NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

OBSERVATIONS ON THE PERFORMANCE OF AVL TREES

R. E. Scroggs, P, L. Karlton,
S. H. Fuller, and E, B. Kaehler

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

July, 1973

This work was supported by the Advanced Research Projects Agency of
the Office of the Secretary of Defense (F44620-73-C-0074) and is
monitored by the Air Force Office of Scientific Research.

ABSTRACT

This paper pfesents the results of a series of simulations that investi-
gate the performance of AVL trees. It is shown that the only statistic of
AVL trees that is a function of the size of the tree is the time to search
for an item in the tree; the performance of all other procedures for maintain-
ing AVL trees are independent of the size of the tree for trees greater than
~ 30 nodes. In particular it was discovered that an average of .465 restruc-
tures are required per insertion and .214 restructures per deletion, More-
over, an average of 2,78 nodes are revisited to restore the AVL property on
insertion, and 1.91 nodes are revisited on deletion. Actual timings of the
AVL procedures for insertion, searching, and deletion are presented to provide

a practical guide to estimating the cost of using AVL trees.

INTRODUCTION

This paper empirically examines the computational cost of inéqrtion,
deletion, and retrieval in AVL trees. An AVL tree is any rooted, binary

tree with every node having the following property:

AVL property. The height of the left subtree differs by at most one
from the height of the right subtree., {The height of a tree is the

length of the longest path from the root node to a leaf node.)

For example, the tree in Figure 1(a) is an AVL tree but the tree in
Figure 1(b) is not because nodes A and D do not exhibit the AVL property.
Given that 2 node possesses the AVL property, we will refer to it as bal-
anced, left heavy, or right heavy dépeﬁding on whether the height of the.
left subtree is equal to, greater than, or less than the height of the
right subtree,

Immediately after inserting or deleting a node from an AVL tree one or
more nodes may lose the AVL property, Figure 2 shows the two cases that
can occur on insertion (and the fwo hosc common cases for deletion) and how
to locally restructure the tree to restore the AVL property to all the nodes.
A third case restructuring exists in deletion., It is similar-to the single
rotation case shown in Figure 2(a) except subtree P has a height of‘h+l,
i.e., node C is balanced, A single rotation is sufficient td“restore the AVL
property to the critical node and we will subsequently refer to this case as
the modified single rotation ease. For a more detailed. description of AVL

trees see [1, 2, 3, 4, 5, 6, 7].

- -

(a) An AVL tree (b) A non-AVL tree

Figﬁre 1. Search Trees

critical node —» o

Subtrees
name

height

(b) The double rotation case,

Figure 2. The Two Restructuring Cases for Imsertion

For a tree structure in which insertion and deletion operations are
frequently performed, it is important to know the costs of performing
those operations as well as the cost of locating a node in the tree. AVL
trees have the attractive property that all three operations (insertionm,
deletion,. and retrieval) can be performed in O(log N) steps, i.e., on the
order. of log N steps, where N is the number of nodes in the tree. This is
in contrast to random trees and completely balanced trees in which the wb:st
case of at least one of the three operations can take as many as O(N) steps.
Our .goals here are to empirically find the average number of comparisons to
find..a node in .the tree and to obtain more detailed estimates of the costs

for restructuring the tree after an insertion or deletion.
EMPIRICAL OBSERVATIONS

- In order to observe the performance of AVL trees, we presented random
permutations of an ordered list to the procedure that inserts nodes into
the AVL trees. Specifically, we used 2 uniform random number generator* to
provide .the values of the successive nodes to be inserted, To¢ study the
deletion process we selected any node in the tree for deletion with equal
probability, To minimize correlation in the simulation we did N insertions
and then N deletioms, etc. ‘Therefo;e, a11‘observations of inserting (delet-
ing) a node into an N node tree are independent events.

. For the statistics that follow, 500 trees of size 5000 nodes were built

up. &nd then broken down, collecting statistice on trees of size 1 to 5000

in the process.

* ' - ‘
The random number generator used was:

= 3141592631 x, + 14522135347 modulo 235.

*i+) 1

On insertion the properties we tabulated were: (1) the average number
vf comparisons necessary to locate ‘the position where a new node should be -
added (this is the average depth of the leaves and semi-leaves), (2) the -
percentage of insertions that caused a restructuring to be performed (statis-
tics were kept for both types of restructuring), and (3) the average number
of nodes visited during the traceback procedure (counted from the father of
the node just added to the tree to the node at which tracebuack terminated).

