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ABSTRACT 

The class of reducing transition languages introduced by Eickel, Paul, Bauer and 

Samelson was shown by Morris to be a proper superclass of the simple precedence 

languages. I n this paper we extend this result showing that in fact, the first class is 

equivalent to the class of deterministic context free languages. 

I . INTRODUCTION 

The relationship between the class of reducing transition languages, introduced by Eickel, 

Paul, Bauer and Samelson [1], and the class of simple precedence languages, introduced by 

Wirth and Weber [2 ] , was studied by Morris [3]. He showed that the latter class is a 

proper subset of the former and hinted that this first class was a proper subset of the 

deterministic context free languages. I n this paper we show that the canonical grammar for 

a deterministic pushdown automata [4] is a reducing transition grammar, thus showing 

another characterization of deterministic languages. I t is interesting to note that this is the 

earliest class of grammars described in the literature known to the author which 

characterizes the class of deterministic languages. 

I n Section I I we present some basic definitions which we use in the paper. Section 

I I I is devoted to the proof that (1) the class of reducing transition grammars contains the 

class of weakly invertible, normal 2 form, simple mixed strategy precedence grammars, and 

(2) the canonical grammar for a DPDA is a member of this last class. 

I I . DEFINITIONS 

We assume the reader is familiar with the basic concepts for context free languages. 

A n y term not defined here may be found in [4,5]. A proper context free grammar 

G « (V ,V T ,S ,P) is a reduced, A-free, cycle-free context free grammar. V is the vocabulary, 

V T £ V is the set of terminals, S < V N = V - V T is the start symbol, P £ V N x V* is the set of 
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productions, V N is the set of nonterminals. V + - V* - {A}. Elements of V N will be denoted 

by capital letters near the front of the alphabet A,B,C,D,..., elements of V T will be denoted 

by lower case letters near the front of the alphabet, elements of V will be denoted by 

capital letters near the end of the alphabet R,S,T,U,V,W,X,Y,Z and lower case letters near the 

end of the alphabet will denote words in V*. The empty word is denoted by A. 

A grammar G = (V,V T ,S,P) is in 2 normal form if A -> x in P implies |x| < 2. We will now 

recall the definition of precedence relations between symbols of V. First we describe 

complete left and right sets. This definition is the same as in [3]. Let G * (V,Vj,S,P) be a 

proper context free grammar. 

V ( U ) = {W | U U Wx for some x < V*} 
P'(U) = {W | U U xW for some x ( V*} 
Tl(U) = {W | U ±> W} 

Note that U i V ( U ) and U < H U ) . Also, since G is proper, U i Tl(U) and the derivation 

U W involves only productions with righthand side of length one. We will call these 

productions chain rules, and derivations which involve chain rules only will be called chains. 

Let A « X j + 1 Xj X,_i - * . . . X i X 0 = Z and 
B - Y j + 1 =*> Yj Y j . i - + ... Y X - * Y 0 - Z 

be two chains and A * B. Let k be the smallest integer such that X k = Y k but X k +i i1 Y k ^ i . 

Then X* is called the [ink of both chains. We also need the definitions of left and right sets: 

X(U) = {W | U U Wx} 
P(U) = {W | U U xW} 

Note that X(U) U {U} - X'(U) and P(U) U {U} = P'(U) 

Finally, let cr'(U) = X'(U) fl V T . 

The precedence relations are defined as: 

X * Y iff A xXYy is in P 
X < Y iff A ^ xXBy is in P and Y < X(B) 
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X > a A > xBYy is in P, X < P(B), a <V(Y) 

Note the relation > is defined on V x V T . 

A grammar G is simple mixed strategy precedence (SMSP) if the following conditions 

hold: 
M l : ( <• U ± ) fl •> = <|> 
M2: I f A - xXYy and B > Yy are productions, then (X,B) i i U * 
M3: I f A x and B • x are productions and A t B, then 

1(A) fl KB) - 4> , where 1(C) = {X | (X,C) < « U ± } 

These conditions will be referred as M l , M2 and M3 respectively. We will say that a SMSP 

grammar is weakly invertible if the following condition is satisfied: 

M4: I f A > x and B •> x are productions and |x| > 1, then A = B. 

Thus, a weakly invertible grammar is uniquely invertible up to chain rules. 

Let 7 denote the class of weakly invertible, 2 normal form, SMSP grammars. Any 

grammar in 7 satisfies M1-M4 and the additional condition A x in P implies 1 < |x| < 2. 

