
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A n Implementat ion of Ada Tasking

Thomas 0. Newton
October 1987

CMU-CS-87-169

Abstract
This paper describes the tasking implementation in the VAX/Mach version of the Spice Ada compiler.
The implementation is built on the primitives supplied by the C Threads package, and uses run-time
system routines to reduce the size of the inline code generated to handle various tasking constructs. The
code that the compiler generates for various constructs and the operation of several key run-time system
routines are detailed at length. Average times to run several test programs on a uniprocessor and a
multiprocessor under both coroutine and Mach threads implementations of C Threads are presented.

Copyright 1987 Thomas D. Newton

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order
No. 4976 under contract F33615-84-K-1520 and monitored by the Air Force Avionics Laboratory.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

I

Table of Contents
1. Introduction 1
2. Overview of Ada Tasking Constructs 1
3. Overview of Ada+ Compiler 3
4. Implementation Details 3

4.1. Task Representation 4
4.2. Task Activation 6
4.3. Task and Master Termination 9
4.4. Simple Entry Calls and Accept Statements 10
4.5. Simple Select Statements 16
4.6. Timed and Conditional Entry Calls and Select Statements 18
4.7. Selects with Terminate Alternatives 20
4.8. Other Topics 21
4.9. Remaining Work 21

5. Performance Measurements 22
5.1. LOOP - cost of dividing work among tasks 23
5.2. MULT - cost of dividing work among tasks 24
5.3. COMP - cost of competition for rendezvous 24
5.4. SELECT - cost of using select statements 27
5.5. CHAIN - cost of forcing context switches among several tasks 30

6. Conclusion 31

UNIVERSITY U B R / W F S
CARNEGIE-MELLON U N I W T W V

P ,nSBURGH,P£NÄllMTil3

II

List of Figures
Figure 2-1: Basic Tasking Features 2
Figure 4-1: Use of VAX Registers by Compiled Ada Code 5
Figure 4-2: Implementation of Activation and Termination Semantics 7
Figure 4-3: Sample Assignment Of Entry Descriptors To Slots 11
Figure 4-4: Translation of Simple Entry Calls and Accept Statements 12
Figure 4-5: Implementation of Select Statements 16
Figure5-1: MULT-100,000iterations 25
Figure 5-2: MULT - 25,000 iterations 25
Figure 5-3: MULT - 5,000 iterations 26
Figure 5-4: MULT - 2,500 iterations 26
Figure 5-5: COMP 28
Figure 5-6: SELECT 28
Figure 5-7: CHAIN - Ada and C chaining times under Mach threads 32
Figure 5-8: CHAIN - Ada and C chaining times under coroutine threads 32

Iii

List of Tables
Table 5-1 : Times to run the LOOP tests on SPICE.CS.CMU.EDU 23
Table 5-2: Times to run the LOOP tests on R2D2.MACH.CS.CMU.EDU 24
Table 5-3: Times per Iteration to run the MULT tests on SPICE.CS.CMU.EDU 27
Table 5-4: Times per Iteration to run the MULT tests on 27

R2D2.MACH.CS.CMU.EDU
Table 5-5: Times to run the COMP tests on SPICE.CS.CMU.EDU 29
Table 5-6: Times to run the COMP tests on R2D2.MACH.CS.CMU.EDU 29
Table 5-7: Times to run the SELECT tests on SPICE.CS.CMU.EDU 29
Table 5-8: Times to run the SELECT tests on R2D2.MACH.CS.CMU.EDU 30
Table 5-9: Times to run the CHAIN tests on R2D2.MACH.CS.CMU.EDU 33
Table 5-10: Times to run the C chainlng tests on R2D2.MACH.CS.CMU.EDU 33

http://SPICE.CS.CMU.EDU
http://R2D2.MACH.CS.CMU.EDU
http://SPICE.CS.CMU.EDU
http://R2D2.MACH.CS.CMU.EDU
http://SPICE.CS.CMU.EDU
http://R2D2.MACH.CS.CMU.EDU
http://SPICE.CS.CMU.EDU
http://R2D2.MACH.CS.CMU.EDU
http://R2D2.MACH.CS.CMU.EDU
http://R2D2.MACH.CS.CMU.EDU

1

1 . Introduction
One of the more notable features which distinguishes the Ada1 programming language from Pascal

and similar languages is its support for concurrent programming in the form of tasking. Like Mesa and
CHILL, Ada allows programs to have more than one thread of control and provides tools for synchronizing
the activities of different threads. In Ada, threads of control are called tasks, and the rules concerning
their use emphasize convenience and safety. While this support for concurrent programming can be
quite handy, it also complicates the job of the compiler, as compiled tasking programs must in general
perform a large amount of synchronization to comply with Ada rules. This paper attempts to describe how
the VAX/Mach version of the Ada+ compiler implements Ada tasking. After an overview of Ada's tasking
constructs and an overview of the Ada+ compiler, the main part of the paper will discuss various
implementation details. Following this, the results of some performance tests will be presented to close
the paper.

2. Overview of Ada Tasking Constructs
The basic parallel programming construct in Ada is the task. Tasks are executable objects which act

as if each was running sequentially on its own logical processor. Every task is an instantiation of a
possibly anonymous task type. The specification of a task type introduces its name (or the name of the
unique task object) and declares the entries that tasks of that type provide to synchronize with other
tasks; its body contains code that these tasks will execute. Task types may be declared in roughly the
same places as subprograms and packages; an important implication of Ada's visibility rules is that global
and "intermediate" (local to a block, procedure, function, or task) variables may be read and updated by
several tasks. Figure 2-1 shows a one-of-a-kind task (CONSUMER), a task type (PRODUCER), and two task
variables (PI and P2) declared inside a procedure.

Although Ada seems to assume shared memory, synchronization and communication is generally
accomplished by rendezvous rather than by modifying variables. Entry calls, which look syntactically like
procedure calls, allow one task to attempt to rendezvous with another. Each entry call names a particular
task, and must correspond to one of the entry declarations for the task's type. Entry declarations look
much like procedure declarations, but may appear only inside task specifications. However, there are
important differences between entries and procedures, and between entry calls and procedure calls.
When a task calls a procedure, it is always possible to execute the procedure body immediately.
Furthermore, that body never changes, and several tasks may use it simultaneously. When a task calls
an entry, it may be suspended for an indefinite amount of time because the availability of a "body" for the
called entry in the form of an accept statement or select statement is under the control of the called task.
A rendezvous takes place when a task is willing to accept a call on one of its entries and there is at least
one caller. During a rendezvous, the callee executes the body of the accept statement (select alternative)
while the caller remains suspended, after which both go their separate ways. Note that both tasks trying
to call "unready" entries and tasks trying to accept "unwanted" entries are suspended until a partner is
available. If several tasks are waiting to call an entry, subsequent accepts service them in FIFO order of
their "arrival".

Several extensions to this basic model make it more flexible and usable. To avoid indefinite waiting,

1 Ada is a registered trademark of the U.S. Government, Ada Joint Program Office

2

Figure 2-1 : Basic Tasking Features
procedure FEATURES is

task CONSUMER is
entry CALLJME (in out X: INTEGER) ;

end CONSUMER;

task type PRODUCER is
end PRODUCER;

PI, P2: PRODUCER;
SHARED: INTEGER := 0;

task body CONSUMER is
begin

for i in 1..2 loop
accept CALL_ME (X : in out INTEGER) do

X := X + 1;
end CALLJME;

end loop;
end CONSUMER;

task body PRODUCER is
begin

CONSUMER. CALL__ME (SHARED) ;
end PRODUCER;

begin
null;
end FEATURES;

entry calls may be conditional or timed, supplying statements that will be executed in place of a
rendezvous if a rendezvous cannot begin immediately or within the specified amount of time. Select
statements allow a task to accept calls on any of several entries and to make the offer to accept particular
ones conditional on run-time conditions. This is useful for writing server tasks to serialize a mix of
operations, such as a bounded buffer task which accepts reads when its buffer is not empty and writes
when its buffer is not full. Select statements may also be conditional or timed in the manner of entry calls.
Finally, select statements may contain terminate alternatives, which allow tasks to terminate gracefully if
all their potential callers are terminated or have made similar offers.

Because programs do not always work correctly, Ada's tasking features make use of its exception
mechanism. If a parent task launches a group of tasks and any of them raise exceptions before
completing their activation, an exception must be raised in the parent. If a task tries to call an entry
belonging to a task which has completed execution, it reaps an exception rather than a rendezvous.
Exceptions that propagate out of an accept body propagate into both tasks involved in the rendezvous.
Additionally, Ada's rules about task and master termination have important implications for the
implementation of exceptions. Before propagating exceptions out of constructs on which tasks depend,
an exception-handling mechanism must wait for those dependent tasks to finish their execution.

Some miscellaneous features round out Ada's tasking facilities. Abort statements allow one task to kill
another and are only meant for use in the most extreme circumstances. In general, aborted tasks are not

3

required to die immediately but must do so by their next "synchronization point" (task activation, accept
statement, entry call, etc.). Tasks may be assigned fixed priorities with the guarantee that low-priority
tasks will never be executed if the processor (or processors) could be executing higher-priority tasks.
When used on systems that implement them, representation clauses allow entries to be associated with
hardware interrupts and allow control of the amount of storage associated with task activations. The
pragma SHARED can be used to impose some order upon accesses to shared variables. Finally, three
attributes let programs find out whether a task is callable or terminated and the number of tasks that are
waiting to call a particular entry.

3. Overview of Ada* Compiler
The Ada+ compiler, originally written to run on the PERQ workstation under the Accent operating

system, is a compiler that implements most of the features of Ada. It processes programs in four major
phases, split between three programs called the Front End, the Middle End, and the Back End. The Front
End performs syntactic and semantic analysis and produces compilation databases both for its own use
and for the use of the Middle and Back Ends. The Middle End copies the bodies of generic units to
complete their instantiations. Using the files that the Front and Middle Ends produce, the Back End
generates PERQ QCode files that may be linked and run on a PERQ under Accent.

