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ABSTRACT 

The state-of-the-art in polynomial zero finding algorithms and 

programs is briefly summarized. Our focus in this paper is on 

principles for testing such programs. We view testing as requiring 

four steps: (1) testing program robustness, (2) testing for 

convergence difficulties, (3) testing for specific weakness of the 

algorithms, (4) assessment of program performance by statistical 

testing. 

We emphasize that the statistical testing must be done with care. 

There are many ways to generate "random" polynomials. Two classes of 

random polynomials which have been widely utilized are of only limited 

usefulness in terms of evaluating reliability or performance because 

they produce polynomials with very similar characteristics. We discuss 

classes of random polynomials which should be used. 

The authors 1 algorithm for real polynomials has been reprogrammed 

with substantial modifications to the decision making processes. In 

order to verify that the new program is a reliable and efficient 

mathematical software product, it underwent the testing outlined above. 

The results of part of this testing are described in this paper. 



1. Introduction 

The numerical solution of polynomial equations has been the subject of 

intensive research in recent years with proposals of new algorithms appearing 

frequently in the numerical analysis literature. While many of the algorithms 

which are proposed are mathematically interesting only a few are serious con

tenders as the basis of fast, reliable, mathematical software for this problem. 

The purpose of this paper is to propose means of testing programs for polynomial 

zerofinding in order to separate those which should be recommended as contenders 

for inclusion in program libraries and those which should be considered only 

mathematical novelties. The emphasis here is on the testing of a single pro

gram which implements a particular algorithm, but similar techniques may be 

used for comparing the relative merits of several algorithms. 

The polynomial zerofinding problem is a difficult computational problem. 

It can be viewed as a non-linear problem, or in terms of linear algebra as a 

special case of a non-Hermitian eigenvalue problem with (in general) non-linear 

divisors. Many algorithms which work easily on examples with well-separated 

simple zeros, fail on more difficult examples. 

We assume here that we are discussing a program which is intended to find 

all the zeros of an arbitrary polynomial with real or complex coefficients. 

The current state-of-the-art is such that all the zeros can be found with 
2 

0(n ) arithmetic operations using globally convergent techniques [Jenkins 1969, 

Smith 1967b]. Hence, to be competitive, a program must be based on an algorithm 
2 

which is 0(n ) . 

Algorithms can be classified as those which find a single zero or a pair 

of zeros at a time or those which determine all the zeros simultaneously. The 

former require the use of some deflation technique, either explicit or implicit 
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[Wilkinson 1963], to remove the zeros already determined. Most of the al

gorithms proposed for this problem use one of the following basic approaches 

or some combination of them: 

(i) function iteration. An iteration function [Ostrowski 1966, Traub 

1964] generates a sequence of approximations which converge to a 

zero. Common choices are Newton's method, Bairstow's method, 

Muller's method (all described in Householder [1970]), Laguerre's 

method [Smith 1967a], and many others. There are also versions of 

some of these iterations allowing all the zeros to be found simul

taneously [Grau 1971]. 

(ii) separation of the zeros by powering. An algorithmic process pro

duces a sequence whose elements are related to high powers of the 

zeros. One or more of the zeros are then estimated. Well known 

algorithms of this type are Bernoulli's method, and variations 

[Jenkins 1973], Graffe's method [Bareiss 1967] and the QD algorithm 

[Henrici and Watkins 1965]. 

(iii) topological methods. The complex plane is divided into regions 

and tests are made to determine which regions contain or exclude 

zeros. The regions containing zeros are themselves subdivided re

peatedly until a zero is determined "accurately". Some of the 

techniques isolate a single zero [Lehmer 1961], while others find 

all the zeros simultaneously [Henrici and Gargantini 1967]. 

(iv) minimization techniques - zeros are found by finding the minimum of 

| F | or | F | using minimization algorithms which take special advantage 
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of the properties of polynomials [Ostrowski 1967], [Nickel 

1966]. 

(v) factorization techniques - The polynomial is factored into two or more 

factors by some criteria. One approach is to use Euclid's algorithm 

to break the polynomial into factors each of which has simple zeros 

[Dunaway 1974]. Another factorization technique [Stewart 1969] re

quires all factors corresponding to a multiple zero to be in one of 

the factors. 

