximum of f to within a specified tolerance. Assume
that there is a penalty associated with evaluations of £ and
hence minimize the number of evaluations.

D9. Write a program to compute a transcendental function - for example,
log,(X) - to specified accuracy for any value of X.

(a)

(b)

Evaluate a best-fit polynomfal approximation. For
example, Hastings* gives coefficlents C], cery C9 for
which:

3 5 7 9
P(X) = 1/2 + CiY + CaY7 + €Y7 + 0¥ + €Y
with Y = i; 10 differs from log,(X) by less than

2 x 107 for 1= X 5 10, Evaluate the factored form
of the polynomial.

Given any X > 0 , "reduce"™ it by factors of 10 or 1/10
until it lies in the range 1 = X = 10, and then compute
logw(X) usging part (a). If X = 0, set an error flag.

* Hastings, C., Approximations for Digital Computers, Princetion Univer-
sity Press, 1955.
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D10,

D1t.

Di1z.

Glven integers n and ¢ and real value x, avaluate S(n, c, x) by
the recursion relationa:

0.

(-1D¢ x¢ s(n + ¢, -¢c, x).
n

-nk 3K

K' (K + c)!
Evaluate the sum in factored form. Aside: for n2 0 and c > 0,

Sgn, ¢, x) 18 the n* partial sum of the power series for
X, (2 /R,

(1) n< 0, any ¢: 5(n, ¢, Xx)
(2) nE®E 0, c<0: 5(n, c, x)
(3) n20, ¢cZ0: S(n, c, x) =£E°

n

Given a set of "experimental" data X;, ..., X, compute statisti-
cal measutres:

{a) HMesan, Median, or Mode
{b) Frequency distribution
{c)} Standerd deviation
{d) Higher momenta
Compute as accurately as possible a value for the physical quantity

@, called Modelung's constant, for a face-~centered cubic lonic

lattice: _
+ wo +oo + oo

~a0 r = ~e® p* + g% + r*

You will be given a fixed amount of computer time; since this
aeriea converges very slowly, a great deal of cleverness is
called for.
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3.

COMPLETE EXAMFLE OF A TEACH PROBLEM

A

The Statement of the Problem:
TEACH17 = The Professor Lost in the Woods.

A Carnegie Tech mathematics professor got lost while walking in
the woods one day. When he realized his predicament, he sat down by
the nearest tree and decided upon the following algorithm for finding
his way to one of the two roads which traversed the woods.

(1) He would walk in straight lines from tree to tree until he
found one of the roads. The woods were so dense that he would be able
to see the road only when he was very close to it.

(2) He had a piece of chalk in his pocket (of course). He would
place a chalk mark on each tree he reached so as not to walk in a
circle. This chalk mark could been seen from any direction.

(3) Starting at the tree where he was sitting, and at each tree
he reached, he would:

(a) put a chalk mark on the tree, and then

{b} look around and decide which unmarked tree was closest
to his position; then he would walk in a straight line
to this latter tree. If, however, a road came closer
to him than any tree, then he would walk directly to
the road at its nearest point.

(4) In deciding upon the nearest tree the professor could only
be sure of distances with an accuracy of 1 percent. That is, if the
distances of two trees differed by less than 1 percent of the larger
of the two distances, then he judged them to be at equal distance.

I1f it turned out that there was more than one tree at the closest
distance (within the 1 percent error), he would decide among them by
the following rule: he would take the one whose direction was most
nearly North (which he could determine from the position of the sun).
If two happened to make exactly equal angles with North, he would take
the more easterly one (since he was right-handed).

Our professor was lost in a forest of ideal trees with perfectly

straight and infinitely slender trunks, all perfectly perpendicular to
a plane surface. He was ideal, too, with negligible dimensions.
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Write en ALGOL program to follow the path of the profeasor.
Assume a forest of N distinct trees whose (x,y) coordinates are
specified by elements 1:N of two real arrays X and Y. The two roads
tun north-south and east-waat, with coordinatea given by x = NSRDAD
and y = EWROAD, respectively. The profeasor starts at tree K with
coordinates (X [K], Y [K]). You will be given values of integers N
and K, as well as real numbers NSROAD and EWROAD and real arrays X
and ¥, Assume that 1 = K= N = 200, From this data you are to com-

pute:

(1) The integer NUMBER, the number of trees which the professor
reaches, not counting tree K where he starts.

(2) The contents of an Integer array PATH whose successive ele-
ments are the subscripts of the trees which the professor reaches, in
the order in which he reaches them. That is, he walks from:

(X [K], Y [K]) to (X [PATH [1]], Y[PATH [1]])
to (X [PATH [2]], Y(PATH [2]]), ete.
and finally to (X [PATH [NUMBER]], Y [PATH [NUMBER]]).
(3) A real variable DISTANCE, the total distance he walks to
reach one of the roads.
To call TEACH17, use the following two cards immediateiy follow-
ing your declarations: .
SY LYBRARY TFACH17

GRADE: TEACH]7 (<student number>>, N,K,X,Y,NSRDAD,EWR0AD,
NUMBER, PATH, DISTANCE);
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You can make the following (simplifying) assumptions:

{(A) We will give you X and Y elements less than 104 in
magnitude.

