NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Some Aspects of the Symbolic Manipulétion
of Computer Descriptions %

M.R. Barbacci and D.P. Siewiorek
Department of Computer Science
Carnegie —Meilon University
Pittsburgh, Pa. 15213

July, 1974

ABSTRACT

Traditionally computer descriptive languages have been designed primarily for
human communication and/or simulation. Due to this narrow range of applications the
existing languages have taken on a strong degree of similarity. In this paper we
present some applications in the reaim of automatic design of both hardware and
software where a computer description language could serve as the information
exchange media between the user and the design automation system. The paper
discusses an environment for research on the applications of computer descriptive
languages, emphasizing the muitiplicity of of users and tasks that may coexist an any
point in time. Some properties needed in a computer descriptive language are
presented. A structured programming approach to hardware design is presented by
example,

authors wish to make clear the active role being played in this research project by
many other members of the CMU community: Samuel Fuller, Paul Hilfinger, David
Jefferson, Karla Martin, Joseph Newcomer, Allen Newell, John Qakley, Mary Shaw,
Richard Swan, and William Wulf, '

This work is supported in part by the Advanced Research Projects Agency (ARPA) of
the Department of Defense, under contract F44620 -73 -C—-0074, monitored by the Air.
Force Office of Scientific Research and by the National Science Foundation under grant
GJ 32758X. '

Some Aspects of the Symbolic Manipulation | 1
of Computer Descriptions '

INTRODUCTION

Traditionally computer descriptive Ianguages. have been designhed primérily for
human communication and/or simulation [Chu, 1965; Bell, 1971]. Due to this narrow
range of applications the existing languages have taken on a strong degree of similarity
[Barbacci, 1973a]. There are other applications in the realm of automatic de;ign of
both hardware and software where a computer description language could serve as the
information exchange media between the user and the design automation system. By
examining these applications the information requirements can be determined and from
these a language that serves for several {but still not necessarily for all) applications

can be designed,

This paper describes some preliminary results of a research group at
Carnegie —Mellon University. We present a case for machine ~relative software and
other related areas of research, A brief discussion of the domain of tasks we are
considering is followed by a more detailed description of the requiréments for two of
them, namely the design of machine relative compiler =compilers and the design of
modular hardware systems. We present an overview of an environment for research in
these multiple applications. The key word here is “multiple”. We visualize a system
that will support multiple, concurrent users, investigating different aspects of the
problem domain, implementing subsystems in different progremming languages which’
manipulate machine descriptions given in different computer description Iang-uages. One

of the key issues is the specification of adequate computer description languages. We

Some Aspects of the Symbolic Manipulation 2
of Computer Descriptions

discuss some properties desired in such notations and, finally an example in a
structured programming approach to top=down computer design is used to, present
some of our ideas in just one of the several areas of our research interests, albeit a

crutial one.

MACHINE RELATIVE SOFTWARE

There is a continual stream of new machines spurred by the -advent qf
minicomputers and microprocessors. Each machine has a different Instruction Set
Processor; (ISP) [Bell, 1971]. The emergence of microcoded systems with the option
of user defined instructions has increased this flow of iSPs. Each new system requires
supporting software and the amount of software growé for any individual system as

user requirements grow.

Theré are a number of directions in which to seek a solution to ease the burden
of software development. Standardization of software packages written in high level
languages such as Algol, FORTRAN, and COBOL is one ‘approach.l It reduces the Iamount
of software needed for each new machine. A second direction is in terms of better
software production systems. This may be sought either in terms of implementation
systems (high level languages specifically designed to aid implementation) or in terms
of better software methodologies {e.g., structured programming). Another diréctiom
which we will consider in detail, is to relativize the production of software to the

description of the machine.

Some Aspects of the Symbolic Manipuiation 3
of Computer Descriptions

The central ingredient of this latter approach is the description of computer
systems in a symbolic form, such that a range of problems can be solved by
manipulation of these descriptions. We stress the need for diversity in the problem

domain if we are really to understand how to operate relative to computer descriptions.