For the purposes of adding the tasking mechanism described below, the compiler was moved to the
VAX under Mach [9] with the aid of a program that translates PERQ QCodes to VAX assembly language
(called pcod) and a VAX/Mach version of the PERQ Pascal compiler. Pcod had to be modified on several
occasions to fix bugs that did not show up when translating the simple code that the PERQ Pascal
compiler generated, and it does not translate all of the PERQ's architectural features faithfully even now.
But the VAX was and is where the "C Threads" package (described below) resides, and given the
declining use of PERQs as a general computing resource at CMU, the move would probably have been
desirable even without the attraction of the facilities provided by "C Threads".

More information about the non-tasking-related aspects of the compiler may be found in [2], which
gives a more detailed overview, [8], which describes how it performs overload resolution, and [6], which
describes how it implements generics. The instruction sets of the PERQ and the VAX are documented
respectively in [7] and [4].

4. Implementation Details
The Ada+ compiler implements tasking using several kinds of descriptor records and a number of

run-time system routines called from compiled code. The run-time routines encapsulate the
synchronization code needed to implement Ada tasking semantics, which has the benefits of keeping
inline code small and, in our case, of keeping synchronization code in an easy-to-read high-level
language (PERQ Pascal). The implementation was built on top of the "C Threads" package [3], which
provides multiple threads of control within a single address space, mutex variables to serialize access to
critical variables, and condition variables to help threads sleep while waiting for conditions to become
true. In the following pages, we will examine the subjects of task representation, task activation, task and
master termination, simple entry calls and accept statements, simple select statements, timed and
conditional entry calls and select statements, and selects with terminate alternatives.

4

4.1. Task Representation
Ada defines tasks as "entities whose executions proceed in parallel" in the sense that each task

executes on a "logical processor of its own, and that tasks "proceed independently except at points
where they synchronize." But its detailed rules about items like activation, termination, and rendezvous
imply that some state information must be associated with each task in some manner that allows other
tasks to access it.

The Ada+ compiler implements a task as some code, a "logical processor" to run it, and some state
information stored in a place where other tasks can access it. The code is the compiled version of the
task body, obtained by compiling the Ada source to QCodes, then translating the QCodes into VAX object
code. The "logical processor" is composed from a C thread and two auxiliary stacks, the MStack and the
AStack, needed to set up a proper run-time environment. The C thread provides context switching,
shared memory, and VAX stack space. The assembly code that pcod generates uses the MStack to
simulate the PERQ MStack, and the AStack, a "software stack" created by the compiler, holds large
function return values (arrays and records) that cannot be safely stored on the MStack. Finally, the state
information consists of a task descriptor, whose address is stored in the appropriate task variable or
task-valued component, and an array of entry descriptors.

Actually, the picture is slightly more complicated than this. As noted earlier, task bodies may access
the local variables of surrounding blocks, subprograms, and tasks. The addresses of such intermediate
variables may change between invocations, and the code that pcod generates to access them locates
them by calling a routine that searches up the VAX stack until it finds a frame with a nesting level equal to
that of the desired variable2. Merely placing an intermediate variable in shared memory is not sufficient to
support its use by tasks other than the one which elaborated it, as the stack frame containing the variable
does not form a part of the stacks of the other tasks, thus causing the standard pcod search to fail. The
run-time system thus modifies a frame pointer and an activation pointer in the VAX stack frame for each
new task so that the stack for the new task is effectively linked to the stack for its master task at the point
of the stack frame for its master. The modifications allow the standard pcod search to succeed for both
private and shared intermediate variables, although they necessitate restoring the changed pointers
before thread termination to avoid program crashes.

To allow all the objects of a task type to share one compiled task type body, it is necessary to store
some information for each task object in such a way that each task can access its own information by
using a piece of shared code. Operating systems typically use registers to hold crucial information like
the top of the call stack and program counter for each process, since registers generally must be saved
and restored during context swaps and accesses to them tend to be fast. On the VAX, four registers are
dedicated to system functions and several more are used by complex instructions, leaving six general-
purpose registers both free and safe. Pcod uses one of these registers to contain a pointer to the top of
each task's MStack, and the code generated by the Ada+ compiler uses another to give each task access
to its descriptor. Figure 4-1 shows how the VAX registers are used by running Ada tasks. Note that by
convention, C functions may trash low-numbered registers.

VAX register 10 goes to good use. Because task descriptors contain a number of fields used to

^ i s level is not part of the standard frame, but a pcod addition. Each VAX procedure generated by pcod starts by pushing
several words onto the VAX call stack, next to the standard frame.

5

Figure 4-1: Use of VAX Registers by Compiled Ada Code
Register (s) VAX Architecture/Ada+ Use Safe wrt C function?

no
no

0 6 1 function results, service status
2 - 5 any / (not used if possible)
6 - 9 any / expression evaluation temp. yes
10 any / address of task descriptor yes
11 any / points to simulated MStack yes
12 argument pointer (AP) yes
13 frame pointer (FP) yes
14 stack pointer (SP) yes
15 program counter (PC) yes

implement various aspects of tasking semantics, the address of a task's descriptor forms the "handle" by
which that task is known both to run-time system routines and to other tasks. The fields of a task
descriptor are as follows:

type
TaskPtr = ATaskRec;
MasterPtr = AMasterRec;
EntryPtr = AEntryRec;
ActivPtr = AActivationRec;
SelectEnt = record

DelayAlt: Boolean;
RetIndex: Integer;
DelOrEnt: Long;
end;

SelectArr = Array[0..49] of SelectEnt;
myVRD = Array[0.. 1] of Long;

TaskRec = record
tjCurrent_Stack_Top :
t_StackJTop :
t__StackJBase :
t_MStack_Base:
t_AP_Fo rJLDA_I :
t_FP_For_LDA_I :
t_Funct:
t_Mutex:
t_StatSém:
t_State:
t_Activat ing :
t_Abnormal:
t__RaiseFlag:
t_CurrentTimer :
t_TimeRef Cnt :
t_ActCount:
t_purParentT:
t__ourMasterT :
t__ourMasterB :
t__curMasterB :
t_masterLink:
t_SleepLock:
t_S leepCond :

Long; { environment }
Long; { environment }
Long; { environment }
Long; { environment }
Long; { environment }
Long; { environment }
myVRD; { environment }
Mutex; { basic state } Mutex; { basic state > Integer- { basic state }
Boolean; { activation }
Boolean; { exceptions }
Boolean; { exceptions }
TimerJT; { timer }
Integer; { timer }
Integer; { termination }
ActivPtr; { activation }
TaskPtr; { termination } MasterPtr; { termination > MasterPtr; { termination } TaskPtr; { termination } Mutex; { sleep }
Condition; { sleep }

6

t__SleepCntr:
t_Ent ryNum:
t_EntryDesc:
tJEntryPrev:
t_En t ryNext:
t_Thread:
t__CurCaller:
t_SavCaller:
tjCurPriority:
t_SavPriority:
tjCallingTask:
tjCalledEntry:
t_EntryParaxns:
t Select:

Integer;
Integer;
EntryPtr;
TaskPtr;
TaskPtr;
Long;

{ sleep >
{ rendezvous }
{ rendezvous }
{ rendezvous }
{ rendezvous }
{ 'cthzead t', env.}

TaskPtr;
TaskPtr;
Integer-
Integer;
TaskPtr;
EntryPtr;
Long;

{ rendezvous }
{ rendezvous }
{ rendezvous }
{ rendezvous }
{ rendezvous }
{ rendezvous }

SelectArr
{ 'void *' , rndv. }
{ rendevous }

end;
These fields can be divided into eight rough categories, based on the functions they help implement.
Environment fields contain information related to various stacks and to the launching of new tasks. The
three Basic State fields consist of two locks which control access to most of the other fields in the task
descriptor, and a field which indicates the current status of the task (running, attempting an entry call,
etc.). Activation and Termination fields contain information related to the activation and termination of
tasks and to the termination of master constructs. Rendezvous fields are used to implement entry calls,
accept statements, and select statements. The Sleep fields allow a task to put itself to sleep awaiting an
event, and the T/mer fields are used for delay statements, timed entry calls, and timed selects. Finally,
the Exceptions fields are meant to be used for the implementation of abort statements and the tasking-
related aspects of exceptions.

4.2. Task Activation
Tasks are elaborated somewhat differently from other Ada objects. Whereas the elaboration of an

object declaration with an initialization part results in the assignment of the value to the storage allocated
for the object, the elaboration of a task declaration generally does not result in the immediate execution of
the task. Instead, tasks created by elaborating a declarative part, package specification, or allocator
begin execution at the "same" time, after other elaboration work (like initializing variables) has been
performed. Before the access value can be returned or next statement begin execution, each task must
complete its activation. A task's activation consists of the elaboration of the declarative part, if any, of its
body. If any of the tasks activated by a declarative part or allocator raise an exception during their
activation, the exception TASKING_ERROR must be raised after they have all completed their activations.
For the purposes of this discussion, we will refer to a collection of such tasks as an activation group and
to the construct responsible for launching them as an activating construct

For each activation group, the code generated by the Ada+ compiler uses an activation record with the
following fields:

type
ActivationRec = record

account:
a__raiseTE:
a_actlist:
a_xmitex:
a_cond:
a_prev:

Integers-
Boolean;
TaskPtr;
Mutex;
Condition;
ActivPtr

7

end;
These fields have the following purposes:

• Account is the number of tasks in the activation group whose declarations have been
elaborated but which have not yet completed activation. After the activating construct
finishes non-task-related elaboration and this count drops to zero, execution of the next
program construct (for example, a function body) may begin if A_RaiseTE is not set (see
below).

• A_RaiseTE indicates whether or not the activating construct should raise the exception
TASKINGJERROR after A_count reaches zero. Initially, it is false, but it may be set to true
by any of the activating tasks.

• A_ActList is the head of a linked list of tasks that have not yet begun execution. Tasks on
these lists are linked through their TjdasterLink fields, which are reused for another
purpose once the tasks begin execution.

• A_Mutex and A_cond serialize access to Account and A_RaiseTE by the tasks of the
activation group, and permit the activating construct to sleep until all the tasks have "checked
in" by decrementing Account.

• A_Prev is used to link all of the activation group records for a block, subprogram, task, or
package into a single list whose head is stored in some location associated with the program
construct. This field exists to make it easier to implement the Ada rule that an exception
occuring in a declarative part or allocator causes unactivated tasks which would otherwise
have been launched to pass into the terminated state without ever being activated.

