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1 . Introduction 
One of the more notable features which distinguishes the Ada1 programming language from Pascal 

and similar languages is its support for concurrent programming in the form of tasking. Like Mesa and 
CHILL, Ada allows programs to have more than one thread of control and provides tools for synchronizing 
the activities of different threads. In Ada, threads of control are called tasks, and the rules concerning 
their use emphasize convenience and safety. While this support for concurrent programming can be 
quite handy, it also complicates the job of the compiler, as compiled tasking programs must in general 
perform a large amount of synchronization to comply with Ada rules. This paper attempts to describe how 
the VAX/Mach version of the Ada+ compiler implements Ada tasking. After an overview of Ada's tasking 
constructs and an overview of the Ada+ compiler, the main part of the paper will discuss various 
implementation details. Following this, the results of some performance tests will be presented to close 
the paper. 

2. Overview of Ada Tasking Constructs 
The basic parallel programming construct in Ada is the task. Tasks are executable objects which act 

as if each was running sequentially on its own logical processor. Every task is an instantiation of a 
possibly anonymous task type. The specification of a task type introduces its name (or the name of the 
unique task object) and declares the entries that tasks of that type provide to synchronize with other 
tasks; its body contains code that these tasks will execute. Task types may be declared in roughly the 
same places as subprograms and packages; an important implication of Ada's visibility rules is that global 
and "intermediate" (local to a block, procedure, function, or task) variables may be read and updated by 
several tasks. Figure 2-1 shows a one-of-a-kind task (CONSUMER), a task type (PRODUCER), and two task 
variables (PI and P2) declared inside a procedure. 

Although Ada seems to assume shared memory, synchronization and communication is generally 
accomplished by rendezvous rather than by modifying variables. Entry calls, which look syntactically like 
procedure calls, allow one task to attempt to rendezvous with another. Each entry call names a particular 
task, and must correspond to one of the entry declarations for the task's type. Entry declarations look 
much like procedure declarations, but may appear only inside task specifications. However, there are 
important differences between entries and procedures, and between entry calls and procedure calls. 
When a task calls a procedure, it is always possible to execute the procedure body immediately. 
Furthermore, that body never changes, and several tasks may use it simultaneously. When a task calls 
an entry, it may be suspended for an indefinite amount of time because the availability of a "body" for the 
called entry in the form of an accept statement or select statement is under the control of the called task. 
A rendezvous takes place when a task is willing to accept a call on one of its entries and there is at least 
one caller. During a rendezvous, the callee executes the body of the accept statement (select alternative) 
while the caller remains suspended, after which both go their separate ways. Note that both tasks trying 
to call "unready" entries and tasks trying to accept "unwanted" entries are suspended until a partner is 
available. If several tasks are waiting to call an entry, subsequent accepts service them in FIFO order of 
their "arrival". 

Several extensions to this basic model make it more flexible and usable. To avoid indefinite waiting, 

1 Ada is a registered trademark of the U.S. Government, Ada Joint Program Office 
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Figure 2-1 : Basic Tasking Features 
procedure FEATURES is 

task CONSUMER is 
entry CALLJME (in out X: INTEGER) ; 

end CONSUMER; 

task type PRODUCER is 
end PRODUCER; 

PI, P2: PRODUCER; 
SHARED: INTEGER := 0; 

task body CONSUMER is 
begin 

for i in 1..2 loop 
accept CALL_ME (X : in out INTEGER) do 

X := X + 1; 
end CALLJME; 

end loop; 
end CONSUMER; 

task body PRODUCER is 
begin 

CONSUMER. CALL__ME (SHARED) ; 
end PRODUCER; 

begin 
null; 
end FEATURES; 

entry calls may be conditional or timed, supplying statements that will be executed in place of a 
rendezvous if a rendezvous cannot begin immediately or within the specified amount of time. Select 
statements allow a task to accept calls on any of several entries and to make the offer to accept particular 
ones conditional on run-time conditions. This is useful for writing server tasks to serialize a mix of 
operations, such as a bounded buffer task which accepts reads when its buffer is not empty and writes 
when its buffer is not full. Select statements may also be conditional or timed in the manner of entry calls. 
Finally, select statements may contain terminate alternatives, which allow tasks to terminate gracefully if 
all their potential callers are terminated or have made similar offers. 

Because programs do not always work correctly, Ada's tasking features make use of its exception 
mechanism. If a parent task launches a group of tasks and any of them raise exceptions before 
completing their activation, an exception must be raised in the parent. If a task tries to call an entry 
belonging to a task which has completed execution, it reaps an exception rather than a rendezvous. 
Exceptions that propagate out of an accept body propagate into both tasks involved in the rendezvous. 
Additionally, Ada's rules about task and master termination have important implications for the 
implementation of exceptions. Before propagating exceptions out of constructs on which tasks depend, 
an exception-handling mechanism must wait for those dependent tasks to finish their execution. 

Some miscellaneous features round out Ada's tasking facilities. Abort statements allow one task to kill 
another and are only meant for use in the most extreme circumstances. In general, aborted tasks are not 
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required to die immediately but must do so by their next "synchronization point" (task activation, accept 
statement, entry call, etc.). Tasks may be assigned fixed priorities with the guarantee that low-priority 
tasks will never be executed if the processor (or processors) could be executing higher-priority tasks. 
When used on systems that implement them, representation clauses allow entries to be associated with 
hardware interrupts and allow control of the amount of storage associated with task activations. The 
pragma SHARED can be used to impose some order upon accesses to shared variables. Finally, three 
attributes let programs find out whether a task is callable or terminated and the number of tasks that are 
waiting to call a particular entry. 

3. Overview of Ada* Compiler 
The Ada+ compiler, originally written to run on the PERQ workstation under the Accent operating 

system, is a compiler that implements most of the features of Ada. It processes programs in four major 
phases, split between three programs called the Front End, the Middle End, and the Back End. The Front 
End performs syntactic and semantic analysis and produces compilation databases both for its own use 
and for the use of the Middle and Back Ends. The Middle End copies the bodies of generic units to 
complete their instantiations. Using the files that the Front and Middle Ends produce, the Back End 
generates PERQ QCode files that may be linked and run on a PERQ under Accent. 

For the purposes of adding the tasking mechanism described below, the compiler was moved to the 
VAX under Mach [9] with the aid of a program that translates PERQ QCodes to VAX assembly language 
(called pcod) and a VAX/Mach version of the PERQ Pascal compiler. Pcod had to be modified on several 
occasions to fix bugs that did not show up when translating the simple code that the PERQ Pascal 
compiler generated, and it does not translate all of the PERQ's architectural features faithfully even now. 
But the VAX was and is where the "C Threads" package (described below) resides, and given the 
declining use of PERQs as a general computing resource at CMU, the move would probably have been 
desirable even without the attraction of the facilities provided by "C Threads". 

More information about the non-tasking-related aspects of the compiler may be found in [2], which 
gives a more detailed overview, [8], which describes how it performs overload resolution, and [6], which 
describes how it implements generics. The instruction sets of the PERQ and the VAX are documented 
respectively in [7] and [4]. 

4. Implementation Details 
The Ada+ compiler implements tasking using several kinds of descriptor records and a number of 

run-time system routines called from compiled code. The run-time routines encapsulate the 
synchronization code needed to implement Ada tasking semantics, which has the benefits of keeping 
inline code small and, in our case, of keeping synchronization code in an easy-to-read high-level 
language (PERQ Pascal). The implementation was built on top of the "C Threads" package [3], which 
provides multiple threads of control within a single address space, mutex variables to serialize access to 
critical variables, and condition variables to help threads sleep while waiting for conditions to become 
true. In the following pages, we will examine the subjects of task representation, task activation, task and 
master termination, simple entry calls and accept statements, simple select statements, timed and 
conditional entry calls and select statements, and selects with terminate alternatives. 
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4.1. Task Representation 
Ada defines tasks as "entities whose executions proceed in parallel" in the sense that each task 

executes on a "logical processor of its own, and that tasks "proceed independently except at points 
where they synchronize." But its detailed rules about items like activation, termination, and rendezvous 
imply that some state information must be associated with each task in some manner that allows other 
tasks to access it. 

The Ada+ compiler implements a task as some code, a "logical processor" to run it, and some state 
information stored in a place where other tasks can access it. The code is the compiled version of the 
task body, obtained by compiling the Ada source to QCodes, then translating the QCodes into VAX object 
code. The "logical processor" is composed from a C thread and two auxiliary stacks, the MStack and the 
AStack, needed to set up a proper run-time environment. The C thread provides context switching, 
shared memory, and VAX stack space. The assembly code that pcod generates uses the MStack to 
simulate the PERQ MStack, and the AStack, a "software stack" created by the compiler, holds large 
function return values (arrays and records) that cannot be safely stored on the MStack. Finally, the state 
information consists of a task descriptor, whose address is stored in the appropriate task variable or 
task-valued component, and an array of entry descriptors. 

Actually, the picture is slightly more complicated than this. As noted earlier, task bodies may access 
the local variables of surrounding blocks, subprograms, and tasks. The addresses of such intermediate 
variables may change between invocations, and the code that pcod generates to access them locates 
them by calling a routine that searches up the VAX stack until it finds a frame with a nesting level equal to 
that of the desired variable2. Merely placing an intermediate variable in shared memory is not sufficient to 
support its use by tasks other than the one which elaborated it, as the stack frame containing the variable 
does not form a part of the stacks of the other tasks, thus causing the standard pcod search to fail. The 
run-time system thus modifies a frame pointer and an activation pointer in the VAX stack frame for each 
new task so that the stack for the new task is effectively linked to the stack for its master task at the point 
of the stack frame for its master. The modifications allow the standard pcod search to succeed for both 
private and shared intermediate variables, although they necessitate restoring the changed pointers 
before thread termination to avoid program crashes. 