The next section will illusirate some points in the problem domain.

APPLICATIONS OF COMPUTER DESCRIPTIONS

To be clear about the muitipurpose character of a computer description, let us
list several kinds of probiems that one might want to solve, each of which requires an

abstract description of a computer.

1) Compiler-Compiler.~ A system that takes as input a description of a
language and a description of a machine and outputs a compiler for that
computer. Given the state of the art, the language would probably be
restricted to be Algol-—hke. [Miller, 1971] is an early attempt at a solution to
this problem.

2) Verification of 170 programs.— Given an 1/0 program, such as a device
handler, and a description of both the computer and the hardware device
controller, verify that the program works. This problem has some special
features that set it apart from the general program verification problem,
besides its importance as an-applied task: (a) its strong dependence on the
description of computer systems in classic form (i.e., at the Register Transfer
level) rather than in some abstract semantics, (b) the programs themseives
may not be very complex in terms of their algorithms; rather the complexity of
the task arises from the openness of the environmental states that have to cope
with (timing, concurrency, etc.)

3) Programming of Microcoded Special Computers.— The ability to create
specialized computers to perform particular narrow classes of algorithms
economically opens a world of device dependent, one —time programming tasks

Some Aspects of the Symbolic Manipulation 4
of Computer Descriptions

that poses an immense problem. These systems attempt to optimize
performance; their organization cannot be dictated by considerations of
programming ease. Their programming will become difficult in the extreme,
especially when no opportunity will exists for the growth of programming
know ~how. This suggests that what the human will do is to program relative
to a machine description that he has barely assimilated. Hence it is reasonable
to construct programming systems that operate relative to machine descriptions
of a class of machines.

4) Design of Modular Systems.~ Given a desired machine described in terms
of some specification language, and given a space of machines defined by a
class of Register Transfer [Bell, 1971] level modules, design a machine
according to various constraints and criterion functions. This is a classic design
situation which is worth studying, both in terms of understanding the nature of
design and in terms of automating computer design. The feasibility of this
approach has been demonstrated by the EXPL system [Barbacci, 1973b].

5) Design to specification.— Given a functional specification for a computer
and a space of computer systems defined by a computer description language,
design a computer that performs to the specification, This is another form of
the classical design task. It differs from (4) above. A typical task here is:
given some general functions, create an ISP for a computer. A typical task in
(4) is: given an ISP, design it in terms of Register Transfer level modules.
Formally they may seem identical, but the design spaces look quite different.

6) Design Verification.— Given a specification for a computer and a description
of that computer in the language, verify that the computer satisfies the
specification. We can also include here the automatic generation of testing and
diagnostic programs.

7) Manual generation.— Given a computer defined in the language, create the

documentation for the computer. This task is quite different from the ones
above, but also involves understanding and manipulating a computer description.

The applications listed above place a variety of demands on the computer
descriptive language and it is hardly clear whether a single language can cover- the
entire spectrum. The next sub-—sections give some examples of the requirements for
two rather different tasks and an oufline of a possible system to meet the variety of

requirements.

Some Aspects o'f the Symbolic Manipulation B
of Computer Descriptions

Machine Relative Compiler-Compilers.— By "machine relative™ we imply an extension to
the traditionai definition of a compiler -compiler,_ in which a specific target machine lS
assumed. Due to this limitation, compiler —compilers have solved only part of the
automatic programming problem and as a result they have not been very suclcesful. A
better approach has been t.o produce a compiler that generates pseudo —machine code.
For each new ISP the programmer simply provides the equivalent of the
pseudo —machine instructions in terms of macros written in the target machine fanguage
[Feldman, 1966]. While runnable programs are produ;:ed by this technique they are
poor in terms of size and run time efficiency. There are several reasons for this lack
of efficiency ¢ built =in preconceptions about existing ihstructioné, the introductio;'\ of an
extra level of abstraction that must be hand translated, the lack of consideration for

specific machine features that can do certain things more efficiently that others, atc.