The proceedings of the Ruschlikon symposium [Dejon and Henrici 1969] 

provide an illustration of the diverse approaches which have been applied to 

this fundamental problem. 

Our experience in testing polynomial zerofinding programs has been gained 

while developing algorithms which use a combination of approaches (ii) and (i) 

[Jenkins and Traub 1970a, 1970b] to find linear or quadratic factors, and use 

explicit deflation to reduce to a smaller problem. To some extent this view 

of the zerofinding process biases our presentation of the principles for testing; 

however we attempt to discuss the issues in general terms. 

2. Objectives 

We are concerned with foolproof algorithms and programs for the following 

mathematical problem. Given the degree n, and the coefficients a A, a-, .... a 
u I n 

of the polynomial 

P(z) » a^z n + a^z n~l + ... + a^, with a Q ^ 0, 

we are to find the number of distinct zeros, k, the zeros , 

and the corresponding multiplicities m,, m?, m, such that 
ie zeros , o^, 

m^ such that P(z) is expressed 
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in factored form as 
m rn 

P(z) = a 0(z-a ]) '...(z-c^) K . 

In computational work, the sharp distinction between multiple zeros and 

closely clustered distinct zeros is blurred and we usually settle for finding 

n approximations a^9 S^, 3^ to the zeros which satisfy at least one of 

the following two objectives: 

(i) a set of approximations which are "accurate 1 1 approximations of 

the true zeros of the polynomial. 

(ii) a set of approximations 3^ such that the polynomial 

P(z) = a Q(z-S 1)...(z-a ) 

formed by multiplying the linear factors together in finite-precision 

floating-point arithmetic produces "accurate" approximations of the 

coefficients of the polynomial. 

We say, somewhat arbitrarily, that a polynomial zerofinding program is successful  

on a particular example if the approximations it produces satisfy either of the 

objectives (i) or (ii). 

The accuracy which one may expect to achieve in calculating zeros is limit

ed by the condition of these zeros [Wilkinson 1963]. In particular, for multi

ple zeros, perturbations of size e in the coefficients cause perturbations of 

size e m in the zeros. If the objective of the program is to obtain "accurate" 

approximations, it may be desirable to measure the degree of success by comput

ing error bounds for the computed zeros (see Section 7 ) . The second objective 

is more easily realized and can be readily tested against the input data by 
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forming P. (A meaningful way to compare P with P is described in Section 7.) 

3. The Testing Process 

The tests we propose for a zerofinding program do not guarantee that the 

program will always be successful in the above sense; nor is it implied that 

these are the only valid tests for polynomial zerofinding programs. However, 

they do provide for a systematic rational means of evaluating programs in order 

to determine if they are potentially useful as mathematical software for the 

zerofinding problem. 

We view the testing of a program as requiring four distinct steps. 

(i) testing program robustness - done by examination of the program or 

by testing with pathological examples, 

(ii) testing for convergence difficulties - done by a combination of 

examination of the program and by applying the program to specific 

test examples, 

(iii) testing for specific known weaknesses of the algorithm(s) used - done 

by applying the program to test examples which are selected to illus

trate specific potential flaws in the algorithm, 

(iv) assessment of the performance of the program in terms of reliability 

and efficiency - done by gathering statistics on the program using 

randomly generated polynomials. 

We discuss procedures for carrying out these steps in the succeeding sec

tions. 
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4. Checking Program Robustness 

By program robustness we mean the ability of a program to degrade grace

fully near the boundary of the problem space where the algorithm applies. A 

more specific definition is given in [Cody 1971] where the problem is discussed 

in a more general framework. Appropriate questions to ask for the zerofinding 

problem include whether the program: 

(i) tests if a leading coefficient is zero or "nearly11 zero. If it is 

exactly zero the degree of the polynomial is incorrect. A warning 

that this condition has arisen should be issued and then either the 

reduced problem can be solved or the computation terminated. A 

very small leading coefficient combined with large coefficients for 

some of the other terms may imply that the polynomial has a zero or 

zeros outside the upper limit of the exponent range. A result of 

"machine infinity" may be considered an acceptable result for some 

purposes. 

(ii) tests if a trailing coefficient is zero, or "nearly" zero. If it is 

exactly zero,there is a zero of the polynomial at the origin. 