To allow all the objects of a task type to share one compiled task type body, it is necessary to store 
some information for each task object in such a way that each task can access its own information by 
using a piece of shared code. Operating systems typically use registers to hold crucial information like 
the top of the call stack and program counter for each process, since registers generally must be saved 
and restored during context swaps and accesses to them tend to be fast. On the VAX, four registers are 
dedicated to system functions and several more are used by complex instructions, leaving six general-
purpose registers both free and safe. Pcod uses one of these registers to contain a pointer to the top of 
each task's MStack, and the code generated by the Ada+ compiler uses another to give each task access 
to its descriptor. Figure 4-1 shows how the VAX registers are used by running Ada tasks. Note that by 
convention, C functions may trash low-numbered registers. 

VAX register 10 goes to good use. Because task descriptors contain a number of fields used to 

^ i s level is not part of the standard frame, but a pcod addition. Each VAX procedure generated by pcod starts by pushing 
several words onto the VAX call stack, next to the standard frame. 



5 

Figure 4-1: Use of VAX Registers by Compiled Ada Code 
Register (s) VAX Architecture/Ada+ Use Safe wrt C function? 

no 
no 

0 6 1 function results, service status 
2 - 5 any / ( not used if possible ) 
6 - 9 any / expression evaluation temp. yes 
10 any / address of task descriptor yes 
11 any / points to simulated MStack yes 
12 argument pointer (AP) yes 
13 frame pointer (FP) yes 
14 stack pointer (SP) yes 
15 program counter (PC) yes 

implement various aspects of tasking semantics, the address of a task's descriptor forms the "handle" by 
which that task is known both to run-time system routines and to other tasks. The fields of a task 
descriptor are as follows: 

type 
TaskPtr = ATaskRec; 
MasterPtr = AMasterRec; 
EntryPtr = AEntryRec; 
ActivPtr = AActivationRec; 
SelectEnt = record 

DelayAlt: Boolean; 
RetIndex: Integer; 
DelOrEnt: Long; 
end; 

SelectArr = Array[0..49] of SelectEnt; 
myVRD = Array[0.. 1] of Long; 

TaskRec = record 
tjCurrent_Stack_Top : 
t_StackJTop : 
t__StackJBase : 
t_MStack_Base: 
t_AP_Fo rJLDA_I : 
t_FP_For_LDA_I : 
t_Funct: 
t_Mutex: 
t_StatSém: 
t_State: 
t_Activat ing : 
t_Abnormal: 
t__RaiseFlag: 
t_CurrentTimer : 
t_TimeRef Cnt : 
t_ActCount: 
t_purParentT: 
t__ourMasterT : 
t__ourMasterB : 
t__curMasterB : 
t_masterLink: 
t_SleepLock: 
t_S leepCond : 

Long; { environment } 
Long; { environment } 
Long; { environment } 
Long; { environment } 
Long; { environment } 
Long; { environment } 
myVRD; { environment } 
Mutex; { basic state } Mutex; { basic state > Integer- { basic state } 
Boolean; { activation } 
Boolean; { exceptions } 
Boolean; { exceptions } 
TimerJT; { timer } 
Integer; { timer } 
Integer; { termination } 
ActivPtr; { activation } 
TaskPtr; { termination } MasterPtr; { termination > MasterPtr; { termination } TaskPtr; { termination } Mutex; { sleep } 
Condition; { sleep } 
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t__SleepCntr: 
t_Ent ryNum: 
t_EntryDesc: 
tJEntryPrev: 
t_En t ryNext: 
t_Thread: 
t__CurCaller: 
t_SavCaller: 
tjCurPriority: 
t_SavPriority: 
tjCallingTask: 
tjCalledEntry: 
t_EntryParaxns: 
t Select: 

Integer; 
Integer; 
EntryPtr; 
TaskPtr; 
TaskPtr; 
Long; 

{ sleep > 
{ rendezvous } 
{ rendezvous } 
{ rendezvous } 
{ rendezvous } 
{ 'cthzead t', env.} 

TaskPtr; 
TaskPtr; 
Integer-
Integer; 
TaskPtr; 
EntryPtr; 
Long; 

{ rendezvous } 
{ rendezvous } 
{ rendezvous } 
{ rendezvous } 
{ rendezvous } 
{ rendezvous } 

SelectArr 
{ 'void *' , rndv. } 
{ rendevous } 

end; 
These fields can be divided into eight rough categories, based on the functions they help implement. 
Environment fields contain information related to various stacks and to the launching of new tasks. The 
three Basic State fields consist of two locks which control access to most of the other fields in the task 
descriptor, and a field which indicates the current status of the task (running, attempting an entry call, 
etc.). Activation and Termination fields contain information related to the activation and termination of 
tasks and to the termination of master constructs. Rendezvous fields are used to implement entry calls, 
accept statements, and select statements. The Sleep fields allow a task to put itself to sleep awaiting an 
event, and the T/mer fields are used for delay statements, timed entry calls, and timed selects. Finally, 
the Exceptions fields are meant to be used for the implementation of abort statements and the tasking-
related aspects of exceptions. 

4.2. Task Activation 
Tasks are elaborated somewhat differently from other Ada objects. Whereas the elaboration of an 

object declaration with an initialization part results in the assignment of the value to the storage allocated 
for the object, the elaboration of a task declaration generally does not result in the immediate execution of 
the task. Instead, tasks created by elaborating a declarative part, package specification, or allocator 
begin execution at the "same" time, after other elaboration work (like initializing variables) has been 
performed. Before the access value can be returned or next statement begin execution, each task must 
complete its activation. A task's activation consists of the elaboration of the declarative part, if any, of its 
body. If any of the tasks activated by a declarative part or allocator raise an exception during their 
activation, the exception TASKING_ERROR must be raised after they have all completed their activations. 
For the purposes of this discussion, we will refer to a collection of such tasks as an activation group and 
to the construct responsible for launching them as an activating construct 

For each activation group, the code generated by the Ada+ compiler uses an activation record with the 
following fields: 

type 
ActivationRec = record 

account: 
a__raiseTE: 
a_actlist: 
a_xmitex: 
a_cond: 
a_prev: 

Integers-
Boolean; 
TaskPtr; 
Mutex; 
Condition; 
ActivPtr 
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end; 
These fields have the following purposes: 

• Account is the number of tasks in the activation group whose declarations have been 
elaborated but which have not yet completed activation. After the activating construct 
finishes non-task-related elaboration and this count drops to zero, execution of the next 
program construct (for example, a function body) may begin if A_RaiseTE is not set (see 
below). 

• A_RaiseTE indicates whether or not the activating construct should raise the exception 
TASKINGJERROR after A_count reaches zero. Initially, it is false, but it may be set to true 
by any of the activating tasks. 

• A_ActList is the head of a linked list of tasks that have not yet begun execution. Tasks on 
these lists are linked through their TjdasterLink fields, which are reused for another 
purpose once the tasks begin execution. 

• A_Mutex and A_cond serialize access to Account and A_RaiseTE by the tasks of the 
activation group, and permit the activating construct to sleep until all the tasks have "checked 
in" by decrementing Account. 

• A_Prev is used to link all of the activation group records for a block, subprogram, task, or 
package into a single list whose head is stored in some location associated with the program 
construct. This field exists to make it easier to implement the Ada rule that an exception 
occuring in a declarative part or allocator causes unactivated tasks which would otherwise 
have been launched to pass into the terminated state without ever being activated. 

Figure 4-2: Implementation of Activation and Termination Semantics 
Part 1 : Source for a Sample Ada Program 

procedure PARENT is 
task type T is 

entry BAR(ARG1, ARG2 : INTEGER) ; 
end T; 

X, Y: T; 
A : integer := 5; 
Z : T; 

task body T is 
begin 
— statements of task body 
end T; 

begin 
— statements of procedure body 
end PARENT; 

Several run-time routines support task activation. They are: 
procedure Init__Activation (a, prev: ActivPtr); 
function New_Task(masterT: TaskPtr; masterB: MasterPtr; 

actGroup: ActivPtr; entryCnt: Integer; 
Proc: myVRD; ap__link: Long; fp_link: 
Long): TaskPtr ; 

function LaunchJFasks(me, MasterT: TaskPtr; MasterB: MasterPtr; 
a: ActivPtr): ActivPtr; 

procedure Complete_Activation(me: TaskPtr); 
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Figure 4-2, continued 
Part 2: The Program's Translation, Expressed in Terms of C 

int entry_procJbar(called_task, argl, arg2, is__timed, delay__amt) 
TaskPtr called_task; 
int argl, arg2; 
boolean is_timed; 
float delay_amt; 
< . . . } 

void task_body_t (me) 
TaskPtr me; 
{ 

Complete_Activation (me); 
/* statements of task body */ 
SimpleTComplete (me); 

} 

void parent () 
{ 

/* prelude */ 
Act ivat ionRec MyActGroup ; 
Init_Activation (SMyActGroup, NULL); 

ActivationRec * ActGroupList; 
ActGroupList = fiMyAct Group; 

MasterRec MyMasterRec; 
InitJMaster (me, fiMyMasterRec) ; 

/* declarative part */ 
TaskPtr x as New_Task(me, SMyMasterRec, MyActGroup, 

1 /* entry */, &taskJbody_t, 
0, 0 /* use default AP/FP * / ) ; 

TaskPtr y = New_Task (me, £MyMasterRec, MyActGroup, 
1, fitask_body_t, 0, 0) ; 

int a = 5; 
TaskPtr z = New_Task(me, &MyMasterRec, MyActGroup, 

1, fitaskJbody_t, 0, 0); 

ActGroupList = La\anch__Tasks (me, me, SMyMasterRec, ActGroupList) ; 

/* statements of procedure body */ 

SimpleMComplete (me, &MyMasterRec) ; 

init_Act ivat ion initializes the fields of an ActivationRec. It is typically called at or near the start 
of the code generated for an activating construct. Newjrask creates a task descriptor for a new task, 
complete with pointers to its activation group, master task, and master construct records as well as the 
information needed to launch the task at some later time. It is called by the code generated for task 
variable or component declarations. Launch_Tasks takes a whole activation group, launches each of its 
tasks, and makes the appropriate master responsible for monitoring their termination. It also waits until all 
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of the tasks in the group have finished activation before returning, and is normally called by the last part 
of the code generated for an activating construct. compiete_Activation is called by each new task 
as it completes its activation to record the event in the activation record and to wake the parent task if 
appropriate. Figure 4-2 shows the use of these routines. 

