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1 I n t r o d u c t i o n 

The Voronoi diagram is a natural and intuitively appealing structure. First conceived by the 
mathematician Voronoi [28], it has been reinvented by researchers in several fields; in particular, 
meteorologists associate the two-dimensional version with the name Thiessen [26], and physicists 
honor Wigner and Seitz [30] for the three-dimensional version. It has been used by geologists, 
foresters, agriculturalists, medical researchers, geographers, crystallographers, and astronomers. 
Within the domain of the mathematical sciences, it is applied to simulate differential equations 
by finite element methods, to interpolate surfaces in geometric modeling systems, and to solve 
geometric problems such as finding Euclidean minimum spanning trees and largest empty circles. 
(Avis & Bhattacharya [1] present an extensive list of references for applications.) 

The Voronoi diagram of a set of points — called sites — is a partition of R d that assigns a 
surrounding polytope of "nearby" points to each of the sites. More rigor is supplied by the following 
definition. 

Definit ion 1 The (nearest-site) Voronoi diagram of the set Xn = {^1, £2 , . . . , x n } of n sites in R d 

is the set of n convex regions V,- = {x | Vj : dist(x,x t) < dist(x,xy) } for 1 < t < n. 

Each region is a d-polytope containing the points lying nearer to the site in its interior than to 
any other site. The straight-line dual of the Voronoi diagram in the plane is called the Delaunay 
triangulation. In the planar case, sites xt- and xy are joined by an edge in Delaunay triangulation 
if and only if V{ and Vj share an edge. In d dimensions, sites x l 0 , x f l , . . .,xfJfc define a &-face of the 
Voronoi dual if and only if Vi09Vil9.. .,Vffc share a (d - A:)-face in the Voronoi diagram. If, as is 
assumed in the sequel, no d + 2 sites fall on the same hypersphere, the dual partitions the convex 
hull of Xn into d-simplices. Each of these simplices has the property that no points of Xn lie in 
the interior of the hypersphere defined by its d + 1 vertices, for the center of the hypersphere must 
be shared by the d + 1 corresponding Voronoi regions; we say that the hypersphere is empty or 
site-free. The Voronoi diagram can be constructed easily from its dual and vice versa. 

One may also define a furthest-site Voronoi diagram. 
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Definit ion 2 The furthest-site Voronoi diagram of the set Xn — {xi, X2,..., x n } of n sites in R d 

¿9 the set of n convex regions Wi = { x | Vj : dist(x,x,) > dist(x,xy) } for 1 < i < n. 

Region Wi contains the points lying further from site x,» than from any other site. Only sites 
that are vertices of the convex hull of Xn have non-empty furthest-site Voronoi regions. The dual of 
the furthest-site Voronoi diagram also partitions the convex hull of Xn into simplices; the vertices 
of these simplices determine hyperspheres that each contain all the sites of Xn. 

Many researchers have considered Voronoi-diagram construction. The author has surveyed 
previous work on the two-dimensional case elsewhere [9]. The construction of three-dimensional 
diagrams has been addressed by Browstow et ai [6], Finney [12], and Tanemura et al. [24] 

Bowyer [4] and Watson [29] describe algorithms for higher dimensions, but neither analyzes 
his algorithm rigorously. Bowyer argues heuristically that his algorithm requires 0(n1+1/d) time 
on average for points uniform in a d-dimensional hypercube, and cites some empirical evidence to 
support the claim. Avis and Bhattacharya's algorithms for the Voronoi diagram and its dual [1] rely 
heavily on the simplex method for linear programming; since this method has exponential worst-
case running time, they focus mainly on experimental studies of their algorithms' performance and 
of the expected complexity of the diagrams for points distributed uniformly in the unit hypercube. 

A pleasing connection between nearest- and furthest-site Voronoi diagrams in d dimensions and 
convex hulls in d + 1 dimensions allows any convex-hull algorithm to be used to construct Voronoi 
diagrams. This mapping, first observed by Brown [5], is restated here in a form due to Guibas ic 
Stolfi [14]. If a is a d-vector and 6 is scalar, let a*6 be the (d+ l)-vector (a^W2),... ,a(d\ 6), and 
let A : Rd R d + 1 be the "lifting function" defined by 

A(x) = x*(x,x>, 

where (x, y) denotes the inner product. The range of A is the surface of a (d + 1)-dimensional 
paraboloid of revolution. The image of a d-sphere is the intersection of a hyperplane with the 
paraboloid and vice versa. To verify this, we note that x lies within the d-sphere centered at p with 
radius r if and only if (x — p, x — p) < r 2 and apply the bilinearity of the inner product: 

( x - p , x - p ) < r 2 

( x , x ) - 2 ( p , x ) + (p,p) < r 2 

( ( ( - 2 p ) * l ) , ( x * ( x , x » ) < r 2 - ( p , p ) 
< ( ( - 2 p ) * l ) , A ( x ) ) < r 2 - ( p , p > . 