It can be detected directly and the problem reduced to one of lower 

degree. It is generally safer (and certainly faster) to do this 

directly than to count on the zerofinding algorithm eventually dis

covering it. A very small trailing coefficient combined with large 

coefficients for some of the other terms may imply that the polynomial 

has a zero or zeros outside the lower limit of the exponent range. 

(iii) handles low degree cases properly. If a quadratic solver is used it 

should be programmed according to the principles espoused by [Kahan 
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1966] and [Forsythe 1967]. A test should be made for the degenerate 

cases with degree less than or equal to 1. 

(iv) scales coefficients to avoid exponent underflow and overflow dif

ficulties. The polynomial, the algorithm, or both may have to be 

scaled to reduce the likelihood of overflow or underflow interfering 

with the calculation. Scaling techniques are discussed in [Smith 

1967a], [Jenkins 1969] and [Dunaway 1974]. If scaling is done it is 

desirable that a power of the base of the floating-point system for 

the computer be used. 

(v) specifies a finite computation. There should be reasonable limits 

on all iterations or loops. The limits are essential for functional 

iteration algorithms since many of them can cycle indefinitely on 

some examples [Smith 1967a, Ray 1966, Brolin 1965]. 

(vi) provides a failure exit or a testable failure flag. These should be 

included in the calling sequence to allow for unusual input or failure 

of the algorithm. The very appearance of a failure parameter makes 

the user think about what to do if the calculation fails to succeed. 

5. Testing for Convergence Difficulties 

Generally, polynomial zerofinding algorithms determine a sequence (or a 

set of sequences) which hopefully converge to a zero (or a set of zeros) of 

the given polynomial. There are two basic computational problems which arise: 

first, if the sequence is converging satisfactorily how do we decide when to 

terminate the sequence and accept the value obtained; second, if the sequence 

is not converging, or is converging very slowly, how do we detect this and what 
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do we do. (The problem is somewhat different for topological algorithms; we 

shall not pursue this here.) 

We consider first the problem of developing a criterion for terminating 

a sequence of iterates {x^} which are converging to a zero of the given poly

nomial. The more obvious criteria have weaknesses. If e is fixed, the test 

l x-.i " " x -l ^ 1 I + I I 1 < e 

may fail to terminate if the zero is ill-conditioned. If e is fixed, a residu

al test such as 

|P(x i) | ̂  6 

may fail to terminate or may terminate too early if the polynomial is poorly 

scaled. 

One satisfactory means of terminating a converging sequence of iterates 

is to stop when the polynomial value becomes dominated by the roundoff error 

in evaluating the polynomial. This is a residual test in which the appropriate 

e is chosen by monitoring the evaluation roundoff error [Peters and Wilkinson 

1971, Adams 1967, Kahan 1966]. Even this technique must be used with care for 

if underflow occurs in the evaluation and the result is replaced by zero, the 

roundoff error analysis is invalid and an inaccurate approximation to a zero 

may be accepted. The underflow difficulty may be avoided by scaling [Smith 

1967a, Jenkins 1969]. Other termination criteria involving the sequence of 

residuals or the sequence of differences of the iterates may also be used. 

The type of termination criteria used in the program can be checked by 

reading the program or by testing with some specific polynomials. For example 

the cubic polynomial 

P ^ z ) = B ( z 3 - Z
2 - A 2 z + A 2 ) - B(z-A) (z+A) (z-1) 
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can be used with A large and small to test that large and small zeros do not 

cause the termination criterion to fail and with B large and small to ensure 

that large and small polynomial coefficients do not similarly cause failure. 

To test for a suitable convergence criterion for an ill-conditioned polynomial, 

we suggest the polynomial 
r 

P 9(z) - n (z-i) 
Z i=l 

with zeros at 1, 2, r where r is chosen small enough that the coefficients 

of the polynomial are exactly representable in the precision used [Wilkinson 

1963]. Underflow in polynomial evaluation is likely in a polynomial 

r 
P.(z) « n (z-ltf1) 

J i«l 
-1 -2 -r with zeros at 10 ,10 , 10 where r is chosen small enough that the 

constant term does not underflow. Such a polynomial may be used to test whether 

a termination criterion based on roundoff error analysis fails. For other 

termination criteria, it is a challenge to the creativity of the program tester 

to find examples which thoroughly test the particular criterion. 

