
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A SURVEY OF TECHNIQUES
FOR

ANALYZING MEMORY INTERFERENCE
IN

MULTIPROCESSOR COMPUTER SYSTEMS

Dileep P. Bhandarkar
Samuel H. Fuller

Carnegie-Mellon University

. Pittsburgh, Pa.

April 1973

This work was supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defense (F44620-70-C-0107) and is
monitored by the Air Force Office of Scientific Research, This document
has been approved for public release and sale; its distribution is
unlimited.

ABSTRACT

This paper surveys various analytic techniques for studying the

extent of memory interference in a multiprocessor system with a

crosspoint switch for processor-memory communication. Processor

behavior is simplified to an ordered sequence of a memory request

followed by a certain amount of processing time. The system is assumed

to be bus bound; in other words, by the time the processor-memory bus

completes servicing a processor's request the processor is ready to

initiate another request and the memory module is ready to accept

another request. The techniques discussed include discrete and

continuous time Markov chain models, and some approximate analytic

methods, viz. diffusion approximation and Strecker's approximation. The

results are compared with a simulation model, in which the processing

time has an exponential distribution and the memory cycle time is

constant.

1

1.1NTR0DUCTI0N

Carnegie-Mellon University is currently in the process of

constructing a multiprocessor computer system (C.mmp) that will have up

to sixteen central processors (Pc*s)* sharing the same physical address

space [Be!IC71b; WulfW72] and concern has been expressed about the

performance of such a system with this many active processors. Figure

1.1 illustrates the major components of a multiprocessor such as C.mmp.

In addition to the processors, there is a set of memory modules that

are able to operate independently; little would be gained if all the

processors had to wait for service from a single memory module. Between

the processors and the memory modules (Mp's) is a n by m switch. There

are a number of ways of implementing the switch; Fig. 1.2(a) depicts a

n by m crosspoint switch, and Fig. 1.2(b) illustrates the use of trunk

linos; and combinations of these two basic schemes can yield many other

other schemes. This report will examine the performance of a crosspoint

switch since initial indications are that the crosspoint switch is the

highest performance switching structure for a multiprocessor system and

C.mmp is using such a switch. Other multiprocessors, although limited

*We use the PMS notation of Bell and Newell [1971] in this report to
describe hardware organization.

.9

Mp 1 Mp Snip

: !
• [

(m-to-p crosspoint)

I Reconfiguration^
Mp [m=16

I Reconfiguration^
Mp 1

Shared
I/O

devices

Private I/O
devices

Ks

Ks Kf

(EH

Kf H

Ks

Etaap

- 0

PC

Kc -

K.clock

K.interrupt

j K.configuration

Skp

D.nap

Mp

Kf

Ks

|(p-to-k;null|dual duplex}crosspoint]

where: Pc/central processor; Mp/prinary memory; T/teminals;
Ks/slow device control (e.g., for Teletype);
Kf/fast device concrol (e.g., fbr disk);
Kc/control for clock, timer9 interprocessor communication
Dmap/relocation registers for mapping Pc address into Mp

address space.
1 Both switches have static configuration control by manual and
program control

Fig. 1.1 Proposed CMU multiminiprocessor computer/C.mmp.

3

Mp, L •\7

Mp 9 L s_
S S .

M L " V

I I
Pc *1 2 n

Figure 1.2a A n by m crosspoint switch

1

M P l L

M p 2 _ L ^

Mp L

V

, N
s

\

\
s
\

\ j
s

1

CO

CO s
1

i

\
s
N

\
s

\

s
\

L Pc,

L _ P c „

L Pc

Figure 1.2b A k-trunk line switch

to a small number of Pc's, i.e. two to four also basically use a

crosspoint switch, e.g. the Burroughs D825[AndeJ62] and Univac 1110.

For further discussion of trunk lines, and a variety of other switching

structures, the reader is referred to Bell and Newell [1971}

Mathematical models of computer systems can be developed at

various levels of abstraction. A large number of models for

time-sharing systems consider a job as a basic unit[cf. MckiJ69], and

in many models of multiprogrammed computer systems the block of

instructions between I/O operations is taken as a basic unit[cf.

BuzeJ71; GaveD67]. However, in this study a much more detailed model is

used to analyze interference as processors access individual words from

the memory modules. Each processor's performance is measured by the

number of memory accesses per unit time. In a multiprocessor system the

performance of each Pc is not independent of the behavior of the other

Pc*s.

The following sections will discuss various techniques that can be

used for analysing multiprocessor systems that are bus bound, i.e.

systems in which the Pc is ready to initiate another request and the Mp

module is ready to accept the next request exactly at the time the

Pc-Mp bus recovers. The analysis is also valid for multiprocessor

systems in which the effective processing time is equal to the memory

rewrite time. The major contribution of this paper is a systematic

5

method for a discrete Markov chain model. Other techniques described

include Strecker's approximation [StreW70], systems with exponentially

distributed memory service time, and a diffusion approximation.