4.3. Task and Master Termination 
Both tasks and the constructs on which they depend, called masters, are subject to rules regulating 

their termination. Every task depends directly on one master and may depend indirectly on several 
others. A master may be a task, a currently executing block or subprogram, or a library package. Tasks 
created by evaluating an allocator depend on the master that elaborated the access type definition, while 
those created more "directly- depend on the master whose execution created them. 

A master construct may not terminate until all of the tasks which depend on it have terminated. This 
guarantees that the storage used by intermediate variables will not disappear, or be reused, until all of the 
tasks which can access them are through running. Showing the validity of this guarantee for machines 
with a typical call stack organization is simple. Given Ada's visibility rules, the master of any task must 
have a nesting depth at least as great as that of the task type body3. Since the body can only access 
variables at its own or lower depths, this implies that these variables must remain allocated throughout 
the execution of the master construct. 

A task may terminate if its execution is completed and any tasks dependent on it are terminated. A 
task may also terminate if it has reached a select statement with an open terminate alternative, its master 
has completed execution, and every task dependent on the master is terminated or has also reached a 
select statement with an open terminate alternative. When a task terminates, the exception 
TASKING_ERROR must be raised in any task waiting to call one of its entries. 

For each direct master, the code generated by the Ada+ compiler uses a master construct record with 
the following fields: 

type 
MasterRec = record 

uncompleted: Boolean; 
mJDepCount: Integer; 
m_DepTasks: TaskPtr; 
mJPrevious: MasterPtr; 
m_SleepCond: Condition 
end; 

These fields have the following purposes: 
• M_compieted indicates whether or not the master construct has completed execution. 

Currently, its value is set but not used, as the task termination algorithms do not care 
whether the master is completed. 

• MjDepCount indicates the number of tasks directly dependent on the master construct 
which are still MactiveH. Termination of the master construct may not take place until the 
master has completed its execution and this field has a value of zero. 

• MjDepTasks points to the head of a linked list of tasks which are directly dependent upon 

• 3 ^ C ! ! , n 0 t ° P U n t P 3 ^ 8 8 t o w a r d s nesting depth, since their variables are typically allocated as globals or as locals of 
immediately-enclosing subprograms, blocks, and tasks. g , O D a i s o r , o c a , s o t 
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the master construct. The tasks on the list are linked through their T_MasterLink fields. 
• M_Previous is used to link all of the master construct records for masters belonging to one 

task into a list whose head is stored in the T_curMasterB field of the task descriptor. This 
field, not currently used, could provide a way to implement abort statements in the absence 
of exceptions by giving tasks a way to "unwind" the tasking-related portion of their call stacks 
and to find out which tasks are directly dependent upon a task that is to be aborted. 

• M_sieepCond allows a completed master construct to sleep while awaiting the termination 
(or offers to terminate) of its dependents. 

Normally the value of M_pepCount starts high, when an activation group for a declarative part is 
launched, and becomes lower as tasks complete executing. However, it may go up, even after the 
master construct has completed execution, for either of two reasons. The evaluation of an allocator may 
create new tasks directly dependent on the master. Additionally, a task which has decremented 
M_DepCount in preparation for selecting an open terminate alternative may acquire a caller which makes 
selecting it impossible and requires that the change to M_pepCount be "undone". 

Several run-time routines support task and master block completion. They are: 
procedure Init_Master (me : TaskPtr; m: MasterPtr); 
procedure SimpleMComplete(me: TaskPtr; m: MasterPtr); 
procedure SimpleTComplete(me: TaskPtr); 
procedure MasterTComplete(me: TaskPtr; m: MasterPtr); 

init_Master initial&es a master construct record. SimpleMComplete handles the completion of a 
master which is not also a task by setting the M_compieted field, sleeping until all dependent tasks have 
terminated or offered to terminate, arid waking up dependents who offered to terminate with a message 
saying "go ahead". SimpleTComplete handles the completion of a task which is not also a master by 
waking up all of the task's current callers with the exception TASKINGJSRROR and informing the task's 
master(s) that the task has completed its execution. Finally, MasterTComplete combines the functions 
of SimpleMComplete and SimpleTComplete for a task which is also a master construct. Figure 4-2 
shows the use of three of these four routines. 

4.4. Simple Entry Calls and Accept Statements 
Entry calls, accept statements, and select statements are implemented using several run-time system 

routines whose purpose is to encapsulate synchronization details, together with a moderately large 
amount of state information which these routines manipulate. Some of this information is per single entry 
or entry family and per task type, some is per single entry or member of an entry family and per task, and 
some is per task. Additionally, the compiler generates an interface function for each single entry or entry 
family which is shared by all tasks of the corresponding type. This section describes how the compiler 
implements simple entry calls and accept statements - those involving a single entry, no timeouts, no 
conditional test, and no terminate alternative. More complex constructs are implemented on top of this 
foundation and will be discussed later. 

One of the most basic data structures used to implement entry calls and accept statements is the entry 
descriptor. For each single entry and for each member of an entry family, one descriptor is allocated to 
hold information describing its current state. An entry descriptor contains three fields 

type 
EntryRec = record 

e Gate: Boolean; 
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ejCount: Integer; 
e_WList: TaskPtr 

end; 
which are used as follows: 

• E_Gate is set by a task executing an accept or select statement to indicate that a call on the 
corresponding entry can be immediately accepted. 

• E_count counts the number of tasks which are waiting to call the entry, and thus makes 
implementation of the ' COUNT attribute trivial. 

• E__WL±st points to the head of a list of sleeping tasks which are waiting to call the entry. The 
list is circular to allow quick insertion and removal, and it uses two fields (TjEntryPrev and 
TjEntryNext) in the descriptors for the calling tasks to hold the links so that dynamic 
allocation can be avoided. 

Since any given entry call is a call on a particular task, every task of a task type has its own set of entry 
descriptors; that is to say, if task type T has an entry E, and two variables X and Y are of type T, there will 
be separate entry descriptors for X.E() and Y.E(). 

Some information about entries and entry families is shared between all tasks of a type. Part of the 
process of calling an entry when its E_Gate is set is to clear the E_Gate field of every entry descriptor 
belonging to the called task, to indicate that the current accept or select statement has been 'taken". 
Following Habermann and Nassi [5], the compiler places the entry descriptors for each task into an array 
to facilitate this process. The assignment of entries to array slots is made on a per-task-type basis, as 
every task of the same type has the same interface. Normally, the assignment is made at compile time. 
However, index ranges in entry family declarations are not required to be static, so in some cases slot 
assignments and the sizes of descriptor arrays must be computed at run time. This work-, when needed, 
is performed during the elaboration of a task type's specification. Figure 4-3 shows an assignment of 
entries to slots in a descriptor array that might result from elaborating a typical task type specification. 

Figure 4-3: Sample Assignment Of Entry Descriptors To Slots 
task type EXAMPLE is Entry Descriptor Array 

entry FOO(<parms>); + + 
entry BAR (1. .N) (<panns>) ; I 0 FOO I 
entry BAZ (8. . 9) (<parms>) ; + + 

end EXAMPLE; I 1 BAR(l) | 
+ + 

ENTRY START INDEX RANGE | 2 BAR(2) | 
+ + 

FOO 0 <not applicable> I . . . BAR(3) . .BAR(N-l) | 
BAR 1 1 to N + + 
BAZ N+l 8 to 9 | N BAR(N) | 

+ + 

Total number of descriptors: I N+l BAZ (8) I 
1 + (N-l+1) + (9-8+1) + + 

or I N+2 BAZ (9) I 
N + 3 + + 

Three run-time system routines handle all of the synchronization required to implement simple entry 
calls and accept statements. They are: 

function Do_Entry_Call(me, CalledTask: TaskPtr; 
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entryDesc : EntryPtr; 
HaveDelay : Boolean; 
DelayAmount : Real; 
ParamAddress : Long): Boolean; 

procedure Do_Accept (me: TaakPtr; e: EntryPtr); 
procedure End_Rendezvous (me: TaskPtr) ; 

A simple entry call is implemented as a call to an entry function whose return value is ignored. The 
compiler generates an entry function for each single entry or entry family which is shared by all the 
members of a family and by all the tasks of a task type. The entry function takes a pointer to the 
descriptor for the called task, followed by the index from the entry call (if an entry family is involved), the 
declared arguments of the entry, a flag indicating whether the call is timed (in this case, FALSE), and a 
delay amount (in this case, ignored). If the function is for an entry family, it checks to see if the index is 
within the proper range. In any event, it computes the address of the appropriate descriptor, calls 
Do_Entry_caii to do the real work, and returns the result of Do_Entry_caii. The main reason that 
entry functions exist is to reduce variable numbers of arguments scattered all over memory into blocks of 
constants and pointers which can be described by their addresses and sizes (all Do_Entry_caii needs 
is an address), and which can be block-copied to the locals of an accept statement. 

