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ABSTRACT 

We state and prove an expansion theorem for the determinant of any 

Hessenberg matrix. The expansion is expressed as a vector-matrix-vector 

product which can be efficiently evaluated on a parallel machine. We con

sider the computation of the first N terms of a sequence defined by a general 

linear recurrence. On a sequential machine this problem is 0(N 2), with N 
4 2 processors it is 0(N), and with 0(N ) processors it is O(log N) using our 

expansion. Other applications include locating roots of analytic functions 
and proving doubling formulas for linear recurrences with constant coeffici
ents. 

i 



1• Introduction 

In this paper we prove a general expansion formula for the determinant 

of a Hessenberg (almost triangular) matrix, and show how it may be used to 

design algorithms for parallel .computers. We analyze the algorithms for 

two types of parallel machines: Single Instruction Stream Multiple Data 

Stream (SIMD) and Multiple Instruction Stream Multiple Data Stream (MIMD). 

The total time to execute an algorithm is estimated by counting arithmetic 

steps; we neglect overhead costs. 

The major application of the expansion theorem is to the following 

problem: Compute the first N terms of a sequence given by a general linear 

recurrence 

.1-1 
y(i) = 0, i < 0; y(i) = S A(i-l,j) y(j) + H(i-l), i * 0. 

j=0 
On a sequential computer this problem is O(N^). We will show that on an 

4 2 MIMD computer with 0(N ) processors this problem is O(log N), and that on 

an SIMD machine with N processors the problem is 0(N). The speedup, de-

fined as sequential time/parallel time, is then (N/log N) and N, respec

tively. Although the MIMD algorithm is faster under the assumption that 

we have sufficiently many processors, it is not practical for use in cur

rent or planned computer systems. 

Other applications of the determinant theorem include locating roots 

of analytic functions and proving doubling formulas for linear recurrences 

with constant coefficients. 
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2. Hessenberg Determinants 

In this section we prove the main theorem of this paper, a recursive 

expansion formula for the determinant of a lower Hessenberg matrix 

(M(i,j) « 0 if j > i+1). 

We first introduce the necessary notation. For any nxn matrix M, let 

M[r:s; t:u], 1 ̂ r ^ s ^ n , 1 ̂  t £ u £ n, be the submatrix of M consisting 

of rows r through s and columns t through u. Define the n X n matrix 

by 
r 

(2.1) KjjCr.s).^ 
det(M[r:s;r:s]) if 1 £ r £ s £ n 

1 if 2 <> r £ n, s = r-1 

0 otherwise. 

As a notational convenience, we define 1(̂ (1,0) «-Î (iri-l,n) * 1, and 

M[r:s; t:u] « 0 if r > s or t > u. 

The subscript M will be omitted when no ambiguity will result. 

It should be observed that is an upper Hessenberg matrix whose main 

diagonal agrees with that of M. 

Theorem 2.1. If M is an nxn lower Hessenberg matrix, and i f l ^ r ^ s ^ t ^ n , 

then 

(2.2) K^rjt) = K^r, 8)1^(8+1,0 
t s i-1 

+ Z S M(i,j) yr,j-1) ̂ (i+1,t) n (-M(k,k+1)). 
i«s+l j«r k*j 

Remarks: In applications we will be primarily interested in K̂ (l ,n) - det(M). 

The above expansion is a doubling formula, as may be seen by considering 

s = r+i-1, t « r+2i-1. To find K(r,r+2i-1), a 2ix2i determinant, requires 
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the determinants of lower Hessenberg matrices no larger; than ixi. 

The theorem could be proven by applying the Laplace expansion to the 

first s-r+1 rows of K^rjt), but the resulting summation is not easily seen 

to be (2.2). We hope to make this fact transparent with the following proof, 

prefixed by two lemmas. 

Lemma 2.1. If M is an nXn lower Hessenberg matrix and if 1 £ r £ s £ n, 

then 

s i-1 
(2.3) K(r,s) - Z M(i,r) K(i+l,s) n (-Mfrjofl)) 

i=r k=r 
and 

s s-1 
(2.4) K(r,s) = Z M(s,i) K(r,i-1) n (-M(k,k+1)). 

i«r k=i 

Proof. To show (2.3), expand K(r,s) • det(M[r:s;r:s]) along its first 

column. To show (2.4), expand along the last row. 

