
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Pattern Knowledge and Search:
The SUPREM Architecture

H a n s B e r l i n e r & Car l E b e l i n g 1

January , 1 9 8 8
C M U - C S - 8 8 - 1 0 9

Abstract

We present a new problem solving architecture based upon extremely fast search and pattern recog
nition. This architecture, which we have named SUPREM, has been implemented in the chess ma
chine/program Hitech, and has proven to be very successful. We describe the implementation in Hitech
and the reasons for its success, and compare the SUPREM architecture to other well known problem
solving architectures.

Certain interesting phenomena have become exposed as the result of our work with Hitech. The most
important of these is that: "The further a process can look ahead, the less detailed knowledge it needs."
We have also found that patterns can be formulated for quite complex problems in relatively small pattern
recognizers, by eschewing generality and concentrating on likely patterns and their redundancies.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order
No. 4976, monitored by the Air Force Avionics Laboratory Under Contract F33615-84-K-1520, and by an
IBM graduate student Fellowship.

Current Address:Department of Computer Science, FR-35, University of Washington, Seattle, WA 98195

1 Introduction
Problems in decision making are difficult because, in any problem worthy of being deemed a problem, there
are either a large number of alternatives, or the implications of any number of alternatives can create trees
of implications that are huge. Thus there could be many millions of leaf nodes in a search, all of which must
be evaluated with respect to many factors.

An immediate quandary presents itself: The more knowledge one applies to each leaf node, the slower
the process goes. The slower the process, the fewer the alternatives that can be investigated. In the past,
this has led to a schism between animate and machine searchers: the former opting for the few nodes, deep
understanding approach, and the latter for many nodes but shallow understanding.

Humans solve problems in a "knowledge-intensive" mode, applying small amounts of search when nec
essary. The human strategy is flexible and avoids the need to encode all knowledge. Many successful AI
systems mimic the human style and rule-based systems offer the prime example. Competitive gaming systems
typically employ the opposite scheme, relying primarily on search.

While each approach has its advantages, their strategic asymmetry has drawbacks, too: Relying primarily
on either one eventually makes continued performance gains difficult. Figure 1 illustrates the tradeoff 2 .
For a given task, the constant-performance curves exhibit an approximately hyperbolic shape. Consider a
system positioned at point A: Making it "smarter" can increase overall performance to point B while slightly
reducing search speed. Further increasing its knowledge could lead to point C, which would require enough
extra processing to degrade overall performance. In a system far out along the search speed axis, at point
D, the performance gradient nearly parallels the knowledge axis and still faster searching yields only modest
performance gains. Increasing the knowledge used by the search, however, could be expected to yield large
payoffs. The question is how to do this without slowing the search.

To date, most competent AI systems occupy knowledge/search regions near one axis or the other and
further performance advances come slowly. For knowledge-intensive rule-based systems, complex interactions
within the knowledge-base make adding still more knowledge increasingly difficult. The situation is a common
one: Both humans and rule-based systems improve slowly when they know much and search little. For high-
performance systems that rely on large searches, providing additional search capability usually means waiting
for hardware advances.

The deep understanding approach has been adopted by rule-based systems where human expertise in the
field is captured within a knowledge base. This knowledge is then applied to the problem in much the same
way as an expert would apply it. While this approach has performed reasonably well in certain domains,
in the arena of chess playing programs where the criteria for performance are quite precise and the domain
extremely varied (1 0 4 3 possible positions), deep understanding has not produced programs that play better
than mediocre chess.

Using a serial machine for searching requires one to determine the best balance between deep and shallow
searching. It is possible to use a large number of serial machines to split up the task of investigating the
space. However, this runs afoul of just how many machines are available, how they can be tied together,
and how they can share results. The latter consideration can have a dramatic effect on the efficiency of the
search process. Typically, speed-ups of more than the square root of the number of processors are difficult
to achieve in chess.

Experience with chess programs has shown that deep searching solves many of the problems that a
shallow search with deep understanding has difficulty mastering. But deep search still requires a competent
evaluation function to correctly evaluate the leaves of the search. While in theory the evaluation could be
a very complex, open-ended procedure, involving changes of focus from global to local and back to global
again, in most practical situations it is quite satisfactory merely to be able to apply what would pass as a
first-cut approximation by a true human expert in the field. The problem is that such an expert would still
understand a great amount, and this means that the evaluation of a single point in the search space can take
so long that the effect of looking at millions of alternatives is to make the task intractable. The SUPREM

2 Michie makes a similar point in [5]

Speed
Figure 1: The know ledge/search performance tradeoff

(Search Using Pattern Recognition as the Evaluation Mechanism) architecture offers a way of applying high
quality knowledge very cheaply.

2 The SUPREM Architecture
The system architecture has four major parts, as Figure 2 shows:

• The Oracle is SUPREM's primary knowledge repository and has all knowledge the system needs to
operate. Since the knowledge is domain-dependent, each domain requires a unique Oracle. The Oracle
has production-like rules which define interim goals for both sides and the patterns that are needed to
recognize achievement of these goals during the search.

• The Searcher is given a search task by the Oracle. It then invokes the Move Generator and the
Evaluator to do the search and evaluate the leaf nodes of the search.

• From a given domain state, the Move Generator generates subsequent states extremely rapidly by
considering, in parallel, all feasible operators.

• The Evaluator assigns numerical values to each reached domain state by comparing selected parts of
the state — as patterns of state components — to pre-tabulated patterns in its memory.

The four parts are organized into two separate subsystems. The Oracle is usually a general-purpose computer
while the other three components comprise a special-purpose processor.

2

Oracle
Overall control knowledge

Task Results

Searcher

Forward/Backward,

Search Control

Move
Generator

Operators _ Evaluator Move
Generator Evaluator

Figure 2: The SUPREM architecture

2.1 Operation of SUPREM

The Oracle has rules that define the state-classes in the domain, and the knowledge required to properly
evaluate the states likely to be reached by a search starting from the current state. Knowledge takes the
form of patterns plus conditions under which the pattern knowledge can be applied. This pattern-based
strategy gives SUPREM its name.

The Oracle is smart but slow, and somewhat resembles a rule-based system, looking for those patterns
that are most likely to be useful in the evaluation process. To do this well, the Oracle must be reasonably
knowledgeable in the problem domain. At the start of each search iteration, the Oracle analyzes the problem
and selects the appropriate knowledge. It then compiles the patterns into a form that can be evaluated by
a simple table lookup and downloads the compiled patterns into units within the Evaluator that perform
pattern recognition and evaluation. This strategy avoids the recomputation of pattern* values during the
evaluation process, and so significantly speeds the evaluation.

After downloading the patterns, the Oracle selects the depth of search and delegates control to the
Searcher. Search then proceeds as follows:

1. At each new node, the Move Generator proposes the best operator to try next.

2. The Searcher broadcasts the candidate operator on the bus so that Pattern Recognizing and Evalu
ation units: "recognizers", and any other state-maintaining units, can update their individual state
descriptions.

3. The Evaluator scores relevant state features via independent recognizers that consult their internal
pattern tables for values. One key advantage over other searching systems derives from SUPREM's use
of numerous recognizers operating in parallel. The Evaluator combines recognizer outputs in an adder
tree and returns the new state's value.

4. The Searcher decides whether to continue along the current branch or backtrack to some earlier point.
Control recycles to step 1.

3

When the Searcher completes the specified search, control returns to the Oracle. The Oracle then decides
whether to probe further or accept the solution returned.

2.2 SUPREM Applied to Chess
The SUPREM architecture is realized in Hitech, Carnegie-Mellon University's chess machine/program. A
Sun-3 workstation is the host computer and contains the Oracle, which is written in C and consists of about
20,000 lines of code. About 40% of the host software is the Oracle program which contains pattern selection
information and the pattern library. The pattern library encompasses approximately 40 downloadable pat
terns. The remainder of the host software controls the chess program, and maintains the top-level activity
representation, an "opening book", and user interface.

The custom hardware in the Searcher can process approximately 175,000 chess positions/sec. This
includes generating a move, and incrementally maintaining all representations and the values that these
generate, and retracting all these when the time comes to back-track in the search.

There are 14 general recognizers in Hitech. These are units that are capable of detecting patterns that
encompass 36 bits. Recognizers are used to detect the presence of partial-board patterns. Each recognizer
has a set of patterns for which it is responsible. Included in the armory of a recognizer are tables for detecting
the presence of the patterns, and tables or interpreting the meaning of detected patterns. The interpretation
of a pattern may involve assigning a value to it, or mapping it into a class of patterns, so it can be combined
with other patterns that have been detected to make larger patterns. There are three levels of interpretation
in our recognizers, although there is nothing fixed about this. It would seem that the larger the recognizers
and the more levels of mapping, the better. Our design was influenced primarily by cost.

