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ABSTRACT 

A new parameter is introduced for modeling the reliability of sys­

tems with standby spares. Dependability, d, is defined as the condition­

al probability that the checker reports a module as good given that the 

module is good. The trade-off between the number of spares and depend­

ability then is examined. 
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INTRODUCTION 

New designs for reliable computers must be explored to meet the in­

creasing demand for reliable computing systems. In order to select one 

design approach over another, a method of comparison must exist. One 

important method of comparison is the modeling of the system reliability. 

It has been shown that system reliability is extremely sensitive to 

certain system design parameters [1]. Coverage is defined in [1] as the 

conditional probability that, given the existence of a failure, the system 

is able to recover. A new parameter will be introduced and its effect on 

the reliability of systems will be examined. 



-2-

DEPENDABILITY 

Consider a system with standby spares. A checking circuit detects 

faults in the active module. The checker initiates the replacement of 

the active module by a standby spare if it detects an error. Define de­

pendability, d, as the conditional probability that the checker reports 

a module as good given that the module is good. At any given time the 

active module has not only a conceptual reliability R, but also a prob­

ability that it will be called good. Hence the effective module reli­

ability (the module reliability as it appears to the system) is dR and 

the probability that a module is considered failed becomes (1-dR). Thus 

the overall effect of d is to decrease the conceptual module reliability 

from R to dR. For the case of a distributed checker (e.g., each module 

has some added circuitry which reports on the status of the module), d 

is simply the probability that the checker reports the faultless function­

ing of the module correctly. A checker failure could result in a non-

failed module being called faulty. 

Alternatively, the checker could be centralized such as often pro­

posed for hybrid redundancy [2]. In this case d is not the probability 

that the entire checking circuit reports the condition of all modules 

correctly but rather that the proper condition of a given module is being 

reported. 

A paper by Firstman and Gluss [3] defines a parameter which is the 

probability that a tester indicates a module is good given that it is 

good and uses this parameter to determine an optimum search routine for 

fault location. Most previous research efforts in the modeling of fault 
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tolerant computing systems, however, have either ignored the effect of 

d or assumed the value of d is so close to 1.0 that it need not be con­

sidered. The next section demonstrates the importance of d. 
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THE EFFECT OF DEPENDABILITY 

To see what effect d on predicted system reliability has we will use 

the parameter I, the mission time improvement [ 4 ] # I is a useful measure 

of reliability improvement in that it compares the time for which two 

systems are at or above a specified reliability. Assume R = e ̂  Let 

I be the system reliability for d « 1.0 and mission time T1 

sys 

R s y s ( T , ) " 1 " 0 - R ( T , ) > S + 1 (4) 

and let ,R be the system reliability for d < 1.0 and mission time T: d sys 

d Rsys ( T ) " 1 " ( 1- d R< T> S + 1 (5) 

Define I « T'/T> then I is the gain in mission time for perfect d. Equat­

ing (4) and (5) yields the following solution for I: 

I - - XT~ 4n[de-XT] <*> 

Figure 1 shows a plot of I vs. d for various values of XT. It is clear 

that when d is less than one a potential mission time improvement is pos­

sible if d can be made perfect. If the checker is distributed (adding 

components to each module to perform the checking) and made of the same 

components as the module, then the checker dependability d can be written 

as a function of the module reliability R. It seems reasonable to assume 
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that the checker is designed to be more reliable than the module. Let 

the dependability d equal where i is less than unity. Table 1 de­

picts d for various values of R and i. With d « R 1, from equation (6), 

we see that the mission time improvement is 1+i for all values of \. 

R 1 0.10 0.30 0.50 0.70 0.90 
0.80000 
0.90000 
0.92000 
0.94000 
0.96000 

10.98000 

0.97793 
0.98952 
0.99170 
0.99383 
0.99593 
0.99798 

0.93525 
0.96889 
0.97530 
0.98161 
0.98783 
0.99396 

0.89443 
0.94868 
0.95917 
0.96954 
0.97980 
0.98995 

0.85539 
0.92890 
0.94330 
0.95761 
0.97183 
0.98596 

0.81805 
0.90953 
0.92770 
0.94583 
0.96393 
0.98198 

Table 1. d = R 1 for i ranging from 0.1 to 1.0 

Equation 5 shows that there is a tradeoff between the number of spares 

s and the checker dependability d. Thus, a system designer at least has 

two independent ways of increasing the system reliability - either adding 

another spare or increasing the dependability of the checker. Let d* be 

the new dependability that achieves the same overall reliability as a sys­

tem with an additional spare. Then, 

1 . (l-d'R) S + 1 -.1 - (1-dR) 5 + 1 + 1 

and 
1 - (1-dR) 