Lemma 2.2. If 1 £ r £ s < s+1 £ t £ n, then 

(2.5) K(r,s) K(s+l,t) 
t s i-1 

+ Z ZM(i,j) K(r,j-1) K(i+l,t) n (-M(k,k+1)) 
i=s+1 j=r k=j 

• K(r,s+1) K(s+2,t) 
t s+1 i-1 

+ Z 2M(i,j) K(r,j-1) K(i+l,t) n (-M(k,k+1)). 
i«s+2 j«*r k=j 

Proof. In the lefthand side of (2.5), replace K(s+l,t) with its expansion 

from (2.3), and combine the summations to obtain 
t i-1 

LHS = K(r,s)[ Z M(i,s+1) K(i+l,t) n (-M(k,k+1))] 
ics+l k«s+l 

t s i-1 
+ Z Z M(i,j) K(r,j-1) K(i+l,t) n (-M(k,k+1)) 

i=s+l j=r k=j 
t s+1 i.T 

8 5 Z Z M(i,j) K(r,j-1) K(i+l,t) n (-M(k,k+1)). 
i=s+l j«r k«j 
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This double summation may be rewritten as 

s+1 s 
E M(s+1,j) K(r,j-1) K(s+2,t) n (-M(k,k+1)) 

j t r s+1 
+ 2 E M(i,j) K(r,j-1) K(i+1,t) n (-M(k,k+1)). 

i=s+2 j«r k*j 
Now use (2.3) to reduce the first summation to K(r,s+1) K(s+2,t), yielding 

the result• 

Proof of Theorem 2.1, If s»t, the result is trivial, so assume that t £ s+1. 

Now apply (2.5) as many times as possible to the righthand side of (2.2), 

reducing it to 

t t-1 i-1 
K(r,t-1) K(t,t) + E EM(i,j) K(r,j-1) K(i+l,t) n (-M(k,k+1)). 

i«t j=r k=j 

Since K(t,t) « M(t,t) and K(t+l,t) « 1, this becomes 

t t-1 
E M(t,j) K(r,j-1) n (-M(k,k+1)) 
J-r k-j 

which is K(r,t) by (2.4). QED 

Corollary 2.1. Ifl £ r £ s £ t ^ n and M is tridiagonal, then 

(2.6) K(r,t) - K(r,s) K(s+1,t) 

-M(s+1,s) M(s,s+1) K(r,s-1) K(s+2,t). 

This corollary was given by Sylvester [Sy 1853a], [Sy 1853b], and by 

Euler [Eu 1764] for a special case. 

For a special class of lower Hessenberg matrices, Theorem 2.1 takes 

a particularly elegant form. 
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Definition. The lower Hessenberg matrix M is normalized if M(j,j+1) •» -1 

for 1 £ j £ n-1 • 

Theorem 2.2. If M is normalized, and ifl ^ r ^ s ^ t ^ n , then 

(2.7) K(r,t) - K(r,s) K(s+l,t) 

+ K[r:r;r-1 :s-l ](M[s+l :t;r:s])TK[sH-2: t+1 ;t:t] 

and 

(2.8) K(r,t) = 

K[r:r;r-1 : s] (M[s+1 : t;r: s+1 ] ) T K[s+2:t+l ;t: t] 

Proof. Expansion (2.7) is a restatement of (2.2). Expansion (2.8) results 

from applying (2.3) to K(s+l,t) in (2.2). QED 

Actually, it is possible to deal only with normalized matrices, as may 

be seen by defining the nxn matrix M 1 by 

i-1 

M'(i,j) = M(i,j) II. (-M(k,k+1)), 1 * j £ i £ n , 

Mf(i,j) - - 1 , 1 ^ i ^ n - 1 , 

M'(i,j) - 0, 1 £ i ̂  n-1, i+1 < j £ n. 

It then follows from (2.3) and (2.4) that K^, "-l^. 

We now consider the case where M is a normalized band matrix. 

Theorem 2,3. If M is normalized, M(i,j) « 0 for i-j 5K k, and ifl ^ r ^ s ^ t ^ n , 
then 
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(2.9) K(r,t) - K(r,s) K(s+1,t) 
p i-1 

+ E S M(s+i-j,s-j) K(r,s-j-l) K(s+i-j+l,t) 

where p « min(k-1,t-r) 

max(0, i-(s-r+l)). 

