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ABSTRACT 

We state and prove an expansion theorem for the determinant of any 

Hessenberg matrix. The expansion is expressed as a vector-matrix-vector 

product which can be efficiently evaluated on a parallel machine. We con­

sider the computation of the first N terms of a sequence defined by a general 

linear recurrence. On a sequential machine this problem is 0(N 2), with N 
4 2 processors it is 0(N), and with 0(N ) processors it is O(log N) using our 

expansion. Other applications include locating roots of analytic functions 
and proving doubling formulas for linear recurrences with constant coeffici­
ents. 

i 



1• Introduction 

In this paper we prove a general expansion formula for the determinant 

of a Hessenberg (almost triangular) matrix, and show how it may be used to 

design algorithms for parallel .computers. We analyze the algorithms for 

two types of parallel machines: Single Instruction Stream Multiple Data 

Stream (SIMD) and Multiple Instruction Stream Multiple Data Stream (MIMD). 

The total time to execute an algorithm is estimated by counting arithmetic 

steps; we neglect overhead costs. 

The major application of the expansion theorem is to the following 

problem: Compute the first N terms of a sequence given by a general linear 

recurrence 

.1-1 
y(i) = 0, i < 0; y(i) = S A(i-l,j) y(j) + H(i-l), i * 0. 

j=0 
On a sequential computer this problem is O(N^). We will show that on an 

4 2 MIMD computer with 0(N ) processors this problem is O(log N), and that on 

an SIMD machine with N processors the problem is 0(N). The speedup, de-

fined as sequential time/parallel time, is then (N/log N) and N, respec­

tively. Although the MIMD algorithm is faster under the assumption that 

we have sufficiently many processors, it is not practical for use in cur­

rent or planned computer systems. 

Other applications of the determinant theorem include locating roots 

of analytic functions and proving doubling formulas for linear recurrences 

with constant coefficients. 
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2. Hessenberg Determinants 

In this section we prove the main theorem of this paper, a recursive 

expansion formula for the determinant of a lower Hessenberg matrix 

(M(i,j) « 0 if j > i+1). 

We first introduce the necessary notation. For any nxn matrix M, let 

M[r:s; t:u], 1 ̂ r ^ s ^ n , 1 ̂  t £ u £ n, be the submatrix of M consisting 

of rows r through s and columns t through u. Define the n X n matrix 

by 
r 

(2.1) KjjCr.s).^ 
det(M[r:s;r:s]) if 1 £ r £ s £ n 

1 if 2 <> r £ n, s = r-1 

0 otherwise. 

As a notational convenience, we define 1(̂ (1,0) «-Î (iri-l,n) * 1, and 

M[r:s; t:u] « 0 if r > s or t > u. 

The subscript M will be omitted when no ambiguity will result. 

It should be observed that is an upper Hessenberg matrix whose main 

diagonal agrees with that of M. 

Theorem 2.1. If M is an nxn lower Hessenberg matrix, and i f l ^ r ^ s ^ t ^ n , 

then 

(2.2) K^rjt) = K^r, 8)1^(8+1,0 
t s i-1 

+ Z S M(i,j) yr,j-1) ̂ (i+1,t) n (-M(k,k+1)). 
i«s+l j«r k*j 

Remarks: In applications we will be primarily interested in K̂ (l ,n) - det(M). 

The above expansion is a doubling formula, as may be seen by considering 

s = r+i-1, t « r+2i-1. To find K(r,r+2i-1), a 2ix2i determinant, requires 
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the determinants of lower Hessenberg matrices no larger; than ixi. 

The theorem could be proven by applying the Laplace expansion to the 

first s-r+1 rows of K^rjt), but the resulting summation is not easily seen 

to be (2.2). We hope to make this fact transparent with the following proof, 

prefixed by two lemmas. 

Lemma 2.1. If M is an nXn lower Hessenberg matrix and if 1 £ r £ s £ n, 

then 

s i-1 
(2.3) K(r,s) - Z M(i,r) K(i+l,s) n (-Mfrjofl)) 

i=r k=r 
and 

s s-1 
(2.4) K(r,s) = Z M(s,i) K(r,i-1) n (-M(k,k+1)). 

i«r k=i 

Proof. To show (2.3), expand K(r,s) • det(M[r:s;r:s]) along its first 

column. To show (2.4), expand along the last row. 

