
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A DETERMINANT THEOREM WITH APPLICATIONS
TO PARALLEL ALGORITHMS

Don Heller

Department of Computer Science
Carnegie-MelIon University

Pittsburgh, Pa.

March, 1973

This work was supported in part by the National Science Foundation
under Grant GJ-3211 and by the Office of Naval Research under Con
tract N00014-67-A-0314-0010, NR044-422.

ABSTRACT

We state and prove an expansion theorem for the determinant of any

Hessenberg matrix. The expansion is expressed as a vector-matrix-vector

product which can be efficiently evaluated on a parallel machine. We con

sider the computation of the first N terms of a sequence defined by a general

linear recurrence. On a sequential machine this problem is 0(N 2), with N
4 2 processors it is 0(N), and with 0(N) processors it is O(log N) using our

expansion. Other applications include locating roots of analytic functions
and proving doubling formulas for linear recurrences with constant coeffici
ents.

i

1• Introduction

In this paper we prove a general expansion formula for the determinant

of a Hessenberg (almost triangular) matrix, and show how it may be used to

design algorithms for parallel .computers. We analyze the algorithms for

two types of parallel machines: Single Instruction Stream Multiple Data

Stream (SIMD) and Multiple Instruction Stream Multiple Data Stream (MIMD).

The total time to execute an algorithm is estimated by counting arithmetic

steps; we neglect overhead costs.

The major application of the expansion theorem is to the following

problem: Compute the first N terms of a sequence given by a general linear

recurrence

.1-1
y(i) = 0, i < 0; y(i) = S A(i-l,j) y(j) + H(i-l), i * 0.

j=0
On a sequential computer this problem is O(N^). We will show that on an

4 2 MIMD computer with 0(N) processors this problem is O(log N), and that on

an SIMD machine with N processors the problem is 0(N). The speedup, de-

fined as sequential time/parallel time, is then (N/log N) and N, respec

tively. Although the MIMD algorithm is faster under the assumption that

we have sufficiently many processors, it is not practical for use in cur

rent or planned computer systems.

Other applications of the determinant theorem include locating roots

of analytic functions and proving doubling formulas for linear recurrences

with constant coefficients.

-2-

2. Hessenberg Determinants

In this section we prove the main theorem of this paper, a recursive

expansion formula for the determinant of a lower Hessenberg matrix

(M(i,j) « 0 if j > i+1).

We first introduce the necessary notation. For any nxn matrix M, let

M[r:s; t:u], 1 ̂ r ^ s ^ n , 1 ̂ t £ u £ n, be the submatrix of M consisting

of rows r through s and columns t through u. Define the n X n matrix

by
r

(2.1) KjjCr.s).^
det(M[r:s;r:s]) if 1 £ r £ s £ n

1 if 2 <> r £ n, s = r-1

0 otherwise.

As a notational convenience, we define 1(̂ (1,0) «-Î (iri-l,n) * 1, and

M[r:s; t:u] « 0 if r > s or t > u.

The subscript M will be omitted when no ambiguity will result.

It should be observed that is an upper Hessenberg matrix whose main

diagonal agrees with that of M.

Theorem 2.1. If M is an nxn lower Hessenberg matrix, and i f l ^ r ^ s ^ t ^ n ,

then

(2.2) K^rjt) = K^r, 8)1^(8+1,0
t s i-1

+ Z S M(i,j) yr,j-1) ̂ (i+1,t) n (-M(k,k+1)).
i«s+l j«r k*j

Remarks: In applications we will be primarily interested in K̂ (l ,n) - det(M).

The above expansion is a doubling formula, as may be seen by considering

s = r+i-1, t « r+2i-1. To find K(r,r+2i-1), a 2ix2i determinant, requires

-3-

the determinants of lower Hessenberg matrices no larger; than ixi.

The theorem could be proven by applying the Laplace expansion to the

first s-r+1 rows of K^rjt), but the resulting summation is not easily seen

to be (2.2). We hope to make this fact transparent with the following proof,

prefixed by two lemmas.

