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ABSTRACT 

Many game-playing programs must search very large game trees. Use 

of the alpha-beta pruning algorithm instead of the simple minimax search 

reduces by a large factor the number of bottom positions which must be 

examined in the search. An analytical expression for the expected number 

of bottom positions examined in a game tree using alpha-beta pruning is 

derived, subject to the assumptions that the branching factor N and the 

depth D of the tree are arbitrary but fixed, and the bottom positions 

are a random permutation of N° unique values. A simple approximation to the 

growth rate of the expected number of bottom positions examined is suggested, 

based on a Monte Carlo simulation for large values of N and D. The behavior 

of the model is compared with the behavior of the alpha-beta algorithm in a 

chess playing program and the effects of correlation and non-unique bottom 

position values in real game trees are examined. 



TABLE OF CONTENTS 

Section Page 

1. Introduction 1 

2. The Alpha-Beta Pruning Algorithm 2 

3. A Probabilistic Model of Game Trees and Some Initial 14 
Observations 

4. The Probability of Evaluating a Node in the Game Tree 18 

5. The Expected Number of Bottom Positions Evaluated 23 

6. Application of the Game Tree Model to Chess 37 

7. Empirical Observations 42 

8. Conclusion 47 

Appendix: Notation 49 

References 51 

ii 



1. INTRODUCTION 

Searching trees of possible alternatives is a task common to a wide 

range of programs. The efficiency with which these trees can be searched 

is of critical importance to such programs, since the trees are typically 

very large. This paper is concerned with measuring the efficiency of a 

particular tree-searching algorithm, the minimax search of a game tree 

with alpha-beta pruning. 

The probabilistic model used in our study is presented in the next 

section and we derive an analytical expression for the expected number of 

bottom positions evaluated in the search of a game tree using alpha-beta 

pruning. A reasonably accurate simple approximation to the analytical 

result based upon an empirical analysis is suggested. Since our model in

corporates several simplifying assumptions, the relevance of our model will 

be examined in Section 6 where we compare the behavior of our model with 

the observed behavior of the alpha-beta procedure as it is used in a non-

trivial example, a chess playing program. 

In this paper, the operation of the minimax search procedure and the 

alpha-beta pruning procedure are illustrated in the context of game play

ing programs. We give the name Max to the player whose turn it is to move 

and the name Min to his opponent. Max attempts to maximize the ultimate 

value of the game while Min attempts to minimize the value. A number of 

strategies exist to aid a player in determining his next move, but the 

minimax procedure has received the most attention in programs which play 

games of perfect information. The procedure is most easily illustrated 
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with the aid of the simple game tree of Figure 1.1. The nodes of the tree 

are interpreted as positions, and the arcs from each node are the legal 

moves from that position. The square nodes indicate it is Max's turn to 

move while the circles indicate it is Min's turn. The static values 

associated with each of the nine bottom positions are given independently 

of the application of any search procedure. Increasing values are interpreted 

as a measure of the "goodness11 of a board position, i.e., the amount of ad

vantage to player Max. In the minimax procedure the backed-up value of a 

Max position is the maximum of the values of its immediate successors and 

similarly, the backed-up value of a Min position is the minimum of the 

values of its immediate successors, i.e., at each node the player to move 

will choose the move which is most favorable to himself. The minimax pro

cedure recursively applies these two rules until the static values at the 

leaf nodes have been used to generate a backed-up value for the root node. 

For example, in Figure 1.1 the backed-up values of p(1), p(2), and p(3) 

are 3, -2 and -10, respectively and the backed-up value of p, the root node, 

is 3. For a more complete discussion of the minimax procedure see Shannon 

[1950] or Nilsson [1970]. 

We will frequently use the game of chess in this paper to illustrate 

some of the practical implications and limitations of our analysis. The 

classic example of the limitation of the minimax procedure is its applica

tion to chess. Consider the game tree for chess where the position p is 

defined by the location and identity of each piece on the board, the identity 

of the player whose turn it is to move, and historical information relating 

to castling, en passant captures, and draws by repetition. Suppose we ex

tend the chess game tree until every leaf node is a win, loss, or draw. 
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4 

Figure 1.1. A game tree with branching factor 3 
and depth 2. 
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Then the minimax procedure could be applied to this tree to find the 

optimal playing strategy. However, the exponential explosion of the 

"look-ahead11 tree makes this impossible in practice. (It is estimated 
40 

that there are about 10 possible checkers games [Samuel, 1959] and about 

10^^ possible chess games [Shannon, 1950], but less than 10^ microseconds 

per century.) Therefore, the look-ahead process is typically continued 

down to some non-terminal (and possibly fixed) depth at which the position 

is evaluated with a less accurate evaluation function. If the branching 

factor, N, and the depth, D, are both fixed, then N° bottom positions are 

generated in the minimax search. Even using incomplete (non-terminal) 

trees, the look-ahead trees for most game playing programs are still very 

large. In chess, for example, a typical value for the number of legal 

moves from a middle-game position is 35. If <N,D> = <35,4>, then the 

number of bottom positions, N D, which must be evaluated using simply mini

max search is 1,500,625. For <N,D> « <35,5>, N° = 42,521,875. Chess 

playing programs are expected to satisfy the time constraints of tournament 

play: they are allowed two hours of computation time to make 40 moves. For 

a tree of size <N,D>=<30,4>, this would mean that on the average about 220 

microseconds would be available for evaluation of each bottom position if 

the minimax algorithm were used, including the tree-searching overhead in

volved in reaching that position. The need to effectively reduce the size 

of the tree to be searched is apparent. 

In the remainder of this paper we will restrict our attention to Max-

trees, i.e., game trees that maximize at the top level. We can do this 

without any loss in generality because of the obvious mappings that exist to 
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transform Min-trees to Max-trees. For example, consider the isomorphism: 

cp(x) « -x. Then by the definition of the min and max operators we see: 

max(x1 ,x2,... ,xn) = -min(-x-, -x2,..., -x^ 
= cp(min(cptx1),cp(x2 ),...,co(xn>) 

and 
min(x1,x2,...,xn) - -max(-x-,-x 2, . . . , -x r) 

= cp(max(cptx1),co(x2) ,...,co(xn)) 

Since these identities can be applied recursively, an arbitrary Min-tree 

can be analyzed by analyzing the corresponding Max-tree created by comple

menting all the values in the Min-tree, replacing all min's by max's, and 

replacing all max's by min's. The only difference between a Min-tree and 

its associated Max-tree is that all backed-up (and static) values in the 

Max-tree will be the complement of the corresponding values in the Min-tree. 

2. THE ALPHA-BETA PRUNING ALGORITHM 

The alpha-beta algorithm is equivalent to the minimax algorithm in 

that they both find the same best move from position p and both will assign 

the same value of expected advantage to it. Alpha-beta is faster than mini

max because it does not explore some branches of the tree that will not 

affect the backed-up value. The algorithm can be illustrated with the tree 

of depth three in Figure 2.1. Assuming that the searching proceeds in a 

depth-first fashion from left to right and that the root node is a Max 

node, the successors of Min node p(l) are first examined and the maximum 

value 3 is backed up to p(1,1). The value 3 now becomes an upper limit 

(beta value) for the backed-up value of node p(l). At this point the final 

value p(1) is unknown, but since p(1) is a Min node we do know that its 

value must be at most 3. 



pO);v(1)-3 

3 2 5 -8 1 -1 

| +1: position not evaluated because of a cutoffs, 

0 : position not evaluated because of |3 cutoffs. 

