
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



A SURVEY OF TECHNIQUES 
FOR 

ANALYZING MEMORY INTERFERENCE 
IN 

MULTIPROCESSOR COMPUTER SYSTEMS 

Dileep P. Bhandarkar 
Samuel H. Fuller 

Carnegie-Mellon University 

. Pittsburgh, Pa. 

April 1973 

This work was supported by the Advanced Research Projects Agency 
of the Office of the Secretary of Defense (F44620-70-C-0107) and is 
monitored by the Air Force Office of Scientific Research, This document 
has been approved for public release and sale; its distribution is 
unlimited. 



ABSTRACT 

This paper surveys various analytic techniques for studying the 

extent of memory interference in a multiprocessor system with a 

crosspoint switch for processor-memory communication. Processor 

behavior is simplified to an ordered sequence of a memory request 

followed by a certain amount of processing time. The system is assumed 

to be bus bound; in other words, by the time the processor-memory bus 

completes servicing a processor's request the processor is ready to 

initiate another request and the memory module is ready to accept 

another request. The techniques discussed include discrete and 

continuous time Markov chain models, and some approximate analytic 

methods, viz. diffusion approximation and Strecker's approximation. The 

results are compared with a simulation model, in which the processing 

time has an exponential distribution and the memory cycle time is 

constant. 
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1.1NTR0DUCTI0N 

Carnegie-Mellon University is currently in the process of 

constructing a multiprocessor computer system (C.mmp) that will have up 

to sixteen central processors (Pc*s)* sharing the same physical address 

space [Be!IC71b; WulfW72] and concern has been expressed about the 

performance of such a system with this many active processors. Figure 

1.1 illustrates the major components of a multiprocessor such as C.mmp. 

In addition to the processors, there is a set of memory modules that 

are able to operate independently; little would be gained if all the 

processors had to wait for service from a single memory module. Between 

the processors and the memory modules (Mp's) is a n by m switch. There 

are a number of ways of implementing the switch; Fig. 1.2(a) depicts a 

n by m crosspoint switch, and Fig. 1.2(b) illustrates the use of trunk 

linos; and combinations of these two basic schemes can yield many other 

other schemes. This report will examine the performance of a crosspoint 

switch since initial indications are that the crosspoint switch is the 

highest performance switching structure for a multiprocessor system and 

C.mmp is using such a switch. Other multiprocessors, although limited 

*We use the PMS notation of Bell and Newell [1971] in this report to 
describe hardware organization. 
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to a small number of Pc's, i.e. two to four also basically use a 

crosspoint switch, e.g. the Burroughs D825[AndeJ62] and Univac 1110. 

For further discussion of trunk lines, and a variety of other switching 

structures, the reader is referred to Bell and Newell [1971} 

Mathematical models of computer systems can be developed at 

various levels of abstraction. A large number of models for 

time-sharing systems consider a job as a basic unit[cf. MckiJ69], and 

in many models of multiprogrammed computer systems the block of 

instructions between I/O operations is taken as a basic unit[cf. 

BuzeJ71; GaveD67]. However, in this study a much more detailed model is 

used to analyze interference as processors access individual words from 

the memory modules. Each processor's performance is measured by the 

number of memory accesses per unit time. In a multiprocessor system the 

performance of each Pc is not independent of the behavior of the other 

Pc*s. 

The following sections will discuss various techniques that can be 

used for analysing multiprocessor systems that are bus bound, i.e. 

systems in which the Pc is ready to initiate another request and the Mp 

module is ready to accept the next request exactly at the time the 

Pc-Mp bus recovers. The analysis is also valid for multiprocessor 

systems in which the effective processing time is equal to the memory 

rewrite time. The major contribution of this paper is a systematic 
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method for a discrete Markov chain model. Other techniques described 

include Strecker's approximation [StreW70], systems with exponentially 

distributed memory service time, and a diffusion approximation. 

2. GENERAL MODELING ASSUMPTIONS 

Due to the complexity of the problem, the exact detailed behavior 

of memory interference in a multiprocessor system is difficult to 

model. Some of the parameters that characterize the behavior of a Pc 

are: 

(i) Instruction mix : Instructions can be characterized by their 

relative frequency, in general, processor behavior varies for different 

instructions. However, in this report differences in instructions are 

ignored. Processor behavior is modeled as a ordered . sequence of a 

memory request followed by a certain amount of execution time. At this 

level of abstraction no distinction is made between the processing 

needed to decode an instruction and the processing corresponding to its 

execution. Thus, the processing time characterizing a Pc depicts only 

the aggregate behavior of the real Pc. Figure 2.1 depicts the actual 

and abstracted behaviors. 