There are also 8 Global-State recognizers. Global-State recognizers monitor certain variables that may
be crucial to deciding whether a certain pattern is meaningful, or determining the degree of meaningfulness.
These recognizers feed their values into the final interpretation of any general recognizer, and are intended
to provide global context. Details of this can be found in Section 6.3.

The Oracle analyses the root position to be processed, and determines the type of knowledge that is
most appropriate. Since recognizers are a finite resource, only a fraction of the available patterns can be
downloaded, and it is the task of the Oracle to do this effectively. The Oracle determines the stage of the
game and other salient features of the root position in order to make its decisions. Once the best set of
patterns have been identified, they are downloaded into the appropriate recognizers, and the search can
begin.

3 Hitech Functional Description
Hitech, like most successful chess machine/programs executes an a-ft iterative-deepening search [7]. This full-
width search involves searching all alternatives at a node except those that can be mathematically eliminated
as having nothing to do with the solution. The search must know what the complete set of alternative moves
is at any stage in the search, and keep track of those already tried as well as those remaining to be tried.

Iterative deepening involves doing a complete search to depth N, followed by a complete search to depth
N + l , followed by another to depth N + 2 , and so on as time allows. It has been shown that this method
does not waste time, as may at first appear. Its efficiency results from the information that is computed
during each iteration and then saved to be available during succeeding iterations. One item of information
saved is the best move in each position as remembered from the last time the position was visited. Since the
effectiveness of alpha-beta is very much dependent on the order in which moves are tried, it is an important
advantage to try the likely-best moves first. Another item of information is the value of the sub-tree below
each node and the depth to which it was searched. If the identical position should be found again in the
tree, it may be possible to avoid searching it altogether.

We now describe in detail how SUPREM is realized in Hitech, starting with how the Searcher is organized.

4

8
7
6
5
4
3
2
1

BQ RQ

BQ RQ BQ

BQ N P
RQ N BQ

N KP
BQ

KP
RQ

KP
BQ N

RQ RQ RQ
K
RQ • K

RQ RQ RQ
N KP

BQ
KP
RQ

KP
BQ N

BQ N P
RQ N BQ

BQ RQ BQ
a b c d e f g h

Figure 3: The set of ever-possible moves to the single square e 4 .

4 The Searcher
4.1 The Move Generator
The speed of the operator that provides the means to move from one point in the search space to the next
places an upper bound on the size of the search space that can be examined. In chess this is often the factor
that limits the search size since the rules that govern how pieces may move are rather complicated.

The move generator also plays a crucial role in the speedup obtained by the a-f3 algorithm. It can be
shown that optimal efficiency is achieved if the best move is examined first at each node in the search tree[4].
Moreover, at many nodes of the tree only one move needs to be generated if it provides a refutation. Thus
the order in which moves are generated has a great effect on the speed of the search. Unfortunately, typical
software move generators are forced to generate all moves since it is difficult to determine a priori which
move to generate first.

4 .1 .1 A Fas t P a r a l l e l C ircu i t for M o v e G e n e r a t i o n

All previous software and hardware move generators have been concerned with only the moves of the pieces
that are actually on the board in a given position. Software move generators generally compute the entire set
of moves in the most convenient order and then sort them according to some set of heuristics. In contrast,
Hitech's move generator examines in parallel every move that could ever be possible, and computes the
subset of those moves that are actually legal in the current position. It then selects what it projects to be
the best move from this set of legal moves one at a time as required.

We call the set of moves that could ever be possible the ever-possible moves, which can be described as
the set of triples {piece, origin, destination} in the cross product (Piece x Square x Square) that are allowed
by the rules of chess. This set can be enumerated by examining all the moves that could ever be made by
each piece in turn. For example, one can place the queen on each of the 64 squares in turn, listing those
destination squares to which the queen could move on an empty board. Another way to enumerate this set
is to examine each square in turn and list all the moves that can be made to that square by the different
pieces. We have chosen the latter method. Figure 3 shows the ever-possible moves to the square e4.

An ever-possible move is actually legal in a position if the following three independent conditions are
satisfied:

• The origin condition: The appropriate piece must be present on the origin square.

• The destination condition: The destination square must either be empty or be occupied by an oppo
nent's piece.

5

• The sliding condition: For sliding moves (queen, rook, bishop and two square pawn moves), the squares
between the origin and destination square must be empty.

As an example, consider the move bQ/b4-e4 . For this move to be legal, the black queen must first be
on the square b4, the square e4 must be empty or contain a white piece, and the squares c4 and d4 must be
empty.

There is a fourth condition that the move generator ignores: The player's king must not be in check
after the move is made. This condition is computed after making the move by checking whether the king
is attacked. The moves generated by the first three conditions are often called pseudo-legal moves; we will
continue to call them legal with the understanding that the fourth condition is checked elsewhere.

The computation required to decide whether each of the ever-possible moves is legal is straightforward,
requiring only a handful of gates operating on information about the state of the squares affecting the move.
A parallel move generator comprised of one of these simple circuits for each ever-possible move can compute
the entire set of legal moves very quickly in parallel. A key observation made years ago by Allen Newell
is that there are only about 4000 ever-possible moves for each side. Although this still represents a large
circuit, VLSI technology can make this kind of parallel solution attractive.

4 .1 .2 C o m p u t i n g t h e E v e r - P o s s i b l e M o v e s

Each ever-possible move can be thought of as a pattern to be recognized. This pattern involves some
small subset of the board state and recognizing the pattern instance that corresponds to a legal move is
straightforward. Thus the move generator really comprises a large number of pattern recognizers, one for
each ever-possible move. Moreover, these pattern recognizers can all fire in parallel to determine the set of
legal moves.

Each move recognizing circuit operates on a subset of the state variables that represent the board po
sition, producing as output a boolean value indicating the legality of a single move. The straightforward
implementation of the state variables is an 8 by 8 array representing the board, where each array location is a
4-bit value encoding the piece occupying that square of the board. The state variables are easily maintained
incrementally as the game state changes. With the exception of the relatively rare cases of castling and en
passant, moves affect only two squares and thus two writes into the array are sufficient to update the state
variables when a move is made or backed u p 3 . Each of these writes is called a halfmove and either places or
removes a piece on a square.

The problem with this implementation is the communication of the state variables to the move recognition
circuits. Since each of the 4000 move recognition units requires about 5 inputs, on the order of 20,000 wires
are required for communicating the state variables to the recognition circuits. One of the characteristics of
VLSI circuits is the high cost of communication. This comes about because the size of the active devices has
been reduced to the point that the wires between adjacent devices require as much, or more, area than the
devices themselves. If signals are required to go any distance at all, the space they consume can overwhelm
that used by active circuitry. Moreover, the delay attributed to long wires can dominate the gate delay for
VLSI circuits. This disparity is even more pronounced if signals are required to cross chip boundaries.

The key idea of the move generator architecture that permits a reasonable VLSI implementation is that of
duplicating the state variables throughout the move computation circuits so that the inputs to those circuits
are available where they are used instead of being communicated through many different wires. Of course the
state variables themselves must be maintained as moves are made, but this requires far less communication.
Only 10 wires are required to communicate the address and data when writing the state variable array.
While these 10 wires must be routed throughout the circuit to all state variables, this can be done with a
regular layout to minimize wiring space. This transformation in the circuit is represented in Figure 4.

There are some important points to be made about this circuit transformation. First, it makes a single
chip implementation more feasible by drastically reducing the communication between circuit elements on

3 Moves made when extending a branch of the tree are reversed when the search back-tracks. An alternative solution would
be to maintain the state variables in a stack.

6

Output compression

State variable

Result

Replicated
State variables

Event decoders Output compression

Events

J —

Output

Functions
e.g.

Priority
Encoder

Result

Figure 4: The tangled wiring network that carries the state variables to the function circuits in the first
circuit is replaced by a single event bus that communicates the change in the state variables. Copies of the
state variables used by each function are kept within the function circuit itself

the chip. Second, if the entire circuit is too large to fit on one chip, the circuit can be partitioned almost
arbitrarily onto several chips. This is in contrast to many parallel circuits that are constrained by the
communication pattern to an all-or-nothing approach where the circuit is not feasible if it does not fit
on a single chip. This also allows the implementation to track advances in technology. While the initial
implementation was done using 64 chips, it could be done with just 4 chips using current technology.

One can view the move generator as a write-only memory where the memory output is a set of functions
of the memory state. The memory is not the usual one, however. A single write instruction modifies many
different memory locations, and since a single memory value is used by many different functions, each location
is replicated in each function circuit to minimize the amount of wiring required. One can also view move
generation as a large pattern recognition problem for which there are 8000 possible features (4000 moves
for each side) to be recognized in a board position. Each of the 8000 circuits acts as a feature recognizer
that looks for one particular pattern corresponding to one ever-possible move. As the board changes, the
information about the change is broadcast to all the recognizers, each of which determines whether a feature
is present or absent.

