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Abstract 

The representation power of goal-subgoal trees and 
the adequacy of this form of problem reduction is con
sidered. A number of inadequacies in the classical 
form are illustrated, and two versions of a syntactic 
procedure incorporating extensions are given. Although 
the form of the corrections are suggested from resolu
tion theory results, and the value of this connection 
emphasized, the paper discusses the goal tree format 
and its extensions on an informal level. 

Key words: theorem proving, goal trees, AND/OR trees, 
Geometry Theorem Machine, resolution, model elimina
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1• Introduction 

After several years when almost all theorem prov
ing systems, and many problem solving systems, were 
based on resolution, many researchers are returning to 
natural deduction type logics, often implemented via 
some form of goal-subgoal tree notation using a prob
lem reduction approach. In this paper the goal-sub-
goal tree form (or AND/OR tree form) is considered. 
We show that if one wishes to use this syntactic form 
for representation of the deductions and search space 
as a full replacement for the resolution approach, one 
must make some additions to the classical problem re
duction formulation. 

TO show that there exist holes in the classical 
goal-subgoal problem reduction method we need only 
present some examples, which we supply. To determine 
an appropriate correction and measure its power takes 
some theory. It turns out that resolution theory, In 
particular the model elimination procedure results, 
provides an adequate theoretical base. In this paper 
we only state the consequences for the problem reduc
tion approach, omitting proofs. However, we want to 
stress the value of resolution theory for the insight 
it gives to the problem reduction method and remark 
that more information than is exploited here can cer
tainly be pulled from existing resolution theory. 

AND/OR trees, used as goal trees, are components 
of most problem solving systems that-are not resolu
tion based. We are hereafter concerned only with goal 
trees used for logical inference. We show, among 
other things, that the usual way of organizing goal-
subgoal trees is incomplete yet one small change makes 
the mechanism complete, assuming equality substitution 
is not relevant, and if the equality predicate is used, 
several added rules gives completeness in general. By 
completeness, we mean that the goal trees and associ
ated syntactic mechanism is capable of establishing a 
goal statement whenever the goal is valid given the 
assertions present. The systems we discuss are the 
search trees such as are used in the Geometry Theorem 
Machine (Gelernter et a l . 2 * 3 * 4 ) , the Logic Theorist 
(Newell et al.12) a n <j elsewhere. Indeed, when the 
equality predicate is not present, the mechanism of the 
Plane Geometry Machine is sufficient in structure and 
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mechanism to be complete yet is not complete. 

The subject of completeness is embroiled in con
troversy these days. We feel a developing consensus 
that total completeness is pointless to pursue, and for 
almost all problems, pursuit of the solution will be 
done by methods (particularly search methods) incomplete 
in themselves, yet the total reservoir of tools to be 
drawn upon should be complete if at all possible. In 
particular, one wishes the underlying organization and 
recording mechanism (this is what AND/OR goal trees 
are) to be capable of handling any situation. The 
worst possible situation is to be prevented from estab
lishing a simple inference not because one is unable to 
thread through the search space but because the infer
ence chain cannot even be represented. We claim this 
is particularly bad because the problem specific search 
tools are expected to be updated frequently while the 
underlying recording (proof) mechanism is viewed as far 
more stable. In analogy, inability to express concepts 
due to inadequate grammatical structure is worse than 
inadequacy due to a limited vocabulary, for one more 
readily adds to his (her) vocabulary. One wishes a 
grammar "complete" although no one expects a "complete" 
vocabulary. 

As regards goal trees, one instance of inadequate 
understanding of goal trees and the associated mechan
isms is reported in Gelernter3. This paper documents 
an instance where a mechanism mixing use of the STUCK 
and ESTABLISHED labels with goal elimination due to 
identical higher goal resulted in the inability to in
fer theorems whose known proof complexity suggested 
solution should be possible. As search spaces were 
relatively small, most runs could be carefully analyzed, 
so the flaw was probably discovered on the first theorem 
for which the flaw actually prevented the proof. How
ever, the Geometry Theorem Machine had been in operation 
nearly a year at that time and many "production" runs 
were made prior to this discovery. Moral: flaws in 
infrequently used logical paths may be particularly bad 
because simple (and important?) results may be blocked 
long after the system is believed "debugged" in its 
basic routines. 

