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1. Introduction 
A distributed system consists of multiple computers (called sites) that communicate through a network. A 
distributed program is one whose components reside and execute at multiple sites in a distributed 
system. The physical components of a distributed system can fail independently: sites can crash, and 
communication links can be interrupted. Nonetheless, the data managed by a distributed program may 
be subject to consistency constraints that must be preserved in the presence of failures and concurrency. 
Such constraints can apply not only to individual pieces of data, but also to distributed sets of data. For 
example, a distributed banking system might be subject to the constraint that the books balance: money 
is neither created nor destroyed, only transferred from one ledger to another. A widely-accepted 
approach to ensuring consistency is to make the activities that manage the data atomic. Atomicity 
encompasses two properties: serializability and recoverability. Serializability[\T\ means that the 
execution of one activity never appears to overlap (or contain) the execution of another, while 
recoverability means that the overall effect of an activity is all-or-nothing: it either succeeds completely, or 
it has no effect. Atomic activities are called transactions. 

Well-known techniques such as two-phase locking [3,15] and commit protocols [5, 21] ensure atomicity 
for committed transactions. Nevertheless, these techniques make few guarantees about orphans, which 
are activities executing on behalf of aborted transactions. Orphans may be created by site crashes, or, in 
a nested transaction system [19,15], when a transaction unilaterally aborts a nested subtransaction. 
Orphans are undesirable because they waste resources: not only do they consume processor cycles, 
they can introduce spurious delays and deadlocks by holding locks needed by non-orphans. 

Orphans are also undesirable because they can observe inconsistent data. For example, in a system 
based on two-phase locking, a site crash and recovery may release a transaction's locks before that 
transaction has finished acquiring locks at other sites, an inadvertent violation of the two-phase locking 
discipline. Such inconsistencies may be of little concern in conventional database systems, where a 
transaction does not interact with the outside world until it commits. In a general-purpose distributed 
system, however, such inconsistencies may be more problematic. For example, the Argus system 
[10, 26] supports a methodology in which user-defined atomic data types are implemented by a mixture 

of atomic and non-atomic data types at a lower level. In the absence of an orphan management scheme, 
the implementor of such a type must take care that transient inconsistencies in the atomic components of 
the implementation do not produce permanent inconsistencies in the non-atomic components. Orphans 
may also complicate interactive programs. For example, It is acceptable for an automatic teller machine 
to inform a customer that a requested transfer or withdrawal has not been performed, but it may not be 
acceptable to display nonsensical account balances before announcing the abort. Finally, debugging 
may be more difficult since orphan-induced inconsistencies may be indistinguishable from logical errors. 

This paper proposes a new method to detect and eliminate orphans. Our method ensures that orphans 
are detected and eliminated in a timely manner, and it prevents orphans from observing inconsistencies. 
The method employs timestamps generated at each site. Timestamps may be generated by 
approximately synchronized real-time clocks [13], or by a system of logical clocks [8]. The former yields 
an "eager" scheme in which orphans are eliminated within a fixed duration, while the latter yields a "lazy" 
scheme in which orphans are eventually eliminated as information propagates through the system. A 
major advantage of the method is simplicity: it is easy to understand, to implement, and to prove correct. 
The method is fail-safe: unsynchronized clocks and lost messages may affect performance, but they 
cannot protect orphans from eventual elimination, nor can they produce inconsistencies. 
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This paper is organized as follows. Section 2 summarizes some related work. Section 3 describes the 
"eager" version of our method, and Section 4 describes the "lazy" version. Section 5 discusses 
implementation techniques, and Section 6 presents correctness arguments. Section 7 summarizes our 
results. 

2. Related Work 
Several research projects are studying transactions as the foundation for general-purpose distributed 
systems (e.g., [10 ,23,14, 22, 2]). An implementation based on methods proposed here is described by 
Kenky [7]. 

Outside the transaction domain, the orphan elimination problem was first identified by Nelson [16], and 
solutions based on timeouts has been proposed by Lampson[9] and by Rajdoot[18]. More recently, 
Walker [24] has proposed a transaction-based orphan elimination scheme that dynamically tracks 
dependencies among transactions. Walker's scheme requires optimizations based on timeouts to keep 
the amount of information sent in messages to a manageable level. An orphan elimination scheme based 
on Walker's method has been implemented as part of the Argus system [11]. Walker has shown that a 
similar orphan elimination scheme proposed by Allchin [1] contains subtle errors. Although our method is 
simpler than the Argus method, it may occasionally force non-orphan transactions to abort. 