(B) No more than two trees will tie (within 1 percent)
for the smallest distance.
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B. CORRECT SOLUTION TO PROBLEM 17

COMMENT THMIS IS A CORRECT SOLUTION TO TEACHLY s san
THE PRADFESSDOR LOST IN TKRE wDODDS [;
11150 BEGIN
REAL DISTANCE, DMIN, RODADDISTANCE ]
INTEGER 1., N» NUMBER, 5, T, 0 1

11151 REAL ARRAY X, Y [1t50)
11362 INTEGER ARRAY PATHLL : Bpl
5Y LIBRARY TEACH1?
19013 MEXT: TEACHL? (200, N, S, X, ¥, NUMBER, PATH, DISTANCE})
15038 T«5 ] COMMENT THE PROFESSOR STARTS AT TREE § ]
15040 NHUMBER « DISTANCE ¢« | + 0 [
WALKAGATNE
BEGIN
15044 REAL D1ST, DX, DY, TEST 3 INTEGER | [
18045 CMIN « L8 [} COMMENT CURRENT MINIMUM DISTANCE []
15047 8«1 1 COMMENT BEGIN AT THE FIRSY TREE ... )
150%1 FOR T « 1 STEP 1 UNTIL T=4, Tel STEP % UNTIL N D)
BEGIN
COMMENT CONSIDER EACH YREE (EXCEPT T) IN TURN ]
1%114 DX « XLI) = XIT] ) DY « ¥ - ¥(T) )
15134 : GIST « SQRTL DX+2 + DYe2)
15152 TEST = ABS{ X(0Q) = x[Ti3y = DY
151563 -t YIQ} = YIT] YepBSCDXNY 3
15201 I¥ ABS( DIST - DMIN )} € .01aplsST
15214 v ABSM DIST - DMIN 3 ¢ ,01aDMIN
15217 THEN

BEGIN COMMENT DISTANCE OF TREE [ AND TREE 2
' ARE WITHIN 1 PERCENT

15231 IF TEST >0 ~ ¢ TESTe0 ~ X{11 > Xral »
15244 THEN GO TO NEWTHEE
15264 END
152684 ELSE 1F DIST ¢ OMIN THEN
15274 HEWTREE! BEGIN DMIM « DIST 3 Q@ « t END [ ]
END OF § LODP |
153501 EN BLOCK [}
15302 ROADDISTANCE « ABS{ IF ABS(XLTI) > ABSC¢Y[TI) THEN YIT) ELSE X[T1)}
15332 IF  ROADDISTANCE «< DMiN THEN
BEGIN
15334 DISTANCE = DISTANCE + DMIN 3
19341 NUMBER « NUMBER + 1 }
15344 XITE » 410 ) COMMENT THE MNEAT MAY TO CHALK THE TREE:

TRANSFORM IT OQUT TO +'INFINITY'Y, SO IT MILL BE I16NORED.
A MORE GENERAL METKOD 1S TO USE A BOOLEAN VECTOR OHALKY)
15353 T « PATH[INUMBER] « 4@ H
15361 GO TO WALKAGAIN 3
END STAGGER TD NEXT TrREE

15362 ELSE DISTANCE + DISTANCE + ROADDISTANCE |}

-105~




GO TO NEXT
13366 END SOLUTION TO PROBLEM 17
3197» WORDS 00100847

(THIS IS THE END OF COMPILATION. PROGRAM EXECUTION FOLLOWS ON NEXT PAGE.)
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04 JUN 65
s/ajujajeja/ase ejalujanjajasajoibfulujulefalalulafojateialejlu)sio/nasulnla}n)a

fo FOR DATA SET 1 YOU WAVE BEEN GIVEN  Nw=gg  S=10
YOUR PROFESSOR 1S LOSY IN THE FOLLOWING FOREST!

TREE NUMBER COORDINATES
1 ( 79, =11)
2 t 74, 4)
3 { 34, 49)
4 ( 62, 20)
5 ( 54, =11}
6 { 23, 17)
7 ( 59, 49)
8 { i2, 49)
9 { 34, 1)
10 t 78, 8)

DATA SET 1 CORRECT

TEACH ANSWERS ARE 'NUMBER's 1 'DISTANCE'=n. 9,656B85%5425 L+00D
PATH! 2 ¢END>

YA T TA TRV VA FAFA VR YL YAV VR YR AV VR VA VA VYR YA YR YRS AL VS YA NS FR WL VEFLVEVE VL ¥ 2
I FOR DATA SET 2 YOU WAVE BEEN GIVEN  N=10 © 8= 3
THE SAME GLOOMY FOREST AS TWE LAST SET
DATA SET 2 CORRECT

TEACH ANSWERS ARE *NUMBER'm 2 'DISTANCE'= 6,51126984 .01
PATHI 9, 8 <END>

(YR TR TR T YR VYR VAV VR NV N N VY R W N N Y Y N Yy Y Y Y Y N Y RN VA FA Y YL YL
I = FOR DATA SET 3 YQU HAVE BEEN GIVEN N= 3 s= 3
YOUR PROFESSOR 1S LOST IN THE FOLLOWING FORESTI

TREE NUMBER COORDINATES
1 ¢ 62, 20)
2 ( 54, =11)
3 { 23. 17

DATA SET 3 CORRECT

TEACH ANSWERS ARE 'NUMBER's 0 'DISTANCE's 1,70000000 ,+01%
PATH? WALK DIRECTLY TO ROAD
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\TAZATAYATE TS YA YA YA VAVAVE VA VAT A AN A A A YA VA YA VA VA VE VA VARV VA YA VR ¥R VAV VA VYR V2 V)
|- FOR DATA BET 4 YQOU HAVE BEEN GIVEN Ns 7 §= 7
YOUR PROFESSOR 1S LOST IN THE FOLLOWING FOREST!