The second problem, that of detecting and curing slow convergence or non-

convergence of the sequence of iterates, is difficult to discuss in general as 

the difficulties are often algorithm-dependent. The obvious cure is to limit 

the length of the sequence a priori; however, what appropriate remedial action 

should be taken depends greatly on the algorithm used. 

Multiple zeros or nearly multiple zeros cause convergence difficulties for 

many algorithms. As noted in Section 2, such multiple zeros are inherently 

ill-conditioned and one can expect to calculate a zero of multiplicity m only 

to a relative accuracy of roughly e m where e is the relative precision of the 

computer arithmetic [Wilkinson 1963]. However, in some recent work Dunaway 

[Dunaway 1974] claims that multiple zeros can be calculated with higher accuracy. 

In addition for many algorithms, multiple zeros result in a considerably slower 
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rate of convergence and as a result, the time required for such examples may 

be quite long compared to other examples of the same degree. Some test poly

nomials for checking the performance of a program on multiple and nearly multi

ple zeros are 

P 4 - (z - . l) 3(z-.5)(z-.6)(z-.7), 

P 5 = (z - . l) 4)z-.2) 3(z-.3) 2(z-.4), 

P 6 = (z-.l)(z-1.001)(z-.998)(z-1 .00002)(z-,99999), 

P ? = (z-.001)(z-.01)(z - . l)(z - . l+Ai)(z - . l-Ai)(z - l)(z-10), 

with A chosen to be 0, I O " * 1 0 , 10~ 9, I O * " 8 , 10~ 7, 10" 6, 

P 8 - (z + 1 ) 5 . 

Equimodular zeros cause convergence difficulties for algorithms which use 

powering techniques to separate zeros, either for obtaining a starting value or 

as the main algorithm. The case of equimodular zeros must be handled in some 

special way and if not done carefully, it may result in an inefficient algorithm 

or one which fails. Test examples are P Q above and 
o 

, 10 1 A - 2 0 N , 10 1 r t20 N P 9 = (z -10 )(z +10 ) 

which has two sets of equimodular zeros. 

6. Testing for Defects in a Program Implementing a Particular Algorithm 

The testing for defects in a program implementing a particular algorithm 

is a creative challenge to those engaged in the art of program testing. We 

mention some general approaches which might be taken. First we suggest that 

the mathematical algorithm be examined for possible occurrences of "undefined" 



results. If these are mathematically possible, the defense mech^flis^ns j-n the 

program to avoid such occurrences should be examined. Often ari obvious way to 

"beat" the defense can be found and an example constructed which produces the 

appropriate conditions to cause the "undefined" result to appear. A second ap

proach is to study the decision mechanisms of the program. If there is a key 

decision (such as switching between a slowly convergent starting p r o c e s s and a 

rapidly converging iteration) which if made incorrectly causes the algorithm 

to fail, then an example which forces a wrong decision can be sought, A third 

approach is to examine the roundoti eiror properties of the basic algorithm to 

determine if the algorithm is numerically stable. Such an analysis may suggest 

an example in which the roundoff error destroys the accuracy of the computed 

zeros. [Wilkinson 1963] provides a case study involving Graefie's method. 

For most algorithms which find the zeros one or two at a time, either ex

plicit or implicit deflation must be used. For either choice, the algorithm 

is of interest only if we can ensure that the remaining zeros are found to the 

accuracy one would expect. The advantage of explicit deflation is that the re

sulting zeros almost always satisfy objective (ii) of Section 2 if the defla

tion has been achieved in a stable manner. Wilkinson showed [.Wilkinson 1963] 

that deflation using the Horner recurrence i$ unstable if a zero considerably 

larger in modulus than the smaller zeros is removed first. As a result many 

of the algorithms which use deflation control the order in which the zeros are 

found [Smith 1967a, Jenkins 1969], 

A composite deflation technique [Bingham 1967, Peter and Wilkinson 1971] 

allows any size zero to be removed without severely affecting the accuracy of 

the remaining zeros. Explicit deflation is at best a semi-stable process in 

the sense that the cumulative effect after many steps may result in a significant 
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loss of accuracy. This is particularly true if one of the reduced polynomials 

is considerably more ill-conditioned than the original polynomial. In order 

to test for deflation stability we suggest the examples 

P 1 Q(z) = ( z - A X z - I X z - A - 1 ) , 

with A - 10 3, 10 6, or 10 9, and 

M M 3 M iWI 
2M ? M 

P (z) = n (z-e Z U ) n (z-.9e Z n ) 
k=1-M k=M 

with M - 15, 20, 25. 