2. GENERAL MODELING ASSUMPTIONS

Due to the complexity of the problem, the exact detailed behavior

of memory interference in a multiprocessor system is difficult to

model. Some of the parameters that characterize the behavior of a Pc

are:

(i) Instruction mix : Instructions can be characterized by their

relative frequency, in general, processor behavior varies for different

instructions. However, in this report differences in instructions are

ignored. Processor behavior is modeled as a ordered . sequence of a

memory request followed by a certain amount of execution time. At this

level of abstraction no distinction is made between the processing

needed to decode an instruction and the processing corresponding to its

execution. Thus, the processing time characterizing a Pc depicts only

the aggregate behavior of the real Pc. Figure 2.1 depicts the actual

and abstracted behaviors.

6

MP[J]

Pc[i]

Mp[j]

Mp[k],
i

Pc[i]l

ta

1 -

ta

tw ta

2 i ^ —

tw

ta

ltd 1

3
time

tw

tw ta
1 I
. 1

1 1

• 1

i —

•
1
•
i

' i,td_ ! I tei
! ; i j i

i

! : i •

tei
i

ta

Legend:
1 instruction fetch
2 instruction decoding
3 operand fetch
4 instruction execution
5 next instruction fetch

ta memory access time
tw memory restore time
td instruction decode time
tei processor execution time

Figure 2.1a: An example of the timing of a typical instruction.

ta-

Mp access
begins

tw

tp

data
available
to Pc

Mp ready to
service next
request

Pc ready
to make
new request

Figure 2.1b: Simplified processor behavior. Two such cycles
model the instruction shown in Fig. 2.1a.

7

(ii) Average processing time: This is obtained from measurements

similar to those used for determining the probability distribution.

(iii) Access pattern of a Pc: This is the trace of the pages or

memory locations accessed by the Pc. In this study serial correlation

between successive memory accesses will be ignored. Demand patterns

will be modeled as sequences of Bernoulli trials. Memory accesses will

be characterized by the memory unit to which it is addressed.

Primary memory behavior is a function of the fabrication

technology i.e. core or semiconductor. Memory performance can be

characterized by the access time (ta), rewrite time (tw), and cycle

time (tc). Nominally, the cycle time is the sum of the other two. In

this study, no distinction is made between read and write operations.

The effect of interleaving within a Mp module is to make the access and

cycle times variable.

3. CONTINUOUS TIME MARKOV CHAIN MODEL

Consider a multiprocessor system which consists of n Pc's and m Mp's

connected by a single crosspoint switch. Let Pij denote the probability

that the i-th processor requests service from the j-th memory unit.

Thus, the demand pattern of each processor is equivalent to a sequence

8.

of Bernoulli trials. A processor is said to be queued if it is waiting

for or in the process of receiving memory service. A processor is said

to be active if it is currently being serviced by a memory/Likewise,*

memory is said to be occupied or busy if there is at least one

processor queued for that memory unit.

If the system is bus-bound and the bus recovers at the same time

that the memory is ready to service the next request, then the

effective processing time (as seen by the memory) is equal to the

memory rewrite time.

In our first model, we apply the classic simplifying assumption In

queueing models: we model the service time, or cycle time, of the

memdry modules as exponentially distributed random variables [cf,

WagnM69]» Clearly most memory systems do not have an exponentially

distributed cycle time. However, techniques such as interleaving, cache

memories, and the type of memory access(read, write, read-modify-write)

suggest that this exponential assumption may be as good an

approximation as the assumption that the memory cycle time is fixed,

and not variable at all. Without further assumptions or approximations,

We can use the results of Jackson [1963], and Gordon and Newell [1967]

to find the performance of the multiprocessor system. This technique te

also used by McCredie [1973] for multiprocessors with tp>tw.

9

Let the number of service centers be m. The states of the system

are m-dimensional vectors with non-negative integer components, the

j - th component representing the queue length at center j . If

K=(kl,k2,....,km) is a state vector, then S(K>=^ki. Transition from one
i=l

center to another is characterized by a routing probability Rij, i.e.

the probability of going to center j on completion of service at center

i. Jackson [1963] has obtained the equilibrium joint probability

distribution of queue lengths for a broad class of queueing-theoretical

models representing a network of service centers. Customer arrivals are

modeled as a generalized Poisson process [cf. WagnH69], whose mean

arrival rate varies almost arbitrarily with the total number of

customers already in the system. Service completions at each center are

also modeled as generalized Poisson processes, the mean service rate

(u) at each center varying arbitrarily with the queue length there.

Note that in Jackson's model all customers are identical. Muntz and

Baskett [1972] have a more general queueing network model that allows

different classes of customers to have different branching

probabilities. Gordon and Newell [1967] have presented a solution

technique for closed queueing systems, i.e. networks of queues in which

the number of customers is constant.