TREE NUMBER ., COORDINATES
1 { 54, 11}
2 { 23, 7
3 ( 59, 49)
4 { 12, 49)
5 ( 34, 71)
6 ( 78, 8)
7 t 52, «10)

DATA SET 4 CORRECT

TEACH ANSWERS ARE 'NUMBER's 1 *DISTANCE's 1,323460680 ,+01
PATHI i <END>

|/§IQIilo,o/p/l/01'/o/c/c/a/o/n/l[a/|/c/o/olo/ols/l/ojojolo/-/o/n/;/o/nja/./u/./|/¢f
| = FOR DATA SET % YOU HAVE BEEN GIVEN N= ¢ g§= 1
YOUR PROFESSOR 1S LOST IN THE FOLLOWING FOREST?

TREE NUMBER COCRDINATES
1 ( 34, 49)
2 { 62, 20)
3 ( 54, 119
4 ( 23, 17}
5 { 59, 49)
6 ( iz, 49)
7 ¢ 34, 71}
8 ( 78, 8}
9 ¢ 52, «10)

DATA SEY 5 CORRECT

TEACH ANSWERS ARE 'NUMBER's 2 'DISTANCE'= 6,51126984 ,+01
PATHE 7, 6 <END>

STUDENT NUMBER 200 SCORES 5 OUT OF 5
TIME USED: 00101103 PAGES USED! 8 11120104
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C. INCORRECT SOLUTION TO PROBLEM 17
(2R It i S A A A P e g A I S S A A S R S RS S R P AP L) T

C OPER, YGO1 04 JUN 65 11124144 ALSOL PAGES: 10 TINE! 1 CARD®? TAPE!
44?7
A 06 AUG b4 It 04 AUG 64 Fi 13 MAY 45 gosooin2

COMMENT THIS 1S AN IeNeCsQ#R#R*E«CeT SOLUTION TO TEACHLTYS
11150 BEGIN
REAL DISTANCE, OMIN, RDADDISTANCE [}
INTEGER I, N, NUMBER, S, T, 0 !

11151 REAL ARRAY X, Y (1150)
11162 INTEGER ARRAY PATHI1 @ Bgi1
9y LIBRARY TEACH1?
15013 NEXTr TEACHL7 (200, N, 8» X» Y, NUMBER, PATH, DISTANCE)}
15036 T » § } COMMENT THE PROFESSOR STARTS AT TREE § J
15040 NUMBER « 1 » 0 3
COMMENT eass HE DIDN'T INLTIALIZE DISTANCE TO 0 /727 3
WALKAGAINS
BEGIN

15043 - REA{. DIST, DX, D¥Y, TEST 1} INTEGER | ]
15044 DMIN + .8 ] COMMENT CURRENT MINIMuUM DISTaANOE ]
15046 0 e1 3 COMMENT  BEGIN AT THE FIRST TREE ,.. 3
15050 FOR I « 4 STEP 1 UNTIL T-%» T4l STEP & UNTIL KX 00

BEGIN

COMMENT CONSIDER EACH TREE (EXCEPT T) IN TURN
15113 DX « X{tl) = XIT) t DY = YII) = ¥IT) |
15133 DIST » SQERTt OX*+2 + DY*2) }
15151 TEST « ABS{ XI[Q) = X(T!) « DY
15162 -¢ Y(Q] = YIT) Y#ABSLDX) )
15200 IF ABS( DIST = DMIN } < ,01e«D1ST
15203 w ABS¢ DIST = DMIN 3 ¢ ,01«DMIN
15216 THEN
BEBGIN COMMENT DISTANCE OF TREE | AND TREE @
ARE WITHIN 1 PERCENT 1}

15230 IF TEST >0 + ¢ TEST=0 ~ x{I}) % X1@1 )
15243 THEN GD TO NEWTREE
15263 END
152658 ELSE IF DIST ¢ DMIn THEN
15273 NEWTREE! BEQIN DMIN « DIST 3 @ » 1 END ]

END OF I LODP |
15300 END BLOCK [}
15301 ROADDISTANCE « ABS({ [F ABS(XIGl) > ARS(Y(Q}) THEN YIO1 ELSE X([0112

COMMENT e#ss THE SUBSCRIPTS SHOULD HAVE BEEN T IN THE ABOVE 1
15331 IF ROADDISTANCE =< DMIN THEN

: BEGIN

15335 DISTANCE « DISTANGE + DMIN
15340 NUMBER « NUMBER + 1 )
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15343 XITI = 210 COMMENT THE NEAT WAY TO EHALK THE TREE:
TRANSFORM IT OUT TO *'"INFINITY!', 80 IT WiLL BE [GNORED,
A MORE GENERAL METHOD I8 TO USE A BOOLEAN VECTOR *CHALK']S