In the first example if the zero near 1 or the zero near A is found first, 

the zero at A ^ will be very inaccurate if ordinary deflation is used, although 

the composite deflation process will produce accurate zeros. In the second 

example the polynomial has zeros which lie on a semicircle of radius 1 in the 

right half of the complex plane and one of radius ,9 in the left half-plane. 

Each of the polynomials corresponding to the zeros on one of the half-circles 

is quite ill-conditioned (in the sense that some of the zeros are ill-conditioned); 

however the same zeros are well-conditioned in the original polynomial. Thus an 

algorithm which tends to find the zeros of modulus .9 first would do poorly on 

this example. This specific example [Businger 1969] was constructed to show 

that the Jenkins-Traub algorithms can fail to succeed on an "innocent" looking 

example. Since there is no a priori technique for detecting the presence of an 

ill-conditioned factor, any algorithm using explicit deflation is susceptible 

to this difficulty. 

Implicit deflation [Wilkinson 1963] is also unsatisfactory in some respects. 

After the first step one must work with a rational function instead of a polynomial 
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and hence techniques which depend on using the polynomial form are ruled out. 

Computationally the main difficulty occurs with multiple or closely clustered 

zeros where both the numerator and denominator of the rational function are 

approaching zero. Tests such as those we suggested in Section 5 for multiple 

zeros can be used to test programs which use implicit deflation. 

7. Assessment of Performance 

A library program for polynomial zerofinding should ideally find all the 

zeros of an arbitrary polynomial within the objectives of Section 2, at a pre

dictable cost. By doing tests with randomly generated polynomials we can 

gather statistics on the performance of the program with respect to reliability, 

accuracy and cost prediction. (We could also test with specific polynomials 

but shall confine ourselves to testing with random polynomials here,) In order 

to do this adequately we need: 

(i) a meaningful measure of cost, 

(ii) a measure of accuracy. 

Cost can be measured in terms of execution time, polynomial evaluations or 

equivalents, or arithmetic operations. If these measures are to be used in 

comparing algorithms, then great care must be taken in gathering the statistics 

and analyzing the results. Timing measurements are valid for comparisons only 

if accurate timings are available and if the algorithms are coded with the same 

level of optimization. However, if valid, they do yield realistic cost estimates, 

Counts of polynomial evaluations or arithmetic operations may not reflect the 

actual cost of executing the algorithm due to the amount of overhead involved in 

loop control, array access, etc. and are useful in comparisons only for detect

ing gross differences between programs. 
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The accuracy of the results should be tested relative to the objective 

of the program. If the objective is simply to find as accurate zeros as can be 

expected, the relative error in the zero should be estimated. If the zeros are 

not known, the accuracy of the computed zeros will have to be estimated by a 

posteriori bounding techniques [Champagne 1964, Jenkins 1969, Smith 1970]. 

If the objective is to reproduce the polynomial the accuracy of the reconstruct 

ed polynomial has to be tested carefully. Testing the quantities 

a - §t. 
~ j

 a
 J , j=0,...,n 
-J 

where the a^ 1 s are the original coefficients, the 3 1 s are the reconstructed 

coefficients, and the 1s are the coefficients constructed using the quantitie 

|Re aj+llln 1 2. | allows approximations to zero coefficients in the original 

polynomial to be tested in a meaningful way [Kahan 1966]. 

We have recommended above that the reliability, accuracy, and efficiency 

of zerofinding program be estimated by gathering statistics on the performance 

of the program on randomly generated polynomials. There are many ways to gen

erate random polynomials and particular choices may affect the quality of the 

performance evaluation greatly. Several classes of random polynomials are 

listed below. The first two classes have been widely used but are of limited 

usefulness in terms of evaluating reliability or performance because they pro

duce polynomials with very similar characteristics. The remaining classes 

produce polynomials with less similarity from one example to another. 