Lemma 2.1. If M is an nXn lower Hessenberg matrix and if 1 £ r £ s £ n,

then

s i-1
(2.3) K(r,s) - Z M(i,r) K(i+l,s) n (-Mfrjofl))

i=r k=r
and

s s-1
(2.4) K(r,s) = Z M(s,i) K(r,i-1) n (-M(k,k+1)).

i«r k=i

Proof. To show (2.3), expand K(r,s) • det(M[r:s;r:s]) along its first

column. To show (2.4), expand along the last row.

Lemma 2.2. If 1 £ r £ s < s+1 £ t £ n, then

(2.5) K(r,s) K(s+l,t)
t s i-1

+ Z ZM(i,j) K(r,j-1) K(i+l,t) n (-M(k,k+1))
i=s+1 j=r k=j

• K(r,s+1) K(s+2,t)
t s+1 i-1

+ Z 2M(i,j) K(r,j-1) K(i+l,t) n (-M(k,k+1)).
i«s+2 j«*r k=j

Proof. In the lefthand side of (2.5), replace K(s+l,t) with its expansion

from (2.3), and combine the summations to obtain
t i-1

LHS = K(r,s)[Z M(i,s+1) K(i+l,t) n (-M(k,k+1))]
ics+l k«s+l

t s i-1
+ Z Z M(i,j) K(r,j-1) K(i+l,t) n (-M(k,k+1))

i=s+l j=r k=j
t s+1 i.T

8 5 Z Z M(i,j) K(r,j-1) K(i+l,t) n (-M(k,k+1)).
i=s+l j«r k«j

-4-

This double summation may be rewritten as

s+1 s
E M(s+1,j) K(r,j-1) K(s+2,t) n (-M(k,k+1))

j t r s+1
+ 2 E M(i,j) K(r,j-1) K(i+1,t) n (-M(k,k+1)).

i=s+2 j«r k*j
Now use (2.3) to reduce the first summation to K(r,s+1) K(s+2,t), yielding

the result•

Proof of Theorem 2.1, If s»t, the result is trivial, so assume that t £ s+1.

Now apply (2.5) as many times as possible to the righthand side of (2.2),

reducing it to

t t-1 i-1
K(r,t-1) K(t,t) + E EM(i,j) K(r,j-1) K(i+l,t) n (-M(k,k+1)).

i«t j=r k=j

Since K(t,t) « M(t,t) and K(t+l,t) « 1, this becomes

t t-1
E M(t,j) K(r,j-1) n (-M(k,k+1))
J-r k-j

which is K(r,t) by (2.4). QED

Corollary 2.1. Ifl £ r £ s £ t ^ n and M is tridiagonal, then

(2.6) K(r,t) - K(r,s) K(s+1,t)

-M(s+1,s) M(s,s+1) K(r,s-1) K(s+2,t).

This corollary was given by Sylvester [Sy 1853a], [Sy 1853b], and by

Euler [Eu 1764] for a special case.

For a special class of lower Hessenberg matrices, Theorem 2.1 takes

a particularly elegant form.

-5-

Definition. The lower Hessenberg matrix M is normalized if M(j,j+1) •» -1

for 1 £ j £ n-1 •

Theorem 2.2. If M is normalized, and ifl ^ r ^ s ^ t ^ n , then

(2.7) K(r,t) - K(r,s) K(s+l,t)

+ K[r:r;r-1 :s-l](M[s+l :t;r:s])TK[sH-2: t+1 ;t:t]

and

(2.8) K(r,t) =

K[r:r;r-1 : s] (M[s+1 : t;r: s+1]) T K[s+2:t+l ;t: t]

Proof. Expansion (2.7) is a restatement of (2.2). Expansion (2.8) results

from applying (2.3) to K(s+l,t) in (2.2). QED

Actually, it is possible to deal only with normalized matrices, as may

be seen by defining the nxn matrix M 1 by

i-1

M'(i,j) = M(i,j) II. (-M(k,k+1)), 1 * j £ i £ n ,

Mf(i,j) - - 1 , 1 ^ i ^ n - 1 ,

M'(i,j) - 0, 1 £ i ̂ n-1, i+1 < j £ n.