It is clear from the last line that A(x) lies both on the paraboloid and in some halfspace (a, x) < b in 
R/* + 1. Now suppose that the function A is applied to the points of Xn and the convex hull of their 
images is constructed. If points x\ through x^+i form a nearest-site dual simplex, the d-ball they 
define is empty, and so, too, is the corresponding halfspace in R d + 1 ; thus its bounding hyperplane 
is a facet of the convex hull. If x\ through x<j+i form a furthest-site dual simplex, their d-ball 
contains all of Xn\ then the complementary halfspace is empty and again the bounding hyperplane 
is a convex-hull facet. Conversely, a convex-hull facet always corresponds to either a nearest-site or 
a furthest-site dual simplex. Constructing a (d + l)-dimensional convex hull is a viable approach 
to the problem of constructing a d-dimensional Voronoi diagram. The gift-wrapping algorithm 
[7,3,23] may be used in Q(n(Sn + 5*)) time. Or SeidePs shelling algorithm [21] may be used in 
0 ( n 2 + ( 5 n + 5*) log n), where Sn is the number of nearest-site simplices and 5* the number of 
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furthest-site simplices in the result. In fact, it is not difficult to modify either algorithm to eliminate 
the 5* (Sn) term if only the nearest-site (furthest-site) diagram is required. 

Like the number of facets in the case of convex hulls, Sn and 5* can vary wildly. Seidel [20,22] 
has shown that both Sn and 5* can be extremely large — 6(nl-( d + 1 ) / 2 J) — in the worst case. On 
the other hand, it is not difficult to construct families of problem instances for which Sn = ©(n). 
Thus probabilistic estimates of the average value of the two quantities are useful. 

Meijering [17] and Gilbert [13] have considered the Voronoi diagram of sites from a Poisson 
process of fixed intensity in R**; Meijering showed that the expected number of nearest-site Voronoi 
neighbors of a site depends only on d; in particular, it is 6 for d = 2 and « 15.54 for d = 3. Such a 
set of sites may be thought of as an infinite set of sites drawn from a uniform distribution over all 
of R d . In computational practice, however, one must deal with finite sets of sites drawn from, e.g., 
a uniform distribution on the interior of some convex body like a hypercube or hypersphere. Two 
sites are neighbors if and only if they lie on the surface of some ball that contains no other site. 
In the Poisson case, a pair of distant neighbors is always unlikely since it implies the existence of 
a large empty ball. In the case of a bounded set of sites, it can still be shown that sites far from 
the boundary of the body probably have only nearby neighbors, but some long edges always occur 
near the boundary of the body, where most of the empty ball may lie outside the support of the 
distribution. Thus results dealing only with the Poisson case are insufficient for the average-case 
analysis of algorithms. 

In the next section, we present a new method for determining ESn and ES„. In §3 this method 
is applied to the analysis of the asymptotic behavior of ESn for sites drawn independently from 
the uniform distribution in the unit d-ball. In §4 we use a similar method to show that the Voronoi 
diagram of such sets of sites can be constructed in linear expected time by a variation of the 
gift-wrapping algorithm using standard bucketing techniques. 

2 A Genera l M e t h o d for Bound ing t h e Expec ted Complex i ty of Voronoi D i a g r a m s 

In this section we describe a general method for bounding ESn and ES„, the expected number of 
simplices in the duals of nearest- and furthest-site Voronoi diagrams of random point sets. 