The class of languages generated by grammars from 7 will be denoted by L(7 ). 

Our last set of definitions has to do with the reducing transition grammars. We will 

follow [3] . Let G = (V,V T ,S,P) be a proper grammar in normal.2 form. Let V ' T = V T U {*} 

where *t is a new symbol not in V. Let V = V I) {#}. A reducing transition table will be a 

mapping f : V x V' x V T > ({1,2} x V ) U {3}. The elements of the table will be written as 

(A,B,C) - (n,D) or (A,B,C) > (3) where A,B i V , C < V T , D ( V N and n < {1,2}. The term on 

the left of the arrow wilt be called a triple and the terms to the right of the arrow will be 

called doubles. We will now construct a reducing transition table M for the grammar G. 

Let Rj S j T j and Rj * S jT j be any two productions in P. Then: 

if Rj < ? ' (Sj ) then 

(a) VX c TUTj), V b i cr'(Ti), (S h X,b) - d j j ) is in M 

(b) V b ( o-'CTi), (Si,Ti,b) >(2,Rj) is in M 

if Rj < X'(T|) then 
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(c) VX < H(Sj) , V b € a'(Tj) , (S h X,b) >(l,Sj) is in M 

(d) V b <f a ' (T j ) , (Si,Sj,b) (3) is in M 

if Rj ( V ( S ) then 

(e) VX < Tt(Sj), Vb € cr'(Tj), (*,X,b) - ( l , S j ) is in M 

(f) V b < a'CTj), (#,Sj,b) >(3) is in M 

if Rj < P'(S) then 

(g) VX < l l (T j ) , (Sj,X,#) - ( l , T j ) is in M 

(h) (Si,Tj,tt) • (2,Rj) is in M 

Finally, 

(i) VX < n<s>, («,X,tt) - (1,S) is in M 

I f the mapping defined above is single valued, i.e., each triple has at most one associated 

double to it, then the grammar G is said to be a reducing transition grammar. The language 

generated by G is said to be a reducing transition language. Each entry in the table will be 

said to belong to class (a), (b),...,(h), (i) if it was generated by case (a), (b),...,(h), (i) 

respectively. For examples of these grammars the reader may consult [1] and [3] . 

Let D denote the class of deterministic context-free languages. Our first result is an 

immediate consequence of a result of Aho, Denning and Ullman [4,6]. 

Theorem J_: L (7) = D. 

Proof: The reader is referred to the proof of Theorem 8.13 [4, vol. 2] or Theorem 3 [6] . 

The grammar obtained for a deterministic language is in the class 7. | 

To get the desired characterization it is now sufficient to prove that the class L(7) is 

contained in the class of Reducing Transition Languages (RTL). 

Theorem 2: L (7) <= RTL 

I I I . RELATIONSHIP BETWEEN REDUCING TRANSITION LANGUAGES AND 
DETERMINISTIC LANGUAGES 
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Proof: Let G ( 7 be a proper grammar in normal 2 form. Assume that G is not a reducing 

transition grammar. Then, there are two entries in M with the same triples and with 

different doubles. As in [3] we call such entries culprit transitions. We first claim that we 

need to look only at a restricted number of cases. 

Claim J j Both culprit transitions are in one of the following classes: {(a), (b), (c)}, { (e)} , or 

{ (g) , (h)} 

Proof of Claim: Since n i V, both culprit transitions have to belong to either of {(a), (b), (c), 

(d)} or {(e), (f)} or {(g), (h)} or {(i)}. But, it follows from the way the transitions are 

defined, that (A,B,C) - (n,D), n d {1,2} implies B » C while (A,B,C) > (3) implies B < C or 

B = C. Since G satisfies condition M l , we can. detach (d) from the first set and split the 

second set. Finally we note that any two transitions from either (d), (f), or (i) have unique 

righthand sides so they cannot be culprit. Thus Claim 1 follows. | 

To prove the theorem we have to analyze different cases depending on which class both 

culprit transitions came from. Let Rj S j T j , Rj S jT j generate one of the culprit 

transitions and R'j > S ' j T ' j , R'j • S ' jT ' j generate the other. 

Case L (a) and (a). We have Sj « S ' j , T j * T ' j , X < tl(Tj), X < TUT'j). Let C be the link of 

T j U X and T ' j U X. I f C = T ' j , 3D such that T j U D, D •> T ' j . But then (S'j,D) < i U = 

and R'j -> S ' j T ' j contradicting condition M2. A symmetric argument shows C * T j . Thus, 

3D,D' such that T j U D, T ' j U D', D - C, D' - C. But then Sj < 1(D), S' j < l(D') which 

contradicts M3. 

