
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

WINDOW: A FORMALLY-SPECIFIED
GRAPHICS-BASED TEXT EDITOR

Douglas Gerhardt and D. L. Parnas

Computer Science Department

Carnegie-Mellon University

June, 1973

This work was supported by the National Science Foundation
under Grant GJ 30127 and Grant GJ 37728 to Carnegie-Melion
University and a l so by the Advanced Research Projects Agency
of the Office of the Secretary of Defense (F44620-70-C-0107),
monitored by the Air Force Office of S c i e n t i f i c Research.

WINDOW 1

PREFACE

WINDOW is a formally-specified text editing program which exploits the graphics
capabilities of crt terminals [1]. Terminal screens are divided into several "windows".
Each window displays text from any of a number of simultaneously open fifes.
Through the notion of linked "pointers", operations upon one file may invoke
corresponding operations upon other files.

D. L. Parnas designed and produced the formal specification for its kernel editing
system. Douglas Gerhardt implemented the kernel according to the specification and
developed a command interpreter.

This paper has three main sections covering the interface and structure of the
kernel, the relationship between the kernel and the command interpreter, and our
experiences with this application of formal specification.

Drafts of this paper were edited using the implementation of WINDOW described
in m

1. Gerhardt D. L., "WINDOW: User's Manual," June, 1973. Available from the
[C331Deei5]/A"" e r s i t y C o m P u t e r S c i e n c e Department as "DSKB: WINDOW.MAN

WINDOW
Interface Specification

2

INTRODUCTION

INTERFACE SPECIFICATION

A technique [2] has been described for specifying the interface between parts of

software systems. In this paper, we have applied the same technique to the formal

specification *of a man-machine interface [3].

At first glance, such a specification appears to be a program written in a

high-order language. It is not. A program describes a process by listing a sequence

of actions to be performed by a lower level machine. A specification does not admit

the existense of such a machine. All of the functions mentioned in a formal

specification are available to the user. They are described, not be giving their

implementations, but by enumerating their effects upon each other . The result is a

"black box" description.

2. Parnas, D. L., "A Technique for Software Module Specification with Examples,"
May, 1972 COMMUNICATIONS QF THE ACM (Programming Techniques Department).

3 . Parnas , D. L., "Sample Man Machine Interface Specification — A Graphics Based
Line Editor," in DISPLAY USE FOR MAN-MACHINE DIALOG (W. Handler, J.
Weizenbaum, eds.), published by Carl Hanser Yerlag Munchen, 1972.

WINDOW
Interface Specification

3

The black box description in this paper suggests a simple implementation because

w e abstract files as arrays, an unworkable implementation for most real situations.

The actual implementation is more complex but the details of it ore hidden. They a re

no t necessary for making good use of the system.

The formal specification is inherently complete. As with most formal structures,

however, a human being needs a description of the intended interpretation of the

s t ruc ture in order to comprehend it. Such commentary is not a part of the

specification, nor is it complete.

WINDOW 4
Graphics-Based Text Editor

GRAPHICS-BASED TEXT EDITOR

Text editing often involves creating or modifying one file on the basis of information

contained in other files. As a great deal of time and effort is spent shifting physical

focus among the files, we realized that our work would be assisted by an editing

program which would allow us to look at several files on one screen. We wanted the

ability to divide the screen into "windows", each capable of displaying a section from

any of a number of files. The division into windows and the assignment of windows to

file sections would not be fixed. An additional useful property would be to have the

center line of each window move through a file as our attention moved so that the line

of interest could always be found at a fixed point in the display. The ability to link

pointers to several files would enable a change in one pointer to invoke a

corresponding change in all pointers linked to it. The WINDOW kernel described in

Section One encompasses the above features.

WINDOW 5
Graphics-Based Text Editor

An understanding of WINDOW must begin with the notion of "pointers'*. Every

pointer is a triple consisting of a file number, a line number relative to the beginning

of the file, and a character position relative to the beginning of a line. All editing is

performed on characters indicated by a pointer. The first action taken after opening a

file is the definition of a pointer through which the file may be accessed. A particular

pointer may be declared the "current pointer" so that it is not always necessary to

name a specific painter in the various editing functions of the kernel.

The text displayed through a window is determined by a pointer which is

associated with that window when the window is defined; this pointer must be one

which has previously been defined upon a file. Thus a window might be said to

display a single character. However, surrounding text, always at least one line, is also

displayed. The number of lines displayed (the width of a window) is specified when

the window is defined.

Any change to a pointer is reflected through the text displayed in all windows

associated with that pointer. Thus if the line-part of a pointer is repeatedly

incremented so that it paints to successive lines in its file, the text displayed will

likewise appear to move in a scroll-like fashion as the center line of each window

shows those successive lines.