The first d + 1 points x i , . . . ,x<i+i define a d-simplex with probability one. Let us first reckon 
the probability that they also define a simplex in the dual of the nearest-site Voronoi diagram. This 
is just the probability that the other n — d — 1 points lie outside the hypersphere passing through 
the d + 1 points. Writing for the density function of the xt* and Td for the probability content 
of interior of the hypersphere, we see that this probability is 

P n = / " " / ( 1 " r ^ d ~ 1 5 ( x i ) - - - f f ( x ^ i ) d a : i - - - d ^ + i > 
R<* R<* 

and that the expected number of simplices is therefore 

j • • • j (1 - Td)n'd^1g{xi) • • • g(xd+1) dxi • • • dxd+i. 
R<* R«* 

We next carry out a transformation of coordinates. The d + 1 points x i , X 2 , . . . ,x<i+i can be 
expressed in terms of a d-vector p representing the center of the sphere they define, a scalar 
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r representing the radius of that sphere, and d — 1 angles 1̂,̂ 12» iV'tf.rf-i for each x». Let 
yi = x» — p. Then the two systems of coordinates are related by the following equations: 

= p ( 1 ) + r«td-

= pW + rci>d-

*S
3) 

= P ( 3 ) + vi
3) 

= p ( 3 ) + rc, , d -

pW+raitd-i, ,M = pM + y« 
where cty and sfy represent cosVfy* and sin^ fy respectively. 

In three dimensions, the Jacobian of this transformation, expressed in tabular form, is 

p
(3) r 0ii 012 021 022 031 032 041 042 

1 0 0 *iiyi
ij 

0 0 0 0 0 0 
l 0 0 vP/r 0 0 *2iy2 0 0 0 0 
1 0 0 tfVr 0 0 0 0 Hiy* 0 0 
1 0 0 «?Vr 0 0 0 0 0 0 
0 1 0 A2)/r 0 0 0 0 0 0 

*i
8) 

0 0 1 »i
W

/r 0 0 0 0 0 0 0 
0 1 0 vP/r 0 0 *2is4

2) 
*U

3) 
0 0 0 0 

x
(3) 

0 0 1 vFlr 0 0 0 0 0 0 0 
0 1 0 Via)/r 0 0 0 0 0 0 

4
8 ) 

0 0 1 V?lr 0 0 0 0 0 *32V<
8) 

0 0 
*i

3) 
0 1 0 0 0 0 0 0 0 *4iyi

2) 

*i
8) 

0 0 1 Vi3)/r 0 0 0 • 0 0 ' 0 0 *42y4

3) 

where t j . = — tan Bij and kij = cot 9{j. The generalization to high er dimensions is straightforward 

If the row for x\X\ denoted by p\X\ is replaced by <r% = EiKi^y^/y^l it becomes 

JP/ix) yj
8,

/yj
1) yi

3)/y!1} r/y« 0 0 0 0 0 0 0 0 
and the matrix is in quasi-triangular form. The determinant of the entire matrix is the product of 
the determinant of one (d + 1) x (d + 1) matrix and d + 1 similar (d - 1) x (d - 1) matrices. 

The (d— 1) x ( d - 1) matrices are themselves upper triangular; the determinant of each is easily 
seen to be 

„d-l^d-l A-2 . .1 _ .№rd-2rd-2 <*d~Z 

If the factors of (1/yj1*) are removed from the rows of the (d+ 1) x (d+ 1) matrix, and then 
the factor of r is removed from the last column, the remaining determinant is 

vi" 
vi" 
vi" 
vi" 

(2) 

ti
(2) 

Vz 
(2) 

(3) 
Vi 
ti

(s) 

t/
(3) 

Vz 
(3) or just d\ times the volume of the simplex formed by x\9 X2>. 

original Jacobian matrix is 

l<i<d+l 

, Zd+i- Thus the determinant of the 

d-2 „d-z 
citd-lci,d-2 

A 
, - c t 2 > 
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and 

P » = (2.1) 
d]I I " r'')n~d~1 / "''/ *(Xl) * • • M**-i) sirnp(xu • • •, x<, + 1) <fyi.i • • • <ty<M-i,<i-i <*r dp 

r<i 0 L^S—.—2^ J 

(<M-l)(d-l) 
with 

If we define 

Hr>P) = / • • • / M*i) #1,1 • • • <tyi,d-i, «/0 «/0 
(d-i) 

then, since x\ through xd+i are i.i.d., 

/ • • • / A(xi) • • • h(xd+1) <fyi.i'' • <tyM+i,<*-i = (dC'.P))*"1. 
/0 Jo ^ 
(<M-l)(d-i) 

and the bracketed quantity of (2.1) is easily seen to be 

{9{r, p))d+lE{aimp{xu x 2 , . . . , xd+1) | ||x< - p| | = r for 1 < 1 < d + 1) = {g(r,p))d+1 esimp(r,p). 

and 

Pn = d\J j H r"d(l - rd)"-'i-1($(r,p))<i+1

 Catmp(r,p) dr dp. 

