
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Extending The Error Correction Capability
Of Linear Codes

Ashok D. Ingle
Daniel P. Siewiorek

Carnegie-Mellon University
Pittsburgh, Pa.

March, 1973

This work was supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defense (F44620-70-C-0107) and
is monitored by the Air Force Office of Scientific Research.
This document has been approved for public release and sale; its
distribution is unlimited.

Extending The Error Correction Capability

Of Linear Codes

ABSTRACT

Linear transmission codes were developed under the

assumption that the bit errors are independent and random. When

these codes are applied to digital circuits, this assumption no

longer holds. Using the past history of the bit failures, a

linear transmission code that can detect k bit failures can be

made to tolerate and correct upto (k-1) bit failures. Thus if

the classical error correction bounds are assumed , a linear

transmission code used in digital circuitry is under-utilized.

For example, the single-error-correction, double-error-detection

Hamming code could be used to correct up to two bit failures with

some additional error correction circuitry. A simple algorithm

for correcting these extra errors in linear codes is presented.

Extending Error Correction 2

INTRODUCTION

Several studies of linear transmission codes have been made

over the last twenty years. These codes are designed for error

detection (to detect d errors the minimum code weight must be

d+1), for error correction (minimum weight 2U1 to correct t

errors), and for error detection/correction (minimum weight

t+d+1 to correct t errors and detect d errors >. [PeteW72]. Most

transmission codes are based on the assumption that in

transmission, each symbol is affected independently by noise and

therefore the probability of a given error pattern depends only

on the number of errors.

Transmission codes, such as the Hamming code, have been

applied to digital circuitry such as memories. In such a case,

specific bits of the word are directly associated with a given

memory bit, driver, bus line, etc. Once a bit has taken an

incorrect value, there is a much higher probability that the

particular bit will be in error again due to a permanent or

transient failure in its associated circuitry. An error

correction algorithm can use the past history of bit failures to

increase the error correction capability beyond the traditionally

accepted limits for transmission codes.

Extending Error Correction 3

LINEAR CODES

A bit failure will be considered to be any permanent or

transient failure in the logic circuitry associated with that

bit. Under this assumption, it will be shown that a minimum

weight t code can detect as well as correct t-2 failures. Only

in the case of noise (which can affect the various bits of

information independently) will the classical bounds of t -1

error detection, | (t - l) /2 | error correction be applicable. Thus

transmission codes, when applied to digital circuits, are

under-utilized when the classical bounds are assumed.

Classically, a linear code is a code space V generated by a

generator matrix G. It is also the null space of the

parity-check matrix H. i.e.

VKT-O

or, V v * V , vHT - 0

For the treatment that follows assume that the minimum weight of

the code is t [*]. A single error may be specified by a vector

* Definitions [PeteW72];
Hamming weight of a vector in a linear code is the number of
nonzero symbols in the vector.
The minimum weight of a linear code is the minimum of the Hamming
weights of all the nonzero vectors.

Extending Error Correction 4

which has a single bit set to one. If we denote a vector whose

leading bit is " 1 " and all other bits are "0" by S , then the set

of all possible single errors is the permutation ring generated

by 6 . Mathematicallyf for any e, € E , the weight of e, is 1

and for all i + j , e, * e } . In other words E contains all

distinct vectors of weight 1. A vector with a single error is

thus characterised by $ « v + e, . Therefore,

vHT - (v > e ,)^

«= vHT + e,H?

- e . H '

e,H T is called the syndrome, denoted by s and is nonzero if

t > 1 .

Now, assume that there are m errors, where m<t . Then :

v » v + £ e, for some v € V

Therefore,

s - v HT

- (v • £ e,) HT

«•

- v H ' + (I e ,) H '

- (£ e () H '

Since W(e,) - 1 , V i, and since all e,'s are distinct,

W (£ e,) - m . And because m<t, <£ e,) f V. Hence, s 0. This

conclusively shows that we detect as many as (t-1) errors.

