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Abstract 
Using known camera motion to estimate depth from image sequences is important in 

robotics applications such as navigation and manipulation. For many applications, having 
an on-line, incremental estimate of depth is important To permit the blending of new 
measurements with old estimates, it is essential that the representation include not only the 
current depth estimate, but also an estimate of the current uncertainty. Kalman filtering 
provides the needed framework to integrate new measurements and reduce the uncertainty 
over time. Previous applications of Kalman filtering to depth from motion have been limited 
to the estimation of depth at the location of a sparse set of features. In this paper, we 
introduce a new pixel-based (iconic) algorithm that estimates depth from an image sequence 
and incrementally refines its estimate over time. We also present a feature-based version 
of the algorithm which is used for comparison. We compare the performance of both 
approaches mathematically, with quantitative experiments using images of a flat scene, and 
with qualitative experiments using images of a realistic outdoor scene model. The results 
show that the method is an effective way to extract depth from lateral camera translations. 
Our approach can be extended to incorporate general motion and to integrate other sources 
of information such as stereo. The algorithms which we have developed, which combine 
Kalman filtering with iconic descriptions of depth, can thus serve as a useful and general 
framework for low-level dynamic vision. 

This research was sponsored in part by DARPA, monitored by the Air Force Avionics 
Lab under contract F33615-87-C-1499 and in part by a postgraduate fellowship from the 
FMC Corporation. Data for this research was partially provided by the Calibrated Imaging 
Laboratory at CMU. The views and conclusions contained in this document are those of the 
authors and should not be interpreted as representing the official policies, either expressed 
or implied, of the funding agencies. 
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1 Introduction 

Using known camera motion to estimate depth from image sequences is important in many 
robotics applications such as navigation and manipulation. Depth from motion can also be an 
important element of a multi-modal sensing strategy, and can be used to guide stereo matching. 
For many applications, having an on-line, incremental estimate of depth is important. To develop 
such an incremental algorithm, it is essential that the representation include not only the current 
depth estimate, but also an estimate of the current uncertainty. 

Previous work [Broida86] [Faugeras86] [Hallam83] [Matthies87c] [Matthies87b] [Rives86] 
has identified Kalman filtering as a viable framework for this problem, since it incorporates 
representations of uncertainty in the depth model and provides a mechanism for incrementally 
reducing this uncertainty over time. To date, this framework has largely been restricted to 
estimating the positions of a sparse set of trackable features such as points or line segments. 
While this is adequate for many robotics applications, it requires reliably extracting features, and 
it fails to describe large areas of the image. Another line of previous research has addressed the 
problem of extracting dense displacement or depth estimates from image sequences. However, 
these previous approaches have either been restricted to two frame analysis [Anandan85], or 
have used batch processing of the image sequence (using the epipolar plane method [Bolles87] 
or spatio-temporal filtering [Heeger87]). 

In this paper we introduce a new image-based (iconic) approach to incremental depth esti
mation and compare it mathematically and experimentally to a feature-based approach we have 
used previously [Matthies87b]. This approach represents depth and depth variance at every pixel 
and uses Kalman filtering to extrapolate and update these pixel-based maps. The algorithm uses 
correlation to measure the optical flow and to estimate the variance in the flow, and converts 
the flow field to a depth map using the known camera motion. It then uses the Kalman filter 
to appropriately weight both the new measurements and prior estimates of depth to generate 
an updated depth map. Regularization is employed to smooth the depth map and to fill in the 
underconstrained areas. The resulting algorithm is parallel and uniform, and can take advantage 
of mesh-connected or multi-resolution (pyramidal) processing architectures. 

The remainder of this paper is structured as follows. In the next section, we give a brief 
review of Kalman filtering, and introduce our overall approach to Kalman filtering of depth. 
Next, we review the equations of motion, present a simple camera model, and examine the 
potential accuracy of the method by analyzing its sensitivity to the direction of camera motion. 
We then describe our new iconic incremental depth from motion algorithm. This is followed 
by a description of the feature-based incremental depth from motion algorithm that is used for 
comparison. The theoretical accuracy of these two methods is then derived and compared to 
that of stereo matching. This analysis is verified experimentally by using images of a flat scene. 
We then show the performance of both methods on images of realistic outdoor scene models. 
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In the final section, we discuss the promise and the problems involved in extending the method 
to arbitrary motion. We also conclude that the ideas and results presented apply directly to the 
much broader problem of integrating depth information from multiple sources. 

2 Estimation framework 
The depth from motion algorithms described in this paper use a sequence of images taken with 
small inter-frame displacements [Bolles87]. The advantage of using such a sequence is that the 
correspondence problem between two successive images is reduced. The disadvantage is that 
the individual depth measurements are less precise because of the very small baselines involved. 
To overcome this latter problem, information from each pair of frames must be integrated over 
time. For many robotics applications it is desirable to process these images using a real-time 
rather than batch process, with an updated depth estimate being generated after each new image 
is acquired. The incremental algorithm also has the advantage of requiring less storage, since 
only the current estimate and its uncertainty model are required. 

A powerful technique for doing real-time estimation of such dynamic systems is the Kalman 
filter. This formulation allows for the integration of information over time, and is robust with 
respect to both system and sensor noise. The notation and equations of the Kalman filter are 

. presented first, along with a simple example. The application of this framework to motion-
sequence processing is then sketched, discussing those parts that are common to both iconic and 
feature based algorithms (the details of these algorithms are in Sections 4 and 5, respectively). 

2.1 Kalman filter 
The Kalman filter is a Bayesian estimation technique used to track stochastic dynamic systems 
being observed with noisy sensors. The filter is based on three separate probabilistic models, as 
shown in Table 1. The first model, the system model, describes the evolution over time of the 
current state vector ut. The transition between states is characterized by the known transition 
matrix $ t and the addition of Gaussian noise with a covariance QT. The second model, the 
measurement (or sensor) model, relates the measurement vector dt to the current state through a 
measurement matrix HT and the addition of Gaussian noise with a covariance RT. The third model, 
the prior model, describes the knowledge about the system state UQ and its covariance PQ before 
the first measurement is taken. The sensor and process noise are assumed to be uncorrected. 

To explain the above equations, we will use the example of a ping-pong playing robot which 
must track a moving ball. In this example, the state consists of the ball position and velocity, 
u = [xyzxyz l ] r , where x and y lie parallel to the image plane (y is up), and z is parallel to 
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Models system model 
measurement model 
prior model 
(other assumptions) 

w, = +77,, 7IT~N(!0,Qt) 
dt=Htut + £h f,~iV(0,tf,) 
E[ko] = flo, Cov[wq] = P0 

E [ ^ f ] = 0 
Prediction 
phase 

state estimate extrapolation 
state covariance extrapolation 

fir ^ / - i f i j L i 

Update 
phase 

state estimate update 
state covariance update 
Kalman gain matrix 

fir = fir+w-//rfir] 

KT=P7HJ[HtP7Hj + RT]-I 

Table 1: Kalman filter equations 

the optical axis. The state transition matrix models the ball dynamics, for example 

" 1 0 0 At 0 0 0 
0 1 0 0 At 0 0 
0 0 1 0 0 At 0 
0 0 0 - 0 0 0 0 
0 0 0 0 -P 0 -gAt 
0 0 0 0 0 0 

. 0 0 0 0 0 0 1 

where At is the time step, 0 is the coefficient of friction and g is gravitational acceleration. 
The process noise matrix Qt models the random disturbances that influence the trajectory. If we 
assume that the camera uses orthographic projection, and uses a simple algorithm to find the 
"center of mass" (x, y) of the ball, the sensor can then be modeled by 

T l O O O O O O " 
' [ 0 1 0 0 0 0 0 / 

The uncertainty in the sensed ball position can be modeled by a 2 x 2 covariance matrix Rt. 
Once the system, measurement and prior models (upper third of Table 1) have been specified, 

the Kalman filter algorithm follows from the formulation in the lower two thirds of Table 1. 
The algorithm operates in two phases: extrapolation (prediction) and update (correction). The 
previous state estimate u*_x is used to predict the current state fir~. At the same time, the 
previous state covariance x is extrapolated to the predicted state covariance Pj. This predicted 
covariance is used to compute the new Kalman gain matrix Kt and the updated covariance matrix 
Pf. Finally, the measurement residual dt — Htu~ is weighted by the gain matrix Kt and added 
to the predicted state wr~ to yield the updated state u[. A block diagram for the Kalman filter is 
given in Figure 1. 
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Figure 1: Kalman filter block diagram 

2.2 Application to depth from motion 
To apply the Kalman filter estimation framework to the depth from motion problem, we specialize 
each of the three models (system, measurement and prior) and define the implementations of 
the extrapolation and update stages. This section briefly previews how these components are 
chosen for the two depth from motion algorithms described in this paper. The details of the 
implementation are left to Sections 4 and 5. 