Hence we are primarily interested in generating an optimizing compiler. In order
to generate ‘rnachine code that will rival that of a good programmer, a
compiler =compiier must extract the idiosyncrasies of the machine., For example, one
way to add four to a register in the PDP=11 [DEC, 1973] is to use the instruction
"ADD #4,R1". This requires two 16=bit words, one for the instruction and one for the
immediate operand 4, However, the autoincrement addressing mode adds two to a
designated register after using its contents as the address of an operand. Thus an
instruction that effectively is a No—Operation code and uses the autoincrement mode on
the register for both source and destination operands can achieve the effect of adding
4 to the register. Thus "CMP (R1)+,(R1)+" will add 4 to Rl and requires only one

16 =bit word. Note that the compare instruction is not a true NOOP since it will set the

Some Aspects of the Symbolic Manipuiation 6
of Computer Descriptions

condition code registers according to the result of the comparison. The compiler has to
insure that this side effect is not critical. One such critical case would be if the
contents of Rl is used as a loop index and a loop exiting branch was to foliow the
addition, Note further that knbwledge of the relative speed of instructions and

addressing modes may be nécessary to make a choice on the basis of speed.

Some of the information that needs to be extracted from the machine description
is: the data types (address, integers, floating point, etc), operations on tl;ue data types
(add, subtract, multiply, etc), location of data types (memory, register', etc), and
instruction side effects (condition codes, use of hidden.operands, etc). Instruction side
effects are particularly important. 'The following PDP-11 code sequence is a good

examplet

SUB A,B
TST B
BLE LABEL

where the TST instruction serves only to clear the overflow condition code. I[f the
Branch on Less or Equal instruction {(which is conditiqned by the overflow condition
code) is replaced by a Branch on Equal instruction (not dependant on the overflow

condition} then the test instruction is superfluous and can be deleted.

One of the desired goals of a compiler is to produce the minimum cost code
sequence which evaluates a given program. It is therefore necessary to explore all
possible sequences that represent the evaluation and are semantically equivalent and:

eliminate those that exceed the least—cost criteria. This semantic equivalence is

Some Aspects of the Symbolic Manipulation 7
of Computer Descriptions

rglat_ed to the effect on the global program state in the context in which the sequence is
to be executed. It is therefore necessary to express the global program state
conditions under which a code sequence can be applied, as well as the resulting
transformations on the state. This synergistic effect of machine language instructions

has not been considered part of the realm of traditional computer description languages.-

The cost of compile time generation of cases .must be weighted against the
advantages of finding the best code sequences. An intermediate solution is the
exhaustive generation of templates to guide the code generation, as in traditional
compilers. This once ~only exhaustive generation process is more likely to find all the
obscure cases and discover unspected semantic equivalences than hand —designed

templates [Newcomer, 1974].

Modular Design.— Now consider a modular design program that produces a finished
machine design in terms of a predescribed module set. A modular implementation of a
system can usually be divided into> a data part and a control part that directs the actions
of the data part [Beli, 1972]. The data types and their operations can be implemented
via templates of modules. Again, as in the case of the compiler —compiler, synergis'tic
effects must be discovered in order to produce the most efficient network of'modules
fdr a given machine description. This implies certain commonality of information
required by this two applications. However, there are many details of a module set
that the compiler —compiier does not need to know. Assume that the modules are
commerciaily available semiconductor chips a_nd that the output from the désign program

is @ printed circuit board layout. Knowledge of chip orientation, power requirements,

Some Aspects of the Symbolic Manipulation o | 8
of Computer Descriptions

and chip spacing is needed by the design automation system to produce a wiring list.

Hence there is information contained in the computer description that is required
by two or more applications while some other information is particular to a single

application.