On deletion the properties we tabulated were: (1) the average number
of comparisons necessary to locate the node to be deleted (this is the aver-
age depth of all nodes in the tree), (2)'the probable number of restructurings
necessary on each deletion (statistics were kept for each of the three types
of restructuring), and (3) the number of nodes visited during the traceback pro-
cedure (counted from the father of the node deleted from ghe tree to the
node at which traceback terminated). On deletion, if the node to be deleted
was not a teaf or a semi-leaf, we interchanged that node with its predecessor
or successor*beEOre deleting it.

Table 1 and Figure 3 present the results for insertion and deletion.

The graphs for the average number of comparisons on insertion and deletion
show that the retrieval time is logarithmic in the number of nodes in the
tree. All other statistics, however, when plotted on graphs similar to

Figure 3, were observed to be asymtotically independent of the size of the
tree and,to within the precision of the simulation, the statistics had reached

their asymtotic values for trees greater than ~ 30 nodes. Our results for the

*

The node to be deleted was interchanged with its predecessor or successor
depending on whether the node was heavy to the left or right, respectively.
If the node was balanced, the node was interchanged with its predecessor.

Table 1. Insertion and Deletion Statistics

Standard 95% Confidence
Mean Deviation Interval for Mean
Insertion:
Single Rotation rebalance .2327 4226 +.0006
Double Rotation rebalance .2324 4223 +.0006
Number of nodes visited 1n't 2,778 1.625 +.003
traceback '
Deletion:
Modified Single Rotation .0536 .2253 +.0003
rebalance _
Single Rotation rebalances .0781 ¢ .2838 +.0004
Double Rotation rebalances 0826 .2888 +.0004
Number of nodes visited in " 1.912 1.410 +.002

traceback

Comparisons

16 —

14

12

10—

(approx. 1.01310g2N + .104)

searches on ingertion

\—searches on deletion

{(approx, 1.003 logzn - .798)

10

P { i N
50 100 500 1000
N
Figure 3., Expected Number of Comparisons to Locate an Item in
an AVL tree of N Nodes. (Each point is surrounded by
its 95% confidence interval.)

5000

—9..

Table 1. Insertion and Deletion Statistics

Standard 954 Confidence
Mean Deviation Interval for Mean
Insertion:
Single Rotation rebalance .2327 4226 +.0006
Double Rotation rebalance. «2324 4223 +.0006
Number of nodes visited fn 2,778 1.625 +.003
traceback -
Deletion:
Modified Single Rotation .0536 .2253 +.0003
rebalance ‘ '
Single Rotation rebalances . L0781 - .2838 +.0004
Double Rotation rebalances 0826 2888 +.0004
Number of nodes visited in : 1.912 1.410 +.002

traceback

Comparisons

16 —

14.{

12

10—

searches on insertion
(approx, 1.0131032N + .104)

\\\\\\——searches on deletion

(approx, 1.0031032N - .798)

10

P P i ! ?
50 100 500 1000 5000
N
Figure 3, Expected Number of Comparisons to Locate an Item in
an AVL tree of N Nodes. (Each point is surrounded by
its 95% confidence interval.)

-9-

insertion costs concur with those of others [4]. The most surprising re-

sults are those for deletion, the worst case reetructuring might involve
bae TE

logiN rebalances, but we observed that the probable nmmber of rebalancea
argliatas

per deletion wasg half that expected for inaertion. A related observation

R BT

is that the traceback on deletion visited approximately one leaa node per
operatienktnan on insertion. ‘

It is interesting to noteon insertion, to within the 954 confidence
intervals of the simulation, that the single and double rotation cases appear
1o k0 oeeuriwith equal frequency., In fact, ‘a sinple argument shows they must

be equally probable. In Figure 2(a) consider the subtree rooted at ‘C: it

includes all %tems in the interval bounded by the values of nodes A and X,

Sincé we“require the nodes in the entire tree to arrive in random order, all
the nodes that are within the interval bounded by A and X must also arrive
.ﬂin rendom order. Hence the subtree rooted at C is an AVL tree that is as
Jprebetle to be left heavy as right heavy. However, the eingle feature that
distinguishesﬁthe single rotation case from the double rotation cage is

whether or not node C is heavy in the same, or opposite, direction as the

critical node,

SLICT o

-8-

TIMING STATISTICS

To compare the actual costs involved in performins the retrieval and
restructuring operations, we gathered timing statistics for the operations.
The following cost functions were derived from an implementation of the AVL

procedures written in BLISS/lO [7] and run on a PDP-10 (all times are in

microseconds):
Insexrtion
search for the location to attach.the new node -150 + 90-perwcampare*
attach node to the tree 80-
restructure the tree 350 -
total _ , B 580 + 90 logzu
Deletion
search for the nooe to be deleted | 150 + 9ﬁ'§er compare*
detach the node from the tree 325 |
restructure the tree 250
total 725 + 90 log, (N)

These results show that deletion is slightly more expensive than insertion,
but that for large trees, the search time is the dominant factor in both

operations.

