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Abstract 
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systems. In most languages and systems based on transactions, atomicity is implemented through 
atomic objects, which are typed data objects that provide their own synchronization and recovery. This 
paper describes new linguistic mechanisms for constructing atomic objects from non-atomic components, 
and it formulates proof techniques that allow programmers to verify the correctness of such 
implementations. 
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1. Introduction 
A distributed system consists of multiple computers (called nodes) that communicate through a network. 
Programs written for distributed systems, such as airline reservations, electronic banking, or process 
control, must be designed to cope with failures and concurrency. Concurrency arises because each 
process executes simultaneously with those at other nodes as well as those at the same node, while 
failures arise because distributed systems consist of many independently-failing components. Typical 
failures include node crashes, network partitions, and lost messages. 

A widely-accepted technique for preserving consistency in the presence of failures and concurrency is to 
organize computations as sequential processes called transactions. Transactions are atomic, that is, 
serializable and recoverable. Serializability [24] means that transactions appear to execute sequentially, 
and recoverability means that a transaction either succeeds completely or has no effect. A transaction's 
effects become permanent when it commits, its effects are discarded if it aborts, and a transaction that 
has neither committed or aborted is active. 

In most languages and systems based on transactions, atomicity is implemented through atomic objects, 
which are typed data objects that provide their own synchronization and recovery. Languages such as 
Argus [17], Avalon [11], and Aeolus [30] provide a collection of primitive atomic data types, together with 
constructs for programmers to define their own atomic types. The most straightforward way to define a 
new atomic type is to use an existing atomic data type as a representation, but objects constructed in this 
way often support inadequate levels of concurrency [29]. Instead, it is often necessary to implement new 
atomic objects by carefully combining atomic and non-atomic components, and it is the responsibility of 
the programmer to ensure that the implementation is indeed atomic at the "right" level of abstraction. 

In this paper, 

• We describe new linguistic mechanisms for constructing atomic objects from non-atomic 
components. These mechanisms are currently being implemented as part of the Avalon 
[11] project at Carnegie Mellon. 

• We formulate proof techniques that allow programmers to verify the correctness of atomic 
objects implemented using our mechanisms. 

Although language and system constructs for implementing atomic objects have received considerable 
attention in the distributed systems community, the problem of verifying the correctness of programs that 
use those constructs has received surprisingly little attention. Techniques for reasoning about concurrent 
programs are well-known [1 ,12 ,16 , 23], but are not adequate for reasoning about atomicity. They 
typically address issues such as mutual exclusion or the atomicity of individual operations; they do not 
address the more difficult problems of ensuring the serializability of arbitrary sequences of operations, nor 
do they address recoverability. Reasoning about atomicity is inherently more difficult than reasoning 
about concurrency alone. 

We view the development of new linguistic mechanisms and proof techniques as complementary tasks. 
Verification techniques can serve not only as aids for reasoning about atomic objects, and hence about 
transaction-based distributed systems, but also as the foundation of a methodology for their design and 
implementation. This notion is analogous to Gries's contention that loop invariants and termination 
functions facilitate the development of programs-in-the-small [8], and Liskov and Guttag's similar 
contention that representation invariants and abstraction functions facilitate the development of programs-
in-the-large [18]. 
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This paper is organized as follows. In Section 2, we present our model and basic definitions, and in 
Section 3, we introduce and motivate the relevant language primitives provided by Avalon. In Section 4, 
we describe our verification techniques, which are illustrated by an extended example in Section 5. 
Section 6 concludes with a discussion and a brief overview of related work. 

2. Model 
The basic containers for data are called objects. Each object has a type, which defines a set of possible 
values and a set of primitive operations that provide the only means to create and manipulate objects of 
that type. For example, a file might provide Read and Write operations, and a FIFO queue might provide 
Enq and Deq operations. 