It is the ability of this architecture to perform a large amount of pattern recognition in parallel that
gives SUPREM much of its power. Note, however, that in the case of move generation the patterns that are
recognized do not change and thus the patterns can be compiled into hardware. In the more general case
such as position evaluation, the hardware must be flexible enough to allow the Oracle to program the set of
patterns that are relevant.

7

4 .1 .3 M o v e S e l e c t i o n

The move generator as described thus far consists of a large parallel circuit that computes the legality of
the approximately 4000 ever-possible moves for each side. There remains the task of isolating the few moves
that are actually legal. This process of move selection is extremely important since the order in which moves
are tried makes a large difference to the efficiency of the c*-/? search.

One solution would be to use a suitably modified priority encoder to identify the legal moves in a serial
manner. The drawback of this method is that it imposes a static ordering on the set of ever-possible moves.
This static ordering cannot take into account dynamic factors such as square safety that can drastically
change the value of a particular move.

Static ordering can be done, however, on a square by square basis. That is, the dynamic factors that
affect the value of moves affect all moves to one square in the same way. For example, if the opponent is
guarding the square, the value of all moves to the square is reduced because of the likelihood that the moved
piece will be captured. Thus the move generator is partitioned into 64 parts, one for each square, with a
priority encoder used to select the moves to each square without sacrificing search efficiency. In the process
of generating moves to a square, the value of each move is estimated by noting the value of the moving
piece, the captured piece, if any, and the safety of the destination square. This safety calculation is possible
because the parallel move computation circuit actually computes the entire set of legal moves. The moves
are then dynamically ordered among squares based on the value associated with each move.

4 .1 .4 M a i n t a i n i n g t h e C o n t e x t o f A c t i v e P o s i t i o n s

The a-/3 search traverses the search tree in depth-first order so that at any position the first move is made
and its subtree examined before the subtrees of the remaining moves are examined. At about half the nodes
in the search tree only one move is examined and thus the move generator produces moves one at a time
when required. Thus the context of the move generator must be saved from the time one move is generated
until the next move is requested, during which time the move generator is processing the positions in the
subtree. The move generator context includes the state variables that represent the board position, which
are restored automatically by performing inverse moves when the search backs up the tree, and information
about which moves have already been generated in each position. This latter information is kept by each
chip in a stack that remembers the most recent move tried from a position. The priority encoder then uses
this to generate the next untried move.

4 .1 .5 S p e c i a l O p e r a t i o n s

The move generator supports several operations that serve to speed up the search algorithm. The first is
used during the part of the search that attempts to play out the active components of a position. This
quiescence search is done after the pre-determined search depth is reached and examines only capture moves
and responses to check. A control signal from the chess machine is asserted during the quiescence search
which informs the move generator chips to generate only capture moves. This signal is not asserted if the
side to move is in check so that all escaping moves are allowed. However, the move generator also is able to
avoid most of the illegal moves that arise when escaping check.

Another special operation allows the chess machine to query the move generator about the legality of a
particular move. This is used to verify whether a move suggested by another module such as the hash table
or killer table is actually legal. This operation can be done very quickly since the move generator has a list
of all legal moves.

4 .1 .6 T h e M o v e G e n e r a t o r C h i p

The current implementation of the move generator consists of 64 chips, one for each board square. The
block diagram for this chip is shown in Figure 5. Besides the move computations, each chip contains a
maskable priority encoder, a stack of move indices for representing the current search context, a PLA for

8

Absolute
move
-7
10

Relative
move

10

Address
Translation

Sliding
Condition
Registers

Origin
Registers

(2x80) 80

f8

Mask

Mask,

80

Context
Stack

Priority
Encoder

Destination
Register

Move
index

Voter , Vote^
bus 5

Priority
and

Legal move
PLA's

Figure 5: Move generator chip block diagram.

performing the dynamic move priority calculation, and a distributed voting circuit that is used in conjunction
with the other chips for selecting the move with the highest value. The voting is done by having each chip
place the priority of its move on a bus that all chips can examine. When the chip with the highest valued
move recognizes that no other chips have a better move, it presents its move. More details of the move
generator chip can be found in [3]. The move generator chip was designed so that it can generate the moves
to any of the 64 different squares. Each of the 64 chips is assigned to a different square of the board during
initialization. Designing just one chip and using 64 copies takes advantage of the relatively inexpensive
replication costs of VLSI chips. In so doing, there are some inefficiencies, especially at the edge of the board
where there are fewer legal moves than at the center. While this particular implementation was convenient
for prototyping the design, the move generator architecture allows a range of implementations using fewer
chips or even wafer-scale integration to decrease board area, power consumption and delay. This architecture
is thus suitable for a variety of technologies with different circuit densities.

5 Position Evaluation
The third component of the classic chess program that goes along with the search control and move generation
is position evaluation. In theory, the search terminates only at nodes whose values are win, loss or draw,
but such a termination condition cannot be used in practice since complete game trees for most interesting
positions consist of at least 1 0 1 0 0 nodes. The evaluation function is used to approximate the result of a
complete search by computing values by which different positions can be compared. Each leaf node, as
determined by some a priori depth limitation, is assigned a value by the evaluation function to produce an
ordering on the set of all leaf nodes with respect to the probable outcome of a complete search from that
node. While material is the most important consideration, many more subtle factors arise when comparing
positions, since a winning position can be created without any win of material. An evaluation function that
does not recognize these positional factors is sure to lose, even to an average player, given the search depths
presently feasible.

If one examines a typical winning line of play in a game between good players, there is a gradual
progression in the value of the evaluation function from an even position to the final win. At first the

9

advantage is subtle with one player having a positional advantage because his pieces are deployed more
effectively than his opponent's. As the game progresses, this positional advantage is increased until at some
point a player actually establishes a material advantage. Eventually the winning player is able to use his
superior forces to engineer a mate. Positions in which the material balance is at stake are called tactical
while those in which the players are jockeying for a positional advantage are called positional.

Computers tend to be very good at tactical play since the material computation is very simple, and
to maintain complete accuracy in deep calculation may strain even a human World Champion. It is in
computing the subtle positional factors that computers have difficulty. Computers often use their superior
tactical ability to save weak positions that were reached because of an inadequate understanding of the
positional defects of earlier decisions. The problem is that these positional defects manifest themselves only
after many moves so that no reasonable search can hope to discover their eventual effect. As more than one
programmer has discovered, the only advantage that a deep search has in these cases is that the positional
problem becomes apparent somewhat sooner, with a slightly better chance of survival.

Evaluation, then, comprises many different factors, all of which must be taken into consideration when
comparing two positions. While it is possible to carry the result of this evaluation as a vector of values,
each representing some component of the evaluation, the values are typically combined into a simple scalar
that represents the weighted sum of the components. These weights are assigned according to the relative
importance of each component[6]. Choosing the correct weights is difficult because components may be
more or less important depending on the exact position. In these cases, a correct evaluation requires that
the weights be themselves the result of some "higher-level" evaluation. These dynamically computed weights
are called application coefficients[l]. The problem of combining the evaluation components into one scalar is
difficult even for human players, involving decisions such as what constitutes sufficient positional compensa
tion for some loss of material. How the application coefficients are computed is a matter of judgement and
experience.

There is a complex relationship between the evaluation function and the depth of search. As the search
is able to see deeper, the evaluation function needs to know less about tactical factors other than simple
material. For example, a capture is discovered by a one ply search which knows only about material, the
concept of a double attack is discovered by a three ply search, and the threat of a double attack by a five
ply search. Thus the evaluation function used by an eight ply search has less need to know explicitly about
a double attack than a six ply search. Other positional factors, such as board control and piece mobility,
appear to be less important when searching deeply. The key to building an effective evaluation function is
deciding which factors are indeed important relative to the power of the search.

There are three related considerations involved with designing an evaluation function. The first is the
identification of the knowledge required to understand positions sufficiently well. The level of play of the
program ultimately depends on how well the evaluation function can distinguish good and bad positions.
Identifying the components that the evaluation must understand is the job of an expert who knows the
problem intimately and can identify and correct deficiencies discovered through experience with the program.
The second consideration is whether these components can be computed efficiently, and this depends on the
complexity of the evaluation and the power of the computational method. Finally, a decision must be made
about which evaluation components to include in the final evaluation function. This decision must consider
the tradeoff between search speed and the extent to which the evaluation should understand each position.
This again is the product of the experience and judgement of an expert but also depends on how efficiently
the evaluation can be implemented.

The tradeoff between search speed and knowledge is a classic one: including more knowledge in the search
necessarily slows down the search. In computer chess, the emphasis has shifted over the past decade in favor
of speed. Since 1980, the fast searchers, Belle and Cray Blitz, have dominated computer chess as against the
more knowledgeable programs such as NUCHESS. This reflects the difficulty of encoding the relevant chess
knowledge and bringing it to bear efficiently. In many cases, the time required to analyze some complex facet
of a position slows the search to the point where the overall play of the program is diminished instead of
enhanced. The problem is how to increase the knowledge without decreasing the speed. It is just this ability
of Hitech to perform complicated analyses extremely quickly that allows it play at such a high standard.

