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Extending The Error Correction Capability 

Of Linear Codes 

ABSTRACT 

Linear transmission codes were developed under the 

assumption that the bit errors are independent and random. When 

these codes are applied to digital circuits, this assumption no 

longer holds. Using the past history of the bit failures, a 

linear transmission code that can detect k bit failures can be 

made to tolerate and correct upto (k-1) bit failures. Thus if 

the classical error correction bounds are assumed , a linear 

transmission code used in digital circuitry is under-utilized. 

For example, the single-error-correction, double-error-detection 

Hamming code could be used to correct up to two bit failures with 

some additional error correction circuitry. A simple algorithm 

for correcting these extra errors in linear codes is presented. 
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INTRODUCTION 

Several studies of linear transmission codes have been made 

over the last twenty years. These codes are designed for error 

detection ( to detect d errors the minimum code weight must be 

d+1 ), for error correction ( minimum weight 2U1 to correct t 

errors ), and for error detection/correction ( minimum weight 

t+d+1 to correct t errors and detect d errors >. [PeteW72]. Most 

transmission codes are based on the assumption that in 

transmission, each symbol is affected independently by noise and 

therefore the probability of a given error pattern depends only 

on the number of errors. 

Transmission codes, such as the Hamming code, have been 

applied to digital circuitry such as memories. In such a case, 

specific bits of the word are directly associated with a given 

memory bit, driver, bus line, etc. Once a bit has taken an 

incorrect value, there is a much higher probability that the 

particular bit will be in error again due to a permanent or 

transient failure in its associated circuitry. An error 

correction algorithm can use the past history of bit failures to 

increase the error correction capability beyond the traditionally 

accepted limits for transmission codes. 
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LINEAR CODES 

A bit failure will be considered to be any permanent or 

transient failure in the logic circuitry associated with that 

bit. Under this assumption, it will be shown that a minimum 

weight t code can detect as well as correct t-2 failures. Only 

in the case of noise ( which can affect the various bits of 

information independently ) will the classical bounds of t -1 

error detection, | ( t - l ) /2 | error correction be applicable. Thus 

transmission codes, when applied to digital circuits, are 

under-utilized when the classical bounds are assumed. 

Classically, a linear code is a code space V generated by a 

generator matrix G. It is also the null space of the 

parity-check matrix H. i.e. 

VKT-O 

or, V v * V , vHT - 0 

For the treatment that follows assume that the minimum weight of 

the code is t [*]. A single error may be specified by a vector 

* Definitions [PeteW72]; 
Hamming weight of a vector in a linear code is the number of 
nonzero symbols in the vector. 
The minimum weight of a linear code is the minimum of the Hamming 
weights of all the nonzero vectors. 
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which has a single bit set to one. If we denote a vector whose 

leading bit is " 1 " and all other bits are "0" by S , then the set 

of all possible single errors is the permutation ring generated 

by 6 . Mathematicallyf for any e, € E , the weight of e, is 1 

and for all i + j , e, * e } . In other words E contains all 

distinct vectors of weight 1. A vector with a single error is 

thus characterised by $ « v + e, . Therefore, 

vHT - ( v > e , )^ 

«= vHT + e,H? 

- e . H ' 

e,H T is called the syndrome, denoted by s and is nonzero if 

t > 1 . 

Now, assume that there are m errors, where m<t . Then : 

v » v + £ e, for some v € V 

Therefore, 

s - v HT 

- ( v • £ e, ) HT 

*«*• 

- v H ' + ( I e , ) H ' 

- ( £ e ( ) H ' 

Since W(e,) - 1 , V i, and since all e,'s are distinct, 

W ( £ e,) - m . And because m<t, <£ e,) f V. Hence, s 0. This 

conclusively shows that we detect as many as (t-1) errors. 
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ERROR CORRECTION 

In this section, we intend to show that by using the past 

history of bits in failure, one can extend the error correcting 

capability far beyond that predicted by the classical bounds. We 

must modify the existing fault-model. We will now assume that 

the bit failures occur independently and one at a time. But 

since we no longer restrict our attention to arbitrary failure 

patterns in hitherto unfailed hardware, failure history is of 

importance. We will assume that all failures are of the stuck-at 

type ( This assumption can easily be waived, as we will show 

later ). Therefore, once a bit has failed, it remains failed. A 

failed bit may yet be correct if the data happens to match with 

the stuck-at value of the bit. A bit will be said to be in error 

if it takes on the wrong value. Thus, at any particular point in 

time, we will presume the knowledge of the bits in failure and 

assume that the bit failure pattern may cover at most one bit 

outside these known failed bits. We now proceed to prove our 

claims starting with an example. 