Figure 2.1. Example of alpha and beta cutoffs. 
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Next the procedure begins to examine the successors of p(1,2). When 

p(l,2,2) is evaluated the lower limit (alpha value) for the backed-up 

value of the Max node p(l,2) becomes 5. Since the alpha value of p(1,2) 

is greater than the beta value of p(1) (=3), p(1,2) cannot be the lowest 

valued successor of p(l), and thus there is no need to evaluate the re

maining successors of p(1,2)0 That is, Min will not select p(1,2) because 

Max can choose a branch leading to a higher value than Min knows can be 

achieved with p(l,l). Hence we have a beta cutoff at p(1,2,2). Additional 

beta cutoffs occur at p(l,3,l) and p(3,2,2). 

After the beta prunes at p(l,2,2) and p(l,3,l) occur, the value 3 is 

backed-up to p(l) and becomes the lower limit (alpha value) for the backed-

up value of node p. The procedure now begins to investigate the successors 

of p(2). On evaluation of p(2,l) the beta value of p(2) becomes 1. Since 

this is less than the alpha value (-3) of p, an alpha prune occurs at p(2,1). 

Because of alpha cutoffs, nodes p(2,2), p(2,3), and p(3,4), and their suc

cessors, are not evaluated. Note that only 15 bottom positions are evaluated 

by the alpha-beta procedure, whereas the minimax procedure would examine all 

28. 

In this example the alpha value used to obtain the alpha cutoffs was 

associated with the root node and the cutoffs occurred near the bottom level 

of the tree. Note that if the tree in the example were one of greater 

depth, the cutoffs at p(2,l) and p(3,3) would prune the potentially vast 

subtrees rooted at p(2,2), p(2 f3), and p(3,4). Furthermore, an alpha or 

beta value may generate cutoffs at any node an even number of levels below 

it. These are called deep cutoffs and a deep alpha cutoff is illustrated in 

Figure 2.2. 
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Backed-up values: 3 

Static 
values: 

x x 

x| position not evaluated because of deep a cutoff 

x position not evaluated because of shallow a cutoff 

Figure 2.2. Example of deep alpha cutoffs. 
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Beta cutoffs are analogous to alpha cutoffs, with the roles of mini

mizing and maximizing reversed. The beta value specifies an upper limit 

for the backed-up value of a Min node and is used to generate cutoffs 

among the successors of Max nodes at any level deeper in the tree. Assum

ing that the root node (D^O) is a Max node, alpha cutoffs occur at even 

levels and beta cutoffs occur at odd levels. 

In order to formally define the alpha-beta pruning algorithm described 

above, we introduce a few notational conveniences. Consider the partial 

game tree shown in Figure 2.3. We identify a node at depth d ^ D in the 

tree as p(T^), where i^, sometimes denoted ( i ^ , i ^ ) , is a vector of 

length d whose components i.j ,i 2,... ji^ identify the branch selected from 

the nodes at successive depths in the tree along the path from the root 

node to p(T^). v(i^) i s the backed-up (for an intermediate node) or static 

(for a leaf node) value associated with node p(i^). 

To simplify subsequent subscripts and summation ranges, we introduce 
the notation 

, IK if K is even 
LKL = 2L|J =< (2.1) 

1 k-1 if k is odd 

, >. JK if K is odd 
LKJ = 2L SF I] + 1 =/ (2.2) 

° ] k-1 if k is even 

Consider the path from the root node to p(i^). At level j, for j and d even 

and 0 £ j < d, a maximizing operation is in progress and we have a lower 

bound a^(i^) on v(i^), denoted the j-level alpha value, where 
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depth 

5 3 i 5 = (2,3,1,4,3) 

Of(l5) = -1 

0(i5) =10 

Figure 2.3. A game tree illustrating our notation for the alpha-beta algorithm. 
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a j(i d) - p m a x { v ( i 1 v(i 1,... ,2),..., 

v(i 1,...,i j,i j + 1-1)} for > 1 (2.3) 

for i J + 1 = 1 

Similarly, at level j , for j and d odd and 1 £ j < d, a minimizing operation 

is in progress and we have an upper bound b^(i^) on v(i^), denoted the j -

level beta value where 

b..(id) ^ m i n j V C ^ , . . . , ^ , ! ) , v(ij , • • • ,i^ ,2) ,... ,v(i1, •. • ,i^ ,i^ + 1 -1) 

for i ̂  > 1 (2.4) 

for i J + 1 = 1 

Finally, define the greatest alpha value, or simply alpha value as 

«(id) = m a x { a 0 ( i d ) , a 2 ( i d ) a < ? ) } (2.5) 
e 

and the least beta value, or simply beta value, as 

P(Td) = min{b1(id),b3(id),...,bLdj <id)} (2.6) 
o 

-* 
If k is the level at which the maximum (minimum) of the a . ( i,) fs is 

J d 

attained, then the greatest alpha (least beta) value is a lower (upper) 

bound on the eventual backed-up value of the subtree rooted at p ( i ^ ) , and 

continuing to explore subtrees whose backed-up value cannot be greater than 

the alpha value (cannot be less than the beta value) i s pointless. 

Definition of Alpha-Beta Pruning Algorithm 

The alpha-beta pruning algorithm is identical to the minimax algorithm 

except that whenever 
-* -> v ( i , ) ^ oKi,) and d even a a 

an alpha cutoff occurs, and whenever 
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v(lj :> p(ij and d odd a a 

a beta cutoff occurs. A cutoff at node p0-d) means that the remainder of 

the subtree rooted at p(i^,...>id-1)> i.e., p(id>!s parent node, is not 

examined in the minimax search. 

The above discussion of j-level alpha and beta values proves the follow

ing fundamental lemma. 

—> 

Alpha-Beta Lemma. Let v^(ig) be the backed-up value of a game tree using 

the alpha-beta pruning algorithm and let v^^g) be the backed-up value of 

the same game tree using the min-max algorithm. Then 

It should be noted that there is at least one class of risk-free pruning 

algorithms that is not subsumed by the alpha-beta algorithm. For example, 

consider the case where a top level move is found to lead to a win. Using 

the alpha-beta algorithm the next branch would have to be explored to some 

extent before being pruned; but it is clear that all other branches at the 

top level could be pruned immediately. This could, of course, be applied 

at any point in the tree where a win for the player to move is found. 