Lemma 2.2. If 1 £ r £ s < s+1 £ t £ n, then 

(2.5) K(r,s) K(s+l,t) 
t s i-1 

+ Z ZM(i,j) K(r,j-1) K(i+l,t) n (-M(k,k+1)) 
i=s+1 j=r k=j 

• K(r,s+1) K(s+2,t) 
t s+1 i-1 

+ Z 2M(i,j) K(r,j-1) K(i+l,t) n (-M(k,k+1)). 
i«s+2 j«*r k=j 

Proof. In the lefthand side of (2.5), replace K(s+l,t) with its expansion 

from (2.3), and combine the summations to obtain 
t i-1 

LHS = K(r,s)[ Z M(i,s+1) K(i+l,t) n (-M(k,k+1))] 
ics+l k«s+l 

t s i-1 
+ Z Z M(i,j) K(r,j-1) K(i+l,t) n (-M(k,k+1)) 

i=s+l j=r k=j 
t s+1 i.T 

8 5 Z Z M(i,j) K(r,j-1) K(i+l,t) n (-M(k,k+1)). 
i=s+l j«r k«j 
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This double summation may be rewritten as 

s+1 s 
E M(s+1,j) K(r,j-1) K(s+2,t) n (-M(k,k+1)) 

j t r s+1 
+ 2 E M(i,j) K(r,j-1) K(i+1,t) n (-M(k,k+1)). 

i=s+2 j«r k*j 
Now use (2.3) to reduce the first summation to K(r,s+1) K(s+2,t), yielding 

the result• 

Proof of Theorem 2.1, If s»t, the result is trivial, so assume that t £ s+1. 

Now apply (2.5) as many times as possible to the righthand side of (2.2), 

reducing it to 

t t-1 i-1 
K(r,t-1) K(t,t) + E EM(i,j) K(r,j-1) K(i+l,t) n (-M(k,k+1)). 

i«t j=r k=j 

Since K(t,t) « M(t,t) and K(t+l,t) « 1, this becomes 

t t-1 
E M(t,j) K(r,j-1) n (-M(k,k+1)) 
J-r k-j 

which is K(r,t) by (2.4). QED 

Corollary 2.1. Ifl £ r £ s £ t ^ n and M is tridiagonal, then 

(2.6) K(r,t) - K(r,s) K(s+1,t) 

-M(s+1,s) M(s,s+1) K(r,s-1) K(s+2,t). 

This corollary was given by Sylvester [Sy 1853a], [Sy 1853b], and by 

Euler [Eu 1764] for a special case. 

For a special class of lower Hessenberg matrices, Theorem 2.1 takes 

a particularly elegant form. 
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Definition. The lower Hessenberg matrix M is normalized if M(j,j+1) •» -1 

for 1 £ j £ n-1 • 

Theorem 2.2. If M is normalized, and ifl ^ r ^ s ^ t ^ n , then 

(2.7) K(r,t) - K(r,s) K(s+l,t) 

+ K[r:r;r-1 :s-l ](M[s+l :t;r:s])TK[sH-2: t+1 ;t:t] 

and 

(2.8) K(r,t) = 

K[r:r;r-1 : s] (M[s+1 : t;r: s+1 ] ) T K[s+2:t+l ;t: t] 

Proof. Expansion (2.7) is a restatement of (2.2). Expansion (2.8) results 

from applying (2.3) to K(s+l,t) in (2.2). QED 

Actually, it is possible to deal only with normalized matrices, as may 

be seen by defining the nxn matrix M 1 by 

i-1 

M'(i,j) = M(i,j) II. (-M(k,k+1)), 1 * j £ i £ n , 

Mf(i,j) - - 1 , 1 ^ i ^ n - 1 , 

M'(i,j) - 0, 1 £ i ̂  n-1, i+1 < j £ n. 

It then follows from (2.3) and (2.4) that K^, "-l^. 

We now consider the case where M is a normalized band matrix. 

Theorem 2,3. If M is normalized, M(i,j) « 0 for i-j 5K k, and ifl ^ r ^ s ^ t ^ n , 
then 
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(2.9) K(r,t) - K(r,s) K(s+1,t) 
p i-1 

+ E S M(s+i-j,s-j) K(r,s-j-l) K(s+i-j+l,t) 

where p « min(k-1,t-r) 

max(0, i-(s-r+l)). 