A rasearch environment for the symbolic manipulation of machine descriptions.— The
similar requirements among the several applications of computer description languages
suggest a research environment centered around a data base in which machine

descriptions and manipulation programs are maintained, as depicted in Figure 1.

simulation compiler —compiler design —automation « . .
I | ' I
| | I

l I i i
| | | |
L1 L2 3...
| | | I
i l I |

|

I

data base

Figure 1. The environment

The user inputs information into the data base via one or more computer
description languages. The application programs manipulate the global data base to

extract information in the format desired by the application,

The data base and its manipulation programs must be able to support many

Some Aspects of the Symbolic Manipuiation : 9
of Computer Descriptions
different notations and areas 6f application. This can be expressed by the following

set of required features:

1) Must hold ail computer descriptions for the different applications.

2) Must be reasonably independent of any particular programming IangUage.
This is necessary to allow researchers the flexibility to implement application
programs (i.e. computer description manipulators) in a programming language
of their choice (e.g., FORTRAN, Algol, APL, LISP, BLISS, etc.) '

3) Must be independent of any particular computer description language. The
reason is that the computer descriptive language used to create elements of the
date base is a moving target. It is also the case that some notations may be
more suitable than others for specific parts of a machine description. This

implies an evolutionary process, during which many different notations can be in
use simultaneously.

4) Must be interactive to allow casual and non-casual use. This requires a
set of facilities for interaction in at least one language.

5) Must allow incremental use by many simultaneous users. By incremental
use we mean the ability to carry a design through stages of completaness

during which different users add application dependant details to a computer
description. This is needed for experimentation.

The features outlined above present a set of requirements that may be
conflicting, One of the reasons for this generality, not addressed in previous
applications, is that the objects we want to manipulate, namely computer descriptions
represent a tremendously large domain. We are talking not only about hardware
(Logic, Register Transfer, and PMS levels [Bell, 1971]) but also about algorithms
(instruction Set Processors and programs). It is also the case that we are trying to
apply a coherent methodology to hardware design, a domain characterized by rather -

abrupt transitions between its descriptive levels {more so than among software levels).

ldeally we would like to converge on a single computer descriptive language so

Some Aspects of the Symbolic Manipulation 10
of Computer Descriptions

that people in the environment can interact more easily among themselves. On the
other hand, we recognize the fact that notations go through evolutions and the research
environment must be open along this dimension. Any kind of tight association between

a computer description language and the data base will reduce the latter’s usefulneés.

The next section describes some thoughts about the requirements of a computef
descriptive language. At this point in time, however, we hold no commitments to any
particular existing language or combination of languages. This allows us the freedom to
speculate and experiment with several, perhaps conflicting ideas. Therefore, our use
of a particular syntax in the example given as a structured programming approach

should not be construed as a language definition.

REQUIREMENTS OF A COMPUTER DESCRIPTIVE LANGUAGE

One of the problems with existing hardware descriptive ianguageé is that they
tend to bind the user to a view of the world that is rigid and difficult to modify. We
feel that the semantics of the language should be under control of the designer. The.
following are a desireable, but by no means ekhaustive, set of propertieé for the

language:

1} Neutrality.—~ The language should not make any assumptions about the
physical implementation. The control primitives available in the language
determine the control structures that are easy to describe. If the language
control primitives are too rigid they will limit the implementation alternatives.
For instance, CASSANDRE [Anceau, 1969] uses state registers as primitives.
Systems which do not decode values from centralized state registers are
therefore difficuit to describe, ‘ -

Some Aspects of the Symbolic Manipulation 11
of Computer Descriptions

2) Fidelity.— The description should make the intentions of the designers
transparent to the users. This is somewhat in conflict with the neutrality
property.

2.1) Timing Fidelity.— Existing languages such as ISP [Bell, 1971]
describe algorithms with no reference o timing. Thus it becomes difficult
to express the behavior of low level components. Another example is the
description of cooperating parallel processes, such as interrupt systems,
where timing is critical.