WINDOW
Interface and Structure of Kernel

6

SECTION ONE

INTERFACE AND STRUCTURE OF THE KERNEL

The structure of the kernel system is a three-level hierarchy consisting of a file

subsystem, a graphics subsystem, and an editing subsystem, respectively. The

interface presented by each level is composed of function references which either

indicate a state of the kernel system or effect a change in that state.

The following is a commentary on the specification of the kernel. Functions are

provided here with informal parameter lists. Implicit parameters are enclosed within

square brackets. Explicit parameters are enclosed within parentheses. The formal

specification is located in Appendix One.

WINDOW
Commentary

7

FILE SYSTEM

Indicators Effectors

UFIEX(fi lef)
- t rue iff its parameter

is the identifier of
an open file

FILIN (file f)
makes UFIEX » true

FILOUT (file f)
makes UFIEX • false

ULIEX (file f; line 1)
• t rue iff its parameter

is the identifier of
an existing line in
an open file

INSLIN ["current pointer"]
makes FLINES<-FLINES+1

DELINE ["current pointer"]
makes FLINES<-FLINES-1

FLINES (file f)
= number of lines in

an open file

UMAXCH (file f; line 1)
= number of characters

in an existing line
in an open file

UFS (file f; line I; position c)
= character in an

existing line in
an open file

INSACHAR (pointer p; character z)
makes UMAXCH«-UMAXCH+1
UFS at end of line *- z

DELACHAR (pointer p)
makes UMAXCH<-UMAXCH-1
delete from end of line

ALTCHAR (pointer p; character z)
alters UFS

™LV.J.mltims I N S L I N i DELINE; INSACHAR, DELACHAR, and ALTCHAR may affect
SCREEN. Functions INSLIN and DELINE may also affect SRCLIN.

WINDOW
Commentary

8

GRAPHICS SYSTEM

Indicators Effectors

WINEXISTS (window w)

« true iff its

DEFWIND (window w; pointer p;
screenline xl, x2)

makes WINEXISTS - true
parameter is the
identifier of an
existing window

DELWIND (window w)
makes WINEXISTS - false

TWIND (window w)
• identifier of bottom

line of existing window

BWIND (window w)
= identifier of top

line of existing
window

SRCFIL (screenline x)

SRCLIN (screenline x)
» identifier of line

associated with line
on screen

WINPOINT (window w)
= identifier of pointer

associated with an
existing window

SCREEN (screenline x; position c)
- physical display

Note: Functions DEFWIND and DELWIND affect SCREEN.

= identifier of file
associated with line
on screen

WINDOW
Commentary

9

Indicators

FILE (pointer p)

= identifier of open
file associated with
an existing pointer

LINE (pointer p)

= identifier of existing
line associated with
an existing painter

EDITING SYSTEM

Effectors

REDEFAPOINT ["current pointer-]
(file f; line I;
position c)

moves pointer to a
particular file,
line, character

MOVPNT ["current pointer"]
(line 1; position c)
moves pointer to a
particular line and
character

INCFOINT ["current pointer"]
(displacement i)

moves pointer to a
line relative to
current line

NEXTLINE ["current pointer"]
moves pointer ahead
one line

PREVLINE ["current pointer"]
moves pointer back
one line

CHAR (pointer p)
» character position

associated with
existing pointer

NEXTCHAR (painter p)
makes CHAR<-CHAR+1

BACKCHAR (pointer p)
makes CHAR<-CHAR-1

Note: Functions REDEFAPOINT, MOVPNT, INCPOINT, NEXTLINE, and PREVLINE may
affect SRCFIL, SRCLIN, and SCREEN.

WINDOW
Commentary

18

ISAPOINT (pointer p)

= t rue iff its parameter
is the identifier of an
existing pointer

DEFPOINT (pointer p; file f;
line 1; position c)

makes ISAPOINT - true
DELPOINT (pointer p)

makes ISAPOINT - false

LINKED (pointer pi, p2) LINK (pointer pi, p2)
= t rue iff its parameters makes LINKED - true

are linked existing UNLINK (pointer pi, p2)
pointers makes LINKED - false

OPENED ["current pointer"]

= t rue iff a
"current pointer"
is declared

OPENIT (pointer p)
makes CURPNT<-p
makes OPENED - true

UNOPEN
makes OPENED - false

CURPNT - identifier of
"current pointer" iff
OPENED - true

ISLNKD ["current pointer"]
- t rue iff the

"current pointer's"
file is linked through
pointers to itself or
any other file(s)

Note: Function DELPOINT may affect WINEXISTS.