The use of alpha-beta pruning in the minimax search reduces by a large 

factor the number of bottom positions which need to be examined, typically 

Some care must be taken in tne implementation of this algorithm. In the 
Second Annual Computer Chess Championship (Chicago, 1971) a chess program 
using this algorithm discovered a mate in two moves and terminated its search. 
After the opponent moved, the program began the search again, discovering 
first a mate in three. It immediately pruned and made the first move of this 
sequence, missing the possible mate on the move. It continued finding mates 
in more than one move until due to another bug it finally lost the game. 
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by several orders of magnitude in many game playing programs. Previous 

results [Slagle and Dixon, 1969] have established the lower limit for the 

number of bottom positions examined. The lower limit will be achieved if 

the static values of the bottom positions are in "perfect order11, i.e., 

ordered such that every possible alpha and beta cutoff occurs. It can be 

shown that if perfect order is achieved at every level, so that every pos

sible alpha or beta cutoff occurs, then the number of positions at the bot

tom of the tree of depth D and constant branching factor N is: 

D 
NBP = 2N2 - 1 for D even, po 

D+1 D-1 
NBP = N 2 + N 2 -1 for D odd. po 

4 
Thus for <N,D> = <35,4>, NBP - 2449, which differs from 35 - 1 ,500,625 

by a factor of 612. 

This very large ratio of extremes in performance has important implica

tions for searching large game trees. The performance of the alpha-beta 

procedure may be further improved by the incorporation of heuristics which 

reorder the nodes of the tree into a "more perfect11 arrangement. Various 

techniques of fixed and dynamic ordering of nodes at intermediate levels 

of the tree are available [e.g., Slagle, 1963]. The rationale for these 

types of heuristics is based on a correlation between the static values of 

nodes at intermediate levels of the tree and the final backed-up values ob

tained for these nodes. This means that the nodes may be reordered before 

evaluation of their subtrees to more closely approximate perfect ordering and 

thus obtain a higher rate of pruning. The evaluation of the expected gain 
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over the simple alpha-beta algorithm obtained by the use of such heuristics is 

complicated by the fact that, while the perfect ordering results provide a great 

est lower bound for the number of bottom positions evaluated, the upper bound 

of N° is unrealistic because it is greater, often by several orders of magnitude 

than the number of bottom positions evaluated with the unmodified alpha-beta 

algorithm. 

Knowledge of the expected value of the number of bottom positions 

evaluated in a look-ahead tree using alpha-beta pruning should be useful 

because the expected value provides a much tighter upper bound for the 

average performance of the tree-searching procedures than does the upper 

bound given by the minimax algorithm. Thus, when evaluating the effective

ness of heuristics to be used in conjunction with the alpha-beta algorithm 

one might determine not only how closely the resulting performance approach

es the limit under perfect ordering, but also how much better (or worse!) 

the resulting performance is compared with that of the unmodified alpha-beta 

algorithm. 

3. A PROBABILISTIC MODEL OF GAME TREES AND SOME INITIAL OBSERVATIONS 

In order to draw some quantitative conclusions about the performance of 

the alpha-beta procedure it is necessary to precisely model game trees. 

However, our purpose here is to keep the model sufficiently simple so that 

analytical techniques can be applied to our study of the performance of the 

alpha-beta procedure. 
Our model includes three simplifying assumptions. 

1. Let us assume our game trees are complete trees of depth D with 

constant branching factor N, e.g., Figure 2.3 where D = 5 and N = 4. 
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Note that there are always bottom positions, and in general 
d 
N nodes at depth d in the game tree. 

2. To study the probabilistic properties of the game trees we must 

provide a model of the static values assigned to the bottom posi

tions. A simple yet appealing assumption to make is.that the 

values, v(ip), of all N° bottom positions are independent, iden

tically distributed (iid) random variables with arbitrary dis

tribution function V D(x). 

3. The only requirement on V D(x), in addition to the standard prop

erties of a cumulative distribution function [cf. Parzen, 1960], 

is that it be continuous. In other words, we require that the 

probability that the value of a leaf node is precisely x is van-

ishingly small, to eliminate the possibility of two or more nodes 

having the same value. 

The second and third assumptions can be equivalently restated by model

ing the leaf nodes as a random permutation of the ordered list of values; 

i.e., each of the N°I assignment of values to the nodes is equally likely. 

Note that the actual values of the N° bottom positions is not of interest 

when studying the behavLDr of minimax searching, and the alpha-beta procedure 

in particular, but only their relative ordering. Our previous discussion of 

the transformation of Min-trees to Max-trees implies that the probability 

of examining a particular bottom position in a Min-tree with continuous 

distribution Vp(x) is equal to the probability of examining the corre

sponding bottom position in the associated Max-tree with distribution 

Vp(-x). Thus, since the behavior of the search is independent of the 

specific distribution (as long as it is continuous), each of the subsequent 

results about Max-trees will be true of Min-trees as well. 
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We can now make the obvious but important observation that the value 

of a node at any level in the game tree is independent of the values of the 

other nodes at the same level* In addition, since the leaf nodes are iid 

random variables, it follows from the structure of our game trees, i.e., 

uniform depth at all bottom positions and constant brancing factors, that 

all the nodes at any level in the tree are iid random variables. It is 

interesting to consider the actual distribution of the values of the nodes 

at an arbitrary level. It follows from first principles in order statistics 

that the distribution function of the maximum of n iid random variables with 

distribution function F(x) is [F(x)]n and the distribution function of the 

minimum of n iid random variables with distribution function F(x) is 

1-[1-F(x)]n. Hence: 

VQ(x) = [V^x)]*, 

V^x) = 1-[1-V2(x)]N, 

V,(x) = [V2(x)]N; 

and in general: 

Vfc(x) = V^ + 1(x), for k=0,2,...,LD-1Je (3.1) 

Vfc(x) « ^ + 1 ( x ) , for k=1,3,...,LD-1jQ (3.2) 

where F(x) denotes the survivor function, i.e., F(x) = 1-F(x). 

To illustrate the relation of the distribution of the nodes from one 

level to the next, the distribution function at all the levels in the game 

tree of Figure 2.3 are shown in Figure 3.1. The value of the leaf nodes 

are assumed to be uniformly distributed over the unit interval in Figure 3.1, 

but this is only for illustrative purposes; as stated before, V
D ( X ) c a n he 

any continuous distribution function. 
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Figure 3. Cumulative distribution function of values of nodes in 
game tree with <N,D> • <4,5>. 
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4. THE PROBABILITY OF EVALUATING A NODE IN THE GAME TREE 

We are interested in the statistics concerning the number of bottom 

positions evaluated in an alpha-beta search of a game tree. We will start 

by finding the probability that an arbitrary node with indices i^ is ex

amined by the alpha-beta procedure; call this probability of examination 

Pr{id}. 

To find Pr[i^} we first consider the path from the root node to p(i^). 

At level j, for j a non-negative, even integer less than d, a maximizing 

operation is in progress, we have a lower bound on v(i^), i.e., a^i^), 

and the distribution function for the j-level alpha value is 

A. (x) = [V (x)] l j + 1 \ (4.1) 
3 9 j+1 J 

As i . approaches N, the form of A. . (x) approaches V.(x). 

Similarly, at level j, for j a positive, odd integer less than D, a 
-* 

minimizing operation is in progress, we have an upper bound on v(i^), i.e., 
b.(i,) and the survivor function for the j-level beta value is J d 

B. . " (x) - [V - . - C x ) ] 1 ^ 1 \ (4.2) 

Note that the j-level alpha and beta values associated with i^ are 

independent» but not identically distributed random variables and the dis

tribution function of cKi^) is 

Arf (x) = A n (x) A (x)...A (x) (4.3) 0 , 1 , 2,i3 ld-1^,1 
o 
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and similarly the survivor function of P d d ) i s 

B-* (x) - B- . (x) B (x)...B. . . (x) (4.4) 
1* 12 3 j l 4 L d" 1 Jo» 1LdJ e 

We can now prove several fundamental properties of the alpha-beta 

pruning algorithm. 

