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ABSTRACT 

Various switch designs for the hybrid redundancy scheme are studied. A 

reliability model for the switch is developed and the switch is shown to be a 

significant factor in the overall system reliability. A hybrid redundancy 

scheme with a triple-modular redundant (TMR) core may have a maximum attainable 

reliability for only a spare or two. Adding spares complicates the switch 

enough to cause the system reliability to actually decrease. There exist 

conditions under which the switch becomes so complex that simple TMR would yield 

a better solution. Models for fault-tolerant switch designs are also obtained. 

Finally, various designs are compared via their reliability models. 

Key Phrases - Triple modular redundancy (TMR), hybrid redundancy, 
checker-redundant scheme, quadded logic, radial logic, mission time 
improvement (MTI). 



INTRODUCTION 

The advent of relatively inexpensive LSI technology and the increasing 

demand for fault-free operation of digital systems for long periods of time have 

rekindled the interest in fault tolerant computer design. In order to predict 

the performance of a particular design or compare two or more designs, an 

accurate reliability model is needed. 

In this paper we will discuss various switch designs for the hybrid 

redundancy scheme [MathF70]. It will be shown that the switch reliability is an 

important factor in determining the overall system reliability. The current 

effort is directed towards obtaining a suitable model for the switch designs. A 

model will be presented and it will be used to compare the various designs. 

First we will present the redundancy schemes to be studied. 

REDUNDANCY SCHEMES 

Hardware redundancy may be used in a variety of manners to achieve fault 

tolerance. Among the best known techniques are the replication schemes, such as 

triple modular redundancy (TMR) and N-modular redundancy (NMR). TMR, first 

proposed by Von Neumann [VonNJ56], divides a nonredundant circuit into modules 

and replicates each module thrice. A majority voter is used on the outputs of 

the triplicated modules (Fig. la). Such a scheme has also been referred to as 

masking redundancy because failures that affect only one of the three modules 

are "masked" by the majority of the nonfailed modules. Since the scheme can 

tolerate one module failure without a system failure, the reliability of the 
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system in Fig. l a may be written in terms of the module reliability, R, and the 

voter reliability, R v , as 

F W R V . { R 3 + 3 R 2 ( 1 - R ) } (1) 

= R v . { 3 R2 - 2 R3 } 

Note that this equation and all the equations that follow assume the classical 

reliability model, namely, that once a module has failed its output is assumed 

to always be in error. 

NMR is a logical extension of TMR for any odd number N. If N = 2 t + 1, 

the NMR system of Fig. l b can tolerate as many as t module failures. The 

reliability of such a system is, therefore, 

Hybrid redundancy has been proposed [MathF70], [GoldJ66] as a means to 

achive reliability and longer times of fault-free operation than those 

attainable by TMR or NMR systems. Fig. 2 shows a hybrid redundancy scheme. The 

switching network is used to select three of the m modules, whose outputs are to 

be voted on. These modules form a TMR core. Faulty modules are detected by 

comparing module outputs to the voter output. A faulty module in the TMR core 

is logically replaced by one of the spares that have not yet failed. If only 

one of the three TMR core modules is assumed to fail at a time, the system fails 

only if all the modules fail or if all but one module fail. The reliability of 

the hybr id system with a TMR core and m-3 spares is 

RHit 5 5 R v • Rsw • { 1 - m R ( l - R y - i - U-RV" } (3) 

where R S M is the reliability of the switch. 

Again, a hybrid scheme with a TMR core may be extended to one with an NMR 

core. In the current discussion, we will implicitly refer to a hybrid scheme 
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with a TMR core as the hybrid system. Thus, although the treatment that follows 

is only that of a particular case, it may easily be extended to any N other 

than 3. 

Since a three input voter will appear in all the redundancy schemes to be 

discussed, the voter reliability, R v , in the expressions for system reliability 

will be identical for all the schemes. As the focus of the discussion to follow 

will be on comparison of schemes, the constant multiplying term R v , may be 

omitted without affecting the analysis. 

Another scheme that will be discussed has been proposed by [RamaC73]. In 

this scheme, referred to as the checker-redundant scheme (Fig. 3), every module 

is associated with a checker. Only one module is active at a time, and it is 

replaced by another if its checker detects a fault. The system fails only if 

all modules fail. The reliability of a checker redundant scheme with m modules 

is 

R t « » - R s H - { 1 - d -R.Rch) 1"} (4) 

where is the reliability of a checker. 