13352 T « PATH[NUMBER] « & }
15360 GO TO WALKAGAIN 3
END STAGGER TO NEXT TREE
15361 ELSE DISTANCE + DISTANCE + ROADDISTANCE
G0 TO NEXT

15365 END SOLUTION TO PROBLEM 17
Ji96. WORDS 0000129
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04 JUN 65
YR YA YA YA FE VL VXA VAV FAVE YR FEYEYAVE FAFA A VRV VAYE YA VANV Y VYR WL VR VLR VIV VY VR YL ¥

1< FOR DATA SET 1 YOU HAVE BEEN GIVEN  N=10 §a1)
YOUR PROFESSOR 1S LOST IN THE FoLLOWING FORESTIH

TREE NUMBER COCRDINATES
1 { 79, =11}
2 { 74, 4)
3 { 34, 49)
4 { 62, 20)
5 { 54, «11)
6 ( 23, 17}
7 t 59, 49)
8 ( 12, 49)
9 { 34, 71)
10 t 78, a8)

DATA SET 1 INCORRECY
YOUR ANSWER, *NUMBER'm 0, IS INCORRECT
DID YOU FORGET TO INITIALIZE DISTANCE
THE PATH WHICH YOu TRACED ouT Is 1
PATH! NONE CEND>

TEACH ANSWERS ARE 'NUMBER'm 1 'DISTANCE'= 9,465685425 ,+00
PATHS 2 <END> ‘

a/o[c/./l/o/|J|/|/l/¢/¢fi/i/i/i/|/u/i/i/al;lﬂ/u/c/;/l/././ﬂ/f}clo/i/u/./o/tln/./i/s/
e FOR DATA SET 2 YOU HAVE BEEN GIVEN Ns10 S§= 3
THE SAME GLOOMY FOREST AS THE LAST SET
DATA SET 2 INCORRELT
YOUR ANSWER, 'NUMBER's 1, IS INCORRECT
DID YOU FORGET TO INITIALIZE DISTANCE
THE PATH WHICH YOU TRACED oUT IS 1
PATH? 9, NONE <END>

TEACH ANSWERS ARE 'NUMBER'm 2 'DISTANCE'=s 6,51126984 ,+01
PATHI 9, e <END>

Y Y Y Ry Y Y Yy Y Y Y L Y Y R R N A NNy,
1= FOR DATA SET 3 YQU HAVE BEEN GIVEN Ne 3 g= 3
YOUR PROFESSOR 1S LOST IN THE FOLLOWING FOREST?S

TREE NUMBER COORDINATES
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1 ; 52, 20}
2 { 54, =113
3 { 23, 17}%
DATA SET 3 INCORREECT
DID ¥YOU FORGET TO INITIALIZE DISTANCE
THE FPATH WHICH YODU TRACED QUT IS 1t
PATHE WALK DIRECTLY TO RGah

TEACH ANSNERS ARE *NUMBER'm 0 *DISTANCEt= 1,700000050 ,+01
PATH! WALK OIRECTLY TO ROAD

Y YA VAT N N YA FLFAVE N FAFE NS NS TE VA T VNS FAFEFEFEFLFLFEFENEVENE YLV VAV VL VLY S VS
| w FOR DATA SET 4 YOU HMAVE BEEN GIVEN N=a 7 s= 7

YOUR PROFESSOR IS LOST IN THE FOLLOWING FOREST?

TREE NUMBER COORDINATES
1 i 54, =11}
2 { 23, 171}
3 i 59, 49)
4 { 17, 49)
- { 34, 1)
6 | 7B, 8
7 { 52, =10}

DATA SET 4 INCCORRECT
DID YOU FORGET TO IKITIALIZE DISTANCE
THE PATH WHICH YOu TRACED ouT 15 1
PATHE 1 <END>

TEACH ANSWERS ARE 'NUMBER's 1 *DISTANCE*= 1,32360680 »+01
PATHE 1 CEND>

 TATE TETA TS FATAFAFA YA FAFE NS N N TS TS AN YR YA YR YV VA VA VA YA YA YAV VI NI VL NE VL VY
I FOR DATA SET 5 YOU HAVE BEEN GIVEN N= § 8= )
YOUR PROFESSQR IS LOST IN THE FOLLOWING FOREST!

TREE NUMBER COOCRDINATES
1 4 Ja, 49)
P4 ( b2, 2n)
3 { ba, -11}
4 ( 2%, 17}
5 ( 59, 49}
& { 1z, 49]
7 { 34, 71)
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-~

8 { 78, 8)
9 ( 52, =10)

DATA SET 5 INCORRECT

TEACH ANSWERS ARE

YOUR ANSWER, 'NUMBER'= i, 15 INCORRECY
DID YOU FORGET TO INITIALIZE DISTANRE
THE PATH WHICH YOU TRACED ouT 1§ 1

PATH? 7, NONE CEND>

*NUMBER's 2 +DISTANCE'= 6,51126%84 L4401
PATHI 7, 6 CEND>

STUDENT NUMBER 200 SCORE 0 OUT OF 5

TIME USED?

