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ABSTRACT

This paper surveys various analytic techniques for “studying the
extent of memory interference In a multiprocessor system with a
'érosspoint switch  for  processor-memory communication.  Processor
beh'avior' is simplified to an ordered sequence of a memory request
tollowed by a certain amouht of processjng time. The system is assumed
to be bus bound; in other words, by the time the processor-memory bus
completes servicing a processor’s request the processor is ready to
initiate another request and the memory module is ready to accept
another request. The techniques discussed include discrete and
continuous time Markov chain models, and some approximate analytic
methods, viz. diffusion approximation ~and Strecker’s approximation. The
results are compared with a simulation model, in which the processing
time has an exponential distribution and the memory cycle time s

constant.



1.INTRODUCTION

Carnegie-Meallon  University is currently in the process of
c'onstructing 8 multiﬁrocessor computer system (C.mmp) that will have up
to sixteen centrall ‘processors (Pc’s)® sharing the same physical address
space [BelIC71b; WulfW72] and concern has been expréssed about the
performance ofrsuch a system with this many active processors. Figure
1.1 iYustrates the major components of a.mlt‘:ltiprocessor such as C.mmp.
In addition to_ the processors, there is a set of memory modules that
are able’ to operate independently; little would be gained if all the
processors had to wait 'f.or service from a single memory module. Between
the processors ana the memory modules (Mp’s) is a n by m switch. There
are a number of ways of implerﬁenting the switch; Fig. 1.2(a) depicts a
n by m crosspoint switch, and Fig. 1.2(b) illustrates - the use of trunk
‘lines; and combinations of these two basic schemes can yield many other
other schemes. Th_is report will examine'the performance of a crosspoint
switch since initial indications are that the crosspoint switch is the
highest performance switching structure for a multiprocessor system and

C.mmp isl using such a switch. Other multiprocessors, although limited
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‘“We use the PMS notation of Beli and -Newell [1971] in this report to
describe hardware organization.
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to a small number of Pc’s, ie. two to four also. basically use a
crosspoint switch, e.g. the Burroughs D825[Andel62] and Univac 1110.
For further discussion of trunk lines, and a variety of other switching

structures, the reader is referred to Bell and Newell [19711]

Mathematical models of computer systems can ‘be developed at
various levels of abstraction. A large ‘number' of models for
time-sharing systems consider a job as basic unit[cf. MckiJ69], and
in many models of multiprogrammed computer systems the b|ock. of
instructions between 1/O operations is taken as a basic unit[c-f;
bBuzel71; GaveD67] However, in this study ‘a much more detailed model is
used to analyze interference as processors access individual words from
the memory modules. Each processor's performance is measured by the
number of memory accesses per unit time. In a multiprocessor system the
performance of each Pc is not indepen&ent of the behavior of the other

Pc¢’s.

The following sections will discuss vario‘us techniques that can be
used for analysing multiprocessor .sys,tems that are bus bound, i.e.
systems in which the Pc is ready to initiate anotﬁer r-equesf and the Mp
module is ready to accept the next request exactiy'at the time the
Pc-Mp b.us recovers. The analysis is also valid for multiprdcessor
systems in which fhe effective procsssiné time is equal to the memory

rewrite time. The major contribution of this paper s a systematic



method for a discrete Markov chain model. Other techniques described
include Strecker’s approximation [StreW70], systems with exponentially

distributed memory service time, and a diffusion approximation.

2. GENERAL'MODELING ASSUMPTIONS

Due to .the complexity of the problem, the exact detailed behavior
of memory interference in a multiprocessor system is difficult to
model. Some of the parameters that characterize the behavior of a Pec

are:

(i) Instruction mix : Instructions can be characterized by their
relative frequency. In general, processor behavior varies for different
instructions. However, in this report differences in instructions are
ignored. Processor behavior is modeled as a ordered.sequence of a
memory request followed by .a certain a'rno_unt of 'executior.\ time. At this
level of abstraction no di.stinction is made between the processing
negded‘ to decode an instruction and the processing corresponding to its
execution. Thus, the processing time characterifing a Pc depicts only
‘the aggregé'te behavior of the real Pc. Figure 2.1 depicts the actual

and abstracted behaviors.
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(i) Average processing time: This is obtained from measurements

simitar to those used for determining the probability distribution.