For closed queueing systems, Jackson's formulae for obtaining the

equilibrium state probabilities are listed below.

10

P<K) - w'(K)/r<S(K))L

where,

where e(j) » Ze(i)R(i,j) j€[l,m]
i=1

T'(K) - Ew'(K) summed over K with S(K)-n

But, with Pc requests distributed uniformly and with the bus-bound

situation or tp*tw, Jackson's model reduces to m servers with customers

circulating with uniform routing probabilities i.e. Ri j -Pi j - l /m. Using

the above formulae we get,

w (K) » (l / u) t n

i.e. ail the states of the system have equal probability. Physically,

this indicates that states with greater congestion in the queues are as

likely as evenly distributed queues. The probability that a particular

Mp module is idle, Prob{Mp[i] is idle}, is the fraction of the total

number of states that has ki«0.

In other words,

T < K) » l m-r)<l/u)t i n

for all K such that.£ki-i
m

n

Prob{Mp[i] is idle} • number of ways of assigning n Pc's to m-1 Mp's
number of ways of assigning n Pc's to m Mp's

3 W 2)
(n+m-1 ̂ m-1 ;

/ n+m-21

Prob{Mp[i] is busy} - n/(n+m-l)

11

E[number of busy Mp's] - m*Prob{Mp[i] is busy}

• m*n/(m+n-l)

The above expression has a number of interesting properties: the

expression is symmetric in m and n; it has a basic hyperbolic form,

asymptotic to n as m gets large; and, if we let m»n the above

expression becomes

n/(2- l /n)

and

E[number of busy Mp's] - * n / 2 for n » l

The final observation has important implications. It states that

as multiprocessor systems grow to include more and more Pc's, we are

not faced with a law of diminishing returns: no matter how many Pc's

are used, if we have the same number of memory modules, we can expect

half the processors to be active.

4. A SIMPLE DISCRETE MARKOV CHAIN MODEL

For this analysis let us assume that all the Pc's are

characterized by a single constant processing time tp. Also, all the

12

memory units are assumed to have the same cycle time tc and access time

ta. Thus, the memory rewrite time is given by tw«tc-ta. If t p - tw then

all memory units can be considered to be operating synchronously. Thus,

during any memory cycle the number of active Pc's is equal to the

number of busy Mp's. With tp«tw, the analysis is simpler than with

tp<tw and tp>tw. Also, it is a boundary condition for the other two

cases. Thus, tp»tw is an interesting case for a preliminary comparison

of various modeling techniques, even when tp is not equal to tw in

reality.

In this section, a simple Markov Chain Analysis is presented for

the case in which the processors request every memory with equal

likelihood. A multiprocessor system with n Pc's and m Mp's is likened

to an occupancy problem with n balls and m urns. Balls are randomly

assigned to the m urns at the beginning of a memory cycle. At the end

of the cycle one ball is removed from each urn. Thus if there are k

non-empty urns during cycle s then k balls are available for assignment

during the (s+l)-th cycle.

The state of the above mentioned process is defined by a m-tuple

(kl,k2,...,km), where ^?ki=n and OSkiSn for all i. The number of
i=1 /n-fta-K

distinct states of the system is given by the combination, \ m-1 /

the number of ways in which n balls can be assigned to m bins

[FellW66]. However, since all the processors behave identically, a

13

number of the distinct states are equivalent i.e. they have the same

occupancy and have the same components, e.g. states (24,1)! (1,2,1),

(1,1,2) are equally likely. Thus, the reduced states are given by the

different ways in which the number n can be partitioned into m parts.

m
i.e. the unordered solutions to the equation 2ZXi«n for (teXten represent

1=1
equivalent classes of equally likely states. The number of such

partitions (for n<m) is asymptotic to

1 exp[n(2n/3)t0.5] [of. BeckE64]
47Ttf3

Also,

F (x)« . I (
(l - x) (l - x T 2) . . . (1-xtm)

» l+Ep(i)xTi

is an ordinary generating function of the sequence (p(0), p(l) ,

p(m)), where p(i) denotes the number of partitions of the integer i

that have no part exceeding m [LiuC68].

Let the representative state Si denote the set of compositions of

the number n that yield the same partition e.g. the compositions

(2,1,1), (1,2,1) and (1,1,2) correspond to the partition of the number

4 which has two Ts and one 2. Further, let Si.j be the individual

compositions of the partition typified by representative state Si and

Si.l be that composition which has its components arranged in monotone

14

START
Number to be partitioned..N
Maximum number of parts... M

T
K «- 1; A(1) «- N

I

A(I) 1 for Ls2,...,K

A(1) - N- Z A(I)

T
Components of a partition are given by
A(I), Is1,...,K. This partition has K
non-zero parts. Store or display this
partition.