Our formal model for nested transactions incorporates work of Lynch [12] and Weihl [25], and our 
correctness condition for orphan elimination is a special case of a more general condition proposed by 
Goree [4], A preliminary version of the eager scheme has appeared elsewhere [20]. The method 
described here incorporates several improvements; most notably it does not delay committing 
transactions. A general formal model for orphan elimination algorithms has been proposed by the first 
author, Lynch, Merrttt, and Weihl [6]. 

3. Eager Orphan Elimination 
This section describes an orphan elimination method based on a system of approximately-synchronized 
real-time clocks (e.g. [13]). An advantage of this scheme is that is places a real-time bound on orphan 
lifetimes, hence it bounds the resources that can be consumed by orphans. We first consider single-level 
transaction systems, and then we extend our method to nested transactions. The informal discussion 
assumes that synchronization is accomplished by two-phase locking [3,15], although Section 6 shows 
the method is applicable to any synchronization mechanism that preserves atomicity. 

3.1. Overview 
The basic containers for data are called objects. Each object has a type, which defines a set of possible 
states and a set of primitive operations that provide the (only) means to create and manipulate objects of 
that type. Transactions operate on objects through a sequence of operation executions, each consisting 
of a paired invocation and response. Each transaction originates at a unique home site. A site emitting 
an invocation on behalf of a transaction is known as a calling site; the recipient site is a called site. 
Similarly, an object issuing an invocation is a calling object, and the target of an invocation is a called 
object. A transaction is said to have visited called and calling objects and sites. When a calling object 
issues an invocation, execution suspends within that object and passes to the called object. Execution 
resumes at the calling object when the response is issued by the called object. Thus, a transaction is 
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active at only one object at a time. 

Each object has a clock, which is used to generate timestamps. Clocks in a distributed system are 
subject to the following constraints: 

1. Each object's clock generates successively increasing timestamps. 

2. When a message is sent from one object to another, the time at which it is received (by the 
receiver's clock) is later than the time at which it was sent (by the sender's clock). 

Property 2 is readily achieved by including the sender's current time with each message. In this section, 
we assume that the objects at a site share a single real-time clock, and that clocks at different sites are 
synchronized using methods such as those of [13]. We emphasize, however, that as long as clock 
properties 1 and 2 are satisfied, unsynchronized clocks cannot protect orphans from eventual elimination 
or produce inconsistencies, although performance may suffer. 

When a transaction acquires a lock for an object, it is assigned a quiesce time and a later release time. 
The quiesce time controls how long a transaction may remain active. When the object's local clock 
indicates that the transaction's quiesce time has passed, that transaction may no longer execute 
operations at that object, although it may still commit or abort. The release time controls how soon a 
transaction may abort. If the transaction aborts, its locks cannot be released until its release time has 
passed. If the transaction is not already prepared to commit when its release time arrives, then it can be 
aborted unilaterally at that object, and all information about the transaction may be discarded. A 
transaction that commits may release its locks immediately. 

Let Quiesce(x,A) and Release(xfA) denote the quiesce and release times for transaction A at object x. 
Let First(Release(A)) denote the earliest release time for A at any object, and let Last(Quiesce(A)) denote 
its latest quiesce time. A transaction's quiesce and release times are subject to the following termination 
invariant 

Last(Quiesce(A)) < First (Release (A)). 

By the time a transaction's release time arrives at any object, all activity on its behalf has quiesced. For 

locking protocols, this invariant eliminates potential inconsistencies by ensuring that all transactions, even 

orphans, satisfy the two-phase discipline: no transaction acquires a lock once it has released a lock. 

The invariant is preserved in the presence of arbitrary message delays simply by including each 
transaction's local quiesce and release times with each operation invocation it sends to another object. 
The recipient refuses any message from a transaction whose quiesce time precedes the object's local 
time. 