A computation is modeled by a history, which is a finite sequence of events. An invocation event is 
written as xop(args*)A, where x is an object name, op an operation name, args* a sequence of 
arguments, and A a transaction name. A response event is written as x term(res*) A, where term is a 
termination condition, and res* a sequence of results. We use "Ok" for normal termination. A commit or 
abort event is written x Commit A or x Abort A, and it indicates that the object x has learned that 
transaction A has committed or aborted 1. A response matches an earlier invocation if their object names 
agree and their transaction names agree. An invocation is pending if it has no matching response. An 
operation in a history is a pair consisting of matching invocation and response events. An operation p0 

lies within p1 in H if the invocation event for p1 precedes that of p0 in H, and the response event for p1 

follows that of p0. 

A transaction subhistory, H \ A (H at A), of a history H is the subsequence of events in H whose 
transaction names are A. H \ S and H \ x are defined similarly, where S is a set of transactions and x is 
an object. A history is complete if every invocation has a matching response. Let complete(H) denote the 
longest complete subhistory of H. Histories H and G are equivalent if complete(H) \ A = complete(G) \ A 
for all transactions A. 

A history H is well-formed \s it satisfies the following conditions for all transactions A: 
1. The first event of H | A is an invocation. 

2. Each invocation in H | A, except possibly the last, is immediately followed by a matching 
response or by an abort event. 

3. Each response in H | A is immediately preceded by a matching invocation, or by an abort 
event. 

4. If H | A includes a commit or abort event, it must be the last event. 

A well-formed history H is sequential if: 
1. Transactions are not interleaved. I.e., if any event of transaction A precedes any event of 

B, then all events of A precede all events of B. 

2. All transactions, except possibly the last, have committed. 

Each object has a sequential specification that defines a set of legal sequential histories for that object. 
This set is defined indirectly by using conventional specification techniques, e.g., the axiomatic style of 

Although Avalon permits transactions to be nested [22, 25], this paper considers only single-level transactions. 



3 

Larch [9], that describe an object's values and pre- and postconditions on its operations. For example, 
the sequential specification for a FIFO queue object includes all and only histories in which items are 
enqueued and dequeued in FIFO order. A sequential history H involving multiple objects is legal if it is 
legal at each object, i.e., each subhistory H | x belongs to the sequential specification for x. 

H is atomic if H | committed(H), the subhistory associated with committed transactions, is equivalent to 
some legal sequential history. We focus here on "pessimistic" atomicity mechanisms, in which an active 
transaction with no pending invocations is always allowed to commit. H is on-line atomic if every well-
formed history H' constructed by appending commit events to H is atomic. Any sequential history 
equivalent to H' \ committed(H') is called a serialization of H. H is on-line atomic if every one of its 
serializations is legal. 

The only practical way to ensure atomicity in a decentralized distributed system is to have each object 
perform its own synchronization and recovery. Nevertheless, H is not necessarily atomic just because H \ 
x is atomic for each object x. To ensure that all objects choose compatible serialization orders, it is 
necessary to impose certain additional restrictions on the behavior of atomic objects. Atomic objects in 
Avalon are subject to the restriction that transactions must appear to execute sequentially in the order 
they commit, a property that Weihl [28] has called hybrid atomicity. Under this restriction, it suffices to 
consider only object subhistories. 

To capture this restriction, we make the following adjustments to our model. When a transaction 
commits, it is assigned a logical timestamp [15], which appears as an argument to that transaction's 
commit events. These timestamps determine the transactions' serialization order. Commit timestamps 
are subject to the following well-formedness constraint, which reflects the behavior of logical clocks: if B 
executes a response event after A commits, then B must receive a later commit timestamp. Henceforth, 
a history is atomic if its transactions are serializable in commit timestamp order, and it is on-line atomic if 
the result of appending commit events with well-formed commit timestamps is atomic. 

q Enq(x) A q Enq(x) A 
q Enq(y) B q Enq(y) B 
q Ok() B q Ok() B 
q Ok() A q Ok() A 

q Commit(1:30) A q Commit(1:15) B 
q Commit(1:15) B q Deq() C 

q Deq() C q Ok(y) C 
q Ok(y) C 

Figure 2 -1 : H 1 (left) is on-line atomic, but H 2 (right) is not. 