Proof. Note that there are only k+1 diagonals that are non-zero. The 

formula may then be constructed from (2.2). QED 

Finally, we note that the definitions and theorems of this section may 

be altered slightly to provide a similar treatment for the permanent of a 

Hessenberg matrix. In (2.1), change fldetlf to "per11 and in all other places 

change lf-M(k,k+l)" to "M(k,k+1)". 
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3. Application to Calculating Linear Recurrences on Parallel Computers 

We now show how the results of Section 2 may be used to solve a gen

eral initial value linear recurrence problem. We also indicate methods of 
th 

solving boundary value problems and k order linear recurrences. 

Algorithms for the three basic types of machines, sequential, SIMD 

and MIMD, are given and analyzed. In the general recurrence problem a 
2 

speedup of N/2 is possible for SIMD machines, and (N/logN) for MIMD 
th 

machines. For k order recurrences the speedup is N/logN for each type. 

Suppose we are given a function H defined on Z, the set of integers, 

and a function A defined on Z X Z, with A(i,i+1) ̂  0 for -1 £ i. Then 

there is a unique sequence y defined on Z such that 
y(i) = 0 if i < 0, 

(3.1) A(-1,0) y(0) « H ( - l ) , 
i-1 

A(i-1,i)y(i) = E A(i-l,j) y(j) + H(i-l) if i >0. 
3=0 

As may be seen, there is no loss of generality in assuming that A(i,i+1) = 1 
for -1 £ i, and we will do so. 

Actually, (3.1) defines a sequential algorithm to calculate y(0),...,y(N) , 

comment Sequential algorithm; 
y(0) :« H(-1); 
for i := 1 step 1 until N do  

begin Sum := H(i - l) ; 
for j 0 step 1 until i-1 do 
Sum := Sum + A(i-1, j)*y(j) ; 

y(i) Sum 
end; 
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This requires N(N41 )/2 multiplications and an equal number of additions, 
2 

so our problem is 0(N ) for a one processor machine. 

For an SIMD machine with N processors we can easily define an algor

ithm which requires 2N arithmetic steps. This is a columnwise algorithm; 

the previous one is rowwise. 

The notation used here is a pseudoAlgol language due to Stone [St73] 

in which the notation (r ̂  j £ s) after a statement means that the statement 

should be executed in parallel for all values of j in the interval. 

comment parallel algorithm 1 (SIMD); 
y(i) :« H(il), (0 £ i £ N); 
for j := 0 step 1 until N1 do 

y(i) := y(i) + A(i1,j) * y(j), 
(j+1 £ i £ N) ; 

This requires N multiplications and an equal number of additions, so the 
2 

speedup is N /2N = N/2, using this simple technique. 
2 

We now show how to achieve a speedup of (N/logN) for MIMD machines 

with sufficiently many processors. 
Define the (N+1) X (N+1) matrix B by 

B(i,1)  H(i2), 1 £ i £ 
B(i,j) = A(i2, j2), 2 £ j £ i <; №H, 
B(i,i+1)  1, 1 ̂  i ^ N, 
B(i,j) = 0 otherwise. 

B is a normalized lower Hessenberg matrix, so we may apply the results 

of Section 2. In particular, 
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Theorem 3.1. For 0 s: i £ N, y(i) • K o0,i+1). 

Proof. Using (2.4) and (3.2) we have 

i-1 
(3.3) K_(1,i+1) = S A(i-1,j) K_(l,j+1) + H(i-1). 

j=0 

For i = 0, 1^(1,1+1) = H(-l) - y(0). By the uniqueness of y and (3.3) we 
have the desired result. 

Corollary 3.1. If H(i) • 0 for 0 * i £ N-1, then y(i) - y(0)K (2,i+1). 
8 

Theorem 3.1 may also be proven by applying Cramer's rule to the tri
angular linear system 

i-1 
y(i) - £ A(i-l,j) y(j) = H(i-l), 0 £ i * N, 

j-0-

which was apparently first done by Scherk in 1825 [Mu23, vol. 1]. Viewed 

as a problem in differences, the corollary was first stated by Sylvester 

[Syl853a], [Syl862] for the case y(0) • 1. 