It is clear that g, Td, and eaimp depend only on r and if g is spherically symmetric. To exploit 
this symmetry, we express p in generalized spherical coordinates (g,0i,02, • • • >#<<-i) defined by 

IIpII = 1 
pW = qCd-\Cd-2 " ' * 

(2) 

/ = qCfi-iCd-2' " ^ 3 ^ 2 ^ ! 

p(3) = g c ^ 1 c < j - 2 , , - C 3 « 2 

p ( d ) = qsd-u 

where cf- and sf- represent cos0 t and sin^,-. The Jacobian of this transformation is well known to 
be l^c^icfzl*"** [1 5> P- 171> t " l u s application of a well-known definite-integral identity [2, 
/620] with Vd = (2nd/2)/(dT{d/2)) being the volume of the unit d-ball, Pn is 

d\ (J*- • • j [ ' jf " c t ^ f c J • • • 4 dOx .. • d9d^ (J~ J^q^r-^l - Tjr*-Xti*X **nP dr dq) 

® * ^ 0 0 
(¿-2) - d! dVd • j*-*,." V 1

 eaimp exp(-nTd) dr d?. 
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and, since ( ^ J ~ 

E S n „ *gi. j r j r v = ^ • /," /0~ nf . ' )** 
(2.2) 

Similarly, 

ES* „ W*"1 . [°° f°° f-*r-*V»l esimp exp ( -n ( l - Td)) drdq. 
d+1 Jo Jo 

3 B o u n d s for T h e Uni form Dis t r ibu t ion in a rf-Ball 

In this section we turn to the uniform distribution in the unit d-ball in particular and prove the 
following theorem. 

T h e o r e m 3 Let Xn = {-Xi, -X2,... ,Xn} be a set of n sites drawn independently from the uniform 
distribution on the interior of the unit d-ball. Then ESn, the expected number of simplices of the 
dual of the Voronoi diagram of Xn, is ©(n). 

Proof. We have g(x) = 1/Vd when ||x|| < 1 and g(x) = 0 otherwise. Let U denote the unit d-ball, 
B the ball defined by the points x\ through £¿+1, and dB the surface of S. Then 

vo\(BnU) 
T d = Vd ' 

void.i(ag n u)  
9 = vd ' 

esimp < vol(conv(3S n Z/)). 
We now divide the domain of integration of the integral of (2.2) into eight regions corresponding 
to the possible patterns of intersection of the two balls B and U. 

Case 1: q < 1 and 0 < r < 1 - q. In this case, B C Z/, 

Also 

esimp = Mdr d; 

we return to the exact value of Md later. Thus 

f fq
 I{q,r)drdq ~

 dd+lMdlt £ q,^ll"1^"1«q>(-»^)*,* 
~ dd-2d\Mdn-d 
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Figure 1: Case 2: q < 1 and 1 - q < r < y/1 - q2. 

Case 2: q < 1 and 1 - q < r < y/1 - q2. In this case at least half of B and dB lie inside U, and 

Vd > ~£y- = estmp < Vdra. 

By Tricomi's formula t~ae~* dt ~ i - a e ~ x for the incomplete gamma function [27, §4.3], 

ri ry/ZT ^ ^ ^ ^ = O(l) • /* /"^^^ ĝ -ir̂ -i exp(-nr < i /2) dr dq 
JO Jl-q JQ Jl-q 

= 0(n-d) • £ qd~l (n( l - q)d) d _ 1 exp( -n ( l - q)d) dq 

= 0(n-d) • | " n"1/ V -*+(V4 e -« rfu 

= o(n-d-(i/2)). 

(3.1) 

Figure 2: Case 3: ? < 1 and Vi - q2 < r < 1. 