Figure 4-4: Translation of Simple Entry Calls and Accept Statements 
Part 1 : Source for a Sample Ada Program 

procedure FOO is 
task CALLEE is 

entry ADD (A: in out INTEGER; B: INTEGER); 
end CALLEE; 

task CALLER is 
end CALLER; 

task body CALLEE is 
begin 

accept ADD (A: in out INTEGER; B: INTEGER) do 
A := A + B; 

end ADD; 
end CALLEE; 

task body CALLER is 
X: INTEGER := 5; 

begin 
CALLEE. ADD (X, X) ; 

end CALLER; 
begin 
null; 
end FOO; 

An accept statement is implemented as a check of the entry index (if the entry belongs to a family), 
followed by a call to Do_Accept with the addresses of the descriptors for the current task and the entry it 
wants to accept, a block-copy of the arguments from the caller's stack into some locals reserved to hold 
them (if the entry has arguments), code for the statements of the body (if the accept statement has a 
body), and finally a call to End_Rendezvous. Figure 4-4 shows the translation of a simple entry call and 
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Figure 4-4, continued 
Part 2: Task CALLER'S and CALLEE's Translations, Expressed in Terms of C 

int entry_proc_add(called_task, a, b, is_timed, delay__axnt) 
TaskPtr called_task; 
int *a, b; 
boolean is_timed; 
float delay_amt; 
{ 

return Do_Entry_Call (me, called_task, &called_task->t_EntryDesc[0], 
is_timed, delay__amt, &a) ; 

void taak_body_callee(me) 
TaskPtr me; 
( 

Complete_Activation (me) ; 
{ 

int *a,b; 
Do_Accept (me, &me ->t_EntryDesc [ 0 ] ) ; 
bcopy(me->t_EntryParaxns, 6a, sizeof(a) + sizeof(b)); 
*a • *a + b; 
End_Rendezvous (me); 

> 

SimpleTComplete(me); 
} 

void task_body_caller (me) 
TaskPtr me; 
{ 

int x = 5; 
Complete_Activation (me) 
{ 

int vrtemp * x; /* in out scalars by value-result */ 
entry_proc_add(callee, &vrtemp, x, FALSE, 0 .0 ) ; 
x = vrtemp; 

> 

SimpleTComplete (me) ; 
} 

void foo() 
{...> 

an accept statement. 

Since the inline code generated for simple entry calls and accepts is fairly trivial as a result of its use of 
run-time system routines, just stating how and when run-time system routines are called is not sufficient 
to adequately describe the implementation. The implementation is perhaps best understood by 
examining simplified versions of the run-time system routines Do_Entry__caii and Do_Accept, which 
show the basic logic that underlies the implementation of all kinds of entry calls, accept statements, and 
select statements. 

Do_Entry_caii handles all synchronization connected with simple, timed, and conditional entry calls. 
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Ignoring complications caused by timed and conditional entry calls, abort statements and exceptions, and 
terminate alternatives in select statements, its heart is as follows: 

{ var me, CalledTask: TaslcPtr; entryDesc, e: EntryPtr;} 
MutexJLock (meA. t_StatSem) ; 
Mutex_Lock (CalledTaakA. t_Mutex) ; 
if entryDesc*.ejGate { entryDesc is called entry } 
then begin 

{ the task that owns the entry is waiting for a caller } 
set eA.e_Gate to FALSE for all entry descriptors e which 

belong to the task CalledTask; 
set me A. tjState to INJRENDEZVOUS; 
set "calling task" field in CalledTask to point to me; 
MutexJOnlock (meA. tjStatSem) ; 
{ note that we pass CalledTask the lock on its t_Mutex } 
Hake (CalledTask) 
end 

else begin 
set meA.t_State to ENTRY_CALL; 
{ link me onto the waiting list entryDescA. eJWlist and ) 
{ increment entryDescA.ejCount by one. } 
MutexJOhlock (CalledTask*. t_Mutex) ; 
MutexJOnlock (meA. t_StatSem) 
ends-

Sleep (me); { sleep until exception or end of rendezvous ) 

Do_Accept handles all the synchronization for accept statements leading up to the execution of the 
accept body. With similar simplifications, its heart is as follows: 

{ var me, t: TaskPtr; e: EntryPtr;} 
Mutex_Lock (meA. t_Mutex) ; 
1: 
if eA.e_WList <> nil 
then begin 

set t to the first task on eA.e_WList, and remove this task 
from the waiting list, 

lock tA.t_JStatSem while checking its state to see if it can 
still serve as a valid caller — if not, go to label 1; 

MutexJOnlock (meA. t_Mutex) 
end 

else begin 
Mutex_Lock (meA. t_StatSem) 
set meA.t__State to ACCEPT; 
set eA.ejGate to TRUE; 
MutexJOnlock (meA. t_StatSem) ; 
MutexJCJnlock (meA. t_Mutex) ; 
Sleep (me) ; 
( whoever wakes us should pass us the lock on our tA_Mutex } 
set t to point to the task which woke us; 
set tA.t_State to INJRENDEZVOUS; 
MutexJOnlock (meA. t_Mutex) 
end; 

Both of these routines work by examining and modifying the information stored in entry descriptors, 
using two task descriptor mutex fields to control access to this information. The reason that task 
descriptors contain two mutex fields (not counting T_sieepLock) is that Do_Entry_caii modifies state 
information for both the calling task and the called task, and using just one mutex field for each task could 
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cause the run-time system to deadlock when two tasks attempted to call each other simultaneously. 
Simultaneous calls should not cause deadlock if at least one is conditional or timed. So the run-time 
system routines related to rendezvous adopt the convention of locking the TjMutex variable belonging to 
the called or accepting task in order to examine and modify entry descriptors, and locking T_statsem in 
the calling task to modify its state. However, in general the proper way for a run-time routine to modify a 
task's state is to lock both its Tjiutex and its T_statsem variables (in that order), change its state, and 
release both locks in reverse order. This guarantees that no simultaneous modifications are being made 
to the task's state. Routines that lock only one mutex variable must be written carefully to avoid problems 
that could arise because they do not always run in a mutually exclusive fashion relative to each other. 

The critical regions in Do_Entry_caii and Do_Accept defined by the use of T_Mutex force a 
rendezvous to happen in one of two ways. The accepting task may "arrive" before any callers, in which 
case it sets E_Gate for the specified entry and goes to sleep. The next caller, on finding the E_Gate 
field set, clears all the callee's E_Gate variables, wakes it up and gives it the lock on its own T_Mutex, 
and then goes to sleep awaiting the end of the rendezvous. Or one or more callers may "arrive" first, in 
which case they queue themselves on E_wL±st and go to sleep. The accepting task will then find a 
non-empty waiting list, from which it selects the first task as a partner. In either case, the calling task 
continues to sleep while the accept statement body is executed and is woken up only at the end of the 
rendezvous. Note that the convention of passing the lock on an accepting task's T_Mutex when the 
caller is the last to "arrive" ensures that other tasks may not interfere with the start of a rendezvous once 
the decision has been made to start it, whether by Do_Entry_call or by Do_Accept. 

This scheme works, but corresponds to the "naive" implementation described by Habermann and Nassi 
[5] in requiring three scheduling points when an accept precedes an entry call4. There are several 
reasons why our tasking implementation does not use a scheme like the one they describe, where the 
task which arrives last executes the accept body. One is that given the PERQ QCode architecture, the 
compiler would be forced to translate the bodies of accept statements and select alternatives into QCode 
procedures rather than into inline code, which would introduce some extra run-time overhead and, more 
importantly, use that many more procedure slots of the roughly 250 available for each QCode file. 
Another is that it would involve manipulating the contents of registers to do pseudo-context-switches, a 
task that would not be overly hard, but that seems contrary to the spirit of the "C Threads" package. 
Finally, some fields in task descriptors have been designed under the assumption that a task can be 
involved in at most one entry call, an assumption which does not hold under the Habermann and Nassi 
optimization. An example of this is the set of fields which allow a task to put itself to sleep; a calling task 
which assumes the identity of the called task and executes its accept body could not safely reuse the 
callee's sleep fields in the event the accept body contained an entry call. 

These reasons aside, it would probably be possible to do a Habermann and Nassi style tasking 
implementation for the Ada+ compiler without too many changes to the compiler itself by changing the 
declarations of the descriptor records and rewriting parts of the run-time system library. It would be 
necessary to make the compiler generate procedures for accept bodies, but the tasking interfaces and 
the parts of the compiler which generate code to use them could remain the same, and the existing 
run-time system provides a starting point for writing a more optimizing implementation. 

ignoring competition for the locks of the caller and the called task and any rescheduling that might be done to improve fairness. 
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4.5. Simple Select Statements 
Simple select statements differ from accept statements in that they may offer to accept more than one 

entry, and make the offer to accept a particular entry conditional on a run-time condition known as a 
guard. To handle them, the compiler uses the select alternative table built into each task descriptor and a 
more generalized version of Do_Accept called Do_seiect: 

function Do—Select (me: TaskPtr; n: Integer; OpenTerm: Boolean) : Integer; 

The select alternative table, as its name suggests, contains information about each alternative in a 
select statement. It contains enough room to describe up to fifty select alternatives, fifty being arbitrarily 
picked as a larger number of alternatives than any reasonable select statement is likely to contain5. Each 
entry contains a flag indicating whether it describes a delay alternative or an accept alternative, an integer 
"return index" which Do_seiect should return if that alternative is selected, and a field which is big 
enough to hold either a delay value or a pointer to an entry descriptor, depending on the type of the 
alternative as indicated by the flag. 