Extending Error Correction 5

ERROR CORRECTION

In this section, we intend to show that by using the past

history of bits in failure, one can extend the error correcting

capability far beyond that predicted by the classical bounds. We

must modify the existing fault-model. We will now assume that

the bit failures occur independently and one at a time. But

since we no longer restrict our attention to arbitrary failure

patterns in hitherto unfailed hardware, failure history is of

importance. We will assume that all failures are of the stuck-at

type (This assumption can easily be waived, as we will show

later). Therefore, once a bit has failed, it remains failed. A

failed bit may yet be correct if the data happens to match with

the stuck-at value of the bit. A bit will be said to be in error

if it takes on the wrong value. Thus, at any particular point in

time, we will presume the knowledge of the bits in failure and

assume that the bit failure pattern may cover at most one bit

outside these known failed bits. We now proceed to prove our

claims starting with an example.

Consider the Hamming (8,4) code. The minimum weight, t«4.

Under the assumption that no two (new) bit failures occur

simultaneously, the first single bit failure (characterized by,

say, e,) is uniquely specified by the syndrome, s, - e,H\ At

the next check point, as the syndrome s is formed, three cases

Extending Error Correction 6

are possible :

i) s indicates no error (i.e. s«0). The failed bit(s)

agree with their expected values,

ii) s - s, . There is a single error, characterized by • „

namely, the same as before. It can be corrected.

Hi) s + 0, s . i* s t. Let s 2 - s. Let e, be the vector that

chacterizes the error indicated by s,.

a) Treat it as a single bit failure indicated by

s t . Correct it and re-form s. If s - 0 then it

was a single bit failure, and is now corrected,

otherwise it was a double error.

b) For double error, one of the bit failures must

be at s,. Correct it, re-form s, and correct the

bit indicated by s now.

Successful correction of upto 2 (- t-2) errors is thus achieved

W
By generalization of this procedure, correction of upto

(t -2) bit failures for codes with the minimum weight t>4 is

• Note that it is possible to simplify this algorithm, by using
the peculiarity of the Hamming (8,4) code, namely, that one bit
of the syndrome merely is overall parity, which enables one to
distinguish between even and odd errors. We chose to ignore
this, however, in order to maintain the generality of the
discussion.

Extending Error Correction 7

possible. Consider the following algorithm, which is a direct

generalization of the one described above. We will now change i

bits from the known bit failures at a time, and form the

syndrome. This syndrome will indicate a particular bit. We will

'"correct" that bit, and re-form the syndrome. If the syndrome is

zero then the correction is over, and we will update the known

bit failure pattern. Otherwise the "correction" was erroneous,

we restore the bit value and proceed to check the next set of i

bits. If we have exhausted all the patterns of i bits, we will

increment i, and start again. The process continues until we

either correct the errors or exhaust all the known bit failures.

We may restate the algorithm as follows :

Assume that m bits were known to have failed* where m<t(t-2).

a) Set i - 0.

b) Change i of the known failed bits at a time and form the

syndrome «. / / m - (t-2) then go to step d.

c) Change the bit indicated by s and re-form s.

d) If s=*0 then done* update the knowledge of failed bits* if

necessary* and EXIT.

e) If all sets of i bits have been tried then go to step f

else go to step 6.

f)Seti = i+l.

Extending Error Correction 8

g) If i < (t-2) then go to step 6, otherwise the fault

exceeds our correction capability.

The algorithm terminates in a finite number of steps under our

assumptions. However, as a safety measure, one may check for i

exceeding (m+1) at step f, which may detect particular instances

of multiple errors beyond the known failures. To prove that the

algorithm can correct (t-2) failures :

Let m « number of bits known to have failed; m < (t-2).

Let k « number of bits in error in the current word; by

virtue of the assumed failure model k < (m+1).

Since the algorithm is exhaustive, it will certainly attain the

combination of bits in error at some point. Therefore, one only

needs to prove that it does not yield a zero syndrome for any

combination of bits other than those in error.

We will consider the two cases m £ (t-3) and m - (t-2),

separately. First let m £ (t-3). Consider any trial combination

of i bits. Let the number of bits that are changed erringly (as

the i bits are changed) be w. Thus the number of correct

changes is (i-w), and there are (i-w) bits common between k and

i. Hence the total number of errors in the word, after the

syndrome is formed and "correction" made, equals

(k+w+1) - (i-w) or k+2w+l-i. To ensure that no erroneous

-correction" terminates the algorithm, the following inequality

Extending Error Correction 9

must hold.