Figure 4-2: Implementation of Activation and Termination Semantics
Part 1 : Source for a Sample Ada Program

procedure PARENT is
task type T is

entry BAR(ARG1, ARG2 : INTEGER) ;
end T;

X, Y: T;
A : integer := 5;
Z : T;

task body T is
begin
— statements of task body
end T;

begin
— statements of procedure body
end PARENT;

Several run-time routines support task activation. They are:
procedure Init__Activation (a, prev: ActivPtr);
function New_Task(masterT: TaskPtr; masterB: MasterPtr;

actGroup: ActivPtr; entryCnt: Integer;
Proc: myVRD; ap__link: Long; fp_link:
Long): TaskPtr ;

function LaunchJFasks(me, MasterT: TaskPtr; MasterB: MasterPtr;
a: ActivPtr): ActivPtr;

procedure Complete_Activation(me: TaskPtr);

8

Figure 4-2, continued
Part 2: The Program's Translation, Expressed in Terms of C

int entry_procJbar(called_task, argl, arg2, is__timed, delay__amt)
TaskPtr called_task;
int argl, arg2;
boolean is_timed;
float delay_amt;
< . . . }

void task_body_t (me)
TaskPtr me;
{

Complete_Activation (me);
/* statements of task body */
SimpleTComplete (me);

}

void parent ()
{

/* prelude */
Act ivat ionRec MyActGroup ;
Init_Activation (SMyActGroup, NULL);

ActivationRec * ActGroupList;
ActGroupList = fiMyAct Group;

MasterRec MyMasterRec;
InitJMaster (me, fiMyMasterRec) ;

/* declarative part */
TaskPtr x as New_Task(me, SMyMasterRec, MyActGroup,

1 /* entry */, &taskJbody_t,
0, 0 /* use default AP/FP * /) ;

TaskPtr y = New_Task (me, £MyMasterRec, MyActGroup,
1, fitask_body_t, 0, 0) ;

int a = 5;
TaskPtr z = New_Task(me, &MyMasterRec, MyActGroup,

1, fitaskJbody_t, 0, 0);

ActGroupList = La\anch__Tasks (me, me, SMyMasterRec, ActGroupList) ;

/* statements of procedure body */

SimpleMComplete (me, &MyMasterRec) ;

init_Act ivat ion initializes the fields of an ActivationRec. It is typically called at or near the start
of the code generated for an activating construct. Newjrask creates a task descriptor for a new task,
complete with pointers to its activation group, master task, and master construct records as well as the
information needed to launch the task at some later time. It is called by the code generated for task
variable or component declarations. Launch_Tasks takes a whole activation group, launches each of its
tasks, and makes the appropriate master responsible for monitoring their termination. It also waits until all

9

of the tasks in the group have finished activation before returning, and is normally called by the last part
of the code generated for an activating construct. compiete_Activation is called by each new task
as it completes its activation to record the event in the activation record and to wake the parent task if
appropriate. Figure 4-2 shows the use of these routines.

4.3. Task and Master Termination
Both tasks and the constructs on which they depend, called masters, are subject to rules regulating

their termination. Every task depends directly on one master and may depend indirectly on several
others. A master may be a task, a currently executing block or subprogram, or a library package. Tasks
created by evaluating an allocator depend on the master that elaborated the access type definition, while
those created more "directly- depend on the master whose execution created them.

A master construct may not terminate until all of the tasks which depend on it have terminated. This
guarantees that the storage used by intermediate variables will not disappear, or be reused, until all of the
tasks which can access them are through running. Showing the validity of this guarantee for machines
with a typical call stack organization is simple. Given Ada's visibility rules, the master of any task must
have a nesting depth at least as great as that of the task type body3. Since the body can only access
variables at its own or lower depths, this implies that these variables must remain allocated throughout
the execution of the master construct.

A task may terminate if its execution is completed and any tasks dependent on it are terminated. A
task may also terminate if it has reached a select statement with an open terminate alternative, its master
has completed execution, and every task dependent on the master is terminated or has also reached a
select statement with an open terminate alternative. When a task terminates, the exception
TASKING_ERROR must be raised in any task waiting to call one of its entries.

For each direct master, the code generated by the Ada+ compiler uses a master construct record with
the following fields:

type
MasterRec = record

uncompleted: Boolean;
mJDepCount: Integer;
m_DepTasks: TaskPtr;
mJPrevious: MasterPtr;
m_SleepCond: Condition
end;

These fields have the following purposes:
• M_compieted indicates whether or not the master construct has completed execution.

Currently, its value is set but not used, as the task termination algorithms do not care
whether the master is completed.

• MjDepCount indicates the number of tasks directly dependent on the master construct
which are still MactiveH. Termination of the master construct may not take place until the
master has completed its execution and this field has a value of zero.

• MjDepTasks points to the head of a linked list of tasks which are directly dependent upon

• 3 ^ C ! ! , n 0 t ° P U n t P 3 ^ 8 8 t o w a r d s nesting depth, since their variables are typically allocated as globals or as locals of
immediately-enclosing subprograms, blocks, and tasks. g , O D a i s o r , o c a , s o t

10

the master construct. The tasks on the list are linked through their T_MasterLink fields.
• M_Previous is used to link all of the master construct records for masters belonging to one

task into a list whose head is stored in the T_curMasterB field of the task descriptor. This
field, not currently used, could provide a way to implement abort statements in the absence
of exceptions by giving tasks a way to "unwind" the tasking-related portion of their call stacks
and to find out which tasks are directly dependent upon a task that is to be aborted.

• M_sieepCond allows a completed master construct to sleep while awaiting the termination
(or offers to terminate) of its dependents.

Normally the value of M_pepCount starts high, when an activation group for a declarative part is
launched, and becomes lower as tasks complete executing. However, it may go up, even after the
master construct has completed execution, for either of two reasons. The evaluation of an allocator may
create new tasks directly dependent on the master. Additionally, a task which has decremented
M_DepCount in preparation for selecting an open terminate alternative may acquire a caller which makes
selecting it impossible and requires that the change to M_pepCount be "undone".

Several run-time routines support task and master block completion. They are:
procedure Init_Master (me : TaskPtr; m: MasterPtr);
procedure SimpleMComplete(me: TaskPtr; m: MasterPtr);
procedure SimpleTComplete(me: TaskPtr);
procedure MasterTComplete(me: TaskPtr; m: MasterPtr);

init_Master initial&es a master construct record. SimpleMComplete handles the completion of a
master which is not also a task by setting the M_compieted field, sleeping until all dependent tasks have
terminated or offered to terminate, arid waking up dependents who offered to terminate with a message
saying "go ahead". SimpleTComplete handles the completion of a task which is not also a master by
waking up all of the task's current callers with the exception TASKINGJSRROR and informing the task's
master(s) that the task has completed its execution. Finally, MasterTComplete combines the functions
of SimpleMComplete and SimpleTComplete for a task which is also a master construct. Figure 4-2
shows the use of three of these four routines.

4.4. Simple Entry Calls and Accept Statements
Entry calls, accept statements, and select statements are implemented using several run-time system

routines whose purpose is to encapsulate synchronization details, together with a moderately large
amount of state information which these routines manipulate. Some of this information is per single entry
or entry family and per task type, some is per single entry or member of an entry family and per task, and
some is per task. Additionally, the compiler generates an interface function for each single entry or entry
family which is shared by all tasks of the corresponding type. This section describes how the compiler
implements simple entry calls and accept statements - those involving a single entry, no timeouts, no
conditional test, and no terminate alternative. More complex constructs are implemented on top of this
foundation and will be discussed later.

One of the most basic data structures used to implement entry calls and accept statements is the entry
descriptor. For each single entry and for each member of an entry family, one descriptor is allocated to
hold information describing its current state. An entry descriptor contains three fields

type
EntryRec = record

e Gate: Boolean;

11

ejCount: Integer;
e_WList: TaskPtr

end;
which are used as follows:

• E_Gate is set by a task executing an accept or select statement to indicate that a call on the
corresponding entry can be immediately accepted.

• E_count counts the number of tasks which are waiting to call the entry, and thus makes
implementation of the ' COUNT attribute trivial.

• E__WL±st points to the head of a list of sleeping tasks which are waiting to call the entry. The
list is circular to allow quick insertion and removal, and it uses two fields (TjEntryPrev and
TjEntryNext) in the descriptors for the calling tasks to hold the links so that dynamic
allocation can be avoided.

Since any given entry call is a call on a particular task, every task of a task type has its own set of entry
descriptors; that is to say, if task type T has an entry E, and two variables X and Y are of type T, there will
be separate entry descriptors for X.E() and Y.E().

Some information about entries and entry families is shared between all tasks of a type. Part of the
process of calling an entry when its E_Gate is set is to clear the E_Gate field of every entry descriptor
belonging to the called task, to indicate that the current accept or select statement has been 'taken".
Following Habermann and Nassi [5], the compiler places the entry descriptors for each task into an array
to facilitate this process. The assignment of entries to array slots is made on a per-task-type basis, as
every task of the same type has the same interface. Normally, the assignment is made at compile time.
However, index ranges in entry family declarations are not required to be static, so in some cases slot
assignments and the sizes of descriptor arrays must be computed at run time. This work-, when needed,
is performed during the elaboration of a task type's specification. Figure 4-3 shows an assignment of
entries to slots in a descriptor array that might result from elaborating a typical task type specification.

Figure 4-3: Sample Assignment Of Entry Descriptors To Slots
task type EXAMPLE is Entry Descriptor Array

entry FOO(<parms>); + +
entry BAR (1. .N) (<panns>) ; I 0 FOO I
entry BAZ (8. . 9) (<parms>) ; + +

end EXAMPLE; I 1 BAR(l) |
+ +

ENTRY START INDEX RANGE | 2 BAR(2) |
+ +

FOO 0 <not applicable> I . . . BAR(3) . .BAR(N-l) |
BAR 1 1 to N + +
BAZ N+l 8 to 9 | N BAR(N) |

+ +

Total number of descriptors: I N+l BAZ (8) I
1 + (N-l+1) + (9-8+1) + +

or I N+2 BAZ (9) I
N + 3 + +

Three run-time system routines handle all of the synchronization required to implement simple entry
calls and accept statements. They are:

function Do_Entry_Call(me, CalledTask: TaskPtr;

12

entryDesc : EntryPtr;
HaveDelay : Boolean;
DelayAmount : Real;
ParamAddress : Long): Boolean;

procedure Do_Accept (me: TaakPtr; e: EntryPtr);
procedure End_Rendezvous (me: TaskPtr) ;

A simple entry call is implemented as a call to an entry function whose return value is ignored. The
compiler generates an entry function for each single entry or entry family which is shared by all the
members of a family and by all the tasks of a task type. The entry function takes a pointer to the
descriptor for the called task, followed by the index from the entry call (if an entry family is involved), the
declared arguments of the entry, a flag indicating whether the call is timed (in this case, FALSE), and a
delay amount (in this case, ignored). If the function is for an entry family, it checks to see if the index is
within the proper range. In any event, it computes the address of the appropriate descriptor, calls
Do_Entry_caii to do the real work, and returns the result of Do_Entry_caii. The main reason that
entry functions exist is to reduce variable numbers of arguments scattered all over memory into blocks of
constants and pointers which can be described by their addresses and sizes (all Do_Entry_caii needs
is an address), and which can be block-copied to the locals of an accept statement.