Theorem 1. Node p(id) is examined, i.e., not pruned, by the cHS pruning 

algorithm if and only if 

of(id) < P(i d). (4.5) 

Proof. First, suppose <y(id), the current alpha value, is less than j3(id), 

the current beta value. In a proof by contradiction we will show this 
—» 

requires p(id) to be examined. 

Suppose p(id) is not examined^ By the definition of the alpha-beta 

algorithm, this implies there exists a node p(i^*) such that 

where ,i ^,i^ are elements of i d and 

v(t*) * cr(i *) = a(±.^); j=2,4,... ,|_dJe (4.6) 

or 

v(±*) * i(±*) = e c i j . , ) ; Jss1,3,...,LdJQ (4.7) 

—> 

In other words, if p(id) is not examined, an alpha or beta cutoff has 

occurred; the candidates for p(i^*)are shown in Figure 2.4. If we con

sider the alpha cutoff case, Eqn. (4.6), we see 



Figure 2.4 
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since bj , (Tj) is the minimum of the î -1 successors of P(*-j ])• Clearly 

PTFJ.,) ,(1 (4.9) 

by definition of the beta value, Eqn. 2.6. From Equations (4.6), (4.8), 

and (4.9) it follows that 

ati^j* PTFJ-I> ( 4 - 1 0 ) 

and from Eqns. (2.5) and (2.6) 

of(id) * P(id) (4.11) 

which contradicts Eqn. (4.5). By a precisely analogous argument our second 

case, Eqn. (4.7), also leads to Eqn. (4.11), and hence a contradiction. 

Now it remains to be shown that if p(i^) is examined, then Eqn. (4.5) 

must follow. Again proof by contradiction provides the simplest argument, 

i.e., suppose 

« ( i d ) * B ( i d ) . (4.12) 

It follows from this inequality that there must exist a j and a k such 
that 

bj(V * a k ( V - ( 4 - 1 3 ) 

Suppose k > j; then there exists a node p(T̂ +,*) such that 

v ( T k + I * > = V V - ( 4 - 1 4 ) 

However, the above two equations guarantee a beta cutoff no later than 

p(ik+1*) and this contradicts the assumption of no cutoff. 
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If k < j, by a precisely analogous argument we get an alpha cutoff, 

again a contradiction, • 

Now that Theorem 1 has been formally presented it may be helpful to 

provide an intuitive description. Theorem 1 says that a node in a game 

tree is examined if and only if the associated upper bound (beta value) is 

greater than the associated lower bound (alpha value). Note that in this 

paper we have defined alpha and beta values for all nodes in the tree, not 

just those nodes examined by the alpha-beta procedure. 

The next theorem is the central result of this section: an expression 

for the probability of evaluating an arbitrary node in the game tree. 

Theorem 2. Let A-+ (x) and (x) be the distribution functions of the alpha 
J J -

and beta values, respectively for a node p(l^) at depth d in a game tree. 

Then if i. > 1 for some j € {2,4,• • •,LdJ }: 

(a) Pr{id} = f Bj (z) dAj (z) 
-co d d 

and if ij > 1 for some j 6 {1,3 , . . . , L d J q } : 

(b) Pr{i,} = r ° ° A? (z) dBj (z) 
d J -co ̂ d ~*d 

and if i. = 1 for all j: J 

(c) Pr{id} = 1 . 

Proof. First, part (a). From Theorem 1 we know that the statement "posi

tion p(i, ) is not pruned11 is equivalent to the statement ) < B(i )" 

and so: 
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Pr{id} = Pr{(y(id) < B(id)} 

= f Pr{a(id) = z} Pr{a(id) < P(id)|a(id) = z} dz 
— 00 

-> —• 

(Note: the condition cKi^) = z is defined only if some element of i^ with 

an even index is greater than 1.) 

-oo d d 

-oo d d 

The proof of part (b) is analogous to the above proof for part (a). Part 

(c) is obvious, since the first leaf node must always be evaluated. • 

5. THE EXPECTED NUMBER OF BOTTOM POSITIONS 

In order to derive the expected number of bottom positions E[NBP^ ̂ ] 

evaluated in a tree of depth D and branching factor N which conforms to 

our model, we take advantage of the linearity of the expected value operator, 

i.e., E[Exi] = SE[xi]. Hence E[NBP^ D ] is equal to the sum over the set of 

all bottom positions of the probability that the bottom position is evaluated, 

i.e., 

E[NBP ] - S E ... S PRFL} (5.1) 
w , u l̂ t » l£i2^N 

and we may compute Pr^i^j using Theorem 2. 

To illustrate the method we will first evaluate E[NBP 9 ] . First con-
N,Z 

sider the case for i 0 > 1. 
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Pr{i) = - j'" A-+ (z) dfj (z) (from Thm. 2b) 
1 _oo 2 

- - f V 1 (z) dV2 (z) (from Eqns. 4.1-4.4) 
.CO 

„ i.-l i9-1 
- - J* [l-V^z)] 1 dV 2

z (z) (from Eqn. 3.2) 
-00 

We may now perform the substitution u » V 2(z), eliminating the specific dis

tribution of bottom positions. 

Prii-j = - I 0-u ) d u 
z ' 1 

i.-l 1 

= ( I -x) d x 
J o 

i -1 i -1 - g 1 

J o 

i -1 i 2-l 
4 - 3 ( 1 , , - f - ) ( i 2 > D 

where 0(x,y) = F ^ ^ ^ , the beta function. 

Similarly we can find the value of Pr{i2) for i 2 = 1 and i > 1 from 

Theorem 2a. 

Pr{i2) = f & (z) d £ (z) 
-oo 2 2 

f V 1 (z) d V, (z) 2 
.00 

For i 0
 8 5 1 we have 

Pr{i2} = f d V*1 '(z) 
L 2 i.-l 

V1 1
 00 

.00 
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by the fundamental theorem of calculus. Therefore 

Pr{i2} = 1 (i2 > 1, i 2 = 1) 

By Theorem 2c, Pr{(l,1)} = 1. 

Thus 
N N N i -1 i 

E[NBP 2 ] = 1 + 2 1 + S L -|— ^ 
N , / 1^2 i2=2 N 1 N 

. N-l N 
N + N 1 . S»««5> 

1=1 j=1 

, N-l N i - i 

N + J E i E F u 3"'(l-u) M du 
i=l j=l 0 

1 N-l . —-1 / N 
N + £ 2 i |''(l-u)N ( Su J-'] du 

N I=l 0 VJ = 1 

1
 N _ 1 l n " 2 n N + i 2 i f (l-u)N (1-u ) du 

N I=l JO 

E[NBP N ) 2] = N + V jij- [*<|, N) - ij 
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This form is quite adequate for computing the expected value over the range 

of branching factors useful in game playing programs. For small values of 

N, E[NBP 9 ] was computed exactly using MACSYMA, a symbolic manipulation N,Z 
program developed at MIT [Bogen, et al. 1972]. These values are presented 

in Table 5.1. 