(1) polynomials constructed from random zeros from a uniform distribu

tion. This is a poor choice as the randomness "averages out" in the 

coefficients and the polynomials differ but little from each other. 
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(ii) polynomials whose coefficients are chosen randomly from a uniform 

distribution. This is also a poor choice, since the zeros tend to 

be uniformly distributed around the origin near the unit circle. 

(iii) polynomials constructed from zeros with some zeros chosen from a 

wide uniform distribution and the remainder chosen from a much nar

rower distribution. By decreasing the width of the second distribu

tion and by increasing the percentage of the zeros chosen from this 

distribution, polynomials of increasing ill-condition can be gen

erated. This is a reasonable test for the behavior of the program 

on clustered zeros. 

(iv) polynomials whose coefficients are chosen randomly by taking the 

mantissa and exponents from separate uniform distributions. The 

resulting polynomials have widely varying zeros and hence yield a 

reasonable test that the program has wide applicability. 

(v) polynomials constructed from zeros chosen in the manner of the co

efficients of (iv). This results in zeros varying greatly in size 

and the corresponding polynomials often illustrate inefficiencies in 

the program which may not be apparent from other tests. For example 

poorly chosen initial iterates may tend to "wander 1 1 slowly to the 

area of the zero and such behavior will be magnified on this class of 

polynomials. 

With these techniques one can generate real or complex polynomials as ap

propriate for the program being tested. We recommend that only a few tests 

with (i) and (ii) be done for comparison with the other results in the litera

ture and that the major effort be concentrated on (iii), (iv) and (v). 
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8. Examples of Testing 

Several examples of testing zerofinding programs have been reported in 

the literature including tests using randomly generated polynomials. [Dejon 

and Nickel 1967, Henrici and Watkins 1965, Jenkins 1969]. Tests on specific 

examples accompany almost every paper in this field; however, the tests used 

on new algorithms are all too often chosen to indicate that the particular 

algorithm works well on a particular class of problems. There have been some 

reports of comparative evaluations [Witte 1967, Smith 1967a, Dodson et al. 1968] 

which have used specific examples to test weaknesses of available programs. 

The testing by Smith [1967b] and Jenkins [1969] does indicate that it is pos

sible to develop fast, accurate, reliable zerofinding programs if one is will

ing to pay the cost of having a complicated program. 

The testing procedure described in this paper was developed in conjunction 

with the implementation of the authors 1 variable-shift algorithms [Jenkins and 

Traub 1970a, 1970b]. The program for complex polynomials has been published 

[Jenkins and Traub 1972]. The program for real polynomials has been recently 

modified in order to improve the decision making processes [Jenkins 1974]. In 

order to verify that the new program is a reliable and efficient mathematical 

software product the testing procedure described in this paper was applied. 

The results of the tests with specific examples are summarized in Table I. 

The tests were carried out using double precision calculations on a Burroughs 

B6700 with 26 octal (~ 23 decimal) digit arithmetic. The algorithm performed 

well with respect to objective (ii), in that in all cases the factorization 

could reproduce the coefficients to about single precision accuracy and in many 

cases to nearly double-precision accuracy. This is expected for explicit de

flation [Wilkinson 1963]. However, in respect to objective (i), the zerofinder 



Termination 

Behaviour on 
Multiple or 
Clustered 
Zeros 

Behaviour on 
Equimodular 
Zeros 

Deflation 
Stability 

Table I - Tests on Specific Polynomials 
Example n 

Time 
(Milliseconds) Time/n : 

Pl A = 1 0 2 0 B=l 3 2 . 8 x l 0 ~ 2 3 l.OxlO' 2 3 20 2.2 
A = 1 0 " 2 0 B=l 3 3. 0 X 1 0 " 2 3 l.OxlO" 2 3 36 4.0 
A=.l B=10"° 3 4 . 5 * 1 0 " 2 3 l.OxlO" 2 3 44 4.9 
A=.l B = 1 0 _ , . 0 3 1.8X10' 2 3 l.OxlO" 2 3 33 3.7 

p 2 R=20 20 l.lxio" 1 9 2 . 4 X 1 0 " 1 0 952 2.4 
P3 R=9 9 3.6*10~ 2 3 2 . 1 x 1 0 " 2 3 267 3.3 