*
Figure 3 gives the expected number of comparisons as a function of the size
of the tree,

References

1.

Adel'son-Vel'skii, G. M., and E. M. Landis, "An Algorithm for the Organiza-
tion of Information," Doklady Akad. Nauk USSR Moscow 16, No. 2 €1962),

Pp. 263-266 (Russian), English translation in Soviet Math. Doklady 3
(1962), pp. 1259-1263. . -

Foster, C. C., "Information Storage and Retrieval Using AVL Trees,
Proc. ACM 20th Nat. Conf., 1965, pp. 192-205.

Knott, G. D., "A Balanced Tree Storage and Retrieval Algorithm," Proc.
Symp. on Inform, Storage and Retrieval, April 1971, pp. 175-196.

Knuth, D. E., The Art of Computer Programming, Vol. 3, Sorting and
Searching, Addison-Wesley, Reading, Mass., 1973, Sec. 6.2.3,

Kosajaru, S. Rao, On:Information Stofage and Retrieval by AVL Trees,
Department of Electrical Engineering, The Johns Hopkins University,
Baltimore, Maryland.

Nievergelt, J. and E. M. Reingold, Binary Search Trees of Bounded
Balance, Department of Computer Science, University of Illinois, Urbana,
Illinois.

Stone, H. S., Introduction to Computer Organization and Data Structures,
McGraw~Hill, New York, N. Y., 1972, Sec. 11,2.3.

Wulf, W. A,, D. B. Russell, and A, N, Habermann, "BLISS: A Language
for Systems Programming," Comm, ACM 14, 12 (December 1971), pp. 780-790.

10~

APPENDIX: A Set of Procedures for Inserting into,
Deleting from, and Searching AVL Trees

integer array tree[O:n,1:6],dret,path[0:2.25%In{n+2));
integer treebaselevel;

comment These identifiers represent the data structures to
be used in the procedures.
1) tree represents the AVL tree, it is accessed with
two wvalues, a pointer to a node and a field
specification within that node. tree is declared as an
array, but any data structure accessed in the above
manner is acceptable. The actual tree constructed is
built as the left subtree of a special header node
pointed to by treebase.
2) path and dret are used as a stack to record
movements through the tree. path holds peinters to
nodes and dret holds the direction moved when stepping
down from the node identified by the corresponding pomter in
path. level is used as a stack pointer into
path and dret.

integer nullink,maxkey;
. integer link,rlinkrank.key,infopirbalance;

comment The first two identifiers above represent
constants and the second six represent the field
specifiers for each node in the tree. In this
implementation, the latter six take on the values
1,...,6 respectively, correspondlng to the second index of
the array iree.
1) The llink and rlink of each node contain pointers
to its left and right sons. The value nullink(which must be
chosen to be distinct from all valid link values) in a
field indicates that no son is present on that side of
the node. llink in the header node holds a pointer to
the root node of the tree, rlink in the header aiways
has the value nullink.
2) The rank of each node specifies the relative position of that node
in the subtree of which it is the root, i.e,, one plus
the number of nodes in its left subtree. The rank
of the header node, therefore, specifies one plus
the number of nodes in the tree.
3) If the AVL tree is being used to store nodes by
value, then the key of each node contains the value that uniquely
identifies the node and the nodes are storedin
lexicographic order based on the value of key. if
the AVL tree is being used to store a linear list,
then the key values are not necessarily distinct. In -
this case, each node is accessed by specifying its
position in the postorder sequence of the tree. The
key of the header node contains the
value maxkey which must be chosen larger than any key
to be added to the tree. -

=11-

4) the infoptr of each node contains a pointer to the information
associated with that node. If only a small, constant

amount of information is associated with each node,

the pointer can be eliminated and be replaced by the

information itself. The infoptr of the header

node always has the value nullink.