A(I) A(T) + 1 for I=2,...,T-1

{ STOP j
Figure 4.1 An algorithm for generating partitions

15

non-decreasing order, i.e. (2,1,1) for the above example. The algorithm

shown in Fig. 4.1 generates all the partitions of n with the components

in monotone non-increasing order.

Let Xij denote the probability of a transition from Sj to Si.

Then, due to the symmetry of the problem,

Xij » ZProb{Transition from Sj.l to Si.k}

Let the m-tuple (kl,k2,.,..,km) denote the state of the Markov

chain. If x is the number of non-zero elements in this vector then at

the end of the memory cycle, x new processors have to be reassigned to

memory modules. At the end of the current memory cycle the queue is

characterized by the m-tuple (Jl,J2,...,Jm), where

A new state (Ll,L2,...,Lm) is reachable from (kl,k2,...,km) if and

only if Li>Ji for l<iSm. If the above condition is satisfied the

probability of the state transition is given by

Si.keSi

Ji «ki - l if ki>0

«0 otherwise.

where d i - Li-Ji

16

i.e. x! * (l /m)tx
c — t . ~—-R nsm

d l ! d2i ...dm!

»

tn m m
Note that since Zki - £Li * n, Zdi - x

1=1 i=1 . i=1

Thus, we now have a formula for generating the transition

probabilities. Due to the symmetry of the problem it suffices to

generate only the transition probabilities for the representative class

of states. All the different ways of obtaining the same partition are

lumped together to form a reduced state.

To illustrate a computational method** for generating the

transition probabilities consider an example of a 4 by 4 system. The

number 4 can be partitioned in 5 different ways as listed below:

4 0 0 0

3 1 0 0

2 2 0 0

2 1 1 0

1 1 1 1

**The use of a tree to generate the transition probabilities was suggested
by F. Baskett and D.Chewning of Stanford University.

17

These partitions represent 5 equivalent classes that characterize

the state of the Markov Chain. Let us consider the state (2,2,0.0)- At

the end of a memory cycle, the resultant partial state is (1,1,0,0)

with 2 free processors to be reassigned. Figure 4.2 shows the different

ways in which these 2 Pc's can be assigned, one at a time, to reach a

new partial representative state. After both Pc's are assigned a

terminal state is reached. The number on the arrow indicates the number

of ways of reaching the partial or terminal state that the arrow points

to. Now the number of ways in which a final state can be reached from

the initial state can be computed by traversing the tree, e.g. there

are 2x1 ways of reaching (1,1,1,1) and (2x2 + 2x3) ways of reaching

(2,1,1,0) from (2,2,0,0).

It is possible to construct a single tree with different pointers

for different initial states. Figure 4.3 shows a complete tree for a

4x4 system. Initial states are circled. The entire transition matrix

can be filled by traversing this tree. A convenient way* of traversing

this tree is by using a stack which has depth equal to one more than

the number of Pc's. At each level the stack contains a partial state

and has a pointer to the initial representative state (if any) from

which it is derived. The stack is initialized to contain the path that

*An alternative method for traversing the tree is described in Appendix I.

18

Initial State Final Terminal States

Add 1 Pc Add 1 more Pc

Figure 4.2 Next states accessible from initial state (2,2,0,0)

19

1 1 1 1

0 0 0 0

2 0 0 0

m 1 0)

1 0 0 0

(4 0 0 0)

>T| 4 0 0 0

3 0 0 0

3 1 0 0

2 1 0 0

Level 0

3 1 0 0

2 2 0 0

2 1 1 0

3 1 0 0

2 2 0 0

2 1 1 0

Level 1 Level 2 Level 3

Figure 4 . 3 Enumeration tree for a 4 by 4 multiprocessor system

20

leads to the topmost final state. For this example the stack is

initialized as shown in Fig. 4.4^ and Fig. 4.5 shows an algorithm for

using the tree to generate the transition matrix, shown In fig. 4.6.

The following theorem and lemma can be used to increase the

efficiency of the program that generates the transition probabilities.

Theorem 1: There is a one-to-one correspondence between a

representative state and a partial state that the representative state

reduces to at the end of a cycle.

Proof: Let (kl,...,km) be a representative state. The partial

state at the end of the cycle is given by

<Jl,J2,...,Jm) '

where Ji»ki-1 if ki>0

«0 otherwise
m

Since no two representative states are alike and Zki -n , it follows that
i=1

the partial states are distinct.

Lemma A partial state at level L in the enumerative tree of Fig. 4.3

can correspond to a terminal state with exactly n-L occupied Mp's.