A simple way to preserve the termination invariant across site crashes is to keep locks and release times 
in non-volatile storage, perhaps in a small "stable cache". If this technique is impractical, an alternative 
technique is to set a system-wide maximum value for the quiesce inten/alt the duration between a site's 
current clock value and the quiesce time for any transaction (see Figure 3-1). When a site recovers, it 
reinitializes its clock, and refuses all operation invocations until the maximum quiesce interval has 
elapsed at every site in the system, ensuring that all transactions aborted by the crash have quiesced. 
This method assumes the rate of dock drift can be bounded. Recovery can be speeded up if sites 
periodically checkpoint their clock values to stable storage. 
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3.2. The Refresh Protocol 
A transaction that is not an orphan will be aborted unnecessarily if its quiesce time arrives at a site before 
its activity there completes. To avoid this difficulty, a refresh protocol is periodically undertaken to 
advance each transaction's quiesce and release times. The interval between a site's current time and the 
quiesce time for any transaction is the quiesce interval, and the interval between the quiesce and release 
times is the release interval. The interval between refresh protocols is the refresh interval. These terms 
are illustrated in Figure 3-1 . Unnecessary aborts will be unlikely if clocks are closely synchronized and if 
the refresh interval is significantly less than half the quiesce interval. 

I 1 1 1 >time 
begin begin quiesce release 
transaction refresh time time 

quiesce interval X - release — > 
interval 

refresh -
interval 

Figure 3 -1 : Quiesce, Release, and Refresh Intervals 

The refresh protocol is a two-phase protocol similar to the two-phase commit protocol [5]. In the first 
phase, the home site attempts to advance the transaction's release time at all sites it has visited. If the 
first phase is successful, the home site attempts to advance the transaction's quiesce time at all sites 
visited. Two phases are necessary to ensure that the times are adjusted without violating the termination 
invariant. If a transaction is an orphan, it will be unable to complete the refresh protocol, thus its fixed 
quiesce time will bound its active lifetime. The remainder of this section describes the bookkeeping 
necessary to ascertain whether the first phase has succeeded. 

Each site maintains two sets on behalf of each transaction. When a transaction executing at a site makes 
a call to an object, the called object is entered in the transaction's outgoing set. When a call arrives for an 
object at that site, the called object is entered in the transaction's incoming set. 1 A transaction's home 
site is in charge of refreshing its quiesce and release times. The home site first sends a phase 1 refresh 
message containing the new release time to sites visited by the transaction. Each site updates the 
transaction's local release time, and responds to the home site with a phase 1 response message 
containing the local incoming and outgoing sets. The home site builds complete incoming and outgoing 
sets by merging all received incoming and all outgoing sets respectively. Phase 1 is successful if the 
union of all sites' incoming sets equals the union of all sites1 outgoing sets. This set is called the 
transaction's visit list closure. 

If phase 1 completes successfully, the transaction's release time has been advanced at all sites. In 
phase 2, the quiesce time is advanced. The home site transmits a phase 2 refresh message advising 
visited sites of the new quiesce time. The termination invariant is preserved at each point during the 
protocol. Although responses to the phase 2 messages are not needed for correctness, they can reduce 
the likelihood of aborts caused by lost messages. 

neednto9mtl!Sn tN^date ***** ** * T^arded
 a s b o l h o u t9 o l n9 a n d incoming, but optimizations discussed below eliminate the 
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What if there are invocations in progress during the refresh protocol? There are two cases to consider. 
First, if an invocation occurs immediately before the transmission of a phase one refresh, the called object 
might appear at the calling site's outgoing set, but not (yet) in the called site's incoming set. In this 
situation, the home site can simply retry phase 1. Retransmission intervals should be chosen to minimize 
the risk of starvation in this case. Second, a site issuing a invocation after phase 1 but before phase 2 
will use the old quiesce time but the new release time. The called site may retain the old quiesce time, 
which, although it does not violate the termination invariant, may cause the transaction to abort 
unnecessarily. This difficulty can be addressed by choosing a refresh interval substantially less than half 
of the quiesce interval, ensuring that any such site will be refreshed again before its quiesce time. In 
practice, the refresh and quiesce intervals may have to be tuned to incorporate such factors as lost 
refresh messages and the retransmission rate. 