Proof. Note that there are only k+1 diagonals that are non-zero. The 

formula may then be constructed from (2.2). QED 

Finally, we note that the definitions and theorems of this section may 

be altered slightly to provide a similar treatment for the permanent of a 

Hessenberg matrix. In (2.1), change fldetlf to "per11 and in all other places 

change lf-M(k,k+l)" to "M(k,k+1)". 
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3. Application to Calculating Linear Recurrences on Parallel Computers 

We now show how the results of Section 2 may be used to solve a gen­

eral initial value linear recurrence problem. We also indicate methods of 
th 

solving boundary value problems and k order linear recurrences. 

Algorithms for the three basic types of machines, sequential, SIMD 

and MIMD, are given and analyzed. In the general recurrence problem a 
2 

speedup of N/2 is possible for SIMD machines, and (N/logN) for MIMD 
th 

machines. For k order recurrences the speedup is N/logN for each type. 

Suppose we are given a function H defined on Z, the set of integers, 

and a function A defined on Z X Z, with A(i,i+1) ̂  0 for -1 £ i. Then 

there is a unique sequence y defined on Z such that 
y(i) = 0 if i < 0, 

(3.1) A(-1,0) y(0) « H ( - l ) , 
i-1 

A(i-1,i)y(i) = E A(i-l,j) y(j) + H(i-l) if i >0. 
3=0 

As may be seen, there is no loss of generality in assuming that A(i,i+1) = 1 
for -1 £ i, and we will do so. 

Actually, (3.1) defines a sequential algorithm to calculate y(0),...,y(N) , 

comment Sequential algorithm; 
y(0) :« H(-1); 
for i := 1 step 1 until N do  

begin Sum := H(i - l) ; 
for j 0 step 1 until i-1 do 
Sum := Sum + A(i-1, j)*y(j) ; 

y(i) Sum 
end; 
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This requires N(N4­1 )/2 multiplications and an equal number of additions, 
2 

so our problem is 0(N ) for a one processor machine. 

For an SIMD machine with N processors we can easily define an algor­

ithm which requires 2N arithmetic steps. This is a column­wise algorithm; 

the previous one is row­wise. 

The notation used here is a pseudo­Algol language due to Stone [St73] 

in which the notation (r ̂  j £ s) after a statement means that the statement 

should be executed in parallel for all values of j in the interval. 

comment parallel algorithm 1 (SIMD); 
y(i) :« H(i­l), (0 £ i £ N); 
for j := 0 step 1 until N­1 do 

y(i) := y(i) + A(i­1,j) * y(j), 
(j+1 £ i £ N) ; 

This requires N multiplications and an equal number of additions, so the 
2 

speedup is N /2N = N/2, using this simple technique. 
2 

We now show how to achieve a speedup of (N/logN) for MIMD machines 

with sufficiently many processors. 
Define the (N+1) X (N+1) matrix B by 

B(i,1) ­ H(i­2), 1 £ i £ 
B(i,j) = A(i­2, j­2), 2 £ j £ i <; №H, 
B(i,i+1) ­ ­1, 1 ̂  i ^ N, 
B(i,j) = 0 otherwise. 

B is a normalized lower Hessenberg matrix, so we may apply the results 

of Section 2. In particular, 
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Theorem 3.1. For 0 s: i £ N, y(i) • K o0,i+1). 

Proof. Using (2.4) and (3.2) we have 

i-1 
(3.3) K_(1,i+1) = S A(i-1,j) K_(l,j+1) + H(i-1). 

j=0 

For i = 0, 1^(1,1+1) = H(-l) - y(0). By the uniqueness of y and (3.3) we 
have the desired result. 

Corollary 3.1. If H(i) • 0 for 0 * i £ N-1, then y(i) - y(0)K (2,i+1). 
8 

Theorem 3.1 may also be proven by applying Cramer's rule to the tri­
angular linear system 

i-1 
y(i) - £ A(i-l,j) y(j) = H(i-l), 0 £ i * N, 

j-0-

which was apparently first done by Scherk in 1825 [Mu23, vol. 1]. Viewed 

as a problem in differences, the corollary was first stated by Sylvester 

[Syl853a], [Syl862] for the case y(0) • 1. 