Figure 4-4: Translation of Simple Entry Calls and Accept Statements
Part 1 : Source for a Sample Ada Program

procedure FOO is
task CALLEE is

entry ADD (A: in out INTEGER; B: INTEGER);
end CALLEE;

task CALLER is
end CALLER;

task body CALLEE is
begin

accept ADD (A: in out INTEGER; B: INTEGER) do
A := A + B;

end ADD;
end CALLEE;

task body CALLER is
X: INTEGER := 5;

begin
CALLEE. ADD (X, X) ;

end CALLER;
begin
null;
end FOO;

An accept statement is implemented as a check of the entry index (if the entry belongs to a family),
followed by a call to Do_Accept with the addresses of the descriptors for the current task and the entry it
wants to accept, a block-copy of the arguments from the caller's stack into some locals reserved to hold
them (if the entry has arguments), code for the statements of the body (if the accept statement has a
body), and finally a call to End_Rendezvous. Figure 4-4 shows the translation of a simple entry call and

13

Figure 4-4, continued
Part 2: Task CALLER'S and CALLEE's Translations, Expressed in Terms of C

int entry_proc_add(called_task, a, b, is_timed, delay__axnt)
TaskPtr called_task;
int *a, b;
boolean is_timed;
float delay_amt;
{

return Do_Entry_Call (me, called_task, &called_task->t_EntryDesc[0],
is_timed, delay__amt, &a) ;

void taak_body_callee(me)
TaskPtr me;
(

Complete_Activation (me) ;
{

int *a,b;
Do_Accept (me, &me ->t_EntryDesc [0]) ;
bcopy(me->t_EntryParaxns, 6a, sizeof(a) + sizeof(b));
*a • *a + b;
End_Rendezvous (me);

>

SimpleTComplete(me);
}

void task_body_caller (me)
TaskPtr me;
{

int x = 5;
Complete_Activation (me)
{

int vrtemp * x; /* in out scalars by value-result */
entry_proc_add(callee, &vrtemp, x, FALSE, 0 .0) ;
x = vrtemp;

>

SimpleTComplete (me) ;
}

void foo()
{...>

an accept statement.

Since the inline code generated for simple entry calls and accepts is fairly trivial as a result of its use of
run-time system routines, just stating how and when run-time system routines are called is not sufficient
to adequately describe the implementation. The implementation is perhaps best understood by
examining simplified versions of the run-time system routines Do_Entry__caii and Do_Accept, which
show the basic logic that underlies the implementation of all kinds of entry calls, accept statements, and
select statements.

Do_Entry_caii handles all synchronization connected with simple, timed, and conditional entry calls.

14

Ignoring complications caused by timed and conditional entry calls, abort statements and exceptions, and
terminate alternatives in select statements, its heart is as follows:

{ var me, CalledTask: TaslcPtr; entryDesc, e: EntryPtr;}
MutexJLock (meA. t_StatSem) ;
Mutex_Lock (CalledTaakA. t_Mutex) ;
if entryDesc*.ejGate { entryDesc is called entry }
then begin

{ the task that owns the entry is waiting for a caller }
set eA.e_Gate to FALSE for all entry descriptors e which

belong to the task CalledTask;
set me A. tjState to INJRENDEZVOUS;
set "calling task" field in CalledTask to point to me;
MutexJOnlock (meA. tjStatSem) ;
{ note that we pass CalledTask the lock on its t_Mutex }
Hake (CalledTask)
end

else begin
set meA.t_State to ENTRY_CALL;
{ link me onto the waiting list entryDescA. eJWlist and)
{ increment entryDescA.ejCount by one. }
MutexJOhlock (CalledTask*. t_Mutex) ;
MutexJOnlock (meA. t_StatSem)
ends-

Sleep (me); { sleep until exception or end of rendezvous)

Do_Accept handles all the synchronization for accept statements leading up to the execution of the
accept body. With similar simplifications, its heart is as follows:

{ var me, t: TaskPtr; e: EntryPtr;}
Mutex_Lock (meA. t_Mutex) ;
1:
if eA.e_WList <> nil
then begin

set t to the first task on eA.e_WList, and remove this task
from the waiting list,

lock tA.t_JStatSem while checking its state to see if it can
still serve as a valid caller — if not, go to label 1;

MutexJOnlock (meA. t_Mutex)
end

else begin
Mutex_Lock (meA. t_StatSem)
set meA.t__State to ACCEPT;
set eA.ejGate to TRUE;
MutexJOnlock (meA. t_StatSem) ;
MutexJCJnlock (meA. t_Mutex) ;
Sleep (me) ;
(whoever wakes us should pass us the lock on our tA_Mutex }
set t to point to the task which woke us;
set tA.t_State to INJRENDEZVOUS;
MutexJOnlock (meA. t_Mutex)
end;

Both of these routines work by examining and modifying the information stored in entry descriptors,
using two task descriptor mutex fields to control access to this information. The reason that task
descriptors contain two mutex fields (not counting T_sieepLock) is that Do_Entry_caii modifies state
information for both the calling task and the called task, and using just one mutex field for each task could

15

cause the run-time system to deadlock when two tasks attempted to call each other simultaneously.
Simultaneous calls should not cause deadlock if at least one is conditional or timed. So the run-time
system routines related to rendezvous adopt the convention of locking the TjMutex variable belonging to
the called or accepting task in order to examine and modify entry descriptors, and locking T_statsem in
the calling task to modify its state. However, in general the proper way for a run-time routine to modify a
task's state is to lock both its Tjiutex and its T_statsem variables (in that order), change its state, and
release both locks in reverse order. This guarantees that no simultaneous modifications are being made
to the task's state. Routines that lock only one mutex variable must be written carefully to avoid problems
that could arise because they do not always run in a mutually exclusive fashion relative to each other.

The critical regions in Do_Entry_caii and Do_Accept defined by the use of T_Mutex force a
rendezvous to happen in one of two ways. The accepting task may "arrive" before any callers, in which
case it sets E_Gate for the specified entry and goes to sleep. The next caller, on finding the E_Gate
field set, clears all the callee's E_Gate variables, wakes it up and gives it the lock on its own T_Mutex,
and then goes to sleep awaiting the end of the rendezvous. Or one or more callers may "arrive" first, in
which case they queue themselves on E_wL±st and go to sleep. The accepting task will then find a
non-empty waiting list, from which it selects the first task as a partner. In either case, the calling task
continues to sleep while the accept statement body is executed and is woken up only at the end of the
rendezvous. Note that the convention of passing the lock on an accepting task's T_Mutex when the
caller is the last to "arrive" ensures that other tasks may not interfere with the start of a rendezvous once
the decision has been made to start it, whether by Do_Entry_call or by Do_Accept.

This scheme works, but corresponds to the "naive" implementation described by Habermann and Nassi
[5] in requiring three scheduling points when an accept precedes an entry call4. There are several
reasons why our tasking implementation does not use a scheme like the one they describe, where the
task which arrives last executes the accept body. One is that given the PERQ QCode architecture, the
compiler would be forced to translate the bodies of accept statements and select alternatives into QCode
procedures rather than into inline code, which would introduce some extra run-time overhead and, more
importantly, use that many more procedure slots of the roughly 250 available for each QCode file.
Another is that it would involve manipulating the contents of registers to do pseudo-context-switches, a
task that would not be overly hard, but that seems contrary to the spirit of the "C Threads" package.
Finally, some fields in task descriptors have been designed under the assumption that a task can be
involved in at most one entry call, an assumption which does not hold under the Habermann and Nassi
optimization. An example of this is the set of fields which allow a task to put itself to sleep; a calling task
which assumes the identity of the called task and executes its accept body could not safely reuse the
callee's sleep fields in the event the accept body contained an entry call.

These reasons aside, it would probably be possible to do a Habermann and Nassi style tasking
implementation for the Ada+ compiler without too many changes to the compiler itself by changing the
declarations of the descriptor records and rewriting parts of the run-time system library. It would be
necessary to make the compiler generate procedures for accept bodies, but the tasking interfaces and
the parts of the compiler which generate code to use them could remain the same, and the existing
run-time system provides a starting point for writing a more optimizing implementation.

ignoring competition for the locks of the caller and the called task and any rescheduling that might be done to improve fairness.

16

4.5. Simple Select Statements
Simple select statements differ from accept statements in that they may offer to accept more than one

entry, and make the offer to accept a particular entry conditional on a run-time condition known as a
guard. To handle them, the compiler uses the select alternative table built into each task descriptor and a
more generalized version of Do_Accept called Do_seiect:

function Do—Select (me: TaskPtr; n: Integer; OpenTerm: Boolean) : Integer;

The select alternative table, as its name suggests, contains information about each alternative in a
select statement. It contains enough room to describe up to fifty select alternatives, fifty being arbitrarily
picked as a larger number of alternatives than any reasonable select statement is likely to contain5. Each
entry contains a flag indicating whether it describes a delay alternative or an accept alternative, an integer
"return index" which Do_seiect should return if that alternative is selected, and a field which is big
enough to hold either a delay value or a pointer to an entry descriptor, depending on the type of the
alternative as indicated by the flag.