The first thing to specify when designing the Kalman filter is the representation used for the 
state vector. For the iconic depth from motion algorithm, the state is a depth map, where the 
value of depth at each point in the current image is estimated 1. For the feature based approach, 
the three dimensional location of each feature (in our case edge element) is estimated. For 
both methods, an uncertainty map is estimated and propagated 2. For the iconic approach, the 
measurement noise can be spatially varying due to local contrast in the image. For the feature 
based approach, the accuracy of edge positions may also vary. Thus for both methods, the initial 
measurement stage produces not only a depth measurement, but also an associated variance. 

The extrapolation stage for the two approaches shares the same motion equations (see Section 
3.1), but differs because of the underlying representation. For the iconic method, the map is 
warped to predict what it will look like in the next frame, and resampled to keep it iconic. For 

lln our actual implementation, inverse depth (called "disparity") is used. See Section 4 . 
2In the usual Kalman filter implementation, the covariance of the measurement noise is known in advance, as 

are the system and measurement models, so that the gain matrix Kt can be pre-computed. 
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the feature based method, the three dimensional position of the features is extrapolated. 
Finally, the prior model can be used to embed prior knowledge about the scene. In par

ticular, smoothness constraints (that require nearby points to have similar disparity) can easily 
be integrated into the iconic method, and can be used to reduce the noisy nature of the flow 
estimates. For the edge tracking approach, figural continuity [Mayhew81] [Ohta85] could be 
used (i.e. connected edges must match connected edges), but this is currently not used. 

3 Motion equations and camera model 
Our system and measurement models are based on the equations relating scene depth and camera 
motion to the induced image flow. In this section, we review these equations for an idealized 
camera (focal length = 1 ) and show how to use a simple calibration model to relate the idealized 
equations to real cameras. We also derive an expression for the relative uncertainty in depth 
estimates obtained from lateral versus forward camera translation. This expression shows con
cretely the effects of camera motion on depth uncertainty and reinforces the need for modeling 
the uncertainty in computed depth. 

3.1 Equations of motion 

If the inter-frame camera motion is sufficiently small, the resulting optical flow can be expressed 
to a good approximation in terms of the instantaneous camera velocity [Longuet80], [Bruss83], 
[Waxman86]. We will specify this in terms of a translational velocity T and an angular velocity 
R. In the camera coordinate frame (Figure 2), the motion of a 3-D point P is described by the 
equation 

dP 
— = - T - R x P. 
dt 

Expanding this into components yields 

dX/dt = -Tx-RyZ + R2 Y 
dY/dt = -Ty-RzX + RxZ ( 1 ) 

dZ/dt = -Tz-RxY + RyX. 

Now, projecting (X, 7, Z) onto an ideal, unit focal length image, 

X 
x = — 

Z 
Y 

y = Z ' 
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image plane 

Figure 2: Camera model 

CP is the center of projection 

taking the derivatives of (x, j» with respect to time, and substituting in from equation (2) leads 
to the familiar equations of optical flow [Waxman86] 

' - 1 0 x 
" Tx' 

' Ax ' i ' - 1 0 x + 
~ Z 0 - l y .Tt-

xy -(l+x2) y 
( 1 + y 2 ) -xy -x 

' Rx~ 
Ry 

. Rz . 

(2) 

3.2 Camera model 
Relating the ideal flow equations to real measurements requires a camera model. If optical 
distortions are not severe, a pin-hole camera model will suffice. In this paper we adopt a model 
similar to that originated by Sobel [Sobel74] (Figure 2). This model specifies the origin cy) of 
the image coordinate system and a pair of scale factors (sx, sy) that combine the focal length and 
image aspect ratio. Denoting the actual image coordinates with a subscript "a", the projection 
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onto the actual image is summarized by the equation 

_ i sx 0 cx 

' X ' 
V 

" z . 0 SY CY 
I 

. z . 

C is the known as the collimation matrix. Thus, the ideal image coordinates (x,y) are related to 
the actual image coordinates by 

xa = sxx + cx 

YA = SYY + CY. 

Equations in the balance of the paper will primarily use ideal image coordinates for clarity. 
These equations can be re-expressed in terms of actual coordinates using the transformations 
above. 

3.3 Sensitivity analysis 

Before describing our Kalman filter algorithms, we will analyze the effect of different camera 
motions on the uncertainty in depth estimates. Given specific descriptions of real cameras and 
scenes, we can obtain bounds on the estimation accuracy of depth-from-motion algorithms using 
perturbation or covariance. analysis techniques based on first-order Taylor expansions [Wertz78]. 
For example, if we solve the motion equations for the inverse depth d in terms of the optical 
flow, camera motion, and camera model, 

d = F(Ax, Ay; T, R; cx, cy, sx, sy), (4) 

then the uncertainty in depth arising from uncertainty in flow, motion, and calibration can be 
expressed by 

8D = JF8F + JM8M + JC8C, (5) 

where / / , / m , and J C are the Jacobians of (4) with respect to the flow, motion, and calibration 
parameters, respectively, and 8F, 8M, and 8C are perturbations of the respective parameters. We 
will use this methodology to draw some concrete conclusions about the relative accuracy of 
depth estimates obtained from different classes of motion. 

It is well known that camera rotation provides no depth information. Furthermore, for a 
translating camera, the accuracy of depth estimates increases with increasing distance of image 
features from the focus of expansion (FOE), the point in the image where the translation vector 
(T) pierces the image. This implies that the 'best' translations are parallel to the image plane 
and that the 'worst' are forward along the camera axis. A lengthy examination of the effects 
of measurement uncertainty in depth from motion is given in [Snyder87]; here we will give a 
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shorter derivation tha. demonstrates the relative accuracy obtainable from forward and lateral 

SX - cons ider only one^imensiona. flow induced by translation along the X or Z 

axes. For an ideal camera, lateral motion induces the flow 

-Tx Axt = — , 

whereas forward motion induces the flow 

(6) 

(7) 

The inverse depth (or disparity) in each case is 

di = 
1 - A c , 
Z Tx  

Axf 

Therefore, perturbations of 8xt and 6xf in the flow measurements Axt and Axf yield the following 

perturbations in the disparity estimates: 

Sdi 

6df 

Sxi • 

These equations give the error in the inverse depth as a function of the error in the measured 
image displacement, the amount of camera motion, and position of the feature in the field of view. 
Since we are interested in comparing forward and lateral motions, a good way to visualize these 
equations is to plot the relative depth uncertainty, Sdf/Sdi. Assuming that the flow perturbations 
Sxi and 8xf are equal, the relative uncertainty is 

8^ _ 8xf/\xTz\ _ 
Sdi 8xi/\Tx\ 

Tx 

xTz 

(8) 

for the relative uncertainty is thus 
Sdf = 

Sdt T* tanO 
(9) 
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Figure 3: Angle between object and camera axis is 9 

This relationship is plotted in Figure 4 for Tx = Tz. At 45 degrees from the camera axis, 
depth uncertainty is equal for forward and lateral motions. At 18 degrees, which is the edge of 
the image for the experiments in Section 6.2, the ratio of uncertainties is 3.1; at 9 degrees, the 
ratio is 6.3. Thus, the accuracy of depth extracted from forward motion is effectively unusable 
for a large part of the image. An alternative interpretation for this curve is that it expresses 
the relative precision of stereo and depth-from-motion in a motion stereo system. By setting 
Sdf/Sdi = 1, equation (9) also expresses the relative distances the camera must move forward 
and laterally to obtain equally precise depth estimates. 