6 

MP[J] 

Pc[i] 

Mp[j] 

Mp[k], 
i 

Pc[i]l 

ta 

1 -

ta 

tw ta 

2 i ^ — 

tw 

ta 

ltd 1 

3 
time 

tw 

tw ta 
1 I 
. 1 

1 1 

• 1 

i — 

• 
1 
• 
i 

' i,td_ ! I tei 
! ; i j i 

i 

! : i • 

tei 
i 

ta 

Legend: 
1 instruction fetch 
2 instruction decoding 
3 operand fetch 
4 instruction execution 
5 next instruction fetch 

ta memory access time 
tw memory restore time 
td instruction decode time 
tei processor execution time 

Figure 2.1a: An example of the timing of a typical instruction. 

ta-

Mp access 
begins 

tw 

tp 

data 
available 
to Pc 

Mp ready to 
service next 
request 

Pc ready 
to make 
new request 

Figure 2.1b: Simplified processor behavior. Two such cycles 
model the instruction shown in Fig. 2.1a. 



7 

(ii) Average processing time: This is obtained from measurements 

similar to those used for determining the probability distribution. 

(iii) Access pattern of a Pc: This is the trace of the pages or 

memory locations accessed by the Pc. In this study serial correlation 

between successive memory accesses will be ignored. Demand patterns 

will be modeled as sequences of Bernoulli trials. Memory accesses will 

be characterized by the memory unit to which it is addressed. 

Primary memory behavior is a function of the fabrication 

technology i.e. core or semiconductor. Memory performance can be 

characterized by the access time (ta), rewrite time (tw), and cycle 

time (tc). Nominally, the cycle time is the sum of the other two. In 

this study, no distinction is made between read and write operations. 

The effect of interleaving within a Mp module is to make the access and 

cycle times variable. 

3. CONTINUOUS TIME MARKOV CHAIN MODEL 

Consider a multiprocessor system which consists of n Pc's and m Mp's 

connected by a single crosspoint switch. Let Pij denote the probability 

that the i-th processor requests service from the j-th memory unit. 

Thus, the demand pattern of each processor is equivalent to a sequence 
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of Bernoulli trials. A processor is said to be queued if it is waiting 

for or in the process of receiving memory service. A processor is said 

to be active if it is currently being serviced by a memory/Likewise,* 

memory is said to be occupied or busy if there is at least one 

processor queued for that memory unit. 

If the system is bus-bound and the bus recovers at the same time 

that the memory is ready to service the next request, then the 

effective processing time (as seen by the memory) is equal to the 

memory rewrite time. 

In our first model, we apply the classic simplifying assumption In 

queueing models: we model the service time, or cycle time, of the 

memdry modules as exponentially distributed random variables [cf, 

WagnM69]» Clearly most memory systems do not have an exponentially 

distributed cycle time. However, techniques such as interleaving, cache 

memories, and the type of memory access(read, write, read-modify-write) 

suggest that this exponential assumption may be as good an 

approximation as the assumption that the memory cycle time is fixed, 

and not variable at all. Without further assumptions or approximations, 

We can use the results of Jackson [1963], and Gordon and Newell [1967] 

to find the performance of the multiprocessor system. This technique te 

also used by McCredie [1973] for multiprocessors with tp>tw. 
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Let the number of service centers be m. The states of the system 

are m-dimensional vectors with non-negative integer components, the 

j - th component representing the queue length at center j . If 

K=(kl,k2,....,km) is a state vector, then S(K>=^ki. Transition from one 
i=l 

center to another is characterized by a routing probability Rij, i.e. 

the probability of going to center j on completion of service at center 

i. Jackson [1963] has obtained the equilibrium joint probability 

distribution of queue lengths for a broad class of queueing-theoretical 

models representing a network of service centers. Customer arrivals are 

modeled as a generalized Poisson process [cf. WagnH69], whose mean 

arrival rate varies almost arbitrarily with the total number of 

customers already in the system. Service completions at each center are 

also modeled as generalized Poisson processes, the mean service rate 

(u) at each center varying arbitrarily with the queue length there. 

Note that in Jackson's model all customers are identical. Muntz and 

Baskett [1972] have a more general queueing network model that allows 

different classes of customers to have different branching 

probabilities. Gordon and Newell [1967] have presented a solution 

technique for closed queueing systems, i.e. networks of queues in which 

the number of customers is constant. 