WINDOW 11
Relationship Between Kernel and Command Interpreter

SECTION TWO

RELATIONSHIP BETWEEN THE KERNEL AND THE COMMAND INTERPRETER

The relationship between the kernel and the command interpreter is that of a

two-level hierarchy with the kernel on the lower level. Note that all of the kernel

functions could be accessed directly by the user, as specified. They would comprise a

comprehensive graphics-based text editor. However, this direct-access

implementation would prove too tedious and too complex for any person to use

effectively. The command interpreter instead plays the role of the user of the kernel

and in turn provides its own set of editing functions to the next-higher-level user; in

the current implementation, that user is assumed to be, but is not limited to being, a

person. This new set of functions is transparent in the sense that no valuable editing

capabilities have been lost by performing the abstraction. It is also more "useful" in

the sense that the user is now provided with what appears to be a "conventional"

text editing program — with unconventional graphics capabilities.

WINDOW 12
Relationship Between Kernel and Command Interpreter

The fallowing examples illustrate the abstraction:

* The kernel refers to files by integer numbers. The command interpreter can

deal with file numbers; it can also deal with user-defined file names. It maps names

to numbers and vice ve r sa while communicating between the user and the kernel.

* Many functions of the command interpreter map directly onto single kernel

functions. The command "DFP 2 1" causes a reference of the kernel function

"DEFPOINT(pointer 2; file 1; line 1; position 1)". If the user defines the name

"MYFILE" equivalent to file number 1, then the command "DFP 2 #MYFILE" results in

exactly the same reference of the kernel function.

* Other commands result in a programmed sequence of kernel function

references. The command "I" enables the user to insert line after line of text into a

file without the need for any intervening commands. This is similar in observable

effect to insertions using conventional text editors. For every line of text entered,

the kernel function "INSLIN" is referenced, followed by as many "NEXTCHAR" and

"INSACHAR" references as there are characters in the line of text.

The usefulness of the WINDOW kernel is not limited to this one application; it may be

considered the basis for a family of text editors. The behavior of a member of the

family would be dependent upon its abstraction of the kernel's facilities.

WINDOW 13
Experience with Formal Specification

SECTION THREE

OUR EXPERIENCE WITH THIS APPLICATION OF FORMAL SPECIFICATION

The formal specification of the WINDOW kernel was produced long before its

implementation. During the process of implementing the kernel according to its

specification, many system design changes were made.

In particular, the original specification called for the "PREVLINE" and "NEXTLINE"

functions to take a painter as an explicit parameter. We decided to eliminate that

parameter and to implicitly use the "current* pointer" instead. The role of the

"current pointer" was similarly expanded throughout the kernel. Thus, textual

revisions to the formal specification were made in parallel with program development

when those changes involved the semantics of the specification.

The original specification was found to be incomplete with respect to the

existense of some state-indicating functions without any complementary state-effecting

functions. That was the case for the "CURPNT" and "OPENED" functions. "OPENIT"

and "UNOPEN" were added during implementation.

WINDOW 14
Experience with Formal Specification

Many other functions have come and gone in the process of fine-tuning the

kernel. For example, the "ISLNKD" function was added after the kernel

implementation was complete. It reduced the notational complexity of the

specification, reduced the size of the kernel source and object programs, and reduced

the execution-times of many kernel and command interpreter functions. When the

kernel had formerly relied upon a sequence of function calls to determine file linkages

through pointers, repeated tests were redundant because no memory existed

between function interfaces of previous calls. In the current implementation, one test

is performed in "LINK" and qne in "UNLINK"; the result is simply recorded within

"ISLNKD" for future reference.

The decomposition indicated by the formal specification proved an excellent basis

for a statistical analysis of performance. The execution times and frequency counts of

eve ry function can be gathered, and in tabulated form point directly to areas of

inefficiency. Statistics prompted, for example, the inclusion of the "FLINES" function

after implementation was complete.

The formal specification served as the source of information in the production of

the commentary of Section One. The specification was also used during

implementation of the command interpreter as the definitive statement of the effects

of referencing specific kernel functions.

WINDOW 15
Experience with Formal Specification

The formal specification can be the basis for proving assertions about properties

of the kernel. On an informal basis alone, simple properties, such as the assertion

that the UNLINK function can not be driven to dissociate a pointer from itself, can be

proven readily from the observation that the formal specification indicates an er ror

t r ap within that function ("ERR0R(25)N) for that special case Cp«qM).

In conclusion, had the formal interface specification not existed, the interface

between the kernel and the command interpreter would have been less rigorously

defined. Their individual responsibilities, intended to be disjoint, would have

overlapped, resulting in a more difficult program development. Furthermore, the

kernel would have lost much of its value as the basis for a family of text editing

programs. The existense of shared responsibilities, leading to shared knowledge of

their implementations, would have demanded of all other potential command

interpreters that they too share the same responsibilities and knowledge. That would

have greatly restricted the classes of programs which could belong to the family.