We can now use Theorems 2.2 and 3.1 to define a parallel algorithm to 
compute y(0),...,y(N) for N • 2n~hl-1. Since B is normalized, we have from 
(2.8), 

(3.4) KgO^t) « ^[rir; r-l:s-l](B[s+l:t;r:s+l])TKB[s+2:t+l;t:t] 

Define Q(r,s,t) to be a procedure which computes K^rjt) by (3.4). 
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comment Parallel algorithm 2 (MIMD). 
y(j) Œ K(l,j+1), 0 £ j £ N; 
K(r,r-1) 1, (2 <: r £ N+l ) ; 
K(r,r) := B(r,r), (1 £ r £ ttfl); 
K(r,r+1) := B(r,r)*B(r+l,r+1) + B(r+l,r), 

(1 £ r £ N); 
for i := 1 step i+1 until N-1 do 
K(r,r+i+j) : = Q(r,r+i,r+i+j), (1 £ j £ i+1), 

(1 £ r * N+l-i-j); 

It is easily verified that this algorithm always provides enough in

formation to proceed to the next loop. After n loops we have computed 
n+l 

K(1,j+1) for 0 £ j £ 2 -1 « N. To compute Q(r,r+i,rf i+j) requires two 

multiplications and [log2(i+2)l + ("Iĉ jl additions. This is greatest 

when j « i+1. 

The total number of multiplication steps for the loop is 2n, and the 

total number of addition steps is 
n , 
S (riog?((2K:-1)+2)] + ï log 9((2 -1)+1)1) 

k=l Z 1 

= E (?k+1) = n +2n. 
k=1 

Thus the total number of arithmetic steps is n +4n+2 - 0(log N), which gives 
2 

a speedup of (N/logN) over the standard serial algorithm. This requires 
4 

0(N ) processors, and so is not intended to be practical. 

It should be observed that the above algorithm generates more informa

tion than is necessary. For instance, the final loop (i - 2 n - l ) may be 

shortened to 
K(l,1+i+j) Q(1,1+i,l+i+j), (1 * j * i+1); 

This does not, however, reduce the time estimate for MIMD machines. Also 

note that B and Kfi may be stored in the upper and lower triangular por

tions, respectively, of an (N+1) x (N+1) matrix. 
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We summarize our results as a theorem. 

Theorem 3.2. The first N terms of the sequence defined by (3.1) may be 
2 

computed in O(log N) steps on an MIMD machine with sufficienctly many pro-

cessors. This provides a speedup of (N/logN) over serial machines. 

Parallel algorithm 2 cannot be efficiently adapted to SIMD machines. 
For instance, the modification 

for i := 1 step i+1 until N-1 do 
for j := 1 step 1 until i+1 do 
K(r,r+i+j) :« Q(r,r+i,r+i+j), 

(1 £ r £ ttfl-i-j); 
is 0(N log N). 

We now consider an important special case of (3.1), a homogeneous 
kt^1 order sequence, k ^ 1. 

(3-5) y(i) 

0 if i < 0, 

H(i-l) if i •» 0, 

i-1 
Z A(i-1,j) y(j) + H(i-l), if i > 0, 

j«i-k 
H(i-1) * 0 if i ̂  k. 

The usual formulation gives y(i) « H(i-1) for 0 £ i £ k-1, which is included 
in (3.5). 

The sequential algorithm requires 0(N) arithmetic operations, as do the 

row-wise and column-wise SIMD algorithms, so there is only a constant speed

up. However, there are a variety of techniques which do "obtain N/logN 

speedup on SIMD machines. (cf. [Ko72], [St73].) 

Since B is a band matrix for this problem, we may use Theorem 2.3 to 
compute Q(r,r+i, r+i+j). On an MIMD machine this requires at most two 
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multiplications and riog2(1+(k-l)k/2)1 • afc additions, for a total of O(logN) 

operations for parallel algorithm 2. Thus the speedup is N/logN over serial 

machines. Again, it is possible to purge the loop of unnecessary computa

tions, reducing the number of processors, but not the total time. 
th 

Inhomogeneous k order sequences may also be easily treated via parallel 

algorithm 2, since 
i+1 

(3.6) y(i) = K.0,1+1) = S B(j,1) K(j+1, i+1) 

i 
= S H(j-l) K_(j+2, i+1). 
J-0 

B[2:N+1 ;2:N+1 ] is a band matrix, so we may find y(0) ,... ,y(N) in 2n+l 

multiplications and akn+flog2kl additions. This is again O(logN), a 

speedup of N/logN. 

It is also possible to solve boundary value problems using (3.6). 