We draw several conclusions from this analysis. First, it underscores the value of representing 
depth uncertainty as we describe in the following sections. Second, for practical depth estimation, 
forward motion is effectively unusable compared with lateral motion. Finally, we can relate these 
results to motion stereo by noting that depth from forward motion will be of little value in a 
motion stereo system. 

4 Iconic depth estimation 

This section describes the incremental (on-line) iconic depth estimation algorithm that we have 
developed. The algorithm processes each new image as it arrives, extracting optic flow at each 
pixel using the current and previous intensity images, and then integrates this new information 
with the current depth estimate. 
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Figure 5: Iconic depth estimation block diagram 

The algorithm consists of four main stages (Figure 5). The first stage uses correlation to 
compute an estimate of the displacement vector and its associated covariance. It converts this 
estimate into a disparity (inverse depth) measurement using the known camera motion. The 
second stage integrates this information with the disparity map predicted at the previous time 
step. The third stage uses regularization-based smoothing to reduce measurement noise and to 
fill in areas of unknown disparity. The last stage uses the known camera motion to predict the 
disparity field that will be seen in the next frame, and re-samples the field to keep it iconic (pixel 
based). 

4.1 Measuring disparity 

The first stage of the Kalman filter computes a disparity map from the difference in intensity 
between the current image and the previous image. This computation proceeds in two parts. 
First, a two-dimensional displacement (or optic flow) vector is computed at each point using 
a correlation based algorithm. The uncertainty in this vector is characterized by a bivariate 
Gaussian distribution. Second, this vector is converted into a disparity measurement using the 
known camera motion and the motion equations developed in Section 3.1. 

This two stage formulation is desirable for several reasons. First, it allows probabilistic 
characterizations of uncertainty in flow to be translated into a probabilistic characterization of 
the uncertainty in disparity. This especially valuable if the camera motion is also uncertain, since 
the equations relating flow to disparity can be extended to model this as well [Rives86]. Second, 
it requires only that we can characterize the level of uncertainty in the flow, and allows us to 
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evaluate the potential accuracy of the algorithm independent of how flow is obtained. Finally, 
bivariate Gaussian distributions can capture the distinctions between knowing zero, one, or both 
components of flow [Anandan85],[Nagel86],[Heeger87], and can thus subsume the notion of the 
aperture problem. 

Let us turn first to the problem of extracting optical flow from a sequence of intensity 
images, which has been extensively studied in computer vision. Early approaches used the ratio 
of the spatial and temporal image derivatives [Horn81], while more recent approaches have used 
correlation between images [Anandan85] or spatio-temporal filtering [Heeger87]. In this paper 
we use a simple version of correlation-based matching. This technique, which has been called 
the Sum of Squared Differences (SSD) method [Anandan85], integrates the squared intensity 
difference between two shifted images over a small area to obtain an error measure 

et(Ax, Ay;x,y) = j J w(A,?7)K(x-Ax + \,y-Ay + 7 7 ) + A ^ + r ? ) ] 2 ^ ^ , 
where ft and / ,_ i are the two intensity images, and w(A,77) is a weighting function. The 
SSD measure is computed at each pixel for a number of possible flow values. In Anandan's 
algorithm, a coarse-to-fine technique is used to limit the range of possible flow values. In our 
images the possible range of values is small (since we are using small-motion sequences), so a 
single-resolution algorithm suffices3. The resulting error surface et(Ax, Ay;x,y) is approximately 
parabolic in shape. The lowest point of this surface defines the flow measurement and the shape 
of the surface defines the bivariate covariance of the measurement. 

To convert the displacement vector [Ax Ay]T into a disparity measurement, we assume that 
the camera motion (T, R) is given. The optical flow equation (2) can then be used to estimate 

- — 1 1 / o \ 

' Ax ' = d ' tx ' + 
. h . . ry . 

(10) 

where d is the inverse depth and i is an error vector representing noise in the flow measurement 
^ e no^e £is Jssumcd to be bivariate Gaussian random vector with a zero mean and a covanance 
^ c o m p u t e d by the flow estimation part. Equation 10 can be re-expressed in the followmg 

Ax = 
' Ax ' rx = d ( i d 

The optimal estimate of the disparity d is then [Maybeck79] 
d = (HTP-1H)-1HTP~lAx (12) 

3 It may be necessary to use a larger search range at first, but once the estimator has "latched on" to a good 
disparity map, the predicted disparity and disparity variance can be used to limit the search by computing confidence 
intervals. 
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Figure 6: Parabolic fit to SSD error surface 

and the variance of this disparity measurement is 

<j2

d = (HTp-m

lH)-\ (13) 

The measurement process described in this section has been implemented in a simplified 
form, under the assumption that the flow is parallel to the image raster. Each scanline of two 
successive images is magnified by a factor of 4 by cubic interpolation. The SSD measure ek is 
computed at each interpolated sub-pixel displacement v* using a 5 x 5 [pixel] square window. 
The minimum error (vj, e~k) is found and a parabola 

e(v) = av2 + bv + c 

is fit to this point and its two neighbors (vj_ 1 ? e^x) and (vj + 1 , e%+l) (Figure 6). The minimum of 
this parabola establishes the flow estimate (to sub-sub-pixel precision). Appendix A shows that 
the variance of the flow measurement is 

V a r ( e ) = ^ , 
a 

where a\ is the variance of the image noise process. The appendix also shows that adjacent flow 
estimates are correlated over both space and time; the significance of this fact will be considered 
in Section 6.1. 
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4.2 Updating the disparity map 
The next stage in the iconic depth estimator is the integration of the new disparity measurements 
with the predicted disparity map (this step is omitted for the first pair of images). For now, we 
will assume that each value in the measured or predicted disparity map is not correlated with its 
neighbors, so that the map updating can be done at each pixel independently. The extension of 
this model to account for the correlated nature of disparity maps is discussed later. 

To update a pixel value, we first compute the variance of the updated disparity estimate 

and the Kalman filter gain K 

We then update the disparity value by using the Kalman filter update equation 

u+

t = m ~ +K(d— u~) 

where uj and u* are the predicted and updated disparity estimates, and d is the new disparity 
measurement. This update equation can also be written as 

. J " 7 D 

\PT <*DI 

The latter form shows that the updated disparity estimate is a linear combination of the predicted 
and measured values, inversely weighted by their respective variances. 

4.3 Smoothing the map 
The raw depth or disparity values obtained from optical flow measurements can be very noisy, 
especially in areas of uniform intensity. We employ smoothness constraints to reduce the noise 
and to "fill in" underconstrained areas. The earliest example of this approach is that of Horn 
and Schunck [Horn81]. The optical flow field (u, v) is smoothed by jointly minimizing the error 
in the flow equation 

Sb = Exu + Eyv + E, 

(E is image intensity) and the departure from smoothness 

£2

C - |Va | 2 + |Vv| 2 . 

The smoothed flow is that which minimizes the total error 

E2 = J j(£2 + a2£2)dxdy 
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where a is a blending constant. More recently, this approach has been formalized using the theory 
of regularization [Terzopoulos86a] and extended to use two-dimensional confidence measures 
equivalent to local covariance estimates [Anandan85],[Nagel86]. 

For our application, smoothing is done on the disparity field, using the inverse variance of the 
disparity estimate as the confidence in each measurement. The smoother we use is the generalized 
piecewise continuous spline under tension [Terzopoulos86b] which uses finite element relaxation 
to compute the smoothed field. The algorithm is implemented with a three-level coarse-to-fine 
strategy to speed convergence, and is amenable to implementation on a parallel computer. 