10

5.1 Evaluation Complexity
The different components of the evaluation function have widely varying computational requirements. We
classify an evaluation function as first-order, second-order or higher-order based on its computational com
plexity. An evaluation function, / (S) , is defined as first-order if, and only if,

/ (S) = X>*) (1)

»

where i ranges over all the squares of the board in position S and s» is the piece on square i. In other words,
a first-order evaluation can be computed by examining the state of each square of the board independent of
the other pieces and squares. Moreover, the overall value is computed as the linear sum of the values of the
separate squares. This means that the function / can be computed incrementally during the search. That
is, if the difference between two positions S% and S* involves only one square, 6, then

f(S') = f(Si)-g(6,s\) + g(6,8{) (2)

since
f(Sf) = Yl^sf

j) + 9(S,s{)
jjL6

and

f(si) = J2gU,si

J) + 9(6>4)-
3**

Once the initial value of the evaluation function is established, computing its value at new positions
is accomplished by computing the function g on the s$'s that describe the difference between neighboring
positions in the search. There is a close relationship between the s«$'s used here and the halfmove operators
that we have used previously to describe the incremental change from one position in the search to another.
A remove piece halfmove corresponds to the negative term in equation 2 and a place piece halfmove to the
positive term. Since most moves affect two squares, a total of four halfmoves are required to move the search
from one position to another. If g(i,NULL) = 0, where NULL represents the state in which no piece occupies
the square, then only two halfmoves are needed for non-capturing moves, and three for captures.

The prime example of incremental evaluation is that of material evaluation which totals each player's
material. In this case the function g is defined simply by

9(6,s6) = Value(^)

where values are assigned to each piece based on their relative strengths. By contrast, determining whether
a pawn is isolated cannot be done incrementally, since it requires information about the presence of pawns
on three adjacent files.

A second-order evaluation function is one that depends on the relationship between two or more squares
and thus cannot be computed incrementally. A second-order evaluation function cannot be described by
equation 1 and must be described by the more general equation

f(S) = g(si, 5 2 , . . . , $ *) , where k > 1. (3)

In the worst case, g may be a function over the entire board, but generally second-order evaluations depend
on a subset of the squares. For example, each legal move computation performed by the move generator is a
second-order evaluation. The legality of a move depends on the state of the origin, destination and possibly
intervening squares. This second-order evaluation operates over a relatively small subset of the board state,
which led to the simple parallel architecture based on distributed state described in Section 4.1. We will
now show that this architecture can be generalized to perform position evaluation.

11

5.2 The Role of the Oracle
The Oracle is located in the host computer and cooperates with the Searcher. It is invoked at the start of a
search to perform a detailed analysis of the root position to determine:

1. The present state-class of the root, and

2. The state-classes that are likely to be encountered during the search, and which would therefore require
evaluation.

The Oracle allows the evaluation to be tuned to the region that the search is likely to cover. This was
not required in the case of the move generator since the set of ever-possible moves does not change. The
ability to determine the patterns relevant to the search locale greatly increases the efficiency of the pattern
recognition architecture.

The Oracle must be both knowledgeable in its domain (chess), and be an excellent resource allocator.
Typically, there is more knowledge that could be put into recognizer units than there are units. However,
certain simplifying assumptions help here. For instance, once the amount of material for one side drops
below a certain threshold, it is unlikely that considerations of opponent's king safety will come into play.
This allows the focus to be gradually shifted to the endgame, and recognizers would be assigned such tasks
as they are freed from performing other tasks. This type of tracking of what is important allows the same
recognizer units to gradually change the patterns they are monitoring, providing a great deal of flexibility
with a small number of units.

This flexibility is achieved by generality in the hardware which can receive down-loaded tables at the
start of the search to deal with a large variety of situations. There is some risk in using the Oracle to decide
what knowledge is to be used. For instance, in one branch of the search many pieces could be swapped off,
reaching a very simplified position, far away from the root, for which the designated knowledge would not
be suitable. Also, it is possible for material on the board to i n c r e a s e due to pawn promotion, and thus
king safety could again become a consideration, after having been dismissed as inconsequential in the Oracle
analysis. However, such occurrences are very rare.

This effect can be lessened by making the evaluation less dependent on assumptions made at the root.
This trades off increased evaluation hardware for more precise evaluation. Given a fixed amount of evaluation,
the Oracle is always faced with the decision about which components to include for any one search. This
decision is much easier if the hardware is not too cramped.

6 Implementing the Evaluation Function
First-order evaluation is interesting since it is extremely easy to compute, requiring only the specification of
the function g in Equation 1. The domain of g is the cross product of the set of pieces and the set of squares.
Since there are 12 different pieces and 64 squares, g can be completely specified by a table with 768 entries
Moreover, many different first-order evaluations can be combined into one since

/ i (S ') + f2(S') = / i (5 ') - 9^6,4) + 9l(6,s{) + / 2 (S ') - g2(6,s\) + g2(S,s{)

and thus
g(i,s) = gi(i,s) + g2(i>s),Vi,s.

Since it is so inexpensive to compute a first-order evaluation, it is advantageous to cast as much of the
evaluation function as possible as first-order evaluation. Although at first glance there appears to be little
besides simple material computation that is first-order, second-order evaluations can often be approximated
by a first-order evaluation. While the result is less precise than that derived through second-order evaluation,
in cases where the second-order evaluation is difficult to compute or not important enough to warrant
the extra computation, the first-order evaluation can provide a performance gain if it adds any additional
understanding at all since it does not slow down the search.

12

iff a ii mm i i i i i
a b c d e f g h

Figure 6 : The king Not Safe Safe

As an example, consider the problem of king safety. In Figure 6 the king on the right side of the figure
is safely hidden from attack behind the three pawns. Removing one of these pawns would put the king in
some jeopardy, removing two would expose the king to serious threats, but removing all three would be a
disaster. Advancing the pawns one square would weaken the shelter somewhat. This simple king shelter
evaluation can be approximated by defining the function g as shown in Figure 7.

16 16 16
25 25 25

Figure 7: The function g for pawn shelter as defined for the pawns on the six squares in front of the king,
where a pawn is worth about 100 points.

This definition of g gives the pawn shelter at the right side of Figure 6 a bonus of 75 points. Advancing
one pawn loses 9 points, losing one pawn costs 25 points, and losing all three costs 75 points. Since the loss
of the second and third pawn is much more serious than the loss of the first, a more precise pawn shelter
evaluation would adjust the amount each pawn is worth based on how many of the others are still present.
Moreover, capturing from b2 to a3 (as shown on the left side) is much worse than advancing from h2 to h3,
but this cannot be reflected by this first-order evaluation. However, the first-order approximation does give
some idea about the value of these pawns, and while it is not as good as second-order evaluation, it is better
than no evaluation at all.

Using an Oracle and first-order evaluation to approximate second-order evaluation yields surprisingly good
play when used in combination with deep search. In fact, Hitech initially used only incremental evaluation
in conjunction with an Oracle, attaining an estimated rating of about 2100. But it would sometimes make
serious mistakes because it did not understand some things about chess that involve second-order evaluation
that cannot be reasonably approximated by a first-order evaluation controlled by an Oracle. The primary
deficiency involved some basic ideas about pawn structure such as doubled and isolated pawns. These
concepts, which are crucial to playing high calibre chess, simply cannot be computed without second-order
evaluation.

6.1 Computing Second-Order Evaluations
As defined by Equation 3, a second-order evaluation must be expressed as an arbitrary function over the
state of more than one square. Such an evaluation can be computed serially, as is usually done, but only at
a cost to the search speed. The move generator has the same problem since the legal move computation is a
second-order evaluation. This section describes an architecture for the evaluation function that is similar to

13

state
registers

halfmoves

function
table value

state
registers

function
table • value

state
registers

function
table value

^Final
"value

Figure 8: The overall evaluation function is the combination of the parallel evaluation of independent com
ponents.

that used for move generation. In the case of the move generator, each legal move computation operates on
the set of state variables consisting of the origin square, the destination square, plus intervening squares for
sliding moves, resulting in a boolean value indicating whether the move is legal. The state information for
each move is maintained by a set of registers that are updated incrementally by halfmoves broadcast over
the move bus.

In the case of an evaluation function, the computation operates over the state relevant to the particular
evaluation component, and the result is a number representing the value of a particular state assignment. If
the state over which the function operates is relatively small, then the function can be computed by table
lookup. For the king safety example of Figure 6, the state can be represented as six bits, one for each pawn
shelter location, and thus a 64 entry table is sufficient to compute the second-order pawn shelter evaluation
precisely. The overall evaluation function is divided into a number of different evaluation components such as
pawn structure and king safety, each of which is analyzed separately and the results added together to reach
a final value. This overall evaluation architecture is summarized in the simple block diagram in Figure 8.