Figure 4-5: Implementation of Select Statements 
Part 1 : Source for a Sample Ada Task 

task MUTEX is 
entry LOCK; 
entry UNLOCK; 

end MUTEX; 

task body MUTEX is 
BUSY : BOOLEAN := FALSE; 

begin 
loop 

select 
when not BUSY => 

accept LOCK do 
BUSY := TRUE; 
end LOCK; 

or 
when BUSY => 

accept UNLOCK do 
BUSY : = FALSE; 

end UNLOCK; 
or 

terminate; 
end select; 

end loop; 
end MUTEX; 

A select statement is translated into a series of assignments and tests to load the select alternative 
table for the current task's descriptor with information describing all open alternatives, followed by a call to 
Do select with the number of open alternatives in n, a "case statement" jump indexed using the value 

5lf this limit turns out to be a problem, it would be easy to raise it or add code to dynamically allocate space for large select tables. 
However, the PERQ-related limit on the number of procedures that can be in a QCode file effectively limits task types to have less 
than 250 single entries or families, and thus also limits the size of potential select statements. 
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Figure 4-5, continued 
Part 2: Task Body MUTEX's Translation, Expressed in Terms of C 

void task_body__xnutex(nie) 
TaskPtr me; 
{ 

int busy = FALSE; 
Complete_Activation(me) ; 
while ( ; TRUE ; ) { 

int count = 0; 
if (! busy) { 

SelectEnt *sel_ent; 
sel_ent = me->t_Select + (Size_SelectJEnt * count++); 
sel_ent->RetIndex = 1; 
sel__ent->DelayAlt • FALSE; 
sel_ent->DelOrEnt = ( long) fixne->t_Ent ryDesc [ 0 ] ; 

> 

if (busy) { 
SelectEnt *sel_ent; 
seljent = me->t_Select + (Size__Select_Ent * count++) ; 
sel_ent->RetIndex = 2; 
sellent->DelayAlt = FALSE; 
sel_ent->DelOrEnt = (long) &me->t—EntryDesc[l]; 

} 
switch (Do—Select(me, count, TRUE)) { 

case 1: 
busy = TRUE; 
End__Rendezvous (me) ; 
break; 

case 2: 
busy = FALSE; 
End_Rende zvous(me); 
break; 

} 
} 
SimpleTComplete(me); 

> 

returned by Do_seiect, and code for each of the select alternatives. The code generated for each 
accept alternative is identical to the code that is generated for accept statements after the call to 
Do_Accept, except that it ends by jumping to the end of the select after calling End_Rendezvous. 
Figure 4-5 shows the translation of a select statement with a terminate alternative; imagine that the third 
parameter to Do_seiect is FALSE rather than TRUE to see how the select would be translated if it did 
not have a terminate alternative. 

Inside Do_seiect, the difference between one open entry and multiple open entries adds some, but 
not much, code complexity as compared to Do_Accept. Rather than checking one entry descriptor, 
Do__seiect checks multiple entry descriptors to see if tasks are waiting to call any one of them. Rather 
than setting one E_Gate if there are no waiting callers, Do_seiect sets the Ejsate fields for each 
accept alternative which is described in the select alternative table6. Finally, if Do_seiect puts itself to 

6This why a calling task that finds the E_Gate variable for the entry it is attempting to call set must clear all E G a t e variables 
belonging to the called task, and not just that particular one. 
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sleep awaiting an entry call, it must compare the pointer to the descriptor for the called entry, provided to 
it through a task descriptor field by Do_Entry_caii, against the pointers stored in the select alternative 
table to determine which index value should be returned and thus which case branch should be executed. 
Note that while Ada allows programs to contain select statements with two or more alternatives selecting 
the same entry, there is no guarantee that calls will be distributed "fairly" between such alternatives, and 
in particular Do_seiect will always select the first one. 

4.6. Timed and Conditional Entry Calls and Select Statements 
Timed entry calls, select statements with delay alternatives, and simple delay statements are 

implemented on top of a flexible timer package previously built for another application. The timer 
package uses a thread to manage a queue of events and provides operations to add events to the queue 
and to try to cancel them. Associated with each event is a pointer to a C function supplied by the user 
which will be executed when the event's deadline is reached and a pointer which may contain arbitrary 
data supplied by the user of the package. 

Timed entry calls and select statements are translated into inline code which is not significantly more 
complex than that generated for simple entry calls and select statements. Both Do_Entry_caii and the 
functions the compiler generates to access it take a flag indicating whether an entry call is timed and a 
floating-point value7 indicating how long to wait if the flag is set, and return a Boolean indicating whether 
the corresponding delay alternative should be executed. So a timed entry call is translated as a simple if 
statement whose condition is a call to the entry function and whose body contains the statements of the 
delay alternative. Timed select statements are even simpler, because entries in the select alternative 
table implicitly passed to Do_Seiect may describe delay as well as accept alternatives. Finally, delay 
statements are translated into calls to Deiay_statement. Since conditional entry calls and select 
statements have the same semantics as timed entry calls and select statements with a delay of zero 
seconds, they are translated as such. 

Within the run-time system, the implementation of timed entry calls consists of three major pieces of 
code: 

• Code to put a calling task onto the timer list if a rendezvous with the called task is not 
immediately possible and the delay time is greater than zero. This is located in 
Do_Entry_caii and a C interface routine it calls. 

• Code to remove a calling task from the appropriate entry waiting list and wake it up if the 
specified amount of time expires without a rendezvous happening. This is located in the C 
action routine that the timer thread executes for all entry call timeout events. 

• Code to cancel the timeout of a timed entry call if a rendezvous happens before the time 
expires. This is located in Do_Accept and Do_seiect. 

One problem confronting this code is the possibility that a "race condition" might arise between code in 
Do_Accept (or Do_seiect) attempting to cancel a timeout, and code in the C action routine attempting 
to cause one. To make absolutely sure that it does not cause a deadlock, the code in the C action routine 
locks down the mutex variables for only one task at a time, although it must modify state information 
belonging to both the calling task and the called task. Its rough outline looks like this: 

7Because the compiler does not currently implement fixed-point types, delay values must be expressed as floating-point numbers. 
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lock caller7 s t__Mutex and t_StatSem; 
if (caller's state is TIMED_ENTRY_CALL and the Interference 

variable has not been set) 
then begin 

set caller's state to TIMEDOUT; 
unlock caller's t_Mutex and t__StatSem; 
lock callee's t_Mutex; 
if caller is on entry waiting list remove it from list; 
unlock callee's t_Mutex; 
wake caller; 
end 

else unlock caller's t__Mutex and t_StatSem; 
set Interference to FALSE and decrement caller's TimeRefCnt; 

The relevant code from Do_Accept, in paraphrased form, is 
lock callee's t_Mutex; 
1: 
remove task "caller" from entry waiting list; 
lock caller's t_StatSem; 
if (caller is abnormal, or caller's state is not one of 

ENTRYJCALL or TIMEDJSNTKYjCALL) 
then begin 

unlock caller's t_StatSem; 
goto 1 to look for another tasks-
end; 

if caller's state is TIMEDJSNTRYjCALL 
then CancelTimeout(caller); 

{ try to remove caller from timer queue; 
if delete operation successful 
then ' decrement caller's t_TimeRefCnt 
else /* the timer thread must have removed it */ 

set Interference := TRUE; 
} 

unlock caller's t—StatSem; 
unlock callee's t_Mutex; 

Note that the check of the calling task's state in Do_Accept occurs when both the t_statsem of the 
calling task and the t_Mutex of the callee are locked, which gives rise to four cases: 

• Do_Accept gets to the state check before the timer action routine has been called, and 
subsequently removes the entry call timeout event from the timer's queue successfully. In 
this case, the timeout has been cancelled successfully and execution of the rendezvous may 
proceed uninhibited. 

• Do__Accept gets to the state check before the timer action routine has set the caller's state 
to TIMEDOUT, but too late to remove the timeout event from the timer queue. This would 
cause major problems if the C action routine was allowed to continue, as it would be trying to 
change the state of the calling task and to wake up the calling task as the rendezvous was 
happening, or even afterwards when the caller was engaged in another entry call. To handle 
this condition, we observe that since both pieces of code lock the caller's T_statsem, the 
timer action routine must be stuck at or before its lock request. We use this observation to 
set a variable called Interference which tells the timer action routine that it should not change 
the task's state for the reason that a rendezvous occurred. This prevents the action routine 
from making destructive state changes, but leaves open the remote possibility that if the 
timer thread is starved until after the task descriptor is deallocated it could dereference a 
dangling pointer. To prevent this from happening, the run-time system keeps a timer 
reference count in each task descriptor that is incremented when a task is placed on the 
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timer list and is decremented when the task's timeout event is removed from the list or its 
action routine completes execution. 

• Do_Accept gets to the state check after the timer action routine has set the caller's state to 
TIMEDOUT, but before it can lock the callee's Tjiutex and attempt to remove the task from 
the entry queue. Upon looking at the state field of the caller, Do_Accept will realize that a 
timeout has occurred and look for another task. When it releases its Tjdutex variable at 
some later point, the action routine will be free to time out the caller, which will still be 
sleeping and in the TIMEDOUT state. 

• Do_Accept never gets to the state check because the action routine removes the caller from 
the entry queue before Do_Accept gets a chance to even see it. The action routine thus 
times out the calling task without interference. 

Even with the interlocks provided by the Interference variable and the timer reference counts, one 
problem remains. Although the timer will not interfere with a rendezvous in progress and will not be left 
with dangling pointers, it is still possible for it not to time out an entry call or select statement "on time" if it 
is starved for cycles or must wait to obtain locks. Potentially, a rendezvous could occur after the delay 
period specified in a timed entry call or timed select had expired, which is not quite as bad as a crash, but 
is still not desirable. To solve this problem, it would be sufficient to add an "expiration time" field to each 
task descriptor and a small amount of code to set and check it to Do_Entry_caii, Do_Accept, and 
Do_Select. 

The implementation of timed select statements involves similar pieces of code, problems, and 
solutions. Therefore, in the interests of brevity, we will not discuss it further. 

4.7. Selects with Terminate Alternatives 
Select statements with terminate alternatives, like timed select statements, are translated into simple 

inline code. All the inline code must do is pass either TRUE or the value of the guard as the third 
argument to Do_seiect. But inside the run-time system, terminate alternatives cause a significant 
amount of extra complexity. In brief, tasks that execute select statements with an open terminate 
alternative are placed into one of two states depending on "local" conditions. Tasks with no active 
dependents and no callers are marked TERMINABLE and their masters are notified as if they had died; all 
other tasks are marked SELECT_TERM. Subsequent events that occur while a task in either state is 
waiting for rendezvous or termination may force that task to be put into the other state, with attendant 
changes to the records of its master construct, and perhaps those of indirect master constructs. This 
scheme is based on the one used by the NYU Ada/Ed compiler. 