It then follows from (2.3) and (2.4) that K^, "-l^.

We now consider the case where M is a normalized band matrix.

Theorem 2,3. If M is normalized, M(i,j) « 0 for i-j 5K k, and ifl ^ r ^ s ^ t ^ n ,
then

-6-

(2.9) K(r,t) - K(r,s) K(s+1,t)
p i-1

+ E S M(s+i-j,s-j) K(r,s-j-l) K(s+i-j+l,t)

where p « min(k-1,t-r)

max(0, i-(s-r+l)).

Proof. Note that there are only k+1 diagonals that are non-zero. The

formula may then be constructed from (2.2). QED

Finally, we note that the definitions and theorems of this section may

be altered slightly to provide a similar treatment for the permanent of a

Hessenberg matrix. In (2.1), change fldetlf to "per11 and in all other places

change lf-M(k,k+l)" to "M(k,k+1)".

-7-

3. Application to Calculating Linear Recurrences on Parallel Computers

We now show how the results of Section 2 may be used to solve a gen

eral initial value linear recurrence problem. We also indicate methods of
th

solving boundary value problems and k order linear recurrences.

Algorithms for the three basic types of machines, sequential, SIMD

and MIMD, are given and analyzed. In the general recurrence problem a
2

speedup of N/2 is possible for SIMD machines, and (N/logN) for MIMD
th

machines. For k order recurrences the speedup is N/logN for each type.

Suppose we are given a function H defined on Z, the set of integers,

and a function A defined on Z X Z, with A(i,i+1) ̂ 0 for -1 £ i. Then

there is a unique sequence y defined on Z such that
y(i) = 0 if i < 0,

(3.1) A(-1,0) y(0) « H (- l) ,
i-1

A(i-1,i)y(i) = E A(i-l,j) y(j) + H(i-l) if i >0.
3=0

As may be seen, there is no loss of generality in assuming that A(i,i+1) = 1
for -1 £ i, and we will do so.

Actually, (3.1) defines a sequential algorithm to calculate y(0),...,y(N) ,

comment Sequential algorithm;
y(0) :« H(-1);
for i := 1 step 1 until N do

begin Sum := H(i - l) ;
for j 0 step 1 until i-1 do
Sum := Sum + A(i-1, j)*y(j) ;

y(i) Sum
end;

8

This requires N(N41)/2 multiplications and an equal number of additions,
2

so our problem is 0(N) for a one processor machine.

For an SIMD machine with N processors we can easily define an algor

ithm which requires 2N arithmetic steps. This is a columnwise algorithm;

the previous one is rowwise.

The notation used here is a pseudoAlgol language due to Stone [St73]

in which the notation (r ̂ j £ s) after a statement means that the statement

should be executed in parallel for all values of j in the interval.

comment parallel algorithm 1 (SIMD);
y(i) :« H(il), (0 £ i £ N);
for j := 0 step 1 until N1 do

y(i) := y(i) + A(i1,j) * y(j),
(j+1 £ i £ N) ;

This requires N multiplications and an equal number of additions, so the
2

speedup is N /2N = N/2, using this simple technique.
2

We now show how to achieve a speedup of (N/logN) for MIMD machines

with sufficiently many processors.
Define the (N+1) X (N+1) matrix B by

B(i,1) H(i2), 1 £ i £
B(i,j) = A(i2, j2), 2 £ j £ i <; №H,
B(i,i+1) 1, 1 ̂ i ^ N,
B(i,j) = 0 otherwise.

B is a normalized lower Hessenberg matrix, so we may apply the results

of Section 2. In particular,

-9-

Theorem 3.1. For 0 s: i £ N, y(i) • K o0,i+1).