For most second-order evaluation components encountered in chess, the amount of relevant state is too
large for simple table lookup to be used as the evaluation method. In these cases, the evaluation is divided
into a number of subcomponents that can be analyzed separately and then combined. For example, the
evaluation of king safety can be divided into the evaluation of the pawn shelter, the location of the king
with respect to the castling privilege, and the attacking opportunities of the opponent. The subcomponents
are defined such that the state under analysis is small enough to allow a table lookup evaluation. Moreover,
each subcomponent evaluation reduces the total state under consideration by discarding redundant and
irrelevant facts. For example, we reduce the pawn shelter state from about 8000 possible categories to only
16 final categories of shelter. A similar reduction takes place with respect to king location and opponent's
attacking chances. Finally, all these factors are combined to produce 256 categories of king safety. This
allows table lookup to be used to combine the results of the individual subcomponents into a final value.
This mapping-down process is illustrated in Figure 9.

The above method amounts to a recursive factoring of the evaluation function into subfunctions that
have limited input. Our implementation uses 8K x 8 memories for each mapping unit which limits the
subfunctions to 13 bits of state input. The current hardware uses three levels of mapping to reduce a total of

14

Increasing Semantic content

State
Variables

Evaluation
Result

Figure 9: Complex evaluations are performed in a series of steps that map the overall state down to a final
value.

36 bits of state and context information to an 8-bit value. These tables can be specified before each search
which allows the Oracle to decide which evaluation components are most important within the scope of the
search.

6.2 The State Variables

Each evaluation component operates over a subset of the entire set of state variables. The representation to
be used for this subset must be specified as part of the function specification. As in the move generator, the
values of these variables are modified incrementally as the search makes and unmakes moves while traversing
the search tree. The state variables are kept in a set of state accumulators whose contents are defined and
updated using a table of values called the state description table. This table contains an entry for each
possible halfmove, indicating the amount to be added to the accumulator when a piece is placed and the
amount to be subtracted when the piece is removed.

The entries in the table determine the meaning of each bit in the accumulator. In practice, the accu
mulator is divided into a number of fields, each representing some relevant set of facts about a position. A
field may represent a pattern or a sum. For example, one field may count the number of pawns, another
may keep track of the location of the king and another may indicate whether a bishop is on a particular
square. The carry chain of the accumulator can be broken at predetermined points in order to keep signed
data from overflowing from one field to another. The data that is stored in the state accumulator is not raw,
but already encoded via the state description table. By knowing that certain states cannot exist or are not
of interest, the number of field entries can be reduced. If we are interested in a pattern of 3 elements, but
only whether or not they are all present, it would be wasteful to assign a bit to each element. Instead, one
uses the arithmetic power of the accumulators to assign a value of "1" to each element. Then when all are
present, the accumulator will indicate "3", and no other value will be of interest. In this way only two bits
are used to compute this function instead of three, as would be required by the naive method.

15

State State
Description Description

Table Table

I Accumulator 1 Accumulator 1

12,
\ 1

1 2 /

\ f
8Kx8

Function Table
8Kx8

Function Table

Context Information

Context
Selection

7| %
8Kx8

Function Table

4i
4Kx8

Function Table

T
Final Value

Figure 10: The design of a single evaluation unit.

6.3 Application Coefficients and the Role of Context
We have assumed up to this point that each evaluation component can be analyzed independently and the
results summed into an overall value. In many cases, the results cannot be combined linearly. That is, there
are nonlinear relationships between the components that affect how the results are combined. For example,
the relative importance of the king safety component depends on the amount of material remaining. Or if
the king is under severe attack, it may not matter much that the pawn structure is strong. This contextual
information can be applied via application coefficients [1] which specify how much weight a component carries
in light of other factors.

We have built into our evaluation hardware the ability to include the results of other evaluation compo
nents as part of an evaluation. Up to three results from other evaluation units can be selected with which to
perform a final mapping on the component evaluation value. This obviously has the opportunity for feedback
paths, but we do not allow this since the time for the circuit to settle would become unbounded. One might
note the resemblance of these context connections to the lateral inhibition connections in neural networks.

Figure 10 gives the overall design of one of our second-generation evaluation units. Two levels of mapping
are used to compute an intermediate value from the current state, and a final mapping applies selected context
information to produce a final value. Hitech's Evaluator contains 14 of these general recognizer units and
6 additional recognizers that are dedicated to pawn structure. Another 8 smaller recognizers are used for
computing global state such as total material, material balance, and the number of remaining pawns. This
global state provides context whereby the interpretation of the other recognizers can be modified.

This second-generation hardware differs from our first-generation hardware, in size but not basic design.
The amount of state has been extended from 20 to 24 bits, the ability to use context information has been
added, the number of units has been increased from 8 to 14, and 8 global state recognizers have been added.
We should point out that the global state recognizers can be used either to provide context information to
the evaluation or to extend the amount of board state used by a recognizer. This gives the new evaluation
hardware a great deal more flexibility than the original design.

16

Controller

Status Signals

f 1 \ ! 1 \ t • 1
Move

Generator
Move

Manager Evaluation

Move Bus i
Value Bus

Alpha-Beta
Control Hash Table

J *

ALU

A A

Figure 11: The chess machine comprises a set of modules that operate under control of a microprogrammed
controller and communicate over two shared busses.

7 The Hitech Chess Machine
The previous sections have described a parallel architecture for move generation and position evaluation,
and presented the details of their implementation. These functions must be augmented by other functions
such as a-/? search control and repetition detection for the program to be fully operational. This section
describes the chess hardware and software that makes up the balance of the Hitech chess machine.

The structure of the chess machine, shown in Figure 11, is similar to that used by other special purpose
machines such as Belle[2]. A controller runs the a-/? algorithm using specialized hardware units to perform
the computationally complex tasks of move generation and evaluation. Two data busses connect the chess
machine modules. The first is the move bus, which communicates the halfmove operators used to move from
one position in the search tree to the next. The second is the value bus, used to communicate values between
the evaluation function and those modules that use values to perform the a-/3 decisions. Each module may
generate status signals indicating the presence of specific conditions that are used by the controller to modify
the flow of control.

The structure of the controller is shown in Figure 12. Microprogram control flow is specified by a next
address field in the microinstruction. Branches are performed by OR'ing selected status signals into four
bits of the next address field. By assigning branch targets appropriately, 2-way, 4-way, 8-way and 16-way
branches can be performed based on any subset of the four status signals. Microsubroutines are supported
by a subroutine return address stack.

The controller interfaces to a host, currently a Sun-3 workstation, via an interface to the host bus. This
interface contains several registers that are written and read by the host program to communicate data to
and from the chess machine and to initiate execution of microprograms. Data is passed between the host
and chess machine via registers connected to the move and value busses. Commands executed by the chess
machine are regarded as subroutine calls by the host, where the arguments are written into the move and
value bus registers before writing the command register and the results are read back when the operation is
complete.

17

Status
Signals

(79)

<

Microprogram
Memory

(2K x 160)

Pipeline Register
/

\

'l60

Next
Address

Branch
Control Control Signals Return Address/

Constant

-120 16
A

Subroutine
Return
Stack

Value Bus

Figure 12: The chess machine controller.

7.1 Move Generator
The move generator used by Hitech is built from 64 of the VLSI chips described in Section 4.1, with additional
special hardware to generate castling and en passant moves, which are not handled by the chips. These special
moves are only rarely legal and thus are handled as exceptional conditions by the controller. If one of the
special moves is legal, a status flag is asserted which causes control to be diverted to a special routine that
generates the corresponding halfmoves. In the case of castling, for example, the hardware asserts a status
flag if the player still has the castling privilege and there are no pieces between the king and rook. The
controller then queries the move generator to determine whether the opponent controls any of the squares
that the king must cross.

Another special case is that of pawn promotion. Although the move generator produces pawn advances
to the last rank, it does not perform the actual promotion. This is done by special hardware that recognizes
any pawn move to the last rank and raises a status signal to force the controller to intervene and promote
the pawn to each of the four possible major pieces in turn.

7.2 Evaluation
Hitech's evaluation is divided into two parts: Incremental, first-order evaluation using a simple table defined
by the oracle, and general second-order evaluation performed by the hardware described in Section 6.1. The
actual programming of the second-order evaluation hardware is specified using a compiler that allows one to
define the functionality of each unit in a straightforward manner. The Oracle determines before each search
which evaluation components to include. This decision is based on the number of available units, the phase
of the game, and the board position itself. Compiling and downloading the evaluation tables can take 15-20

18

seconds, but the host software recognizes cases where tables have already been set up and the startup time
averages less than 5 seconds per search.