00100845

PAGES JSBED! 5 11425102
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D. Listing of the TEACH17 Procedure

 J IR A R R PR R R I R A R i PR R PR S R F PR P P PR AT P P PP Y ¥ 8

C OPER, YGO1 04 JUN 65 11120205 ALGOL PAGES: 10 TIME? 1 CARDS: TAPE!
467

{The solution shown in C above has been modified here to cause the TEACH procedure itself to be
printed as it is compiled into the student®s program.)

11150 BEgGIN
REAL DISTANCE, DMIN, ROADDISTANCE )
INTEGER 1, N. NUMBER, S8, T, 0 3
11151 REAL ARRAY X, Y [1150]
11162 INTEGER ARRAY PATHI1 &t %g)

PRINT LIBRARY,
LIBRARY TEACH1?
LIBRARY RAND}
11171 REAL PROCEDURE RAND( R, T} ;
VALUE T 3 INTEGER R 3 REAL T 3 COMMENY
RANDOM NUMBER GENERATOR .
SETS R TO NEXT PSEUDO«RANDOM NUMBER IN INTERVAL 0-~>R¢2097151
AND RAND() TO R MAPPED INTOD INTERVAL 0-> RAND() ¢ T )

11177 BEGIN INTEGER | 3

11225 I » R « Ral1953125 3 COMMENT J.E+ R ¢ MDD(R#%+9,2097152) ’
11235 RAND = 1# ¢ T/72097152) H

11241 END RAND() ]

COMMENT THIS 1S THE BEGINNING OF THE TEXT COMPILED FOR TEACHLY ee)

LABEL XQADRP,XQEXPOJLIOGRARY PROCEDURE RUNERROR)BOOLEAN MLXPQZ}
INTEGER 000,0C001%

11246 PROCEDURE TEACHL17 (STUDNO, N, S8» X, Y, NUMBER, PATH, DISTANCE)}
VALUE STUDNO3 INTEGER STUDND, N,S.NUMBER) REAL DISTANCE}
REAL ARRAY X,Y) INTEGER ARRAY PATH)
COMMENT THIS TEACH PROCEDURE WAS WRITTEN BY JOWN WHITE
11270 BEGIN ~ BOOLEAN ISPRINT 3
INTEGER [, EST » P, NOLNEXT, R JREAL TOTD, A, B,LENGTH}

11315 BOOLEAN ARRAY CORECTIOI4)) INTEGER ARRAY TRAIL[11%0)3
INTEGER €, IX, 1Y 3

11333 PROCEDURE SETX 3

11340 BEGIN Ix » IX +# 1 3 X(IX) « E 3 [IF IxuN THEN IXe 0 END 3

11365 PROCEDURE SETY 3

11372 BEGIN Iy + IY + 1 3 Y(ly) « E 3 IF lvy=N THEN IYe 0 END 3}

11417 PROCEDURE SETDATS

11424 BEGIN SWITCH DATSEY « Di, D2, D3, D4, D5)

11453 ISPRINT +« TRUE 3

11455 GOTO DATSETIOC00))

11457 D13 Pe03 Ne10}3 Selp) GOTO W0OnS:

11473 D2: Pe«0) Nell J S = 3 3 ISPRINT » FALSE ) GO TO WOODS

11511 D31 P e N+ 5 ¢ 3, GO TO WOODS )

~114~




11523
11537
11551
11553
11616
1164¢
11631
11653
11716
11748
11751
1177¢

12002
12018

12036

12056
12060
12078
12111

12124
12125

12164
12165
12212
12235
12262
12312
12327
12342

12344
12347

12351
12356
12374

12376
12377
12404
12414
12450
12467
12504
12517

12551
12554

D41 Ped) NeZ3 Se7y a0 To WOODS)
DBt Pe23 Ne9} Sei)
Woaps: I « 03
FOR EST*79574,34,62,54,23,59,12,34,78,5%2 Do
BEGIN [«[+1}) Ae]=P} IF A>D THMEN XUA}«EST) 1F A=nN THEN
GoTo Ext END:
EX1is 1 « 03
FOR EST*-11,4,49,20,-11,17,49,49,71,8,~10 DO
BEGIN. I«l+13 Ael=P} IF AD0 THEN Y(Al+EST) IF AmN THEN
GGTO EXIT END3
EXIT! XIN+1L)}eYINsL)+J. 45,69
END}

STR3

IF 000=0 THEN BEGIN A+#+{(STUDNO/3100)) Be«STUDNO=-100®4i}
1F A2 ~ A>9 THEN GOTO ZORCH}
IF A7 ~ B>3%5 THEN GOTO ZORCH)
GOTO OUTS
ZORCHY PRINT(C'YQOU HAVE NOT SUPPLIED TEACH4 ',
TWEITH A VALID STUDENT NUMBER, SORRY, BUT WE ',
'CANT RUN YOUR PROGRAM,',2E>)1 HALT}

ENDS
SETDAT)
1 « TOTD + 03 1Ff XtS)=z0 v Y[S]1=0 THEN GOTO ROAD?
HUNT? :

BEGIN INTEGER XT,YT,CCT,XCCT, CePCT,IIREAL DCCT,DCIPCT,XDCCT.TD, Q)
DCCT+ =503 XT+XI[S)3 YTeYIS)} CCT«CAPCT03

FOR I « 1 STEP 1 UNTIL N pOC
BEGIN IF =28 v X([(1}>1,5 THEN GOTO NXTTRE)