After the initial smoothing has been performed, depth discontinuities are detected by thresh
olding the angle between the view vector and the local surface normal (Appendix B) and doing 
non-maximum suppression. This is superior to applying edge detection directly to the dispar
ity image, because it properly takes into account the 3-D geometry and perspective projection. 
Once discontinuities have been detected, they are incorporated into the piecewise continuous 
smoothing algorithm, and a few more relaxation steps are performed. Our approach to discon
tinuity detection, which interleaves smoothing and edge detection, is similar to Terzopoulos' 
continuation method [Terzopoulos86b]. The alternative of trying to estimate the boundaries in 
conjunction with the smoothing [Marroquin87] has not been tried, but could be implemented 
within our framework. The detected discontinuities could also be propagated to the next frame, 
but this has not been implemented. 

The smoothing stage can be viewed as the part of the Kalman filtering algorithm that incor
porates prior knowledge about the smoothness of the disparity map. As shown in [Szeliski87a], 
a regularization-based smoother is equivalent to a prior model with a correlation function defined 
by the degree of the stabilizing spline (e.g. membrane or thin plate). The resulting covariance 
matrix of the disparity map contains off-diagonal elements modeling the covariance of neighbor
ing pixels. An optimal implementation of the Kalman filter would require transforming (warping) 
the prior model covariance during the prediction stage, and would significantly complicate the 
implementation of our algorithm. In practice, our current implementation which uses the same 
amount of smoothing at each step has proved to be sufficient. 

4.4 Predicting the next disparity map 

The final step in defining the filter is to specify how the disparity estimates are extrapolated from 
the previous maps and the motion estimate. The process must predict both the new disparity 
at each pixel in the image and the uncertainty in disparity. We will describe the disparity 
extrapolation first, then consider the uncertainty extrapolation. 

Our approach is illustrated in Figure 7. At time r, the current disparity map and motion 
estimate are used to predict the optical flow between images t and f + 1, which in turn indicates 
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Figure 7: Illustration of disparity prediction stage 

where the pixels in frame t will 'move to' in the next frame: 
xt+i = xt + Axt 

y, + 1 = yt + Ayt. 

The flow estimates are computed with equation (2), assuming that Z, T, and R are known 4 . Next 
we predict what the new depth of this point will be using the equations of motion. From (2) we 
have 

AZt = -Tz-RxYt+RyXt 

= -Tz-RxytZt+RyxtZt 

so that the predicted depth at xt+uyt+i is 
Z,+i =Zt + AZt 

= (l-Rxyt+Ryxt)Zt-Tz 

= aZt - Tz. 

Rewriting this in terms of inverse depth, we obtain 
u; 

a - Tzut 
— • : : o n H M due to uncertainty in the motion and disparity estimates. We ignore 

4There will be uncertamty in xt+\ and yt+\ due to uncertainly 
this for now. 
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In general this prediction process will yield estimates of disparity in between pixels in the 
new image (Figure 7), so we need to resample to obtain predicted disparity at pixel locations. 
For a given pixel x' in the new image, we find the square of extrapolated pixels that overlap x' 
and compute the disparity at x' by bi-linear interpolation of the extrapolated disparities. Note 
that it may be possible to detect occlusions by recording where the extrapolated squares turn 
away from the camera. Detecting "disocclusions", where newly visible areas become exposed, 
is not possible if the disparity field is assumed to be continuous, but is possible if disparity 
discontinuities have been detected. 

Uncertainty will increase in the prediction phase due to errors from many sources, including 
uncertainty in the motion parameters, errors in calibration, and inaccurate models of the camera 
optics. A simple approach to modeling these errors is to lump them together by inflating the 
current variance estimates by a small multiplicative factor in the prediction stage. Thus, the 
variance prediction associated with the disparity prediction of equation (14) is 

In the Kalman filtering literature this is known as exponential age-weighting of measurements 
[Maybeck79], because it decreases the weight given to previous measurements by an exponential 
function of time. This is the approach used in our implementation. We first inflate the variance 
in the current disparity map using equation (15), then warp and interpolate the variance map in 
the same way as the disparity map. A more exact approach is to attempt to model the individual 
sources of error and to propagate their effects through the prediction equations. Appendix C 
examines this for uncertain camera motion. 

5 Feature based depth estimation 

The dense, iconic depth estimation algorithm described in the previous section can be com
pared with existing depth estimation methods based on sparse feature tracking. Such methods 
[Ayache87] [Broida86] [Hallam83] [Matthies87b] typically define the state vector to be the pa
rameters of the 3-D object being tracked, which is usually a point or straight line segment. The 
3-D motion of the object between frames defines the system model of the filter and the per
spective projection of the object onto each image defines the measurement model. This implies 
that the measurement equations (the perspective projection) are non-linear functions of the state 
variables (e.g. the 3-D position vector); this requires linearization in the update equations and 
implies that the error distribution of the 3-D coordinates will not be Gaussian. In the case of 
arbitrary camera motion, a further complication is that it is difficult to reliably track features 
between frames. In this section, we will describe in detail an approach to feature-based Kalman 
filtering for lateral motion, which tracks edgels along each scanline, and avoids the problems 
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associated with non-linear measurement equations. Extensions to arbitrary motion can be based 

on the method presented here. 

5.1 Kalman filter formulation for lateral motion 
Lateral camera translation considerably simplifies the feature tracking problem, since in this 
case features flow along scanlines. Moreover, the position of a feature on a scanline is a linear 
function of the distance moved by the camera, since 

Ax^Tjd & xt=x0 + tTxd 

where x0 is the position of the feature in the first frame and d is the inverse depth of the feature. 
The epipolar plane image method [Bolles87] exploits these characteristics by extracting lines in 
"space-time" (epipolar plane) images formed by concatenating scanlines from an entire image 
sequence. However, sequential estimation techniques like Kalman filtering are a more practical 
approach to this problem because they allow images to be processing on-line by incrementally 

refining the depth model. 
Taking j c 0 and d as the state variables defining the location of the feature, instead of the 3-D 

coordinates X and Z, keeps the entire estimation problem linear. This is advantageous because' 
it avoids the approximations needed for error estimation with non-linear equations. For point 
features, if the position of the feature in each image is given by the sequence of measurements 
x = [xo,5i, . . .^«] r , knowledge of the camera position for each image allows the feature location 
to be determined by fitting a line to the measurement vector x: 

x = H 
d 

(16) 

where H is a ( 2 x ^ + 1) matrix whose first column contains all l 's and whose second column 
is defined by the camera position for each frame, relative to the initial camera position. This fit 
can be computed sequentially by accumulating the terms of the normal equation solution for x 0 

and d. The covariance matrix E of XQ and d can be determined from the covariance matrix of 

the measurement vector x. 
The approach outlined above uses the position of the feature in the first frame XQ as one 

of the two state variables. We can reformulate this in terms of the current frame by taking xt 

and d to be the state variables. Assuming that the camera motion is exact and that measured 
feature positions have normally distributed uncertainty with variance of, the initial state vector 
and covariance matrix are expressed in terms of ideal image coordinates as 

X\ = Xi 

a = —~— 
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ro -
1 1/Tj 

2/7? J 
where Ti is the camera translation between the first and second frame. The covariance matrix 
comes from applying standard linear error propagation methods to the equations for x\ and d 
[Maybeck79]. 

After initialization, if Tt is the translation between frames t - 1 and f, the motion equations 
that transform the state vector and covariance matrix to the current frame are 

' 1 T, ' 
0 1 (17) 

P 7 = $ L P U $ J - (18) 

The superscript minuses indicate that these estimates do not incorporate the measured edge 
position at time t. The newly measured edge position xt is incorporated by computing the 
updated covariance matrix Pj, a gain matrix K, and the updated parameter vector u*: 

p; = { ( P r r ' + S } " 1 where S = 
1 0 0 

0 1 

K = 

u, = 

1 
P : 

o 
i 

u, +K[x, - x, ]. 

Since these equations are linear, we can see how uncertainty decreases as the number of 
measurements increases by computing the sequence of covariance matrices P T , given only the 
measurement uncertainty a1 and the sequence of camera motions Tt. This is addressed in Section 
6.1. 

Note that the equations above can be generalized to arbitrary, uncertain camera motion using 
either the x, y, d image-based parameterization of point locations or an X, Y, Z three-dimensional 
parameterization. The choice of parameterization may prove to be an important factor in the 
success of general depth from motion algorithms, but we have not thus far addressed this question. 