Case 5: ? < 1 ana" Vl - q2 < r < 1. Referring to Figure 2, we have immediately from geometric 
considerations that (r - x) < h < r. By first solving the equation 1 - (q - x)2 = r2 - x2 for x, it is 
easy to verify that 

f r r l _(g+l-0(r+l-g) 
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Since r > \/l — q2 > 1 — q, it follows that 

r < (r + 1 - q) < 2r, 

g < (g + 1 - r) < 2g; 

thus (r — x) = 0 ( r ) and also h = ©(r). Now 

estmp < (r - x ) ^ - ! ^ - 1 = 6 ( r d ) , 

(<*-l)/2 

and 

Z 1 / 1 / (g , r)drJ 9 = 0(1) f f a<-lr-<r«+W-Wr*eM-nrd)drdq 
JO Jy/l^ JO J\/l-q2 

-«"/;'"(L,(̂ -'T)* 
this is clearly dominated by (3.1) of Case 2. 

Figure 3: Case 4: q < 1 and r > 1. 

Case 4: q < 1 and r > 1. In this case 

9 < Sd/Vd = d, 

and 

Td > 2 vol(l/ n {x | *W > 1/2}) = n ( l ) , 
esimp < Vd, 

lo r / ( 9 > r ) d r d q - Si ^ _ i r " < ' d < i + i v ; i e x p ( - n ( n ) ) d r * * = ° ( c _ n ( n ) ) -

Case 5: g > 1 and 0 < r < g - 1. In this case 8nU = Q, g = T = esimp = 0, and the integral 
vanishes. 
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Figure 4: Case 6: q > 1 and q — 1 < r < q. 

Case 6: q > 1 and q — 1 < r < q. Setting w = 1 — g + r, we have 

r 2 + g 2 - 1 (2 - tp ) i« 
x - - r - r - e(«v<7), 

±jyj-(l + q + r)(l + q-r)(l-q + r)(l-q-r) 

^{•2q + «0(2 - w)w(r + q-l) 

since 
0 < w < 1; 

1 < (2 - w) < 2; 
2g < (2? + to) < 3g; 
r < (r + g - 1) < 2r. 

Thus 

r = e o ^ - 1 ) ; 
esimp < Vd-1hd-1(r-x) = e(T/q); 

9 = ^rtls(x/r) = e ( r - - l ( i - (*A))(<*-1)/2) = e((«r/«)<*- l>/») = e ( i » . 

Now 

- e w ( r » - , * ) ( / . , - - , ( i ) ' r * * « - * * ' ) -
We have 

dto 2q V wr W ' 

§ = ^ - 1 + ^ - i ) ^ - 2 ( ^ ) = e ( ^ ) = e ( r / „ , ) . 



Substituting t = riT; dt= Q(t/w)dw gives 

l°° f I(q,r)drdq = e(n-W) j"\-2dtd+le-<dt 

= e(«-')/o"(£)V'.-'*. (3.2) 
Since the T-region contains a ball of radius tu/2, ^(wh*"1) = T > 0(u/ r f) and tu//i = O(l) , and 

f ° f / ( ? , r ) d r d ? = 0 ( n - d ) . 
1̂ Jq-l 

A more careful analysis would show that w/h is small unless g « 1. The ultimate result would be 
f00 T I(q,r)drdq = o(n-d). 
Jl Jq-l 

Figure 5: Case 7: q > 1 and q < r < q + 1. 

Case 7: q > 1 and q<r<q+l. 
9 < Sd/Vd = d; Td = n(l); esimp < V d ^ l x = V ^ * " 1 ^ " V r 2 - 1) = 0{r^). 

Thus, since r - 1 < g" 1 , 

y I{q,r)drdq = ] ] qd-lr-dO{l)0{r-l)exV{-nZl{\))drdq 

= 0 ( e - n W ) . 

Case 8: q > 1 and" g + 1 < r. In this ease ! / c B and dB n £/ = 0, thus j = 0 and the integral 
vanishes. 

Examining all the cases, we see that Case 1 dominates, and that 
d\dd-xVdMdn 

ESn 

10 
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The quantity Md is simply the expected volume of the simplex defined by d + 1 points chosen at 
random on the surface of the unit rf-ball. This quantity has been investigated by Miles [18], who 
showed that 

_ r ( ( * + l ) /2 )r (d /2)**  
d VZd\T{d?/2)T{{d+l)/2)d' 

Applying (3.3) for d = 2, we obtain ESn ~ 2n. This is confirmed by well-known combinatorial 
results. We also have 

ESn ~ ^ r - n « 6.77n for d = 3; 

286 
ESn —n « 31.78n for d = 4. 

These values are not obviously inconsistent with the values 6.31 and 25.6 found empirically by 
Avis & Bhattacharya for (rather small) samples of 1000 points chosen from the unit hyper cube [1, 
Table 1]; it is reasonable to conjecture that (3.3) in fact holds for point sets chosen from a uniform 
distribution on any convex body. 