It has been a common practice in the past either to assume the switch to 

be ultra-reliable ( R s w = 1) or to assume its reliability to be independent of 

the total number of modules in the hybrid scheme. Under this assumption, the 

system reliability can be improved simply by adding more modules. For the 

hybr id scheme, subtracting the system reliability for m modules from that for 

m+1 modules, we get 

R s w . U - ( m + l ) . R ( l - R ) M l - R ) » + i ) - R s w .< l -mR( l -R ) " - i - ( l -R ) » ) (5) 

- R S M . mR2(l-R)m-l 

This expression is positive for any 0 < R < 1 and m > 1. Therefore, under the 
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assumption that R S M is independent of m, adding modules increases the system 

reliability. 

It is easily seen from (4) that under the assumption that R s w is 

independent of m, F^5 can also be increased by simply increasing m. 

In the discussion to follow, a more realistic model for the switch 

reliability will be presented. Various schemes to improve the switch 

reliability will also be considered. The TMR scheme will be used as a basis for 

comparison of the schemes. Results will be compared with the experimental work 

presented by [OgusR73]. 

A MODEL FOR THE SWITCH 

The switch required for hybrid redundacy has been the subject of recent 

research. [SiewD73a] discussed switching strategies. In [SiewD73b], an 

iterative cell switch for hybrid redundancy was prsented. [0gusR73] presented 

some techniques to improve fault-tolerance of the voter, switch and disagreement 

detector. 

The current discussion will attempt to explore the switch in detail. An 

effort is made towards achieving a close analytical model for the switch. 

In order to facilitate concise presentation, it is appropriate that some 

terms be defined at this point. The symbol R will be used for the reliability 

of the basic module. R s y s will be used for the system reliability and m for the 

number of modules in the system. As is customary, it will be assumed that each 

module has passed through an extensive burn-in period. This allows us to assume 

that R is an exponential function of time with a constant failure rate, X, i.e. 

R - e ~ M . R S M will be used for the reliability of the switch and the symbol R 
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with appropriate subscripts will be used to denote the R s y s of a scheme under 

consideration. 

We have already seen that R s y s for both the hybrid and the checker 

redundant schemes increases with m under the assumption that R S M is independent 

of m. This assumption, however, is questionable. It is only to be expected 

that the switch will become more complex as more modules are added. The actual 

dependance of the switch complexity on m will be a function of the particular 

design. In the switch designs that were studied, the complexity, evaluated in 

terms of the number of gates and the number of states that a switch is required 

to assume, was found to be nearly linearly dependent on m, that is, the addition 

of each module to the system increased the switch complexity by a constant 

amount. The designs included a switch for the hybrid scheme as well as other 

systems such as a byte-oriented reconfigurable memory system. An iterative cell 

design for the hybrid scheme [SiewD73b] also supports this assertion. Fig. 4 

shows the iterative cell design for a hybrid scheme with a TMR core and two 

spares. An additional spare will require extra hardware equal to that in the 

box shown with a dotted line in Fig. 4. Consequently, as a more realistic 

assumption, we will consider the R s w to be pm, where p is the reliability of the 

switch component which must be added when a module is added. This is based on 

the assumption that the switch complexity grows linearly with m. In the 

iterative cell design, p would be the reliability of the hardware in the box in 

Fig. 4. The expression, p*, will be modified to suit the particular redundancy 

scheme being considered. 
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NEW MODELS 

We will now introduce two parameters, oc and /?. These will be used to 

relate the reliabilities of the switch and the checker, respectively, to R. We 

will let p * R<* and fy, * R*. Thus, u and /S are the measures of how complex the 

incremental switch component and the checker are compared to the basic module. 

The system reliabilities for the hybrid system of Fig. 2 and checker redundant 

scheme of Fig. 3 may be rewritten as 

Rw*« Rm o t.{ 1 - m( l -R)» - iR - (1-R)1" } (6) 

Re**35 Rm*.{ l - d - R ^ ) * } (7) 

COMPARING SCHEMES 

Before we enter the discussion of various schemes, we must develop the 

measures for evaluation and comparison of the schemes. R s y s is the most obvious 

measure. As will be evident from the examples that will be presented, the 

graphs of R s y s against m effectively bring out the dependance of R s y s on m as a 

result of the dependance of R s w on m. However, for comparing systems that are 

highly reliable, R s y s is of little value. 