For example, consider the two histories H 1 and H 2 for a FIFO queue q shown in Figure 2-1 . H 1 is on-line 
atomic. It has two serializations: one in which B precedes A and one in which B precedes A and A 
precedes C, and it is easily verified that both are legal. H 2 , however, is atomic but not on-line atomic, 
since the history H ' 2 = H 2 • q Commit(1:00) A • q Commit(1:30) C is not equivalent to any legal sequential 
queue history (items x and y are dequeued out of order). 

The use of commit-time serialization distinguishes Avalon from other transaction-based languages, which 
are typically based on some form of strict two-phase locking [4]. We chose to support commit-time 
serialization because it permits more concurrency than two-phase locking [28], as well as better 
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availability for replicated data [10]. Because commit-time serialization is compatible with strict two-phase 
locking, applications that use locking can still be implemented in Avalon. 

3. Language Constructs 
Avalon is currently being implemented as extensions to C++ [27]. The basic language construct for 
implementing atomicity in Avalon is the tid (transaction identifier) data type. Tids are a partially ordered 
set of values. The two most important operations provided by tids are creation and comparison. The 
creation operation, written: 

tid t = * (new tid) ; 
creates a new tid value, and the comparison operation, written: 

ti < t2; 
returns information about the order in which its arguments were created. If the comparison evaluates to 
true, then (1) every serialization that includes the creation of t1 will also include the creation of £2, and (2) 
the creation of t1 precedes the creation of t2. If ti and t2 were created by distinct transactions T1 and 72, 
then a successful comparison implies that T1 is committed and serialized before 72, while if t1 and t2 
were created by the same transaction, then t1 was created first. If the comparison evaluates to false, 
then the tids may have the reverse ordering, or their ordering may be unknown. Comparison induces a 
partial order on tids that "strengthens" over time: if t1 and t2 are created by concurrent active 
transactions, they will remain incomparable until one or more of their creators commits. If a transaction 
aborts, its tids will not become comparable to any new tids. 

Atomic objects in Avalon provide Commit and Abort operations that are called by the system as 
transactions commit or abort. Commit typically discards recovery information for the committing 
transaction, and Abort typically discards the tentative changes made by the aborting transaction. Both 
Commit and Abort have a tid argument, which is used as follows. If t is the argument to Commit, then any 
tid f satisfying the predicate: 

isDesc(t',t) 
was created by the committed transaction /. The argument for Abort is defined analogously. Intuitively, 
Commit and Abort operations in Avalon are expected to affect liveness, but not safety. For example, 
delaying a Commit or Abort operation may delay other transactions (e.g., by failing to release locks) or 
reduce efficiency (e.g., by failing to discard unneeded recovery information), but it should never cause a 
transaction to observe an erroneous state 2 . 

An atomic object in Avalon is defined by a C++ class that inherits from the Avalon built-in class atomic 
(see [11]). Syntactically, a class is defined by a collection of members, which are the components of the 
object's representation, and a collection of operation implementations. With occasional minor variations, 
implementations of operations of atomic objects in Avalon have the following form: 

tid t = * (new tid) ; 
when(TEST) 
pinning() 

BODY; 
The new statement generates a new tid which is used to "tag" the current operation. The when 

2We do not address liveness properties in this paper, though certain ones are clearly of great interest. We rely on the extensive 
work on temporal logic, e.g., [21], for reasoning about liveness. 
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statement is a conditional critical region: the statement enclosed by the when is executed when TEST 
evaluates to true, TEST is typically an expression comparing the operation's newly created tid to other 
tids embedded in the object's representation. When TEST evaluates to true, the operation can be 
executed without violating atomicity. To ensure proper crash recovery, as distinct from transaction 
recovery, an object may be modified only within statements of the form: pinning () BODY. The 
pinning statement is included here for completeness; we do not address crash recovery in this paper. 
BODY computes a result and updates the object's state. 