We do not consider completeness proofs here but 
rely on examples to suggest the need and degree of ap
plicability of extensions to the classical form for 
goal trees. Those familiar with resolution theory (in 
particular, model elimination as given in Loveland1", 
also in Kowalski and Kuehner8) will be able to verify 
some claims. Other assertions are based on results to 
appear in a forthcoming book on theorem proving by one 
of the authors^. 

At this stage of development of the artificial 
intelligence field, we feel it is unnecessary to justi
fy interest in theorem proving techniques themselves. 
The bibliography lists a small sample of papers that 
Investigate theorem proving techniques or apply such 
techniques to robot guidance, question-answerer sys
tems, automatic programming, etc. 

2. Goal Trees 

By a goal tree we mean an AND/OR tree developed 
by a problem reduction mechanism. A "classical" treat
ment of goal trees occurs in Nilsson 1 3 and Slagle 1 9, 
for example. We review this notion briefly by outline 



and example. 

Let us represent our syntactic, or semantic, atoms 
by capital Latin letters: A, B, C, with sub
scripts if necessary. Of course, A may be a complex 
formula, e.g., (Vy) (Vx)P(x,y) ZD Q(y), but we agree not 
to consider its interior structure relevant to the par
ticular problem so it is "packaged11 as A. We consider 
our primary, or top, goal G to be the atom to be es
tablished. Assertions (facts) are of the form 
AjA.••AAn C (implications) or P (premises). The A 
are antecedents and C is the consequent of the implica
tion. For notational convenience, we define the conse
quent of a premise to be the premise itself and the set 
of antecedents of a premise to be the empty set. For 
a particular problem we begin with a goal to be estab
lished and a set of assertions. We consider the ex
pression format more closely later. 

A goal tree records the development of the search 
to establish G by linking it to the premises via the 
implications. G is the top goal; if it is also a 
premise, G is established. Otherwise all implications 
with consequent G are located and the antecedents of 
each such implication become new goals, subgoals of G. 
G is the parent of each new goal and each new goal is 
the successor of G. If each new goal for one of the 
implications can be established, G is then established 
(by asserting the implication)^ "* The antecedents of 
one implication form partner goals. We also refer to 
a conjunction of goals meaning the set of antecedents 
from one implication. Any single set of partner goals 
(goals in conjunction) at this level that can be es
tablished establishes G. Thfs yields a disjunction of 
partner goal sets. If no partner goal set corresponds 
to a set of premises, some partner goal set is select
ed and each of the partners not a premise is again 
matched against implication conclusions to create (pos
sibly) new subgoal sets (not necessarily as a single 
parallel action)• This proceeds in iteration until a 
sufficient set of premise matches are found, or the 
search stops. The conjunction/disjunction relation
ship above leads to the name AND/OR tree. 

A goal A is an ancestor of goal B if A is the parent 
of B or A is an ancestor of the parent of B. A partner 
of an ancestor of the goal A is called an ancestor  
partner of A. 

We give an elementary example from plane geometry 
in the spirit of the Geometry Theorem Machine (GTM); 
see Figure 1. Immediate subgoals lie below their goal 
and are connected by a slanted line* Partner goals are 
connected by a horizontal line. In Figure 1 the bot
tom leftmost conjunction of goals is rejected even 
though two goals are premises because the third goal 
also occurs as the top goal, thus it is an ancestor of 
itself. Any goal that occurred as an ancestor goal of 
itself was rejected at the lower level in the GTM 
structure because if it could be established at all, 
it could be established from the higher level. Also 
in the GTM structure was a way of discarding a con
junction of goals if a higher conjunction containing 
an ancestor was easier to prove. We do not elaborate 
for we handle this somewhat differently. The key 
point is that interaction with ancestor goals existed, 
and was very important due to the "depth first" search 
which meant not leaving a branch until you could go no 
further. 

We now enlarge our format for expressions. This 
is done by allowing our atoms to be literals, atoms 
possibly preceded by a negation sign. Thus if A is a 
complex expression, we look inside only to check if 
the leftmost symbol is a "not" operator of proposition-
al logic If so, it is displayed. We let A, B, C,... 

