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Abstract 
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1. Introduction 

Security is a pressing problem for distributed systems. Distributed systems exchange data between a 

variety of users over a variety of sites which may be geographically separated. A user who stores 

important data on processor A must trust not just processor A but also the processors B, C, D, . . . with 

which A communicates. The distributed security problem is difficult, and few major distributed systems 

attempt to address it. In fact, conventional approaches to computer security are so complex that they 

actually discourage designers from trying to build a secure distributed system. A software engineer who 

wishes to build a secure distributed data application finds that he must depend on the security of a 

distributed database which depends on the security of a distributed file system which depends on the 

security of a distributed operating system kernel, etc. It is hard just to make a distributed system work 

efficiently without considering security issues. 

We want to construct and use trusted application systems that run efficiently on machines having have 

only minimal security facilities. Rather than depending on a tight kernel of security code, our applications 

perform operations that allow us to guarantee computer security. We call these trusted programs 

self-securing. By limiting dependence on underlying system components, we separate the security 

problem from the rest of the system, simplify the task of the engineer who must build such a system, and 

allow existing distributed systems to be retro-fitted with security. Our concern here is with security issues 

arising from protecting the privacy of data and the integrity of data from alteration. We do not consider 

issues of denial of service, covert channel analysis, or traffic analysis of message patterns. An important 

assumption in this work is the integrity and privacy of address spaces. 

We have developed a family of algorithms that support self-securing programs. To show the 

effectiveness and efficiency of our methods, we have implemented them in a package called Strongbox 

and measured their performance in our computational environment. We have successfully built on two 

ongoing systems research projects at Carnegie Mellon University: Mach, a distributed operating system 

which is upwardly compatible with UNIX [27]; and Camelot, a distributed transaction facility which runs on 

Mach [36, 35]. Although the Mach project addressed several important security issues [30], it is not a 

secure system. Our tools allow users to run application program securely on Mach and Camelot. To 

demonstrate our tools, we have built a capability based protection system for Camelot which runs with 

negligible overhead. This protection system will be publicly distributed with Camelot. 

After reviewing a few facts about Camelot and Mach, we give the architecture of secure programs and 

their application to Camelot. We then present an overview of two of the basic algorithms that self-

securing programs use: zero knowledge authentication and fingerprinting. We give our performance 

measurements for the system and discuss the current status of the software. We conclude by presenting 

applications and limitations of our system, the prognosis for applying self-securing programs to other 
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distributed systems, and possible self-securing approaches to denial of service attacks. 

2. Architecture 

This section describes the architecture of Strongbox. Section 2.1 provides a substantial amount of 

background on Mach and Camelot that is necessary for understanding the architecture of Strongbox. 

Section 2.2 discusses the architecture of Strongbox. 

2.1. Mach and Camelot 
We assume that that distributed processing is organized according to the client-server model [38]. In 

this model, client processes access shared data and most system services by sending messages to 

server processes. Servers then perform computations on behalf of their clients, and send response 

messages containing the results. Remote procedure calls or (RPCs) [4] reduce the programming effort 

for handling request and response messages by permitting programmers to invoke services using 

procedure call syntax. An RPC compiler generates the code to do message packing, unpacking, and 

dispatching. < . . . . . . . . 

The Mach operating system [1,27] provides the basic services to support the client-server model. 

Mach is upward compatible with Unix 4.3 bsd, but provides additional primitives for supporting multi­

threaded processes (called tasks), location-transparent inter-task communication and efficient virtual 

memory. Mach is also relatively machine-independent, and it runs on a variety of uni- and multi­

processors including the RT PC, Sun 3, Vax, and Multimax. The work in this paper was done primarily on 

Mach running on RT PCs and Vaxes. 

The Mach Interface Generator (MIG) is Mach's RPC stub generator [14, 22]. MIG accepts a syntactic 

specification for procedure headers (written in a Pascal-like syntax), and generates libraries for calling 

and dispatching RPCs. These libraries are linked into the executable image of both clients and servers. 

The Camelot distributed transaction facility is layered on Mach and MIG. It provides mechanisms for 

constructing reliable distributed programs that access shared data [36,33,35] . Camelot simplifies the 

handling of network, processor, and software failures, performs synchronization of concurrent programs, 

manages storage resources, and reduces the complexity of invoking and building shared databases. 