5) the balance of each node indicates the balance of the subtree for
which that node is the root. The possible values are:

left heavy, right heavy, or balanced. The balance

of the header node is undefined. ;

integer balanced.left,right,found,notfound boundearror,
deleteretrieveinsert;

comment These identifiers represent constants in the
procedures. They may be assigned any value such that
within each of the following three sets, each member has a
distinct value.
{balancedleftright}
{found,not found bounderror}
{delete,retrieve,insert} ;

integer procedure OPPSIDE(side);
integer side; value side;
OPPSIDE:=if side = left then right else left;

infeger procedure OPPSLINK(side);
integer side; value side; ,
OPPSLINK:=if side = left then rlink glse llink;

integer procedure SIDELINK(side);
integer side; value side;
SIDELINK:=if side = left then llink glse rlink;

procedure INITHEADER;

begin

comment

Function: to initialize the special header node for the
tree. This procedure must be called before any tree
cperations are performed.

Side effects: None. ;

tree[trechaseyank]:=1;
tree[trechasekey):i=maxkey;
tree[treebase,infoptr):=nullink;

tree[trecbase llink):=treetrecbase,rlink):=nullink;

trecftrechasebalance]:=balanced
end INITHEADER,;

-12-

integer procedure SE/ARCIH{positionsearch,searchkey,typesearch);
boolean positionsearch; integer searchkeytypesearch;
value positionsearchsecarchkey,iypesearch;
begin integer tpoint,field,loopdummycchgval;
comment
Permissible values for the parameters:
1) positionsearch - {rue, false
2) searchkey - a list position or a key value
3) typesearch - insert, retrieve, delete

Function: to search for a node in the tree. If positionsearch =
true, then searchkey is interpreted as a position in the
postorder sequence of the tree, otherwise scarchkey is
interpreted as a key value.

Side effects:
1) path and drect are filled with the links and
directions taken on the path from the header node to
the desired node. path[level] points to the desired
node when it is found in the tree, otherwise it points
to the leaf or semi-leaf from which the desired node
could be a son. On insertion dret{level] specifies
which side of the node pointed to by pathflevel] the
new node will be added.
2} typesearch indicates the purpose of the
search, i.e., a search for a position to insert a new
node, or a search to find a node so that it may be
deleted, or a search for retrieval of information.
The rank field of the nodes on the path are adjusted for
the insert and delete cases with the assumption that
the operation will subsequently be performed.

Value of SEARCH:
1) found - node located in tree, pointed to by
pathilevel].
2) notfound - node not located in tree, path[level]
points to node which could be the father of desired
node,
3) bounderror - position specified does not occur in
list{on search by position only). ;

-13-

procedure RESETRANK(typesearch);
" integer typesearch; value typesearch;
begin integer chgval,tievel;
comment
Permissible values for the parameter typesearch: insert,
delete. ‘

Function: to restore the value of the rank field in

each node. This only has to be done if an attempt

was made to insert(by value)} a node which already existed
in the tree or an attempt was made to delete a node which
did not exist in the tree. typescarch specifies for which
case the correction is being made(insert, delete).

Side effects: None.

chgval:=if typesearch = insert then -1 plse 1;
for tlevel:=(if chgsw = insert
then level-1 else level)
step -1 yntil O do
if dretftlovel] = left
then tree[pathtlievellrank):=
tree[path[ilevel]rank)+chgval
end RESETRANK;

comment The body of SEARCH begins here. ;
If (positionsearch A
((scarchkey < 0) v
(searchkey > treo[trechase,rank]) v
(typesearch # insert A searchkey = troe{trecbasorank]))) v
(- positionsearch A searchkoy > maxkey)

then
begin
SEARCH :=bounderror;
goto endsrch
end;
tpoint:=trechase;
level:=0;
chgval:=if typesearch = insert
then 1 else (if typesearch = delete
then -1 else O}
field:=if positionsearch then rank gise key;

=14

for loopdummsy:=1 while true do
begin
path[level):=tpoint;
if searchkey # tree[tpoint,field]
then

begin integer side;
dret[levell:=side:=if searchkey < tree{tpoint,f ield}
then lefi else righ;
if positionsearch A (side = right)
then searchkey:=searchkey-iree[tpoint,rank];
tree[t point,rank]:=trec[tpoint,rank}+
(if side = left then chgval glse 0)
tpoint:=tree[tpoint, SIDELINK (side)};
if {~ positionsearch) A (tpoint = nullink)
then
it typesearch = delete then RESETRANK(delete);
SEARCH :=notfound;
goiQ endsreh
end;
level:=lavel+1
end
else
begin
if typesearch = insert
then
begin
if ~ positionsearch
then RESETRANK (insert)
else
pegin .
dret[levell:=lefi;
tree[pathflevel)rank]:=
trec[path[levellrank}+1;
if tree[path[level)llink] # nullink
then
begin
level:=level+1;
pathilevel):=
tree[prith[level-1)Uink];
dret[level i=right;
for path{level+1):=
tree[path{levellrlink]
while (path[level+1] # nullink} do
begin -
level:=lovel+];
dret[levelyi=right
end
end
end
end;
SEARCH :=found;
goto endsrch
end
end;
endsrch:

end SEARCH;