(possibly with subscripts) represent literals. To 
emphasize that B is A proceeded by a "not" we will 
sometimes write B as *A. A and <*A are complement lit
erals. Otherwise, our expression format is as before. 

The use of negated goals has not appeared in the 
classical inference programs using goal-subgoal sys
tems. The Geometry Theorem Machine avoided the need to 
recognize complementary goals almost by accident, for 
concepts like "XYZ is collinear" and "XYZ is not col
li near" both appeared but did not interact. However, 
in general situations particularly in robot systems, 
question answerer systems, etc. interaction between 
complementary literals is to be expected. Certain re
cent systems of a goal-subgoal format have been de
signed to handle negated formulas so that complemented 
literals interact; see Bledsoe et a l j , Reiter 1 3. 
These systems are less in the classical goal-subgoal 
format than the system considered here and also appear 
to be incomplete. 

We consider in Figure 2 a simple example in which 
the goal follows from the assertions but the goal-sub
goal mechanism so far illustrated will not establish 
the goal. One reason is that the contrapositive of 
one of the assertions is needed. We add the contrapos
itive as an explicit assertion. We note, however, that 
there is no way of proceeding to a premise! Yet the 
problem is simple enough so that one can read the in
tended meaning of the assertions and see that the goal 
follows. We claim that because ~C occurs as an (indir
ect) subgoal of C, we can treat ~C as if it were a 
premise and terminate that branch. That is, ~C is now 
marked contradicted and considered established. As A 
is a premise, B is established, so C is established, as 
desired. 

The rationale for the mechanism above is not hard 
to find. Either C is true or ~C is true. If is 
true, then we can establish C (after establishing other 
pertinent subgoals), which is impossible. Thus C is 
true. This is an argument by contradiction. We ob
serve that the check for this is trivial if possible 
identity with ancestor goals is checked as in the GTM. 
One simply checks for identity and then complementa
tion. 

The not-so-immediate fact is that we now have a 
propositionally complete system. That is, if no sub
stitution inside literals is allowd so as to make dis
tinct literals alike (or complementary) no further 
gimmicks will be necessary. In Figure 2, we note a 
possible alternate argument to produce establishment 
is that one of D and ~D is true so one of the two ways 
of establishing C should be permitted. Is this suffi
cient also? Probably so, we are not sure. In any 
event, it is generally a much more difficult check as 
the occurrences of D and <-*D are on different disjunc
tive branches and can be made to appear at an arbitrary 
depth by making the inference connecting C and D more 
complex. Thus instead of a nearly free check one has 
a relatively complex tree search. But might such a 
tree search be necessary anyway, for some case where 
ancestor complements do not occur? No. That is the 
meaning of our statement that the system is now prop
ositionally complete. The proof is a consequence of 
the completeness of model elimination (ME)• 

In general problem solvers will not be constrained 
to work propositionally. The expressions we have con
sidered, goal and assertions, will in general have free 
variables and functions, including Skolem functions 
which build in universal quantifiers. We do not con
sider in detail the process of general conversion to 
our chosen format (generalized somewhat below). It is 
basically the conversion to disjunctive normal form 
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with Stolen functions, the dual to the "conversion" in 
Nllsson 1 3, for example. The general structure of the 
goal-subgoal mechanism when operating in the presence 
of free (individual) variables and substitution is the 
same but with direct comparison replaced by the notion 
of unification from resolution (see Robinson 1 7, 
Nilsson 1 3, or Slagle 1 9). 

One of the common substitution situations involves 
equality. If we have goal P(a) and assertion a«b we 
certainly consider P(b) a subgoal whose establishment 
would yield P(a). Indeed, some readers may wonder why 
we need to write P(b) explicitly. P(a) might be inter
preted as all statements equivalent to P(a) under 
equality substitution. This has disadvantages when 
substitutions use numerous derived equations so we re
ject this here although a use of such identification 
might be satisfactory. Such a treatment is compatible 
with our main points but requires a modified organize-, 
tlon to that given below. 