Next we will evaluate Prfi^} for arbitrary depth. A few preliminary 

definitions and lemmas will supply the necessary foundations. 

First we define the operator T(f,k) for a function f and non-negative 

integer k as follows: 
r£ if k = 0 T(f,k) 
l-[T(f,k-1)]N if k > 0 

For example, T(V3(x), 2) = 1-[T(V3(x), 1)] 

= l-[1-[T(V3(x), 0)] N] N 

N N 

Lemma 5.1a 

Lemma 5. lb 

Lemma 5. lc 

Lemma 5. Id 

Vk<X> 
Vk ( x ) 

T(VD(x), k), D even, k 

T(VD(x), k), D odd, k 

T(VD(x), k), D even, k 

T(Vp(x), k), D odd, k 

1,3,5,...,D-1 

0,2,4 D-l 

0,2,4,...,D 

1,3,5,.. «,D 

Proof: We will prove 5.1a by induction on k. The other proofs are the same. 

For k « 1, D even, we have from Eqn. 3.2 

Vi ( x ) 

Vi ( x ) 

V D - 1 ( X ) 

vZ(x) 
1-Vj(x) 

T(VD(x), 1) 
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1 1 

Table 5.1 . E[NBP„ J N,2 

E[NBP. J > N B P 2 C 2 ) « — 
3 

5 2 1 
N B P 2 C 3 ) » 

7 0 

5 4 7 0 3 3 
N B P 2 C 4 ) » 

4 5 0 4 5 

1 7 2 0 2 9 1 1 6 9 
N B P 2 < 5 ) » 

9 7 3 4 9 6 1 6 

1 4 7 8 6 0 0 1 0 1 7 7 7 1 
N B P 2 < 6 > » 

6 1 7 1 0 9 2 0 0 4 0 0 

1 4 8 3 6 3 4 2 7 3 4 3 1 5 2 7 6 1 7 
N B P 2 C 7 ) -

4 7 9 1 3 4 8 9 5 5 2 3 4 9 9 8 0 

1 2 5 2 6 1 5 1 4 5 6 3 8 0 4 3 8 0 9 7 0 6 7 2 6 9 

N B P 2 C 8 ) « 
3 2 4 0 8 6 3 1 6 9 1 4 1 5 0 8 4 0 8 7 4 8 2 5 

6 0 6 3 0 1 9 4 2 4 9 2 9 1 7 2 5 1 2 6 4 9 1 1 0 1 9 2 4 9 7 7 
N B P 2 ( 9 > » — . . . . 

1 2 9 0 2 8 3 6 1 5 9 7 6 2 0 9 6 8 7 3 7 8 0 7 9 0 1 9 2 0 0 

3 9 0 1 5 2 2 6 2 5 9 2 7 7 9 8 4 1 9 6 8 1 7 8 0 9 9 7 1 6 0 6 2 2 1 7 5 1 8 0 9 
N B P 2 C 1 0 ) * 

6 9 7 2 0 3 7 5 2 2 9 7 1 2 4 7 7 1 6 4 5 3 3 8 0 8 9 3 5 3 1 2 3 0 3 5 5 6 8 

2 0 1 9 6 5 4 2 6 4 2 3 8 0 8 7 6 5 6 2 3 8 3 8 5 6 5 6 6 4 5 9 6 1 1 3 2 3 4 8 9 3 0 1 3 8 3 1 1 9 
N B P 2 C 1 1 ) - - * ' 

3 0 8 1 5 2 1 7 6 7 6 5 3 8 6 3 5 0 5 8 4 6 2 6 3 8 2 4 1 6 5 9 5 8 5 8 7 3 5 2 1 1 6 4 8 8 0 0 

NBP2 (12) = ?29^I5234423499941_235877^ 
26468917348837676265384815256420322119583790673790618350"" 
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Assume , .(x) = T(\L(x), k*) for a particular odd k*. Then 

VD-k*-2 ( x ) - 1"^>-k*-1 ( x ) ( f r ° m E q n * 3 , 2 ) 

• 1- ( 1- VD-k*-l ( x ) ) N 

- 1-(1-VJJ_k*(x))N (from Eqn. 3.2) 

« l-[1-TN(VD(x), k*)] N 

«= l-TN(VD(x), k*+l) 

= T(VD(x), k*+2), proving the induction step. I 

We now observe that if i • 1 for m • 2,4,...,|.DJ , then Theorem 2a may 
m e 

be applied directly. 

Pr{i_} = f°° By ( z ) dAy ( z ) 

F N B . . ( z ) d( N A ( Z ) ) 
- « j&=2,4,...,LDJe

 X"' k=1,3,..,,LDJo
 K"' 

i.-l i, -1 
j 1 " n V &

 ( z ) d ( n V K (Z 

J6=2,4 |D I k-l,3,...,LDj o 

V 1 

f d( n V (z), since i « 1 for 
-» k=l,3,...,LDJo

 K I even * 

V ,00 ' II V ( z ) I b y the Fundamental 
k=1,3,...,LD]0 -00 Theorem of Calculus. 

Pr{iD} = 1 for i ] = i. = ... = U = 1. (Thm. 2c) 

.'. Pr{in} = 1 for i 9 = i^ = ... = i | D ] = 1 and i £ 1 for some odd m. 
Je 

For the rest of the development we will assume i m > 1 for some even m. 

We are now ready to consider Pr{iD} for arbitrary depth D. From Theorem 

2b we have 
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-oo D D 

- - T n \ ,(z) d( n B , .(z)) 
k=1,3,...fLDJo

K_l j^2,4,...,LDJe*-1 

i.-l i.-l 
- - T n v k (Z) d( n v * (z» 

k=l,3 LJ)J J»»2,4,...,LDJ * 
o e 

As in the case for D • 2 , we wish to perform a substitution which will 

eliminate the underlying distribution. For D odd we can apply lemmas 5.1b 

and 5.Id: 

Pr{i } - - p n [T(V (z), D-k)]^ \( n [T(V (z), D-D] 1* \ 
- « k=l,3 , . . . , | _D j * = 2 , 4 , . . . , [ D J o e 

Substituting u « V^(z)9 we obtain 

P r f L } - - ! 1 1 n [T(u,D-k)] k d ( n [T(u,D - ja) ] l A ) (5.3) 
-1 i.-l 

d ( n [T 
0 k=1,3 [ D J **2,4,...,LDJ 

'e 
for D odd. 

Similarly, for D even we apply lemmas 5.1a and 5.1c: 

i,-1 i.-l 
Pr(i } - - J* H [T(V (z), D-k)] d( n [T(V (z), D-A)] 1 ) 

-» k=1,3,... j&»2,4,...,[Dj 
o e 

(5.4) 
1 i.-1 i.-l 

P r C l „ } - + J n [T(u,D-k)] K d( [ T ( u , D - l ) ] ' ), D even. 
' 0 k»1,3,...,[Dj ^2,4,... J D J 

o e 
Combining equations (5.3) and (5.4), 

pr{iD} = (-DY n [ K u . D - k ) ] ^ 1 d( n [T(u,D-jt)]Xi \ 

' 0 k=1,3,...,[Dj tf2yUt... JDJ 
o ^ Je 



-30-

Differentiating the second product and observing that the term for 

which i^ • 1 disappear, we have 

. i -1 
Pr{in} - (-l)Df II T (u,D-k)) 

0 k = 1 ' 3 LDJo , . 
S [( n T * (u,D-i)) dT m (u,D-m)] 

m=2,4,...,LDj J«,4....,|DJ 
i { 1 6 Jfc f m . m 

(5.5) 

We evaluate the derivative of Eqn. 5.5 with the following lemma. 