(ili) Access pattern of a Pc: This is the trace of the pages or
memory iocations accessed by the Pc. In this study serial correlation
Eetween successive memory accesses wili be ignored. Demand patterns
will be modeled as sequences of Bernoulli trials. Memory accesses will

be characterized by the memory unit to which it is addressed.

Primary memory behavior is a function of the fabrication
technology ie. core or semiconductor. Memory performance can be
characterized by the access time (ta), rewrite time (tw), and cycle
time (tc). Nominally,_ the cycle time is the sum of the other two. In
this study, no distinction is made between read and write operations.
The effect of interleaving within a Mp module is to make the access and

cycle times variable.

3. CONTINUOUS TIME MARKOV‘CHAIN MODEL

Consider a 'multiprocessor system which consists of n Pc’s and m Mp’s
-connected by a single crosspoint switch. Let Pij denote the probability
that the i-th processor requests service from tr;e i-th memory unit.

Thus, the demand pattern of each- processor is equivalent to a sequence



of Bernoulli tti_als; A processor is said to be queued if it is waﬂingl
_fof or in the prdcess" of rece.iving memory service. A procéssdr: is. said
_to be active if it is currently being serviced by a memory. leewise,.

memo.ry is sald {o be occupmd or busy if there is at Ieast one'

. proceééor gueued for that memory unit.

If the system is bus-bound and the bus recovers at the same time
" that the memory s regdf to 'service ‘the next request, then the
effective processing time (as seen by the memory) is equal to the

~ memory rewrite time.

“In our flrst model, we apply the classic simplifying assumpttén I.n
'queuemg modeis' we mode! the service time, or cyclo tirne, of the
'memqu_ modules as exponentlaily dnstrtbuted “random _ ‘_variables [cf 3
‘Wagn.HGQJ. Cieér‘ly most memory systems do not have an exponentially.
di'stributed cycle time. However, techniques such as interle&ving; cache
,merﬁdffes,' end the type of memory access(read, write, read-modify-write)
suggest that this exponential assumption may be as good an
approximatlon as the assumphon that the memory cycle time is fixad
and not variable at alil. Without further assumphons or approxlmatlons,
l_we can use the results of Jackson [1963}, and Gordon and Newell [1967)
to find the performance of the multiprocessor system. This tochmque is_.

‘ a_lso us_ed’ by .Mt:Credie {1973] for muitiprocessors with tp>tw.



Let the number of service centers be m. The states of the system
are m-dimensional vectors with non-negative integer components, the
j-th  component representing the queue length at center |. If
K=(kl,k2,..,km) is a state vector, then S(K)-fgki. Tfansitio‘n from one

, : i=
center to another is characterized By a routing probability Rij, i.e.
the probabifity of going to center j on completion of service at center
i. Jackson [1_963] has obtained the. equilibrlum‘ joint  probability
distribution of quége fengths for a broad class of queueihg-theoretical
models representing a network of service centers. Customer arrivals are
modeled as a generalized Poisson -procesé [cf. WagnH69], whose mealn
arrival rate varies almost arbitrarily with ‘the total number of
customers already in the system. Service completions at each center are
also modeled as generalized Poisson processes, the mean service rate
(u) at each'center varying arbitrarily with the queue iength there.
Note that | in Jackson’s mo&el all customers are identical. Muntz and
Baskett [1972] have a more general queueing network model that allows
different classes of customers to have different branching
probabilities. Gordon and Newell [1967] have presented a solution
technique for closed queueing system.s, i.e. networks of queues in which

the number of customers is constant.