WINDOW
Formal Specification

16

APPENDIX ONE

FORMAL SPECIFICATION

Let DISP(p,i)- if defined then 'ULIEX'('FILE'(p), 'LINE'(p)+i)
else undefined

Function UFIEX
possible values: (boolean) true, false
initial value: false
parameters : integer f
effect:

call ERROR(BB) if [f < 8 .or. f > pi]

Function ULIEX
possible values: (boolean) if 'FLINES'(f)>-l then true else false
initial .value: false
parameters : integer f, I
effect:

call ERROR(BB) if [f < 8 .or. f > pi]
call ERR0R(16) if ['UFIEX'(f) - false]
call ERR0R(81) if [I < 1 .or. I > p2]

Function UMAXCH
possible values: integer 8:p3
initial value: undefined
parameters : integer f, 1
effect:

call ERR0R(88) if [f < 8 .or. f > pi]
call ERR0RO6) if ['UFIEX'(f) = false]
call ERROR(Ol) if [I < 1 .or. I > p2]
call ERR0R(17) if ['ULIEX'(f,l) - false]

Function UFS
possible values: integer 8:127
initial value: undefined
parameters : integer f, I, c
effect:

call ERR0R(88) if [f < 8 .or. f > pi]
call ERR0RO6) if ['UFIEX'(f) - false]
call ERROR(Bl) if [1 < 1 .or. 1 > p2]
call ERR0R(17) if ['ULIEX'(f,l) - false]

• call ERR0R(82) if [c < 1 .or. c > p3]
call ERR0R(85) if [c > 'UMAXCH'(f,l)]

WINDOW
Formal Specification

Function ISAPOINT
possible values: (boolean) true, false
initial value: false
parameters : integer p
effect:

call ERR0R(83) if [p < 1 .or. p > pB]

Function FILE
possible values: integer B:pl
initial value: undefined
parameters : integer p
effect:

call ERR0R(B3) if [p < 1 .or. p > p6]
call ERR0RO5) if [*ISAPOINT<p) « false]

Function LINE
possible values: l:p2
initial value: undefined
parameters : integer p
effect:

call ERR0R(B3) if [p < 1 .or. p > pB]
call ERR0R(15) if ['ISAPQINTtp) - false]

Function CHAR
passible values: B:p3
initial value: undefined
parameters : integer p
effect:

call ERR0R(B3) if [p < 1 .or. p > pB]
call ERR0R(15) if ['ISAPOINr(p) « false]

WINDOW
Formal Specification

Function LINKED
possible values: (boolean) true, false
initial value: false
parameters : integer p, q
effect:

call ERR0R(83) if [p < 1 .or. p > pB]
call ERR0R(84) if [q < 1 .or. q > p6]
call ERR0R(15) if ['ISAPOINT'(p) = false]
call ERR0RU5) if ['ISAPOINT'(q) ~ false]

Function DEFPOINT
possible values: none
initial value: not applicable
parameters : integer p, f, 1, c
effect:

call ERR0R(83) if [p < 1 .or. p > pB]
call ERR0R04) if ['ISAPOINr(p) - true]
call ERR0R(88) if [f < 8 .or. f > pi]
call ERR0R<81) if [1 < 1 .or. 1 > p2]
call ERR0R(82) if [c < 1 .or. c > p3]
call ERR0R(16) if ['UFIEX'(f) - false]
call ERR0R(17) if ['ULIEX'(f, 1) = false]
call ERR0R(85) if [c > 'UMAXCH'(f, I)]
ISAPOINT(p)- true
FILE(p) - f
LINE(p) = 1
CHAR(p) = c
LINKED(p, p)= true

WINDOW
Formal Specification

19

Function DELPOINT
possible values: none
initial value: not applicable
parameters : integer p
effect:

call ERR0R(83) if [p < 1 .or. p > p6]
call ERR0R(15> if ['ISAPOINT'(p) « false]
ISAPOINT(p)= false
FILE(p) = undefined
LINE(p) = undefined
CHAR(p) • undefined
for all q [LINKED(p, q) = LINKED(q, p) = false]
for all w [if 'WINEXISTS'(w).and.'WINPOINT'(w)=p then DELWIND(w)]
if ['CURPNT' - p .and. 'OPENED' - true] then UNOPEN

Function LINK
possible values: none
initial value: not applicable
parameters : integer p, q
effect:

call ERR0R(83) if [p < 1 .or. p > p6]
call ERR0R(84) if [q < 1 .or. q > pB]
call ERR0R(15) if ['ISAPOINT'(p) « false]
call ERR0R<15) if ['ISAPOINT'(q) « false]
call ERR0R(41) if ['LINKED'(p9 q) - true]
call ERR0R(87) if ['LINKED'(q, p) « true]
LINKED(p, q)« true
LINKED(q, p)* true
for 'FILE'(p) and 'FILE'(q) [ISLNKD - true]