4. Verification 
This section outlines a verification methodology for implementations of atomic objects. 

An implementation is a set of histories in which events of two objects, a representation (rep) object r of 
type Rep and an abstract object a of type Abs, are interleaved in a constrained way: for each history H in 
the implementation, (1) the subhistories H | r and H | a satisfy the usual well-formedness conditions; and 
(2) for each transaction A, each representation operation in H | A lies within an abstract operation. 
Informally, an abstract operation is implemented by the sequence of rep operations that occur within it. 

Our correctness criterion for the implementation of an atomic object a is as follows: The object is atomic if 
for every history in its implementation, H | a is atomic. We typically do not require H | r to be atomic. 

To show the correctness of an atomic object implementation, we must generalize techniques from the 
sequential domain. Let Rep be the implementation object's set of values, Abs the set of values of the 
(sequential) data type being implemented, and OP the sequential object's set of operations. The subset of 
Rep values that are legal values is characterized by a predicate called the rep invariant, t. Rep -» bool. 
The meaning of a legal representation is given by an abstraction function, A: Rep - » 2 0 P * , defined only for 
values that satisfy the invariant. Unlike abstraction functions for sequential objects [14] that map the rep 
value to a single abstract value, our abstraction functions map the rep value to a set of sequential 
histories of abstract operations. 

Our basic verification technique is to show inductively that the following properties are invariant. Let r be 
an object state after accepting the history H, and let Ser(H) denote the set of serializations of H. 

1. V S in A(r), S is a legal sequential history, and 

2. Ser(H)^A(f). 

These two properties ensure that every serialization of H is a legal sequential history, and hence that H is 
on-line atomic. Note that if we were to replace the second property with the stronger requirement that 
Ser(H) = A(r), then we could not verify certain correct implementations that keep track of equivalence 
classes of serializations. In the inductive step of our proof technique, we show the invariance of these 
two properties across a history's events, e.g., as encoded as statements in program text. 

5. An Example: A Highly Concurrent FIFO Queue 
In this section, we illustrate our verification technique by applying it to a highly concurrent atomic FIFO 
queue implementation. Our implementation is interesting for two reasons. First, it supports more 
concurrency than commutativity-based concurrency control schemes such as two-phase locking. For 
example, it permits concurrent Enq operations, even though Enq's do not commute. Second, it supports 
more concurrency than any locking-based protocol, because it takes advantage of state information. For 
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example, it permits concurrent Enq and Deq operations while the queue is non-empty. 

5.1. The Representation 
Information about Enq and Deq invocations is recorded in the following data structures: 

tid e, item* x) 

// item enqueued 
// who enqueued it 
// constructor 

// item dequeued 
// who enqueued it 
// who dequeued it 
// constructor 

struct enq_rec { 
item* what; 
tid enqr; 
enq_rec(tid t, item* x) 

{enqr = t; what = x;}; 
>; 
struct deqjrec { 

item* what; 
tid enqr; 
tid deqr; 
deq_rec(tid d 

{deqr = d; 
enqr = e; 
what = x; 

>; 

}; 
The enqr component is a tid generated by the enqueuing transaction, deqr is a tid generated by the 
dequeuing transaction, what is a pointer to the enqueued item, and the last component defines a 
constructor operation for initializing the struct. 

The queue is represented as follows: 
class queue: public atomic { 

deq_stack deqd; 
enq_heap enqd; 

public: 
queue(); 
void enq (item*); 
item* deq(); 
void commit(tid); 
void abort(tid); 

}; 
The enqd component is a partially ordered queue (or heap) of enq reds, ordered by their enqr fields, 
deqd component is a stack of deqjeds used to undo aborted Deq operations. 