The most important abstraction provided by Camelot is the transaction, a collection of operations 

bracketed by two markers: Begin_Transaction and EndJTransaction. Transactions provide three 

properties that reduce the attention a programmer must pay to concurrency and failures [12,34]: 

1. Failure atomicity: Failure atomicity ensures that if a transaction's work is interrupted by a 
failure, any partially completed results will be undone. A programmer or user can then 
attempt the work again by reissuing the same or a similar transaction. 
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2. Permanence: If a transaction completes successfully, the results of its operations will 
never be lost, except in the event of catastrophes. Systems can be designed to reduce the 
risk of catastrophes to any desired probability. 

3. Serlallzabillty: Transactions are allowed to execute concurrently, but the results will be the 
same as if the transactions executed serially. Serializability ensures that concurrently 
executing transactions cannot observe inconsistencies. Programmers are therefore free to 
cause temporary inconsistencies during the execution of a transaction knowing that their 
partial modifications will never be visible. 

Camelot's primary interface for programmers consists of macros and procedures in the Camelot library. 

Primitives such as BEGIN__TRANSACTION ... ENDJTRANSACTION and SERVER_CALL permit 

programmers respectively to execute a transaction and to issue an RPC to a remote server. 

Programmers can also declare recoverable objects in their C programs by using a special storage 

allocator, or surrounding declarations within BEGIN_RECOVERABLEJDECLARATIONS 
END_RECOVERABLEJDECLARATIONS . Camelot distinguishes between data servers, which can execute 

transactions, issue RPCs, and store shared, recoverable objects, and applications which have no 

recoverable data, but are'otherwise like?servers. 

The Camelot library is assisted by functions provided by eight Camelot tasks. The Camelot and master 

control tasks control the execution of Camelot itself. The node server is the repository of configuration 

data necessary for restarting a node. It stores its data in recoverable storage and is recovered before 

other servers. The (interactive) node configuration application permits Camelot's users to update data in 

the node server, thereby controlling the operation of other servers. 

Of more importance for this paper are the Camelot communication manager, recovery manager, 

transaction manager, and disk manager. The communication manager forwards inter-node Mach 

messages, and provides logical clock services. In addition, it knows Camelot's message format and 

keeps a list of all the nodes that are involved in a particular transaction. The recovery manager is 

responsible for recovering the system after transaction aborts, server and node failures, and media 

failures. The recovery manager has available to it a sequence of log records that were written during 

normal processing. The transaction manager coordinates the initiation, commit, and abort of local and 

distributed transactions. It fully supports nested transactions. 

The Camelot disk manager is the central Camelot component concerned with permanent data. It loads 

and starts servers; allocates and deallocates permanent storage for long-lived objects; and accepts and 

writes log record for recovering from failures. For log records that are to be written to the distributed 

logging service, the disk manager works with dedicated servers on a local area network. Additionally, the 

disk manager writes pages to/from the disk when Mach needs to service page faults on recoverable 

storage or to clean primary memory. 
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2.2. Architecture of Strongbox 
Strongbox is implemented by three components: a secure loader, a library of security routines that 

secure servers and secure clients use, and a white pages server (a repository of essential authentication 

information). Figure 2-1 shows the components of the Strongbox and their relationships to each other, 

and to Mach and Camelot. 

When requested to run a secure task, the secure loader first copies the load image of the task into 

memory. It then verifies that the load image has not been corrupted while it was stored in the file system. 

To do this, it calculates a cryptographic checksum, called a fingerprint. After the fingerprint has been 

verified, the secure loader initializes the task's address space. At this time it stores with the task the 

solution to a randomly generated authentication puzzle which will be later used for authenticating the task 

to others, and checks in the puzzle (but not the solution) with the white pages server. Hence the puzzle 

solution never appears in the file system. (Section 4 describes the fingerprinting and authentication 

algorithms.) Finally, the secure loader starts the task. 

For Gamelot applications-the secure loader-is a separate program that runs directly on Mach. For 

servers, the secure loader is part of the Camelot disk manager, which Camelot already uses to load 

servers. Because the secure loader is incorporated in the disk manager, we assume the integrity of the 

disk manager. 

The security library routines perform several tasks: They maintain the access control database for the 

server; they authenticate the identities of the clients and the server; and they maintain the database of 

capabilities. The protection system uses these capabilities to check access permissions. 

The white pages server maintains a list of tasks and the authentication puzzles which identify them. 

Whenever an agent is to be authenticated, the authenticator asks the white pages server for the 

authentication puzzle. The white pages server also maintains the fingerprints of the load images for the 

secure loader. 