WINDOW
Formal Specification

28

Function UNLINK
possible values: none
initial value: not applicable
parameters : integer p, q
effect:

call ERR0R(B3) if [p < 1 .or. p > pB]
call ERR0R(84) if [q < 1 .or. q > pB]
call ERR0R(15) if [USAPOINHp) « false]
call ERR0R(15) if ['ISAPOINHq) « false]
call ERR0R(12) if ['LINKED'(p, q) = false]
call ERR0R(13) if ['LINKED'(q, p) = false]
call ERR0R(25) if [p = q]
LINKED(q, p)= false
LINKED(p, q)= false
for all f such that ('UFIEX'(f) = true)

[if there exists a n / qq such that
CISAPQINT(qq) - true .and. 'FILE'(qq) = f)

and
there exists any pp such that

CISAPOINTXpp) - true .and. 'FILE'(pp) « f)
and

((pp .neq. p) .and. (pp .neq. q))
and

((qq .neq. p) and. (qq .neq. q))
and

((pp .neq. qq) .and. fLINKED'(pp,qq) - true))
then

ISLNKD = true for f
else

ISLNKD = false for f]

Function WINEXISTS
possible values: (boolean) true, false
initial values: false
parameters : integer w
effect:

call ERR0R(89) if [w < 1 .or. w > p4 div 2]

WINDOW
Formal Specification

21

Function TWIND
possible values: l:p4
initial value: undefined
parameters : integer w
effect:

call ERR0R(89) if [w < 1 .or. w > p4 div 2]
call ERROR(ll) if ['WINEXISTS'(w) « false]

Function BWIND
possible values: l:p4
initial value: undefined
parameters : integer w
effect:

call ERH0R(89) if [w < 1 .or. w > p4 div 2]
call ERROR(U) if ['WINEXISTS'(w) « false]

Function SRCFIL
possible values: B:pl
initial value: undefined
parameters : integer r
effect:

call ERR0R(B8) if [r < 1 .or. r > p4]

Function SRCLIN
possible values: l:p2
initial value: undefined
parameters : integer r
effect:

call ERR0R(88) if [r < 1 .or. r > p4]

WINDOW
Formal Specification

22

Function WINPOINT
possible values: l:p6
initial value: undefined
parameters : integer w
effect:

call ERR0R(89) if [w < 1 .or. w > p4 div 2]
call ERROR(ll) if ['WINEXISTS'(w) - false]

Function DELWIND
possible values: none
initial value: not applicable
parameters : integer w
effect:

call ERR0R(B9) if [w < 1 .or. w > p4 div 2]
call ERROR(ll) if ['WINEXISTS'(w) - false]
for all r such that ('BWIND'(w) <« r <= 'TWIND'(w))

[SRCFIL(r) = undefined
SRCLIN(r) = undefined
for all c such that (1 < - c < - p5) SCREEN(r^)-" "]

TWIND(w) - undefined
BWIND(w) = undefined
WINPOINT(w)= undefined
WINEXISTS(w)- false

WINDOW
Formal Specification

23

Function DEFWIND
passible values: none
initial value: not applicable
parameters : integer w, p, bw, tw
effect:

call ERR0R(89) if [w < 1 .or. w > p4 div 2]
call ERR0R(19) if ['WINEXISTS'(w) - true]
call ERR0R(21) if [tw < 1 .or. tw > p4]
call ERR0R(22) if [bw < 1 .or. bw > p4]
call ERR0R(23) if [bw > - tw - 1]
call ERR0R(43.or.44) if [exists j such 'WINEXISTS'(j)-true.and.

['BWIND'(j) < - bw < 'TWIND'(j) .or.
'BWIND'(j) < tw < - TWIND'(j)]]

call ERR0R(83) if [p < 1 .or. p > pB]
call ERR0R(15) if ['ISAPOINT'(p) - false]
TWIND(w) = tw
BWINDfw) = bw
WINEXISTS(w)= true
WINPOINT(w)= p
SRCFIL(bw) - SRCFIL(tw) * 'FILE'(p)
SRCLIN(bw) = SRCLIN(tw) - undefined
let m= entier((tw + bw) / 2)
fpr all r such that (bw < r < tw)

[SRCFIL(r)= 'FILE'(p)
SRCLIN(r)= 'DISP'(p, r -m)
for all c such that (1 <«• c <= p5)

SCREEN(r,c)= ,UFS'(SRCFIL(r),SRCLIN(r),c)
if defined else " "]