5.2 Feature extraction and matching 

To implement the feature-based depth estimator, we must specificy how to extract feature posi
tions, how to estimate the noise level in those positions, and how to track features from frame 
to frame. For lateral motion, with image flow parallel to the scanlines, tracking edgels on each 
scanline is the most natural implementation. Therefore, in this section we will describe how we 
extract edges to sub-pixel precision, how we estimate the variance of the edge positions, and 
how we track edges from frame to frame. 
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For one-dimensional signals, estimating the variance of edge positions has been addressed in 
[Canny86]. We will review this analysis before considering the general case. In one dimension, 
edge extraction amounts to finding the zero crossings in the second derivative of the Gaussian-
smoothed signal", which is equivalent to finding zero-crossings after convolving the image with 
a second derivative of Gaussian operator, 

d2G(x) r / N 

s i - * * * 
We assume that the image / is corrupted by white noise with variance a\. Splitting the response 
of the operator into that due to the signal, Fs, and that due to noise, F„, edges are marked where 

Fs(x)+Fn(x) = 0. (19) 

An expression for the edge variance is obtained by taking a first-order Taylor expansion of the 
deterministic part of the response in the vicinity of the zero crossing, then taking mean square 
values. Thus, if the zero crossing occurs at XQ in the noise free signal and XQ + Sx in the noisy 
signal, we have 

F(x0 + Sx) « Fs(x0) + F's(xQ)Sx + Fn(xQ + Sx) = 0, (20) 

so that 
. -(Fn(xo + Sx)+Fs(x0)) • 
Sx = — — . (21) 

F's(xo) 
The presence of a zero crossing implies that Fs(xo) = 0 and the assumption of zero mean noise 
implies that E[F„(xo)] = 0. Therefore, the variance of the edge position is 

r r j ^ l _ „2 _ *2nE[(Fn(x0))2] 
E[S^-ae- ( f , ( x q ) ) 2 . (22) 

In a discrete implementation, E[(Fn(xo))2] is the sum of the squares of the coefficients in the 
convolution mask. F's(xo) is the slope of the zero crossing and is approximated by fitting a local 
curve to the filtered image. The zero crossing of this curve gives the estimate of the sub-pixel 
edge position. 

For two-dimensional images, an analogous edge operator is a directional derivative filter 
with a derivative of Gaussian profile in one direction and a Gaussian profile in the orthogonal 
direction. Assuming that the operator is oriented to take the derivative in the direction of the 
gradient, the analysis above will give the variance of the edge position in the direction of the 
gradient (see [Nalwa86] for an alternate approach). However, for edge tracking along scanlines, 
we require the variance of the edge position in the scanline direction, not the gradient direction. 
This is straightforward to compute for the difference of Gaussian (DOG) edge operator; the 
required variance estimate comes directly from equations (19) - (22), replacing F with the DOG 
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and F with the partial derivative d/dx. Details of the discrete implementation in this case are 
similar to those described above. Experimentally, the cameras and digitizing hardware we use 
provide 8-bit images with intensity variance cr_ ~ 4 . 

It is worth emphasizing that estimating the variance of edge positions is more than a math
ematical nicety; it is valuable in practice. The uncertainty in the position of an edge is affected 
by the contrast of the edge, the amount of noise in the image, and, in matching applications 
such as this one, by the edge orientation. For example, in tracking edges under lateral motion, 
edges that are close to horizontal provide much less precise depth estimates than edges that are 
vertical. Estimating variance quantifies these differences in precision. Such quantification is 
important in predictive tracking, fitting surface models, and applications of depth from motion 
to constraining stereo. These remarks of course apply to image features in general, not just to 
edges. 

Tracking features from frame to frame is very simple if either the camera motion is very small 
or the feature depth is already known quite accurately. In the former case, a search window is 
defined that limits the feature displacement to a small number of pixels from the position in the 
previous image. For the experiments described in Section 6, tracking was implemented this way, 
with a window width of two pixels. Alternatively, when the depth of a feature is already known 
fairly accurately, the position of the feature in a new image can be predicted from equation (17) 
to be 

xt = x*_x + Tt.df_i, 

the variance of the prediction can be determined from equation (18), and a search window can be 
defined as a confidence interval estimated from this variance. This allows tight search windows 
to be defined for existing features even when the camera motion is not small. A simplified 
version of this procedure is used in our implementation to ensure that candidate edge matches are 
consistent with the existing depth model. The predefined search window is scanned for possible 
matches, and these are accepted only if they lie within some distance of the predicted edge 
location. Additional acceptance criteria require the candidate match to have properties similar to 
those of the feature in the previous image; for edges, these properties are edge orientation and 
edge strength (gradient magnitude or zero-crossing slope). Given knowledge of the noise level 
in the image, this comparison function can be defined probabilistically as well, but we have not 
pursued this direction. 

Finally, if the noise level in the image is unknown it can be estimated from the residuals of the 
observations after x and d have been determined. Such methods are discussed in [Mikhail76] for 
batch oriented techniques analogous to equation (16) and in [Maybeck82] for Kalman filtering. 
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6 Evaluation 
In this section, we compare the performance of the iconic and feature-based depth estimation 
algorithms in three ways. First, we perform a mathematical analysis of the reduction in depth 
variance as a function of time. Second, we use a sequence of images of a flat scene to determine 
the quantitative performance of the two approaches and to check the validity of our analysis. 
Third, we test our algorithms on images of realistic scenes with complicated variations in depth. 

6.1 Mathematical analysis 
We wish to compare the theoretical variance of the depth estimates obtained by the iconic method 
of Section 4 to those obtained by the feature-based method of Section 5. We will also compare 
the accuracy of both methods to the accuracy of stereo matching with the first and last frames of 
the image sequence. To do this, we will derive expressions for the depth variance as a function 
of the number of frames processed, assuming a constant noise level in the images and constant 
camera motion between frames. For clarity, we will assume this motion is Tx = 1. 

Iconic approach 
For the iconic method, we will ignore process noise in the system model and assume that 
the variance of successive flow measurements is constant. For lateral motion, the equations 
developed in Section 2 can be simplified to show that the Kalman filter simply computes the 
average flow [Gelb74]. Therefore, a sequence of flow measurements Axi , Ax2, Axt is 
equivalent to the following batch measurement equation 

Ax = 

• i • 

Ax2 
i 

_ Axt . . i . 

(23) 

Estimating d by averaging the flow measurements implies that 

d = -HTAx = -i2Axi. 

If the flow measurements were independent with variance 2cr^/a, where an is the noise level in 
the image (Appendix A), the resulting variance of the disparity estimate would be 

2f l (24) 
ta 
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However, the flow measurements are not actually independent. Because noise is present in every 
image, flow measurements between frames / - 1 and i will be correlated with measurements for 
frames i and i + 1. Appendix A shows that a sequence of correlation-based flow measurements 
that track the same point in the image sequence will have the following covariance matrix: 

a 

2 - 1 
- 1 2 - 1 

- 1 

2 
- 1 

-1 
2 

where a2 is the level of noise in the image and a reflects the local slope of the intensity surface. 
With this covariance matrix, averaging the flow measurements actually yields the following 
variance for the estimated flow: 

1 2a2 

tL t2a (25) 

This is interesting and.rather surprising. Comparing equations (24) and (25), the correlation 
structure that exists in the measurements means that the algorithm converges faster than we first 
expected. 

With correlated measurements, averaging the flow measurements in fact is a sub-optimal 
estimator for d. The optimal estimator is obtained by substituting the expressions for H and Pm 

into equations (12) and (13). This estimator does not give equal weight to all flow measurements; 
instead, measurements near the center of the sequence receive more weight than those near the 
end. The variance of the depth estimate is 

12ai 
f(f+l)(f + 2)a* 

The optimal convergence is cubic, whereas the convergence of the averaging method we im
plemented is quadratic. Developing an incremental version of the optimal estimator requires 
extending our Kalman filter formulation to model the correlated nature of the measurements. 
This extension is currently being investigated. 