The white pages server, the secure loader, and Camelot are all started up at boot time before any user 

tasks can be started. At this time, the secure loader and Camelot generate new authentication 

puzzles/solutions for themselves, and check in the puzzles with the White Pages server. It is possible to 

substitute a process's name server port so that its port lookups will give erroneous results. Such 

substitution, however, does not corrupt the servers. To run a client that a server will listen to (i.e., server 

will find a puzzle for it when it looks you up in the white pages), the client must be started up by the 

secure loader since the white pages will accept new entries only from the secure loader. 

A typical session is as follows: The client wishes to invoke a remote operation by a server to which it 
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Figure 2-1 : Strongbox Architecture 

has not authenticated itself. It uses a secure RPC handling macro, which attempts the operation. The 

operation fails with an error return of CAPJMECH_PERMISSION_DENIED , at which point the macro looks 

up the server's authentication puzzle with the white pages and authenticates the client and the server 

identities to each other. At the server side, the protection system also looks up the client's puzzle with the 

white pages as part of the authentication. After authentication completes, all traffic between clients and 

servers are encrypted. 

Depending on the security of the paging devices, external pagers may protect the integrity of memory 

by fingerprinting pages as they go onto disk and verifying the fingerprint as they come off. 

2.3. Security Library Architecture 

The security library provides client-server authentication, capability-based access to a server, and 

access control bookkeeping routines used in a server. We have designed the security library such that 

typical usage is very similar to that of the standard, non-secure Camelot library. 

In the Camelot library, the SERVER_CALL macros handle the transactional bookkeeping for invoking an 

RPC. For secure communication between the client and the server, the various versions of Camelot's 
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SERVER_CALL macros are supplanted by versions that are prefixed by SEC__. (For example, 

sERVER__CALL becomes SEC_SERVER_CALL . ) The SEC_ macros automatically perform authentication 

and provide the client with a capability to the server. The capability is used transparently; the client 

program need not reference it at all. The secure macros automatically re-authenticate after server failure, 

thereby allowing transparent recovery for most applications. 

The client may elect to perform explicit authentication instead of using the automatic authentication 

provided. This gives the client control over the management of the capabilities: a client may authenticate 

once as itself and another time as a member of a privileged group. By using versions of the 

sERVER__CALL macros prefixed by SEC_CAP_ , a client may specify the capability to be used with the 

server. This gives a client the ability to use the access rights of two or more agents. The details of 

authenticated SERVER_CALLS are described in the following section. 

The server-side protection system is based upon two databases both maintained by the capability 

component. The first, stored in recoverable storage, contains a mapping from user names to 

permissions. When the authentication component asserts to the capability component that a client has 

authenticated, the capability component constructs a new capability based on the permissions in this 

database. The capability component gives it to the authentication component to return to the client and 

also enters this new capability into the second database. This second database, stored only in virtual 

memory, maps capabilities to permissions. The capability component consults this database each time 

an RPC request arrives to check that the client has permissions to invoke the requested operation. 

It is easy to convert an existing non-secure server to be secure because only the initialization code is 

affected. Strongbox provides a separate message demultiplexing procedure that performs the permission 

check. The procedure then hands the messages over to the individual subsystems' demultiplexing 

procedures (which unpack the arguments and make the actual server-side procedure call). This service 

is performed for all RPCs except those in the authentication protocol. By performing the permission 

check at this point, we eliminate the need to modify the service procedures, and reduce the work required 

to make a server secure. 

3. Interfaces 
In this section, we discuss in turn the local interface between a server and the protection system; the 

local interface between a client and the protection system; and the remote procedure interface between 

secure clients and secure servers. 
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3.1. Server/Protection System Interface 
The server must first allocate recoverable and non-recoverable storage for the protection system. A 

server must then initialize the authentication system by calling Sec_SetServerParam: 

Declaration 

EXPORT Sec_SetServerParam(IN secAuthPred,secAuth,secPubAccess,secPrivate) 
int (*secAuthPred)(); /* (*secAuthPred)(ClaimedID,capPtr) */ 
int (*secAuth)(); /* (*secAuth)(ProvenID,capPtr) */ 
int (*secPubAccess)(); /* (*secPubAccess)(ID,&Pub) */ 
sec__priv_t *secPrivate; 

The authentication subsystem invokes the function secAuthPred each time a user attempts to 

authenticate. A nonzero return value from secAuthPred indicates that the authentication system must 

authenticate the user. If secAuthPred returns zero, then no authentication is required. Permitting 

unauthenticated users makes it possible to provide some globally available basic services to non-

registered users. 