4 A Fast Algorithm for the Unit rf-Ball 

It is immediate from Theorem 3 and the discussion of the lifting function in §1 that the Voronoi 
diagram of random points from a rf-ball can be constructed in 0(n2) time on average by either the 
shelling or the gift-wrapping algorithm. In this section, we describe an algorithm requiring only 
O(n) time on average. 

The algorithm we use constructs the Voronoi dual and is similar in spirit to Maus' planar 
algorithm [16]: it employs standard bucketing techniques, and its operation in R d corresponds to 
the operation of the gift-wrapping algorithm in R d + 1 . It will be convenient to call the rf-simplices 
of the Voronoi dual cells and the (d— l)-simplices facets (since they are facets of the cells); likewise, 
we will call an empty d-sphere defined by the vertices of a cell a cell sphere and a (d — l)-sphere 
defined by the vertices of a facet a facet sphere. The algorithm proceeds by repeatedly finding a 
new cell adjacent to a known facet. Except for facets that are also facets of the (d-dimensional) 
convex hull, every facet belongs to exactly two cells. We maintain a dictionary of facets for which 
only one cell is known. At each step a facet is removed from the dictionary and its unknown cell (if 
it exists) is found by searching for the unknown (d+ l )st vertex (the site search). The remaining 
facets of the new cell are searched for in the dictionary (facet searches). Each that is found is 
deleted, since both of its cells are already known. Each that is not found is inserted so that its 
unknown cell will be searched for in some later step. The algorithm is described more formally in 
Figure 6. 

The facet dictionary is organized as a linear array of n buckets; a random facet falls into a 
particular bucket with probability 1/n. Within each bucket facets may be organized in a balanced 
search tree to insure good (logarithmic) worst-case performance, but a simple linear list is sufficient 
to achieve a linear bound on expected time. 

The pseudo-code of Figure 7 describes the searching function Findjsite. To speed the site 
searches, we partition the hypercube [—l,l] d into 2dn/Vd hypercubic boxes of volume Vd/n and 
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Algorithm A 
— Box(x) is the bucket for the box containing x. 
— f jdict is the facet dictionary and contains (facet,halfspace) pairs, 
for x G Xn do Box(x) := Box(x) U {x}\ 
Find an initial (facet,halfspace) pair (7,)/) by gift-wrapping; 
Insert(7, U, f-dict); 
while fMct # 0 do 

(7,)i) := any pair from fjdict\ 
newjv := Find_site(7, #); 
delete{7\f.dict); 
if neti/_t; ^ nil then Output(7 U {neu/.t/}); 
for v G 7 do 

r := (J \{ t ;})u{net( ; - t ;} ; 
M' := the halfspace defined by 7' not containing t>; 
if 79 e f-dict then Delete(7\fMct) 
else Insert{7\M\f.dict)\ 

end 

Figure 6: Algorithm A. 

side {Vd/n)xld and assign each site to the bucket for the box in which it lies. Boxes lying completely 
outside the unit ball will always be empty. Boxes lying inside the unit ball will contain in expec­
tation one site each. An asymptotically vanishing fraction of the boxes will intersect the boundary 
of the unit ball and will contain less than one site each in expectation. On a particular call to 
Find^site, let 7, and U be as in Figure 6, and let B be the cell ball of the unknown cell if it 
exists. If the cell exists, it is necessary and sufficient to examine those boxes intersecting (8 DM nil) 
to determine it. If it does not exist, it is necessary and sufficient to examine the boxes intersecting 
(M nil) to determine this. The function Find site examines exactly those boxes. The priority queue 
operations Insert, Findjmin, and Deletejmin can be implemented so that only O(logn) time is 
required for each [25], but a naive linked-list implementation in which each operation requires time 
proportional to the length of the list suffices for the purposes of our average-case analysis. 

We must now show that all the facet and sites searches can be completed in O(n) time on 
average. 

Lemma 4 The facet searches can be completed in 0(n) expected time. 