2.2) Structural Fidelity.~ Data paths can be inferred from the description
but these may be a maximal set and may not reflect the actual structure of
the machine. At some level of description the transfer operation, usually
denoted by " &", means "by whatever path available”. For a more detailed
description the "&" correspond one=~to=-one with physical data paths.
The same remarks can be applied to the specification of the functional units
in the system. The presence of a "+" operator in a register transfer
expression does not indicate which of possnbly many functional units is to
carry out the operation,

3) Hierarchy.— Frequently systems design is conducted in a top down manner.
The various portions of the system are first described at a high level. Then the
designer specifies one subsystem in more detail, then another, and so forth.
At any given time a systems design might consist of some subsystems designed
down to the gate level, some less detailed designed at the register transfer
level, and some merely described as algorithms. The coexistance of multiple
levels of description is difficult to attain in existing design languages where top
down refinements, if possible at all, are performed on a giobal basis by ad=hoc
manual procedures. The addition of a clock at some level of detail, for
instance, requires the rewriting of the entire description. Any validation that
has been performed on part of the description would have to be redone.

The final section introduces, via examples, some thoughts on new mechanisms
for a computer descriptive language that attempt to satisfy some of the above

requirements,

Some Aspects of the Symbolic Manipulation ‘ 12
of Computer Descriptions | '
A STRUCTURED PROGRAMMING APPROACH TO A

COMPUTER DESCRIPTION PROBLEM

This section presents, via examples, some aspects of the use of new computer
description concepts. We will present our ideas as'an exerciﬁe in top down &esign.
The objective is to design a PDP=8 like minicomputer, starting from a high level
description and carrying the design down to a level in which the specific implementation
of the machine is described. We will make use of some structured programming
concepts that allow us to define entities of the machine (e.g., memories, regisiers,
functional units) independently from the use of the entities in the description. These
concepts will be added to the descriptive language ISP [Bell, 1971). The choice of ISP
as a framework is based on the authors familiarity with the notation and not, on a
commitment to addopt.an ISP derived notation as the only vehicle for our research. OQur
concern for allowing evolutionary notations is also reflected in certain liberties we have

taken with respect to the syntax of the language as published in [Bell, 1971].

The concept of form [Wulf, 1974] allows us to define the data types available in
the language by specifying not only the representation of the typed objects but also
the operations that can be performed on these objects. ‘ A typical form declaration
consists of a header and a body. The form header specifies the form name and the:
formal parameters used inside the form body. The. form body consists of 5 declaration
part, in which variab-les to be used in the form functions can be definea, and a set of
functions and operations describing the operations that can be performed on variables

declared as instances of the form.

Some Aspects of the Symbolic Manipulation 13
of Computer Descriptions
For instance, we can define a form “"memory" that describes a particular

hardware component. At some early point in the design process a memory can be
considered as a vector of integers, thus avoiding the specification of things like word
length, number representation, addressing, etc. The following example is an instance
of such high level memory definition. Two functions {(operations), "read" and “write"
are defined as accesses to a vector of integers:
form memory (integer size) =

{declare m = integer vector (size);

function read(integer addr) = return m[addr};

function write {integer addr,val) = m{addr] €val;
gxpart read, write } '

The expart statement is used to indicate the form entities (variables and
operations) that are accessible to the rest of the program. Thus we can restrict the
access to certain elements of the form by not exporting them. The read and write
functions are evoked automafically, depending on the context in wich the memorie's

appear, i.e., as a source (read) or a destination (write) in a statement.

Similarly, we can define a form "register” that behaves like an integer:

* In order to keep the examples within a reasonable size, we are appealing to the
intuition of the readers to supply some of the missing details concerning the semantics
of the forms. In order to make the process easier, we have taken some liberties with
the syntax of ALPHARD and its forms [Wuif, 1974].