For closed queueing systems, Jackson’s formulae for obtaining the

equilibrium state pr.obabiiities:ar‘e listed below.
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P(K) = w{K)/T(S(K))
where,
m km.
wXK) = TT 1?'1 [e(j3/u] for j€[1,m]

J=1 1= m
where e(j) = Ze(i)R(ij)  je[1,m]

i=1
THK) = Tw'(K) summed over K with S(K)=n
But, with Pc¢ requests distributed uniformly and with the bus-—bound
situation or tp=tw, Jackson’s model reduces to m servers with customers
~ circulating  with uniform routing probabilities i.e. Rij=Pij=1/m. Using
the above formulae we get,
w(K} = (1/u)tn
, n+m-1 '
TK) = et )1 /)0
< obm- 14771 Co m
P(K) = ‘_( m_1) for all K such thatig#i-n
i.e. all the states of the system have equal probability. Physically,
" this indicates that states with greater congestion in the queues are as
likety as ‘evenly distributed queues. The probability that a particular
Mp module is idle, Prob{Mp[i] is idle}, is the fractiom of the total
. number of states that has ki=0.
In other words,

Prob{Mpf{i] is idle} = number of ways of assigning n Pc’s to m-1 Mp’s
number of ways of assigning n Pc’s to m Mp’s

+m- 2
Clm- 2
nm-1
m-1 )

Prob{Mp{i] is busy} = n/(n-i-m-I)
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~ E[number of busy Mp’s] = msProb{Mpl[i] is busy}

- m'tnl(m+n-1)

- The above expression has a number of interesting propertie_s: the
expression is symmetric in m and mn it has a basic hyperbolic form,
asymptotic to n as m gets large; and, if we let m=n the above
expression becomes

nf(2~1/n)
and

E[number of busy Mp’s] +n/2 for m>>1

The final observation has ‘important implications. It states that
a;s multiprocessor systems grow to include more and more Pc’s, we ﬁre
not faced with a law of diminishing returns: no matter how many Pc’s
are used, if we have the same number of memory modules, we can expect

half the processors to be active.

4. A SIMPLE DISCRETE MARKOV CHAIN MODEL

For this analysis let us assume that all the Fc’s are

characterized by a single constant processing time tp. Also, all the
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memory units are as.sumed to. have the same cycle time. .tc and access time
ta. Thus, tﬁe ‘memory rev_vrite‘ time is given by tw=ic-ta. If tp= tv;l then
all memory units can be considered to be operating synchronously. Thus,
during any memory c}cl.e the number of active Pc’s Is equal to the
number of busy Mp’s. With tp=tw, the analysis is simpler than with
tp<t‘w and ‘tp>tw. Also, it is a boundary condition for the ‘other two
cases. Thus, tp=tw is an interesting case for a preliminary comparison
of various modeling techniques, even when tp is not equat to tw in

reality.

in this section, a simple Markov Chain Analysis is presented for
‘the case in which the processors request every memory with equal
likeliﬁood. A multiprocessor syste-m w1;th n Pc’s and m Mp’s is likened
to an occupancy problem with n balls and m urns. Balls are randomly
assigned to the m urns at the beginning of a memory cyclé. At the end
of the cycle one ball is removed from each urn.. Thus if there are k
non-empty urns during cycle s then k balls are available for assignment

during the (s+1)-th cycle.

The state of the above mentioned process is defined by a m-tuple

{k1,k2,.,km), where fki-m and Os<kisn for all i. The number of
i:T . n+'m-1

distinct states of the system is given by the combination, ( m-1 ) i.e.

the number of ways in which n balls can be assighed to m bins

[FeiW66]. However, since all the processors behave identically, a
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number of the distinct states are equivalent ie. they have the same
occupancy and have the same components. e.g. stat;s (2,1,1), (1,2,1),
(1,1,2) are equally likely. Thus, the reduced states are given by the
different wayé in which the number n can be partitioned into m parts.
i.e.‘ the unordered solutions to the equation %)sli-n for 0<Xisn represent

equivalent classes of equally likely states. The number of such

partitions (for nsm) is asymptotic to

1 exp[n(2n/3)10.5] [cf. BeckE64]
4T3
Also,
F(x) = 1 .
{1-) {1-x12) . . . (1-xTm) _