Feature-based approach 

For the feature based approach, the desired variance estimates come from computing the sequence 
of covariance matrices Pg9 as mentioned at the end of Section 5.1. A closed form expression for 
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,H, marfx is easier to obtain from the batch method suggested by equation (16) than from the 
M m " f o — n and yields an equivalent result Taking the constant camera translate 
to be Tx = 1 for simplicity, equation (16) expands to 

x = 

Xo 
Xi 

L xt J 

0 
1 

t J 

xo 
d 

= tfu. (26) 

Recall that * are the edge positions in each frame, x0 is the best fit edge position in the first 
td d Tthe bestVdisplacement or flow between frames. Since we assume that the 

nTsured edge positions *, are independent with equal variance we find that 

PF = 
<?xd i=0< 

«=0 1 

-1 

The summations can be expressed in closed form, leading to the conclusion that 

<r2

F(f) = 
12<r 

(27) 

(28) 
#+l)(f + 2)' 

The variance of the displacement or flow estimate d thus decreases as the cube of the number of 
images. This expression is identical in structure to the optimal estimate for the iconic approach, 
the only difference being the replacement of the variance of the SSD minimum by the variance 
of the edge position. Thus, if our estimators incorporate appropriate models of measurement 
noise, the iconic and feature-based methods theoretically achieve the same rate of convergence. 
This is surprising, given that the basic Kalman filter for the iconic method maintains only one 
state parameter (d) for each pixel, whereas the feature-based method maintains two per feature 
(xo and d). We suspect that an incremental version of the optimal iconic estimator will require 
the same amount of state as the feature-based method. 

Comparison with stereo 
To compare these methods to stereo matching on the first and last frames of the image sequence, 
we must scale the stereo disparity and its uncertainty to be commensurate with the flow between 
frames. This implies dividing the stereo disparity by t and the uncertainty by f2. For the iconic 
method, we assume that the uncertainty in a stereo measurement will be the same as that for an 
individual flow measurement. Thus, the scaled uncertainty is 

2*1 
4(0 = ^ 
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This is the same as is achieved with our incremental algorithm which processes all of the 
intermediate frames. Therefore, processing the intermediate frames (while ignoring the temporal 
correlation of the measurements) may improve the reliability of the matching, but in this case it 
does not improve precisipn. 

For the feature-based approach, the uncertainty in stereo disparity is twice the uncertainty a2 

in the feature position; the scaled uncertainty is therefore 

4s(t) = ^ -

In this case using the intermediate frames helps, since 

*F(t) 1 

Thus, extracting depth from a small-motion image sequence has several advantages over 
stereo matching between the first and last frames. The ease of matching is increased, reducing 
the number of correspondence errors. Occlusion is less of a problem, since it can be predicted 
from early measurements. Finally, better accuracy is available by using the feature based method 
or the optimal version of the iconic method. 

6.2 Quantitative experiments: flat images 

The goals of our quantitative evaluation were to examine the actual convergence rates of the 
depth estimators, to assess the validity of the noise models, and to compare the performance of 
the iconic and feature-based algorithms. To obtain ground truth depth data, we used the facilities 
of the Calibrated Imaging Lab at CMU to digitize a sequence of images of a flat-mounted poster. 
We used a Sony XC-37 CCD camera with a 16mm lens, which gave a field of view of 36 
degrees. The poster was set about 20 inches (51 cm) from the camera. The camera motion 
between frames was 0.04 inches (1 mm), which gave an actual flow of approximately two pixels 
per frame in 480x512 images. For convenience, our experiments were run on images reduced 
to 240x256 by Gaussian convolution and subsampling. The image sequence we will discuss 
here was taken with vertical camera motion. This proved to give somewhat better results than 
horizontal motion; we attribute this to jitter in the scanline clock, which induces more noise in 
horizontal flow than in vertical flow. 

Figure 8 shows the poster and the edges extracted from it. For both the iconic and the 
feature-based algorithms, a ground truth value for the depth was determined by fitting a plane 
to the measured values. The level of measurement noise was then estimated by computing 
the RMS deviation of the measurements from the plane fit. Optical aberrations made the flow 
measurements consistently smaller near the periphery of the image than the center, so the RMS 
calculation was performed over only the center quarter of the image. Note that all experiments 
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Figure 8: Tiger image and edges 

described in this section did not use regularization to smooth the depth estimates, so the results 
show only the effect of the Kalman filtering algorithm. 

To determine the reliability of the flow variance estimates, we grouped flow measurements 
produced by the SSD algorithm according to their estimated variances, took sample variances 
over each group, and plotted the SSD variance estimates against the sample variances (Figure 
9). The strong linear relationship indicates fairly reliable variance estimates. The deviation of 
the slope of the line from the ideal value of 1 is due to an inaccurate estimate of the image noise 

To examine the convergence of the Kalman filter, the RMS depth error was computed for 
the iconic and the feature-based algorithms after processing each image in the sequence. We 
computed two sets of statistics, one for "sparse" depth and one for "dense" depth. The sparse 
statistic computes the RMS error for only those pixels where both algorithms gave depth estimates 
(that is, where edges were found), whereas the dense statistic computes the RMS error of the 
iconic algorithm over the full image. Figure 10 plots the relative RMS eiTors as a function of 
the number of images processed. Comparing the sparse error curves, the convergence rate of 
the iconic algorithm is slower than the feature-based algorithm, as expected. In this particular 
experiment, both methods converged to an error level of approximately 0.5% percent after 
processing eleven images. Since the poster was 20 inches from the camera, this equates to a 
depth error of 0.1 inches. Note that the overall baseline between the first and the eleventh image 
was only 0.44 inches. 

To compare the theoretical convergence rates derived earlier to the experimental rates, the 
theoretical curves were scaled to coincide with the experimental error after processing the first two 
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frames. These scaled curves are also shown in Figure 10. For the iconic method, the theoretical 
rate plotted is the quadratic convergence predicted by the correlated flow measurement model. 
The agreement between theory and practice is quite good for the first three frames. Thereafter, the 
experimental RMS error decreases more slowly; this is probably due to the effects of unmodeled 
sources of noise. For the feature-based method, the experimental error initially decreases faster 
than predicted because the implementation required new edge matches to be consistent with the 
prior depth estimate. When this requirement was dropped, the results agreed very closely with 
the expected convergence rate. 

Note that the comparison between theoretical and experimental results also allows us to 
estimate the precision of the sub-pixel edge extractor. The variance of a disparity estimate is 
twice the variance of the edge positions. Since the frame-to-frame displacement in this image 
sequence was one pixel and the relative RMS error was 12% for the first disparity estimate, the 
RMS error in edge localization was 0 .12 /> /2« 0.09 pixels. 

Finally, Figure 10 also compares the RMS error for the sparse and dense depth estimates 
from the iconic method. The dense flow field is considerably noisier than the flow estimates that 
coincide with edges, though still just over two percent error by the end of eleven frames. Some 
of this error is due to a systematic bias produced by the SSD flow estimator in the vicinity of 
ramp edges. 

Figure l i b shows the intensity profile of a vertical slice taken through the test bar image 
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Figure 10: RMS error in depth estimate 
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Figure 11: Bias of sub-pixel correlation 

(a) Test image (b) intensity profile (c) estimated flow (d) estimated variance 
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(Figure 11a). As can be seen, the disparity estimate (Figure 11c) is biased low (away from the 
"true" value in the central flat part) on one side of the discontinuity, and biased "high" on the 
other. This bias can also be confirmed by using an analytic model of a ramp edge. Fortunately, 
the variance estimates (Figure l i d ) reflect this larger error, so regularization-based smoothing 
can compensate for this systematic error. We conclude that the dense depth estimates do provide 
fairly good depth information. 

6.3 Qualitative experiments: real scenes 
We have tested the iconic and edge-based algorithms on complicated, realistic scenes obtained 
from the Calibrated Imaging Laboratory. Two sequences of ten images were taken with camera 
motion of 0.05 inches (1.27mm) between frames; one sequence moved the camera vertically, 
the other horizontally. The overall range of motion was therefore 0.5 inches (1.27 cm); this 
compares with distances to objects in the scene of 20 to 40 inches (51 to 102 cm). 