Another absolute measure that may be used is the mission time. The 

mission time, i m , is defined to be the time at which R s y s is exactly equal to 

some pre-determined value. It is, in other words, the time after which R s y s 

drops below that required for the minimum desirable performance. Given Rsysmm> 

the minimum system reliability desired, *m may be determined by using 

Rsys('m) 3 5 Rsysmirv 

A more interesting measure, and one that will be used extensively in the 

examples that follow, is a comparative one, namely, the Mission Time 
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Improvement (MTI). MTI is defined to be the ratio of the mission times of the 

two schemes to be compared. It is more useful measure because MTI may be 

determined without specifying RSySmin> which may depend on various system 

requirements. If for schemes 1 and 2, R S y S i (*t ) - R s y s : ( ^ ) » then the MTI of 

scheme 1 over scheme 2 is ( \J\2 ). If the two schemes have modules with 

identical failure rates X, with R, - e - M and R2 = e * M , the MTI also equals 

( In RJln Rz ). 

The relative complexity of the switch, u, may also be considered a measure 

for evaluation. It may be used as both an absolute and a relative measure. The 

u required for the m which optimizes R s y s , for example, is an absolute measure. 

On the other hand, the u required to achieve the same R s y s as that of some other 

system (e.g. TMR), is a comparative measure. 

VARIATIONS IN SWITCH DESIGNS 

H.simplex - We will call the hybrid scheme of Fig. 2 Ksimplex if it uses a 

nonredundant switch. We have already established that if R s w is assumed to be 

independant of m, the R s y s increases with m. With the linear model proposed 

earl ier, the R s y s for Ksimplex is given by 

R H . * ^ * - Rmoc.{ 1 - m( l -R) » - lR - ( l -R)* } • (6) 

The R s y s no longer increases uniformly. Fig. 5a and 5b show the varition of 

R R . ^ € K as a function of m for two values of the parameter u (0.1,0.01), and 

for various values of R. All of these exhibit a definite maxixmum. The optimum 

value, m m a x , of the number of modules for maximum R s y s , is higher for lower R or 

lower oc. Differentiaing the R ^ ^ e x w ' t h respect to m, and equating the 

resultant expression to zero, we get the following equation : 
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u In R « q"- l . { R + {u In R + In q ).( mR + q ) } (8) 

where q = i - R . 

This equation may be numerically solved for m m a x . Values of m m a x for Ksimplex 

are plotted in Fig. 6. 

It may be noted from these graphs, that m„, a x is about 4 to 6 for most 

practical cases. This means that only 1 to 3 spares should be used. In Fig. 6, 

m m a x exceeds 6 only for u < 10~3. Recalling that u is the complexity of the 

switch component as compared to that of the module, more than 3 modules need be 

used only when the module is more than 1000 times as complex as the switch. For 

the iterative cell switch component which consists of 22 equivalent gates 

[SiewD73b], the module will be of the order of 22000 gates. A central processor 

of a computer has this complexity. 

The MTI of the TMR over Ksimplex scheme was found in the following 

manner. Assuming identical modules (having the same failure rate X), a value 

for R l f the reliability of a module in Ksimplex was picked arbitrarily. The 

equation R ^ m ^ R i ) = RIM*(R;> was solved for R r. Since R{ « e ~ M and 

Rz . e - * t , /n R,//it R t yields the desired MTI. When MTI > 1, the TMR has 

longer tm than Ksimplex scheme. Results of this computation are presented in 

Fig. 7. It is once more evident that for « 0.1, the TMR has longer i m than 

Ksimplex. For smaller ot, Ksimplex has longer tm for smaller values of R,. 

Checker-Redundant Scheme (CRS) - As mentioned earlier, the R s y s for CRS under 

the "linear" model for the switch is 

R o ^ R»«.{ 1 - ( 1 - R ^ ) m } (7) 

The factor (i appears in the exponent of R as an additive factor to unity. 

Consequently, for /Ts much smaller than 1 (e.g. 0.001), their effect on R c ^ is 
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negligible. 

An analysis similar to that for Ksimplex was carried out for CRS. 

Figures 8, 9 and 10 show the graphs of Re*, m m a x and MTI of the TMR over CRS, 

respectively. For CRS, m,nax is given by 

m « [ In {<* /n R / (In (1-*) + u In R)} ] / In (1-*) (9) 

where x * R*+*. 

Results for CRS, as seen from the Figures 8 to 10, are quite comparable to those 

for Ksimplex. 

H.tmr - It is clear from the results presented so far that R s w plays an 

important role in the behavior of the overall system reliability. Let us now 

consider a hybrid scheme with the same TMR core as before, but with a 

fault-tolerant switch. Although there are many ways in which the switch may be 

made more reliable, the simplest to analyze are those of relication. In 

particular, the "cell" in the iterative cell array design [SiewD73b] may be 

triplicated and voters may be used on the intercell signals. 