// Stack of dequeued items 
// Heap of enqueued items 

// Create empty queue 
// Enqueue an item 
// Dequeue an item 
// Called on commit 
// Called on abort 

The 

5.2. The Operations 
If B is an active transaction, then we say A is committed with respect to B if A is committed, or if A and B 
are the same transaction. Enq and Deq must satisfy the following (informally stated) synchronization 
constraints to ensure atomicity. Transaction A may dequeue an item if (1) the most recent transaction to 
execute a Deq is committed with respect to A, and (2) there exists a unique oldest element in the queue 
whose enqueuing transaction is committed with respect to A. A may enqueue an item if the last item 
dequeued was enqueued by a transaction committed with respect to A. 

Given these conditions, Enq and Deq are implemented as follows: 

void queue: : enq (item* x) { 
tid who = * (new tid); // Caller's tid 
when (deqd.empty() | | deqd.topO .enqr < who) 
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pinning() // Making update 
enqd.insert(enq_rec(who,x)); // Record enqueue 

item* queue::deq() { 
tid who = *(new tid); // Caller's tid 
when ((deqd.empty() | I deqd.top() .deqr < who) && 

enqd.top_exists() && enqd.top().enqr < who) 
pinning(){ // Making update 

enq_rec e = enqd. remove (); // Move from enqueued heap... 
deqd.push(deq_rec(who,e.enqr,e.what)); // to dequeued stack, 
return e.what; 

> 

} 

Enq enters its critical region when the item most recently dequeued was enqueued by a transaction 
committed with respect to A. The enqueuer's tid and the new item are inserted in enqd. Deq enters its 
critical region when the most recent dequeuing transaction has committed with respect to the caller, and 
enqd has a unique oldest item. It removes the item from enqd and records it in deqd. 

In addition to Enq and Deq operations, the queue provides Commit and Abort operations that are applied 
to the queue as transactions commit or abort: 

void queue::commit(tid who) { 
when(true) // Always ok to commit, 
pinning() // Making update. 

// Discard any deq records. 
if (!deqd.empty() && deqd.top().deqr < who) deqd.reset(); 

void queue::abort(tid who) { 
when(true) // Always ok to abort, 
pinning(){ // Making update. 

while (!deqd.empty ()) { // Undo aborted dequeues. 
deq_rec d = deqd.top(); 
if (isDesc(d.deqr,who)) {// Dequeued by aborting transaction? 
enqd.insert(enq_rec(d.enqr, d.what)); // Put it back ... 
d = deqd.popO;} // and discard deq record, 

else break; // No more dequeues to undo. 
} 
enqd. discard (who); // Undo aborted enqueues. 

} 

The commit operation discards deq records for committed transactions, and the abort operation discards 
enq and deq records for aborted operations. 

5.3. Representation Invariant, Abstraction Function, and Proof Sketch 
We start with a lemma about sequential queue histories. Let O be a sequential queue history (not 
necessarily legal). Define the auxiliary functions ENO(O) and DEQ(Q) to yield the sequences of items 
enqueued and dequeued in Ct. 

DEQ(A) = emp ENQ(A) = emp 
DEQ(Q • Deq(x)) = DEQ(Q) • x ENQ(Q • Enq(x)) - ENQ(Q) • x 
DEQ(Q • Enq(x)) = DEQ(Q) ENQ(Q • Deq(x)) = ENQ(Q) 

Here, "Enq(x)" and "Deq(x)" are shorthand for Enq and Deq operations, " • " denotes concatenation, 
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"emp" the empty sequence of items, and " A " the empty history. 

When reasoning about serializations, we need a way to recognize when it is legal to insert an operation in 

the middle of a legal sequential history. 
Lemma 1 : Let Q - Q1 • Q2 be a legal sequential queue history, and let p be a queue operation. 
The sequential history Q '= Q1 • p • 02 is legal if DEQ(Q') is a prefix of ENQ(Q'). 

This lemma indirectly characterizes the conditions under which queue operations may execute 
concurrently; an analogous lemma would be needed for any other data type to be verified. 

5.3.1. Representation Invariant 
The queue operations preserve the following representation invariant. 3 For all rep values r. 