Figure 12 shows one of the images (a picture of a miniature town). Figures 13a-d show 
a reduced version of the image, the edges extracted from it with an oriented Canny operator 
[Canny86], and depth maps produced by applying the iconic algorithm to the horizontal and 
vertical image sequences, respectively. Lighter areas in the depth maps are nearer. The main 
structure of the scene is recovered quite well in both cases, though the results with the horizontal 
sequence are considerably more noisy. This is most likely due to scanline jitter, as mentioned 
earlier. Edges oriented parallel to the direction of flow cause some scene structure to be observ
able in one sequence but not the other. This is most noticeable near the center of the scene, 
where a thin vertical object appears in Figure 13c but is not visible in Figure 13d. This object 
corresponds to an antenna on the top of a foreground building (Figure 13a). In general, motion 
in orthogonal directions will yield more information than motion in any single direction. 

Figure 14 shows intensity-coded depth maps and 3-D perspective reconstructions obtained 
with both the iconic and feature-based methods. These results were produced by combining 
disparity estimates from both horizontal and vertical camera motion. The depth map for the 
feature-based approach was produced from the sparse depth estimates by regularization. It is 
difficult to make quantitative statements about the performance of either method from this data, 
but qualitatively it is clear that both recover the structure of the scene quite well. 

The iconic algorithm was also used to extract occluding boundaries from the depth map of 
Figure 13c (iconic method with vertical camera motion). We first computed an intrinsic "grazing 
angle" image giving the angle between the view vector through each pixel and the normal vector 
of the local 3-D surface. Edge detection and thresholding were applied to this image to find 
pixels where the view vector and the surface normal were nearly perpendicular. The resulting 
boundaries are shown along with the depth map in Figure 15. The method found most of the 
prominent building outlines and the outline of the bridge in the upper left. 
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Figure 12: CIL image 
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Figure 14: CIL orthogonal motion results 

(a) iconic method depth map (b) perspective view (c) feature-based method depth map (d) 
perspective view 
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Figure 15: Occluding boundaries 

(a) vertical motion depth map (b) occluding boundaries 
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<c> (d) 

Figure 16: CIL-2 depth maps 

(a) first frame (b) edges (c) horizontal motion depth map (d) vertical motion depth 



(a) 
(b) 

(c) 

Figure 17: CIL-2 orthogonal motion results 

(a) iconic method depth map (b) perspective view (c) feature-based method depth map (d) 
perspective view 
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Figures 16 and 17 show the results of our algorithms on a different model set up in the 
Calibrated Imaging Laboratory. The same camera and camera motion were used as before. Figure 
16 shows the first frame, the extracted edges, and the depth maps obtained from horizontal and 
vertical motion. Figure 17 shows the depth maps and the perspective reconstructions obtained 
with the iconic and feature-based methods. Again, the algorithms did a good job in recovering 
the structure of the scene. 

Finally, we present the results of using the first 10 frames of the image sequence used in 
[Bolles87]. Figure 18 shows the first frame from the sequence, the extracted edges, and the depth 
maps obtained from running the iconic and feature-based algorithms. As expected, the results 
from using the feature-based method are similar to those obtained with the Epipolar-Plane Image 
technique. The iconic algorithm produces a denser estimate of depth than is available from 
either edge-based technique. These results show that the sparse (edge-based) batch processing 
algorithm for small motion sequences introduced in [Bolles87] can be extended to use dense 
depth maps and incremental processing. 

7 Conclusions 

This paper has presented a new algorithm for extracting depth from known motion. The algorithm 
processes an image sequence taken with small inter-frame displacements and produces an on-line 
estimate of depth that is refined over time. The algorithm produces a dense, iconic depth map 
and is suitable for implementation on parallel architectures. 

The on-line depth estimator is based on Kalman filtering. A correlation-based flow algorithm 
measures both the local displacement at each pixel and the confidence (or variance) of the 
displacement. These two "measurement images" are integrated with predicted depth and variance 
maps using a weighted least squares technique derived from the Kalman filter. Regularization-
based smoothing is used to reduce the noise in the flow estimates and to fill in areas of unknown 
disparity. The current maps are extrapolated to the next frame by image warping, using the 
knowledge of the camera motion, and are resampled to keep the maps iconic. 

The algorithm has been implemented, evaluated mathematically and experimentally, and com
pared with a feature-based algorithm that uses Kalman filtering to estimate the depth of edges. 
The mathematical analysis shows that the iconic approach will have a slower convergence rate 
because it only keeps one element of state per pixel (the disparity), while the feature-based 
approach keeps both the disparity and the sub-pixel position of the feature. However, an optimal 
implementation of the iconic method (which takes into account temporal correlations in the mea
surements) has the potential to equal the convergence rate and accuracy of the symbolic method. 
Experiments with images of a flat poster have confirmed this analysis and given quantitative 
measures of the performance of both algorithms. Finally, experiments with images of a realistic 
outdoor scene model have shown that the new algorithm performs well on images with large 
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Figure 18: SRI EPI sequence results 

A A*nth m a n (eft feature-based method depth map 
(a) first frame (b) edges (c) iconic method depth map (d) feature 
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variations in depth and that occluding boundaries can be extracted from the resulting depth maps. 

Extensions 

The algorithms described in this paper can be extended in several ways. The most straightforward 
extension is to the case of non-lateral motion. As sketched in Section 4, this can be accomplished 
by designing a correlation-based flow estimator that produces two-dimensional flow vectors and 
an associated covariance matrix estimate [Anandan85]. This approach can also be used when the 
camera motion is uncertain, or when the camera motion is variable (e.g. for widening baseline 
stereo [Xu85]). The alternative of searching only along epipolar lines during the correlation 
phase may be easier to implement, but is less general. 

More research is required into the behavior of the correlation based flow and confidence esti
mator. In particular, we have observed that our current estimator produces biased estimates in the 
vicinity of intensity step edges. The correlation between spatially adjacent flow estimates, which 
is currently ignored, should be integrated into the Kalman filter framework. More sophisticated 
representations for the intensity and depth fields are also being investigated [Szeliski87b], 

Finally, the incremental depth from motion algorithms which we have developed can be used 
to initiate stereo fusion. Work is currently in progress investigating the integration of depth-
from-motion and stereo [Matthies87a]. We believe that the framework presented in this paper 
will prove to be useful for integrating information from multiple visual sources and for tracking 
such information in a dynamic environment. 
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A Optic flow computation 

In this appendix, we will analyze the performance of a simple correlation based flow estimator, 
the sum of squared differences (SSD) estimator [Anandan85]. This estimator selects at each 
pixel the disparity which minimizes the SSD measure 

e(d;x) = J w(X)\fl(x + d + X)-f0(x + X)]2dX, 

where f0(x) andf\(x) are the two successive image frames, and w(x) is a symmetric, non-negative 
weighting function. To analyze its performance, we will assume that the two image frames are 
generated from an underlying true intensity image,/(x), to which uncorrelated (white) Gaussian 
noise with variance a2 has been added: 

fo(x) =/(*) +/*>(*), 

/iOc + d) =/(*) +mCx). 
Using this model, we can rewrite the error measure as 5 

e(d;x) = Jw(X)\f(x + d-d + X)-f(x + X) + nx(x + X)- n0(x + X)]2dX. 

If d ~ d, we can use a Taylor series expansion to obtain 

e(d;x) = J w{X)\f(x + A)](d - d)2 + 2w(X)f(x + A) 

[nx(x + A) - nQ(x + A)](2 - d) + w(X)[nx(x + A) - n0(x + A)]2dX 
= *(*)(2 - d)2 + 2[6i(x) - 6b(x)](2 - rf) + c(x), 

where 

flW = y w(X)\f{x + X)fdX, 

bi(x) = J w(\Y(x + \)ni(x + \)d\, 

c(x) = J w(X)[m(x + X)~ n0(x + X)]2dX. 