For closed queueing systems, Jackson's formulae for obtaining the 

equilibrium state probabilities are listed below. 
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P<K) - w'(K)/r<S(K))L 

where, 

where e(j) » Ze(i)R(i,j) j€[l,m] 
i=1 

T'(K) - Ew'(K) summed over K with S(K)-n 

But, with Pc requests distributed uniformly and with the bus-bound 

situation or tp*tw, Jackson's model reduces to m servers with customers 

circulating with uniform routing probabilities i.e. Ri j -Pi j - l /m. Using 

the above formulae we get, 

w ( K ) » ( l / u ) t n 

i.e. ail the states of the system have equal probability. Physically, 

this indicates that states with greater congestion in the queues are as 

likely as evenly distributed queues. The probability that a particular 

Mp module is idle, Prob{Mp[i] is idle}, is the fraction of the total 

number of states that has ki«0. 

In other words, 

T < K ) » l m-r)<l/u)t i n 

for all K such that.£ki-i 
m 

n 

Prob{Mp[i] is idle} • number of ways of assigning n Pc's to m-1 Mp's 
number of ways of assigning n Pc's to m Mp's 

3 W 2 ) 
(n+m-1 ̂  m-1 ; 

/ n+m-21 

Prob{Mp[i] is busy} - n/(n+m-l) 
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E[number of busy Mp's] - m*Prob{Mp[i] is busy} 

• m*n/(m+n-l) 

The above expression has a number of interesting properties: the 

expression is symmetric in m and n; it has a basic hyperbolic form, 

asymptotic to n as m gets large; and, if we let m»n the above 

expression becomes 

n/(2- l /n) 

and 

E[number of busy Mp's] - * n / 2 for n » l 

The final observation has important implications. It states that 

as multiprocessor systems grow to include more and more Pc's, we are 

not faced with a law of diminishing returns: no matter how many Pc's 

are used, if we have the same number of memory modules, we can expect 

half the processors to be active. 

4. A SIMPLE DISCRETE MARKOV CHAIN MODEL 

For this analysis let us assume that all the Pc's are 

characterized by a single constant processing time tp. Also, all the 
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memory units are assumed to have the same cycle time tc and access time 

ta. Thus, the memory rewrite time is given by tw«tc-ta. If t p - tw then 

all memory units can be considered to be operating synchronously. Thus, 

during any memory cycle the number of active Pc's is equal to the 

number of busy Mp's. With tp«tw, the analysis is simpler than with 

tp<tw and tp>tw. Also, it is a boundary condition for the other two 

cases. Thus, tp»tw is an interesting case for a preliminary comparison 

of various modeling techniques, even when tp is not equal to tw in 

reality. 

In this section, a simple Markov Chain Analysis is presented for 

the case in which the processors request every memory with equal 

likelihood. A multiprocessor system with n Pc's and m Mp's is likened 

to an occupancy problem with n balls and m urns. Balls are randomly 

assigned to the m urns at the beginning of a memory cycle. At the end 

of the cycle one ball is removed from each urn. Thus if there are k 

non-empty urns during cycle s then k balls are available for assignment 

during the (s+l)-th cycle. 

The state of the above mentioned process is defined by a m-tuple 

(kl,k2,...,km), where ^?ki=n and OSkiSn for all i. The number of 
i=1 /n-fta-K 

distinct states of the system is given by the combination, \ m-1 / 

the number of ways in which n balls can be assigned to m bins 

[FellW66]. However, since all the processors behave identically, a 
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number of the distinct states are equivalent i.e. they have the same 

occupancy and have the same components, e.g. states (24,1)! (1,2,1), 

(1,1,2) are equally likely. Thus, the reduced states are given by the 

different ways in which the number n can be partitioned into m parts. 

m 
i.e. the unordered solutions to the equation 2ZXi«n for (teXten represent 

1=1 
equivalent classes of equally likely states. The number of such 

partitions (for n<m) is asymptotic to 

1 exp[n(2n/3)t0.5] [of. BeckE64] 
47Ttf3 

Also, 

F (x )« . I ( 
( l - x ) ( l - x T 2 ) . . . (1-xtm) 

» l+Ep(i)xTi 

is an ordinary generating function of the sequence (p(0), p( l ) , 

p(m)), where p(i) denotes the number of partitions of the integer i 

that have no part exceeding m [LiuC68]. 