Some Aspects of the Symbolic Manipulation 14
of Computer Descriptions :

form register =
{declare r =integer:
infix + (register a,b) = refurn a+b;
infix = (register a,b) = return a—b;
infix * (register a,b} = return a*b;
infix #(register a,b) = refurn a+b;
function read = return r;
function write{integer val) = r ¢vals
export +,—,%,%, read, write}

The infix declaration is used to define binary infix operations on instances of the
form. Notice that there is nothing in this definition that reveals the nature of the

register and its structure. A more realistic definition would be the following

form register(integer size) =
{declare r=bit vector(size);
funciion value =
begin declare integer sum;
sume —~r[1];
incr i from 2 io r.size dg sumesumk2+r[i];
return sum;
end; '
infix +({register a,b} = refurn a.walue +b.value;
infix =~ (register a,b) = refurn a.value —b.valuey
infix * (register a,b) = return a.value #b.value;
infix % (register a,b) = return a.value b.value;
function read = return r.value;
function write (integer val) =
dgc,r_l from r.size to 1 do begin r[i] ¢val mod 2; val €val 2; ends
gxport +, =, %, ¢, read, write };

In the example above, the register is defined as a vector of bits and the value of

the register is encoded using the two's compiement representation. The function.
“value" is not exported, thus the real nature of the register as a bit vector is hidden.

The read and write functions are redefined to allow the transfer of vaiues in and out of

Some Aspects of the Symbolic Manipulation 15
of Computer Descriptions

the register. The "dot" notation is used here to indicate the access to an attribute of a

register. Thus r.size is the register size, as specified in the declaration.

Top Level Description.— The foliowing description of the PDP -8 assumes the register
and memory forms defined previously. For the sake of brevity we are not defining the

IO_EXECUTE and OPR_EXECUTE processes evoked by the EXECUTE process.

declare memory M[0:4096];
declare register AC<0:11),
[RCO:11>,
PCC0:11),
L{>,
LAC<C0:12>:=L DAC,
DATA_SWITCHES<0:11 >,
STOP_SWITCH),
CMPACO:11),
OP_CODE :=IR<0 t2),
PAGE_BIT :zIR<4>,
INDIRECT _BIT :=IR<3>3

INTERPRETER := {IFETCH;next DFETCH snext EXECUTE ;next INTERPRETER)
IFETCH:= (IR €M[PC];PC «PC+1) ;
DFETCH := (COMPUTE_ADDRESS snext DEFER_ADDRESS);

EXECUTE :=
(OP_CODE ="AND' = AC « AC AM[CPMA])3
(OP_CODE ="TAD' = LAC «LAC +M[CPMA]);
(OP_CODE ="ISZ' = M{CPMA] «M[CPMA] +1 shext

(M[CPMA]CO=PC&PC+1));
(OP_CODE ="DCA"' = M[CPMA] ¢ AC;AC «0) ;
(OP_CODE ="JMS' = M[CPMA] « PC;3PC «CPMA + 1)s
(OP_CODE ="JMP' = PC «CPMA);

(OP_CODE ="10' =>I0_EXECUTE) ;
(OP_CODE ="0PR' = OPR_EXECUTE)
)3

COMPUTE_ADDRESS:=(
(PAGE_BIT = 1 = CPMA «PAGE_NUMBER 0 PAGE_ADDRESS)
(PAGE_BIT =0 => CPMA «0 OPAGE_ADDRESS)

Some Aspects of the Symbolic Manipulation 16
of Computer Descriptions

)3
DEFER_ADDRESS :=
INDIRECT_BIT=1=
(1048 ¢CPMAZL 1718 =>M[CPMA] «M[CPMA] +1);
next CPMA €M[CPMA]
)3 -

Redefinition of the memory forin.= After the above definition, the design can proceed
in several directions,. for instance, we can define the register operations in terms of
bits, we can define the interpretation of the instruction register, or we can define the
memory operations in more detail. We choose thel latter, at least because it will
produce a more homogeneous description {i.e., the operations wili be in terms -of

registers).