(k + 2 w + 1 - i) <(t - 1) (I)

By the definition of w, w < i .

Therefore, 2w - i £ w .

or, k + 2 w - i + l s k + w + l .

Thus, (I) holds if

k + w + 1 < < t - 1)

Again, by definition, k and w occupy at most (m+1) bits and

they span disjoint sets of bits. (See Figure I).

Hence, k + w £ (m + l.)

Therefore, < I) holds if

<m + 1) + 1 < (t - 1)

or, if m < (t - 3)

But this is true by assumption. Therefore, (I) holds.

Now, let us take the case of m - (t-2). Since we do not attempt

"correction", we need not consider the addition of an error. In

other words, we know that we have reached the bound on correction

of additional errors and restrict ourselves to correcting errors

Figure I : Conceptual mapping of bits in failure.

to

i

i

I

r
i
i i

Extending Error Correction 10

among the known (t -2) failed bits. Now, k £ m ~ (t -2).

Hence, the inequality (I) may be rewritten as :

(k + 2 w - i) < (t - l) < II)

Again, 2w - i < w .

or, k + 2w - i < k + w .

Therefore, (II) holds if

k + w S< t - 1)

But now k and w span disjoit bits among m (- 1 - 2) bits.

Hence, k + w £ (t - 2)

Therefore, (II) holds.

Thus it is conclusively proved that the algorithm terminates in

and only in the required correction for m £ (t-3); and hence we

can correct upto (t-2) errors.

DISCUSSION

The algorithm, if implemented in its present form, could be

extremely time consuming. In the worst case (k • m+1 - t -2),

one has to go through

E (i) " 2

different trials before arriving at the proper correction.

Some improvement may be achieved by use of table look-up.

Figure 2 may exemplify such methods. The syndrome and the known

bit failures may be used to index into a table and retrieve the

Extending Error Correction 11

required corrections. Depending on the versatility of the table,

which may be function of the storage space available, the

indexing may involve from a single reference to an organized

search of the table.

The algorithm presented here is very simple-minded, and

serves only as a tool to prove our claims. In practice, it

should be improved upon. Clever codes may be designed in order

to simplify and minimize the overheads involved (In Hamming

(8,4) code, for example, it is possible to reduce a step, as the

overall parity bit can indicate even or odd error).

The assumption of stuck-at faults may be relaxed, if along

with the bit failures, one also stores the value the bit is stuck

at. Every fault, then, can be treated as a stuck-at fault, and

stored as such. If any bit differs from its stuck-at value, the

fault was a transient one, and hence can be deleted from the

store.

The improved correction capability may be employed in

Figure 2 : One implementation of table look-up scheme. —̂
TASUE TASUE

; ;

V- — 1

Extending Error Correction 12

several ways. Consider a Hamming single-error-correction,

double-error-correction code applied to a bit-sliced memory.

When an error is detected, a spare bit-slice may be switched in.

This new bit-slice will contain erroneous information until every

bit on the slice (i.e. every word in the memory block) is

written into at least once. Since this "update" time may be

substantial - and, in the worst case, infinite - the correction

capability of the system may be seriously affected, even though

additional spare bit-slices may be available. The second failure

causes the memory to halt. By extending the correction

capability, as outlined above, a bit failure can be corrected,

even in the presence of a newly switched in bit-slice that may

continue to yield erroneous information. Extended correction

capability may also provide the basis for toleration of greater

number of bit errors and may be a feasible alternative to dynamic

switching of bit-slices.

Since the theory employed here is that of the classical

linear codes, all the extentions of the theory, such as the ones

to byte (or symbol) correction, may be similarly derived from

the work presented here.

The effects of our new assumption should be studied in

connection with other theoretical work, especially other codes

(e.g. arithmatic codes), and this is the direction of our

Extending Error Correction 13

future work.

REFERENCES

PeteW72 Peterson, W. W., Weldon, E. J. Jr, Error-Correcting

Codes, li Ed., The MIT Press, Cambridge,

Massachusetts, 1972.