3-3. The Termination Protocol 
When a transaction is aborted, its locks cannot be released until its release time has passed. If the 
quiesce interval is acceptably small, the aborted transaction's locks will eventually be released as its 
release times elapse. To hasten lock release, a termination protocol can be used to adjust the release 
time without violating the termination invariant. The termination protocol is similar to the refresh protocol. 
The first phase attempts to move the the quiesce time back to the present. If the visit list closure is 
successfully formed, indicating that all visited sites have moved the quiesce time, the second phase can 
move the release time back to the present. 

3.4. Nested Transactions 
Instead of treating transactions as monolithic entities, it is often useful to provide hierarchically structured 
nested transactions or subtransactions [15,19]. A hierarchical transaction structure provides several 
benefits. Concurrency is enhanced by the ability to create parallel subtransactions. Fault-tolerance is 
facilitated and recovery is simplified because a subtransaction can abort without aborting its parent, an 
important consideration in distributed systems subject to faults. A subtransaction's commit is dependent 
on that of its parent; aborting the parent will undo the child's effects. A transaction's effects become 
permanent only when it commits at the top level. A transaction can commit only when all of its 
subtransactions have either committed or aborted. 

We use standard tree terminology (parent, child, ancestor, descendant) when discussing nested 
transactions. (A transaction is considered its own ancestor or descendant.) Each nested subtransaction 
is given a quiesce and release time at each object it has visited. The quiesce time controls how long the 
subtransaction can execute operations at the object, and the release time controls when the 
subtransaction abort becomes visible to its parent. Quiesce and release times are subject to the following 
generalized termination invariant. If A is an ancestor of B: 

Last(Quiesce(B)) £ First(Release(A)) 

By the time a transaction's release time arrives at any object, all activity on behalf of its descendants has 
quiesced. 

The generalized termination invariant can be maintained by controlling descendants' refreshes from the 
parent's home site. Each transaction carries a descendant count as part of its state on all invocations 
and responses. The descendant count, in combination with the transaction's identity, is used to generate 
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names for sub-transactions. Since a transaction is active at only one site at a time, such names are 
unique. Initially, a nested transaction is given the same quiesce and release times as its parent, thus 
observing the termination invariant. During subsequent refresh protocols, the parent includes notification 
of the descendant's existence, along with the parent's incoming and outgoing sets. In the absence of 
aborts, and until it commits, the descendant is included in refreshes of its parent's quiesce and release 
times. 

A transaction cannot abort a subtransaction until the tatter's release time has elapsed at some object. 
Rather than waiting, the parent may undertake a termination protocol to move the subtransaction's 
quiesce and release times to the present. Note that the termination invariant permits a parent's quiesce 
and release times to be refreshed even if its descendants are inaccessible. When a site recovers from a 
crash, the techniques described above must be used to retain locks until the release times elapse for the 
top-level aborted transactions. 

Eager orphan elimination imposes a negligible cost for short, successful transactions. Long transactions 
incur the cost of refresh protocols, and aborted transactions incur the cost of delays. The choice of the 
refresh interval trades one cost against the other: a long duration reduces the cost of refreshing long 
transactions, while a short duration provides faster orphan elimination. The choice should take into 
account the expected distribution of transaction lengths, the frequency of aborts, and the cost of delay. 
Eager orphan elimination is works best for systems in which transaction lengths are predictable and 
aborts are infrequent. 

4. Lazy Orphan Elimination 
This section introduces a modified version of the previous section's scheme. Instead of using the clock to 
drive lock acquisition and release, we use lock acquisition and release to drive the clock. Real-time 
clocks are replaced by logical clocks [8]. Logical clocks are counters associated with each object (or 
each site). Whenever a transaction visiting an object requests a timestamp, the counter is incremented, 
and the new value is returned. Whenever one object sends a message to another, the sender includes 
its current logical time, and the recipient advances its own logical clock beyond the observed value. A 
system of logical clocks clearly satisfies properties 1 and 2 stated above, but logical timestamps may be 
otherwise unrelated to physical time. Logical timestamps provide a simple and efficient technique for 
extending the natural partial order of events in a distributed system to an arbitrary total order. 