Defining the memory as a vector of registers requires two parameters, the
number of registers (words) and the length of each register. The memory in the
following definition requires two auxiliary registers to perform the read and write
operations. These registers are not exported out of the form, i.e., they are local to

the memory module.

form memory (integer size,wlength) =
{declare m = register (wiength) vector{size);
mar = register(log2(size)};
mbr = register (wlength);
access m[register x] = m[x.value];
function read{register addr) =
begin mar <addr; mbr €m[mar]; refurn mbr; end;
function write{register addr, val} =
begin mar «addr; mbr &valy m[mar] €mbr; gads
export read, write }

Some Aspecis of the Symbolic Manipulation .17
of Computer Descriptions

The access declaration indicates that the value of the register is used as the
index in the memory vector, The effect of tlhe redefinition of the memory is illustrated
in the following description, in which the read and write operations on the memory have
been replaced by the corresponding sequences given in the form. The description of
the machine itself has not changed, only the definition of one of its components. This
allows us to redefine the memory at any point in time without having to change the

description.

declare memory M[0:4095]<0:11);
declare register ACC0:11>,
IRCO:11>,
PCC0:11>,
L<>, ,
LACC0:12>:=L0OAC,)
DATA_SWITCHES<0:11>, '
STOP_SWITCH(),
CMPACO:11>,
OP_CODE :=IR<0:2>,
PAGE_BIT:=IR¢4>,
INDIRECT _BIiT1=zIR{3>;

INTERPRETER := (IFETCH;next DFETCH;next EXECUTE ;next INTERPRETER) ;
IFETCH = (mar «PCjnext mbr € M[mar];next IR embr;PCePC+1);
DFETCH := (COMPUTE_ADDRESS ;next DEFER_ADDRESS) ;

EXECUTE :=
(OP_CODE ="AND" = mar «CPMA;next mbr «M[mar};next AC «ACAmbr);
(OP__CODE ='TAD' = mar ¢ CPMA ;next mbr ¢M[mar];next LAC €LAC+mbr);
(OP_CODE ='"ISZ' = mar +CPMA ;next mbr «M[mar];next mbr ¢mbr +1 snext
Mimar] €mbrsnext (mbr{O=>PC«PC+1))3 .
(OP_CODE ="DCA' =» mar «CPMA ;next mbr «PC;next M[mar] €mbr; AC«0);
(OP_CODE ="JMS’ => mar «CPMA ;next mbr «PC;next
M[Imar) embr; PC«CPMA+1);
(OP_CODE ="JMP'=PC «CPMA);
{OP,__CODE ="I0" =]0_EXECUTE);
{(OP_CODE ="0OPR' = OPR_EXECUTE)
)s

Some Aspects of the Symbolic Manipulation . ‘ 18
of Computer Descriptions

COMPUTE_ADDRESS :=
(PAGE_BIT =1 = CPMA «PAGE_NUMBER OPAGE_ADDRESS) 5
(PAGE_BIT =0 => CPMA «0 OPAGE_ADDRESS)
)

DEFER_ADDRESS :=
INDIRECT_BIT=1= ‘
{1018 SCPMA €178 =>mar «CPMA;next mbr «M[mar] snext
mbr € mar + 1 ;next M{mar] €mbr) ;next -
mar «CPMA ;next mbr € M[mar];next CPMA €mbr
)

Redefinition of the register form.~ S0 far we have been dealing with registers as if
they were integers. This is simply an abstraction. Hardware registers are built as
array of bits and therefore the operations must be uitimately defined in terms of logic
networks operating on individual bits. The form network is not defined. Informaily, it
represents a set of wires {memoryless components) used to carry information back and
forth between other components. The foliowing definition of a register indicates how
the operations could be performed:
form register (integer size) =
{declare r = bit vector(size);
access r{integer x> =
begin declare n = network(1); n[1]«r[x]; n; end;
access r{integerpair x> =
begin declara n = network{x.ub.value =x.b.value +1);

foralliinndanfi]erfi+xlb]s n
end;

Some Aspects of the Symbolic Manipulation 19
of Computer Descriptions

infix + (register a,b) = -
kegin declare x = network({a.size+1); carry = network{asize+1);
carry[carry.size] €03
decr i from a.size {o 1 do
begin
xli+l]ealiJ@bli]J@carry[i+1];
carry[i]l€ali]lab[i}valilacarry[i+1] vb[i]acarry[i+1];
end; :
x[1]ecarry[l];
weturn x;
ends;
infix —{register a,b) =....
infix + {register a3 network b) =
begin declare x = register(b.size); x b return a+x; end;
infix + (network aj register b) =....
infix + (register aj integer b) =
begin declare x = register(a.size}; x b raturn a+x; end;
function read = return rs -
function write({integer val) =
decr i from r.size o 1 do begin r{i] «val mod 2; valeval #+ 2; gend;
infix write(register b) = forall i in b do r[i] «b[il;
infix write(network b) = forall i jn b do r[i]«b[i];
export +,—,%,$,read,write }