1 if k = 0 
k-1 
n 
n=0 

Lemma 5.2; -r- T(u,k) = < k-1 . 
d U n T^'(u,n) if k > 0 

Proof (by induction on k); 

3J T < U ' 0 ) " ' 

du 

* k -2 d * k-1 N-1 * Now assume -r— T(u,k -1) = (-N) II T (u,n) for some fixed k « Then 
d U n=0 

d * d N * 

N-1 * d * = -N T W '(u,k -1) ̂  T(u,k -1) 

* k -1 
= (-N)k n ^ ( u . n ) 

n=0 • 

Applying this lemma to Eqn. 5.5 we obtain 
i -1 i--1 

Pr{Jn} - (-UYC n T k (u,D-k)) S [( II T * (u,D-A)) 
D ' 0 k=l,3,...,|_Dj m=2,4,...fLDJeA=2,4,...,LDJe 

° if 1 1 f m m 
i -2 D D-m-1 -

(i^-1)Tm (u,D-m)(-N) " n ir'Oi.n))] du m n«0 
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Moving the summation to the front, we have 

m = z , t t , . . . ,[DJ 0 k«=l naO 
*•* ̂  1 k / m 

Collecting terms and noticing that (-l)20"01 = 1, we finally have 

^2,4,...,^] 0 k=0 
du (5.6) 

where Pk(m) = 7 

0 if i = 1 m 
iD.k+N-2 if k < D-m 

iD_k-2 if k = D-m 

iD_k-1 if k > D-m 

L D 4 

JD if D is even 

JD-1 if D is odd 

and i > 1 for some even m. m 

Evaluation of Eqn. 5.6 requires integration of functions of the form 

1 k j 

I k ( j r j 2 Jk> - J H T n(u,k-n+l). 
0 n=l 

For example, if i« / 1 

1 i +N-2 i -2 i -1 
Pr{i»} = (i9-l) NJ* T (u,0) T (u,l) T 1 (u,2) du 

* 0 
, i +N-2 i -2 „ K T i.-l 

= (i -1) Nf1 u 3 (1-u N) 2 (l-(l-uN)N) 1 du 

(i2-l) N 1 3 ( ^ - 1 , 1 2 - 2 , 1 ^ - 2 ) , 
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These integrals may be evaluated exactly using the recurrence relations of 

the following lemma. 

Lemma 5.3: 

V 1 

j2+i 

j 

if k = 1 

if k - 2 

'1 
S (-0 (J2+AN,J3,...,Jk) if k > 1. 

Proof: = [ u du 
* 0 

I2(j,,j2) - fV-uV 1 u 2 du 

1 V 1 

k j 4 

k 1 K 0 n=1 
du 

= I*1 T ^ (u,k) n T*"(u,k-n+1) du 
J'0 n=2 

1 N jl k jk - (" (1-TN(u,k-1)) ' n T (u,k-n+l) du 

J 0 n=2 

= f Z (-1)A(^)[TN(u,k-1)]A n TJk(u,k-n+1) du 

k j, 

0 !F0 
n=2 

(from the Binomial Theorem) 
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S 1 ("D f̂!1) ^^(u.k-l) N TJk(u,k-n+1) du 
i-0 ^* ' 0 n=2 

i ^(2i) A - i v - ^ V j&=0 
I 

As another example of the method, we present the different cases for 
D = 4 and arbitrary N. 

Pr{i^j = 1 for ij-i^ij^i^l from Thm. 2c. 

Pr{i, } «• 1 for i9«=i,=L from Eqn. 5.2. 
i i v 1 v 2 i - ^ + N - 2 

Pr{i,} = a , - D i r r , T ' (u,3) T Z (u,2) T (u,L) du 
0 

- (IJ-DN2 ^(1^1,12-2,1^-2,0) if i4=L and 1 2/ 1 

Pr{i4} = (i4-L) I4(ir1,0,i3-L,i4-2) if i2=L and ±^ J 1 

Pr{i4} = (IJ-DN2 I4(iRL,i2-2,i3+N-2,i4+N-2) + 

+ (i4-1) I4(iRL,i2-1,i3-1,i4-2) if 1 and i^L. 

N N N N 
Then E[NBP , ] - 2 2 2 2 Pr{i. }, 

» i =1 i =1 i =1 i =1 1 2 3 4 
and I 4(J 1,J 2»J 3»J 4) is evaluated with Lemma 5.3. 

It is possible to eliminate one summation from this method of evaluat
ing E[NBPN D ] . We observe that 

P r [ 7 l > } = 9 L 2 m i V V V " - ' W > m=2,4,...,|_DJe 

where > 1 for some even m, tfc = PD_k(m)-ik (Eqn. 5.6), and I D is computed 
with a D-2-fold summation. However, the summation on the index i-j may be 
combined with the first reduction of Lemma 5.3. 



-34-

i,-". pr^-1,L2,4>L,LDJe
(v,)iD<ii+t' W 

Reordering the terms of the last two summations, we obtain 

N r , I L + T L B N A^n 
t -1 =

 ? 4 S in. ( i m " 1 > Sn M ) ID-1 ( i2 + t2 +SN,i 3 +t 3 i D +t D) E ^ 

i « / \ 

" ^ . . . I L l d j . ( - , , S ^ ' )h-,<W"-VH w -

reducing by one summation the complexity of evaluation. 

For depth 3 and 4 the MACSYMA system was again used to obtain exact 

values of E[NBP^ ̂  for small values of N. These results are shown in Table 5.2. 

Because of the complexity of this formulation (a 2D-2-fold nested summation) it 

was not possible to evaluate Eqn. (5.6) exactly for large D and N. In addition, 

the nested alternating signs of Lemma 5.3 lead to a rapid loss of significance. 

Figure 5.1 therefore uses data from a Monte Carlo simulation using the same 

model as well as from evaluation of Eqn.(5.6). The standard deviations are 

also from the simulation. 

For some game-playing programs the important measure of effort is not 

the number of bottom positions evaluated, but rather the number of legal move 

generations. This is the case for programs which use simple evaluation func

tions, but for which there is no simple way to generate legal moves. Because 

the number of bottom positions is independent of the distribution from which 
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- 3 6 -

7 1 9 
E [ N B P J = N B P 3 C 2 ) - — 

2 , 3 ' 1 0 5 

5 7 8 7 9 3 8 9 7 9 1 
N B P 3 C 3 ) « — — — 

2 9 7 4 5 7 1 6 0 0 

1 0 5 8 6 1 2 1 3 4 8 2 7 2 0 8 0 2 3 1 6 8 8 7 9 6 7 
N B P 3 C 4 ) » — — — — — 

2 6 3 8 9 8 8 5 8 0 5 8 6 6 5 6 8 4 7 1 2 3 5 7 5 

N B P 3 ( 5 ) = 1 2 1-^I?Z51Z2457756H97 § 8 7 6 8 5 1 _ 2 6 9 3 7 8 7 8 7 6 2 3 8 7 5 9 0 4 1 7 

1 7 4 1 3 6 0 2 5 7 6 2 2 4 0 9 3 1 6 3 8 2 8 2 9 6 9 7 4 8 1 7 3 4 5 9 0 6 1 1 9 9 7 1 6 4 8 

r ~\ 7 7 5 0 3 
E [ N B P J = N B P 4 C 2 ) - - - - - -

' \ 6 4 3 5 

3 7 9 7 1 7 6 7 4 9 8 0 5 9 8 5 7 0 5 8 3 3 0 8 7 2 6 5 7 0 0 2 3 
N B P 4 ( 3 > • — — — — — — . 