In Figures 3,4, and 5 we give examples where the 
goal should be inferred from the assertions presented 
but cannot be Inferred under the simple format of the 
preceding paragraph. These figures suggest the format 
in which we propose to handle such problems. That is, 
in our general description below the problems stated 
would generate the goal tree presented. Note that in 
Figure 4 an alternate form of implication 1 is needed. 
We supply it here as assertion 4. We call 4 a general  
contrapositive of 1. We remark that we would expect 
the situation of Figure 4 to arise very infrequently 
so such an inference route should be investigated only 
when desperate. 

Again, if we adopt the few rules for handling 
equality given below, of which three instances have 
been displayed, we have completeness of the goal tree 
procedure when equality substitution is included. The 
completeness proof comes from the appropriate form of 
HE with paramodulatioti (an equality handling mechanism) 
whose proof appears in Loveland11. 

A number of other features for goal tree analysis 
can be gleaned from results concerning ME. Most are 
natural in this setting such as the removal of a con
junction of goals when one goal matches an ancestor 
goal. We noted this was incorporated in the GTM. A 
non-intuitive situation is that a conjunction of goals 
can be eliminated if one of the component goals is 
complementary to an unexpended ancestor partner goal, 
i.e., a goal with no subgoals yet recorded, but com
pleteness is not assured unless a goal is marked dis 
placed, and treated as established, whenever it match
es an unexpanded partner or an unexpanded ancestor 
partner goal. Displacement is illustrated in Figure 
6. Displacement avoids expanding the same subgoal 
twice. Gne has no need for the displace
ment device if the coincident ancestor partner has 
been expanded and established. The matching subgoal 
can directly be marked "established". 

Figure 7 is an example of another situation we 
must handle. If S is an unsatisfiable formula, S C 
is valid for any formula G. We use the device of the 
contradictory formula which may be considered a 
shorthand for formula P A —P. This device allows a 
natural extension of our notion of assertion and goal 
and suffices to handle cases where the goal, or sub-
goal, cannot be directly derived although it is a 
valid consequence of the assertions. 

We write the general format for our goal tree 
system as if a propositional system is our concern. 
That is, all comparisons of literals are by identity 
or complementarity. However, the word matches is used 

for this identity check. By interpreting matches as 
using a most general unifying substitution, the general 
form is realized when substitution for (individual) 
free variables is permitted. We include in our format 
the substitution of equality but, again, with the ambi
guity which may or may not allow free variables in 
those terms. 

For convenience we label the problem reduction 
procedure below the MESON (Model Elimination Subgoal 
Oriented) procedure. 

We consider again the expression format. An arbi
trary first order formula can be converted to the ap
propriate expression format, preserving validity. A 
formula, or (finite) set of formulas, not already suit
ably expressed should be converted to the following 
form: 

B.A. • «AB -* G, I n 
where is of the form A^A. . . M m C or C and G is of 
the form L - A . . . A L ^ , where the A ' s, L ^ s and C are lit
erals. This is readily obtained from the disjunctive 
normal form of the original formula. G then defines 
the goal: if K«1 , L^ is the single goal, otherwise 
L ^ , . . . , L . are top level partner goals all of which must 
be eventually established. We can tackle one at a time 
(though they may be linked by common variables) so 
hereafter we consider a single goal G. A A . . . A A •* C 
is an assertion implication, and C a premise. An im
portant equivalence for format preparation is 
(A -» B V C) s (A A -> C). This is used to form the 
various general contrapositives needed for complete
ness. We extend this to generate **A -+ / from A, for 
example. 

If the goal is believed to follow directly from 
the assertions (as is usually the case) the use of / 
may be avoided. Otherwise, add / -» G, the assertion  
generated from the goal, to the assertions and for each 
assertion A 1 A . . . M m C add the general contrapositive 
AjA . . . A A m A ~C ^, and for each premise add ~C 
Only one such formula need be added to the assertion 
list if some version of that assertion is believed 
necessary to establish the result. 

It is necessary to consider, for each assertion 
implication A - A . . . A A ^ -» C, m general contrapositives 
plus the original assertion if completeness is to be 
preserved. There should be one general contrapositive 
AjA...A , A ~C A A i + j . . . A A -» <*A for each i. The 
order of antecedents in any Sssertlon is immaterial. 