The four coefficients a(x)9 b0(x\ b\(x) and c(x) define the shape of the error surface e(d;x). 
The first coefficient, a(x), is related to the average "roughness" or "slope" of the intensity surface, 

5This equation is actually incorrect, since it should contain n\ (x + d - d + A ) instead of m (x + A ) . The effect of 
including the correct term is to add small random terms involving integrals of w( A ) , w ' ( A ) , / ' (x + A ) , f"(x + A ) and 
n\(x) to the quadratic coefficient a(x)9 b\(x) and c(x) that are derived below. This intentional omission has been 
made to simplify the presentation. 
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and determines the confidence given to the disparity estimate (see below). The second and third 
coefficients, b0(x) and b\(x), are independent zero mean Gaussian random variables that determine 
the difference between d and d, i.e. the error in flow estimator. The fourth coefficient, c(x), is 
a chi-squared distributed random variable with mean {2a2 f w{X)dX), and defines the computed 
error at d = 

To estimate the disparity at point x given the error surface e(d;x), we find the d such that 

e(d;x) = min(5;;c). 
d 

From the above quadratic 6 equation, we can compute d{x) as 

M \ i • b0{x)-bi{x) 

To calculate the variance in this estimate, we must first calculate the variance in bi{x), 

VarfoC*)) = <rl J w2{X)\f{x + A)] 2 d\. 

If we set w(x) = 1 on some finite interval, and zero elsewhere, this variance reduces to a^a{x), 

and we obtain 

Var(ei) = ^ . 
In addition to calculating the disparity estimate variance, we can compute its covariance with 

other estimates either in the same frame or in a subsequent frame. As described in Section 6.1, 
knowing the correlation between adjacent or successive measurements is important in obtaining 

good overall uncertainty estimates. 
To determine the correlation between two adjacent disparity estimates, d(x) and d(x + Ax), 

we must first determine the correlation between Z?t-(jt) and bfa + Ax), 

{bi(x)bi(x + Ax)) = J J w(A)w(77)f(jc + A 

= J J wWwWfix + Wix + ̂  + vMX-Ax-V^ZdXdr) 

= a2
nJ w(A)w(A - Ax)\f{x + A)] 2 dX. 

For a slowly varying gradient fix), this correlation is proportional to the autocorrelation of the 

weighting function, 

Rw(Ax) = J w(X)w{X+Ax)dX. 
6The true equation (when higher order Taylor series terms are included) is a polynomial series in (d - d) with 

random coefficients of decreasing variance. This explains the "rough" nature of the e(d;x) observed in practice. 
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For the simple case of w(x) = 1 on [s, s], we obtain 

RA(x,x + Ax) = - M) for \x\ < 2s. 
a(x) 2s 

The correlation between two successive measurements in time is easier to compute. Since 

f2(x + 2d)=f(x) + n2(x), 

we can show that the flow estimate obtained from the second pair of frames 
is 

d2(x) = d + 

The covariance between d\(x) and d2(x) is 

bi(x)-bi(x) 
a(x) • 

Cov&Cx), d2(x)) = (faix) - d)(d2(x) - d)) =-
x ' a(x) 

and the covariance matrix of the sequence of measurements d, is 

2 - 1 
- 1 2 - 1 

' m 
a 

2 - 1 
- 1 2 

This structure is used in Section 6.1 to estimate the theoretical accuracy and convergence rate 
of the iconic depth from motion algorithm. 

B Three-dimensional discontinuity detection 
To calculate a discontinuity in the depth map, we compute the angle between the local normal 
N and the view vector V. The surface normal at pixel value (r, c) is computed by using the 3-D 
locations of the three points 

P 0 = (X 0, Fo, Z 0 ) = (x 0, yo, 1 ) ~ where xQ 

Pi = (Xi , r i ,Z i ) = (x, ,3 ' i , i) 

p2 = (x2,r2,z2) = fe,^2, i) 
DI 

d2 

Xi 

x2 

c-cx -,yo = 
Sx Sy 

c + 1 ~ c x 1 r-cy - = x 0 + —,y1 = 1 = yo 

c— cx 

= *o,y2 = 

J Z Zy 
r + 1 - CY 1 

: = ^ 0 - - • 
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We can obtain the normal from the cross product of the two vectors 

sxd\ d\ do d\ do d\ do 
T do 

= —^-( x0Ah -yQAh-Ax) where Al=dl-dQ 

dodi sx 

^ 2 do Syd2 dz do d2 do 
T do = —^-(-x0A2, yoA2, -A2) where A2 = d2- do 

dod2 sy 

_ _ . doAi d0A2 dl XodoAi y0d0A2 Qi x Q2 oc ( , , + ). 
Sy SX $XSy Sy SX 

Simplifying, we obtain 

N = (-sxAl,syA2,-do+XoSxAl - yoSyA2) 

V = ( j c o ^ o , 1) 

N • V = -do 
N-V 

cosy = |N||V| 
To implement the edge detector, we require that 

COS0 < COS0r 

or 

(s^Ax2 + s2

yA2

2 + (-do +xosxAx - y0syA2)2)(xl +y2

Q + l)>d2

0 s ec 2 9 t . 

If the field of view of the camera is small, we have near orthographic projection, and 

above equations simplify to 
SXA\ syA2 

N = ( —, - ^—, -1 ) = (p,q,-l) 
do do 

V = (xo,yo, 1) 

and this reduces to the familiar gradient-based threshold 

p 2 + q2> tan 2 d,. 
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C Prediction equations 

To predict the new disparity map and variance map from the current maps, we will first map 
each pixel to its new location and value, and then use interpolation to resample the map. For 
simplicity, the development given here only shows the one-dimensional case, i.e. disparity d as 
a function of x. The extension to two dimensions is straightforward. 

The motion equations for a point in the pixel map d) are 

x? = x + txd + rx 

d = d + tt. 

We will assume that the points which define the patch under consideration have the same tx, rx, 
and tz values. These three parameters are actually stochastic variables, due to the uncertainty 
in camera motion. For the lateral motion case, we assume that the mean of tx is known and 
non-zero, while the means of rx and tz are zero. 

We can write the vector equations for the motion of the points in a patch as 

x7 = x + rxd + r,e 
d' = d + r ze 

where 

x ~ N(x,Sx), tx~N(tx,<T?x), rx~N(0,<7j) 
d ~ N(d, Sd), rz ~ N(0, **), and e = [ 1 . . * i f . 

The Jacobian of this vector equation is 

d(x', dO 
d(x, d, tx, rx, tz) 

and the variance of the predicted points is 

I txl d e 0 
0 I 0 0 e 

Var(x', d') = x̂ + to + ddV+eeV 
?~2 

TZ J 

To obtain the new depth and variance at a point x, we must define an interpolation function 
for the patch surrounding this point. For a linear interpolant, the equation i ^ 0 ^ 0 1 1 f U n C t l ° n 

d = d } ^ i z A + d i + v ^ - ^ 

= (1 - X)di + Xdi+l, where A = ( x ~ x ^ 
(xi+1 - Xi) 
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dd = (xM -x) = 

ddi (xi+i - xd 
dd (di+x - dd(pcM - xd (dM - dd — = -z = - m ( l - A), where m = - -

and the associated Jacobian is 

= [ - A) -mA (1 - A) A . 
o(Xi,xM,di,dM) 1 J 

The variance of the new depth estimate is thus 

Var(rf) = m 2 [ ( l - A ) V J + A V 2 J + a ^ ^ 

Each of the above four terms can be analyzed separately. The first term in the above equation, 
which involves <r2, depends on the positional uncertainty of the points in the old map. It 
can either be ignored (if each disparity element represents the disparity at its center), or a\. 
can be set to j . The second term is a blend of the variances at the two endpoints of the 
interpolated interval. Note that for A = i , the variance is actually reduced by half (the average 
of two uncertain measurements is more certain). It may be desirable to use a.pure blend 
((1 — \)cr% + ) to eliminate this bias. The second term also encodes the interaction between 
the disparity uncertainty and the disparity gradient m. The third term encodes the interaction 
between the disparity gradient and the camera translation and pan uncertainty. The final term is 
the uncertainty in camera forward motion, which should in practice be negligible. 
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