The authentication subsystem invokes the function secAuth whenever an authentication has been 

completed. This is the way the authentication system asserts that the client has authenticated. Normally, 

this is the function capMech_Authenticated, which the protection system supplies. However, the 

server may provide another function, which can perform auxiliary operations as well; e.g., logging. 

The authentication subsystem invokes the function secPubAccess whenever it needs to look up the 

published puzzle of a client. secPubAccess normally obtains this information from the white pages 

server. The authentication subsystem looks up published puzzles whenever a client authenticates. 

The private information pointed to by secPrivate is the private solution to the published puzzle for 

the server. It is used when a client wants to authenticate the server. 

After initializing the authentication system, the server initializes the capability system by calling 

CapMech_lnit: 

Declaration 

EXPORT void CapMech_Init(tbl,sz) 
c ap_me c h_s ymt ab_t *tbl; 
int sz; 

The argument tbl is a table that contains an entry for each exported remote procedure call 

subsystem. Each entry in the table contains the mapping from request codes to service procedures and 

the normal dispatch routine used to parse request messages that is generated by MIG for that subsystem. 
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After initializing the non-recoverable part of the protection system, the server performs the initializing 

transaction in the INITIALIZE__SERVER macro provided by the Camelot library, in which the server 

initializes the recoverable part of the capability subsystem. In this transaction, the server invokes the 

RECOVER_RCV_HEAP macro provided by the recoverable memory allocator package (because the 

protection system requires dynamic memory allocation), and then the CAP_MECH_RCVR_INIT macro to 

initialize the capability subsystem's recoverable store. This will also create the administrative user's entry 

(admin) and initializes his permissions. 

3.2. Client/Protection System Interface 
A client of a secure server must have an authentication solution to a puzzle that secPubAccess 

returns. This must be stored *in the-global variable _GiientPzSoin and is initialized by the secure 

loader [2]. Instead of using SERVER_CALL and other similar macros to issue RPCs, the client uses 

macros such as SEC_SERVER_CALL. 

The client is given a capability containing all of his privileges when he authenticates. The capabilities 

not only saves the overhead of re-authenticating, but they also give more flexibility to the system in that 

(limited) capabilities may be given away to another client. The SEC_ macros perform the authentication 

when necessary and cache the capability automatically, so normally the client does not need to do 

anything else special. If a client wishes to explicitly authenticate itself to a server (perhaps using a group 

id), the function sec_Authenticate may be invoked explicitly. 

Declaration 

EXPORT int Sec_Authenticate(IN servPort,transID,waitTimef 

OUT capPtr,IN secPublic,secPrivate, 
secAuthenticateServer) 

port_t servPort; 
tid_t transID; 
unsigned int waitTime; 
cap_t *capPtr; 
sec_pub__t *secPublic; 
sec_priv_t *secPrivate; 
int secAuthenticateServer; 

There are corresponding SEC_CAP_ prefixed macros which may be used in place of the SERVER_CALL 
macros. The argument macro should be SECCAPARGS or SECCAPNOARGS. 
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3.3. Client/Server Interface 

In addition to the normal service remote operations that a server provides, each secure server has 

other remote procedures that are defined by the capability subsystem and the authentication subsystem. 

The capability subsystem exports remote operations to perform access control administration such as 

adding a new user, giving a user the rights to invoke a remote operation, or removing a user's rights. 

Since the protection system's remote operations are treated in the same manner as the service remote 

operations, the administrator may give a user administrative privileges as well. The authentication 

subsystem exports two remote calls for performing the zero-knowledge authentication. 

There are currently three remote routines which allows the administrative login to manipulate the 
access permissions list. 

Declaration 

EXPORT void op_CapMech__AddUser (authCap, userName) 
cap_t authCap; 
cap_symbolic_user_name_t userName ; 

Declaration 

EXPORT void op_CapMech_Permit(authCap,userName,operation) 
cap_t authCap; 
cap_ symbolic_jaser_name_t userName; 
cap_operation_name__t operation; 

Declaration 

EXPORT void op__CapMech_Unpermit(authCap,userName,operation) 
cap__t authCap; 
c ap__s ymbo 1 i c_u s e r_name_t use r Name ; 
cap_operation__name_t operation; 

The operation capMech__AddUser adds a new user; capMech_Permit gives a user permission to 

invoke the named operation; and CapMechjjnpermit removes the user's permission to invoke the 

operation. 