. o0
= 1+2 p(ixti
i=1 .
is an ordinary generating function of the sequence (p(0), p(l), ..,
p(m)), where p(i) denotes 'thé number of "partitions of the integer |

that have no part exceeding m [LiuC68)

Let the' representative state Si denote the set of compositions of
ther number n that vyield the same partition eg. the compositions
. (2,1,1), (1,2,1) and (1,1,2) correspond to the partition of the number
4 which has two 1's and one 2. Further, let Si.j be the individual
compositions of the partition typified by representative state Si and

Si.1 be that composition which has its components arranged in monotone
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START
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STOP

An algorithm for generating partitions

Figure 4.1
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non-decreasing order, ie. (2,1,1) for the above example. The algorithm
shown in Fig. 4.1 generates all the partitions of n with the components

in monotone non-increasing order.

Let Xij denote the probability of a transition from §j to Si.
Then, due to the symmetry of the pfoblem,

Xij = > Prob{Transition from Sj.i to Si.k}
Si.keSi '

Let the m-tuple: (kl,ké,....,km) denote the state of the Markov
chain. If x is the number of non-zero elements in this vector then. at
the end of .the memory cycle, x new processors have to be reassigned to
memory modules. At the end of the current memory cycle the queue is
characterized by the m-tuple (Jl,JZ,...;Jm), where

J =ki-1 if ki>0

=0 otherwise.

A new state (L1,L2,..,Lm) is reachable from (kik2,.,km} if and
only if LizJi for l<ism. If the above condition is satisfied the

probability of the state transition is given by

m-l

(x-dl)( -dl-dz)& - (x-?:dl)

where di= Li-Ji



16

ie.  x #{(1/m)Tx

dl! d2! ...dm!

o 3 m m m
Note that since > ki = 3 Li = n, 3°di = x

i=1 1=  i=1
Thus, we now have a formula for generating the transition
_probabiiities. Pue to fhe symmetry of the problem it suffice# to
generate only the transition probabilities for the representative class
6f states. All the different wy§ of obtaining the same part_itibh are

 lumped together to form a reduced state.

Tol illustrafe -a  computational methods+ for generating the
transition probabilities consider an example of a 4 by 4 system. The
number 4 .can be partitioned in 5 differeh,t ways as Iisted bélow:

4000
31 0:.0
2200
2110

1111

xThe use of a tree to generate the transition probabilities was suggested
by F. Baskett and D.Chewning of Stanford University.
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These partitions represent 5 equiv-alent classes that characterize
'the state of the Markov lChain. Let us consider the state (2,2,0,0). At
the end of a memory cycle, the resultant parﬁal state s (1,1,0,0)
with 2 free ﬁ-rocessors .to be reassigﬁed. Figure 4.2 shows the different
ways in which thes.se' 2 Pc‘is‘ can be assigned, one at a time, to reach a
new partial representative state. After‘ both Pc’s are assigned a
terminal state is reached. The number on the arrow indicates the number
of ways of reaching the partial or terminal state that the arrow points
to. Now the number of ways in which a final state can be reached from
the initial state can be computed by traversing the tree, eg. there
are 2x1 ways of reaching (1,1,1,1) and (2x2 + 2x3) ways of reaching

(2,1,1,0) from (2,2,0,0).

It is possible to construct a single tree with different pointers
for different initial states. Figure 4.3 shows a complete tree for a
x4 system. Initial states are circied. The entire traﬁsition matrix
can be filled by traversing this tree. A convenient way"® of traversing
this tree is by using a stack which has depth equal to one more than
the numbér of Pc’s. At each level the stack contains a partial state
and has a pointer to the initial representative state (if _any)- from‘

which it is derived. The stack is initialized to contain the path that

- YAn alternative method for traversing the tree is described in Appendix .
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Figure 4.2 Next states accessible from initial state (2,2,0,0)
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leads to the topmost final state. For this example the stack is
initialized as shown in Fig. 4.4, and Fig. 45 shows an algorithm for

using the tree to generate the transition matrix, shown in fig. 4.6,

The following theorem and lemma can be used to increase the

efficiency of the program that generates the transition probabilities.