-15-

procedure SINGLEROTATE;

kegin integer pfather,peritical,peritsonl side;

comment

Function: to perform a ’single’ rotation at a critical node
to re-establish the AVL property. The llink, rlink,
balance, and rank values are adjusted for the critical
node, its father and the the heavy side son of the
critical node.-

Side effects: none. ;

pfather:=path{level-1};
peritical:=path[level};
peritsonl:=path[level+1};
side:=tree[periticalbalance);
treo[pfather,SIDELINK (drct[level-1])):=peritsonl;
tree[peritical SIDELINK (side)):=
tree[peritson,0PPSLINK(side)};
tree peritson, 0P PSLINK (side)}:=peritical;
tree[peritical,rank):=
treel peritical rank)- .
(if side = lefi then tree[peritsonlrank] elsg 0);
tree[peritsonl rank):=
tree[peritson] rank]+
(if side = right then tree[peritical,rank] else O);
tree| peritical,balance):=tree] peritsonl,balance}:=balanced
end SINGLEROTATE;

-16-

procedure DOUBLEROTATE;

begin integer pfather,peritical,peritsonl,peritson,side;
Function: to perform a *double’ rotation at a critical node
to re-establish the AVL property. The Uink, rlink,
balance, and renk values are adjusted for the critical
node, its father, the the heavy side son of the
critical node, and the heavy side son of that son.

Side effects: none. ;

pfather:=path[level-1];
peritical:=path[level);
peritsonl:=path{lovel+1];
peritson2:=path{level+2};
side:=tree[peritical balance;
tree[pfather, SIDELINK(dret[level-1]}): —pcmsonZ. ,
trec{ peritson] 0P PSLINK(side)}:=
tree[peritson2,SIDELINK(side));
tree[peritical SIDELINK(side)):=.
treel peritson2,0P PSLINK(side)};
tree[peritson2,SIDELINK(side)):=peritsonl;
treef peritson2,0PPSLINK (udo)] =pcrmcal.
tree| peritical rank]:=
tree[peritical,rank]-
(if side = left
then tree[pcrusonl,mnk]ﬂrce[pcrusoﬂ rank] else O)
tree] peritserlrank]:=
tree[peritsonl rank]-
(if side = right then tree[peritson2rank] glse O)
treef peritson2yrank]:=
treef peritson2,rank]+
(if side = left then tree[peritsonl,rank]
glse treef peritical,rank]);
tree[peritical,balance}:=
if tree[peritson2balance] = side
then OPPSIDFE(side) glse balanced;
tree peritsonlLbalance]:=
if treelperitson2,balance} = OPPSIDE(side)
then side glse balanced;
tree| peritson2,halancel:i=balanced

end POUBLEROTATE;

-17-

procedure ATTACH NODFE(p[reenewkey,newinfoptr);
integer pfreo,newkey,newinfoptr;
value pfreenewkey,newinfoptr;
begin
comment : -
Permissible values for the parameters:
1) pfree - a pointer to any empty node
2) newkey - value of key for the new node
3) newinfoptr - value of information pointer for- the
new node

Function: to insert a new node into the tree.
The new node is ‘attached to the node pointed to by patb[loool] :
on the side specified by dret[level].

Side effects: pfree is placed in pnih[leve!ﬂ] for use by
the rotation procedures. ;

tree[path[level,SIDELINK (drci[level)))i=pfree;
tree[pfreerank]:=1;
tree[pfree,llink]:=tree[pfree,rlink}: -nuumk
tree[pfreebalancel:=balanced;
tree[pfreekeyl:=newkey;
tree[pfree,infoptr):=newinfoptr;
path[level+1):=pfree

end ATTACHNODE;

~18-~

procedure REBUILDINSERT;
begin .

comment :

Function: to trace back along the path from the father of
the node just attached to the tree, checking

that the AVL property has been maintained. A rotation is
performed if the property no longer holds at a node. At
most one rotation is performed but traceback may terminate
without performing a rotation or reaching the top of the
tree.