As before, each transaction has a quiesce and release time at each object, satisfying the same 
termination invariant, but now these times are logical clock values, not real-time values. Lock acquisition 
and release are subject to the following rules. An object will refuse lock requests from any transaction 
whose quiesce time is less than the object's current clock value. When a transaction encounters such an 
object, however, it may attempt a refresh protocol to advance its quiesce time beyond the object's current 
clock value. When an aborted transaction releases its locks at an object, that object's clock is advanced 
beyond the transaction's release time. 

The termination invariant is maintained across crashes by techniques analogous to those used for the 
eager scheme. For example, each object may periodically record its logical clock value on stable storage, 
maintaining a maximum difference, say n, between the current logical time and the latest release time. 
Upon recovery, the object adds n to its recorded timestamp, and immediately resumes operation. 
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The lazy scheme has a number of attractive features. Since refresh protocols are "demand-driven" rather 
than "time-driven", they are executed only when conflicts arise, instead of at regular intervals. It is never 
necessary to wait for a transaction's release time to elapse, either for crash recovery or to abort a 
subtransaction, because an object's logical clock can be advanced instantaneously. Instead, a different 
kind of cost is incurred: additional refresh protocols may be triggered as clock advances propagate 
through the system. Whether the eager scheme's combination of periodic refresh protocols with delays is 
more cost-effective than the lazy scheme's demand-driven refresh protocols without delays depends on 
the expected frequency of aborts and the relative costs of delay and of message traffic. Perhaps the 
principal disadvantage of the lazy scheme is that it provides no real-time guarantees about orphan 
elimination. An orphan will continue to execute until it attempts to acquire a lock at an object whose 
logical dock exceeds the orphan's quiesce time. 

5. Implementation Techniques 
In this section, we discuss some simple implementation techniques and optimizations. One immediate 
optimization is to employ a robust lower-level protocol to ensure that lost messages do not cause 
unnecessary aborts. More significant optimizations can be obtained in the refresh protocol, reducing the 
number and sizes of messages. 

In the first optimization, each site maintains its own list mapping transactions to objects visited at that site. 
Incoming and outgoing sets are extended to include both object and site names. When an invocation is 
issued, the calling site enters the object referenced in its outgoing set. When the invocation is received, 
the called site enters the name of the called object in its incoming set, then includes its site name in the 
response to the invocation or in an earlier lower-level protocol message. Once this is received, the calling 
site replaces the name of the object referenced in its outgoing set with the name of the site visited. If a 
lower-level protocol uses positive acknowledgement to the final response, receipt of this message can 
permit the called site to remove the object called from the incoming set. Thus, the size of incoming and 
outgoing sets is less, particularly if the number of sites visited by a transaction is small. 

A second optimization also reduces the size of messages. In response to refresh messages, the sites 
transmit only changes to incoming and outgoing since the last refresh. During refreshes, the home site 
accumulates a list of visited sites. This list is then used, together with the incoming and outgoing sets 
received and information retained at visited sites, to ensure that the visit list closure is successfully 
formed. 

The last optimization exploits broadcasting. A home site batches all refreshes for all transactions for 
which it is home. The refresh messages implicitly refer to all such transactions, except those explicitly 
excluded. Refresh messages are broadcast to all sites, which must determine whether they have been 
visited by any applicable transactions. The visited sites respond to a phase 1 refresh with the incoming 
and outgoing sets for all applicable transactions. The home site also broadcasts the phase 2 refresh 
message, specifying only those transactions for which the visit list closure was not formed successfully. 
This optimization is particularly effective if the number of aborts is low, and transactions visit few sites. 
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6. Correctness Arguments 
So far, our discussion has assumed a transaction system based on two-phase locking. The restrictions 
imposed by our method can be generalized to apply to arbitrary concurrency control mechanisms (e.g., 
timestamp-based systems) as follows: no transaction may execute an operation at an object after its 
quiesce time there has elapsed, and no transaction may abort at an object before its release time there 
has elapsed. 

This section presents formal correctness arguments for the orphan elimination method. The correctness 
arguments are valid for arbitrary data types (not just files), for arbitrary concurrency control methods (not 
just two-phase locking). One proof suffices for both the lazy and the eager schemes, since clocks 
properties 1 and 2 of Section 3 are the only assumptions needed about clock synchronization. 