Theorem 1: There is a one-to-one correspondence between a
representative state and a partial stale that the representative state

reduces to at the end of a cycle.

Proof: Let (kl,.km) be a representative state. The pnrtial
state at the end of the cycle is given by
| {J1,J2,...,.Jm)
whe.re Ji=ki-1 if ki>0
=0 otherwise
Since no two represeniative states are alike and Eﬁki-n, it follows that

i=1
the partial states are distinct.

Lemma ' A partial state at level L in the enumerative tree of Fig. 4.3

can correspond to a terminal state with exactly n-L occupied Mp’s.
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Figure 4.4 1Initial contents of the stack for traversing

the tree shown in Figure 2.3
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Proof: Let J=(J1,J2,..,Jm) be a partial state in the tree
depicted in Fig. 4.3. Furthermore, let the number of non-zero elements
elements in the partial state be y and let gJ{-n-x. Since one Pc is

1=

always removed from -a'lnon»-empty queue at the end o.f a cycle, J is a
partial staté that can be reduced from a valid representative state
K=(k1,k2,...km), if and only if

(f) 'fhe number of non-zero elements in K is x.a.nd

(i) x>y
Note that x and y are both less than or eﬁual to min{mn) and if',;si-n.
Then,. it x>y, J has atleast x-y zeros. If x<y then there |—s no
representative state K that co;responds to the partial state J If x2y,
then the representative- state is obtained by adding y 1's to the
non-zero elements of J and replacing x-y zeros of J by 1. At level L,

o .
iZJliw L. Therefore, x, the number of occupied Mp’s in K, is equal to

n-L.

Figure 4.7 -shows the average number of busy Mp’s when n=m. The
curve has an almost constant siope of 586 for n>4, Figures 4.8 and 4.9
show the effect of adding 2 Pc and an Mp respectively on the average

number of busy Mp’s.
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L=l

DONE

Level L ?

Use Level L-1 to
change Level L

Update NWAYS

Generate transition prob-
abilities from all :fnaitiz:
state pointed to by the
stack.

Update pointer
to initial state

L~L+1

Transition matrix has -een
completely generated,

?

‘l

Normalize each column so
that sum going down a
column is 1,

Figure 4,5 Algorithm for traversing the tree shown in Figure 4.3
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Final equations to be solved simultaneously:

| 4000 0.25
3100 0.75
¥2200 0.00
P, 100 0.00
LP1111 | L0.00

SUBJECT TO P, 400 + P3100 ¥ Pa290 * F2100 + F1111 =

0.0625
0.3750

0.1875
0.3750

0.0000

0.000
0.125

0.125
0.625

0,125

0.015625
0.187500

0,.140625
0.562500

0.093750

4000 (13100[ 220021101111
4000 1 1 0 1 4
3100 3 3+3 2 34+3+6 | 12412424
2200 0 3 2 346 12424
2110 0 6 446 6412418 | 24448472
1111 0 0 2 6 24
STEP 1: Xij is the number of ways of reaching i from j.
(obtained from the tree of fig. 2.3)
STEP 2: Xij _Xij (Note that ZXij=mx, where x of the m
EXij componentsiof j are non-zero)

0.015265
0,187500

0.140625
0.562500

0.93750

1

Figure 4.6 Steps in the generation of the transition matrix

24000
P1100

Py200
Eyi00

P1111
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Average number of busy Mp's
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Figure 4.7: Multiprocessor Systems with n=m.
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Average number of bu_sy'Hp's

10

mo 16

v v *

! 2 3 4 5 - 6

Figure 4.8:

?

Mumber of Pe's

9

1

12

13

The effect of adding a Pc.’