TD & SQRTCLXT=X{11)+24(yTuY[11)*2)) '
IF TDKDCCY THEN BEGIN XCCT«CCT3 XDCCT«DGCT) CCTels DCCT-TD}

IF XDCCT=DCCT < ,01#XDCCT TREN BEGIN CiPCT+#%CCT})
DCLPCTeXDCCTS
END

ELSE C1PCT>0J
GO NXTTRE)

END3
IF CAPCTAD THEN GOTO NXTTRE
ELSE IF TD=DCCT < ,01#TD THEN BEGIN CAPCT«[}
NC1PCT«TD}

END}
NXTTRE: END ]

IF CCTw0 THEN BEGIN
IF C1PCTm0 THEN BEGIN Q«CCT) GOTD SORT ENDJ
Ac(YICCTI=YT)#ABS(XICIPCT)=XT)} Be(Y{CIPCTI~YT)aABS(XICCT]1=XT)}
Q - It ABS(A-B)=>la~Bu{A+B+ARStA=B)) THEN
( IF x(CCTI>XICAPCT] THEN CCT ELSE C1PCT )
ELSE IF A>B THEN CCT ELSE C1POTS
SORTYI LENGTH«SQRTIIX[Q)-XTI22+{Y[Q]=YT)*2): NEXTeQ}
END
ELSE NEXT+03
END OF HUNT BLOCK}
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1255%
les01
12630
12645
12664

12700
12713
12744
12740
13000
13027
130%%
13071
13077
13111
13135
13143
131463

13173
13221
13230
132%7%
13274
13302
13327
13343
13354

13366
13413
13417
13437
13455
134467
13471
13517
13534
13545

13588
1361%
13642
13665
137p4
13734
13761
13775
14014

FOUNDt A « ABS{0 « XI[(S))) B + ABSLY[S] + 0}
IF (ACLENGTH) ~ (BCLENGTH) ~ {NEXTxD) THEW GOTO ROAD}
X[SYeludy [+1+1}
S+NEXT) TRAILI1)+5; TOTD«TOTD4LENGTH} GOTO HUNT}
ROADE wNOsT) TOTD«JIITD+ IF A<B THENW A ELSE R '

COMMENT COMPARE (1) NO TO NUMBER
(2) TRAIL Tn PATH (N)
€31 TOTn TO DISTANCE 3

CORECT{11+ NOmNUMBER}
CORECT|?1+TRUEF FOR Pel STEP L UNTIL NG DG CGRECTI2!«CORECTIDI~
PATHIP)=TRAILIP!}
CORECT|31+ ABS{TOTD-DISTANCE} <ia-8*T0TD}
CORECT[4]«TRUE} IF D<NUMBER ~ KUMBER<NO THEN
FIR P+l STEP 1 UNTIL NUMEER DO CORECTI4)«
CORECT 4] aPATHIP|=THAILIRPI}
CORECT[4j+-CORECTL4])
CORECT [0} + CORECT [1) ~ CORECT [2) - CORECY |3))
NAME{QOQY) [F ~CORECTIO! THEN PRIMT(( 12C,"LATA SET ',2D,
* INGORRECT',2E>)
ELSE BEGIN OCOO+pCOD4+1) PRINTI<12C, "'LATA SET ',2D,
'* CORRECT',2E>)) GOTO PANS)
© END)
IF WUMBER<O THEN PRINT(<39C,'DID YOU FORGET TC INITIALIZE ',0,
"NUMBER' ,Q,E»)}
[F ~CORECT{1) THEN BEGIN MAME(NUMBER)J) PRINT!( 300, 'YOUR ANSWER.
Q, "NUMBER 0y 't =30, ', IS INCORRECT!>,
«g(JF CORECTI4] THEN £ ELSE 03%
<1 ENOT ENQUGH TREES IN PATH} >, CE>}]
[F CoRECTI4] THEN PRINT(r40C,'ALSO, THAT °
'*PORTION OF THE PATH WHICH ¥OUu DID TRARE °
*ouUT IS tMCORRECTY, EX»)3
‘ ENDS
1¥ DISTANCE ¢0 THEN PRINT(C300.'DID YOU FORGET TO INITIALIZE +,
‘DISTANCE? ,E»)
ELSE IF <-CORECT(3) THEN BEGIN NAMEIDISTANCE))
FRINT¢<30C, 'YOUR ANSWER, '.n,'DISTANCE’,
n.';'.-iﬂ.eZL-* IS INCORRECT'.E>)
NDJ

PRINTACIOC, 'THE PATH WHICH YOU TRACED QUT I5 1',E«3C0."PATHY 131}

EST « IF NOC NUMBER THEN NUMBER ELSE NOJ
P« IF 15 ¢ EST THEN 15 ELSE EST)
FOR I = 1 STEP 1 UNTIL P DO
If PATHII]l = =1000
THEN BEGIN NAME{t*NONE'%3 PRINTe¢C4A, ', ') END
ELSE BEGIN NAME{PATHI1]}1 PRINT(L=-3Lst,*>% ENDI
IF P w 0 THEN PRINT(<3I5C,10E, ' 'WALK DIRECTLY TQ ROAD',52H,2E%)
ELSE PRINT(CIL,38,'<END>',ZE>}}
PANS! NAMECND,TOTD, [<~NOL(TRAILII))})