21'

4 0 0 0

3 1 0 0

2 1 1 0

1 1 1 1

Initial
state
pointer

4 0 0 0

3 0 0 0

2 0 0 0

1 0 0 0

0 0 0 0

STACK

1 level 4

1 level 3

1 level 2

4 level 1

M level 0

NWAYS
Number of ways of
getting to level L
from level L-l

Figure 4.4 Initial contents of the stack for traversing
the tree shown in Figure 2.3

22

Proof: Let J=(Jl,J2,....,Jm) be a partial state in the tree

depicted in Fig. 4.3. Furthermore, let the number of non-zero elements

elements in the partial state be y and let «n-x. Since one Pc is

always removed from a non-empty queue at the end of a cycle, J is a

partial state that can be reduced from a valid representative state

K«(kl,k2,...,km), if and only if

(i) The number of non-zero elements in K is x,and

(i i)x>y

Note that x and y are both less than or equal to min(m,n) and £ki«n.
i=l

Then, if x>y, J has atleast x-y zeros. If x<y then there is no

representative state K that corresponds to the partial state J. If x£y,

then the representative state is obtained by adding y l's to the

non-zero elements of J and replacing x-y zeros of J by 1. At level L,
m

5ZJi« L Therefore, x, the number of occupied Mp's in K, is equal to

n -L

Figure 4.7 shows the average number of busy Mp's when n-m. The

curve has an almost constant slope of .586 for n>4. Figures 4.8 and 4.9

show the effect of adding a Pc and an Mp respectively on the average

number of busy Mp's.

23

Use Level L-1 to
change Level L
Update NWAYS

Update pointer
to initial state

Generate transition prob­
abilities from all initio
state pointed to by the
stack.

LFL+1

i
L P L - 1

Transition matrix has been
completely generated.

I
Normalize each column so
that sum going down a
{column is 1,

Figure 4.5 Algorithm for traversing the tree shown in Figure 4.3

24

4 0 0 0 3 1 0 0 2 2 0 0 2 1 1 0 1 1 1 1

4 0 0 0 1 1 0 1 4

3 1 0 0 3 3+3 2 3+3+6 12+12+24

2 2 0 0 0 3 2 3+6 12+24

2 1 1 0 0 6 4+6 6+12+18 24+48+72

1 1 1 1 0 0 CM
 6 24

STEP 1: Xij is the number of ways of reaching i from j.
(obtained from the tree of fig. 2.3)

STEP 2; Xij Xij (Note that SXij=m , where x of the m
TXi i i

J components of j are non-zero)

Final equations to be solved simultaneously:

P4000
P3100
P2200
P2100
P1111

0.25 0.0625 0.000 0.015625 0.015265

0.75 0.3750 0.125 0.187500 0.187500

0.00 0.1875 0.125 0.140625 0.14Q625
0.00 0.3750 0.625 0.562500 0.562500

0.00 0.0000 0.125 0.093750 0.93750

— _

P4000
P3100
P2200
P2100
p
1111

SUBJECT TO P 4000 + P 3100 + P2200 + P2100 + P 1111 = 1

Figure 4.6 Steps in the generation of the transition matrix

2 3 4 5 6 7 8 9 10 11 12

Number of Pc's « Number of Mp9N

Figure 4.7: Multiprocessor Systems with n=m.

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Stamber of Pc's n *+

Figure 4.8: The effect of adding a Pc.'

Number of Mp's m -

Figure 4.9: The effect of adding an Mp.

28

5. OTHER DISCRETE MARKOV CHAIN MODELS

5.1 Discrete Markov Model of Skinner and Asher

Skinner and Asher [1969] model the multiprocessor system as a

discrete Markov chain. They assume a matrix of probabilities that

express the likelihood that a given processor requests service from a

given memory at the beginning of a memory cycle, provided the Pc is not

queued. They also assume a matrix of probabilities that express the

likelihood of the various outcomes that can arise when there are

simultaneous requests to one memory by several processors. The state of

the system is characterized by the processors queued for the different

memory modules. A state transition matrix is formed from the access

probabilities and the steady state probabilities of various states are

determined by solving the state transition equations. The number of

states of the system increases very steeply with an increase in the

number of Pc's and Mp's. Closed form solutions are presented only for

cases with up to, 2 Pc's and n Mp's. The analysis in the previous

section is similar to Skinner and Asher, but with uniformly random

access patterns for all the Pc's, i.ef P i j - l /m for all i.

29

5.2 Strecker's Approximation

Strecker [1970] has an approximate closed form solution to the

discrete Markov Chain model presented here. His approach is equivalent

to removing the queued processors from all the memory modules at the

end of a memory cycle and reassigning them. Thus the state of the

system is considered independent of the state during the last cycle. If

we use this assumption the distribution of Pc's queued for an Mp

follows the binomial distribution:

Prob{Y«r}« (r) « (l / m) r * (l . l / m) n " r

where Y is a random variable equal to the number of Pc's

queued for Mp[j] and Pij»l/m for all i and j .