1 R 

S+2 
S+1 

(7) 

With d = R , (7) gives the new dependability 

d« - 1 - (1 

S+2 
S+1 

Table 2 lists d' as a function of s, R and i. Since the value of d' is 
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physically bounded by zero and one, those values listed in Table 2 calling 

for d 1 greater than one indicates that the addition of a spare is always 

superior to the increase of checker dependability. Note that for low 

values of s, i.e., s = 1,2, the addition of another spare is better in 

most cases. However, for low values of R and high values of i, increasing 

the checker dependability does provide a feasible alternative. Let i (R,s) 

denote the critical values of i beyond which increase in dependability is 

a feasible alternative (i.e., d < 1.0). Table 2 suggests that i becomes 

smaller as R decreases (mission time increases) and the number of spares, 

s, increases. Thus, for a system with three or more spares, and a long 

mission time, the number of spares can be traded for increased checker 

reliability. However, a factor that would determine the most effective 

alternative would be the relative cost of the two methods. The analysis 

presented here has ignored the inevitable increase in switch complexity re­

sulting from increase in the number of spares. 

NO. OF SPARES « 1 

R i 0.10 0.30 0.50 0.70 0.90 
0.80000 1.12307 1.09286 1.06036 1.02828 0.99608 
0.90000 1.07089 1.06023 1.04901 1.03732 1.02525 
0.92000 1.05876 1.05117 1.04314 1.03473 1.02600 
0.94000 1.04587 1.04097 1.03576 1.03027 1.02453 
0.96000 1.03208 1.02943 1.02659 1.02358 1.02043 
0.98000 1.01708 1.01615 1.01515 1.01408 1.01295 

NO. OF SPARES = 3 

R i 0.10 0.30 0.50 0.70 0.90 
0.80000 1.06417 1.02074 0.99032 0.95421 0.91882 
0.90000 1.04118 1.02604 1.01068 0.99516 0.97955 
0.92000 1.03513 1.02374 1.01213 1.00034 0.98843 
0.94000 1.02838 1.02048 1.01238 1.00412 0.99574 
0.96000 1.02073 1.01600 1.01112 1.00613 1.00103 
0.98000 1.01177 1.00979 1.00775 1.00564 1.00348 

Table 2. Checker dependability required to have the same effect 
as the addition of an extra spare. (continued on next page) 
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NO. OF SPARES « 5 

R 1 0.10 0.30 0.50 0.70 0.90 
9.80000 1.03899 0.99988 0.96164 0.92438 0.88816 
0.90000 1.02702 1.01014 0.99322 0.97631 0.95944 
0.92000 1.02347 1.01054 0.99751 0.98443 0.97133 
0.94000 1.01935 1.01017 1.00087 0.99148 0.98204 
0.96000 1.01450 1.00881 1.00302 0.99715 0.99122 
0.98000 1.00854 1.00602 1.00344 1.00082 0.99816 

Table 2. (continued) 



-9-

References 
1. Bouricius, W. G., W. C. Carter and P. R. Schneider, "Reliability 

Modeling Techniques for Self-Repairing Computer Systems11, ACM 1969  
Annual Conference, p-69, pp. 295-309. 

2. Siewiorek, D. P. and E. J. McCluskey, "An Iterative Cell Switch 
Design for Hybrid Redundancy11, IEEE Transactions on Computers, to 
appear, March 1973. 

3. Firstman, S. I. and B. Gluss, "Optimum Search Routines for Automatic 
Fault Location", Operations Research, Vol. 8, pp. 512-523, 1960. 

4. Bouricius, W. G., W. C. Carter, D. C. Jessep, P. R. Schneider, and 
A. B. Wadia, "Reliability Modeling for Fault-Tolerant Computers", 
IEEE Transactions on Computers , Vol. C-20, No. 11, pp. 1306-1311 , 
November 1971. 