Fig. 11a shows a typical pair of adjascent cells in the iterative cell 

array. Although only one intercell signal is shown for the sake of clarity, 

identical extensions to more intercell signals may be used. Fig. l i b shows a 

case, where a single voter is used between the two sets of triplicated cells. 

In this case, the improvement achieved may be only marginal, because although 

e v e r y cell stage is now more reliable, its reliability is multiplied by that of 

the voter . Further improvement is achieved by triplication of voters as 

indicated in Fig. 11c. We will refer to the scheme with a single voter between 

the cell stages (Fig. 1 lb ) as Ktmr.sv, and the scheme with triplicated voters 

between the cell stages (Fig. 11c) as Ktmr.tv. 
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To model Ktmr.sv, consider the box drawn with a dotted line in Fig. l i b . 

Using what is generally is Known as serial modelling [AbraJ73], every such box 

in the iterative array has to function properly for the switch to be functional. 

If R v c is the reliability of the voter between the cells and R c the cell 

reliability, then the reliability of the box is R v c . { 3RC2 - 2RC3 }. This is 

arr ived at by using the fact that only two of the three cells need to be 

functional for the box to function properly. There are m such boxes, except 

that the first box is without the voter. R S W S v , t h e Rsw f o r Ktmr.V, is 

therefore, 

Rswsv = y • ( R v c . y V"-1 d o ) 

where Y « 3 R c 2 - 2 R c 3 

Hence, the R s y s for the H.tmr.sv scheme is 

Rw.w* = RSHSV • { 1 " m d - R ^ - i - (1 -R)» } (11) 

Since, in Fig. l i b , every cell was referred to only as a functional box, 

one may include in R c , the associated control circuitry of a few gates as well 

so that the functional box represents the switch component. We may then model 

R c * R* as before. Similarly, the voter reliability is modelled as R v c = R 1 , c t , 

where v is the complexity of the voter as compared to the cell and its 

associated circuitry. For the iterative cell array design in [SiewD73b], v was 

estimated to range between 0.2 and 0.3. Figures 12 to 14 represent the behavior 

of R s y s , m m a x and the MTI of the TMR over the scheme for Ktmr.sv. As 

predicted, the improvement over the Ksimplex scheme is only slight. 

To model Ktmr.tv, consider the boxes drawn with the dotted lines in 

Fig. 11c. Now, for every stage to be functional, at least two of the three 

boxes have to functional properly. Every box has the reliability of R v c -Rc» a n c * 
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hence, the reliability of a stage is { 3 R V C
2 . R C

2 - 2 R V C
3 . R C

3 }. Again there 

are (m-1) stages with the voters, and one without them. RSH3V> the R s w for 

Ktmr.tv scheme, is therefore, 

R S M 3 v - Y . { 3 RV C2 .RC2 - 2 R V C
3 . R C

3 (12) 

where F = 3 R c
2 - 2 R c

3 

and the R s y s for the Ktmr.tv scheme is 

R H w ^ - RS W3v . { 1 - m(l-R)*-l - (1-R)* } (13) 

Again, we will model R c = Rw and R v c = R| , c r. With the treatment similar to 

that in previous cases, Figures 15 to 17 are obtained. The improvement of 

Ktmr.tv scheme over Ksimplex is much more significant than that of Ktmr.sv. 

ILhc - Based on the iterative cell design for the switch in [SiewD73b], R. 

Ogus [0gusR73] suggested a switch design in which the next state and the 

intercell signals together were to be encoded in the Hamming (8,4) 

code [PeteW72]. An actual design using the state tables from [0gusR73] 

indicated the encoded switch to be approximately seven times as complex as the 

iterative cell in [SiewD73b]. The design was carried out such that the Hamming 

code assumption of bit indepenence was not violated. With this design as the 

basis, the reliability of any particular signal (next state or intercell) was 

assumed to be R 7 c t. Of the eight signals, the. Hamming code can tolerate one 

erroneous signal. The R s w for this scheme is 

{ ( R 7 « ) S + 8(R**) 7 (1 -R*) }•» 

The R s y s for Khc scheme is, therefore, given by 

R>M* - { R*** + 8 R*« (1-R 7 «) }•» . { 1 - m d - R y - i - ( l -R )* } (14) 

Figures 18 to 20 show the R s y s , m m a x , and the MTI of the TMR over the 

scheme for Khc. Note the change of scale in Fig. 18 from the ones used for 
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other R s y s graphs. It is evident from these graphs that the increased 

complexity of the switch seriously affects the performance of the scheme. 