Thus,

Prob{Mp[j] is busy} * 1 - Prob{nobody is queued for Mp[j]}

• l - (l - l / m) T n

In other words, the occupancy of Mp[j] is l - (l - l /m)Tn, and

E[no. of occupied Mp's] - ^{Occupancy of Mp[j]}

- m*[l - (l - l /m) tn]

1 shows a comparison of Strecker's results and the exact

o

m
Figure 5.1 Strecker's formula for fixed m

31

Markov chain analysis. Note that Strecker's results are optimistic

estimates of the unit execution rate. It is encouraging to note that

such a simple expression is within 6 to 8% of the exact Markov Chain

model for m/n>0.75. This is because his analysis assumes that all n

Pc's always make a new request at the beginning of each memory cycle,

whereas in ths discrete Markov chain only those Pc's that receive

service are allowed to make new requests. Moreover, note that the

expression m*[l - (l - l /m)Tn] can be written in an exponential form as

m*{l-exp[n* In (1-1/m)]}

Figure 5.1 shows a plot of the above expression for fixed m; the

relaxation time [In (l- l /m)f'approaches m as m gets large.

6. DIFFUSION APPROXIMATIONS

An approximation method that has been proposed for the solution of

general queueing networks is the diffusion approximation [c.f. NeweG71;

KobaH73]. A discrete-state process is approximated by a Wiener-Levy

diffusion process with a continuous path. The key assumption in such an

analysis is that incremental changes in the queue lengths are normally

distributed. This leads to a characterization of the queueing network

by a set of diffusion equations. The accuracy of the approximation

32

depends on three factors: (i) approximation of a discrete-state process

by a time-continuous Markov process, (ii> choice of proper reflecting

barriers, and (iii) discretization of the continuous density function

for queue lengths. Surprisingly, for the simple discrete Markov Chain

model of section 4 , the diffusion approximation yields a result

identical to that with exponential servers derived from Jackson's

formulae. However, the main utility of the diffusion approximation in

this context is that it can be used to analyze the effect of different

coefficients of variation (ratio of standard deviation to the mean)

for the service time distribution.

7. CONCLUDING REMARKS

Tables 1 and 2 compare the numerical results obtained from the

different models described. Strecker's approximation gets better as m/n

increases, whereas the continuous time and discrete Markov models get

closer for larger n/m ratios. Table 3 shows some simulation results

obtained with exponential distributions for the processing time, with

mean equal to tw.

i.e. Prob{tp-x} « X exp(-Xx) where X - l / t w - l / t a - l / E [t p]

33

Note that the values in Table 3 lie between those predicted by Strecker

and Jackson. Table 4 shows the characteristics of the parameters in the

various models.

34

TABLE 1

Expected number of busy memories in one cycle
Number of Pc's = 1,2,...,8 (rows)
Number of Mp's = 1,2,...,8 (columns)

Discrete Markov Chain Model

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

1.0000
1.5000
1.6667
1.7500
1.8000
1.8333
1.8571
1.8750

1.0000
1.6667
2.0476
2.2701
2.4102
2.5059
2.5751
2.6274

1.0000
1.7500
2.2692
2.6210
2.8633
3.0370
3.1663
3.2657

1.0000
1.8000
2.4095
2.8630
3.1996
3.4533
3.6486
3.8024

1.0000
1.8333
2.5054
3.0365
3.4530
3.7809
4.0418
4.2521

1.0000
1.8571
2.5748
3.1657
3.6482
4.0415
4.3636
4.6294

1.0000
1.8750
2.6272
3.2652
3.8019
4.2518
4.6292
4.9471

Strecker's Approximation

1.0000
1.0000
1.0000
1.0000
1.0000
1.000Q
1.0000
1.0000

1.0000
1.5000
1.7500
1.8750
1.9375
1.9687
1.9844
1.9922

1.0000
1.6667
2.1111
2.4074
2.6049
2.7366
2.8244
2.8829

1.0000
1.7500
2.3125
2.7344
3.0508
3.2881
3.4661
3.5995

1.0000
1.8000
2.4400
2.9520
3.3616
3.6893
3.9514
4.1611

1.0000
1.8333
2.5278
3.1065
3.5887
3.9906
4.3255
4.6046

1.0000
1.8571
2.5918
3.2216
3.7613
4.2240
4.6206
4.9605

1.0000
1.8750
2.6406
3.3105
3.8967
4.4096
4.8584
5.2511

Percentage Error

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
4.9979
7.1429
7.6389
7.3856
6.8548
6.2507

0.0000
0.0000
3.1012
6.0482
8.0782
9.2063
9.6812
9.7244

0.0000
0.0000
1.9082
4.3266
6.5484
8.2680
9.4685
10.2214

0.0000
0.0000
1.2658
3.1086
5.0631
6.8340
8.2991
9.4335

0.0000
0.0000
0.8941
2.3053
3.9299
5.5463
7.0191
8.2900

0.0000
0.0000
0.6602
1.7658
3.1002
4.5157
5.8896
7.1521

0.0000
0.0000
0.5100
1.3874
2.4935
3.7114
4.9512
6.1450

3 5

TABLE 2

E x p e c t e d number of busy memories in one cycle
Number of P c ' s * 1 , 2 , . . . , 8 (rows)
Number of Mp f s « 1 , 2 , . . . , 8 (columns)