8 4 0 0 3 7 7 9 4 7 3 6 9 5 8 8 9 4 3 6 9 9 2 4 1 7 2 6 4 0 0 

Table 5 . 2 . Exact values for E [ N B P n ^ for D = 3 , 4 . 
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the values are drawn, we see that the expected number of move generation for 

a depth D search is simply the sum of the expected number of non-terminal 

positions at each level, i.e., 

E [ N M G N > ] ) ] = 1 + V E [ N B P N > I ] 

6. APPLICATION OF THE GAME TREE MODEL TO CHESS 

Several assumptions have been made to simplify the analysis of the 

model which do not conform to the properties of game trees in general. 

First, the model assumes a fixed branching factor and fixed depth. Many 

game playing programs (though not all) use searches of variable depth and 

breadth. Second, the values of the bottom positions have been assumed 

to be independent; in practice there are strong clustering effects. For 

example, in a chess program with an evaluation function which depends 

strongly on material, a subtree whose parent move is a queen capture will 

have more bottom positions in the range corresponding to the loss (or win) 

of a queen than will subtrees whose parent move is a non-capture. The 

final assumption is that the probability that two bottom positions in the 

tree will have the same value is zero (continuity assumption). In practice, 

game programs select the value of the terminal position from a finite (and 

sometimes small) set of values. 

No attempt has been made to model modifications to the basic alpha-

beta search, such as fixed ordering, dynamic ordering, or the use of 

aspiration levels. This model should be viewed as an upper bound in the 

sense that any program can perform this well if the moves are no worse than 

randomly ordered. 
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In this section we will investigate the effects of these assumptions 

by comparing the predicted average search effort with the observed searches 

of a chess program. Since several existing chess programs use a fixed 

branching factor (selecting the N best moves according to a static evalua

tion function) and fixed depth (attempting to resolve issues of quiescence 

with a static analysis), we will concentrate on the independence assumption 

and the continuity assumption. 

In order to assess the expected effect of the continuity constraint, 

we relax it in the model so that the values for the evaluation function 

are chosen from R equally likely distinct values. If R 8 8 1, we have, in 

effect, perfect ordering, since equal values will produce a cutoff. As 

R approaches infinity the expected number of bottom positions is predicted 

analytically by this paper. The variation of the number of bottom positions 

with R is shown in Figure 6.1 for D « 3; these curves were generated using 

a Monte Carlo simulation. 

The chess program used for comparisons was a modification of the 

Technology Chess Program [Gillogly, 1972]. The Technology Program (Tech) 

is a "brute force" program which investigates all legal moves to a fixed 

depth; all chains of captures from these bottom positions are explored. The 

terminal positions are evaluated only with respect to material, where a pawn 

is considered to be worth 100 points, knight and bishop 330, rook 500, and 

queen 900. A number of positional heuristics are applied statically at the 

top level, and various modifications are made to the basic tree search. 

Tech was modified for this analysis to search trees of fixed depth 

and branching factor (the branches to be examined selected randomly), and 
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the tree search modifications were deleted. In addition to Tech's standard 

evaluation function, an optional evaluation term for mobility was programmed. 

This term is useful for the analysis, since it increases the effective range 

of evaluation and decreases the degree of correlation in subtrees. Most 

chess programs have evaluation functions which are considerably more complex 

than Tech's. 

In order to ensure a reasonable mix of opening, middle and endgame 

positions a complete game was analyzed, consisting of 80 positions (Spassky-

Fischer, Reykjavik 1972, game 21), Each of these positions was analyzed by 

the modified Tech programs for D = 2, 3, and 4 over the effective range of 

branching factors. Figure 6.2 shows the analytic results for these para

meters with the empirical values obtained using Tech's standard evaluation 

function. At a typical point (<N,D> = <10,3>),the observed range (R) of 

distinct bottom position values in the trees varied between 1 and 9, with 

median 5. This agrees well with Figure 6.1. To demonstrate the effect of 

the independence assumption, these points were re-run with the program modi

fied so that a value which would result in a prune by equality was randomly 

perturbed up or down. This simulated an evaluation function that assigns 

unique values for all the bottom positions. The pertubations changed the 

value of the position by at most two points, since there are at most two 

alphas or two betas being kept at any given time in a depth 4 tree. Since 

two points is small compared to the value of a pawn (100 points), the tie-

breaking procedure does not significantly affect the correlation among posi

tions in a subtree. The systematic discrepancy between these points and 

the analytic curve must then be due to the assumption of independence. 
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In Figure 6.3 we plot the analytic curves with the data from the 

evaluation function which includes mobility as well as material. The 

range is much higher for this evaluation function, so that the number of 

bottom positions is considerably higher than the unmodified version. The 

range (R) at <N,D> = <10,3> for this version varied between 12 and 82, with 

median 43. Since the tiebroken points are only slightly higher, it is clear 

that the range is close to the effective maximum range for that evaluation 

function. It is of interest to note that the tiebroken points lie almost 

on the analytic line, indicating that the independence assumption is more 

nearly correct for this evaluation function. 

Comparison of these graphs indicates two ways in which the evaluation 

function affects the number of bottom positions evaluated: (1) as the 

range of the evaluation function increases, the number of bottom positions 

increases; (2) as the correlation among values in the same subtree increases, 

the number of bottom positions decreases. 

7. EMPRICAL OBSERVATIONS 

For large values of N and D, the analytic result presented in Section 

5 is in its present form computationally infeasible. The growth of computa

tion time is governed by two factors. First, the probability that a bottom 

position is evaluated must be calculated for each bottom position in the 

complete tree, a D-fold nested summation for D > 2. Second, the expression 

for this probability is in the form of a recurrence relation (Lemma 5.3) 

which reduces the integral to a D-2-fold nested summation of evaluations of 

the beta function and binomial coefficients. The number of nested summations 
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BRANCHING FACTOR (N) 
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for the complete tree is thus 2D-2. The simplification of the analytical 

result to a form for which the computation effort grows at a significantly 

slower rate remains an open problem. 

In the hope of providing some results of practical value, we present 

the empirical observations which follow. The set of data points upon which 

the empirical observations are based were obtained in part from the analytical 

formulation and in part from a Monte Carlo simulation of the alpha-beta al

gorithm. In the simulation the static values for the leaf nodes of the trees 

were drawn from a uniform random probability distribution of integers in the 
35 

interval (0,2 -1). The sample mean and standard deviation were obtained 

from the results of 1000 iterations of the alpha-beta algorithm for each 

size of the tree. The sample mean thus lies within the interval x + R«x„ ̂  
N,D— N,D 

at the 95$ confidence level, where x^ D is the true mean and 0.008 < R < .013 

for the points collected in the simulation. The ratio of sample standard 

deviation to sample mean was computed for 173 points (the points derived from 

the analytic formulation were also simulated to obtain their sample standard de

viations) , and all of these ratios lie in the interval (.120, .215). 