Note that these operations are treated in the same fashion as service remote operations, so the 

administrator may give permissions to invoke CapMechjjnpermit, for example, to security personnel. 

4. Algorithms 
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4.1. Zero Knowledge Authentication 
Authentication is at the heart of the security system for any loosely-coupled distributed operating 

system. For notational convenience, we refer to a client denoted A and a server denoted B. A and B may 

reside on different processors. A and B must prove their identities. The problem is made more difficult 

since A and B must typically accomplish this by exchanging messages over a potentially vulnerable data 

network. Since messages transmitted over the network may be intercepted by a third party, C, A and B 

must find a way to prove their identities without revealing information which would allow C to successfully 

feign an identity as A or as/?. 

How well do existing authentication methods accomplish this goal? In practice, not very well. For 

example, Rivest, Shamir, and Adleman proposed an authentication method based on the RSA public-key 

signature methods [29]. In their protocol, values are encrypted according to a public-key encryption 

function £(m)=m'mod/i , where m is a message, e is an encryption key, and n is the product of two large 

primes p and q. Decryption is accomplished through the function D(c)=c^mod/i, where c is the ciphertext, 

d is chosen so that ed=lmod(p-l)(<7-l) . It is true there is no published method for quickly decrypting 

messages given only e and n, and not the factorization of * . However, this method leaks information. For 

example, Lipton points out that the well known Legendre function L satisfies the relation L(m/i)=L(E(m)ji) 

[18]. Indeed, the problem is much worse than this. Alexi, Chor, Goldreich, and Schnorr recently proved 

that if an adversary can find the tow order bit of m 50%+e of the time given E(m), the adversary can invert 

arbitrary RSA encryptions [2, 6]. A corollary to this result is that the usual query-response methods for 

encryption, such as the family of protocols described in [20], an adversary can emulate another agent in 

the system after engaging in 0(( logn) 2 ) authentications. 

Needham and Schroeder have suggested an authentication method which uses private-key 

cryptographic methods [21]. Needham and Schroeder's work presupposes on a secure key distribution 

method and a private key cryptosystem. Recent work by Luby and Rackoff suggests that authentication 

methods depending on DES are vulnerable to a "tow-bit" attack similar to the one mentioned above for 

the RSA cryptosystem [19]. For example, the second author has found a method to subvert the 

authentication scheme used by the Andrew File System VICE [32,31], which uses a strategy similar to 

Needham and Schroeder's. 

To give users confidence in a system, we would like to be able to prove that an authentication method 

does not leak information. Several researchers have independently proposed protocols, termed 

zero-knowledge protocols, which satisfy this constraint given the complexity assumption that P * NP 

[10, 3 , 1 1 , 7]. To get a flavor of the type of argument used, we summarize a zero knowledge protocol 

below for A proving to B that some graph G with n vertices known to both A and B contains a ^-clique (that 

is, a set Q of k vertices such that between every two vertices in Q there exists an edge). (This version of 
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the proof is due to M. Blum.) Let G be a graph with n vertices be known to both A and B. Suppose that A 

knows a ^-clique in G. Since the problem of finding a it-clique in an arbitrary graph is NP-complete, B can 

not in general find the ^-clique. This protocol will allow A to prove to B that G has a ^-clique without 

revealing any info about the vertices in Q. 

1. A secretly labels each vertex of G with random unique integer from 1 to n. 

2. A prepares 1)/2 envelopes labeled uniquely with a pair of integers (ij)4<j. A puts "Yes" 
in the envelope labeled (ij) if an edge exist between the vertices labeled i and j, and "No" 
otherwise. 

3. A seals the envelopes and presents them to B. B flips a coin and reports its value to A. If it 
is heads, A must open all the envelopes and show the numbering of the vertices of G. B 
then verifies that the descriptions are correct. On the other hand, if B gets tails, A must then 
open just the envelopes which are labeled (ij) where i and j belong to Q. B then verifies 
that all envelopes contain "Yes". 

4. The above protocol is repeated t times (with an independent random numbering assigned 
each time in step 1). If A successfully responds to B's queries, the probability that A does 
know know a proof is 2~'. 