1. No item is present in both the deqd and enqd components: 

(V d: deqjec) (V e: enqrec) (d e r.deqd A e e r.enqd => e.what * d.what) 

2. Items are ordered in deqd by their enqueuing and dequeuing tids: 

(V d 1 , d2: deqjec) d1 < d d2 => (d1 .enqr < d2.enqr A d1 .deqr < d2.deqr) 

where < d is the total ordering on deqjeds imposed by the deqd stack. 

3. Any dequeued item must previously have been enqueued: 

(V d: deqjec) d € r.deqd => d.enqr < d.deqr. 
Our proof technique requires that we show the representation invariant is preserved across the 
implementation of each abstract operation. It is conjoined to the pre- and postconditions of each of the 
operations' specifications. 

5.3.2. Abstraction Function 
Let P be a set of tids. P is a prefix set if, for all tids t and t\ if t e P A t' < t, then V € P. 

Lemma 2: If H is an on-line atomic history for a set of tids and S is a serialization of H, then the 
tids whose creation operations appear in S form a prefix set. 

Define the auxiliary function OPS(r, P) to yield the partially ordered set of operations tagged by tids in P. 

The elements of OPS(r, P) are given by: 

{Enq(x) | (3 e.enqjece r.enqd) e.what = x A e.enqr e P v 
(3 6:deqjec e r.deqd) d.what = x A d.enqr € P } u 

{Deq(y) | (3 d.deqjece r.deqd) d.what = y A d.deqr e P} 

Each operation is "tagged" with a tid (e.enqr, d.enqr, or d.deqr). These tids induce a partial order on the 

elements of OPS(r, P). 

Let S be a partially ordered set of operations, and S' a sequence of operations. S' is a linearization of S if 

elements(S) = elements(S') and order(S) c order(S'). 

A(r, P) = {Q | Q is a linearization of OPS(r, P)} 

The abstraction function A(r) is defined as the union of A(r, P) over all prefix sets P. Note that A(r) 

typically includes more histories than Ser(H). 

3For brevity, we assume items in the queue are distinct, an assumption that could easily be relaxed by tagging 
queue with a timestamp. 
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5.3.3. Proof Sketch 

The queue implementation is verified by showing inductively that every sequential history in Ser(H) lies in 
A(r) and that every sequential history in A(r) is legal. For brevity, we give an informal summary of our 
arguments here; the formal proofs for the Enq and Deq operations are in the next section. 

Suppose the object completes an operation Enq(x) with tid tt carrying the accepted history H to H\ and 
the representation r t o r\ It is immediate from Lemma 2 that Ser(H') £ A(r). To show that every history 
in 4 ( r ) is legal, let Q' <= A(r). If O' fails to satisfy the prefix property of Lemma 1, there must exist y in 
DEQ(Q') such that x precedes y in ENQ(Q'), implying that the Enq of x is serialized before the Enq of y 
Let f be the enqueuing tid for the item at the top of the cfeqrd stack, and let f ' b e the enqueuing tid for y 
The when condition for Enq ensures that V < t, and the rep invariant ensures that t"< t\ hence that t"< f, 
which is impossible if the Enq of x is serialized first. 

Similarly, suppose the object completes an operation Deq(x) with tid f, carrying the representation r to r\ 
Let O = Q1 • Q2e A(i) and O' = Q1 • Deq(x) • Q2 e A(r). The rep invariant and the first conjunct of the 
when condition for Deq ensure that x is not an element of DEQ(Q), and the second conjunct then ensures 
that x is the first element of ENQ(Q) - DEQ(Q). Together, they imply that DEQ(Q') = DEO(O) • x is a 
prefix of ENQ(Q') = ENQ(Q), hence that O is legal by Lemma 1. 

If a commit or abort event carries the accepted history H to H\ and the corresponding commit or abort 
operation carries r t o r\ we must show that (1) A(r) c and (2) that no history in A(r) - A(r) is in 
Ser(H'). Property 1 ensures that every sequential history in A(r) is legal, and Property 2 ensures that no 
valid serializations are "thrown away." For Commit, we check that every discarded history is missing an 
operation of a committed transaction, and for Abort, we check that every discarded history includes an 
operation of an aborted transaction; either condition ensures that the discarded history is not an element 
of Ser(H'). 