Figure 4-5: Implementation of Select Statements
Part 1 : Source for a Sample Ada Task

task MUTEX is
entry LOCK;
entry UNLOCK;

end MUTEX;

task body MUTEX is
BUSY : BOOLEAN := FALSE;

begin
loop

select
when not BUSY =>

accept LOCK do
BUSY := TRUE;
end LOCK;

or
when BUSY =>

accept UNLOCK do
BUSY : = FALSE;

end UNLOCK;
or

terminate;
end select;

end loop;
end MUTEX;

A select statement is translated into a series of assignments and tests to load the select alternative
table for the current task's descriptor with information describing all open alternatives, followed by a call to
Do select with the number of open alternatives in n, a "case statement" jump indexed using the value

5lf this limit turns out to be a problem, it would be easy to raise it or add code to dynamically allocate space for large select tables.
However, the PERQ-related limit on the number of procedures that can be in a QCode file effectively limits task types to have less
than 250 single entries or families, and thus also limits the size of potential select statements.

17

Figure 4-5, continued
Part 2: Task Body MUTEX's Translation, Expressed in Terms of C

void task_body__xnutex(nie)
TaskPtr me;
{

int busy = FALSE;
Complete_Activation(me) ;
while (; TRUE ;) {

int count = 0;
if (! busy) {

SelectEnt *sel_ent;
sel_ent = me->t_Select + (Size_SelectJEnt * count++);
sel_ent->RetIndex = 1;
sel__ent->DelayAlt • FALSE;
sel_ent->DelOrEnt = (long) fixne->t_Ent ryDesc [0] ;

>

if (busy) {
SelectEnt *sel_ent;
seljent = me->t_Select + (Size__Select_Ent * count++) ;
sel_ent->RetIndex = 2;
sellent->DelayAlt = FALSE;
sel_ent->DelOrEnt = (long) &me->t—EntryDesc[l];

}
switch (Do—Select(me, count, TRUE)) {

case 1:
busy = TRUE;
End__Rendezvous (me) ;
break;

case 2:
busy = FALSE;
End_Rende zvous(me);
break;

}
}
SimpleTComplete(me);

>

returned by Do_seiect, and code for each of the select alternatives. The code generated for each
accept alternative is identical to the code that is generated for accept statements after the call to
Do_Accept, except that it ends by jumping to the end of the select after calling End_Rendezvous.
Figure 4-5 shows the translation of a select statement with a terminate alternative; imagine that the third
parameter to Do_seiect is FALSE rather than TRUE to see how the select would be translated if it did
not have a terminate alternative.

Inside Do_seiect, the difference between one open entry and multiple open entries adds some, but
not much, code complexity as compared to Do_Accept. Rather than checking one entry descriptor,
Do__seiect checks multiple entry descriptors to see if tasks are waiting to call any one of them. Rather
than setting one E_Gate if there are no waiting callers, Do_seiect sets the Ejsate fields for each
accept alternative which is described in the select alternative table6. Finally, if Do_seiect puts itself to

6This why a calling task that finds the E_Gate variable for the entry it is attempting to call set must clear all E G a t e variables
belonging to the called task, and not just that particular one.

18

sleep awaiting an entry call, it must compare the pointer to the descriptor for the called entry, provided to
it through a task descriptor field by Do_Entry_caii, against the pointers stored in the select alternative
table to determine which index value should be returned and thus which case branch should be executed.
Note that while Ada allows programs to contain select statements with two or more alternatives selecting
the same entry, there is no guarantee that calls will be distributed "fairly" between such alternatives, and
in particular Do_seiect will always select the first one.

4.6. Timed and Conditional Entry Calls and Select Statements
Timed entry calls, select statements with delay alternatives, and simple delay statements are

implemented on top of a flexible timer package previously built for another application. The timer
package uses a thread to manage a queue of events and provides operations to add events to the queue
and to try to cancel them. Associated with each event is a pointer to a C function supplied by the user
which will be executed when the event's deadline is reached and a pointer which may contain arbitrary
data supplied by the user of the package.

Timed entry calls and select statements are translated into inline code which is not significantly more
complex than that generated for simple entry calls and select statements. Both Do_Entry_caii and the
functions the compiler generates to access it take a flag indicating whether an entry call is timed and a
floating-point value7 indicating how long to wait if the flag is set, and return a Boolean indicating whether
the corresponding delay alternative should be executed. So a timed entry call is translated as a simple if
statement whose condition is a call to the entry function and whose body contains the statements of the
delay alternative. Timed select statements are even simpler, because entries in the select alternative
table implicitly passed to Do_Seiect may describe delay as well as accept alternatives. Finally, delay
statements are translated into calls to Deiay_statement. Since conditional entry calls and select
statements have the same semantics as timed entry calls and select statements with a delay of zero
seconds, they are translated as such.

Within the run-time system, the implementation of timed entry calls consists of three major pieces of
code:

• Code to put a calling task onto the timer list if a rendezvous with the called task is not
immediately possible and the delay time is greater than zero. This is located in
Do_Entry_caii and a C interface routine it calls.

• Code to remove a calling task from the appropriate entry waiting list and wake it up if the
specified amount of time expires without a rendezvous happening. This is located in the C
action routine that the timer thread executes for all entry call timeout events.

• Code to cancel the timeout of a timed entry call if a rendezvous happens before the time
expires. This is located in Do_Accept and Do_seiect.

One problem confronting this code is the possibility that a "race condition" might arise between code in
Do_Accept (or Do_seiect) attempting to cancel a timeout, and code in the C action routine attempting
to cause one. To make absolutely sure that it does not cause a deadlock, the code in the C action routine
locks down the mutex variables for only one task at a time, although it must modify state information
belonging to both the calling task and the called task. Its rough outline looks like this:

7Because the compiler does not currently implement fixed-point types, delay values must be expressed as floating-point numbers.

19

lock caller7 s t__Mutex and t_StatSem;
if (caller's state is TIMED_ENTRY_CALL and the Interference

variable has not been set)
then begin

set caller's state to TIMEDOUT;
unlock caller's t_Mutex and t__StatSem;
lock callee's t_Mutex;
if caller is on entry waiting list remove it from list;
unlock callee's t_Mutex;
wake caller;
end

else unlock caller's t__Mutex and t_StatSem;
set Interference to FALSE and decrement caller's TimeRefCnt;

The relevant code from Do_Accept, in paraphrased form, is
lock callee's t_Mutex;
1:
remove task "caller" from entry waiting list;
lock caller's t_StatSem;
if (caller is abnormal, or caller's state is not one of

ENTRYJCALL or TIMEDJSNTKYjCALL)
then begin

unlock caller's t_StatSem;
goto 1 to look for another tasks-
end;

if caller's state is TIMEDJSNTRYjCALL
then CancelTimeout(caller);

{ try to remove caller from timer queue;
if delete operation successful
then ' decrement caller's t_TimeRefCnt
else /* the timer thread must have removed it */

set Interference := TRUE;
}

unlock caller's t—StatSem;
unlock callee's t_Mutex;

Note that the check of the calling task's state in Do_Accept occurs when both the t_statsem of the
calling task and the t_Mutex of the callee are locked, which gives rise to four cases:

• Do_Accept gets to the state check before the timer action routine has been called, and
subsequently removes the entry call timeout event from the timer's queue successfully. In
this case, the timeout has been cancelled successfully and execution of the rendezvous may
proceed uninhibited.

• Do__Accept gets to the state check before the timer action routine has set the caller's state
to TIMEDOUT, but too late to remove the timeout event from the timer queue. This would
cause major problems if the C action routine was allowed to continue, as it would be trying to
change the state of the calling task and to wake up the calling task as the rendezvous was
happening, or even afterwards when the caller was engaged in another entry call. To handle
this condition, we observe that since both pieces of code lock the caller's T_statsem, the
timer action routine must be stuck at or before its lock request. We use this observation to
set a variable called Interference which tells the timer action routine that it should not change
the task's state for the reason that a rendezvous occurred. This prevents the action routine
from making destructive state changes, but leaves open the remote possibility that if the
timer thread is starved until after the task descriptor is deallocated it could dereference a
dangling pointer. To prevent this from happening, the run-time system keeps a timer
reference count in each task descriptor that is incremented when a task is placed on the

20

timer list and is decremented when the task's timeout event is removed from the list or its
action routine completes execution.

• Do_Accept gets to the state check after the timer action routine has set the caller's state to
TIMEDOUT, but before it can lock the callee's Tjiutex and attempt to remove the task from
the entry queue. Upon looking at the state field of the caller, Do_Accept will realize that a
timeout has occurred and look for another task. When it releases its Tjdutex variable at
some later point, the action routine will be free to time out the caller, which will still be
sleeping and in the TIMEDOUT state.

• Do_Accept never gets to the state check because the action routine removes the caller from
the entry queue before Do_Accept gets a chance to even see it. The action routine thus
times out the calling task without interference.

Even with the interlocks provided by the Interference variable and the timer reference counts, one
problem remains. Although the timer will not interfere with a rendezvous in progress and will not be left
with dangling pointers, it is still possible for it not to time out an entry call or select statement "on time" if it
is starved for cycles or must wait to obtain locks. Potentially, a rendezvous could occur after the delay
period specified in a timed entry call or timed select had expired, which is not quite as bad as a crash, but
is still not desirable. To solve this problem, it would be sufficient to add an "expiration time" field to each
task descriptor and a small amount of code to set and check it to Do_Entry_caii, Do_Accept, and
Do_Select.

The implementation of timed select statements involves similar pieces of code, problems, and
solutions. Therefore, in the interests of brevity, we will not discuss it further.

4.7. Selects with Terminate Alternatives
Select statements with terminate alternatives, like timed select statements, are translated into simple

inline code. All the inline code must do is pass either TRUE or the value of the guard as the third
argument to Do_seiect. But inside the run-time system, terminate alternatives cause a significant
amount of extra complexity. In brief, tasks that execute select statements with an open terminate
alternative are placed into one of two states depending on "local" conditions. Tasks with no active
dependents and no callers are marked TERMINABLE and their masters are notified as if they had died; all
other tasks are marked SELECT_TERM. Subsequent events that occur while a task in either state is
waiting for rendezvous or termination may force that task to be put into the other state, with attendant
changes to the records of its master construct, and perhaps those of indirect master constructs. This
scheme is based on the one used by the NYU Ada/Ed compiler.