This involves solving an additional system of linear equations to find the 

appropriate starting values of y. 
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4. Other Applications 

We first consider some classical results concerning power series and 

analytic functions and show how the results of Sections 2 and 3 may be 

applied. 
0 0 . 00 

Theorem 4.1. If f(x) * 2 a x 1 , a = 1, g( x) * £ b.x1, b f t - 1, and 
• i?0 1 u i=0 1 0 

h(x) - g(x)/f (x) » T. c.x1, then c n • 1 and for r > 0, 
i=0 1 u 

(4.1) c r = 

br ai 
b 2-a 2 

b 3-a 3 

b -a r r 

-a1 -1 

-a r-1 

O 
"a1 -1 

-1 

-a, 

Moreover, cQ,...,cN can be computed in 0(log N) steps on a parallel computer 
with sufficiently many processors. 

Proof. Since h(x)f(x) = g(x), we have the well-known relat ion 

b0 = a0 c0» bi = S ai-iCi» 1 * U 

j=0 J J 

i-1 That is, c Q « 1, c - S (_a. ) 

from Theorems 3.1 and 3.2. 
0 " c t - S (-a.^) C j + ( b i ^ ) f 4 a u ^ r e g u u f o i i o w g 

König-s Theorem fHo701 state, that a convergent sequence of approxima
tions to the smallest real root of the analytic function- f (x) = s a x 1 a 

i-0 1 ' 0 
= 1 
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is given by 

r. - c where l/f(x) • E c.x . 
i=0 

The sequence r^ was first given by Fürstenau in 1860 [Mu23, vol. 3], and 

by Bernoulli in 1728 for the special case where f is a polynomial. It is 

seen from Theorem 4.1 that the first N Fürstenau approximations may be 
2 

computed in 0(log N) steps on a parallel machine with sufficiently many 

processors. 

We now examine some properties of recurrences with constant coeffici

ents, which are of interest in number theoretic applications as well as 

the above root finding techniques. The most familiar is the second order 
recurrence F - F , + F o f n ̂  2, which defines the Fibonacci sequence n n-1 n-2* 7 n 

for F A « 0, F. - 1. Its well-known doubling formula F , - F t 1F +F F , 0 * I m+n m+l n m n-l 
may be generalized in the following way. 

Suppose y is defined by 

r 
0 if i < 0, 

(4.2) y(l) -/ y. if 0 £ i * k-l 

i-1 
S b y(j) 

k J-0 J 

9 

if i * k, 

That is, A(i-l,j) = b ± - 1 for i ̂  k, 0 £ j £ i-1, A(i-l,j) - 0 for 

0 £ i £ k-l, 0 £ j £ H(i-l) « y for 0 <: i ̂  k-l, and H(i-l) = 0 

for k ^ i. 
Let V4 be defined by 
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(4.3) V t = / 

0 if i £ 0 

1 if i = 1 

i-1 
2 b i-l-j Vj l f l * K 

Lemma 4.1. If i £ 1 then V. « K_(r,r+i-2) for any r 2> k+1, where B is 
1 1 J5 

defined by (3.2). 

The proof is immediate from (4.3)9 

Theorem 4.2. If n ̂  k then 

k-2 n 
(4.4) y(n) - y k _ , V k + 2 + Z y j £ b . ^ . V n + 1_. 

If m ^ 1 and n £ 1, then 

n-1 m 
(4.5) V ̂  = V ^ V + S 2 b. . m . V. V . m+n m+1 n . T . n i4m-j j n-i 

1=1 j=l 

Proof. (4.4) follows from (3.6), (2.3) and Lemma 4.1. (4.5) follows from 

(2.2) applied to B with r = k+1, s = k4m, t = k+m+n-1, using Lemma 4.1. 

Corollary 4.1. If b « 0 for U k ^ 1, then for n £ k, 

k-2 k+j 
(4.6) y(n) = y + r y r b V 

j=0 J i=k J J 

If m £ 1, n 2: 1, then 

< 4 , 7 ) Vm+n = V
m+i v„ + S b. v V 

m+n m+1 n ± m l 1 V-j Vi-j* 

P = min(k-1,m+n-2), q ± m max(0,i-m). 
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Proof. (4.7) follows from (2.9) with r,s,t as above. 

Corollary 4.1 forms the basis of the Miller-Brown algorithm [MB67]. 

Doubling formulas for the Bernoulli sequence are given in [Tr66]. 

Finally, the Bernoulli numbers B^ and the Euler numbers E n have 

representations as lower Hessenberg determinants [Mu23], [Mu30]. The 

results of Section 2 may again be used to derive doubling formulas. 
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