The values of log E[NBP^ ̂ ] as a function of log N for fixed D are 

observed to be approximately a straight line (Figure 5.1). A least squares 

fit of a straight line to these data gives an approximation whose root mean 

square relative error is about .004 for the values examined. The corres

ponding approximation to the expected number of bottom positions takes the 
L 

form E[NBPN D l « ̂  # N > with an RMS relative error of approximately .015. 

Furthermore, the values are observed to be approximately linear with 

respect to D. A least squares fit of a straight line to the 
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values yields the approximation 1^ • .720D + .227, with an RMS relative 

error of approximately .007. 

Table 7.1: 

Depth  
1 1.00 
2 1.12 
3 1.30 
4 1.39 
5 1.51 
6 1.59 
7 1.67 
8 1.71 
9 1.73 

It is of interest to note that the growth rate for the alpha-beta algorithm 

(.720D) is about midway between that of perfect ordering (0.5D) and minimax 

search (D). An accurate simple approximation to the values is not read

ily apparent. The values of for D=l,2,...,9 are found in Table 7.1. The 

values lie in the range [1,2]. 

This empirical analysis of the data available to us suggests an approxi

mation of the form E[NBP^ D l « ^ • N # 7 2 0 D + # 2 7 7 . The limited number and 

arbitrary selection of the data points used in this analysis prevent us from 

attaching high confidence to this approximation for the general case, al

though for the points from which it is derived the approximation is excellent. 

We do note that the approximation agrees with the boundary case D = 1, for 
720D + 277 QQ7 which E[NBPN - N „ N * - W , and agrees fairly well with 
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the boundary case N • 1 for which E[NBP^ ^] • K^. 

Slagle and Dixon [1969] define a measure of the relative efficiency 

of a tree-searching algorithm: 

log NBP 
DR s , 

X l Q g m*m 
where NBP^ *-s the expected number of bottom positions examined in a minimax 

search and NBP x is the expected number of bottom positions examined by al

gorithm x. 

The value of DR lies between 0 and 1. As an example of the interpre

tation of DR, DR « .6 indicates that the algorithm under consideration can 

be used to search a tree of depth 5 with about the same effort as that re

quired by the minimax algorithm to search a tree of depth 3. Using the 

empirically derived approximation, 

277 l o g *D DR Q w .720 + 1±zL + ——-M a-j3 w D D log N 

277 For large N, DR Q w .720 + -^-r-. Qf-P D 
For the search with perfect ordering [Slagle and Dixon, 1969], 

D R
 1 , log 2  

D RP0 « 2 + D log N * 

For large N, DR p Q M j. 

The depth ratio DR is useful as a measure of the efficiency of a tree 

searching algorithm relative to the minimax algorithm. However, the ex

pected number of bottom positions examined by the alpha-beta algorithm pro

vides a much tighter upper bound for the expected performance of a good tree-

searching algorithm than does the number of bottom positions examined by the 
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minimax algorithm. Hence, it would be more desirable to redefine DR such 

that the performance of the alpha-beta algorithm rather than the minimax 

algorithm is used as the standard of comparison, i.e., 

* log NBPx 

DR s x log NBP 
Qf-P 

8. CONCLUSIONS 

We have proven that the probability of examing a node P(i^) in a game 

tree with cH3 pruning is 

Pr{ik} = - f A ^ ( z ) dB^(z) = fj^^ ^(z)> 

—> —» 

where (z) and (z) are the distribution functions of cKi^) and PCi^) 

respectively. The integral may be evaluated exactly using Eqn. 5.6 and 

Lemma 5.3. This formula is used to compute the expected value of the 

number of bottom positions to be evaluated in a tree of arbitrary (but fixed) 

depth and branching factor. 

For large values of D and N Lemma 5.3 is not computationally feasible 

and so we empirically fit the following curve to a set of simulation points: 

E t N B P ^ y r 7 2 0 1 * - 2 " , 

where is a coefficient in the interval [1,2] depending on depth. This 

shows that the depth ratio as defined by Slagle and Dixon [1969] for a-P 

is about 
277 

D Ro,-P « - 7 2 0 + ^'irfor large N-
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We investigate the deficiencies of the model with respect to correla

tion and possible equality of bottom position values and demonstrate that 

higher correlation reduces the number of bottom positions, as does equality 

of bottom position values (Figures 6.2 and 6,3). 

A number of interesting problems remain to be solved in the analysis 

of the alpha-beta algorithm: The simplification of the analytical expression 

to a form with a smaller computational growth rate than indicated by Lemma 

5.3 is an open question. It would also be useful to find an analytical ex

pression for the variance of the number of bottom positions. 

Extension of the model to more general game trees would be an inter

esting goal. The range constraint may be relaxed, as shown in Section 5. 

Analysis of this model is considerably more complicated than the model we 

chose. 

The present model is inadequate for modelling variations of the search 

strategy such as fixed ordering, dynamic ordering, and aspiration levels, 

because the model assumes independence of the underlying random variables. 

One possible extension of the model to encompass these requirements might 

be to assign a random number to each branch throughout the tree, and let 

the final evaluation of the bottom positions be the sum of the values of 

its predecessor. This would lead to an intuitively appealing static evalua

tion function that would introduce a measure of correlation into the tree. 
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APPENDIX: NOTATION 

a k(i d) kth-level alpha value, where k=0,2,...,LdJ 

A, . (x) distribution function of a,_(ij); d > k 
—> 

A-? (x) distribution function of a(i,) 
a 

a(id) «iax{a0(id),a2(id),...,a(i )} 
e 

e 

o b k(i d) kth-level beta value, where k=1,3,...,LdJ 

B, . (x) distribution function of b, (i,); d > k 
k , 1k+l k d 

—• 

B-? (x) distribution function of P(i,) 
a 

a 
P(id) min{b1(id),b3(id),...,b(i } 

L Je 

P(a,b) (̂i+b)̂  t h e B 6 t a f u n c t i o n 

D depth of game tree 
F(x) the survivor function, i.e., F(x) = 1-F(x) 

i d i^,i2,•••,i^. Let ig be the empty vector. 
1 k j 

I k(j rj 2,...,j k) J n Tn(u,k-n+1) 
0 n=l 

L k j o 2 
111 

N branching factor of game tree 

p(id) a node at level d in the game tree with index i d # Number 

of elements in vector indicates depth of node in the tree. 

For example, p(i^) *-s a leaf node. 
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P k ( » ) 
D-k + N-2 

Vk - 2 

v. ̂ -k 

if i = 1 m 
if k < D-m 

if k = D-m 

if k > D-m 

T(f,k) 
1 - [T(f,k-1)] N 

if k - 0 

if k > 0 

v(id) value of p(i,). This is the backed-up value unless a 
d • D, in which case p(id> is a leaf node and we 

use the leaf node's static value. 

Vd(x) cumulative distribution function of v(i^) 
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