Let the representative state Si denote the set of compositions of 

the number n that yield the same partition e.g. the compositions 

(2,1,1), (1,2,1) and (1,1,2) correspond to the partition of the number 

4 which has two Ts and one 2. Further, let Si.j be the individual 

compositions of the partition typified by representative state Si and 

Si.l be that composition which has its components arranged in monotone 
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START 
Number to be partitioned..N 
Maximum number of parts... M 

T 
K «- 1; A(1) «- N 

I 

A(I) 1 for Ls2,...,K 

A(1) - N- Z A(I) 

T 
Components of a partition are given by 
A(I), Is1,...,K. This partition has K 
non-zero parts. Store or display this 
partition. 

A(I) A(T) + 1 for I=2,...,T-1 

{ STOP j 
Figure 4.1 An algorithm for generating partitions 
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non-decreasing order, i.e. (2,1,1) for the above example. The algorithm 

shown in Fig. 4.1 generates all the partitions of n with the components 

in monotone non-increasing order. 

Let Xij denote the probability of a transition from Sj to Si. 

Then, due to the symmetry of the problem, 

Xij » ZProb{Transition from Sj.l to Si.k} 

Let the m-tuple (kl,k2,.,..,km) denote the state of the Markov 

chain. If x is the number of non-zero elements in this vector then at 

the end of the memory cycle, x new processors have to be reassigned to 

memory modules. At the end of the current memory cycle the queue is 

characterized by the m-tuple (Jl,J2,...,Jm), where 

A new state (Ll,L2,...,Lm) is reachable from (kl,k2,...,km) if and 

only if Li>Ji for l<iSm. If the above condition is satisfied the 

probability of the state transition is given by 

Si.keSi 

Ji «ki - l if ki>0 

«0 otherwise. 

where d i - Li-Ji 
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i.e. x! * ( l /m)tx 
c — t . ~—-R nsm 

d l ! d2i ...dm! 

» 

tn m m 
Note that since Zki - £Li * n, Zdi - x 

1=1 i=1 . i=1 

Thus, we now have a formula for generating the transition 

probabilities. Due to the symmetry of the problem it suffices to 

generate only the transition probabilities for the representative class 

of states. All the different ways of obtaining the same partition are 

lumped together to form a reduced state. 

To illustrate a computational method** for generating the 

transition probabilities consider an example of a 4 by 4 system. The 

number 4 can be partitioned in 5 different ways as listed below: 

4 0 0 0 

3 1 0 0 

2 2 0 0 

2 1 1 0 

1 1 1 1 

**The use of a tree to generate the transition probabilities was suggested 
by F. Baskett and D.Chewning of Stanford University. 



17 

These partitions represent 5 equivalent classes that characterize 

the state of the Markov Chain. Let us consider the state (2,2,0.0)- At 

the end of a memory cycle, the resultant partial state is (1,1,0,0) 

with 2 free processors to be reassigned. Figure 4.2 shows the different 

ways in which these 2 Pc's can be assigned, one at a time, to reach a 

new partial representative state. After both Pc's are assigned a 

terminal state is reached. The number on the arrow indicates the number 

of ways of reaching the partial or terminal state that the arrow points 

to. Now the number of ways in which a final state can be reached from 

the initial state can be computed by traversing the tree, e.g. there 

are 2x1 ways of reaching (1,1,1,1) and (2x2 + 2x3) ways of reaching 

(2,1,1,0) from (2,2,0,0). 

It is possible to construct a single tree with different pointers 

for different initial states. Figure 4.3 shows a complete tree for a 

4x4 system. Initial states are circled. The entire transition matrix 

can be filled by traversing this tree. A convenient way* of traversing 

this tree is by using a stack which has depth equal to one more than 

the number of Pc's. At each level the stack contains a partial state 

and has a pointer to the initial representative state (if any) from 

which it is derived. The stack is initialized to contain the path that 

*An alternative method for traversing the tree is described in Appendix I. 
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Initial State Final Terminal States 

Add 1 Pc Add 1 more Pc 

Figure 4.2 Next states accessible from initial state (2,2,0,0) 
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Figure 4 . 3 Enumeration tree for a 4 by 4 multiprocessor system 
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leads to the topmost final state. For this example the stack is 

initialized as shown in Fig. 4.4^ and Fig. 4.5 shows an algorithm for 

using the tree to generate the transition matrix, shown In fig. 4.6. 

The following theorem and lemma can be used to increase the 

efficiency of the program that generates the transition probabilities. 

Theorem 1: There is a one-to-one correspondence between a 

representative state and a partial state that the representative state 

reduces to at the end of a cycle. 