Case 2. (a) and (b). We have Sj = S' j , T ' j = X < Tl(Tj). Then T j U T ' j and we find a 

contradiction to M2 as in Case 1. 

Case 3. (a) and (c). We have Sj = S ' h S'j * T j , X <Tl(Tj), X (fUS'j) . Also, R'j € X ' (T ' j ) so 

that S' i < S ' j , b ( a ' (T ' j ) so that S'j i b and Rj ( P'(Sj), b ( a'(Tj) so that T j b. Let 
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C be the link of T j U X and S'j U X. I f C - T j 3D such that S'j U D, D -* T j . Then 

S j = S' j < D which together with Rj > SjT j contradicts M2. I f C = S'j then T j ±> S ' j . 

But then S' j » b which is a contradiction. Thus, 3D,D' such that T j D, S' j D', D -> C, 

D' - C. But then (Sj,D) < < I) ± , (S'j,D) ( « which contradicts condition M3. 

Case 4. (b) and (b). We have Rj ; S j T j , R'j S j T j , Rj * R'j which contradicts M4. 

Case 5. (b) and (c). This is similar to Case 2. We have T j ( Tl(S'j) so S'j ^> T j . But 

S j = S' j < S' j (because R'j ( X ' fPj) . Thus we have 3D such that S'j =£> D, D -> T j and 

S j < D which contradicts M2. 

Case 6. (c) and (c). We have Sj< S j , S'j< S ' j , Sj - S ' j , X < l l (Sj ) f X < TUS'j), Sj * S ' j . 

Since b * cr'(Tj) and b C cr'(T'j) we have that S j « b and S ' j « b. Thus, if the link of Sj ±> X 

and S' j X were S j , we would have Sj » b, a contradiction. Likewise S'j cannot be the 

link. Thus 3D,D' such that Sj U D, S'j U D\ D - C, D' -* C and S { = S'j < 1(D), 

Sj « S' j i l(D') contradicting M3. 

Case 7. (e) and (e). This is exactly the same as Case 6 with a replacing Sj and S ' j . 

The only remaining possibilities are (g) and (g), (g) and (h) and (h) and (h). But these 

are analyzed exactly as Cases 1, 2 and 4 with n instead of b. This concludes the proof 

of Theorem 2. | 

Combining Theorems 1 and 2 we get 

Theorem 3: The class of reducing transition languages is equivalent to the class of 

deterministic context free languages. 

The main theorem in [3] now becomes a corollary of Theorem [3] , since it is well known 

that simple precedence languages are a proper subset of the deterministic languages [7] . 

Corollary: The class of reducing transition languages properly includes the class of simple 

precedence languages. 
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Theorem 3 says that the class of reducing transition grammars is a very interesting one. 

I t is ve ry easy to parse sentences generated by it [1] and furthermore every deterministic 

language can be given one of these grammars. 

I t is interesting to relate the class of reducing transition grammars to other known 

classes of grammars. We note here the following result. 

Theorem 4: The class of reducing transition grammars is incomparable with the class of 

normal 2 form (2-1) U I precedence grammars. 

Proof: We exhibit two grammars each of which is in one class but not in the other. 

I t is easy to verify that Gi is a reducing transition grammar but is not (2-1) U I precedence 

grammar (note ab = c and ab <* c), while G2 is a (2-1) U I precedence grammar but is not a 

reducing transition grammar (both (d, a, b) -» (1,D) and (d,a,b) -> (1,E) are in the table). | 

I V . CONCLUSIONS 

I t is interesting to notice that the class of reducing transition grammars was introduced 

more than 10 years ago and so, to the author's knowledge, is the first characterization given 

for the class of deterministic languages. Since this class does not contain other standard 

classes of grammars known to generate all deterministic languages, a new family was 

introduced. This family, the normal 2 form, weakly invertible, SMSP grammars is still 

sufficiently powerful to generate all deterministic languages and is included in the class of 

reducing transition grammars. 

G X : G 2 : 

S -> Ad 
A -» aB 
B -> bE 
E - c 
C -> aD 
D - be 

Ad I Ce 
A - dD 
D - E 
E • a 
C > Bb 
B - dE 

S - Ab I cC 
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