Function NEXTCHAR
passible values: none
initial value: not applicable
parameters : p
effect:

call ERR0R(83) if [p < 1 .or. p > p6]
call ERR0RO5) if ['ISAPOINT'(p) - false]
call ERR0R(24) if ['CHAR'(p) - p3]
CHAR(p) - ,CHAR ,(p) + 1

WINDOW
Formal Specification

24

Function BACKCHAR
possible, values: none
initial value: not applicable
parameters : p
effect:

call ERR0R(B3) if [p < 1 .or. p > p6]
call ERR0R(15> if ['ISAPOINT'(p) - false]
call ERR0R(38) if ['CHAR'(p) - 1]
CHAR(p)= 'CHAR'(p) - 1

Function INCPOINT
possible values: none
initial value: not applicable
parameters : integer i
effect: • ' "

call ERROR(IB) if ['OPENED' - false]
let p = 'CURPNT'
call ERR0R(27) if ['DISP'(p,i) = undefined]
call ERR0R(28) if ['ISLNKDVtrue.and.for any q.neq.p such that

('LINKED'(p,q) - true)
['DISP'(q,i) = undefined]

for all q such that ('HNHED'(p,q) - true)
[LINE(q)= 'DISP'(q,i)
lor all w such that ('WINEXISTS'(W)=true.and.'WINPOINr(w)-q)

[let m= entier(('TWIND'(w) + 'BWIND'(w)) / 2)
for all r such that ('BWIND'(w) < r < 'TWIND'(w))

[SRCLIN(r)= DISP(q, r-m)
for all c such that (1 <•= c < - p5)

SCREEN(r,c)- 'UFS'('SRCFIL'(r),
SRCLIN(r),c)

if defined else " "]]]

http://'ISLNKDVtrue.and.for

WINDOW
Formal Specification

Function OPENIT
possible values: none
initial value: not applicable
parameters : integer p
effect:

call ERR0R(83) if [p < 1 .or. p > p6]
call ERR0R<15) if ['ISAPQINr(p) « false]
call ERR0R(29) if ['OPENED' - true]
OPENED- true
C U R P N T - p

Function UNOPEN
possible values: none
initial value: not applicable
parameters : none
effect:

call ERROR(IB) if ['OPENED' ~ false]
OPENED - false
CURPNT« undefined

Function OPENED
possible values: (boolean) true, false
initial value: false
parameters : none
effect:

WINDOW
Formal Specification

26

Function FILIN
possible values: none
initial value: not applicable
parameters : integer f
effect:

call ERROR(BB) if [f < B .or. f > pi]
call ERR0R(42) if ['UFIEX'(f) - true]
UFIEX(f) - true

Function FILOUT
possible values: none
initial value: not applicable
parameters : integer f
effect:

call ERROR(BB) if [f < B .or. f > pi]
call ERR0RU6) if ['UFIEX'(f) = false]
call ERR0R(28) if [for any p such that 'FILE'(p)
UFIEX(f)- false
for all I

[ULIEX(f,l) = false
UMAXCH(f.l) = undefined
for all c [UFS(f,l,c) « undefined]]

WINDOW
Formal Specification

27

Function DELINE
possible values: none
initial value: not applicable
parameters : none
effect:

call ERROR(IB) if ['OPENED' « false]
let p = 'CURPNT'
call J2RROR(17) if ['ULIEX'CFILE'(p), 2) - false]
call ERR0R(17) if ['ISLNKD' = true .and. for any q .neq. p

such that CLINKED'(p,q) - true)
['ULIEX'('FILE'(q), 2) - false]]

for all q such that ('LINKED'(p,q) « true)
[FLINESCFILE'(p)) » 'FLINES'CFILE'(p)) - 1
for all w such that ('WINEXISTS'(W)»true.and.'WINPOINT'(w)«q)

[let m = entier(('TWIND'(w) + 'BWIND'(w)) / 2)
for all r such that ('BWIND'(w) < r < 'TWIND'(w))

[SRCLIN(r)» DISP(q, r-m)
for all c such that (1 <» c <« pS)

SCREEN(r,c)» 'UFS'CSRCFIL'(r),
SRCLIN(r)fc)

if defined else " "]]]

Function CURPNT
possible values: l:p6
initial value: undefined
parameters : none
effect:

WINDOW
Formal Specification

28

Function MOVPNT
possible values: none
initial value: not applicable
parameters : integer 1, c
effect:

let p = 'CURPNT'
call ERRORfiO) if ['OPENED' - false]
call ERROR(Ol) if [I < 1 .or. 1 > p2]
call ERR0R<17) if ['ULIEX'CFILE'(p), 1) - false]
call ERR0R(35) if [c < .1 .or. c > 'UMAXCHTFILE'(p),l)+l]
call ERR0R(32) if ['ISLNKD'=true.and.for any q.heq.p such that