It is clear that if A knows a ^-clique and correctly follows the above protocol, A will succeed. On the 

other hand, suppose C is trying to masquerade as A. Since C does not know a jfc-clique, C has two 

choices: it can correctly perform step 2 (in which case it is caught whenever B gets tails) or it can put 

false values in the envelopes (in which case it is caught whenever B gets heads). Hence in each of the t 

iterations of the protocol the probability that Cs ignorance is revealed is 1/2. After t iterations, C will be 

caught with probability l-2~'. Finally, notice that B does not get any information about the location of the 

clique. If B could find information about the clique from the above protocol, it could generate the same 

information by flipping a coin and generating a random numbering of the graph when it gets heads and a 

random numbering of a complete graph on k vertices when it gets tails. 

Notice that since any probtem lying in NP can be reduced to the NP-complete problem ^-clique [15], A 

could use this protocol to prove to B that it had a proof or disproof of, for example, Fermat's Last 

Theorem. At the end of this protocol, B would be convinced that A did in fact have a proof or disproof 

without having any idea which way the problem was resolved, much less any idea of the technique used 

to solve the problem. Certainly, this protocol could be used to generate authentication proofs: A would 

publish the graph G in a public white pages. To prove its identity, A would give a zero-knowledge proof of 

the existence of a Jt-clique in the graph. 

In practice, this protocol would not work well. First, A would have to find a graph G in which it was 

computationally intractable to find a ^-clique. While it is true that our complexity hypothesis guarantees 

that such graphs must exist, most random graphs with ^-cliques can have those cliques found through 
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efficient heuristics [9]. Second, A and B would have to develop a good cryptographic scheme for 

implementing "envelope exchange". For even a modest security level the size of data involved here is on 

the order of 1 0 2 0 0 bytes. Using the highest bandwidth transmission techniques available today, execution 

of this protocol would exceed the time remaining before the heat death of the universe. 

4.2. Our protocol 
In research described in [37], we have developed a family of zero-knowledge protocols which are 

efficient for real use in applications. Our timing figures are given in Section 5. Below we give a simplified 

(and slightly less efficient) version of the protocol. 

The protocol we use can depend on one of two complexity assumptions: that factoring large integers 

can not be done in polynomial time, or that it is hard to invert messages encrypted by random keys under 

DES. Other similar complexity assumptions may be used instead. The protocol described below 

depends on the complexity of factoring integers. We recall the following lemma by Rabin [23]: If there 

exists a polynomial time algorithm for finding square roots modulo n=pq, where p and q are large primes, 

then we can factorpq in polynomial time. Rabin observed that we can take a random integer r between 1 

and pq-\\ check that GCD(/yi) * 1 (if this value is p or q, then we have factored n). Calculate x ^ m o d n 

and find a square root s, so that l y 2 =x=r 2 modn; a simple number-theoretic argument demonstrates that x 

has four square roots modulo n, including r and - r . Since r is chosen at random, there is a 50% chance 

that s* ±r mod* . If s=±r modn, then we can pick a new r and repeat the algorithm. If s* ± r m o d n , then it 

is the case that GCD(r+syn)=porq. Hence finding square roots is equivalent to factoring. 

In this protocol, we assume that the system manager publishes a product of two large primes n=pq, 

keeping the factorization secret. This n can be used for all authentication protocols, and no one need 

ever know its factorization. To initialize its puzzle, A picks a random r and publishes x^r2 in the white 

pages. A will prove it knows a square root of x without revealing any information about the value. 

Here is the protocol: 

1. A computes t temporary random values, v l t v 2 , . . . ,v,, where each vi satisfies l < v X / ^ - l . A 
sends to B the vector ( v ^ m o d / i ^ m o d n , . . . ,v, 2modn>. 

2. B flips t independent coins and send back a vector of t random bits ( b v . . . ,bt) to A. 

3. For \ ^i<tA computes 

rV/ i f * - 0 
LrVj.modn otherwise 

A transmits the vector (zv . . . ,z,>. 
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4. B verifies that for l^i^t, that 

z 2 ^ f v 4

2 m o d n If ¿7=0 
1 *-xv?modn otherwise 

If the equalities hold, A has authenticated its identity to B with probability 1-2'. 

Once again note that if A knows a value r such that r ^ x m o d n , then it can easily follow the above 

protocol. Suppose C is trying to masquerade as A. Since C doesn't know such a value r, it can not know 

both vi and rv.modn, since r^rv^v^1 mod n. Finally, all that B sees is a series of random values of the 

form <zf.f z/2 mod n). If B could find any information about r from the above protocol, it could do so by 

generating a set of t random values and squaring them modulo n, and thus factoring n. 