Proof. Using (2.4) and (3.2) we have

i-1
(3.3) K_(1,i+1) = S A(i-1,j) K_(l,j+1) + H(i-1).

j=0

For i = 0, 1^(1,1+1) = H(-l) - y(0). By the uniqueness of y and (3.3) we
have the desired result.

Corollary 3.1. If H(i) • 0 for 0 * i £ N-1, then y(i) - y(0)K (2,i+1).
8

Theorem 3.1 may also be proven by applying Cramer's rule to the tri
angular linear system

i-1
y(i) - £ A(i-l,j) y(j) = H(i-l), 0 £ i * N,

j-0-

which was apparently first done by Scherk in 1825 [Mu23, vol. 1]. Viewed

as a problem in differences, the corollary was first stated by Sylvester

[Syl853a], [Syl862] for the case y(0) • 1.

We can now use Theorems 2.2 and 3.1 to define a parallel algorithm to
compute y(0),...,y(N) for N • 2n~hl-1. Since B is normalized, we have from
(2.8),

(3.4) KgO^t) « ^[rir; r-l:s-l](B[s+l:t;r:s+l])TKB[s+2:t+l;t:t]

Define Q(r,s,t) to be a procedure which computes K^rjt) by (3.4).

-10-

comment Parallel algorithm 2 (MIMD).
y(j) Œ K(l,j+1), 0 £ j £ N;
K(r,r-1) 1, (2 <: r £ N+l) ;
K(r,r) := B(r,r), (1 £ r £ ttfl);
K(r,r+1) := B(r,r)*B(r+l,r+1) + B(r+l,r),

(1 £ r £ N);
for i := 1 step i+1 until N-1 do
K(r,r+i+j) : = Q(r,r+i,r+i+j), (1 £ j £ i+1),

(1 £ r * N+l-i-j);

It is easily verified that this algorithm always provides enough in

formation to proceed to the next loop. After n loops we have computed
n+l

K(1,j+1) for 0 £ j £ 2 -1 « N. To compute Q(r,r+i,rf i+j) requires two

multiplications and [log2(i+2)l + ("Iĉ jl additions. This is greatest

when j « i+1.

The total number of multiplication steps for the loop is 2n, and the

total number of addition steps is
n ,
S (riog?((2K:-1)+2)] + ï log 9((2 -1)+1)1)

k=l Z 1

= E (?k+1) = n +2n.
k=1

Thus the total number of arithmetic steps is n +4n+2 - 0(log N), which gives
2

a speedup of (N/logN) over the standard serial algorithm. This requires
4

0(N) processors, and so is not intended to be practical.

It should be observed that the above algorithm generates more informa

tion than is necessary. For instance, the final loop (i - 2 n - l) may be

shortened to
K(l,1+i+j) Q(1,1+i,l+i+j), (1 * j * i+1);

This does not, however, reduce the time estimate for MIMD machines. Also

note that B and Kfi may be stored in the upper and lower triangular por

tions, respectively, of an (N+1) x (N+1) matrix.

-11-

We summarize our results as a theorem.

Theorem 3.2. The first N terms of the sequence defined by (3.1) may be
2

computed in O(log N) steps on an MIMD machine with sufficienctly many pro-

cessors. This provides a speedup of (N/logN) over serial machines.

Parallel algorithm 2 cannot be efficiently adapted to SIMD machines.
For instance, the modification

for i := 1 step i+1 until N-1 do
for j := 1 step 1 until i+1 do
K(r,r+i+j) :« Q(r,r+i,r+i+j),

(1 £ r £ ttfl-i-j);
is 0(N log N).

We now consider an important special case of (3.1), a homogeneous
kt^1 order sequence, k ^ 1.

(3-5) y(i)

0 if i < 0,

H(i-l) if i •» 0,

i-1
Z A(i-1,j) y(j) + H(i-l), if i > 0,

j«i-k
H(i-1) * 0 if i ̂ k.