PRINT(<12C,TTEACH ANSWERS ARE 1,0,'NUMBER',Q0,121,2D,2B8,4,
"DISTANCE Qs t=',mlD.BZL,E,300,tPATHL '3,
ANBDC=3De e *2)1

IF NO = 00 THEN PRINT{(<3SC,108," 'WwALK DIRECTLY T0 RDAR'.52B,2E>}
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14037 ELSE PRINTL<1L,3B,'<END>?,2E>)}

auTe
14p5% IF 00GQ=% THEM 3070 F[IN}
14064 PRINT{240¢ "8 /">,42E>)y § 000+000+1) SETUAT)
14111 NUMBER«DISTANCE*=-10007 FOR 1+1 STEP 41 UNTIL 20 DO PlTHIII*-iﬂﬂﬂl
14150 NAME{DQO,N,S) )
14172 PRINT(LBC,"i=+',12C,'F0R DATA SET ',1D,* YOU HAVE BEEN GJIVEN ‘s
14217 1He!, 2D, S=1,2D0,E>})1
14231 [F [SPRINT THEN
14233 BEGIN NAME(¢ I-NUT,XIT1sYII1%)F PRINTI(CLI20B,E>)}
14302 PRINT{C12C,tYOUR PROFESSOR IS LOST IN THE FOLLOWING!
14321 »!" FOREST2',2E,40C,'TREE NUMBER ',
14334 "COORDINATES Y , 2E> s «NLASC, 2D, 54 C, " { "a=dD, !, "
14384 . ~4D, V) 'L,E>,C2E>)} END
14375 ELSE PRINT(<18C, +THE SAME GLOOMY FOREST AS THE LAST SET?
14415 23E»} 13
14421 GOTO TCHNDy
14423 FINI NAME{STUDND,QCO0,000)1
14444 PRINTL¢?73C,1STUDENT NUMBER 1,32,' SCORES ',2D0,' OUT OF *,2D.E>M)
14487 HALT)

TCHND1

1447p END OF TEACHLY:

COMMENT w#s THE FOLLOWING STATEMENTS RECOVER CONTROL
FOR TEACH IN CASE OF EXPONENT OVERFLLOM AND ADRODPS 3
14474 PROCEDURE ADDRESS,MESSAGE; BEGIN INTEGER T3

14502 CLa 2 133,5) GET ARDRESS

14503 5T1 o T SAVE IN TEMP

14504 NaAMEIT)}

14514 PRINT(<12C,'THE ADDRESS oF THE COMMAND TL BE EXECUTEDR ',

14535 *FOLLOWING THE COMMAND WHICH CAUSED THE ERROR [S5t',aD.2BE>»)3 END?

14562 MLXPQZ+FALSEI0QD+0C00+0) GOTp BCWLX2:

14571 XOADRPEt  PRINT(¢12C,*YOUR PROGRAM HAS CAUSED THE G=21 TO ﬁTTEHPT Yo
14812 tT0 EXECUTE AN TLLEGAL COMMAND, EITHER SOME FORMAL AND ACTULAL t,
14633 'FARAMETERS',E,12C,"ARE NOT [N CORRESPONDENCE OR & SUBSCRIPT IS ouT
14655 «*OF BOUNDS,',2E>}) ADDRESS.MESSAGE: GOTO BCWLX7?)

14670 YGEXPOI PRINTI<12C,'YOUR PROGRAM HAS CREATED AN EMPONENT OVERFLOM.',
14712 ' PLEASE CHECK FQOR D]VISION BY & VERY SMALL NUMEER',E,12C.

14732 *OR FOR MULTIPLICAYION OF TwO0 VERY LARGE NUMBERS,',2E>)}

147%2 ADDRESS,.MESSAGE)

14753 BCWLX2t RUNERRQR(XQADRP,'ADRFP',MLXPQZ)}

14773 RUNERROR{ XUEXPO, 'TEXPO'MLXPOZ)}

15013 MEXTI TEACHL? (200, Ns 55 Xs Y, NUMBER, PATH, DISTANCE))
15036 T « 8 [ COMMENT THE PROFESSOR SYARTS AT TREE S )
15049 NUMBER +« | « 0

COMMENT ##xs HE DIDN'T INITIALIZE DISTANCE TO 0 747 )
WALKAGAINI

BEGIN
15043 REAL DIST, DX, DY, TEST INTEGER ] [}
15044 DMIN ¢« L& ! COMMENT CURRENT MINIMYM DISTINCE }
15046 0«1 ) COMMENT BEGIN AT THE FIRST TREE ... &
15050 FOR I « 4 STEP 1 UNTIL T=1, T+l STEP 1 UNTIL N DO
BEGIN

COMMENT CONSIDER EACH TREE (EXCEPT T3 IN TURN ¢
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3196

13113
15133
15151
15162
15200
15203
15216

15230
15243
15263
15265
15273

15300
15301
15331
15335

153440
15343

15352
15360
15361

153365
WORDS

DX « X{I) = XI{T] 1 DY « ¥{1) - ¥IT) }
DIST = SQRT( DX¢+2 + DY*2)
TEST « ABS( XI1Q) - x(T)) = DY
=t YI0) = Y[T) )#aBS(DX)
IF ABS( DIST - DMIN } < .01+pIST
v ABS( DIST = DMIN )} < ,Q01¢DMIN
THEN
BEGIN COMMENT DISTANCE OF TREE I AND TREE @
ARE WITKHIN 1 PERCENT
IF TEST >0 v ( TESTag ~ XI[1}l > X1Q)
THEN GO TO NEWTREE