The events that may force a task to change state are well-defined. Two events may force a task's state 
to change from SELECTJTERM to TERMINABLE : it may go from having one or more active dependents to 
having none as dependents terminate, and it may go from having one or more callers to having none as 
the delays on timed entry calls expire. One event can force a task's state to change from TERMINABLE to 
SELECTJTERM : the acquisition of new callers (whether they are calling open entries named in the select 
statement or not). To handle these events, the run-time system uses two internal procedures named 
indicateTerm and mdicateLif e, both of which take pointers to a task's master task and master 
construct descriptors. 

indicateTerm decrements the M_DepCount and T_Actcount fields which belong to the master 
construct and task, and calls condition'signai on the master constructs M_sieepCond field if 
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necessary. It then quickly checks the current state of the master task, and if it finds that the master task 
has no active dependents and no callers and is in the SELECT_TERM state, calls itself recursively on 
behalf of the master task. indicateTerm is called by Do_Entry_caii in response to some entry 
timeouts, by Do_seiect in response to some select statements, and by the routines simpieTCompiete 
and MasterTCompiete in response to the normal completion of a task. 

indicateLife increments the MjDepcount and T_Actcount fields which belong to the master 
construct and task. It checks to see if the master task is in the TERMINABLE state, and if so, changes the 
master task's state to SELECT_TERM and calls itself recursively to increment the counters for the master 
task's master task and master construct. indicateLife is called by Do_Entry_caii in response to 
entry calls on TERMINABLE tasks. 

4.8. Other Topics 
Dynamically allocated tasks. Tasks created by evaluating allocators are treated much like declared 

tasks. But because the tasks which launch them are not always the same as their master tasks, the 
compiler generates extra code for each access type whose use can result in task object creation. This 
code stores four pointers: a pointer to the current task, a pointer to the current master construct record, 
and the VAX frame and activation pointers needed to link the stacks of new tasks to the stack of the 
current task at the frame corresponding to the access type declaration. These pointers can then be 
passed to Newjrask by the code generated for allocators. 

Library tasks. Some tasks depend on library packages rather than blocks, subprograms, or tasks. To 
handle them, the run-time system allocates a task descriptor and a master construct record for a fictional 
"library task", and calls mit_Master and simpieMCompiete at appropriate times. Although the main 
program may complete execution before the library tasks terminate, the run-time system returns control to 
the shell only when both the main program and the library tasks are finished. 

Entry renaming and entries as generic actuals. Single entries and entry family members may be 
renamed as subprograms and used as generic actual parameters in place of subprograms. In both 
cases, the compiler must generate code to freeze the identity of the task being called and (in the case of 
a family) the entry index at the point of the renaming declaration or generic instantiation. 

Goto, exit, and return statements. Goto, exit, and return statements may transfer control out of one or 
more master constructs (blocks, and subprograms in the case of return statements). Masters are not 
allowed to terminate while they have active dependents. Thus, the compiler must sometimes generate 
calls to simpieMCompiete as part of the code it generates for these statements. 

4.9. Remaining Work 
Currently the VAX/Mach version of the compiler does not implement exceptions, because the compiler 

uses more of the PERQ's exception architecture than the pcod program can translate. The code that the 
compiler generates and the code in the run-time system contain all of the hooks needed to raise them, 
and pcod translates them well enough that when a program raises one it prints a message and dumps the 
contents of memory to a file, but a suitable handling mechanism is still needed. If pcod suddenly started 
translating the PERQ architecture perfectly, it would still be necessary to modify the compiler to 
implement the tasking-related aspects of exception handling, such as waiting for a block's dependents to 
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terminate before propagating an uncaught exception outside the block. 

Other features that should be present in a full Ada implementation but which are missing are abort 
statements and the SHARED pragma. The compiler also restricts programs to a single priority and 
disallows representation clauses, as allowed by Ada. Nothing special is done about reclaiming memory 
allocated by tasks after their death because the compiler did not try to reclaim memory used by allocators 
before the tasking mechanism was added. Finally, the Ada+ versions of the standard I/O packages have 
yet to be adapted for the VAX and multitasking. 

5. Performance Measurements 
To obtain some indication of the performance of our tasking implementation, we ran some tests whose 

results are presented below. Several factors contributed to the results we obtained, including the 
• Machines used to run the tests 
• Operating systems running on those machines 
• System libraries used to link the test programs 
• Compiler options used when compiling the test programs 
• Method used to obtain test times 

The two machines used to run the tests were a VAX 11/780 (ARPAnet host SPICE.CS.CMU.EDU) and 
a four-processor VAX 8200 (R2D2.MACH.CS.CMU.EDU). Although the operating system on both 
machines was Mach, the versions of Mach on the two machines were different. The Spice VAX ran 
version "4.3 #5.1(F9): Tue May 5 00:13:53 EDT 1987; /usr3/uk/GENERIC_VAX (dist.fac.cs.ciruj.edur, 
an old version without kernel support for threads. The R2D2 VAX ran Mach version "4.3 #1.0: Thu Sep 
17 15:28:57 EDT 1987; /usr2/rvb/mk/MACHTT (temp.ius.cs.cmu.edu)", which supports threads and 
appears to be better tuned. Since the libraries on both machines were identical, despite the different 
versions of Mach, all binaries were produced and linked on the Spice VAX and simply copied to the R2D2 
VAX for the purpose of getting timings there. 

Two different versions of the C Threads libraries were used to run the tests. One implemented threads 
as coroutines; only one Ada task could be serviced by the available processor(s) at any given time. The 
other implemented threads as preemptively-scheduled Mach threads running within a single address 
space. Because context switches under the coroutine version of C Threads occur only when the threads 
package gains control from the user program, we divided the coroutine threads tests into those in which 
the normal code generator output was used and those in which a compile-time switch was used to force 
the code generator to insert a call to cthread_yieid into the code for each loop. In the tables 
presented in this section, coroutine threads tests will be denoted by ".yield" or ".noyield", depending on 
whether or not the compiler was instructed to insert cthread_yieid calls, and Mach threads tests will 
be denoted by ".thread". 

Times were computed by placing the constructs to be tested inside a procedure named TEST and by 
bracketing a call to TEST with calls to timer start and stop routines, so as to avoid counting "startup" costs 
(loading run-time libraries) against the constructs being measured. Three time measurements were taken 
for each test run: elapsed "user" time, elapsed "system" time, and elapsed "real" time. As defined by the 
Mach manual, "user" time is the amount of time that a program spends executing in user mode, and 

http://SPICE.CS.CMU.EDU
http://R2D2.MACH.CS.CMU.EDU
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"system" time is the amount of time spent in the system executing on behalf of the program. Both 
measurements are available through the getmsage call. "Real" time is simply clock time as measured 
by two calls to gettimeofday; since the test programs were run on multiuser systems, each real time 
measurement reflects the then-current system load as well as the time consumed by the test program. All 
times given below were obtained by averaging the results of five consecutive runs, to minimize the effects 
of run-to-run variations. 

Please note that the choice of tests is somewhat arbitrary. We make no claims that these tests 
represent a complete set, but we believe the results presented below to be reasonably accurate. We 
would also like to acknowledge that code for two of the tests whose results are presented below, the Ada 
task chaining tests and the select statement tests, was obtained from a 1984 posting of Ada tasking 
benchmarks on USENETs net.sources newsgroup. 

5.1. LOOP - cost of dividing work among tasks 
To determine the practicality of dividing a small piece of work among several tasks, a series of test 

programs were written to perform ten thousand integer additions, subtractions, and assignments divided 
equally among one, two, five, and ten tasks. To complete the series, a program was written which 
performed the computations without tasks, as part of the main thread of control. The results of running 
these tests are summarized in Tables 5-1 and 5-2. 

Table 5-1: Times to run the LOOP tests on SPICE.CS.CMU.EDU 

Test 
LoopO.yield 
LoopO.noyield 
Loopl .yield 
Loopl.noyield 
Loop2.yield 
Loop2.noyield 
Loop5.yield 
Loop5.noyield 
Loopl O.yield 
Loopl O.noyield 
Loop50.yield 
Loop50.noyield 

Elapsed Elapsed Start/End Elapsed U+S per 
User Time System Time Load Factors, Real Time Iteration 

632ms 0ms 0.68/0.63 633ms 63us 
130ms 0ms 0.51/0.68 128ms 13us 756ms 162ms 1.69/1.53 932ms 92us 202ms 156ms 0.20/0.47 362ms 36us 1248ms 416ms 1.53/1.16 1722ms 166us 252ms 390ms 0.64/0.76 642ms 64us 1722ms 1138ms 1.16/1.03 28 67ms 286us 424ms 1160ms 0.84/0.93 1593ms 158us 2080ms 2752ms 1.03/1.00 5061ms 483us 752ms 2732ms 0.95/0.99 3533ms 348us 5240ms 35872ms 1.00/2.24 64183ms 4102us 3896ms 35710ms 0.99/2.03 60930ms 3961us 

The results from both machines strongly suggest that tasks are not lightweight constructs that can be 
casually invoked. Even moving the computation from the main program into a single task was expensive, 
and the thinner the computation was spread, the slower it got. This was especially true when going from 
using ten tasks to using fifty tasks; the high elapsed system times observed suggest that somewhere 
between ten and fifty tasks, a limit is reached after which any new tasks incur considerable additional 
expense. Possibly this is related to the large amount of memory which the C Threads package and the 
Ada+ run-time system allocate for each task; by default, each task gets a megabyte of VAX call stack 
space and 150 kilobytes of AStack and MStack space. 

http://SPICE.CS.CMU.EDU
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Table 5-2: Times to run the LOOP tests on R2D2.MACH.CS.CMU.EDU 
Elapsed Elapsed Start/End Elapsed U+S per 