Proof: Let (kl,...,km) be a representative state. The partial 

state at the end of the cycle is given by 

<Jl,J2,...,Jm) ' 

where Ji»ki-1 if ki>0 

«0 otherwise 
m 

Since no two representative states are alike and Zki -n , it follows that 
i=1 

the partial states are distinct. 

Lemma A partial state at level L in the enumerative tree of Fig. 4.3 

can correspond to a terminal state with exactly n-L occupied Mp's. 
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4 0 0 0 

3 1 0 0 

2 1 1 0 

1 1 1 1 

Initial 
state 
pointer 

4 0 0 0 

3 0 0 0 

2 0 0 0 

1 0 0 0 

0 0 0 0 

STACK 

1 level 4 

1 level 3 

1 level 2 

4 level 1 

M level 0 

NWAYS 
Number of ways of 
getting to level L 
from level L-l 

Figure 4.4 Initial contents of the stack for traversing 
the tree shown in Figure 2.3 
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Proof: Let J=(Jl,J2,....,Jm) be a partial state in the tree 

depicted in Fig. 4.3. Furthermore, let the number of non-zero elements 

elements in the partial state be y and let «n-x. Since one Pc is 

always removed from a non-empty queue at the end of a cycle, J is a 

partial state that can be reduced from a valid representative state 

K«(kl,k2,...,km), if and only if 

(i) The number of non-zero elements in K is x,and 

(i i )x>y 

Note that x and y are both less than or equal to min(m,n) and £ki«n. 
i=l 

Then, if x>y, J has atleast x-y zeros. If x<y then there is no 

representative state K that corresponds to the partial state J. If x£y, 

then the representative state is obtained by adding y l's to the 

non-zero elements of J and replacing x-y zeros of J by 1. At level L, 
m 

5ZJi« L Therefore, x, the number of occupied Mp's in K, is equal to 

n -L 

Figure 4.7 shows the average number of busy Mp's when n-m. The 

curve has an almost constant slope of .586 for n>4. Figures 4.8 and 4.9 

show the effect of adding a Pc and an Mp respectively on the average 

number of busy Mp's. 
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Use Level L-1 to 
change Level L 
Update NWAYS 

Update pointer 
to initial state 

Generate transition prob­
abilities from all initio 
state pointed to by the 
stack. 

LFL+1 

i 
L P L - 1 

Transition matrix has been 
completely generated. 

I 
Normalize each column so 
that sum going down a 
{column is 1, 

Figure 4.5 Algorithm for traversing the tree shown in Figure 4.3 
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4 0 0 0 3 1 0 0 2 2 0 0 2 1 1 0 1 1 1 1 

4 0 0 0 1 1 0 1 4 

3 1 0 0 3 3+3 2 3+3+6 12+12+24 

2 2 0 0 0 3 2 3+6 12+24 

2 1 1 0 0 6 4+6 6+12+18 24+48+72 

1 1 1 1 0 0 CM
 6 24 

STEP 1: Xij is the number of ways of reaching i from j. 
(obtained from the tree of fig. 2.3) 

STEP 2; Xij Xij (Note that SXij=m , where x of the m 
TXi i i 

J components of j are non-zero) 

Final equations to be solved simultaneously: 

P4000 
P3100 
P2200 
P2100 
P1111 

0.25 0.0625 0.000 0.015625 0.015265 

0.75 0.3750 0.125 0.187500 0.187500 

0.00 0.1875 0.125 0.140625 0.14Q625 
0.00 0.3750 0.625 0.562500 0.562500 

0.00 0.0000 0.125 0.093750 0.93750 

— _ 

P4000 
P3100 
P2200 
P2100 
p 
1111 

SUBJECT TO P 4000 + P 3100 + P2200 + P2100 + P 1111 = 1 

Figure 4.6 Steps in the generation of the transition matrix 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Stamber of Pc's n *+ 

Figure 4.8: The effect of adding a Pc.' 