The above protocol uses only an expected 3/ multiplications to generate security of l-2~'. Our 

improved protocol uses only expected 1.5; multiplications to achieve the same level of security. 

4.3. Self securing programs 

As mentioned above, our algorithm presumes communication networks which are potentially 

vulnerable. A and B need to use methods to protect the privacy and integrity of their data. If we extend 

an authentication algorithm to also support key exchange, A and B can transmit their messages though 

highly secure private-key encryption methods. We have adapted our algorithms to also perform this 

operation - A can send a temporary key eA and B can send a temporary key eB. Both parties can then 

use a trusted private key encryption method, such as DES with the key ^ A © e f l , where 0 is bit-wise 

exclusive-or. Hence, if A and B have protected address spaces, we can make all messages transmitted 

in the system public, since no observer can find the encryption key used. Also, sending messages 

encrypted by the key removes the need to re-authenticated until either party decides to establish a new 

temporary key. This approach yields a self securing program which requires only a minimal amount of 

security in our base operating system. 

Indeed, our algorithm obviates the need to ever use public key cryptography. If A wishes to transmit a 

message to B without having shared private key, A can simply authenticate itself to B exchanging a 

temporary encryption key. All further communications are protected by encryption. The signature 

functions of public key cryptography can be performed by the fingerprinting algorithm given below. 

4.4. Fingerprinting 

Karp and Rabin introduced an algorithm which computes a cryptographic checksum. [25,17,16] Their 

algorithm takes a bit string s of arbitrary length and secret key k of d bits (where d-l is prime) and returns 

a fingerprint sequence of d-l bits tyk(s). Each key k defines a fingerprint function, and if the keys are 
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chosen with uniform distribution, the family of fingerprint functions $ k can be viewed as a provably good 

random hash function in the style of [ 5 , 2 8 ] . Without the secret key, computing a fingerprint given a string 

of bits is intractable. On the other hand, if the secret key is known, it is easy to compute the fingerprint. 

Given the fingerprint algorithm, the problem of protecting the integrity of data from alteration becomes 

much simpler. For example, to protect a file F, we could store (F$K(F)). If an adversary attempts to alter 

the file by replacing it with F*% he will need to calculate ^¿F^). But since the adversary does not know k, 

he can not compute the fingerprint of F. Even if the adversary attempts to find a f with the same 

fingerprint tyK(F)=$K(F*), he will be thwarted, since the problem of finding an input which generates a given 

fingerprint is intractable without the key value k. 

The fingerprinting algorithm views a sequence of bits s as a polynomial / /*) over the integers modulo 2 . 

For example, the bit sequence $ = " 1 0 0 1 0 1 0 0 1 " is taken to be the p o l y n o m i a l / ( ^ J ^ + J ^ + ^ + I . The secret 

key for this algorithm corresponds to a random irreducible polynomial g(x) of degree d-\ over the integers 

modulo 2 . It is extremely easy to generate these polynomials (several approaches are outlined in 

[ 2 4 , 2 5 ] ) and we t i ave imp lemen ted two different efficient routines for doing so. Compute 

r(jc) =fs(x) mod g(x). r(x) is a polynomial over the integers modulo 2 of degree at most d - l . Both the 

polynomial r(x) and the key k can be represented as a string of d bits. The bits produced by the algorithm 

define the <|> function. 

Because this algorithm can be conveniently implemented as a systolic array, a group of researchers 

led by H. T. Kung chose it to implement in hardware [ 8 ] . By using new techniques, we have software 

implementations of this algorithm which run on the IBM RT/APC in time comparable with the fastest 

hardware implementation (see Section 5 ) . 

5. Implementation Issues and Performance 
This section gives timing figures for the prototype implementations of authentication and fingerprinting. 

The authentication timings given are for the current version of the authentication routine, which uses the 

algorithm in [7]. Our timing figures are for an IBM-RT/APC, which is a RISC machine running at 4 MIPS. 

An IBM-RT/APC requires 1 0 5 mS to perform (one-way) authentication in addition to the RPC overhead. 

To perform the authentication, the client invokes two RPCs. The overhead for performing an RPC is 

approximately 3 5 msec [ 3 6 ] . We have an efficient software implementation of DES which works at a rate 

of 2 2 0 encryptions per sec. 