END
ELSE IF DIST < DMIN THEN
NEWTREE: BEGIN DMIN « DIST J} Q « 1 END ]

END OF I LOOP )
END BLOCK }

ROADDISTANCE « ABS( IF ABS(X(Q)) > ABS(Y(Ol) THEN Y(0) ELSE XtQ)})
COMMENTY saa® THE SUBSCRIPTS SHOULD HAVE BEEN @ IN THE ABOVE )
IF ROADDISTANCE ¢ DMIN THEN
BEGIN
DISTANCE = DISTANCE + DMIN
NUMBER +« NUMBER + 1
XITI = 210 3 COMMENT THE NEAT WAY TO CHALX THE TREE!
TRANSFORM [T OUT TO *'INFINITY?!', SO IT wlLL BF IGNORED,
A MORE GENERAL METHOD 1S TO USE A RODOLEAN VECTOR 'CHaLK?")
T « PATHINUMBER] « @ ]
GO TO WALKAGAIN
END STAGGER TO NEXT TREE

ELSE DISTANCE « DISTANCE + ROADDISTANCE
GO TO NEXTY '
END SOLUTION TO PROBLEM 17
00100337
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4., EXAMINATION PROBLEMS CONCERNING PROGRAMMING

We list here some general classes of problems which convern pro-
gramming in ALGOL - or any computer language - and are auitable for
written examinations in an introductory programming course.

(n

(2)

3

(4)

(5)

(6)

Example i:

Tell what a given ALGOL program does. Give values of speci-
fied variables at various intermediate points during execu-
tion.

Draw a flow chart for a given ALGOL program.

Write an ALGOL program from a given flow chart.

Detect and correct errors of syntax in a given ALGOL program.
Make any reasonable correction, without worrying about what

the program is supposed to do - it is probably nonsense.

Detect and correct "semantic" errors in a syntactically cor-

.rect program which is intended to perform a specified task.

Given a specified subset of the ALGOL language, indicate how
the ALGOL constructions which have been omitted from the sub-

_ s8et can be replaced by coustructions in the subset. To clari-

by this, we will give examples both from ALGOL and from
machine language.

ALGOL Subset

LI'L ALGOL is a programming language similar to ALGOL in every
respect, except that the following ALGOL constructions are not allowed:

for statements

switches

relations (except that = and > are permitted)
Boolean operators {(i.e., 1, A, V)

else

Each algorithm written in ALGOL can also be written in LI'L ALGOL.

For each of the following ALGOL constructions, write a LI'L ALGOL
construction which has the same effect.

(a) 1f A =3B then X « X + 1 else B « sin(X) ; NEXT:
(b) If C<DV N # 1 then go to SKIBO ; NEXT

(c) for 8 « .3, T step 1 until 20 do X ; NEXT:

(d) switch G « L1, L2, L3 ; go to G[I] ; NEXT:
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Example 2: Machine Language Subset.

Suppose that you have & very simple computing machine which
handles only lntegere and whose machine language consists of the
following:

(1} PRach command containa onliy an op code and an address A.

(2) There are only four possible op codes:

Op Code Mnemonic ~ Meaning
CLA Clear and Add AC « MEM[A]
STO STOre MEM[A] « AC
CHS CHange Sign AC « ~AC
80T Subtract One AC « =-AC - 1 ;
and Test 1f AC < 0 then KC « A;

AC 18 a pseudo-ALGOL variable which represents the "ACcumulator'. NC
represents the "Next Command" register which conteins the address of
the next command to be executed. That is, CHS merely changes the sign
of the accumulator AC. SOT simply subtracts 1 from the AC contents;
if the result is less than 0, then the next command 1s taken from le-
cation A instead of from the location following the SOT command,

Here 15 a gection of a program on your simple machine. Assume
that the three names ZERO, Q, and REM atand for addresses of three
date cells, and that cell ZERQ always contains the number 0. Draw &
primitive flow chart of the process performed by this program.

_location Qpcode Address
1000 ClA  REM —
1001 SOE 1002
1002 50T 1003 ;]
1003 SOT 1012 —
1004 - 8TO REM
1005 CLA Q
1006 CHS
1007 SOT IDUE;J
1008 CHS
1009 STO Q
1010 CLA ZERD —
1011 50T - 1000
1012 {next segment} +—
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I D B

D)

Below is a list of short problems to be programmed in this simple
machine language. The problems marked with asterisks are harder than
the others. Commands may be placed into any cells; if additional tem-~
porary data cells are needed, call their addresses TEMP1, TEMF2, etc.
The best solutions will be the shortest ones.

(a)
(b)

*(c)
*(d)

If REM < 0 then REM « -REM else Q « =Q

0 if REM contains an odd number Here the cell REM con-
{ }
1 if REM contains an even number. tains a number Z 0,

Q < max (Q, REM)

Perform general addition: REM + Q, leaving sum in AC.
REM and Q have either sign, '
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