Consider the Hamming (8,4) code. The minimum weight, t«4. 

Under the assumption that no two ( new ) bit failures occur 

simultaneously, the first single bit failure ( characterized by, 

say, e, ) is uniquely specified by the syndrome, s, - e,H\ At 

the next check point, as the syndrome s is formed, three cases 
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are possible : 

i) s indicates no error ( i.e. s«0 ). The failed bit(s) 

agree with their expected values, 

ii) s - s, . There is a single error, characterized by • „ 

namely, the same as before. It can be corrected. 

Hi) s + 0, s . i* s t. Let s 2 - s. Let e, be the vector that 

chacterizes the error indicated by s,. 

a) Treat it as a single bit failure indicated by 

s t . Correct it and re-form s. If s - 0 then it 

was a single bit failure, and is now corrected, 

otherwise it was a double error. 

b) For double error, one of the bit failures must 

be at s,. Correct it, re-form s, and correct the 

bit indicated by s now. 

Successful correction of upto 2 ( - t-2 ) errors is thus achieved 

W 
By generalization of this procedure, correction of upto 

( t -2 ) bit failures for codes with the minimum weight t>4 is 

• Note that it is possible to simplify this algorithm, by using 
the peculiarity of the Hamming (8,4) code, namely, that one bit 
of the syndrome merely is overall parity, which enables one to 
distinguish between even and odd errors. We chose to ignore 
this, however, in order to maintain the generality of the 
discussion. 
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possible. Consider the following algorithm, which is a direct 

generalization of the one described above. We will now change i 

bits from the known bit failures at a time, and form the 

syndrome. This syndrome will indicate a particular bit. We will 

'"correct" that bit, and re-form the syndrome. If the syndrome is 

zero then the correction is over, and we will update the known 

bit failure pattern. Otherwise the "correction" was erroneous, 

we restore the bit value and proceed to check the next set of i 

bits. If we have exhausted all the patterns of i bits, we will 

increment i, and start again. The process continues until we 

either correct the errors or exhaust all the known bit failures. 

We may restate the algorithm as follows : 

Assume that m bits were known to have failed* where m<t(t-2). 

a) Set i - 0. 

b) Change i of the known failed bits at a time and form the 

syndrome «. / / m - (t-2) then go to step d. 

c) Change the bit indicated by s and re-form s. 

d) If s=*0 then done* update the knowledge of failed bits* if 

necessary* and EXIT. 

e) If all sets of i bits have been tried then go to step f 

else go to step 6. 

f)Seti = i+l. 
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g) If i < (t-2) then go to step 6, otherwise the fault 

exceeds our correction capability. 

The algorithm terminates in a finite number of steps under our 

assumptions. However, as a safety measure, one may check for i 

exceeding (m+1) at step f, which may detect particular instances 

of multiple errors beyond the known failures. To prove that the 

algorithm can correct (t-2) failures : 

Let m « number of bits known to have failed; m < (t-2). 

Let k « number of bits in error in the current word; by 

virtue of the assumed failure model k < (m+1). 

Since the algorithm is exhaustive, it will certainly attain the 

combination of bits in error at some point. Therefore, one only 

needs to prove that it does not yield a zero syndrome for any 

combination of bits other than those in error. 

We will consider the two cases m £ (t-3) and m - (t-2), 

separately. First let m £ (t-3). Consider any trial combination 

of i bits. Let the number of bits that are changed erringly ( as 

the i bits are changed ) be w. Thus the number of correct 

changes is (i-w), and there are (i-w) bits common between k and 

i. Hence the total number of errors in the word, after the 

syndrome is formed and "correction" made, equals 

( k+w+1 ) - ( i-w ) or k+2w+l-i. To ensure that no erroneous 

-correction" terminates the algorithm, the following inequality 
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must hold. 