An IBM-RT/APC achieves a fingerprinting rate of 8 0 0 KByte/sec. The fingerprinting routine uses a 

6 5 5 3 6 ( 2 1 6 ) entry table of pre-computed partial residues to achieve this speed. The table contains the 

value x 3 2 a(x) mod g(x) where a(x) is the two byte index considered as a polynomial modulo 2 , and g(x) is 
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the irreducible polynomial used (in our implementation, deg(g(x)) = 31). The inner loop simply reads data 

two bytes at a time and uses the value as an index into this table to obtain the partial residue to exclusive-

or into a running residue. 

A brute force initialization of the 65536-entry table would take considerable time. To initialize the 

65536-entry table efficiently, we first compute 256-entry table of partial residues. The 256-entry table 

contains the residues x 3 2 a{x) mod g(x) where a{x) is the byte index considered as a polynomial modulo 2, 

and g(x) is the irreducible polynomial as before. The larger table is computed from the smaller by 

indexing into the smaller table first by the upper 8 bits of the larger table index, and then indexing again 

using the lower 8 bits of the larger table index exclusive-or'ed with the upper 8 bits of the result of the 

previous look-up. The initialization cost is approximately 1 sec. 

In security, smaller code size is desirable since the system is easier to verify and is less likely to 

contain bugs. The core authentication routines consists of 75 lines of С code not including comments. 

The fingerprinting code consists of 211 lines of С code not including comments. Our total core routines 

are relatively small: 248 lines of С code. 

6. Status and Future Work 

We have implemented the high speed zero knowledge authentication algorithm, the fingerprinting 

algorithm, the protection system, and a preliminary version of the white pages. The secure loader 

remains to be implemented. There are limitations in the prototype that will be removed in the January 

1988 version: 

A client may currently have only one capability; the SEC_CAP_ prefixed macros have not been written. 

The architecture of the prototype easily allows multi-capability clients. The only thing necessary is to 

provide an interface where the capability used in the server-call macros is visible. 

The problem of network spying must be addressed by using encryption. This will be done by using 

end-to-end encryption within the RPC stub generator (MIG). No key exchange takes place in the current 

implementation of the authentication algorithm. 

With the prototype, the only way to revoke privileges is to shut the server down. This is because 

capabilities retain their rights even when the "source" user's permissions go away. The problem of 

revocation of capabilities is easily fixed: since a lookup must be done to check the capability each time 

an RPC is performed, we can simple delete the capability from server's database and the errant client will 

find that its request will fail due to CAP_MECH_PERMISSION_DENIED . We will provide functions 

op_CapMech_RevokeAll and op_CapMech__RevokeCap to revoke capabilities. 
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7. Conclusion 
We have demonstrated that self-securing programs are an effective and efficient solution to the 

distributed computer security problem. Our approach is aimed at the client-server model, and could be 

straightforwardly ported to other client-server systems. While we have not attempted to address other 

models of distributed computation, any system in which various agents communicate or store data may 

be able to use some of algorithms. 

In building our security facility, we needed to make a number of assumptions. First, we made a 

complexity assumption that some problem, such as factoring large integers or inverting DES, is intractible. 

We assumed that our base operating system, Mach, supports protected address spaces, including virtual 

address spaces stored on a disk. We assumed that the Camelot disk manager and the loader does not 

reveal authentication information or fingerprint keys to any other agent. We assumed that application 

programs use our protection scheme uniformly, and do not explicitly bypass protection mechanisms by 

revealing confidential information by writing out values in unencrypted log files or other unencrypted 

public files. We assumed that our algorithms were implemented without error, and that the compiler 

produced correct object code for them. 

We did not address issues of denial of service, covert channel analysis, or of leaking information 

through traffic analysis of messages. Although we have not explicitly addressed these problems, we 

conjecture that they may be solved by approaches motivated by the self-securing paradigm. For 

example, Camelot supports fault tolerance, and Strongbox makes that fault tolerance secure. We believe 

that the security facility on Camelot could be extended to support protection against denial of service 

attacks. (For some theoretical contributions to this these issues, see [13,26].) In loosely-coupled 

distributed systems, covert channel analysis may be considerably simplified by assigning to entire 

processors just a single security classification. Interactions between security levels will take place over 

the data network, which is a simpler object to examine for covert channels than the entire distributed 

operating system. We are continuing to explore approaches such as these in ongoing research. Our 

current security code is publicly available and will be included with the Camelot release. We will continue 

to examine its performance in large applications. 
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