Naturally, this verification relies on properties of sequential queues. To verify an implementation of 
another data type, one would have to rely on a different set of properties, but the arguments would follow 
a similar pattern. The basic synchronization conditions are captured by a type-specific analog to Lemma 
1, characterizing the conditions under which an operation can be inserted in the middle of a sequential 
history. The rep invariant and abstraction function define how the set of possible serializations is encoded 
in the representation, and an inductive argument is used to show that no operation, commit, or abort 
event can violate atomicity. 

5.4. Proof of Correctness for Enqueue and Dequeue 
We will show that if the prefix property (1) holds of all serializations h e A(r) at the invocation of the 
enqueue operation, it holds of all serializations H'e A(r') at the point of return. In the following, for H e 
A(r), H' e A(f), let H = H1 • H2 and H' = H1 • op • H2 such that V p e H1 - .(who < tid(p)) A V p e H2 

-i(tid(p) < who), where op is the enqueue or dequeue operation, as the case may be. 

5.4.1. Enqueue 

We decorate the enqueue operation with two assertions, one after the when condition, and one at the 
point of return. 

void queue: : enq (item* x) { 
tid who = *(new tid); // Caller's tid. 
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when (deqd.empty () || deqd.top() .enqr < who) 

WHEN: /Vy y € elements(DEQ(h)) => tid(Enq(y)) < who} 

pinning() // Making update, 
enqd.insert(enq_rec(who,x)); // Record enq. 

POST: {DEQ(h') = DEQ(h)} 
) 

Proof: Case 1: The queue is empty. Trivial since the antecedent of WHEN is false. 

Case 2: The queue is nonempty. Then let y be an item dequeued in H, which implies that the 
tid of the enqueue operation of y is ordered before who by the WHEN assertion. The enqueue 
operation must be in H1 since (1) the tids of all enqueue operations of dequeued items are ail 
ordered before that of deqd.topQ.enqr (by the rep invariant), which is ordered before who (by 
the when condition); and (2) who is not ordered before any operation in H1 (by the definition of 
H = H1 • H2). Since the enqueue operations of all dequeued items are in Hv 

DEQ(H) prefix ENQ(H r ) (*) 

At the point of return, let e - Enq(x)/Ok(). From POST we have that: 

DEQ(H) = DEQ(H), which by (*) 
=> DEQ(H) prefix ENQ(H r) 
=> DEQ(H) prefix ENQ(H r • e • H2) 
=> DEQ(H) prefix of ENQ(H). 

5.4.2. Dequeue 
Here is the annotated Deq operation: 

item* queue::deq() { 
tid who = *(new tid); // Caller's tid. 
when ((deqd.empty() || deqd.top().deqr < who) && // Check for conflict 

enqd. top_eacists () 6& enqd.top() .enqr < who) 
{WHEN: V Deq operations d in h (tid(d) < who =>din HJ} 

pinning(){ // Making update. 
enq_rec e = enqd. remove ();// Transfer from enqueued heap... 
deqd.push(deq_rec(who,e.enqr,e.what)); // to dequeued stack, 
return e.what; 

> 

{POST: DEQ(h') * DEQ(h) • X A ENQ(h') « ENQfHJ • ENQ(H2)} 
} 

and the proof: 
Proof: From the first conjunct of the when condition and the second clause of the rep invariant, 
we know that DEQ(H) * DEQ(H r ) . The second conjunct implies that there exists some x = 
first(EHQ(H) - DEQ(H)), the first item in the sequence of enqueued items that have not yet 
been dequeued. The third conjunct implies that this item, x, is in Hv Thus, by properties on 
sequences, there exists some x * /frsf(ENQ(H7) - DEQ(H f)). 