The events that may force a task to change state are well-defined. Two events may force a task's state
to change from SELECTJTERM to TERMINABLE : it may go from having one or more active dependents to
having none as dependents terminate, and it may go from having one or more callers to having none as
the delays on timed entry calls expire. One event can force a task's state to change from TERMINABLE to
SELECTJTERM : the acquisition of new callers (whether they are calling open entries named in the select
statement or not). To handle these events, the run-time system uses two internal procedures named
indicateTerm and mdicateLif e, both of which take pointers to a task's master task and master
construct descriptors.

indicateTerm decrements the M_DepCount and T_Actcount fields which belong to the master
construct and task, and calls condition'signai on the master constructs M_sieepCond field if

21

necessary. It then quickly checks the current state of the master task, and if it finds that the master task
has no active dependents and no callers and is in the SELECT_TERM state, calls itself recursively on
behalf of the master task. indicateTerm is called by Do_Entry_caii in response to some entry
timeouts, by Do_seiect in response to some select statements, and by the routines simpieTCompiete
and MasterTCompiete in response to the normal completion of a task.

indicateLife increments the MjDepcount and T_Actcount fields which belong to the master
construct and task. It checks to see if the master task is in the TERMINABLE state, and if so, changes the
master task's state to SELECT_TERM and calls itself recursively to increment the counters for the master
task's master task and master construct. indicateLife is called by Do_Entry_caii in response to
entry calls on TERMINABLE tasks.

4.8. Other Topics
Dynamically allocated tasks. Tasks created by evaluating allocators are treated much like declared

tasks. But because the tasks which launch them are not always the same as their master tasks, the
compiler generates extra code for each access type whose use can result in task object creation. This
code stores four pointers: a pointer to the current task, a pointer to the current master construct record,
and the VAX frame and activation pointers needed to link the stacks of new tasks to the stack of the
current task at the frame corresponding to the access type declaration. These pointers can then be
passed to Newjrask by the code generated for allocators.

Library tasks. Some tasks depend on library packages rather than blocks, subprograms, or tasks. To
handle them, the run-time system allocates a task descriptor and a master construct record for a fictional
"library task", and calls mit_Master and simpieMCompiete at appropriate times. Although the main
program may complete execution before the library tasks terminate, the run-time system returns control to
the shell only when both the main program and the library tasks are finished.

Entry renaming and entries as generic actuals. Single entries and entry family members may be
renamed as subprograms and used as generic actual parameters in place of subprograms. In both
cases, the compiler must generate code to freeze the identity of the task being called and (in the case of
a family) the entry index at the point of the renaming declaration or generic instantiation.

Goto, exit, and return statements. Goto, exit, and return statements may transfer control out of one or
more master constructs (blocks, and subprograms in the case of return statements). Masters are not
allowed to terminate while they have active dependents. Thus, the compiler must sometimes generate
calls to simpieMCompiete as part of the code it generates for these statements.

4.9. Remaining Work
Currently the VAX/Mach version of the compiler does not implement exceptions, because the compiler

uses more of the PERQ's exception architecture than the pcod program can translate. The code that the
compiler generates and the code in the run-time system contain all of the hooks needed to raise them,
and pcod translates them well enough that when a program raises one it prints a message and dumps the
contents of memory to a file, but a suitable handling mechanism is still needed. If pcod suddenly started
translating the PERQ architecture perfectly, it would still be necessary to modify the compiler to
implement the tasking-related aspects of exception handling, such as waiting for a block's dependents to

22

terminate before propagating an uncaught exception outside the block.

Other features that should be present in a full Ada implementation but which are missing are abort
statements and the SHARED pragma. The compiler also restricts programs to a single priority and
disallows representation clauses, as allowed by Ada. Nothing special is done about reclaiming memory
allocated by tasks after their death because the compiler did not try to reclaim memory used by allocators
before the tasking mechanism was added. Finally, the Ada+ versions of the standard I/O packages have
yet to be adapted for the VAX and multitasking.

5. Performance Measurements
To obtain some indication of the performance of our tasking implementation, we ran some tests whose

results are presented below. Several factors contributed to the results we obtained, including the
• Machines used to run the tests
• Operating systems running on those machines
• System libraries used to link the test programs
• Compiler options used when compiling the test programs
• Method used to obtain test times

The two machines used to run the tests were a VAX 11/780 (ARPAnet host SPICE.CS.CMU.EDU) and
a four-processor VAX 8200 (R2D2.MACH.CS.CMU.EDU). Although the operating system on both
machines was Mach, the versions of Mach on the two machines were different. The Spice VAX ran
version "4.3 #5.1(F9): Tue May 5 00:13:53 EDT 1987; /usr3/uk/GENERIC_VAX (dist.fac.cs.ciruj.edur,
an old version without kernel support for threads. The R2D2 VAX ran Mach version "4.3 #1.0: Thu Sep
17 15:28:57 EDT 1987; /usr2/rvb/mk/MACHTT (temp.ius.cs.cmu.edu)", which supports threads and
appears to be better tuned. Since the libraries on both machines were identical, despite the different
versions of Mach, all binaries were produced and linked on the Spice VAX and simply copied to the R2D2
VAX for the purpose of getting timings there.

Two different versions of the C Threads libraries were used to run the tests. One implemented threads
as coroutines; only one Ada task could be serviced by the available processor(s) at any given time. The
other implemented threads as preemptively-scheduled Mach threads running within a single address
space. Because context switches under the coroutine version of C Threads occur only when the threads
package gains control from the user program, we divided the coroutine threads tests into those in which
the normal code generator output was used and those in which a compile-time switch was used to force
the code generator to insert a call to cthread_yieid into the code for each loop. In the tables
presented in this section, coroutine threads tests will be denoted by ".yield" or ".noyield", depending on
whether or not the compiler was instructed to insert cthread_yieid calls, and Mach threads tests will
be denoted by ".thread".

Times were computed by placing the constructs to be tested inside a procedure named TEST and by
bracketing a call to TEST with calls to timer start and stop routines, so as to avoid counting "startup" costs
(loading run-time libraries) against the constructs being measured. Three time measurements were taken
for each test run: elapsed "user" time, elapsed "system" time, and elapsed "real" time. As defined by the
Mach manual, "user" time is the amount of time that a program spends executing in user mode, and

http://SPICE.CS.CMU.EDU
http://R2D2.MACH.CS.CMU.EDU
http://temp.ius.cs.cmu.edu

23

"system" time is the amount of time spent in the system executing on behalf of the program. Both
measurements are available through the getmsage call. "Real" time is simply clock time as measured
by two calls to gettimeofday; since the test programs were run on multiuser systems, each real time
measurement reflects the then-current system load as well as the time consumed by the test program. All
times given below were obtained by averaging the results of five consecutive runs, to minimize the effects
of run-to-run variations.

Please note that the choice of tests is somewhat arbitrary. We make no claims that these tests
represent a complete set, but we believe the results presented below to be reasonably accurate. We
would also like to acknowledge that code for two of the tests whose results are presented below, the Ada
task chaining tests and the select statement tests, was obtained from a 1984 posting of Ada tasking
benchmarks on USENETs net.sources newsgroup.

5.1. LOOP - cost of dividing work among tasks
To determine the practicality of dividing a small piece of work among several tasks, a series of test

programs were written to perform ten thousand integer additions, subtractions, and assignments divided
equally among one, two, five, and ten tasks. To complete the series, a program was written which
performed the computations without tasks, as part of the main thread of control. The results of running
these tests are summarized in Tables 5-1 and 5-2.

Table 5-1: Times to run the LOOP tests on SPICE.CS.CMU.EDU

Test
LoopO.yield
LoopO.noyield
Loopl .yield
Loopl.noyield
Loop2.yield
Loop2.noyield
Loop5.yield
Loop5.noyield
Loopl O.yield
Loopl O.noyield
Loop50.yield
Loop50.noyield

Elapsed Elapsed Start/End Elapsed U+S per
User Time System Time Load Factors, Real Time Iteration

632ms 0ms 0.68/0.63 633ms 63us
130ms 0ms 0.51/0.68 128ms 13us 756ms 162ms 1.69/1.53 932ms 92us 202ms 156ms 0.20/0.47 362ms 36us 1248ms 416ms 1.53/1.16 1722ms 166us 252ms 390ms 0.64/0.76 642ms 64us 1722ms 1138ms 1.16/1.03 28 67ms 286us 424ms 1160ms 0.84/0.93 1593ms 158us 2080ms 2752ms 1.03/1.00 5061ms 483us 752ms 2732ms 0.95/0.99 3533ms 348us 5240ms 35872ms 1.00/2.24 64183ms 4102us 3896ms 35710ms 0.99/2.03 60930ms 3961us

The results from both machines strongly suggest that tasks are not lightweight constructs that can be
casually invoked. Even moving the computation from the main program into a single task was expensive,
and the thinner the computation was spread, the slower it got. This was especially true when going from
using ten tasks to using fifty tasks; the high elapsed system times observed suggest that somewhere
between ten and fifty tasks, a limit is reached after which any new tasks incur considerable additional
expense. Possibly this is related to the large amount of memory which the C Threads package and the
Ada+ run-time system allocate for each task; by default, each task gets a megabyte of VAX call stack
space and 150 kilobytes of AStack and MStack space.

http://SPICE.CS.CMU.EDU

24

Table 5-2: Times to run the LOOP tests on R2D2.MACH.CS.CMU.EDU
Elapsed Elapsed Start/End Elapsed U+S per

Test User Time System Time Load Factors Real Time Iteration
LoopO.yield 594ms 6ms 1.42/2.30 597ms 60us
LoopO.noyield 128ms 0ms 3.88/3.59 132ms 13us
LoopO.thread 126ms 0ms 3.96/3.97 126ms 13us
Loopl .yield 826ms 134ms 2.89/2.51 958ms 96us
Loopl .noyield 196ms 136ms 3.39/2.37 333ms 33us
Loopl .thread 266ms 148ms 2.30/3.02 400ms 41us
Loop2.yield 142ms 268ms 2.67/2.85 1406ms 141us
Loop2.noyield 170ms 276ms 2.91/2.94 445ms 45us
Loop2.thread 198ms 320ms 3.02/2.45 411ms 52us
Loop5.yield 1502ms 656ms 2.85/3.10 2158ms 216us
Loop5.noyield 268ms 642ms 2.96/2.97 912ms 91us
Loop5.thread 356ms 1070ms 2.45/2.76 951ms 143us
Loopl O.yield 1628ms 1296ms 3.40/2.20 2926ms 292us
Loopl O.noyield 398ms 1330ms 2.98/2.11 1724ms 173us
Loopl O.thread 976ms 4732ms 2.84/2.03 2590ms 571us
Loop50.yield 3180ms 8972ms 2.20/1.42 17647ms 1215us
Loop50.noyield 1626ms 8994ms 2.11/2.75 16471ms 1062us
Loop50.thread 6944ms 29642ms 2.03/2.05 20008ms 3659us

5.2. MULT - cost of dividing work among tasks
After obtaining the above results, we ran a very limited test to see if giving each of two tasks a large

amount of work to perform would reduce the overhead of using tasks under the coroutine threads library
and produce a speedup under the Mach threads library. The results of the limited test were very positive,
so we devised a range of tests that fell between these two extremes in an attempt to discover roughly
when it becomes inexpensive or advantageous to divide independent pieces of work among several
tasks. These tests all had the characteristics that the body of the TEST procedure was a null statement
(except in the special case of zero tasks), that the real work consisted of a certain number of iterations of
an inner bop body produced by executing a pair of nested loops, and that this work consisted of ten
integer multiplications, ten integer divisions, and ten integer assignments. The iterations were equally
divided among the tasks.