3.- The MESON Procedures 

The procedures presented here are for proposition
al (variable free) problems. We will make occasional 
reference to the requirements of the procedures utiliz
ing variables. 

The procedures represent syntactic systems for 
adding to a goal tree information about goal-subgoal 
relationships and establishment of goals. The proce
dures return "success" or "failure" according to wheth
er the top goal can be established or not respectively. 
Of course, the ability to return "failure" disappears 
when substitution is allowed, e.g., first-order formu
lations. A returned value of "failure" for a problem 
indicates either the top goal does not follow from the 
assertions or the search ordering and goal generation 
and deletion strategies specified by the planning rou
tine are inadequate for the problem. (It is possible 
to write a complete planning routine which theoretic
ally always returns "success" for solvable problems.) 

We will now present two MESON procedures for goal 
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tree analysis incorporating the new rules discussed 
above. The procedures are logically divided into four 
subprocedures with labels "initialize", "loop", "up-
datejnarks" and "updatejgoals". 

The instructions placed at the label "initialize" 
define GOALS (the set of goals to be attempted) to be 
the set consisting of only the top goal and also ini
tialize the goal tree. 

The instructions placed at the label "loop" select 
a goal G from GOALS, an operation to be performed and 
an assertion D if needed. The selected operation is 
then performed for the goal G and assertion D. Those 
operations try to establish goals or create subgoals. 

The instructions placed at the label "update^ 
marks" mark a goal "established" if each of a lilt of 
partner successors is marked "established", "contra
dicted" or "displaced". Thus, if each of a conjunc
tion set of subgoals of a goal is established, the 
goal is established. 

The instructions placed at the label "update_ 
goals" add newly generated subgoals to the tree and 
GOALS provided certain acceptance criteria are met. 

The selection of the next goal in GOALS to be 
operated upon and the selection of the operation and 
the assertion to be used in operating on that goal are 
assumed to be accomplished by some externally speci
fied planning routine ("the planner"). The planner, 
in addition to specifying a search strategy, may re
strict or totally eliminate use of some of the opera
tions. For example, traditional goal tree procedures 
without the contradiction mechanism correspond to a 
planner which never uses the operation at "op3". 

The planner, by applying the operation at nop5" 
to a goal, removes the goal from GOALS and thereby 
signifies that no more operations will be applied to 
the goal. 

If one wishes to insure completeness, the planner 
must in some order process all operations (except the 
operation at "op5") for each goal and potentially ap
plicable assertion. The planner may select the goals 
of a conjunctive set of goals in any desired order to 
attempt their establishment. The procedure(s) make 
no assumption as to whether the search is depth-first, 
breadth-first, or some mixture of these. 

MESON procedure 

initialize: 

loop: 

opl : 

op2: 

Let GOALS be a set consisting of only 
the top goal. Initialize the goal tree 
to the top goal. 

If GOALS is empty> exit procedure with 
"failure". Let G be a goal in GOALS 
selected by the planner. The planner 
selects one of the following operations 
to be performed on G and selects D, a 
premise, implication or general contra-
positive of implication, as required by 
the operation. 

If G matches the premise D, mark G 
"established" and go to updatejwarks. 
Otherwise go to loop. ~ 

If G matches the consequent of D, where 
D is an implication or general contra-
positive of implication, let A be the 

op3: 

op4: 

op5: 

updatejnarks: 

set of the antecedents of D and go to 
updatejgoals. Otherwise go to loop. 

If G matches the complement of an ances
tor of G, mark G "contradicted" and go 
to updatejnarks. Otherwise go to loop. 

If G matches an unexpanded partner of G 
not marked "displaced" or an unexpanded 
ancestor partner of G, mark G "displaced" 
and go to updatejnarks. Otherwise go to 
loop. 

Delete G from GOALS and go to loop. 

If G is top goal, exit procedure with 
"success". If all partner goals of G 
are marked "established", "contradicted" 
or "displaced", let Gj be the parent of 
G, set G-Gj, mark G "established" and go 
to updatejnarks. Otherwise go to loop. 