Side effects: none. ;

treel path[levellbalance):=
if tree[pathllevel]balance} = balancoed
then dret[level] else balanced;
it tree path[levellbalance) # balanced
then
begin integer loopdummy; boolean critsw;
critsw:={alse;
for loopdummy:=1 while (level > 1) do
begin

level:=level-1; .
if tree[path[levellbalance] # balanced
then

treel path[level)balance):=
if tree[path[levellhalance] = dret[level]}
then dret{level] else balanced;
critsw:=
if tree]path[level)lbalance] = dret[lovel]
then irue else false;
goto ehkerit
end
else tree[path[levellbalance):=drci[level]
end;
chkerit:
if eritsw

then ‘

if tree]path[levellbalance] =
tree[path[level+1)brlance]
then SINGLEROTATE
else DOUBLEROTATE

end
end
end REBUILDINSERT;

procedure DETACIHI NODE;

begin integer pdel;

comment

Function: to delete the node specified by pathilevel] from
the tree. .

Side effects: If the node to be deleted is not a leaf or a

semi-leaf, then the node is interchanged with its postorder
predecessor(successor) before being deleted. path and dret

are filled out with the path down to the '
predecessor(successor). The predecessor is chosen if the node is left
heavy or balanced, otherwise the successor is chosen. ;

pdel:=path[level};

if (tree[pdel,llink] # nullink) A
(treo| pdel,rlink] ¥ nullink)
then

begin integer tpoint,tleveltemp,side,chgval slink;
comment Node is not a leaf or semi-leaf, find its
predecessor{successor). ;
tlevel:=level-1;
dret[level):=side:=if tree[pdel,balance)] = right
then right glse lefy;
chguval:=if side = loft then O algs 1;
tree[pdel,rank):=
tree[pdel,rank]-(1-chgval);
level:=level+};
path[levell:=tree[pdel SIDELI NK(side))
side:=0OPPSIDE(side); ,
slink:=SIDELINK(side);
for path[level+1Y:=troe[path{levellslink)
while {(path[level+1] ¥ nullink) do
begin
drei[level):=side;
tree[path[level)rank):= ,
tree[path[level)rank)-chgval;
level:=level+1
end;
comment Perform interchange. ;
tpoint:=pathflevel); ‘ '
tree[path[tlevel,SIDELINK (dret[tlevel])):=t point;
temp:=tree[pdel llink);
trec[pdel,llink]:=¢ree[tpoim,llink];
tree[tpoing,llink):=temp;
temp:=tree[pdelslink};
tree[pdel,rlink):=tree[t point,rlink};
tree[tpoint,rlink]:=temp;
tree{tpoim,rank]:=crec[pdel,rank];
trecft poim,balunce]:-lroc[pdol,balcnce];
path[tlevel+1):=tpoint

comment Delete leaf or semi-leaf. ;
troe[pa!h[levcl-—l],SIDELINK(drct[level-l])]:-
tree[pdel,if tree[pdel llink] = nullink
then rlink else llink)
and DETACH NODE;

-20-

procedure REBUILDDEILETE;

begin integer loopdummy;

comment _

Function: to trace back along the path from the father of
the node deleted from the tree, checking that -
the AVL property has been maintained. A rotation is
performed if the property no longer holds at a node.
Several rotations may be necessary but traceback may
terminate without performing a rotation-or reaching the
top of the tree.

Side effects: none.
for loopdummy:=1 while (level > 1} do
begin

level:=level-1;
if treel path[level)balance] = balanced

tree[path[levellbalancel:=0PPSIDE(drct[level]);
goto endrbld
end ' '
else if treelpath{levellbalance] = dret[level]
then tree[path[levellbalance):=balanced
else

paih[level+1):=
tree path[level,0P PSLINK(dret[level)}
if tree[path[level+1]balance] = balanced
then

SINGLEROTATE;
tree{ path[levellbalance]:=
OPPSIDE(dreiflevel]);
tree] path[level+1)balance]):~drct[level};
goto endrbld
end
else if tree[path{level)balance] =
tree[pathflevel+1)balance)
then SINGLEROTAT
else '

path[level +2]):=
tree{ path{level+1]),
SIDELINK tree[path[level+1],
balance)])};
DOUBLEROTATE
end
end
end;
endrbld:
end REBUILDDELETE;

file:///balance