6.1. Objects and Transactions 
Let OBJECT be a universal set of objects. Each object has a set of primitive operations that provide the 
(only) means to create and manipulate objects of that type. For example, a File might provide Read and 
Write operations, and a FIFO Queue might provide enqueue and dequeue operations. An operation 
execution is a paired invocation and response. 

Let TRANS be a universal set of atomic transactions. Transactions have an a priori tree structure, with a 
distinguished transaction U as the root. For a transaction A distinct from U, let parent(A) denote As 
unique parent, anc(A) and desc(A) denote A s ancestors and descendants (which include A), 
proper-anc(A) and proper-desc(A) denote A s proper ancestors and descendants (which do not include 
A), and lca(A,B) denote the least common ancestor of A and 6. Let siblings denote the set {(A,B) € 
TRANS? I parent(A) - parent(B)}. Let seq c siblings be the partial order representing sequential 
dependency; if (A,B) € seq, then A is constrained to run before B. 

6.2. Serial and Concurrent Specifications 
A system is a set of objects. A serial history is a sequence of pairs of the form [x e], where x is an object 
and e is an operation execution. A serial specification for a system is a set of legal serial histories. A 
system's serial specification characterizes its behavior in the absence of failures and concurrency. For 
example, the serial specification for a system including a FIFO queue would include all and only histories 
in which items are enqueued and dequeued at the queue in FIFO order. 

A concurrent history is a sequence of triples of the form: [x e A], where x is an object, e is either an 
operation execution, commit, or abort, and A is a transaction. When a transaction commits at an object, 
its changes there become visible (e.g. through lock release). When a transaction aborts at an object, its 
effects there are discarded (e.g. through roll-back and lock release). Abort events encompass both 
explicit aborts, and aborts that occur as a side-effect of site crash and recovery. For brevity, a transaction 
commits (aborts) if it executes a commit (abort) at any object. 

A concurrent specification for a system is a set of legal concurrent histories. A system's concurrent 
specification characterizes its behavior in the presence of failures and concurrency. A concurrent history 
is well-formed if it satisfies the following properties: 

• Operation executions are associated only with leaf transactions. 

• No transaction both commits and aborts. 
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• If A precedes B in seq, then A commits before B executes any operations. 

• Each transaction commits at most once at each object, and it does not execute any events 
there after it has committed. 

• No transaction commits until all of its children have either committed or aborted. 
Henceforth, all concurrent histories are assumed to be well-formed. Well-formedness places no 
constraints on the behavior of orphans; once a transaction has aborted, it may do anything except 
commit. 

Let h be a concurrent history, and let Commit(h) be the set of transactions that have committed in h. A 
transaction B has committed to Am h if anc(B) n proper-desc(lca(A,B)) c Commit(h). Let View(h,A) 
denote the subhistory of h containing all events of transactions committed with respect to A. Let Perm(h) 
be View(h,U), the subhistory of transactions committed to the top level. 

We are now ready to define the basic correctness property for our orphan elimination method. A partial 
order )> c siblings is linearizing if it is compatible with seq and it totally orders all siblings in TRANS. A 
linearizing partial order thus induces a total order (also denoted by ))) on the operation executions of the 
leaf transactions. A concurrent history is serializable if there exists a )) such that reordering leaf 
transactions' object-operation pairs in the order)) yields a legal serial history. A concurrent history h is 
atomic if perm(h) is serializable. Informally, a concurrent history h is internally serializable if each 
transaction has a serializable view for each operation execution. More precisely, 

1. The empty history A is internally serializable. 

2. h • [x e A] is internally serializable if h is internally serializable and View(h,A) • [x e A] is 
serializable. 

Internal serializability does not require that each transaction's view remain serializable after its last event 
has completed. 

A concurrent specification is atomic if each history in the specification is atomic. To model schedulers 
that have no advance knowledge of transactions, we assume that an active transaction can choose to 
commit whenever the result is well-formed. A concurrent specification S is on-line atomic if it is atomic, 
and whenever h is in S and tt = h[x commit A] is well-formed, then h1 is also in S. 