We can now use Theorems 2.2 and 3.1 to define a parallel algorithm to 
compute y(0),...,y(N) for N • 2n~hl-1. Since B is normalized, we have from 
(2.8), 

(3.4) KgO^t) « ^[rir; r-l:s-l](B[s+l:t;r:s+l])TKB[s+2:t+l;t:t] 

Define Q(r,s,t) to be a procedure which computes K^rjt) by (3.4). 
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comment Parallel algorithm 2 (MIMD). 
y(j) Œ K(l,j+1), 0 £ j £ N; 
K(r,r-1) 1, (2 <: r £ N+l ) ; 
K(r,r) := B(r,r), (1 £ r £ ttfl); 
K(r,r+1) := B(r,r)*B(r+l,r+1) + B(r+l,r), 

(1 £ r £ N); 
for i := 1 step i+1 until N-1 do 
K(r,r+i+j) : = Q(r,r+i,r+i+j), (1 £ j £ i+1), 

(1 £ r * N+l-i-j); 

It is easily verified that this algorithm always provides enough in­

formation to proceed to the next loop. After n loops we have computed 
n+l 

K(1,j+1) for 0 £ j £ 2 -1 « N. To compute Q(r,r+i,rf i+j) requires two 

multiplications and [log2(i+2)l + ("Iĉ jl additions. This is greatest 

when j « i+1. 

The total number of multiplication steps for the loop is 2n, and the 

total number of addition steps is 
n , 
S (riog?((2K:-1)+2)] + ï log 9((2 -1)+1)1) 

k=l Z 1 

= E (?k+1) = n +2n. 
k=1 

Thus the total number of arithmetic steps is n +4n+2 - 0(log N), which gives 
2 

a speedup of (N/logN) over the standard serial algorithm. This requires 
4 

0(N ) processors, and so is not intended to be practical. 

It should be observed that the above algorithm generates more informa­

tion than is necessary. For instance, the final loop (i - 2 n - l ) may be 

shortened to 
K(l,1+i+j) Q(1,1+i,l+i+j), (1 * j * i+1); 

This does not, however, reduce the time estimate for MIMD machines. Also 

note that B and Kfi may be stored in the upper and lower triangular por­

tions, respectively, of an (N+1) x (N+1) matrix. 
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We summarize our results as a theorem. 

Theorem 3.2. The first N terms of the sequence defined by (3.1) may be 
2 

computed in O(log N) steps on an MIMD machine with sufficienctly many pro-

cessors. This provides a speedup of (N/logN) over serial machines. 

Parallel algorithm 2 cannot be efficiently adapted to SIMD machines. 
For instance, the modification 

for i := 1 step i+1 until N-1 do 
for j := 1 step 1 until i+1 do 
K(r,r+i+j) :« Q(r,r+i,r+i+j), 

(1 £ r £ ttfl-i-j); 
is 0(N log N). 

We now consider an important special case of (3.1), a homogeneous 
kt^1 order sequence, k ^ 1. 

(3-5) y(i) 

0 if i < 0, 

H(i-l) if i •» 0, 

i-1 
Z A(i-1,j) y(j) + H(i-l), if i > 0, 

j«i-k 
H(i-1) * 0 if i ̂  k. 

The usual formulation gives y(i) « H(i-1) for 0 £ i £ k-1, which is included 
in (3.5). 

The sequential algorithm requires 0(N) arithmetic operations, as do the 

row-wise and column-wise SIMD algorithms, so there is only a constant speed­

up. However, there are a variety of techniques which do "obtain N/logN 

speedup on SIMD machines. (cf. [Ko72], [St73].) 

Since B is a band matrix for this problem, we may use Theorem 2.3 to 
compute Q(r,r+i, r+i+j). On an MIMD machine this requires at most two 
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multiplications and riog2(1+(k-l)k/2)1 • afc additions, for a total of O(logN) 

operations for parallel algorithm 2. Thus the speedup is N/logN over serial 

machines. Again, it is possible to purge the loop of unnecessary computa­

tions, reducing the number of processors, but not the total time. 
th 

Inhomogeneous k order sequences may also be easily treated via parallel 

algorithm 2, since 
i+1 

(3.6) y(i) = K.0,1+1) = S B(j,1) K(j+1, i+1) 

i 
= S H(j-l) K_(j+2, i+1). 
J-0 

B[2:N+1 ;2:N+1 ] is a band matrix, so we may find y(0) ,... ,y(N) in 2n+l 

multiplications and akn+flog2kl additions. This is again O(logN), a 

speedup of N/logN. 

It is also possible to solve boundary value problems using (3.6). 