Test User Time System Time Load Factors Real Time Iteration 
LoopO.yield 594ms 6ms 1.42/2.30 597ms 60us 
LoopO.noyield 128ms 0ms 3.88/3.59 132ms 13us 
LoopO.thread 126ms 0ms 3.96/3.97 126ms 13us 
Loopl .yield 826ms 134ms 2.89/2.51 958ms 96us 
Loopl .noyield 196ms 136ms 3.39/2.37 333ms 33us 
Loopl .thread 266ms 148ms 2.30/3.02 400ms 41us 
Loop2.yield 142ms 268ms 2.67/2.85 1406ms 141us 
Loop2.noyield 170ms 276ms 2.91/2.94 445ms 45us 
Loop2.thread 198ms 320ms 3.02/2.45 411ms 52us 
Loop5.yield 1502ms 656ms 2.85/3.10 2158ms 216us 
Loop5.noyield 268ms 642ms 2.96/2.97 912ms 91us 
Loop5.thread 356ms 1070ms 2.45/2.76 951ms 143us 
Loopl O.yield 1628ms 1296ms 3.40/2.20 2926ms 292us 
Loopl O.noyield 398ms 1330ms 2.98/2.11 1724ms 173us 
Loopl O.thread 976ms 4732ms 2.84/2.03 2590ms 571us 
Loop50.yield 3180ms 8972ms 2.20/1.42 17647ms 1215us 
Loop50.noyield 1626ms 8994ms 2.11/2.75 16471ms 1062us 
Loop50.thread 6944ms 29642ms 2.03/2.05 20008ms 3659us 

5.2. MULT - cost of dividing work among tasks 
After obtaining the above results, we ran a very limited test to see if giving each of two tasks a large 

amount of work to perform would reduce the overhead of using tasks under the coroutine threads library 
and produce a speedup under the Mach threads library. The results of the limited test were very positive, 
so we devised a range of tests that fell between these two extremes in an attempt to discover roughly 
when it becomes inexpensive or advantageous to divide independent pieces of work among several 
tasks. These tests all had the characteristics that the body of the TEST procedure was a null statement 
(except in the special case of zero tasks), that the real work consisted of a certain number of iterations of 
an inner bop body produced by executing a pair of nested loops, and that this work consisted of ten 
integer multiplications, ten integer divisions, and ten integer assignments. The iterations were equally 
divided among the tasks. 

Tables 5-3 and 5-4 summarize the results of running these tests on the Spice and R2D2 VAXen in 
textual form, while Figures 5-1 through 5-4 present the R2D2 results graphically. The results seem to 
show a definite advantage to using tasks when each task is given at least one-half second of work to 
perform. They also show that giving tasks less than one-quarter second of work can be costly. 

5.3. COMP - cost of competition for rendezvous 
To determine the effect that competition for an entry of a task would have on rendezvous times, four 

tests were run in which one, two, five, and ten client tasks called an entry of a server task in a tight loop. 
The server looped on a select statement with one accept alternative and one terminate alternative, and 
the number of entry calls was fixed at one thousand entry calls per test. Table 5-5 presents the times 
these tests took to run on the Spice VAX, while Table 5-6 and Figure 5-5 present the times they took to 
run on the R2D2 VAX. 

http://R2D2.MACH.CS.CMU.EDU
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Figure 5-1 : MULT -100,000 iterations 
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Figure 5-2: MULT - 25,000 iterations 
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Figure 5-3: MULT - 5,000 iterations 
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Figure 5-4: MULT - 2,500 iterations 
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Total 
Iterations 
100,000 
25,000 
5,000 
2,500 

Table 5-3: Times per iteration to run the MULT tests on SPICE.CS.CMU.EDU 
Times for 
0 tasks 
250us 
253us 
264us 
261us 

Times for 
1 task 
252us 
257us 
299us 
341us 

Times for 
2 tasks 
259us 
2 69us 
360us 
458us 

Times for 
4 tasks 
269us 
304us 
475us 
695us 

Times for 
5 tasks 
274us 
324us 
558us 
864us 

Times for 
10 tasks 
292us 
419us 

1005us 
1774us 

Table 5-4: Times per iteration to run the MULT tests on R2D2.MACH.CS.CMU.EDU 
Total 
Iterations 
100,000 
(threads) 
(threads-real) 

Times for 
0 tasks 
194us 
192us 
192us 

Times for 
1 task 
194us 
195us 
195us 

Times for 
2 tasks 
192us 
194us 
99us 

Times for 
4 tasks 
198us 
217us 
62us 

Times for 
5 tasks 
198us 
226us 
67us 

Times for 
10 tasks 
206us 
253us 
7 9us 

25,000 
(threads) 
(threads-real) 

195us 
192us 
192us 

200us 
200us 
200us 

203us 
205us 
109us 

218us 
263us 
99us 

223us 
286us 
112us 

255us 
434us 
159us 

5,000 
(threads) 
(threads-real) 

198us 
195us 
196us 

231us 
232us 
231us 

258us 
268us 
165us 

320us 
613us 
275us 

352us 
748us 
317us 

514us 
1752us 
649us 

2,500 
(threads) 
(threads-real) 

198us 
194us 
195us 

264us 
267us 
264us 

320us 
343us 
233us 

448us 
1280us 
536us 

512us 
1519us 
617us 

850us 
2579us 
1089us 

The results seem to suggest that, at least under the coroutine version of C Threads, competition 
between a small number of tasks makes the average time per rendezvous somewhat longer, but not 
extremely so. In fact, the average times per rendezvous for Comp2.yield and Comp2.thread were better 
than those for their Compl counterparts. Under Mach threads, competing tasks suffered more severely; 
the time per rendezvous when five or ten tasks were competing was more than three times the time per 
rendezvous for the single-client case. 

5.4. SELECT - cost of using select statements 
To determine the cost of using select statements as opposed to simple accepts, several tests were run 

in which a calling task called an entry of a server in a tight loop. The body of the server task consisted of 
a loop whose body was either an accept statement or a select statement with one or more open accept 
alternatives. The tests were run for the case of an accept statement and for the cases of select 
statements with one, five, ten, and twenty alternatives, with the called entry placed either at the beginning 
or ending of the list of select alternatives. The test times are presented in Tables 5-7 and 5-8 and in 
Figure 5-6. They indicate that large select statements are expensive; the twenty-alternative select 
statements were from 50 to 91 percent more costly than simple accepts depending on the position of the 
accept alternative for the called entry and upon the environment under which they ran. 

http://SPICE.CS.CMU.EDU
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Figure 5-5: COMP 
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Table 5-5: Times to run the 
Elapsed Elapsed 

Test User Time System Time 
Compi .yield 4040ms 598ms 
Compi .noyield 3682ms 524ms 
Comp2.yield 2402ms 70 4ms 
Comp2.noyield 3996ms 632ms 
Comp5.yield 2770ms 1552ms 
Comp5.noyield 4536ms 1604ms 
Compi O.yield 3024ms 3478ms 
CompiO.noyield 5482ms 3576ms 

tests on SPICE.CS.CMU.EDU 
Start/End Elapsed U+S per 
Load Factors Real Time Rendezvous 
1.04/2.66 10768ms 4. 6ms 
1.00/1.14 5951ms 4. 2ms 
2.66/2.01 6370ms 3. 1ms 
1.09/1.00 5435ms 4. 6ms 
2.01/1.76 6228ms 4. 3ms 
1.00/2.45 8270ms 6. 1ms 
1.76/1.35 8080ms 6. 5ms 
2.45/1.04 14200ms 9.1ms 

Table 5-6: Times to run the 
Elapsed Elapsed 

Test User Time System Time 
Compi .yield 4334ms 258ms 
Compi. noyield 4 010ms 2 8 0ms 
Compi .thread 472 8ms 2 6 90ms 
Comp2.yield 2430ms 390ms 
Comp2. noyield 403 4ms 3 8 8ms 
Comp2.thread 3372ms 1860ms 
Comp5.yield 2754ms 814ms 
Comp5.noyield 4 614ms 804ms 
Comp5.thread 6736ms 1697 6ms 
Compi O.yield 27 92ms 14 6 6ms 
Compi O.noyield 5080ms 1476ms 
ComplO.thread 7082ms 17420ms 

tests on R2D2.MACH.CS.CMU.EDU 
Start/End Elapsed U+S per 
Load Factors Real Time Rendezvous 
2.84/2.98 4596ms 4.6ms 
3.99/3.13 4334ms 4.3ms 
2.95/1.86 3865ms 7.4ms 
2.98/2.90 2813ms 2.8ms 
3.09/2.76 4423ms 4.4ms 
1.90/2.38 2093ms 5.2ms 
2.90/2.47 3570ms 3.6ms 
2.76/2.64 5417ms 5.4ms 
2.38/1.05 7973ms 23.7ms 
2.64/2.95 4259ms 4.3ms 
2.7 6/2.7 6 6533ms 6.6ms 
1.70/1.61 8820ms 24.5ms 

Test 
SelO.yield 
SelO.noyield 
Sell .yield 
Sell .noyield 
Sel5b.yield 
Sel5b.noyield 
Sel5e.yield 
Sel5e.noyield 
SehOb.yield 
SeMOb.noyield 
Sell Oe.yield 
SeMOe.noyield 
Sel20b.yield 
Sel20b.noyield 
Sel20e.yield 
Sel20e.noyield 

Table 5-7: 
Elapsed 
User Time 
3086ms 
2898ms 
3246ms 
3026ms 
3750ms 
3492ms 
3924ms 
3656ms 
4222ms 
4000ms 
462 6ms 
4394ms 
5212ms 
4936ms 
6054ms 
5800ms 

Times to run the SELECT tests on SPICE.CS.CMU.EDU 
Elapsed Start/End Elapsed U+S per Cost vs. 
System Time Load Factors Real Time Rendezvous SelectO 426ms 1.01/1.00 3565ms 3. 5ms N/A 408ms 0.00/0.87 3415ms 3. 3ms N/A 
414ms 1.00/1.22 3792ms 3. 7ms + 6% 422ms 0.87/0.98 3529ms 3. 4ms + 3% 436ms 1.22/1.17 4258ms 4.2ms +20% 422ms 0.98/1.00 4257ms 3. 9ms +18% 434ms 1.17/1.24 4426ms 4. 4ms +26% 420ms 1.00/0.66 4141ms 4. 1ms +24% 
462ms 1.24/1.20 5585ms 4 .7ms +34% 448ms 0.66/1.17 4 663ms 4. 4ms +33% 480ms 1.20/1.02 5293ms 5. 1ms +46% 452ms 1.17/1.08 4902ms 4. 8ms +45% 434ms 1.01/1.00 5689ms 5. 6ms + 60% 462ms 1.08/1.15 54 64ms 5. 4ms + 64% 
448ms 1.00/1.09 667 6ms 6. 5ms +86% 460ms 1.15/1.01 6430ms 6. 3ms + 91% 

http://SPICE.CS.CMU.EDU
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Table 5-8: Times to run the SELECT tests on R2D2.MACH.CS.CMU.EDU 
Elapsed Elapsed Start/End Elapsed U+S per Cost vs. 