7-3 The Transposition/Refutation Hash Table
This hash table is an optimization that allows results that have already been computed earlier in the search
to be used to reduce the search time[8]. One function of the hash table is to detect transpositions, i.e.
positions that are reached via two different paths in the search tree. By saving the result of each subsearch
in the tree, the effort to search a position when it is reached a second time can be saved. The use of the
hash table is complicated by ot-fi cutoffs that result in values that are bounds and not exact values. We
maintain only one value for each position along with flags indicating whether the value is an exact value, a
lower bound or an upper bound. In some cases it is necessary to re-search a subtree if the a-/? values have
changed since the previous search.

The second use of the hash table is to extend the usefulness of iterative deepening by using the information
gained during previous search iterations to improve the move ordering. The hash table saves not only the
result of previous searches, but also the move that achieved the result or forced an a-f3 cutoff. Searching
this move first when searching the position to a greater depth yields near-optimal move ordering. Moves
produced by the hash table are checked for legality by the move generator, since ignoring the possibility of
collisions in the hash table could be fatal.

Hitech employs a depth-based replacement algorithm for positions in the hash table. Nodes that root
a deep search subtree have precedence over nodes that root shallower ones since one wants to keep the
information that is likely to be the most expensive to replace. Our measurements showed that depth-based
replacement outperforms simple replacement by a factor of two.

Our measurements have shown that the combination of very good move ordering by the move generator
combined with the ordering information provided by transposition table yields an a-(3 search efficiency that
is only about 40% worse than the optimal possible. That is, on average, Hitech searches only about 1.4 times
the number of nodes that an a-/3 search with perfect move ordering would search.

7.4 The ALU

A general-purpose 16-bit ALU (AMD 29116) allows the microprogrammer to perform arbitrary computations
on moves and values within the machine. The ALU is connected to both the move and value data busses,
and condition codes generated by ALU operations can be tested by the controller. The ALU is typically
used to experiment with modifications to the search algorithm. When the experiments verify the utility of
some refinement, then explicit hardware support can be provided. Currently the ALU is used to discover
recapture sequences and to implement a hybrid hash table replacement algorithm.

7.5 Microprogramming Support

Microprograms are written as C programs using predefined macros that are then compiled, linked with a
microassembler, and executed to produce the object microprogram. This allows the programmer to use C
constructs in the microprogram as well as the C preprocessor for macros and conditional assemble. The mi
croassembler module assigns addresses to microinstructions based on branch conditions so that the minimum
amount of memory is used. It also uses information about the timing requirements of the various modules to
automatically generate the correct clock timing based on the operations performed by each microinstruction.

7.6 Executing the Search

Figure 13 shows the operation of the hardware during the inner loop of the a-(3 search. This is an elaboration
of the standard depth-first search, showing those tasks that are performed in parallel.

The move generation phase consists of computing the dynamic priority of the next move and voting to
determine the chip with the best move. This move is made by executing three halfmoves, which are saved

19

Move Generator
Generate
Move

Make
Move

Move Generator
Generate Halfmoves

Update State

Move Generator
Compute Checks

Unmake
Move

Move Generator
Update State

Evaluation
Update State

Hash Table
Update State

Evaluation
Compute value

Move Manager
Update State

Hash Table
Read Entry

Search Control
Alpha-Beta
Cutoff?

Yes

Evaluation
Update State

Hash Table
Update State

Move Manager
Generate

Reverse Halfmoves

Hash Table
Write Entry

Figure 13: An outline of the execution of the ct-/3 search on the Hitech hardware.

on a stack and used to unmake the move when the search backtracks. This making and unmaking of moves
forms the backbone of the search. All modules that depend on the state of the search change that state when
halfmoves are executed. After a move has been made, each of the modules computes new results based on
the new position. The move generator calculates whether the new position is legal and whether the side to
move is in check and the escape check mechanism should be invoked. The evaluation hardware computes a
new value based on the new state, and the hash and repetition tables read the entries corresponding to the
new position.

At this point, the search control decides whether a leaf position has been reached or whether the branch
should be extended another ply. This decision is based primarily on depth and quiescence considerations,
although the hash and repetition tables may provide an immediate value for the position. If indeed a leaf
has been reached, the most recent move is reversed using the halfmoves saved on the stack and an entry
is written into the hash table depending on the replacement algorithm. Otherwise the move generator or
possibly the hash table produces the move with which to extend the tree.

20

7.7 Hitech Software
The Hitech software comprises a combination of a microprogram that performs the inner loop of the standard
a -0 search; a host program that performs the Oracle analysis, time control and user interface; and interface
routines that pass information between the host and the chess machine. The microprogram includes a
standard quiescence search that examines all captures and responses to check. Moves that escape from
check are not counted as a ply since they are considered to be forced moves. Recapture moves are also
detected and not counted as a ply under the assumption that the recapture was forced. Our definition of a
recapture is a capture that re-establishes the material to the level that is considered to be the value of the
root position. This definition means that recaptures in lines of play that maintain the material status of the
root position are not counted. For instance, if the tree search starts out with NxN, and the answer PxN
comes either immediately or after some intermediate non-captures, it will not be counted, as it re-establishes
the equilibrium that existed at the root.

The Oracle in the host program performs an analysis before every search and downloads information to
the evaluation hardware. The host program then builds the first level of the search tree and orders the root
moves using shallow searches to establish exact values for each position at the first ply. From there, the
program does iterative deepening using the chess hardware until the time allocation algorithm decides that
there is not enough time for another iteration. This algorithm decides how much time to spend on any one
move based on the amount of time and number of moves left in the game and an estimate of the difficulty of
the position. After a move is made, Hitech assumes that the opponent will make the expected response and
begins a new search. If the opponent makes a different move, this search is discarded. The user interface
allows the operator to set the game parameters, and entertains the operator with a variety of interesting
information about the progress of the search including the current prime variation.

8 Hitech Performance
Our experience with the Hitech chess machine indicates that the SUPREM architecture successfully combines
high expertise levels with extremely fast search. Hitech examines approximately 175,000 positions per second,
10 6 times more positions than a human player. This ability has resulted in excellent moves that even Masters
at the scene could not predict. Hitech has risen rapidly into the top 1% of ranked US chess players, and it
is still climbing as Figure 14 shows.

As of December, 1987, Hitech had played 100 rated tournament games, principally against human com
petitors and achieved a record of 71-29. It has won the 1987 Pennsylvania State Championship tournament
with 15 Masters in it, and had previously won another tournament with 4 Masters in it. Hitech has obtained
draws in tournament play against three players ranked among the top 40 US players; one of whom is among
the ten top US players. These accomplishments are unique for any machine. Hitech also won the 1985 ACM
North American Computer Championships with a perfect score of 4-0, defeating defending champion Cray
Blitz (running on a Cray X-MP 48).

Table 1: Hitech Rated Tournament Record

Epoch All Games Experts Masters Super-Masters Perf. Rtng.
1 1 3 - 4 1 - 0 1.5 - 3.5 0 - 0 2158
2 34.5 - 11.5 12 - 2 13.5 - 3.5 1 - 6 2383
3 13 - 8 7 - 3 2 - 4 0 - 1 2216
4 12.5 - 5.5 7 - 0 2.5 - 0.5 3 - 5 2475

Hitech s current US Chess Federation rating is 2372, making it a high-rated Master, and surpassing all
previous chess programs by about 170 points. If one averages Hitech's rating increase from the initial 2076
it earned in its first tournament in May, 1985, to its present rating, over the set of games it has played

21

^2800

2600

2400

2200

2000

1800

*Wins
• Draws
X Losses

X

n'.
X

. . x K —

r-.

- - - - - - - - - - - - - - - - - "13 »
X

X X

•
<.

x • •

X
*

O '

• * .

x ° *< a ^ < °

Jfrr.** a

* *

r •

V • * . v
* *

* X

* n

x x * *

3 * ^ * *

* *

* #

* *

May Dec
1985

'> Jan July
1986

March Nov
1987

Figure 14: Hitech 'performance history

it averages out to a gain of about 3 rating points per game. However, Hitech has not always progressed
steadily. We consider Hitech's career to be divided into 4 epochs:

1. May - September, 1985 without any pattern recognizing capability.

2. October, 1985 - July, 1986 with the 1st generation pattern recognizers.

3. February, 1987 - July 1987 with the 2nd generation pattern recognizers, marred by many software
problems.

4. Since August, 1987 when the software problems associated with changing hardware seem to have been
overcome.

Table I shows that during epoch 1, Hitech won 30% of its games against Masters. In epoch 2, when
we added pattern-based evaluation, Hitech's success rate against Masters rose to 79%. However, its success
rate against super-masters (those rated above 2400 in the USCF rating scale) was not noteworthy. In epoch
3, results were very uneven. We feel these should be ignored, and this view is substantiated by comparing
the results against Experts, Masters and Super-Masters across epochs 2, 3, and 4. In epoch 4 Hitech's
potential can again be seen, as the second-generation pattern recognizers discussed in this paper begin to
take effect. Here it improves its performance against every class of player, including beating some super-
masters. Hitech's percentage of wins does not increase from epoch to epoch, as the quality of competition
keeps getting better, as can be seen in the individual columns.