Tables 5-3 and 5-4 summarize the results of running these tests on the Spice and R2D2 VAXen in
textual form, while Figures 5-1 through 5-4 present the R2D2 results graphically. The results seem to
show a definite advantage to using tasks when each task is given at least one-half second of work to
perform. They also show that giving tasks less than one-quarter second of work can be costly.

5.3. COMP - cost of competition for rendezvous
To determine the effect that competition for an entry of a task would have on rendezvous times, four

tests were run in which one, two, five, and ten client tasks called an entry of a server task in a tight loop.
The server looped on a select statement with one accept alternative and one terminate alternative, and
the number of entry calls was fixed at one thousand entry calls per test. Table 5-5 presents the times
these tests took to run on the Spice VAX, while Table 5-6 and Figure 5-5 present the times they took to
run on the R2D2 VAX.

http://R2D2.MACH.CS.CMU.EDU

25

Figure 5-1 : MULT -100,000 iterations

T 3 0 0 ^
i

m
e 2 4 0 ^

180|isl

Legend:
R2D2, coroutine threads
R2D2, threads
R2D2, threads (real time)

Number of Ada tasks among which work was divided

Figure 5-2: MULT - 25,000 iterations

T 450£s|
i
m
e 360us|

Legend:
R2D2, coroutine threads
R2D2, threads
R2D2, threads (real time)

Number of Ada tasks among which work was divided

26

Figure 5-3: MULT - 5,000 iterations

T 1800MS|
i
m

e 1 4 4 0 ^

P
e

r 1080|xs|

Legend:
R2D2, coroutine threads

l l i l R2D2, threads
mm R2D2, threads (real time)

i

* 7 2 0 ^

t 360yd

o
n

1 2 4 5
Number of Ada tasks among which work was divided

Figure 5-4: MULT - 2,500 iterations

T 250Ó£s|
i
m

e 2000us|

P
* 1 5 0 0 ^

1 0 0 0 M t
e
r
a
t 5 0 0 ^
i
o
n

Legend:
R2D2, coroutine threads
R2D2, threads
R2D2, threads (real time)

1 2 4 5
Number of Ada tasks among which work was divided

27

Total
Iterations
100,000
25,000
5,000
2,500

Table 5-3: Times per iteration to run the MULT tests on SPICE.CS.CMU.EDU
Times for
0 tasks
250us
253us
264us
261us

Times for
1 task
252us
257us
299us
341us

Times for
2 tasks
259us
2 69us
360us
458us

Times for
4 tasks
269us
304us
475us
695us

Times for
5 tasks
274us
324us
558us
864us

Times for
10 tasks
292us
419us

1005us
1774us

Table 5-4: Times per iteration to run the MULT tests on R2D2.MACH.CS.CMU.EDU
Total
Iterations
100,000
(threads)
(threads-real)

Times for
0 tasks
194us
192us
192us

Times for
1 task
194us
195us
195us

Times for
2 tasks
192us
194us
99us

Times for
4 tasks
198us
217us
62us

Times for
5 tasks
198us
226us
67us

Times for
10 tasks
206us
253us
7 9us

25,000
(threads)
(threads-real)

195us
192us
192us

200us
200us
200us

203us
205us
109us

218us
263us
99us

223us
286us
112us

255us
434us
159us

5,000
(threads)
(threads-real)

198us
195us
196us

231us
232us
231us

258us
268us
165us

320us
613us
275us

352us
748us
317us

514us
1752us
649us

2,500
(threads)
(threads-real)

198us
194us
195us

264us
267us
264us

320us
343us
233us

448us
1280us
536us

512us
1519us
617us

850us
2579us
1089us

The results seem to suggest that, at least under the coroutine version of C Threads, competition
between a small number of tasks makes the average time per rendezvous somewhat longer, but not
extremely so. In fact, the average times per rendezvous for Comp2.yield and Comp2.thread were better
than those for their Compl counterparts. Under Mach threads, competing tasks suffered more severely;
the time per rendezvous when five or ten tasks were competing was more than three times the time per
rendezvous for the single-client case.

5.4. SELECT - cost of using select statements
To determine the cost of using select statements as opposed to simple accepts, several tests were run

in which a calling task called an entry of a server in a tight loop. The body of the server task consisted of
a loop whose body was either an accept statement or a select statement with one or more open accept
alternatives. The tests were run for the case of an accept statement and for the cases of select
statements with one, five, ten, and twenty alternatives, with the called entry placed either at the beginning
or ending of the list of select alternatives. The test times are presented in Tables 5-7 and 5-8 and in
Figure 5-6. They indicate that large select statements are expensive; the twenty-alternative select
statements were from 50 to 91 percent more costly than simple accepts depending on the position of the
accept alternative for the called entry and upon the environment under which they ran.

http://SPICE.CS.CMU.EDU
http://R2D2.MACH.CS.CMU.EDU

28

Figure 5-5: COMP

Number of client tasks competing for the attention of one server

Figure 5-6: SELECT

0 1 5(b) 5(e) 10(b) 10(e) 20(b) 20(e)
Number of select alternatives and position of called entry

29

Table 5-5: Times to run the
Elapsed Elapsed

Test User Time System Time
Compi .yield 4040ms 598ms
Compi .noyield 3682ms 524ms
Comp2.yield 2402ms 70 4ms
Comp2.noyield 3996ms 632ms
Comp5.yield 2770ms 1552ms
Comp5.noyield 4536ms 1604ms
Compi O.yield 3024ms 3478ms
CompiO.noyield 5482ms 3576ms

tests on SPICE.CS.CMU.EDU
Start/End Elapsed U+S per
Load Factors Real Time Rendezvous
1.04/2.66 10768ms 4. 6ms
1.00/1.14 5951ms 4. 2ms
2.66/2.01 6370ms 3. 1ms
1.09/1.00 5435ms 4. 6ms
2.01/1.76 6228ms 4. 3ms
1.00/2.45 8270ms 6. 1ms
1.76/1.35 8080ms 6. 5ms
2.45/1.04 14200ms 9.1ms

Table 5-6: Times to run the
Elapsed Elapsed

Test User Time System Time
Compi .yield 4334ms 258ms
Compi. noyield 4 010ms 2 8 0ms
Compi .thread 472 8ms 2 6 90ms
Comp2.yield 2430ms 390ms
Comp2. noyield 403 4ms 3 8 8ms
Comp2.thread 3372ms 1860ms
Comp5.yield 2754ms 814ms
Comp5.noyield 4 614ms 804ms
Comp5.thread 6736ms 1697 6ms
Compi O.yield 27 92ms 14 6 6ms
Compi O.noyield 5080ms 1476ms
ComplO.thread 7082ms 17420ms

tests on R2D2.MACH.CS.CMU.EDU
Start/End Elapsed U+S per
Load Factors Real Time Rendezvous
2.84/2.98 4596ms 4.6ms
3.99/3.13 4334ms 4.3ms
2.95/1.86 3865ms 7.4ms
2.98/2.90 2813ms 2.8ms
3.09/2.76 4423ms 4.4ms
1.90/2.38 2093ms 5.2ms
2.90/2.47 3570ms 3.6ms
2.76/2.64 5417ms 5.4ms
2.38/1.05 7973ms 23.7ms
2.64/2.95 4259ms 4.3ms
2.7 6/2.7 6 6533ms 6.6ms
1.70/1.61 8820ms 24.5ms

Test
SelO.yield
SelO.noyield
Sell .yield
Sell .noyield
Sel5b.yield
Sel5b.noyield
Sel5e.yield
Sel5e.noyield
SehOb.yield
SeMOb.noyield
Sell Oe.yield
SeMOe.noyield
Sel20b.yield
Sel20b.noyield
Sel20e.yield
Sel20e.noyield

Table 5-7:
Elapsed
User Time
3086ms
2898ms
3246ms
3026ms
3750ms
3492ms
3924ms
3656ms
4222ms
4000ms
462 6ms
4394ms
5212ms
4936ms
6054ms
5800ms

Times to run the SELECT tests on SPICE.CS.CMU.EDU
Elapsed Start/End Elapsed U+S per Cost vs.
System Time Load Factors Real Time Rendezvous SelectO 426ms 1.01/1.00 3565ms 3. 5ms N/A 408ms 0.00/0.87 3415ms 3. 3ms N/A
414ms 1.00/1.22 3792ms 3. 7ms + 6% 422ms 0.87/0.98 3529ms 3. 4ms + 3% 436ms 1.22/1.17 4258ms 4.2ms +20% 422ms 0.98/1.00 4257ms 3. 9ms +18% 434ms 1.17/1.24 4426ms 4. 4ms +26% 420ms 1.00/0.66 4141ms 4. 1ms +24%
462ms 1.24/1.20 5585ms 4 .7ms +34% 448ms 0.66/1.17 4 663ms 4. 4ms +33% 480ms 1.20/1.02 5293ms 5. 1ms +46% 452ms 1.17/1.08 4902ms 4. 8ms +45% 434ms 1.01/1.00 5689ms 5. 6ms + 60% 462ms 1.08/1.15 54 64ms 5. 4ms + 64%
448ms 1.00/1.09 667 6ms 6. 5ms +86% 460ms 1.15/1.01 6430ms 6. 3ms + 91%

http://SPICE.CS.CMU.EDU
http://R2D2.MACH.CS.CMU.EDU
http://SPICE.CS.CMU.EDU

30

Table 5-8: Times to run the SELECT tests on R2D2.MACH.CS.CMU.EDU
Elapsed Elapsed Start/End Elapsed U+S per Cost vs.