The usual formulation gives y(i) « H(i-1) for 0 £ i £ k-1, which is included
in (3.5).

The sequential algorithm requires 0(N) arithmetic operations, as do the

row-wise and column-wise SIMD algorithms, so there is only a constant speed

up. However, there are a variety of techniques which do "obtain N/logN

speedup on SIMD machines. (cf. [Ko72], [St73].)

Since B is a band matrix for this problem, we may use Theorem 2.3 to
compute Q(r,r+i, r+i+j). On an MIMD machine this requires at most two

-12-

multiplications and riog2(1+(k-l)k/2)1 • afc additions, for a total of O(logN)

operations for parallel algorithm 2. Thus the speedup is N/logN over serial

machines. Again, it is possible to purge the loop of unnecessary computa

tions, reducing the number of processors, but not the total time.
th

Inhomogeneous k order sequences may also be easily treated via parallel

algorithm 2, since
i+1

(3.6) y(i) = K.0,1+1) = S B(j,1) K(j+1, i+1)

i
= S H(j-l) K_(j+2, i+1).
J-0

B[2:N+1 ;2:N+1] is a band matrix, so we may find y(0) ,... ,y(N) in 2n+l

multiplications and akn+flog2kl additions. This is again O(logN), a

speedup of N/logN.

It is also possible to solve boundary value problems using (3.6).

This involves solving an additional system of linear equations to find the

appropriate starting values of y.

-13*

4. Other Applications

We first consider some classical results concerning power series and

analytic functions and show how the results of Sections 2 and 3 may be

applied.
0 0 . 00

Theorem 4.1. If f(x) * 2 a x 1 , a = 1, g(x) * £ b.x1, b f t - 1, and
• i?0 1 u i=0 1 0

h(x) - g(x)/f (x) » T. c.x1, then c n • 1 and for r > 0,
i=0 1 u

(4.1) c r =

br ai
b 2-a 2

b 3-a 3

b -a r r

-a1 -1

-a r-1

O
"a1 -1

-1

-a,

Moreover, cQ,...,cN can be computed in 0(log N) steps on a parallel computer
with sufficiently many processors.

Proof. Since h(x)f(x) = g(x), we have the well-known relat ion

b0 = a0 c0» bi = S ai-iCi» 1 * U

j=0 J J

i-1 That is, c Q « 1, c - S (_a.)

from Theorems 3.1 and 3.2.
0 " c t - S (-a.^) C j + (b i ^) f 4 a u ^ r e g u u f o i i o w g

König-s Theorem fHo701 state, that a convergent sequence of approxima
tions to the smallest real root of the analytic function- f (x) = s a x 1 a

i-0 1 ' 0
= 1

-14-

is given by

r. - c where l/f(x) • E c.x .
i=0

The sequence r^ was first given by Fürstenau in 1860 [Mu23, vol. 3], and

by Bernoulli in 1728 for the special case where f is a polynomial. It is

seen from Theorem 4.1 that the first N Fürstenau approximations may be
2

computed in 0(log N) steps on a parallel machine with sufficiently many

processors.

We now examine some properties of recurrences with constant coeffici

ents, which are of interest in number theoretic applications as well as

the above root finding techniques. The most familiar is the second order
recurrence F - F , + F o f n ̂ 2, which defines the Fibonacci sequence n n-1 n-2* 7 n

for F A « 0, F. - 1. Its well-known doubling formula F , - F t 1F +F F , 0 * I m+n m+l n m n-l
may be generalized in the following way.