D i s c r e t e Markov Chain Model

1 , , 6088 1 .8888 1.8800 1.0000 1.0000 1.0000 1.0000 1 .0000
1 , . 6888 1 .5008 1.6667 1.7500 1.8000 1.8333 1.8571 1 .8750
1 . , 6888 1 .6667 2 .0476 2 .2692 2.4095 2.5054 2 .5748 2 . 6 2 7 2
1 , . 8888 1 .7588 2 .2701 2 .6210 2 .8630 3.0365 3 .1657 3 .2652
1 . . 6688 1 .8808 2 .4102 2.8633 3.1996 3.4530 3 .6482 3 . 8 8 1 9
1 . . 6688 1 .8333 2 .5059 3 .0370 3.4533 3.7809 4 .8415 4 . 2 5 1 8
1 . , 6608 1 .8571 2 .5751 3.1663 3.6486 4 .0418 4 .3636 4 . 6 2 9 2
1 . , 0880 1 .8758 2 .6274 3.2657 3.8024 4 .2521 4 .6294 4 . 9 4 7 1

Continuous Time Markov Chain Model

1 . 6 8 8 8 1 .0000
1 . 8 0 0 8 1 .3333
1 . 0 0 8 8 1 .5888
1 . 8 8 8 8 1 .6000
1 . 0 0 0 0 1 .6667
1 . 6 8 0 0 1 .7143
1 . 0 0 8 8 1 .7500
1 . 0 0 0 0 1 .7778

1.0000 1.0000
1.5000 1.6000
1 .8000 2 .0000
2 .0000 2 .2857
2 .1429 2 .5000
2 .2508 2.6667
2 .3333 2 .8600
2 .4000 2 .9091

1.0000 1.0000
1.6667 1.7143
2.1429 2 .2500
2.5000 2 .6667
2.7778 3 ,0000
3.0008 3.2727
3.1818 3 .5600
3.3333 3.6923

1.0000 1 .0000
1.7500 1 .7778
2 .3333 2 . 4 0 0 0
2 .8000 2 . 9 0 9 1
3 .1818 3 .3333
3 .5000 3 .6923
3 .7692 4 . 0 0 8 0
4 .0000 4 . 2 6 6 7

Percentage D i f fe rence

0 . 0 0 0 0 0 . 0 0 0 0
0 . 6 0 0 0 1 1 . 1 1 3 3
8 . 6 8 0 0 1 0 . 0 0 1 8
0 . 6 6 8 8 8 .5714
0 . 0 0 0 0 7 . 4 8 5 6
0 . 6 0 8 8 6 . 4 9 1 8
8 . 8 8 8 8 5 . 7 6 7 1
0 . 0 0 8 8 5 . 1 8 4 8

0 .0080 0 .0000
10 .0018 8.5714
12 .0922 11.8632
11 .8982 12.7928
11.0904 12.6882
10 .2119 12.1930

9 .3899 11.5687
8 .6549 10.9196

0.0000 0.0000
7.4056 6 .4910

11.0645 10.1940
12.6790 12.1785
13.1829 13.1190
13.1266 13.4412
12.7939 13.4049
12.3369 13.1653

0 .0000 0 . 0 0 0 0
5 .7671 5 . 1 8 4 0
9 .3794 8 . 6 4 8 0

11.5519 10 .9059
12.7844 12 .3254
13.3985 13 .1591
13.6218 13 .5920
13 .5957 13 .7535

36

TABLE 3

Exponential distribution for tp

Constant tw»ta-E[tp]

Simulation results

m - 2 3 4 5 6 7 8
n -2 1.4088 1.5931
n -3 1.6185 1.9878 2.2075
n -4 2.2198 2.5643 2.8004
n-5 2.7980 3.1472 3.4300
n -6 3.4088 3.7122 4.0040
n -7 3.9990 4.3196 4.5804
n -8 4.5666 4.9028

Expected number of busy memories in one cycle :

37

TABLE 4

Processing Memory Cycle Analysis Computational
Time Tina Easa

D iscro ta
Markov Chain

Constant
t p . t u

Constant Exact Solut ion is
a lgor i thmic .
Unuialdy lor
largo n.

Streetcar 's
Approximation

Constant Constant Approximate Closed form
s o l u t i o n .
Simple formula.

Continous Time
Markov Chain

Exponen 11a I Exponen t i a I Exact Closed form
s o l u t i o n .
Simple formula.

D i f f u s i o n
Approximation

Constant Cons t an t Approx i ma t a Closed form
s o l u t i o n .
Simple formula.