With the last exampie the power of the form mechanism is more apparent. We
can define and redefine data types and operations without disturbing the rest of the
description, The example also shows a possible way of implementing the adder. If the.
description is taking literally, it implies that every register is in fact a functional unit,
capable of .performing any arithmetic operation. For a first approximation this may be
an acceptable definition. A better definition would declare a single functional unit and
all register operations could then be defined using this unit. It is clear also that we can
declare other types of registers, for instance, counters that would look like any other
register but with the property that some simple operations (e.g., add 1, subtract 1, set

to 0, etc) would be performed directly in the register.

Some Aspects of the Symbolic Manipulation 20
of Computer Descriptions - ‘

Signals and Control Expressions.~ Let us assume that we are satisfied with our
previous description (it is by no means complete, but for the sake of brevity let us
accept it). The sequencing of operations as expressed in the descripﬁon doe_s not
indicate how the control passes through the machine description, i.e., the semantics of
"next" and ";" is specified oniy to the point of knowing that certain actions arle

performed concurrently or that some actions must be completed before othérs can

start.

We can formalize the sequencing of the operation by using control expressions,

based on an underlying finite state machine, of the following type:
pre —condition : action | post —condition

The pre —condition represents the condition that must be met before the action
can be executed. The action is initiated as soon as the pre —condition is satisfied. The
post —condition indicates the conditions that exist upon completion of the action. fhe
pre —condition is expressed as a conjunction of signals and boalean expressions, The
evaluation of the pre—condition must be an indivisible, timeless action. The
post —condition is expressed in terms of the signal operator, 0. The > operator
generates a signal that can be used by the pre —conditions. The signals are assumed fo
be unit pulses, therefore they exist only for a brief time, enough to evaluate the
pre —conditions. The latching operator & can be used to store a signal for later use in
a pre ~condition. Latched signals will obviously exist for longer periods of time but
they will dissapear as soon as they gre used i.e., as s;oon as the pre —condition that

contains the latched signal is met. There is a memory device associated with each

Some Aspects of the Symbolic Manipulation 21
of Computer Descriptions '

instance of the & operator.

Examples:

slee o o . | :D(s2)
slaa=l:s. . . | D(s2,53)
slas2:. . . .,

Z(sling(s2):. . .

Given the following BNF description of ISP, we can algorithmically transform the

ISP description into a set of control expressions, according to the rules given later on:

{process> ::= (label> := ({s—action))

{s—action> ::= {p—actiond | {p=-action) next ¢s=actiond

{p~action) ::= {c=action> 3 {p=—actiond

{c=action> t:= Caction> | (<exp> => {s-action)) |
(decode <exp> = action~list))

Caction ~list> ::= (action) | <action=listd> 3 <actiond

Cactiond s:= (r—transfer> | <label> | (¢s—action>)

ISP to Control Expressions Translation Rules,—

description . pre —condition action past —condition
1) label := { s—action) tabel : s—action | (label_done)
2)Siset s 8] D(S)) Si et | O(Si')
Si A | D(Si")
Z{Si')AL(SI") : | D(Sj)
3) Si s o¢ next 8] D(Sj) Si T oL { D(Si")
Si' t B [D(S))

4) Si t =8 | DIS)) SiAec Ry | D(Sj)

*"»

Some Aspects of the Symbolic Manipulation 22
of Computer Descriptions

SiA ot : } »D(Sj)
5) Si : decode o¢= 80, ..y 8n | D(S))

Sine=0 t 30 | O(S))

Si Aec=n : An | D(si)
6) Si