( k + 2 w + 1 - i ) <( t - 1 ) ( I ) 

By the definition of w, w < i . 

Therefore, 2w - i £ w . 

or, k + 2 w - i + l s k + w + l . 

Thus, ( I ) holds if 

k + w + 1 < < t - 1 ) 

Again, by definition, k and w occupy at most ( m+1 ) bits and 

they span disjoint sets of bits. ( See Figure I ). 

Hence, k + w £ ( m + l.) 

Therefore, < I ) holds if 

<m + 1 ) + 1 < ( t - 1 ) 

or, if m < ( t - 3 ) 

But this is true by assumption. Therefore, ( I ) holds. 

Now, let us take the case of m - (t-2). Since we do not attempt 

"correction", we need not consider the addition of an error. In 

other words, we know that we have reached the bound on correction 

of additional errors and restrict ourselves to correcting errors 

Figure I : Conceptual mapping of bits in failure. 
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among the known ( t -2 ) failed bits. Now, k £ m ~ ( t -2 ). 

Hence, the inequality ( I ) may be rewritten as : 

( k + 2 w - i ) < ( t - l ) < II ) 

Again, 2w - i < w . 

or, k + 2w - i < k + w . 

Therefore, ( II ) holds if 

k + w S< t - 1 ) 

But now k and w span disjoit bits among m ( - 1 - 2 ) bits. 

Hence, k + w £ ( t - 2 ) 

Therefore, ( II ) holds. 

Thus it is conclusively proved that the algorithm terminates in 

and only in the required correction for m £ (t-3); and hence we 

can correct upto (t-2) errors. 

DISCUSSION 

The algorithm, if implemented in its present form, could be 

extremely time consuming. In the worst case ( k • m+1 - t -2 ), 

one has to go through 

E ( i ) " 2 

different trials before arriving at the proper correction. 

Some improvement may be achieved by use of table look-up. 

Figure 2 may exemplify such methods. The syndrome and the known 

bit failures may be used to index into a table and retrieve the 



Extending Error Correction 11 

required corrections. Depending on the versatility of the table, 

which may be function of the storage space available, the 

indexing may involve from a single reference to an organized 

search of the table. 

The algorithm presented here is very simple-minded, and 

serves only as a tool to prove our claims. In practice, it 

should be improved upon. Clever codes may be designed in order 

to simplify and minimize the overheads involved ( In Hamming 

(8,4) code, for example, it is possible to reduce a step, as the 

overall parity bit can indicate even or odd error ). 

The assumption of stuck-at faults may be relaxed, if along 

with the bit failures, one also stores the value the bit is stuck 

at. Every fault, then, can be treated as a stuck-at fault, and 

stored as such. If any bit differs from its stuck-at value, the 

fault was a transient one, and hence can be deleted from the 

store. 

The improved correction capability may be employed in 

Figure 2 : One implementation of table look-up scheme. —̂  
TASUE TASUE 

; ; 
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several ways. Consider a Hamming single-error-correction, 

double-error-correction code applied to a bit-sliced memory. 

When an error is detected, a spare bit-slice may be switched in. 

This new bit-slice will contain erroneous information until every 

bit on the slice ( i.e. every word in the memory block ) is 

written into at least once. Since this "update" time may be 

substantial - and, in the worst case, infinite - the correction 

capability of the system may be seriously affected, even though 

additional spare bit-slices may be available. The second failure 

causes the memory to halt. By extending the correction 

capability, as outlined above, a bit failure can be corrected, 

even in the presence of a newly switched in bit-slice that may 

continue to yield erroneous information. Extended correction 

capability may also provide the basis for toleration of greater 

number of bit errors and may be a feasible alternative to dynamic 

switching of bit-slices. 

Since the theory employed here is that of the classical 

linear codes, all the extentions of the theory, such as the ones 

to byte ( or symbol ) correction, may be similarly derived from 

the work presented here. 

The effects of our new assumption should be studied in 

connection with other theoretical work, especially other codes 

( e.g. arithmatic codes ), and this is the direction of our 
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future work. 
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