At the point of return, let d = Deq()/Ok(x). POST implies that 
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DEQ(H, • d) prefix ENQ(H1 • d) 
=> DEQ(H) prefix ENQ(H ; • d) 
=> DEQ(H) prefix ENQ(H1 • d • H2) 
=> DEQ(H) prefix ENQ(H). 

6. Discussion and Related Work 
Atomicity has long been recognized as a basic correctness property within the database community [2]. 
More recently, several research projects have chosen atomicity as a useful foundation for general-
purpose distributed systems, including Avalon [11], Argus [17], Aeolus [30], and TABS [26] 4 . Of these 
projects, however, only Avalon and Argus provide linguistic support for programmers to design and 
implement user-defined atomic data types, which Weihl and Liskov [29] argue is necessary for building 
large, realistic systems. To our knowledge, Avalon is the only language project to address the issue of 
verifying implementations of atomic objects. 

Part of the Avalon design philosophy is that verification is facilitated by making constructs for 
synchronization and recovery as explicit as possible. For example, the tid data type makes the set of 
serializations directly observable to programs, and our example verification relies heavily on the 
properties of this built-in data type. Similarly, explicit user-defined commit and abort operations provide 
direct control over transaction recovery. By contrast, Argus relies on the programmer to encode 
information about the set of serializations in "atomic variants," treating commit and abort processing as a 
side-effect of normal operations. For a more detailed evaluation of the implicit approach in Argus, see 
Greif et al. [7]. 

The axiomatic approach for program verification is particularly well-suited for "syntax-directed" verification 
of sequential and concurrent programs. Axiomatic proof techniques originated with Hoare's axioms 
[13] for sequential program statements and were later extended for abstract data types by introducing 

abstraction functions [14], representation invariants, and data type induction rules. The axiomatic 
approach was also extended to shared-memory models of concurrent programs [23], and to message-
passing models of distributed programs [1]. One of the principal conclusions of our work is that such 
"pure" syntax-directed axiomatic methods seem poorly suited for reasoning about atomicity. In the 
sequential and concurrent domains, an object's state can be given by a single value, and each new 
operation simply transforms one value to another as prescribed by the appropriate axiom. Auxiliary 
variables are used to keep track of history information and the states (e.g., program counters) of 
concurrent processes. In the transactional domain, however, an atomic object's state must be given by a 
set of possible serializations, and each new operation is inserted somewhere "in the middle" of certain 
serializations (see Lemma 1). This distinction between physical and logical ordering is easily expressed 
in terms of reordering histories, but seems awkward to express axiomatically, i.e., using assertions 
expressed in terms of program text alone. Of course, the proofs in this paper could be axiomatized 
simply by encoding the set of serializations as auxiliary data, but we have found the resulting proofs 
complex and unnatural. 

Weihl [28], and Lynch and Merritt [20] have proposed operational models for transactions and atomic 

p r S ^ S n ^ ^ T ^ z S 3 8 ^ ' 3 l a n 9 U a 9 6 [ 3 1 ' ' i k e A V a ' 0 n ' 6 X , e n d C + + 1 0 S U ^ r t but ne,,her g,ves 
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objects. Weihl's model is similar to ours: atomic objects are defined in terms of state machines and 
computations are modeled as histories. Lynch and Merritt model nested transactions and atomic objects 
in terms of I/O automata and give precise rules for composing automata. These models have been used 
to prove correctness of general algorithms for synchronization and recovery [6,19], but they are not 
intended for reasoning about individual programs. 

Our technique lies between "pure" syntax-directed axiomatic approaches and model-oriented operational 
ones. Because we wish to reason about specific programs, not abstract algorithms, our approach relies 
on annotating program text with assertions. Our assertion language, however, refers to operations, 
histories, and sets of histories directly, making it richer and more expressive than the usual first-order 
logic-based assertion languages. We have found our approach more natural for reasoning about 
transaction-based distributed systems where serializability and recoverability cannot be treated as 
independent properties. 



13 

[4] 
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