Number of Mp's m -

Figure 4.9: The effect of adding an Mp. 
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5. OTHER DISCRETE MARKOV CHAIN MODELS 

5.1 Discrete Markov Model of Skinner and Asher 

Skinner and Asher [1969] model the multiprocessor system as a 

discrete Markov chain. They assume a matrix of probabilities that 

express the likelihood that a given processor requests service from a 

given memory at the beginning of a memory cycle, provided the Pc is not 

queued. They also assume a matrix of probabilities that express the 

likelihood of the various outcomes that can arise when there are 

simultaneous requests to one memory by several processors. The state of 

the system is characterized by the processors queued for the different 

memory modules. A state transition matrix is formed from the access 

probabilities and the steady state probabilities of various states are 

determined by solving the state transition equations. The number of 

states of the system increases very steeply with an increase in the 

number of Pc's and Mp's. Closed form solutions are presented only for 

cases with up to, 2 Pc's and n Mp's. The analysis in the previous 

section is similar to Skinner and Asher, but with uniformly random 

access patterns for all the Pc's, i.ef P i j - l /m for all i. 
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5.2 Strecker's Approximation 

Strecker [1970] has an approximate closed form solution to the 

discrete Markov Chain model presented here. His approach is equivalent 

to removing the queued processors from all the memory modules at the 

end of a memory cycle and reassigning them. Thus the state of the 

system is considered independent of the state during the last cycle. If 

we use this assumption the distribution of Pc's queued for an Mp 

follows the binomial distribution: 

Prob{Y«r}« ( r ) « ( l / m ) r * ( l . l / m ) n " r 

where Y is a random variable equal to the number of Pc's 

queued for Mp[j] and Pij»l/m for all i and j . 

Thus, 

Prob{Mp[j] is busy} * 1 - Prob{nobody is queued for Mp[j]} 

• l - ( l - l / m ) T n 

In other words, the occupancy of Mp[j] is l - ( l - l /m)Tn, and 

E[no. of occupied Mp's] - ^{Occupancy of Mp[j]} 

- m*[ l - ( l - l /m) tn] 

1 shows a comparison of Strecker's results and the exact 



o 

m 
Figure 5.1 Strecker's formula for fixed m 
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Markov chain analysis. Note that Strecker's results are optimistic 

estimates of the unit execution rate. It is encouraging to note that 

such a simple expression is within 6 to 8% of the exact Markov Chain 

model for m/n>0.75. This is because his analysis assumes that all n 

Pc's always make a new request at the beginning of each memory cycle, 

whereas in ths discrete Markov chain only those Pc's that receive 

service are allowed to make new requests. Moreover, note that the 

expression m*[ l - ( l - l /m)Tn] can be written in an exponential form as 

m*{l-exp[n* In (1-1/m)]} 

Figure 5.1 shows a plot of the above expression for fixed m; the 

relaxation time [ In ( l- l /m)f'approaches m as m gets large. 

6. DIFFUSION APPROXIMATIONS 

An approximation method that has been proposed for the solution of 

general queueing networks is the diffusion approximation [c.f. NeweG71; 

KobaH73]. A discrete-state process is approximated by a Wiener-Levy 

diffusion process with a continuous path. The key assumption in such an 

analysis is that incremental changes in the queue lengths are normally 

distributed. This leads to a characterization of the queueing network 

by a set of diffusion equations. The accuracy of the approximation 
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depends on three factors: (i) approximation of a discrete-state process 

by a time-continuous Markov process, (ii> choice of proper reflecting 

barriers, and (iii) discretization of the continuous density function 

for queue lengths. Surprisingly, for the simple discrete Markov Chain 

model of section 4 , the diffusion approximation yields a result 

identical to that with exponential servers derived from Jackson's 

formulae. However, the main utility of the diffusion approximation in 

this context is that it can be used to analyze the effect of different 

coefficients of variation ( ratio of standard deviation to the mean) 

for the service time distribution. 

7. CONCLUDING REMARKS 

Tables 1 and 2 compare the numerical results obtained from the 

different models described. Strecker's approximation gets better as m/n 

increases, whereas the continuous time and discrete Markov models get 

closer for larger n/m ratios. Table 3 shows some simulation results 

obtained with exponential distributions for the processing time, with 

mean equal to tw. 

i.e. Prob{tp-x} « X exp(-Xx) where X - l / t w - l / t a - l / E [ t p ] 
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Note that the values in Table 3 lie between those predicted by Strecker 

and Jackson. Table 4 shows the characteristics of the parameters in the 

various models. 
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TABLE 1 

Expected number of busy memories in one cycle 
Number of Pc's = 1,2,...,8 (rows) 
Number of Mp's = 1,2,...,8 (columns) 

Discrete Markov Chain Model 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