H.rl - Finally, we consider the schemes that achieve fault-tolerance without 

voters. We refer to the schemes such as Quadded Logic [TryoJ56]. The fact that 

a stage may leave a fault uncorrected makes the reliability analysis of the 

quadded logic scheme extremely difficult. A scheme that achieves 

fault-tolerance in a manner similar to quadded logic, but requires only double 

the number of gates, was suggested by [KlasT69]. The scheme, known as Radial 

Logic, makes use of circuit properties to mask faults. A detailed development 

of the reliability model for Radial Logic appears in [KlasT69]. We will only 

use the results from this source. 

We will consider the switch design made fault-tolerant by modifying the 

circuit for radial logic. According to the aforementioned report, R u, the 

reliability of an unredundant gate, is 

R t t * 1 - 2 Q 0 - 2 Q s , (15) 

and Rr, the reliability of the corresponding redundant gate is 

R r a 1 - 16 Q s 2 - 4 Q 0 2 - 32 Q s Q 0 - 2 Q r „ . (16; 

where 

Q 0 = the probability of a transistor open fault, 

Q s = the probability of a transistor short fault, 

and Q r s = the probability of a resistor short fault. 

As suggested in [KlasT69], making the assumptions Q 0 = Q s = Q and Qys negligible 

as compared to Q, we have 

R u * 1 - 4 0 

and R r K l - 52 Q2. 
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Eliminating Q from these equations we get the R r in terms of R u as 

R r = 1 - 3.25 (1-Rtt)2 (18) 

Again using the iterative cell design as a basis, we model R* • R*fr*. The 

switch reliability is therefore, 

{ 1 - 3.25 ( l -R«/**)2 }22m 

and the R s y s is 

RHJTI { 1 - 3.25 (1-R«**>2 }22» . {' i - m(l -R)*-l - (1-R) m } (19) 

Figures 21 to 23 depict the behavior of the Krl scheme. This scheme exhibits^ 

higher reliability and longer tm than the others considered here. It must be 

mentioned, however, that in obtaining the expressions for R^ and Rr in 

[KlasT69], second order effects were neglected. 

Figures 24 to 26 present composite graphs for the various schemes 

described here. R = 0.9 and u = 0.1 were chosen arbitrarily for this 

comparison. 

CONCLUSIONS 

In this discussion, we have shown that the switch reliability is an 

important factor in the system reliability and behavior. The often used 

assumption of the switch reliability being independant of the number of modules 

in the system is not only unrealistic, but may lead to wrong conclusions. Based 

on a few actual designs, it was proposed that the switch complexity be assumed 

to grow linearly with the number of modules. 

Significant changes in the behavior of the system reliability were 

witnessed under this model. It was found that there exists a definite value for 

the number of modules for which the system reliability reached a maximum. 
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Furthermore, this optimum value of the number of modules corresponded to only a 

few spares - typically 2 or 3 - for most practical systems. These results 

concur with those presented in [OgusR73]. 

The mission time improvement of TMR over the various schemes showed that 

in some cases, the simple TMR scheme had longer mission times than the hybr id 

schemes. It was also seen from the mission time improvement graphs that if the 

switch was much simpler than the basic module (i.e. the switch component 

reliability was much more closer to unity than the module reliability), the 

hybr id schemes exhibit better performance than TMR. 

The comparison of various fault-tolerant switch designs showed the radial 

logic, under its assumptions, to yield best results. Among the schemes that 

used voters, the TMR cell array switch with triplicated voters seemed to exhibit 

better behavior than the rest. The Hamming encoded design was the worst , 

perhaps, because of the peculiarity of the design. 

\ 
\ 
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Figure 1(a). Triple-modular redundancy (TMR). 

Figure 1(b). N-modular redundancy (NMR). 
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Figure 2 . Hybrid redundancy scheme with a TMR core. 
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Figure 3. Checker-redundant scheme (CRS). 
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Figure 5(a). R as a function of m for H.simplex, <*=0.1. 
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Figure 7. MTI of TMR over H.simplex. 



25 





27 

R 
Figure 10. MTI of TMR over CRS, g=0.1. 
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(a) A typical pair of cells in the iterative array design. 

Figure 1 1 . 
Fault-tolerant switch design with triplicated cells (H.tmr). 
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Figure 12. R a s a function of m for H.tmr.sv. 
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Figure 14. MTI of TMR over H.tmr.sv, v=0 .2 
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Figure 20. MTI of TMR over H.hc. 
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m 

Figure 24. R for various schemes as a function of m 
s y (for R-0.9, rf»0.1). 



10 10 a Figure 25. Mmax a s a f u n c t i o n o f « f ° r various schemes (R=0.9). 
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