If a member of A is identical to G or an 
ancestor of G, go to loop. 

If a member of A is complementary to 
another member of A, an un
expanded partner of G or an unexpanded 
ancestor partner of G, go to loop. 

Otherwise add the members of A to GOALS 
and to the goal tree as a conjunctive 
set of successors of G and go to loop. 

The MESON procedure for equality incorporates 
rules for handling the equality relation. It differs 
from the MESON procedure in that three new operations 
are added. Also, the rules for disregarding newly gen
erated subgoals (at "test 1" and "test 2") have not 
been proven to preserve completeness although we be
lieve completeness is preserved with these rules ap
plied. We maintain the updatejgoals subprocedure in 
the MESON procedure for equality with the admonition 
that if completeness is to be preserved these rules 
should be bypassed (at present). 

For technical reasons, it is necessary to put in 
premises of the form a»a for each term a or, if in a 
setting using free variables and substitutions, one 
must put in x»x and f(x^,...,Xr) • f(x.,...,xn) for 
each n-ary function symbol f. Such axioms can be re
placed by appropriate procedure rules if desired. 

updatejgoals: 
test 1: 

test 2: 

MESON procedure with equality 

initialize: (same as for MESON procedure) 

loop: (preface and operations 1-5 same as for 
MESON procedure; only change is the ad
dition of the following operations) 

op6: If G contains a term matching term a 
where a»b or b«a is the consequent of 
D, where D is a premise, implication or 
general contrapositive of implication, 
let A be the set consisting of G with a 
single instance of a replaced by b plus 
the antecedents of D and go to update__ 
goals. Otherwise go to loop. 

op7: If the consequent of D, where D is a 
premise, implication or general contra-
positive of implication contains a term 
matching term a where G is a/b or b^a, 
let A be the set consisting of the 



complemented consequent of D with a 
8Ingle instance of a replaced by b plus 
the antecedents of 0 and go to update^ 
goals. Otherwise go to loop. 

op8: If H is an ancestor of G or G itself 
and H (resp. G) contains a term matching 
term a where G (resp. H) is a/b or b/a, 
let A be the set consisting of H (resp. 
G) with a single instance of a replaced 
by b and go to update_goals. Otherwise 
go to loop. 
(Note: see examples below.) 

updatejnarks: (same as for MESON procedure) 

updatejgoals: (same as for MESON procedure) 

We attempt to clarify op8 and shed light on its 
usefulness. Consider the case that H is G and G is 
a/b, a and b simple constants. Then, reading the 
"respectively" case, we see that G contains term a and 
H is a^b. Then A, the possible new subgoal, is G with 
replacement, i.e., b^b. Taking the other case (ignor
ing the "respectively") yields the same possible sub-
goal. This is certainly unproductive and could actu
ally be deleted with no risk involved. However, in a 
free variable setting with substitution it is important. 
Suppose the goal is f(x)^x and the sole premise is 
f(f(x))^x. By op8 where H is G is f(x)^x, ignoring 
the respectively1s (for variation), we have H contain
ing a term x matching f(y), under substitution f(y) 
for x, where G is f(y)^y (the change of variable name 
is a necessary detail); now a^b is f(y)^y. Then A 
consists of H with replacement, i.e., f(f(y))^y. This 
subgoal matches the premise and the desired result is 
obtained. 

It is impossible to give an adequate discussion 
within this paper of the modifications required to 
handle first order formulas, i.e., allowing quantifica
tion of individual variables in the problem statement. 
This is best done elsewhere where space permits a full 
discussion. The modifications are generally straight
forward if the reader is familiar with resolution 
theory, in particular ME. See Loveland11. Subtle 
points do arise, however, as suggested below. 

Performing matching by use of the general unifica
tion algorithm is an important idea and, although we 
can conceive of reasons to select less general substi
tutions under certain conditions, the advantages of 
obtaining the most general substitution should not be 
given up lightly. This is an important aspect where 
knowledge from resolution theory can enhance the prob
lem reduction method. 