1.0000 
1.5000 
1.6667 
1.7500 
1.8000 
1.8333 
1.8571 
1.8750 

1.0000 
1.6667 
2.0476 
2.2701 
2.4102 
2.5059 
2.5751 
2.6274 

1.0000 
1.7500 
2.2692 
2.6210 
2.8633 
3.0370 
3.1663 
3.2657 

1.0000 
1.8000 
2.4095 
2.8630 
3.1996 
3.4533 
3.6486 
3.8024 

1.0000 
1.8333 
2.5054 
3.0365 
3.4530 
3.7809 
4.0418 
4.2521 

1.0000 
1.8571 
2.5748 
3.1657 
3.6482 
4.0415 
4.3636 
4.6294 

1.0000 
1.8750 
2.6272 
3.2652 
3.8019 
4.2518 
4.6292 
4.9471 

Strecker's Approximation 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.000Q 
1.0000 
1.0000 

1.0000 
1.5000 
1.7500 
1.8750 
1.9375 
1.9687 
1.9844 
1.9922 

1.0000 
1.6667 
2.1111 
2.4074 
2.6049 
2.7366 
2.8244 
2.8829 

1.0000 
1.7500 
2.3125 
2.7344 
3.0508 
3.2881 
3.4661 
3.5995 

1.0000 
1.8000 
2.4400 
2.9520 
3.3616 
3.6893 
3.9514 
4.1611 

1.0000 
1.8333 
2.5278 
3.1065 
3.5887 
3.9906 
4.3255 
4.6046 

1.0000 
1.8571 
2.5918 
3.2216 
3.7613 
4.2240 
4.6206 
4.9605 

1.0000 
1.8750 
2.6406 
3.3105 
3.8967 
4.4096 
4.8584 
5.2511 

Percentage Error 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
4.9979 
7.1429 
7.6389 
7.3856 
6.8548 
6.2507 

0.0000 
0.0000 
3.1012 
6.0482 
8.0782 
9.2063 
9.6812 
9.7244 

0.0000 
0.0000 
1.9082 
4.3266 
6.5484 
8.2680 
9.4685 
10.2214 

0.0000 
0.0000 
1.2658 
3.1086 
5.0631 
6.8340 
8.2991 
9.4335 

0.0000 
0.0000 
0.8941 
2.3053 
3.9299 
5.5463 
7.0191 
8.2900 

0.0000 
0.0000 
0.6602 
1.7658 
3.1002 
4.5157 
5.8896 
7.1521 

0.0000 
0.0000 
0.5100 
1.3874 
2.4935 
3.7114 
4.9512 
6.1450 
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TABLE 2 

E x p e c t e d number of busy memories in one cycle 
Number of P c ' s * 1 , 2 , . . . , 8 (rows) 
Number of Mp f s « 1 , 2 , . . . , 8 (columns) 

D i s c r e t e Markov Chain Model 

1 , , 6088 1 .8888 1.8800 1.0000 1.0000 1.0000 1.0000 1 .0000 
1 , . 6888 1 .5008 1.6667 1.7500 1.8000 1.8333 1.8571 1 .8750 
1 . , 6888 1 .6667 2 .0476 2 .2692 2.4095 2.5054 2 .5748 2 . 6 2 7 2 
1 , . 8888 1 .7588 2 .2701 2 .6210 2 .8630 3.0365 3 .1657 3 .2652 
1 . . 6688 1 .8808 2 .4102 2.8633 3.1996 3.4530 3 .6482 3 . 8 8 1 9 
1 . . 6688 1 .8333 2 .5059 3 .0370 3.4533 3.7809 4 .8415 4 . 2 5 1 8 
1 . , 6608 1 .8571 2 .5751 3.1663 3.6486 4 .0418 4 .3636 4 . 6 2 9 2 
1 . , 0880 1 .8758 2 .6274 3.2657 3.8024 4 .2521 4 .6294 4 . 9 4 7 1 

Continuous Time Markov Chain Model 

1 . 6 8 8 8 1 .0000 
1 . 8 0 0 8 1 .3333 
1 . 0 0 8 8 1 .5888 
1 . 8 8 8 8 1 .6000 
1 . 0 0 0 0 1 .6667 
1 . 6 8 0 0 1 .7143 
1 . 0 0 8 8 1 .7500 
1 . 0 0 0 0 1 .7778 

1.0000 1.0000 
1.5000 1.6000 
1 .8000 2 .0000 
2 .0000 2 .2857 
2 .1429 2 .5000 
2 .2508 2.6667 
2 .3333 2 .8600 
2 .4000 2 .9091 

1.0000 1.0000 
1.6667 1.7143 
2.1429 2 .2500 
2.5000 2 .6667 
2.7778 3 ,0000 
3.0008 3.2727 
3.1818 3 .5600 
3.3333 3.6923 