14

15

16



27

Average number of busy Mp's
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5. OTHER DISCRETE MARKOV CHAIN MODELS

5.1 Discrete Markov Model of Skinner and Asher

Skinner - and Asher {1969] model the multiproéessor ‘system as &
discrete Markov chain. Theyl assﬁme a matrix of probabilities that
express the likelihood .that a given processor requests service from a
given memory at the beginning of-.a memory cycle, provided the Pc is not
queued. Theyl also assume a matrix of probabilities that- express the
likelihood of the various outcomes that can arise when there are
simultaneous reque;ts to one memory by several processors. The state of
the sys;iem is characterized by the processors queued for the different
memory modules. A state transition matrix is formed from the access
probabilities and the steady state probabilities of various states are
determined by solving'the state tran.sition equations. The number of
states of the system increases very steeply with an increase in the
number of Pc’s and Mp’s. Closed form solutions are presentéd only for
cases with up to. 2 Pec’s and n Mp’s. The analysis in the previous
section is similar to Skinner.and. Asher, but with uniformly random

access patterns for all the Pc’s, i.e, Pij=1/m for all i.
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5.2 Strecker’s Approximation

Strecker ‘[1970] has an approximate closed form solution to the
diécrete‘ Markov Chain model presented here. His approach is equivalent
to removing thg' queued processors from all the memory modules at the
end of a memofy cyéie and reassigning them, Thus the state of the
system is considered independent of the state . during the last cycle If
we use this assumption the dlstn'buhon of Pc’s queued for an Mp

follows the binomial distribution:

n
Prob{Ysr} = (r)u(llm)r*(l-lfm)n—r
where Y is a random variable equal to the number of Pc’s

queued for Mp[j] and Pij=1/m for all i and j.

Thus,
Prob{Mpl[j] is busy} = 1- Prob{nobody is queued for Mp{jJ}
= 1-(1-1/m)tn
In other wordé, the occupancy of Mp[j]is 1-(1-1/m)tn, and
E[no. of occupied Mp’s] -Eﬁl{Occupancy of Mp{jJ}

= mx[1-(1-1/m)tn]

Teble 1 shows a comparison of Strecker’s results and the exact



£(n)

M : ‘b ; J.‘r“ | - - =0 ‘;\"""‘—':'.'h-__—,.;__‘u o
:q,,-".»r": s
‘,_,-arc:'ﬂ””
zf‘”“
‘,f‘
n.1n(1-2)
/-4";‘ f(n) = m[]_e . 1 ]
1.n

0 < =4 -+ + 3 | | ¢ ) :
1 2 | |

Bis

-3

Figure 5.1 Strecker's formula for fixed m
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Markov chain analysis. Note that Strecl;.er‘s results are optimistic
estimates of the unit execution rate. It is encwraginé to note that
such a simple expression is within 6 to 87 of the exact Markov Chain -
model for m/n>0.75. This is because his analysis assumes that all n
Pc’s always make a new request at the beginning of each memory cycle,
whereas in the: discrete Markov chain only those Pc’s that receive
service are allowed to | make new requests. Moreover, note that the
expression ms[1-(1-1/m)tn} ;:an be written in an exponential form as
m#{1-exp[n* In (1-1/m)]}
Figure 5.1 shows a _plot of the above expression for fixed m; the

relaxation time [ In (l-llm)]"approaches m as m gets large.

6. DIFFUSION APPROXIMATIONS

An approximation method that has been proposed for the solution bf
general quepeing. ne.tworks is the diffusion approximation [cf. NeweG71;
KobaH73] A discrete-state process is approximated by a Wiener-Levy
dlffulen process with a continuous path. The key assumption in such an
I.analysm is that incremental changes in the queue lengths are normally
~ distributed. " This leads to a characterization of the queueing network

by a set of diffusion equations. The accuracy of the approximation
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depends on three factors: (i) approximation of a discrete-state process-
by a time-continuous Markov process, (i) choice of proper rgflecting
" barriers, and. (i) discretization of the continuous density function.
for queue Igngths. Surprisingly, for the simple discrete Markov Chain
modell of section 4, the diffusion approximation yields‘ a result
identical to that with exponential servers derived from Jackson’s
formulae. Howéyer, lﬁe main utility of the diffusion approximation in
this context is that it can be used to analyze the effect of different
coeffi.cients of variation ( ratio of standard devition to the mean)

for the service time distribution.