<'LINKED'<p,q) - true)
[' U L I E X T F I L E W) = false]]

call ERR0R(33) if ['ISLNKDMrue.and.for any q.neq.p such that
('LINKED'(p,q) - true)

[c > 'UMAXCH'('FILE'(q),l) + 1]]
if 'ISLNKD' = true then for all q .neq. p such that

CLINKED'(p,q) - true)
[LINE(q)» 1

CHAR(q)- c]
LINE(p)=l
CHAR<p)= c
for all q such that ('LINKED'(p,q) - true)

[for all w such that ('WINEXISTS'(w)-true.and.'WINPOINT'(w)-q)
[let m = entier(('TWIND'(w) + 'BWINITtw)) / 2)

for all r such that ('BWIND'(w) < r < 'TWIND'(w))
[SRCLIN(r)= DISP(q, r-m)

for all c such that (1 <«= c <« p5)
SCREEN(r,c)= 'UFS'('SRCFIL'(r),

SRCLIN(r),c)
if defined else " "]]]

http://'ISLNKDMrue.and.for

WINDOW
Formal Specification

29

Function REDEFAPOINT
possible values: none
initial value: not applicable
parameters : integer f, I, c
effect:

call ERROR(IB) if ['OPENED' - false]
call ERR0R(36) if ['ISLNKD' - true .and. exists q such that

('LINKED'('CURPNT\q) - true)]
call ERROR(00) if [f < 8 .or. f > pi]
call ERROR(Bl) if [1 < 1 .or. 1 > p2]
call ERR0R<82) if [c < 1 .or. c > p3]
call ERR0RO6) if ['UFIEX'(I) - false]
call ERR0R(17) if ['ULIEX'(f,l) = false]
call ERR0R(B5) if [c > HJMAXCH'(f,l>]
LINE('CURPNT> 1
CHAR('CURPNT> c
FILE('CURPNT'>= f
for all w such that ('WINEXISTS,(w).and.,WINPOINr(w)-'CURPNr)

[let m - entier«'TWIND'(w) + 'BWIND'(w» / 2)
for all r such that ('BWIND'(w) < r < TWIND'(w))

[SRCFIL(r)-'FILE'CCURPNT)
SRCLIN(r)- DISPCCURPNT', r -m)
for all c such that (1 <» c < • p5)

SCREEN^e)- 'UFS'(SRCFIL(r),
SRCLIN(r),c)

if defined else " "]]

WINDOW
Formal Specification

38

Function NEXTLINE
possible values: none
initial value: not applicable
parameters : none
effect:

call ERROR(IB) if [OPENED' - false]
call ERR0R(45) if [for all q such that

('LINKEDTCURPNT',q) - true)
[there does not exist I such that

(I > 'LINE'(q) .and.
'ULIEX'CFILE'fq),!) - true)]]

for all q such that ('LINKED'('CURPNT,q) - true)
[LINE(q) = 'LINE'(q) + 1

CHAR(q) = 1]
for all q such that ('LINKED'CCURPNT'fl) - true)

[for all w such that <'WINEXISTS'(w).and.'WINPOINT'(w)«q)
[let m = entier(('TWIND'(w) + 'BWIND'(w)) / 2)

for all r such that fBWIND*(w) < r < 'TWINIP(w.))
[SRCLIN(r)= DISP(q, r-m)

for all c such that <1 <« c <» p5)
SCREEN(r,c)= 'UFS'CSRCFIL'(r),

'SRCLIN'(r),c)
if defined else " "]]]

WINDOW
Formal Specification

31

Function PREVLINE
possible values: none
initial value: not applicable
parameters : none
effect:

call ERR0R<18) if ['OPENED1 « false]
call ERR0R(45) if [for all q such that

('LINKED'CCURPNT'fl) - true)
[there does not exist I such that

(I < 'LINE'(q) .and.
'ULIEX'('FILE'(q),l) - true)]]

for all q such that ('LINKED'CCURPNT'.q) - true)
[LINE(q)= 'LINE'(q) - 1

CHAR(q)= 1]
for all q such that ('LINKED'('CURPNT',q) - true)

[for all w such that <'WINEXISTS'(w).and.'WINPOINr(w)-q)
[let m= entier(('TWIND'(w) + 'BWIND'(w)) / 2)

for all r such that ('BWINDXw) < r < TWIND'(w))
[SRCLIN(r)- DISP(q, r-m)

for all c such that (1 <= c < • p5)
SCREEN(r,c)» 'UFS'CSRCFIL'(r),

SRCLIN(r),c)
if defined else " "]]]