Proof. The orientation of the facets with respect to the origin is obviously uniformly distributed 
because the distribution of sites is spherically symmetric. So we partition the surface of the unit 
d-sphere into n regions of equal size and assign each facet to the bucket for the region in which its 
unit normal vector lies. If u is the facet's unit normal vector, it will suffice, for example, to assign 
the facet to the bucket numbered 

2n 
— arccos 

this assignment can be made in constant time if the ceiling function carries unit cost. Each facet 
will be searched for twice. Let Mt- be the number of facets ever placed into the ith bucket over the 
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function Find .site (?,)!) 
— U is the unit d-ball. 
— Site jseg jvol(x) is the volume of the intersection of # n U 
— and the d-ball defined by x and the vertices of 7. 
— Boxsegjvol(B) = min Sitejsegjvol(y) for y a corner of B. 
— g is a priority queue of boxes ordered by Box^egjool. 
Insert(Box(centeT of facet sphere of 7) , q); 
ana := nil; 
while (q ̂  0) A (Boxjsegjvol(Findjmin(q)) < Sitejsegjvol(ans)) do 

B := Deletejmin(q)\ 
for x G B do 

if (x € M) A (5tïC-5C(/„t;o/(x) < S#e_£e0..v0/(ans)) then ans := x; 
for B' adjoining B do 

if ((B' H y n H) ^ 0) A (S' ^ q) then /n5ert(B', g); 
return ans; 
end Find site 

Figure 7: The site-search procedure Findjsite. 

course of the running of the algorithm. The time required for all the dictionary operations together 
(assuming linear lists within buckets) is at most 

A theorem of Devroye's [8, p. 59] asserts that the expectation of this sum is O(n) if EMi = O(l); 
this is clearly the case. • 

We now turn to the search for the (d + l)st site completing a cell with a known facet. We call 
a site search "successful" if a site is found, and "unsuccessful" if no site is found because the facet 
lies on the boundary of the convex hull. 

Lemma 5 The successful site searches can be completed in 0(n) expected time. 

Proof. If we define the distance between a point x and a set 1/ by 

dist(x,I/) = mindist(x, y), 

all the boxes intersecting 8 Ci X nil are completely contained by the set 

A = { x | dist(x, B n U) < \fd(Vd/n)lld }. (4.1) 

Assuming the naive linked-list implementation, the cost of the each priority queue operation is at 
most proportional to the total number of boxes examined. The cost of examining the sites in a box 
is O(l) in expectation. The expected total cost of the site search is therefore proportional to the 
square of the number of boxes examined, or 

ecost = 0 ( (n • vol.4) 2). (4.2) 
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If we write Cn for the total cost of all successful site searches needed to compute the Voronoi 
diagram of £ n> we have 

ECn< L + J / ••• / e c o s * ( x 1 , . . . , x d + i ) ( l - ^ 

The (d+ l)-fold integral represents an upper bound on the expected cost of a successful site search 
to complete the cell X1X2 . . .x<i+i. Proceeding as in §2, we eventually obtain 

roo TOO 
ECn = O(l) • / / ecost(q9 r)I(q9 r) dr dq. 

Jo Jo 

We continue as in §2, dividing the domain of integration into eight regions. However, we ignore 
constant factors this time. 

Cases 1, 2, 8: In all these cases, 

g = e f r * - 1 ) ; Td = 6 ( r d ) ; esimp = 0 ( r d ) . 

The set A of (4.1) is contained in a d-ball of radius (r + Vd(Vd/n)^d)d and, by (4.2), with t = 
nTd = e(nrd) as in §3, 

y/ecost(q9r) = O (N(R + n-1**)*) = ° (E'*»'/D) = ° (E* t 7 d ) = O ( l + 0-

It follows that 

J T , / o

, « ^ f . , ) K , . , ) * * i = eM(/ . , « J - , *)(JT< 1 + 0 , ( £ ) ' x * ) 

Cases ^, 7: For these cases we apply the trivial bound ecost(r,q) = 0 ( n 2 ) , and 

J J ecost(q,r)I(q,r)drdq = 0(n2) f J I(q,r)drdq 

= 0 ( e " n H ) 

Coats 5, 8: In these cases § = 0 and the integral vanishes as before. 