7. CONCLUDING REMARKS

Tables 1 and 2 compare the numerical results obtained from the
different models described. Strecker’s approximation gets better as m/n
increases, whereas the continuous .time_ and discrete.Markw models get.
closer for'la}ger n/m ratios. Table 3 shows some simulation results
obtained with exponential distributions for the processing time, with

mean equal to tw.

i.e. Prob{tp=x} = X exp(-Ax) where A=1/tw=1/ta=1/E{tp]
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Note that the values in Table 3 lie between those predicted by Strecker
and Jackson. Table 4 shows the characteristics of the parameters in the

various models.
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TABLE 1

Expected number of busy memories in one cycle
Number of Pc’s = 1,2,..,8 (rows)
Number of Mp’s = 1,2,..,8 {columns)

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

1.0000
1.0000
1.0000
- 1.0000
1.0000
1.0000
1.0000
1.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
1.5000
1.6667
1.7500
1.8000
©1.8333
1.8571
1.8750

1.0000
1.5000
1.7500
1.8750
1.9375
1.9687
1.9844
1.9922

0.0000
0.0000
4.9979
7.1429
7.6389
7.3856
6.8548
6.2507

1.0000
1.6667
2.0476
2.2701
2.4102
2.5059
25751
2.6274

1.0000
1.6667
2.1111
2.4074
2.6049
2.7366
2.8244
2.8829

0.0000
0.0000
3.1012
6.0482
8.0782
9.2063
9.6812
9.7244

Discrete Markov Chain Model

1.0000 1.0000 1.0000 1.0000
1.7500 1.8000 1.8333 1.8571
2.2692 2.4095 25054 25748
2.6210 2.8630 3.0365 3.1657
2.8633 3.1996 3.4530 3.6482
3.0370 3.4533 3.7809 4.0415
3.1663 3.6486 4.0418 4.3636
3.2657 3.8024 4.2521 4.6294

Strecker’s Approximation

1.0000 1.0000 1.0000 1.0000
1.7600 1.8000 1.8333 1.8571
2.3125 24400 25278 25918
2.7344 29520 3.1065 3.2216
3.0508 3.3616 3.5887 3.7613
3.2881 3.6893 3.9906 4.2240
3.4661 3.9514 4.3255 4.6206
35995 4.i1611 4.6046 4.9605

Percentage Error

0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
1.9082 1.2658 0.8341 0.6602
43266 3.1086 2.3053 1.7658
65484 5.0631 3.9299 3.1002
8.2680 6.8340 55463 45157
9.4685 8.2991 7.0191 5.8896
10.2214 9.4335 8.2900 7.1521

1.0000
1.8750
2.6272
3.26562
3.8019
42518
4.6292
49471

1.0000
1.8750
2.6406
3.3105
3.8967
4.4096
4.8584
5.2511

0.0000
0.0000
05100
1.3874
2.4935
3.7114
49512
6.1450
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TABLE 2

Expected number of busy memories in one cycle

Number of Pc’s = 1,2,...,8 {rous)

Number of Mp's = 1,2,...,8 (columns)

1.8800
' 1.6088
1.6800
1.0088
1.6088
1.66088
1. 4ges
1.0800

1.6699
1.8008
1.08008
1.60808
1.6000
1.0000
1.00800
1.0088

0. 80008
B.6060
‘8. 6600
B.6ooo
8.660s
8. bges
0.060688
0. 8e0a

1.6008
1.5008
1.6667
1.7508
1.8008
1.8333

1.8571:

1.8750

1.06008
1.3333
1.5008
1.6880
1.6667
1.7143
1.7568
1.7778

9.0088
11.1133
16.0018

8.5714

7.4056

B.4318

5.7671

5.1848

Discrete Markov Chain Model

1. 00608
1.686867
2.8476
2.2781
2.4182
2.5659
2.5751
2.6274

1.60008
1.7588
2.2692
2.6218
2.8633
3.8378
3.1663
3.2657

1.06008
1.8008
2.4835
2.8638
3.19386
3.4533
3.6486

3.8624

1.06008
1.8333
2.5854
3.8365
3.4530
3.7883
4,0418
4,2521

1.00828
1.8571
2.5748
3.1657
3.6482
4.8415
4.3636
4.6294

Continuous Time Markov Chain Model

1.00808
1.5868
1.3608
2.60608
2.1429
2.2583
2.3333
2.406008

1.080088
1.60088
2.0080
2.2857
2.5808
2.6667
2.86068
2.9031

1.0068
1.8667
2.1429
2.5608
2.7778
3.60080
3.1818
3.3333

1.8668
1.7143
2.2500
2.6667
3.6€00
3.2727
3.5600
3.6923

Percentage Difference

0.0080
10.0018
12.8922

2. 6088

8§.5714
11.8632

11.8382 12.7928

11.6304
18.2119
3. 38399
8.6549

12.6882
12.1938
11.5687
108.9196

B.9860

8.08000

7.4856 6.4919

11.0645 18,1940
12.6798 12.1785
13.1823 13.1198
13.1266 13.4412
12.73939 13.4849 13.86218
12.3363 13.1653

1.06088
1.7508
2.3333
2.8008
3.1818
3.5008
3.7692
4.60008

8. 0008
5.7671
9.3794
11.5519
12.7844
13.3985

13.5957

1.0008
1.8758
2.6272
3.2652
3.8019
4,2518
4.6292
4.9471

1.0088
1.7778
2.4008
2.8091
3.3333
3.6323
4.0008
4.2667

8.t66oe
5.1840
8.6480
10.3659
12.3254
13.1591
13.5920
13.75835
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TABLE 3

- Expected number of busy memories in one cycle :

Exponential distribution for tp

Constant tw=ta=E[tp]

Simulation resuits

M= 2 3 4 5 6 7 8

n=2 1.4088 1.6931

n=3 1.6185 1.9878 2.2075

n=4 22198 25643 2.8004

n=5 2.7980 3.1472 3.4300

n=56 3.4088 3.7122 4.0040

N7 3.9990 43196 4.5804

n=8 45666 - 4.9028
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TRBLE 4

Memory Cycle
Tima

Constant

Constant

Exponsntial

Constant

Constant

finalysis

Exact

Approximate

Exact

Approximate

Rpproximate

Computational
Eane

Solution is
algorithmic,
Unuialdy for
large n.

Closed form
solution.
Simple formula.

Closed form
solutlon.
Simple formula,

Closed form
sotlution,
Simple formula.

Unuieldy due to
slou stochastic
convergence.
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APPENDIX i

The tree in Fig. 43 can be converted into a mesh by lumping
together all occurrences of a partial state in the tree. e.g. state
2100 at level 3 appears twice. the resulting mesh for the 4 by 4
example is sho@n in Fig. 1. the algorithm for genérating the transition
matrix is shown in Fig. 4. though'the implementation of this algorithm .
~involves a matrix multiplication and requires more temporary storage it
is faster than the algorithm in section 2 for larger n. Thus, a

space-time trade-off affects the selection of the algorithm to be used.
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Fig. 1. Enumeration mesh for a 4 by 4 multiprocessor system,
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generate partitions of Ninto M parts.
lat the vector XSYS denole these partitions,
that represent the state of the system.

h 4

Generate partitions of N-1 into M parts.
Le! X2 denote these partial siates.

s

Compute B.
alrix B is the number of ways
- of reaching XSYS from X2.

[
L

Update TRANS (i.e. matrix of number
of ways of reaching XSYS from XSYS.)
if any state in X2 is a reduction
-of & state in XSYS.

!

I=1-1

Generale partitions of |
Vector X1

Compute matrix A
A is the number of ways of
reaching X2 from X1.

Y

Matrix Multiplication.
B = AsB
Interchange X1 and X2.
B is now the number of ways
of reaching X5YS from X2,

i
) v

1f 00..0 is a reduction of a
state in XSYS update TRANS.

-«

Evaluation of
the required matrix of the number
of transitions, TRANS is complete.

-t Figure 2 An slgorithm for evaluating tho transition matrix.