SImuIa 11on Exponen 11a I
Model ECtp)* tM«ta

Constant Approximate Unuialdy due to
slou stochast ic
convergence.

38

AndeJ62

BeckE64

BellC7Ta

BellC71b

BuzeJ71

FellW66

GaveD67

GordW67

JackJ63

KobaH73

LiuC68

McCrJ73

MckiJ69

MuntR72

9

Anderson, J.P. et al.: D825 - A Multiple Computer System for
Command and Control, AFIPS Proc. FJCC, Vol. 22, pp. 86-92, 1962.

Beckenbach, E. (editor): Applied Combinatorial Mathematics,
Wiley, New York, 1964.

Bell, C.G. and A. Newell: Computer Structures: Readings and
Examples, McGraw-Hill, New York, 1971.

Bell, C.G. et al.: C.mmp: The CMU Multiminiprocessor Computer,
Department of Comp. Sci., Carnegie-Mellon Univ, August 1971

Buzen, J.B.: Queueing Network Models of Multiprogramming,
Ph.D. Thesis, Harvard University, ESD-TR-71-345, August, 1971.

Feller, W.: An Introduction to Probability Theory and its
Applications, Vol. 2, Wiley, New York, 1966.

Gaver, D.P.: Probability Models for Multiprogramming Computer
Systems, JACM, Vol. 14, No. 3, July 1967, pp. 623-638.

Gordon, W.J. and G.F. Newell: Closed queueing systems with
exponential servers, Oper. Res., 15 (1967), pp. 254-265.

Jackson, J.R.: Jobshop-like queueing systems, Management Sci.,
10, 1 (Oct. 1963), pp. 131-142.

Kobayashi, H.: Application of the Diffusion Approximation to
Queueing Networks: Part I - Equilibrium Queue Distributions,
1st Annual SIGME Conference on Measurement and Evaluation, March
1973, pp. 54-60.
Liu, C.L.: Introduction to Combinatorial Mathematics« New York,
McGraw-Hill, 1968.

McCredie, J.W.: Analytic Models as Aids for Multiprocessor
Design, Proc. of the 7th Annual Princeton Conference on
Information Science and Systems, M^rch "973.

McKinney, J.M.: A Survey of Analytic Time Sharing Models,
Computing Surveys, Vol. 1, No. 2, pp. 105-116, 1969.

Muntz, R.R. and F. Baskett: Queueing Network Models with Different
Classes of Customers, Proc. of COMPCON 72, Sept. 1972, pp. 205-209.

REFERENCES

39

NeweG71 Newell, *G.F.: Applications of Queueing Theory, London, Charaan
and Hall, 1971.

SkinC69 Skinner, C. and J. Asher: Effect of Storage Contention on System
Performance, IBM Sys. J., Vol. 8, no. 4, 1969, pp. 319-333.

StreW70 Strecker, W.D.: Analysis of the Instruction Execution Rate in
Certain Computer Structures, Ph.D. thesis, CMU. 1970.

WagnH69 Wagner, H.M.: Principles 6f Operations Research. Prentice-Hall,
Englewood Cliffs, 1969.

WulfW72 Wulf, W.A. and C.G. Bell: C.mmp - A Multi-mini-processor, AFIPS
FJCC Proc 1972, Vol. 41, Part II, pp. 765-777.

APPENDIX I

The tree in Fig. 4.3 can be converted into a mesh by tumping

together all occurrences of a partial state in the tree. e.g. state

2100 at level 3 appears twice, the resulting mesh for the 4 by 4

example is shown in Fig. 1. the algorithm for generating the transition

matrix is shown in Fig. 4. though the implementation of this algorithm

involves a matrix multiplication and requires more temporary storage it

is faster than the algorithm in section 2 for larger n. Thus, a

space-time trade-off affects the selection of the algorithm to be used.

ii

1111

Fig, 1. Enumeration mesh for a 4 by 4 multiprocessor system.

iii

generate partitions of N into M parts,
let the vector XSYS denote these partitions,

that represent the state of the system.

Generate partitions of N-l into M parts.
Let X2 denote these partial states.

! - N-l

Compute B.
Î tatrix B is the number of ways

of reaching XSYS from X2.

Update TRANS (i.e. matrix of number
of ways of reaching XSYS from XSYS.)

if any state in X2 is a reduction
of estate in XSYS.

I - I - l

Generate partitions of I
Vector Xi

Compute matrix A.
A is the number of ways of

reaching X2 from X I .

Matrix Multiplication.
B - A * B

Interchange XI and X2.
B is now the number of ways
of reaching XSYS from X2.

If O0.J) is a reduction of a
state in XSYS update TRANS.

Evaluation of
the required matrix of the number

of transitions, TRANS is complete.

Figure 2 An algorithm for evaluating the transition matrix.