Test User Time System Time Load Factors Real Time Rendezvous SelectO 
SelO.yield 3524ms 284ms 2 .33/2. 91 3810ms CO

 8ms N/A 
SelO.noyield 3312ms 284ms 3 .91/3. 18 3603ms 3. 6ms N/A 
SelO.thread 3638ms 1918ms 3 .00/2. 30 2949ms 5. 6ms N/A 
Sell .yield 3882ms 286ms 2 .91/3. 05 4169ms 4. 2ms + 11% 
SeM.noyield 367 6ms 306ms 3 .18/3. 25 3988ms 4. 0ms +11% 
Sell .thread 4186ms 1738ms 2 .30/2. 53 3119ms 5. 9ms + 5% 
Sel5b.yield 4548ms 276ms 3 .03/3. 00 4819ms 4. 8ms +26% 
Sel5b.noyield 3956ms 292ms 3 .25/3. 00 4267ms 4. 2ms +17% 
Sel5b.thread 4204ms 2118ms 2 .53/2. 33 3328ms 6. 3ms +13% 
Sel5e.yield 437 6ms 268ms 3 .00/3. 00 4644ms 4. 6ms +21% 
Sel5e.noyield 4068ms 276ms 3 .00/3. 00 4351ms 4. 3ms +19% 
Sel5e.thread 4250ms 2282ms 2 .55/2. 11 3423ms 6. 5ms +16% 
SeMOb.yield 4786ms 296ms 3 .00/3. 00 5082ms 5. 1ms +34% 
SeMOb.noyield 4386ms 278ms 3 .00/3. 00 4663ms 4. 7ms +31% 
SeHOb.thread 4754ms 2562ms 2 .11/2. 18 3827ms 7 . 3ms +30% 
SeHOe.yield 4850ms 286ms 3 .00/3. 00 5139ms 5. 1ms +34% 
Sell Oe.noyield 478 4ms 292ms 3 .00/3. 00 5080ms 5. 1ms +42% 
SeHOe.thread 5236ms 2628ms 2 .18/2. 58 4014ms 7. 9ms +41% 
Sel20b.yield 5448ms 294ms 3 .00/3. ,00 5735ms 5. ,7ms +50% 
Sel20b.noyield 509 4ms 278ms 3 .00/3. ,00 5375ms 5. , 3ms +47% 
Sel20b.thread 5386ms 3220ms 2 .58/2. ,08 4469ms 8. , 6ms +54% 
Sel20e.yield 5990ms 280ms 3 .00/3. ,00 6267ms 6. ,3ms +66% 
Sel20e.noyield 5710ms 270ms 3 .00/3. .23 6032ms 6. . 0ms ^ +67% 
Sel20e.thread 6312ms 3470ms 2 .38/2, .30 5051ms 9, . 8ms +75% 

5.5. CHAIN - cost of forcing context switches among several tasks 
As another method of determining the amount of time that a rendezvous takes, we ran tests in which 

two or more tasks, through the use of entry calls and accept statements, formed a control loop in which 
each task, upon receiving control of the processor, called its successor and immediately went back to 
sleep by waiting for an entry call. We ran tests for chains of two, three, four, five, ten, and twenty tasks, 
with control passing around the chain one thousand times in each test. The results, presented in Table 
5-9 and Figures 5-7 and 5-8, show the cost per rendezvous to be about three milliseconds under the 
coroutine threads library. However, they also show the cost per rendezvous to be extremely high under 
the Mach threads library. While the three and four task tests were run under a different version of Mach 
than the other tests, which may account for their slightly higher times, the overall trend is still not good. 

In an effort to determine the source of these high costs, we wrote a set of C programs to pass control 
around a chain of threads and timed their execution. Because we were not trying to duplicate Ada 
tasking semantics, but merely the behavior of the Ada chaining tests, the C programs execute much less 
code to perform synchronization than their Ada equivalents. The times the C programs took to run can be 
found in Table 5-10 and are also presented in Figures 5-7 and 5-8. As with the Ada tests, the coroutine 
times remained stable as the length of the chain increased, but the threads times became high very 
quickly. Several variant tests, including ones which looped 10,000 times around the chain, exhibited 
similar behavior. The only conclusion that can be drawn at this time is that the major cause of the high 
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costs for the Ada tests running under the Mach threads version of the C Threads package appears to be 
something unrelated to the Ada+ compiler. 

6. Conclusion 
This paper has attempted to describe how the Ada+ compiler implements tasking. The implementation 

is built on a set of lower-level facilities provided by the C Threads package, and makes heavy use of 
run-time system routines. Currently the Ada rendezvous constructs are implemented in a straightforward 
manner, but a Habermann and Nassi style implementation reusing many of the tasking "hooks" in the 
code generator appears possible. Using excerpts from the Ada+ run-time system and C pseudo-code, 
we have presented the run-time tasking interface and shown how it is used by compiled Ada code. We 
have also presented the results of running some performance benchmarks. We hope this report will 
prove of use to those who want to study the implementation of Ada tasking or who are trying to build their 
own implementations. 
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Figure 5-7: CHAIN - Ada and C chaining times under Mach threads 
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Table 5-9: Times to run the CHAIN tests on R2D2.MACH.CS.CMU.EDU 
Elapsed Elapsed Start/End Elapsed 

Test User Time System Time Load Factors Real Time 
Ch2.noyield 3694ms 276ms 3.97/3.99 4024ms 
Ch2.thread 5132ms 2380ms 4.00/4.00 3906ms 
Ch3.noyield 8750ms 410ms 3.99/4.00 9171ms 
Ch3.thread 23814ms 41026ms 4.00/4.00 23229ms 
Ch4.noyield 12346ms 544ms 4.00/4.00 12899ms 
Ch4.thread 31206ms 53940ms 4.00/4.00 30954ms 
Ch5.noyield 14368ms 756ms 3.99/4.00 15261ms 
Ch5.thread 32898ms 54922ms 4.00/4.00 31951ms 
CMO.noyield 27548ms 1414ms 4.00/4.00 29407ms 
CMO.thread 61344ms 111250ms 4.00/4.00 63089ms 
Ch20.noyield 55720ms 2886ms 4.00/4.00 59220ms 
Ch20.thread 133450ms 228430ms 4.00/4.00 131347ms 

U+S per Real time per 
Rendezvous Rendezvous 
1.99ms 2.01ms 
3.7 6ms 1.95ms 
3.0 5ms 3.0 6ms 

21.61ms 7.7 4ms 
3.22ms 3.22ms 

21.29ms 7.7 4ms 
3.02ms 3.0 5ms 
17 .56ms 6.39ms 
2.90ms 2.94ms 
17.2 6ms 6.31ms 
2.93ms 2.96ms 
18.09ms 6.57ms 

Table 5-10: Times to run the C chaining tests on R2D2.MACH.CS.CMU.EDU 

Test 
CCh2.noyield 
CCh2.thread 
CCh3.noyield 
CCh3.thread 
CCh4.noyield 
CCh4.thread 
CCh5.noyield 
CCh5.thread 
CChlO.noyield 
CChlO.thread 
CCh20.noyield 
CCh20.thread 

Elapsed 
User Time 
1102ms 
1348ms 
1780ms 
3718ms 
2278ms 
11468ms 
2520ms 
14232ms 
5462ms 

28808ms 
10214ms 
63486ms 

Elapsed 
System Time 

34ms 
918ms 
46ms 

6868ms 
70ms 

51348ms 
94ms 

65184ms 
168ms 

133020ms 
358ms 

266460ms 

Start/End Elapsed 
Load Factors Real Time 
4.00/4.00 
4.00/4.00 
4.00/4.00 
4.00/4.00 
4.00/4.00 
4.00/4.00 
4.00/4.00 
4.00/4.00 
4.00/4.00 
4.00/4.00 
4.00/4.00 
4.00/4.00 

1137ms 
1140ms 
1825ms 
3719ms 
2350ms 

21319ms 
2 612ms 

26873ms 
5626ms 

54819ms 
10572ms 

111544ms 

U+S per Real time per 
Switch Switch 
0 .57ms 0.57ms 
1.13ms 0 .57ms 
0.61ms 0.61ms 
3.53ms 1.2 4ms 
0 .59ms 0 .59ms 

15.70ms 5.33ms 
0.52ms 0.52ms 

15.88ms 5.37ms 
0.5 6ms 0.5 6ms 

16.18ms 5.48ms 
0.53ms 0.53ms 

16.50ms 5.58ms 

http://R2D2.MACH.CS.CMU.EDU
http://R2D2.MACH.CS.CMU.EDU
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