The most significant column in Table I is the Performance Rating column. This is the statistical estimate
of the most likely strength of player that would have achieved what Hitech did, considering the strength

22

of opponents and result. Hitech plays chess well enough to be among the top 0.5 of 1% of all registered
chess players in the World. It generally has an Expert (the rank below Master) level understanding of chess
concepts and strategy. However, its tactical ability — the ability to calculate the direct consequences of a
move — is close to that of a Grandmaster (the highest level of human play). This potential comes from
its powerful search, which is much more thorough though not always as deep as that of the best humans.
Hitech's search causes sparkling things to happen from time to time:

• Hitech has during its life made 10 moves, in tournament settings with a number of very good players
watching, that were both excellent and n o t a n t i c i p a t e d by a n y of the expert spectators.

• Hitech has found dozens of refutations of textbook examples that have been in the literature for many
decades.

9 Why does SUPREM work so well?
9.1 Serial versus parallel computing
One factor that has historically militated against search is the necessity, in really big searches, to employ
very simple evaluation functions. The fundamental difficulty lies in trading off the costs of doing evaluations
against those of additional searching on a serial machine. In the past, this limitation has typically produced
minimal evaluation functions, since smart ones do not perform sufficiently better to justify their computa
tional expense. However, in a suitable parallel implementation, evaluation can become quite complex. And
when evaluation is done in parallel, the expense of many evaluations is not much greater than that of one.
SUPREM embodies an appropriate form of parallelism and Hitech has shown that the paradigm works well.

9.2 Problem Solving Alternatives
Let us consider the major known ways in which problem solving can be accomplished:

9 .2 .1 P u r e R e a s o n i n g

Pure reasoning has not been very successful. It has been shown time and again that extraneous facts
confound the solving process. Further, a pure reasoning process cannot cope with the Real World in that
data must be converted to factual clauses to reason with. Is "Aristotle is a man" given or must this be
extracted from the environment. If the latter, many additional issues arise. For instance, if Aristotle is 17
years old is he a man or a boy. Questions of grain also come up in actions. For instance in the "Monkey
and Bananas" problem, the box could be moved to an infinite number of locations on the floor of the cage.
Should one settle for 1000 locations? To only allow moving it to "under the bananas" or leaving it where it
is, is so restrictive as to remove a great deal of difficulty from the problem. Pure reasoning systems seem to
have reached their present high in doing simple robot planning problems in very friendly environments, and
no adversary to create problems.

9 .2 .2 Hi l l C l i m b i n g

In hill climbing, the solving process will follow the path of steepest ascent until it either reaches the goal
or gets stuck on a local hill. This situation is portrayed on the left of Figure 15, where a gradient is shown
in the form of concentric contour lines. Presumably the hill climbing process would inch along, one step at
a time, reaching higher ground with each step. One important point to note is that even though progress
is made at each step, there is no guarantee that the optimal point at distance "d" will be reached. This is
because there may be a higher point at distance "d", which is reached by following a lesser gradient initially
and then reaching a point where steeper ascent is possible. However, a hill climber will reach a goal, unless
it finds a non-goal local hill (see right of Figure 15) from which it cannot escape. The latter situation can

23

Figure 15: Comprehensive search in SUPREM.

arise since a hill-climber does not backtrack, and will thus never return to a lower point in the evaluation
space. This method of coping can be seen in many creatures low on the evolutionary scale. A worm, which
may only need to find an appropriately wet place, does very well just following the gradient of increasing
wetness.

9 .2 .3 R u l e - B a s e d S y s t e m s

A rule-based system attempts to improve upon hill climbing by applying a great deal of knowledge to the
local situation before taking a step, and allowing backtracking when a path does not live up to its earlier
promise. Rule based sytems can have evaluation functions that take account of certain known properties
of the current problem state, and chart a course that may appear to be non-optimal to a simple evaluation
function. Such systems can thus show a great deal of flexibility in dealing with a problem. However, they
still solve problems one step at a time, and must nilly-willy accept the snail-like paths that could come (see
center of Figure 15) from not knowing exactly how best to make progress.

Typically, rule-based systems have been used to solve problems by finding an actual solution, rather
than by attempting solution through a series of successive approximations as is done in chess and other
environments where it is not possible to search to the end of the game (or final solution). This has meant
that either a domain must be highly constrained (so as to make few alternatives viable), or the depth of
the solution must be rather shallow in order for a rule-based system to be effective. Almost all rule-based
systems are applied to domains that are thus friendly. It will be interesting to see if anyone can construct
a rule-based system to deal with a domain as complex (1 0 4 3 states) and difficult to search (35 alternative
operators on average) as chess. One early example of a rule-based system [9] required some 40 rules to
produce a program that could successfully mate with a king and rook against a king. This result does not
augur well for rule-based systems in domains of high complexity and few constraints.

24

9 .2 .4 S U P R E M

Since SUPREM is not designed to search to the end of the problem, it resembles a hill climber more than any
other of the above. However, it is a hill climber with seven-league boots. Since the SUPREM architecture is
based on powerful searching, it will be able to conceptually take many steps forward before having to make
a decision about the goodness of the state it is currently visiting. If one takes the worm analogy for hill
climbing, then SUPREM is a giant worm that can look 9 steps ahead, including backtracking on inferior
steps, before taking one. This has many obvious advantages:

• It will not be fooled by small local variations in gradient that could cause a hill climber to go off in a
wrong direction.

• It does not need the kind of knowledge that rule-based systems require in order to select the next
action to try, because it will try all actions out to the search frontier (see Figure 15). This results in
simplification of the knowledge needed.

• SUPREM seems to have the best of two worlds. It has a rule-based system as an Oracle to lay out
the knowledge it needs to take its next step. The actual step is taken as the result of an extensive
examination of the alternatives using high levels of understanding.

• Since it also does not see to the end, SUPREM could also, willy nilly, set an irregular course to its
target. However, this course should be much more direct than that of a standard hill climber, or even
an extremely well-informed expert system. Further, since SUPREM takes only one step at a time while
seeing forward many, it is not as necessary to have as detailed knowledge of the frontier as a process
that looks less far ahead. This is a very important point that makes it much easier to provide knowledge
for the SUPREM paradigm.

The latter is an observed fact from studies with Hitech. The explanation seems to lie in that in order
to take the first step correctly it is only necessary to head for the correct r e g i o n of the state-space. Low
level details are not too important as after SUPREM has taken several steps forward, the frontier will also
have moved forward. At this new juncture, details that were not previously visible will now dominate the
decision concerning what is the best direction in which to head. Thus the fine detail that is used to estimate
the value of single (or very small number of) steps, appears not to be needed.

We consider this observation to be closely akin to the situation in planning, where macro-plans can be
compiled without paying attention to small details. It is taken for granted that some method will exist for
dealing with the solving of the low-level details, once the major ones have been worked out. This makes it
extremely useful to have knowledge of important features that have a permanent, or at least semi-permanent
role, in the solution process. A system that can see forward only one step at a time cannot afford this, as it
must utilize every possible clue in an effort to decide the immediate next course of action. We consider the
rule "The fur ther a p r o c e s s c a n look a h e a d , t h e less d e t a i l e d k n o w l e d g e it n e e d s " to be generally
true. A process that can see actual goals need only be able to identify these. A process that can see within
a few steps of a goal will on average not need much understanding of intermediate goals. A process that can
only see one step ahead and is far removed from any goal needs tremendous amounts of information. Our
rule subsumes all these cases and appears to be a generalization. It also appears to also be implied by the
curves of Figure 1.

Our evidence for the rule is two-fold. Firstly, as knowledge for Hitech was being crafted, we used
appropriate knowledge from an earlier chess program. Hitech outsearched the old program by 4 ply. It was
found that the knowledge that Hitech needed was principally the high-level knowledge, and it never required
most of the low level knowledge that the earlier program had. The second piece of evidence is that in order
to change the present behavior of the program, it is necessary to add pattern information that represents
substantial sub-goals. This will affect its behavior, whereas applying heuristics with small values will not
have any meaningful effect.

The usefulness of "important feature" knowledge thus leads directly into SUPREM's use of pattern
recognition. As was shown earlier, this second-order knowledge is able to determine important relations

25

among features; relations that form patterns which have a permanent role in the solving process. We treat
this subject in the next section.

10 The Usefulness of the Recognizers
In order for SUPREM to operate effectively it is necessary to evaluate leaf nodes in the search very, very
quickly. In Hitech this is accomplished in approximately 1 usee. Further, the structure as described in
Section 6 does evaluations in essentially constant time, regardless of the number of recognizers and the
patterns they are seeking to detect.