Test User Time System Time Load Factors Real Time Rendezvous SelectO
SelO.yield 3524ms 284ms 2 .33/2. 91 3810ms CO

 8ms N/A
SelO.noyield 3312ms 284ms 3 .91/3. 18 3603ms 3. 6ms N/A
SelO.thread 3638ms 1918ms 3 .00/2. 30 2949ms 5. 6ms N/A
Sell .yield 3882ms 286ms 2 .91/3. 05 4169ms 4. 2ms + 11%
SeM.noyield 367 6ms 306ms 3 .18/3. 25 3988ms 4. 0ms +11%
Sell .thread 4186ms 1738ms 2 .30/2. 53 3119ms 5. 9ms + 5%
Sel5b.yield 4548ms 276ms 3 .03/3. 00 4819ms 4. 8ms +26%
Sel5b.noyield 3956ms 292ms 3 .25/3. 00 4267ms 4. 2ms +17%
Sel5b.thread 4204ms 2118ms 2 .53/2. 33 3328ms 6. 3ms +13%
Sel5e.yield 437 6ms 268ms 3 .00/3. 00 4644ms 4. 6ms +21%
Sel5e.noyield 4068ms 276ms 3 .00/3. 00 4351ms 4. 3ms +19%
Sel5e.thread 4250ms 2282ms 2 .55/2. 11 3423ms 6. 5ms +16%
SeMOb.yield 4786ms 296ms 3 .00/3. 00 5082ms 5. 1ms +34%
SeMOb.noyield 4386ms 278ms 3 .00/3. 00 4663ms 4. 7ms +31%
SeHOb.thread 4754ms 2562ms 2 .11/2. 18 3827ms 7 . 3ms +30%
SeHOe.yield 4850ms 286ms 3 .00/3. 00 5139ms 5. 1ms +34%
Sell Oe.noyield 478 4ms 292ms 3 .00/3. 00 5080ms 5. 1ms +42%
SeHOe.thread 5236ms 2628ms 2 .18/2. 58 4014ms 7. 9ms +41%
Sel20b.yield 5448ms 294ms 3 .00/3. ,00 5735ms 5. ,7ms +50%
Sel20b.noyield 509 4ms 278ms 3 .00/3. ,00 5375ms 5. , 3ms +47%
Sel20b.thread 5386ms 3220ms 2 .58/2. ,08 4469ms 8. , 6ms +54%
Sel20e.yield 5990ms 280ms 3 .00/3. ,00 6267ms 6. ,3ms +66%
Sel20e.noyield 5710ms 270ms 3 .00/3. .23 6032ms 6. . 0ms ^ +67%
Sel20e.thread 6312ms 3470ms 2 .38/2, .30 5051ms 9, . 8ms +75%

5.5. CHAIN - cost of forcing context switches among several tasks
As another method of determining the amount of time that a rendezvous takes, we ran tests in which

two or more tasks, through the use of entry calls and accept statements, formed a control loop in which
each task, upon receiving control of the processor, called its successor and immediately went back to
sleep by waiting for an entry call. We ran tests for chains of two, three, four, five, ten, and twenty tasks,
with control passing around the chain one thousand times in each test. The results, presented in Table
5-9 and Figures 5-7 and 5-8, show the cost per rendezvous to be about three milliseconds under the
coroutine threads library. However, they also show the cost per rendezvous to be extremely high under
the Mach threads library. While the three and four task tests were run under a different version of Mach
than the other tests, which may account for their slightly higher times, the overall trend is still not good.

In an effort to determine the source of these high costs, we wrote a set of C programs to pass control
around a chain of threads and timed their execution. Because we were not trying to duplicate Ada
tasking semantics, but merely the behavior of the Ada chaining tests, the C programs execute much less
code to perform synchronization than their Ada equivalents. The times the C programs took to run can be
found in Table 5-10 and are also presented in Figures 5-7 and 5-8. As with the Ada tests, the coroutine
times remained stable as the length of the chain increased, but the threads times became high very
quickly. Several variant tests, including ones which looped 10,000 times around the chain, exhibited
similar behavior. The only conclusion that can be drawn at this time is that the major cause of the high

http://R2D2.MACH.CS.CMU.EDU

31

costs for the Ada tests running under the Mach threads version of the C Threads package appears to be
something unrelated to the Ada+ compiler.

6. Conclusion
This paper has attempted to describe how the Ada+ compiler implements tasking. The implementation

is built on a set of lower-level facilities provided by the C Threads package, and makes heavy use of
run-time system routines. Currently the Ada rendezvous constructs are implemented in a straightforward
manner, but a Habermann and Nassi style implementation reusing many of the tasking "hooks" in the
code generator appears possible. Using excerpts from the Ada+ run-time system and C pseudo-code,
we have presented the run-time tasking interface and shown how it is used by compiled Ada code. We
have also presented the results of running some performance benchmarks. We hope this report will
prove of use to those who want to study the implementation of Ada tasking or who are trying to build their
own implementations.

32

Figure 5-7: CHAIN - Ada and C chaining times under Mach threads

Number of tasks or threads in round-robin control transfer chain

Figure 5-8: CHAIN - Ada and C chaining times under coroutine threads

5ms

4ms|

Legend:
1 Ada tasks
E§3 C threads

3md

2msi

1md

2 3 4 5 10 20
Number of tasks or threads in round-robin control transfer chain

33

Table 5-9: Times to run the CHAIN tests on R2D2.MACH.CS.CMU.EDU
Elapsed Elapsed Start/End Elapsed

Test User Time System Time Load Factors Real Time
Ch2.noyield 3694ms 276ms 3.97/3.99 4024ms
Ch2.thread 5132ms 2380ms 4.00/4.00 3906ms
Ch3.noyield 8750ms 410ms 3.99/4.00 9171ms
Ch3.thread 23814ms 41026ms 4.00/4.00 23229ms
Ch4.noyield 12346ms 544ms 4.00/4.00 12899ms
Ch4.thread 31206ms 53940ms 4.00/4.00 30954ms
Ch5.noyield 14368ms 756ms 3.99/4.00 15261ms
Ch5.thread 32898ms 54922ms 4.00/4.00 31951ms
CMO.noyield 27548ms 1414ms 4.00/4.00 29407ms
CMO.thread 61344ms 111250ms 4.00/4.00 63089ms
Ch20.noyield 55720ms 2886ms 4.00/4.00 59220ms
Ch20.thread 133450ms 228430ms 4.00/4.00 131347ms

U+S per Real time per
Rendezvous Rendezvous
1.99ms 2.01ms
3.7 6ms 1.95ms
3.0 5ms 3.0 6ms

21.61ms 7.7 4ms
3.22ms 3.22ms

21.29ms 7.7 4ms
3.02ms 3.0 5ms
17 .56ms 6.39ms
2.90ms 2.94ms
17.2 6ms 6.31ms
2.93ms 2.96ms
18.09ms 6.57ms

Table 5-10: Times to run the C chaining tests on R2D2.MACH.CS.CMU.EDU

Test
CCh2.noyield
CCh2.thread
CCh3.noyield
CCh3.thread
CCh4.noyield
CCh4.thread
CCh5.noyield
CCh5.thread
CChlO.noyield
CChlO.thread
CCh20.noyield
CCh20.thread

Elapsed
User Time
1102ms
1348ms
1780ms
3718ms
2278ms
11468ms
2520ms
14232ms
5462ms

28808ms
10214ms
63486ms

Elapsed
System Time

34ms
918ms
46ms

6868ms
70ms

51348ms
94ms

65184ms
168ms

133020ms
358ms

266460ms

Start/End Elapsed
Load Factors Real Time
4.00/4.00
4.00/4.00
4.00/4.00
4.00/4.00
4.00/4.00
4.00/4.00
4.00/4.00
4.00/4.00
4.00/4.00
4.00/4.00
4.00/4.00
4.00/4.00

1137ms
1140ms
1825ms
3719ms
2350ms

21319ms
2 612ms

26873ms
5626ms

54819ms
10572ms

111544ms

U+S per Real time per
Switch Switch
0 .57ms 0.57ms
1.13ms 0 .57ms
0.61ms 0.61ms
3.53ms 1.2 4ms
0 .59ms 0 .59ms

15.70ms 5.33ms
0.52ms 0.52ms

15.88ms 5.37ms
0.5 6ms 0.5 6ms

16.18ms 5.48ms
0.53ms 0.53ms

16.50ms 5.58ms

http://R2D2.MACH.CS.CMU.EDU
http://R2D2.MACH.CS.CMU.EDU

34

References

[1] American National Standard Reference Manual for the Ada Programming Language
ANSI/MIL-STD-1815A-1983 edition, 1983.

[2] Barbacci, M. R., Maddox, W. H., Newton, T. D., and Stockton, R. G.
The Ada+ Front End and Code Generator.
In Proceedings of the Ada International Conference: Ada in Use. ACM, Paris, France, May 1985.

[3] Cooper, E. C.
C Threads.
Technical Report, Computer Science Department, Carnegie-Mellon University, 1987.

[4] Digital Equipment Corporation.
VAX11 Architecture Handbook
1979.

[5] Habermann, A. N. and Nassi, I. R.
Efficient Implementation of Ada Tasks.
Technical Report CMU-CS-80-103, Computer Science Department, Carnegie-Mellon University,

January, 1980.
[6] Newton, T. D.

An Implementation of Ada Generics.
Technical Report CMU-CS-86-125, Computer Science Department, Carnegie-Mellon University,

May, 1986.
[7] PERQ Systems Corporation.

Pascal/C Machine Reference
1984.

[8] Stockton, R. G.
Overload Resolution in Ada+.
Technical Report CMU-CS-85-186, Computer Science Department, Carnegie-Mellon University,

December, 1985.
[9] Tevanian, A. and Rashid, R. F.

MACH: A Basis for Future Unix Development.
Technical Report CMU-CS-87-139, Computer Science Department, Carnegie-Mellon University,

June, 1987.