Pu 6 2 . 6 X 1 0 " 1 8 1.7X10" 1 0 104 2.9 
Ps 10 1. 5 X 1 0 " 1 8 4.7xl0" 6 269 2.7 
p 6 5 6.9X10" 1 1 1.3x10"" 79 3.2 
p 7 A=0 7 5 . 5 X 1 0 " 1 5 3.8X10" 9 127 2.6 

A = 1 0 - 1 0 7 2.0X10" 1" 3.8X10" 9 130 2.7 
A=10~ 9 7 l . O x l O - 1 5 3.8xl0~ 9 124 2.5 
A=10~ 8 7 9.4X10" 1 9 3.8X10" 9 123 2.5 
A=10" 7 7 1.2X10" 2 1 3.5X10" 1 1 128 2.6 
A=10" 6 7 3 . 8 X 1 0 " 2 3 l.lxlO' 1 2 127 2.6 

Pe 25 1. 4 x l 0 ' 2 0 2.5X10" 5 1859 3.0 
P 9 20 2 . 7 x l 0 " 2 2 l.OxlO' 2 2 1671 4.2 

Pio A=10 3 3 l.lxlO" 2 2 2 . 6 x l 0 " 2 3 24 2.7 
A=10 6 3 2 . 6 X 1 0 ' 2 3 1.3xl0" 2 3 25 2.8 
A=10 9 3 4.3xl0" 2 3 0 24 2.7 

P M M=15 60 5 . 2 x l 0 ~ 1 9 l.OxlO" 1 0 9752 2.7 
M=20 80 6.3x10" 1 2 2.0x10" s 24688 3.9 
M=25 100 5.5xl0" l l . 

6,-largest relative error in the reconstructed coefficients 
6 2-largest relative error in the computed zeros. 

8.0xio" 2 42581 4.3 

I 
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had difficulty with , the polynomial with an ill-conditioned sub-polynomial. 

The accuracy of the zeros in the multiple and clustered zeros cases is about 

as good as we would expect for this class of method. We feel that the uni-
2 

fortuity in the timing estimates » expressed as a function of n , is quite strik 

ing. 

We now turn to a discussion of the testing of the algorithm for real poly 

nomials using random polynomials which were generated for each of the five 

classes described in Section 7. The specific tests were: 

(i) (a) zeros chosen in the region [Z: |Re(Z)|<1,|Im(Z)| <1} 

(b) zeros chosen in the interval(-1,1) 

(ii) coefficients chosen in the interval (-1,1) 

(iii) (a) n-k zeros chosen in the region [Z: | Re (Z) |<1, | Im(Z) |<1 } 

and k zeros chosen in the region [Z: |1-Re(Z)|<.1,|Im(Z)|<.1] 

(b) n-k zeros chosen in the interval (-1,1), k zeros chosen in 

(.9,1.1) 

(iv) coefficients of the form x*10 with x in (-1,1) and e in (-R,R), 

with R=5,10,15 and 20 

e1 e 2 

(v) (a) zeros of the form x^xlO +1x^X10 with x^,x^ in (-1,1) and 

e 1 ? e 2 in (-R,R) with R=l,2,3,4,5 

(b) zeros of the form xxlO with x in (-1,1) and e in (-R,R) with 

R-l ,2,3,4,5 

The results of the tests are summarized in Table II for polynomials of degree 

10. In this testing we measured the relative error in the reproduced coeffici

ents for all cases and the relative error in the zeros for those polynomials 



(i) 
(i) 

Test 

(a) 
(b) 

(ii) 

(iii) (a) K=4 
K=6 
K=8 

(iii)(b) K=4 
K=6 

(iv) 

(v) 

(v) 

K = 8 

R=5 
R=10 
R=15 
R=20 

(a) R=l 
R=2 
R=3 
R=4 
R=5 

(b) R=l 
R=2 
R = 3 

R=4 
R=5 

T a b l e I I - Random Polynomials of D e j s r e e 1 0 with 5 0 Cases Each 
ilures 