This involves solving an additional system of linear equations to find the 

appropriate starting values of y. 
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4. Other Applications 

We first consider some classical results concerning power series and 

analytic functions and show how the results of Sections 2 and 3 may be 

applied. 
0 0 . 00 

Theorem 4.1. If f(x) * 2 a x 1 , a = 1, g( x) * £ b.x1, b f t - 1, and 
• i?0 1 u i=0 1 0 

h(x) - g(x)/f (x) » T. c.x1, then c n • 1 and for r > 0, 
i=0 1 u 

(4.1) c r = 

br ai 
b 2-a 2 

b 3-a 3 

b -a r r 

-a1 -1 

-a r-1 

O 
"a1 -1 

-1 

-a, 

Moreover, cQ,...,cN can be computed in 0(log N) steps on a parallel computer 
with sufficiently many processors. 

Proof. Since h(x)f(x) = g(x), we have the well-known relat ion 

b0 = a0 c0» bi = S ai-iCi» 1 * U 

j=0 J J 

i-1 That is, c Q « 1, c - S (_a. ) 

from Theorems 3.1 and 3.2. 
0 " c t - S (-a.^) C j + ( b i ^ ) f 4 a u ^ r e g u u f o i i o w g 

König-s Theorem fHo701 state, that a convergent sequence of approxima­
tions to the smallest real root of the analytic function- f (x) = s a x 1 a 

i-0 1 ' 0 
= 1 



-14-

is given by 

r. - c where l/f(x) • E c.x . 
i=0 

The sequence r^ was first given by Fürstenau in 1860 [Mu23, vol. 3], and 

by Bernoulli in 1728 for the special case where f is a polynomial. It is 

seen from Theorem 4.1 that the first N Fürstenau approximations may be 
2 

computed in 0(log N) steps on a parallel machine with sufficiently many 

processors. 

We now examine some properties of recurrences with constant coeffici­

ents, which are of interest in number theoretic applications as well as 

the above root finding techniques. The most familiar is the second order 
recurrence F - F , + F o f n ̂  2, which defines the Fibonacci sequence n n-1 n-2* 7 n 

for F A « 0, F. - 1. Its well-known doubling formula F , - F t 1F +F F , 0 * I m+n m+l n m n-l 
may be generalized in the following way. 

Suppose y is defined by 

r 
0 if i < 0, 

(4.2) y(l) -/ y. if 0 £ i * k-l 

i-1 
S b y(j) 

k J-0 J 

9 

if i * k, 

That is, A(i-l,j) = b ± - 1 for i ̂  k, 0 £ j £ i-1, A(i-l,j) - 0 for 

0 £ i £ k-l, 0 £ j £ H(i-l) « y for 0 <: i ̂  k-l, and H(i-l) = 0 

for k ^ i. 
Let V4 be defined by 
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(4.3) V t = / 

0 if i £ 0 

1 if i = 1 

i-1 
2 b i-l-j Vj l f l * K 

Lemma 4.1. If i £ 1 then V. « K_(r,r+i-2) for any r 2> k+1, where B is 
1 1 J5 

defined by (3.2). 

The proof is immediate from (4.3)9 

Theorem 4.2. If n ̂  k then 

k-2 n 
(4.4) y(n) - y k _ , V k + 2 + Z y j £ b . ^ . V n + 1_. 

If m ^ 1 and n £ 1, then 

n-1 m 
(4.5) V ̂  = V ^ V + S 2 b. . m . V. V . m+n m+1 n . T . n i4m-j j n-i 

1=1 j=l 

Proof. (4.4) follows from (3.6), (2.3) and Lemma 4.1. (4.5) follows from 

(2.2) applied to B with r = k+1, s = k4m, t = k+m+n-1, using Lemma 4.1. 

Corollary 4.1. If b « 0 for U k ^ 1, then for n £ k, 

k-2 k+j 
(4.6) y(n) = y + r y r b V 

j=0 J i=k J J 

If m £ 1, n 2: 1, then 

< 4 , 7 ) Vm+n = V
m+i v„ + S b. v V 

m+n m+1 n ± m l 1 V-j Vi-j* 

P = min(k-1,m+n-2), q ± m max(0,i-m). 
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Proof. (4.7) follows from (2.9) with r,s,t as above. 

Corollary 4.1 forms the basis of the Miller-Brown algorithm [MB67]. 

Doubling formulas for the Bernoulli sequence are given in [Tr66]. 

Finally, the Bernoulli numbers B^ and the Euler numbers E n have 

representations as lower Hessenberg determinants [Mu23], [Mu30]. The 

results of Section 2 may again be used to derive doubling formulas. 
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