Suppose y is defined by

r
0 if i < 0,

(4.2) y(l) -/ y. if 0 £ i * k-l

i-1
S b y(j)

k J-0 J

9

if i * k,

That is, A(i-l,j) = b ± - 1 for i ̂ k, 0 £ j £ i-1, A(i-l,j) - 0 for

0 £ i £ k-l, 0 £ j £ H(i-l) « y for 0 <: i ̂ k-l, and H(i-l) = 0

for k ^ i.
Let V4 be defined by

-15-

(4.3) V t = /

0 if i £ 0

1 if i = 1

i-1
2 b i-l-j Vj l f l * K

Lemma 4.1. If i £ 1 then V. « K_(r,r+i-2) for any r 2> k+1, where B is
1 1 J5

defined by (3.2).

The proof is immediate from (4.3)9

Theorem 4.2. If n ̂ k then

k-2 n
(4.4) y(n) - y k _ , V k + 2 + Z y j £ b . ^ . V n + 1_.

If m ^ 1 and n £ 1, then

n-1 m
(4.5) V ̂ = V ^ V + S 2 b. . m . V. V . m+n m+1 n . T . n i4m-j j n-i

1=1 j=l

Proof. (4.4) follows from (3.6), (2.3) and Lemma 4.1. (4.5) follows from

(2.2) applied to B with r = k+1, s = k4m, t = k+m+n-1, using Lemma 4.1.

Corollary 4.1. If b « 0 for U k ^ 1, then for n £ k,

k-2 k+j
(4.6) y(n) = y + r y r b V

j=0 J i=k J J

If m £ 1, n 2: 1, then

< 4 , 7) Vm+n = V
m+i v„ + S b. v V

m+n m+1 n ± m l 1 V-j Vi-j*

P = min(k-1,m+n-2), q ± m max(0,i-m).

-16-

Proof. (4.7) follows from (2.9) with r,s,t as above.

Corollary 4.1 forms the basis of the Miller-Brown algorithm [MB67].

Doubling formulas for the Bernoulli sequence are given in [Tr66].

Finally, the Bernoulli numbers B^ and the Euler numbers E n have

representations as lower Hessenberg determinants [Mu23], [Mu30]. The

results of Section 2 may again be used to derive doubling formulas.

Acknowledgment

The author would like to thank Professor J. F. Traub for suggesting

this problem and for his many valuable suggestions.

-17-

5. Bibliography

[Eul764] Euler, L., Specimen Algorithmi Singularis, 1764, Opera Omnia,
1st series, Vol. XV, pp. 33-49.

[Ho70] Householder, A. S., The Numerical Treatment of a Single Non
linear Equation, 1970, McGraw-Hill, New York.

[Ko72] Kogge, P. M., "Parallel Algorithms for the Efficient Solution
of Recurrence Problems," September 1972, Digital Systems Lab
oratory, Stanford University.

[MB67] Miller, J. C. P. and D. J. S. Brown, "An Algorithm for Evalu
ation of Remote Terms in a Linear Recurrence Relation," 1967,
Computer Journal, Vol. 9, pp. 188-190.

[Mu23] Muir, T., The Theory of Determinants in the Historical Order
of Development, Vol. 1-4, 1960, Dover, N. Y. Originally pub
lished 1906-1923, MacMillan and Co., London.

[Mu30] , Contributions to the History of Determinants,
1900-1920, 1930, Blackie and Son, London.

[St73] Stone, H. S., "An Efficient Parallel Algorithm for the Solu
tion of a Tridiagonal System of Equations," 1973, Journal of
the ACM, Vol. 20, pp. 27-38.

[Sy1863a] Sylvester, J. J., "On a Remarkable Modification of Sturm's
Theorem," 1853, Collected Works, Vol. 1, pp. 606-619.

[Sy 1853b] , "On a Fundamental Theorem in the Algorithm of
Continued Fractions," 1853, Collected Works, Vol. 1, pp. 641-644.

[Sy1862] , , "On the Integral of the General Equation in
Differences," 1862, Collected Works, Vol. 2, pp. 318-322.

[Tr66] Traub, J. F., "A Class of Globally Convergent Iteration Func
tions for the Solution of Polynomial Equations," 1966, Mathe
matics of Computation, Vol. 20, pp. 113-138.