We believe the structure of the recognizers to be very general. This structure evolved from direct
experience with Hitech and is still evolving. The important issues are:

• They are able to compute second-order knowledge which is essential.

• They are fast.

• They are implementable at reasonable cost and space.

• Evaluations can be factored into pieces small enough to fit into a recognizer and then recombined at
will. This allows dealing with very complex situations.

• Application Coefficients, which are needed to provide context information can be readily computed.

There are some disadvantages to our scheme, that should be noted. However, presently none of these
appear to be important.

• The recognizers are loaded once for each root search. This means that if the situation during the
search were to change drastically, so that the down-loaded knowledge were no longer applicable, the
evaluation of such leaf nodes would be inaccurate since new knowledge could not be downloaded. This
problem rarely appears, and there is no immediate remedy, nor do we see an urgent need for one.

• Each recognizer has a limited size; i. e. 13 bits in each branch. This allows a great deal of information
to be dealt with. For instance, in King-Safety, one recognizer deals with the pawn shelter, location
of king, open lines available to the opponent, and whether his own rook is locked in by the king.
The Global-State recognizer then provides information on the amount of material on the board, which
modulates the final value. However, it is clear that expertise comes through better understanding, and
there will always be more features that could be incorporated. Thus, there is pressure for ever-larger
recognizers.

• The interconnection scheme among recognizing units is not completely general. This would be too
expensive. The Oracle software knows exactly which recognizers can be connected to which others,
and while, in principle, it would be very desirable for results to be shared among the recognizers, this
lack has not yet become an important hindrance for progress.

Our theory of "recognizing" as evinced by the recognizers is as follows:

1. Top level bits are extracted from the current state according to the needs of the pattern that is to be
detected. As stated above the number of bits is governed by cost considerations. The adequacy of
any particular width must surely be dependent upon the domain. However, we have found that the
present 12 bits plus one external signal in each main branch of the recognizer is capable of a great deal.
Typical tables that are down-loaded into a particular recognizer are capable of detecting three or four
distinct but related patterns.

26

2. Mapping-down is necessary to get an eventual interpretation of the top level bits. It should be noted
that as classes or interpretations are found, it is possible to aggregate values, classes, or interpretations.
Thus a class at the second level could represent a compound of inputs from several patterns in the
same branch of the recognizer. In effect, each map-down step abstracts some meaning from the level
above it, until a final meaning in the form of an evaluation is produced. The three-fold mapping with
approximately a two-one reduction of bits in each mapping step appears to be adequate in most cases.

3. The restrictiveness introduced by going to fewer bits in each map-down step is quite similar to what
one would expect in a learning paradigm. The need to represent what is known in fewer bits forces
generalization and thus learning. In our application there is no machine learning, and the representa
tions we use are very likely much too terse to be discovered by today's learning algorithms. However,
in principle, a structure of this type could be taught, either by experience or by a tutor.

4. The ability to gradually extract meaning from a set of bits provides great flexibility in knowledge
encoding. For instance, in the typical pattern loaded into a recognizer, there are 2 2 4 states times 2 1 2

global states which are mapped down to an interpretation which is at most 2 8 . To extract meaning
from so much data, the input of which has already been filtered, in 1 usee puts competitive systems at
a tremendous disadvantage.

Although it is not always possible to encode every facet of every potential pattern, we have found that
in general we are able to encode any item of knowledge that we have striven hard to encode. Since the
inception of pattern recognizers, we have continued to add successful patterns to the knowledge base at the
rate of one or two a month. We believe that Hitech's knowledge can be increased to produce further growth
in performance.

11 Applying SUPREM to other Domains
Certain large and well-formed problems that have a clearly defined domain with definite rules, could benefit
from the application of SUPREM. One such domain is analytic chemistry. Here a molecule is known to
contain a precise number of each of possibly dozens of kinds of atoms. However, the overall structure of the
molecule may not be known. Further, the actual molecule is known to have certain chemical properties that
reveal themselves in the structure.

The analysis method using SUPREM would build the molecule incrementally, making decisions about
where each as yet unused atom would best be located. There would be a move generator for each atom type,
and this would know all possible bonding sites for the atom in the current molecular structure. The sites
would be known in order of general preferrence. The search would involve placing atoms into the molecular
structure. Pattern recognizers would identify the presence of desirable and undesirable radical groups that
define the chemical properties of the molecule under consideration.

Such radical groups are chunks or patterns, and the Oracle would have the knowledge as to which patterns
are associated with the known chemical properties of the molecule being searched for. The evaluation
function would be loaded at run time with the correct pattern information. The presence of such patterns
in a candidate configuration would increase the score for that configuration. With a machine to apply the
SUPREM paradigm, it would be possible to examine hundreds of millions of alternative configurations in
reasonable amounts of time. At the end, the hundred configurations with the best scores could be printed
out for examination by a qualified chemist. Experience with chess shows that such searches will regularly
turn up things that the whole population of chess masters has not discovered.

12 Summary and Conclusions
We have described an architecture for problem solving that differs from any previously known. The SUPREM
paradigm combines large searches with the power of pattern recognition. The former allows visiting any node

27

within a limited, but large, search horizon that could contain a solution. The latter allows detecting complex
conditions that could indicate the value of a node. Pattern recognition provides the ability to ascertain
relations among elements in a domain state, and is thus considerably more powerful than the application of
heuristics that merely indicate that the presence of some element of a domain state is good to a prespecified
degree. Without pattern recognition large amounts of additional search would be required to find the
properties of a domain state that patterns can encode.

We have built a chess machine/program, Hitech, that embodies this architecture. Hitech has achieved
spectacular results in its domain and exceeded previous performance highs for programs by almost a complete
class on the human scale. We have learned a number of interesting things that appear to be general.

1. Patterns are capable of creating a rough evaluation surface because the discerning of an important
relation allows placing more emphasis on its presence than would be prudent in a purely heuristic
scheme, where each item of knowledge contributes only a small amount toward a favorable appraisal.

2. Rough evaluation surfaces, while usually undesirable, are actually desirable when the search projects
far enough ahead. This is because real mountains on the surface are worth achieving. False mountains,
4 if far enough away when first detected, can almost always be avoided, if enough time is available to
change course.

3. Thus the big search has a second advantage: it allows detecting false goals and avoiding them. A search
of very limited horizon will not be able to do this, and thus requires much more accurate information.

4. Finally, we have found that it is possible to build pattern detection hardware that:

• Is inexpensive to build and contains a great deal of power for detecting patterns that the Oracle
considers to be near the root, and pertinent to the evaluation.

• Makes possible the parallel detection of patterns and their synthesis into an eventual evaluation
at time costs that are essentially constant even as the number of recognizing units grows.

We feel this style of computing has a very potent future, and look forward to having it tried in other domains.

13 Ack no wled gement s
A machine of this complexity could not have been built by two people. Hitech is the result of a team effort.
The hardware has been designed and built by Carl Ebeling; the Oracle is based largely on the chess program
Patsoc, by Hans Berliner. The above concepts and implementation are the result of much interaction between
the two principals. Other students and department employees have contributed significantly in the design
of the searching software, the programming of the control system, testing of the whole structure, and other
facets. Persons who deserve mention are Gordon Goetsch, Murray Campbell, Larry Slomer, and Andy Palay.
Since this research involves the two areas of AI and VLSI, not every Computer Science Department could
have supported this project, and we are grateful for the opportunity provided by CMU and its Research
Sponsors.

References
[1] H. J. Berliner. On the construction of evaluation functions for large domains. In Sixth International

Joint Conference on Artificial Intelligence, pages 53-55, IJCAI, August 1979.

[2] J. H. Condon and K. Thompson. Belle chess hardware. In Advances in Computer Chess III, Pergamon
Press, 1982.

4 One can think of a false mountain as one that has an excellent facade as one approaches, but the terrain behind it falls off
rapidly.

28

[3] C.Ebeling. All the Right Moves: A VLSI Architecture for Chess. PhD thesis, Carnegie-Mellon University,
April 1986.

[4] D. E. Knuth and R. W. Moore. An analysis of alpha-beta pruning. Artificial Intelligence, 6:293-326,
1975.

[5] D. Michie. A theory of advice. In E. W. Elcock and D. Michie, editors, Machine Intelligence 8, Ellis
Horwood Limited, Chichester, Sussex, England, 1977.

[6] A. L. Samuel. Some studies in machine learning using the game of checkers, recent progress. IBM Journal
of Research and Development, 601-617, November 1967.

[7] D. J. Slate and L. R. Atkin. Chess 4.5 - The Northwestern University chess program. In P. W. Frey,
editor, Chess Skill in Man and Machine, Springer-Verlag, Berlin, 1977.

[8] A. L. Zobrist. A Hashing Method with Applications for Game Playing. Tech Report 88, Computer
Science Department, University of Wisconsin, 1970.

[9] C. Zuidema. Chess, how to program the exceptions. In Afdeling Informatica, Amsterdam, 1975.

29