1.0000 1 .0000 
1.7500 1 .7778 
2 .3333 2 . 4 0 0 0 
2 .8000 2 . 9 0 9 1 
3 .1818 3 .3333 
3 .5000 3 .6923 
3 .7692 4 . 0 0 8 0 
4 .0000 4 . 2 6 6 7 

Percentage D i f fe rence 

0 . 0 0 0 0 0 . 0 0 0 0 
0 . 6 0 0 0 1 1 . 1 1 3 3 
8 . 6 8 0 0 1 0 . 0 0 1 8 
0 . 6 6 8 8 8 .5714 
0 . 0 0 0 0 7 . 4 8 5 6 
0 . 6 0 8 8 6 . 4 9 1 8 
8 . 8 8 8 8 5 . 7 6 7 1 
0 . 0 0 8 8 5 . 1 8 4 8 

0 .0080 0 .0000 
10 .0018 8.5714 
12 .0922 11.8632 
11 .8982 12.7928 
11.0904 12.6882 
10 .2119 12.1930 

9 .3899 11.5687 
8 .6549 10.9196 

0.0000 0.0000 
7.4056 6 .4910 

11.0645 10.1940 
12.6790 12.1785 
13.1829 13.1190 
13.1266 13.4412 
12.7939 13.4049 
12.3369 13.1653 

0 .0000 0 . 0 0 0 0 
5 .7671 5 . 1 8 4 0 
9 .3794 8 . 6 4 8 0 

11.5519 10 .9059 
12.7844 12 .3254 
13.3985 13 .1591 
13.6218 13 .5920 
13 .5957 13 .7535 
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TABLE 3 

Exponential distribution for tp 

Constant tw»ta-E[tp] 

Simulation results 

m - 2 3 4 5 6 7 8 
n -2 1.4088 1.5931 
n -3 1.6185 1.9878 2.2075 
n -4 2.2198 2.5643 2.8004 
n-5 2.7980 3.1472 3.4300 
n -6 3.4088 3.7122 4.0040 
n -7 3.9990 4.3196 4.5804 
n -8 4.5666 4.9028 

Expected number of busy memories in one cycle : 
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TABLE 4 

Processing Memory Cycle Analysis Computational 
Time Tina Easa 

D iscro ta 
Markov Chain 

Constant 
t p . t u 

Constant Exact Solut ion is 
a lgor i thmic . 
Unuialdy lor 
largo n. 

Streetcar 's 
Approximation 

Constant Constant Approximate Closed form 
s o l u t i o n . 
Simple formula. 

Continous Time 
Markov Chain 

Exponen 11a I Exponen t i a I Exact Closed form 
s o l u t i o n . 
Simple formula. 

D i f f u s i o n 
Approximation 

Constant Cons t an t Approx i ma t a Closed form 
s o l u t i o n . 
Simple formula. 

SImuIa 11on Exponen 11a I 
Model ECtp)* tM«ta 

Constant Approximate Unuialdy due to 
slou stochast ic 
convergence. 
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APPENDIX I 

The tree in Fig. 4.3 can be converted into a mesh by tumping 

together all occurrences of a partial state in the tree. e.g. state 

2100 at level 3 appears twice, the resulting mesh for the 4 by 4 

example is shown in Fig. 1. the algorithm for generating the transition 

matrix is shown in Fig. 4. though the implementation of this algorithm 

involves a matrix multiplication and requires more temporary storage it 

is faster than the algorithm in section 2 for larger n. Thus, a 

space-time trade-off affects the selection of the algorithm to be used. 
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1111 

Fig, 1. Enumeration mesh for a 4 by 4 multiprocessor system. 
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generate partitions of N into M parts, 
let the vector XSYS denote these partitions, 

that represent the state of the system. 

Generate partitions of N-l into M parts. 
Let X2 denote these partial states. 

! - N-l 

Compute B. 
Î tatrix B is the number of ways 

of reaching XSYS from X2. 

Update TRANS (i.e. matrix of number 
of ways of reaching XSYS from XSYS.) 

if any state in X2 is a reduction 
of estate in XSYS. 

I - I - l 

Generate partitions of I 
Vector Xi 

Compute matrix A. 
A is the number of ways of 

reaching X2 from X I . 

Matrix Multiplication. 
B - A * B 

Interchange XI and X2. 
B is now the number of ways 
of reaching XSYS from X2. 

If O0.J) is a reduction of a 
state in XSYS update TRANS. 

Evaluation of 
the required matrix of the number 

of transitions, TRANS is complete. 

Figure 2 An algorithm for evaluating the transition matrix. 