Case 6: In this case the set A of (4.1) is contained in a (d — l)-spherical cylinder with height 
(w + 2v / 3(Vd/n) 1 / d ) and base radius (h + y/d{Vd/n)^d), so 

y/ecoat(q,r) = O (N(u> + N"1/*)̂  + rr1'*)^1) 

= 0(n) • wn-ildhd-x-i + £ N-'/'*̂ -̂  
V»=o t=l / 

= O(n) • ^ u ^ " 1 + + h)rri'dhd-1-i + n " 1 ^ 
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= O^nwh^ + ^hfn^+lj (4.3) 

= 0((h/w)(nTd + l)), 

since w = 0(h) and A = (hTd/w)1/d. Computation proceeds as in the proof of Theorem 3, 
substituting t = nTd, to the point of (3.2), where, since w = O(Zi), this time we have 

j* ecost{qyr)I{q,r)drdq = &{n~d) j\cost{q,r) t^e^dt 

= 0 ( n ~ d ) ril + tft^e-Ut 
Jo 

= C-(n-«). 

Summing over the eight cases, we see that 

/ / ecos*(g, r) J(g, r) dr dg = 0(n ) 

and 

ECn = 0 ( n d + 1 ) • 0 ( n " d ) = O(n). 

• 
Finally, we consider the unsuccessful site searches for facets of the convex hull. 

L e m m a 6 The unsuccessful site searches can be completed in o(n) expected time. 

Proof. An unsuccessful search requires examination of all the boxes intersecting M n U] these are 
completely contained in 

A = {z\ dist(x,^ n U) < Vd{Vd/n)^d}. 
As before, 

ecost = 0 ( ( n - vol.4) 2). 

Let us write Un for the total cost of all unsuccessful site searches. These occur only for facets 
of the convex hull. We have 

EUn< nj ecost(xux2y...yxd){l-Td)n^dg{x1)'^g(xd)dx1'^dxd. 

Here is the probability content of the smaller halfspace defined by x\ through xd, and (1 — Td)n~d 

is the probability that all the other sites lie in the larger halfspace. We apply a standard change of 
variables used by Efron [11], Raynaud [19], the author [10], and others. Each of the d vertices of 7 
is expressed in terms of p, the projection of the origin onto the hyperplane and an orthonormal 
basis for M — p. After some computation similar to that of §2, we obtain 

EUn = 0(nd) • f1 ecost{r) esimp{r)(g(r))dexp{-nTd) dr 
Jo 
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Figure 8: An unsuccessful search. 

where 

r is the distance of the hyperplane M from the origin, 
esimp(r) is the expected volume of the simplex X1X2 • • • x<i given the distance r, 
eco8t(r) is the expected cost of the unsuccessful search given r, 

g(r) is the density of the probability that a random point falls on )/, and 
exp(—nTd) estimates the probability that M defines an empty halfspace. 

Let w = 1 — r and h = y/1 — r2 = Q{y/w) as in Figure 8. Then 

Td{r) = e(whd~l) = e(hd+1) 

With t = nTd or h = ( t / n ) 1 / ^ * 1 ) , we have 

estmp(r) 

Sir) 
\J ecoat(r) 

= e 

-*.«e(i)(i) t 

e(Ad-1) = e ( ( t / n ) ( d - 1 ) / ( d + 1 ) ) ; 

e(fc<*-1) = e((t/n)(*-1)/(«**-1)); 

e ( n(u» + n - 1 / ' ' ) ^ + n - 1 / * ) * - 1 ) as in (4.3) 

V t = 0 

0(n(<i-i)/(^)(l + t)), 
and 

= o(n). • 
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Lemmata 4, 5, and 6 together imply the following theorem. 

T h e o r e m 7 Let Xn = {X\yX2y • >-^n} be a set of n sites drawn independently from the uniform 
distribution on the interior of the unit d-ball. Then for fixed d, Algorithm A constructs the Voronoi 
diagram of Xn in 0(n) time on average. 

This algorithm is clearly optimal in the average-case sense, and is asymptotically faster than 
any other known. If a balanced-tree implementation of priority queues is used, the running time 
of this algorithm is 0(Snn log n), only a factor of 6(logn) worse that the standard gift-wrapping 
algorithm. 

It is easy to show that linear performance is preserved if the distribution is "quasi-uniform" in 
the unit d-ball, i.e., if its density bounded above and below by a positive constant everywhere in 
the d-ball. It is an open question whether the same approach yields an O(n) algorithm for other 
distributions. In the specific case of the uniform distribution in the unit rf-cube, the orientation 
of facets is clearly not uniform, so a different approach to facet searching is required. Other 
distributions such as the d-dimensional normal likely require a different approach to site searching. 
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