Function ALTCHAR
passible values: none
initial value: not applicable
parameters : integer p, z
effect:

call ERR0R(B3) if [p < 1 .or. p > p6]
call ERR0R(15) if ['ISAPOlNT'(p) - false]
call ERR0R(34) if [z < B .or. z > 127 J
call ERROR(BG) if ['CHAR'(p) - 8]
UFS('FILE'<p),'LINE'(p),'CHAR'<p))« z

far all q such that <(q .neq. p) .and. 'LINKED'(p,q))
[for all w such that ('WINEXISTS'(w) .and. 'WINPOINT'(w)-q)

[if (('SRCLIN'('BWIND'(w)+l) if defined else 8) < -
'LINE'(q)<=
'SRCLIN'CTWIND'(w)-l))

then SCREEN(entier(('TWIND'(w)+'BWIND ,(w))/2),
'CHAR'(q))= z]]

WINDOW
Formal Specification

32

Function DELACHAR
possible values: none
initial value: not applicable
parameters : integer p
effect:

call ERR0R(83) if [. p < 1 .or. p > p6]
call ERR0RU5) if ['ISAPOINT(p) = false]
call ERR0R(19) if ['CHAR'(p).neq.'UMAXCHVHLE'(p),'LINF<p))]
call ERR0R(19) if ['CHAR'(p) - 8]
UFS('FILE'(p),'LINE'(p),'CHAR'(p»« undefined
UMAXCH('FILE'(p),'LINE'(p»=

'UMAXCH'('FILE'(p),'LINE'<p)) - 1
for all q such that «q .neq. p) .and. 'LINKED'(p,q))

[for all w such that ('WINEXISTS'(w) .and. 'WINPOINT'(w)-q)
[if (('SRCLIN'('BWIND'(w)+l) if defined else 8) <«

'LINE'(q) < -
'SRCLIN'CTWIND'(w)-l))

then SCREEN(entier(('TWIND ,(w>+'BWINIP(w»/2),
'CHAR'(q))-" "]]

Function INSLIN
possible values: none
initial value: not applicable
parameters : none
effect:

let p = 'CURPNT'
call ERR0R(18) if ['OPENED' = false]
call ERR0R(17) if [for any q such that ('LINKED'(p,q)-true)

'FLINES'CFILE'(p)) = p2]
for all q such that ('LINKED'(p,q) - true)

[LINE(q)='LINE'(q) + 1
UMAXCH('FILE'<q),'LINE'(q)) = 8
FLINES('FILE'(q)) - 'FLINES'('FILE'(q)) + 1]

for all w such that ('WINEXISTS'(w) - true)
[let q= 'WINPOINT'(w)

let m= entier(('TWIND'(w) + 'BWIND'(w)) / 2)
for all r such that ('BWIND'(w) < r < 'TWIND'(w))

[SRCLIN(r)- DISP(q, r -m)
for all c such that (1 <= c <= p5)

SCREEN(r,c)- 'UFS'CSRCPIL'(r),
SRCLIN(r),c)

if defined else " "]]

WINDOW
Formal Specification

33

Function ISLNKD
possible values: (boolean) true, false
initial value: false
parameters : none
effect:

call ERR0R(18) if ['OPENED' - false]

Function INSACH AR
possible values: none
initial value: not applicable
parameters: integer p, z
effect:

call ERR0R(83) if [p < 1 .or. p > p6]
call ERROR(IS) if ['ISAPOINTXp) - false]
call ERR0R(34) if [z < 0 .or. z > 127]
call ERROR<37) if ['CHAR'(p).neq.'UMAXCH,('nLF(P),'LINr<p))+l]
UFS(TlLE*(p),'UNE'(p),'CHAR'<p)) - z
for all q such that ((q .neq. p) .and. 'LINKED^))

[for all w such that ('WINEXISTS'(w) .and. 'WINPOINr(w)«q)
[if (('SRCLIN'('BWIND'(w)+l) if defined else 0) <-

•LINIHq) < -
•SROJlfCfWIND'<w)-l))

then SCREEN(imtier((TWIND'(w)+'BWIND'(w))/2),
•CHAR^))-»]]

Function SCREEN
possible values: string
initial value: " "
parameters : integer r, c
effect:

WINDOW 34

• <JV t) t* f 1 I i h
^ - j b l f rciut- v.r>»
: r i t joi r o L » r>- f appl 1 cable
parameter*: *
, M « t :

t a l l llH?Ofc<t* ;f t f 8 .or. f p! ;

if \t%(* tr j f

! ff I [X (f i i f ' - • ! • ' h
tr u f • 1 , par CMw>tpr ^a*^

Figure 1.

Figure 1 is a photograph of a crt terminal screen. The screen is displaying text from
this paper through two windows delimited by lines of asterisks. The upper window's
text is from Appendix One; the lower window's text is from the specification
commentary of Section One. The value of multiple windows on one screen is
illustrated by this juxtaposition of related text concerning function FILIN.