We make two further points, really warnings, con
cerning adopting the above description of the MESON 
procedure to first order expressions. If the goal has 
a free variable in it, the negation of the goal should 
be made a (hypothetical) premise. To see this, con
sider the following example: Goal: P(y) (i.e., we 
want to know if SyP(y)). Assertion: ^P(f(a)) P(a). 
Clearly either P(a) or P(f(a)) holds. We need ~P(x) 
as a premise to realize this. A second point: a sub
stitution may occur in a subgoal when applying an as
sertion implication. This substitution must be made 
at each occurrence of the replaced variable through
out the goal tree. Thus copies of the goal tree must 
fee retained in such instances for back up in case of 
failure, A good format for handling this involves 
adopting the ME format to the MESON procedure organiza
tion. 

4. Conclusion 

This paper can be read simply for the illustra
tions of possible extensions for the problem reduction 
method. However, we have attempted to convey inform
ally that resolution theory can contribute to the under
standing of alternate syntactic methods. Other devices 
of resolution such as linear representation of goal 
trees and use of unit clauses from premises may also be 
of use. We do believe that the MESON format, which 
simply extends classical goal tree representation, may 
present a very useful way of incorporating resolution 
ideas in future problem solving programs. 
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Problem Statement 
Prove the base angles of an isosceles triangle are equal. 

Prove: *BAC-*ABC 
Given: -̂ AC - <JCB 

AABC ^ 
Theorems: 1. AXYZ - ^UVW - . * X Y Z • *UVW 

2. * X Y Z = <RST A*UVW - *RST 
-.*TXYZ - * U V W 

3." ^ X Y -JIJV A4YZ -«SVW 
A * X Y Z » *UVW - AXYZ - AUVW 

4 . *fXY « J U V A ^ Y Z » 4.VW 
A J X Z - -*>UW -» AXYZ « ^UVW 

B 

^BAC --*TABC 

ABAC « MBC 
* B A C « * A C B ^ C B A - ^ A C B 

false in diagram false in diagram 

^ B A ' - ^ A B ^ A C « ^ B C *BAC » * A B C J B A -„*AB ^ A C - J B C J B C T ^ A C 
identity premise higher goal identity premise premise 

F"fCjlnrt 1. 



Problem Statement 
I have a swimming pool. 
If I have a swimming pool and it 
doesn't rain, I will go swimming. 
If I go swimming, I will get wet. 
If it rains, I will get wet. 
Prove I will get wet. 

A; I have a swimming pool. 
B: I go swimming. 
C: I get wet. 
D: It rains. 

Goal: 0. C 
Assertions; 1. A 

2. A A ~D -* B 
3. B -> C 
4. D C 
[5. -> *J> 

(general contrapositive of 4) 

(applying 
assertion 

(applying 
assertion 4) 

/(applying assertion 2) 

A 
premise 

/(applying assertion 5) 

contradicted 

Fi 9 t K e 



Goal: 0. b ^ 0 
Assertions: 1« a £ b A b £ a - » a « b 

2. a * 0 
3. a £ b 
4. b £ a 

b * 0 

(applying assertion 1) 

t —i i 
a ^ 0 a £ b b £ a 
premise premise premise 



Goal: 0. a / b 
Assertions: 1. a + b - 2 c A « " - b - » b - c 

2. a + b • 2c 
3. a ̂  c 
[4« a + b o 2 c A b / c - » a / b general contrapositive of 1 ] 

a / b 

(applying assertion 4) 

f 
a + b - 2c 
premise 

(substituting from higher subgoal) 

c 
premise 



Goal: 0. a / b 
Assertions: 1. a > 0 -» a :> 0 

2. a > 0 
3, b < 0 i.e., ~(b ;> 0) 

(substituting into assertion 1) 

i ' i 
a > 0 ~(b *0) 
premise premise 



Goal: 
Assertions: 

0. 
1. 
2. 
3, 
4, 

B A C -» A 
D B 
B -» C 
D 

(applying assertion 1) 

r-
C 

applying assertion 3) /(applying assertion 2; expanded last) 

displaced 



Goal: 0. C 
Assertions: 1 # A 

2. oA 
[3. / C assertion generated from 0] 
[4. -̂ A -» ̂  general contrapositive of 1] 

C 

/applying assertion 3) 

^^(app lying assertion 4) 

premise 