6.3. Proof of Correctness 
A distributed system is modeled as an automaton A that accepts an on-line atomic concurrent 
specification S. Our orphan management scheme is modelled as a technique for embedding any such A 
in a derived automaton A that accepts only the internally serializable histories in S. 

An automaton is a tuple <Q, q0, E, 8>, where Q is a set of states, q0 is the initial state, E is a set of 
object-event-transaction triples, and 8 c O x £ x Q i s a transition relation. It is convenient to extend the 
transition relation to sets of states: 

5 ( 0 , [ x e A ] ) » 0 

8(X, [x e A]) = u q € x S(q, [xeA] ) 
and to sequences of events: 

8(X, A ) . X 

5(X, h-[x e A]) = 8(5(X, h), [x e AJ) 
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A history h is accepted by an automaton if 8(qQ, h) * 0 . 

Let TIMESTAMP be a totally ordered domain of timestamps. Given an automaton A • <Q, q0, E, 5> that 
accepts an on-line atomic concurrent specification S, we construct the automaton A = <Q, q0\ E, 8'> as 
follows. An element of Q is a tuple <q, Clock, Quiesce, Release>, where q e Q, Clock is simply a 
timestamp representing the current time, either real or logical, and Quiesce and Release model each 
object's quiesce and release times for each transaction: 

Quiesce: OBJECT X TRANS TIMESTAMP 

Release: OBJECT X TRANS - » TIMESTAMP 

Quiesce and Release are subject to the termination invariant: 

If A € anc(B) and x,y e OBJECT then Quiesce(x,B) < Release(y,A) (1) 

The first component of the new initial state g 0 ' is q0, Clock has an arbitrary initial value, and Quiesce and 
Release have arbitrary initial values satisfying Property 1. 

The new transition relation 5' is defined as follows. h'(<q,Clock,Quiesce,Release>,lx e A]) is undefined if 
either: 

1. The event e is an operation execution and Quiesce(x, A) < Clock, or 

2. The event e is abort and Release(x,A) > Clock. 
These conditions capture the constraints that a transaction cannot execute an operation at an object if its 
quiesce time there has passed, and it cannot abort until its release time there has passed. 

Otherwise, the transition relation's value is the set {<q',Clock',Quiesce',Release'>} such that: 

1 .q '€ 5(q,[xeA]), 

2. Clock' > Clock, and 

3. Quiesce' and Release' satisfy the termination invariant, and their values are unchanged for 
aborted transactions. 

The first condition captures the notion that accepted events have their usual effect on objects' states, the 
second that the clock's value is increasing, and the third models refresh and termination protocols for 
active transactions. 

Let S denote the histories accepted by the automaton A. S is clearly a subset of S. It remains to show 
that: 

Theorem 1: All concurrent histories in S are internally serializable. 

Proof: The proof is by induction on the length of the accepted history. Clearly, the property 
holds for the empty history A. Assume A has accepted the internally serializable history h, and 
then accepts a new event [x e A], Let If = h • [x e A]. If e is commit or abort, then /?' is 
internally serializable. If e is an operation execution, no abort events for ancestors of A appear 
in h, because Clock < Quiesce(xfA) < Release(yfB) for any object y and any ancestor B of A. 
Construct If9 by committing As ancestors in leaf-to-root order up to U, aborting all other active 
transactions. Because S is on-line atomic, rt" is also in S, and therefore Perm(h") is 
serializable, and so is View(h',A). 
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7. Conclusions 
This paper has proposed a new method for managing orphans in a distributed transaction system. This 
method ensures that orphans cannot observe inconsistencies, and that orphans are eventually 
eliminated. The "eager" version of this method uses synchronized real-time clocks to ensure that 
orphans are eliminated within a fixed duration, and the "lazy" version uses logical clocks to ensure that 
orphans are eventually eliminated as information propagates through the system. Transactions are 
assigned timeouts at different sites. These timeouts are related by a global invariant, and they may be 
adjusted by simple two-phase protocols. The principal advantage of this method is simplicity: it is easy to 
understand, to implement, and it can be proved correct. Although the method is informally described in 
terms of two-phase locking, the formal argument shows it is applicable to any concurrency control method 
that preserves atomicity. 
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