61 6 2 Max time Average Average 
Time 2 

(Milliseconds) n* 

0 4.2xl (T 2 1 1.2ХЮ" 1 6 
4 3 3 335 3 . 4 0 3.2xl0~ 2 0 5 . 3 x l 0 ~ 1 8 1 2 8 6 3 9 9 4 . 0 

0 l.lxlO - 2 0 - 5 9 1 3 2 4 3 . 2 
0 5.6xl0" 2 1 8.9xlo" 1 7 

5 8 9 3 3 2 3.3 0 l.Oxlo" 1 6 З . Э х Ю " 1 3 
4 5 4 3 3 0 3.3 0 7 . 2 x l 0 ~ 1 5 1 . 6 Х Ю " 1 1 
3 9 5 3 1 4 3.1 

0 3 . 8 x l 0 " 1 8 1.9ХЮ" 1 8 
3 5 0 2 6 5 7 6 . 6 0 8.4xlo" 1 9 б . З х Ю " 1 6 
2 7 1 0 5 3 2 5 . 3 

0 3.4xlo"*20 

2 . 0 Х Ю " 1 5 2111 4 7 0 4 . 7 

0 l.lxio" 2 0 - 7 4 2 3 0 1 3 . 0 
0 б . О х Ю " 2 1 

4 4 9 5 4 6 4 4 . 6 
1 1 . 8 Х Ю " 2 0 - 4 8 5 0 4 2 0 4 . 2 
1 З . Э х Ю " 2 1 - 1 2 9 9 0 7 3 8 7 . 4 

0 4 . 2 Х Ю " 2 1 1 . 2 Х Ю " 1 6 
3 2 6 2 7 3 2 . 7 

0 4 . 0 x l 0 ~ 2 1 9.1xl (T 1 8 

4 6 8 3 2 6 3.3 
0 1.3ХЮ" 1* 9.4ХЮ" 1* 7 3 9 325 3.3 
0 l.lxio" 2 1 

7 . 1 Х Ю " 2 0 
4 2 3 2 8 2 2 . 8 

0 2 . 2 x l 0 " 2 1 1 . 7 Х Ю " 1 9 
4 1 4 2 7 2 2 . 7 

0 1 . 2 x l 0 ~ 2 0 2 . 7 X 1 0 " 1 9 1 4 0 2 3 9 0 3.9 
0 1 . 9 x l 0 ~ 1 8 2 . 6 Х Ю " 1 7 1 9 6 4 3 6 1 3 . 6 
0 1 . 9 x l 0 " 1 7 4 . 7 Х Ю " 1 5 1 8 4 3 3 6 3 3 . 6 
0 1 . 7 Х Ю " 1 7 5 . 2 х Ю ~ 1 2 

5 8 1 2 3 0 2.3 
0 1 . 6 Х Ю " 1 6 

9 . 5 Х Ю " 1 1 1111 266 2 . 7 

I 
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generated from random zeros. Again we note the uniformity of the timing as a 
2 

function of n . 

The zerofinding program failed for two examples of the 200 random poly

nomials of Type (iv) tested. As the timing data indicates the program had 

more difficulty with examples of this type and with examples of Type (iii)(b) 

than the other classes of polynomials. For all polynomials solved, the re

constructed coefficients were accurate to at least single precision and in 

most cases to much more. Similar results were observed for polynomials of 

higher degree. 

9. Conclusions 

The four stages of testing a program for polynomial zerofinding should be 

considered sequential tasks with an elaborate performance evaluation carried 

out only if the program appears sound after the specific tests have been done. 

If the program does poorly on the tests of Sections 5 and 6 it may not be that 

the basic algorithm is poor, but that the program author is unaware of some of 

the common problems which can arise. We recommend the excellent paper by 

[Peters and Wilkinson 1971] as a good source of practical tips on avoiding 

these problems. 

We feel that the polynomial zerofinding area has reached a level of matur

ity where good mathematical software does exist and criteria for discriminating 

between good and poor programs are reasonably well known. It seems to us a 

waste of effort for someone to publish a new polynomial zerofinding program 

unless it is at least competitive with the best of those available and/or it 

has important and relevant features that published programs do not have. A 

requirement for publication of a new algorithm should be a thorough evaluation 

of the reliability and efficiency of the program carried out by someone other 

than its author. 
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