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ABSTRACT 

We consider iterations for solving the nonlinear equation F(x) B 0 in 

the N dimensional Banach space, 1 ^ N ^ + «>, which use "integral information 

with a kernel". This information consists of the "standard information" 

F V j ; ( x d ) , j « 0,1,...,s and the integral J g(t) F(x d + tyd)dt where s ^ 1, 

x, is an approximation to the solution and y, depends on the standard in-u a 
formation. We show there exists an iteration with order 2s + 1 + 6„ , and 

N,l 
prove its optimality. 



1. INTRODUCTION 

We want to approximate the simple solution a of the nonlinear equation 

(1.1) F(x) = 0 

where 

F: D -* 1*2, D is an open convex subset of B^, B^ and are N-dimensional 

Banach spaces, 1 ^ N £ + » and [Ff(<y)] ^ is a bounded operator. This prob­

lem is often solved by construction of the sequence of successive approxi­

mations to a using the standard information on F 

A, = {F(x d),F'(x d),...,F ( s )(x d)}, 

where x^ is a close approximation to or. 

In previous papers we investigated another kind of information, namely 

the integral information 

( ^
 1 

*-l,s " t F(* d),F'(x d),...,F W(x d), | F(x d + ty d)dt}, 

where s ^ 1 and y d depends only on the standard information (see Kacewicz [75a] 

and [75b]), 

We showed there exists an iteration of maximal order s + 3 - 6 (for 

optimally chosen y d ) , where 

r 
0 if N « 1 or s £ 2 

5 8=5 \ 

1 otherwise 
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Since the maximal order of iterations using the standard information is 

equal to s + 1, the use of the integral increases the maximal order by 

2 - 6. 

In this paper we consider more general kind of integral information, 

namely integral information with a kernel. 

(1.2) 5^ l j S - ^ 1 > s ( x d ; F) = {F(x d),F ,(x d),...,F ( s )(x d), J g(t)F(xd + ty^dt}, 

where 

(s) 

s ^ 1, y d
 3 y d(x d,F(x d) ,Ff (x d),... ,F ( x

d))> 8 = i s a complex function 

of a complex variable such that J* |g(t)|dt < + ». 

Note that if g(t) s 1 then «Jr. =51 . The question is how the 
— I , S — I , S 

maximal order of iteration depends on g. 
In Section 2 we define the iteration I*% which uses Ut̂ - for optimally 

-l,s -1,8 J 

chosen y d (see Section 4) and is of order min(s+1-hn, 2s+1+8 N j) (see Section 3 

and Corollary 1 in Section 4 ) , where m is an integer depending on g (defined 

in Section 2) and 8.. is the Kronecker delta. In Section 4 we prove the 
iteration I - is maximal. Furthermore we show there exists a polynomial -1, s 
g = g(t) independent on F such that m « s+6 M «• Since for such g the order 

is equal to 2s+1+6 «I > the value of the integral with a kernel, which is 

represented by the vector of size N, increases the maximal order by s+8^ 
g 

In Section 5 we show that for N sufficiently large the iteration 1 ^ ^ 

has smaller complexity index than any interpolatory iteration IQ ̂ , which 

uses the information 51^, k ^ 1, under some assumptions on the cost of 

computing the value of function, its derivatives, and the integral. In 
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Section 6 we give examples of the function g and show some connections 
g 

between information 9t - and certain two-point information without 
- I 9 8 

memory. 

2. DEFINITION OF THE ITERATION I8.. 
-1 , s 

We shall use the notation 

1 
ss 

j 
(2.1) I - j g(t) t S + j dt, Vj 2 1. 

0 

Let us define 

(2.2) B Q <= {g - g(t): I 1 = 0} 

(2.3) B 7 - {g - g(t): I 1 { 0, I 2 = 0}, 

(2.4) B m = | g = g(t): ^ / 0, I 2 / 0, ̂  = k - 2,3,...,m, 

nri-1 1 (_2\ I for m £ 2. 

Note that B^ / 0, Vfcn. Indeed, the function 

, x s+2-Kn 
* ( t ) = fc -

belongs to B for m « 0,1. For m ^ 2 we can find a function g for which m 

(2.5) Ij - 1, j - 1,2 ro, Imi|_1 - 2. 

Suppose g Is of the form 



-4-

m 
(2.6) g(t) = ) g.t 1 

Then the equalities (2.5) give us the systfem of linear equations on g^, 

i • 0,1,... ,m 

m 
(2.7) ^ ^ F J I - L + I ^ , J - 1,2,...,^!. 

Since the matrix . ,?_. . - A , is symmetric and positive definite, s+j+i+1 i=0,l,...,m J r 

L J j - 1,...,m+l 
the coefficients g. exist and hence B f 0, Vta. 

l m ' * 

In the remaining part of this paper we often use the notation h 8 3 cp(x; F) 

which means that h is the approximation of a obtained by one step of the 

iteration CP based on x and a certain information on F. Recall that if 
z =* I n (x; F), where I n means the maximal interpolatory iteration which u, s u, s 
uses the standard information 51 for s s 1, then 

s 

lim Z'g,., = , , F „ , for N = 1 
**a ( C R X ) S + 1 ( S + 1 ) ! F ' ( A ) 

and 

II i|3+" (s+1); 
X-»CY ||0f-x|| 

We define now the iteration 1^- which uses the information 91?. for 
-l,s -l,s 

y^ given by 

(arbitrary if m « 0 
z . - x, if m = 1, a a 

|^(z d-x d) if m * 2, 

where x, is an approximation to the solution a, z, = I„ (x,; F) and g € B . a a u, s a m 
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The next approximation h, = I° n (x,; F) in I , is defined as a zero 
d -1 ,s d' -1,s 

of the polynomial w « w(x) « w(x; x^,F), 

(2.9) w(h d; x d,F) = 0 

(with a criterion of its selection, e.g., the nearest zero to x^) , where w is 

given as follows. 

Case I. N • 1. 

(2.10) w(x; x d,F) - F(x d) + F'(xd)(x-xd) + ... + ±y F ( s ) (x-x^ S + 

+ A(x F) (x-x,) S + 1, 

where 

(2.11) A(x,,F) = J 

if m « 0 

TKT- <T 8(t)F(x d+ty d)dt -
J I 0 
s 

d 1 f c'd' 

0 
- y 7T F ( l ) (x,)y^ f g(t)tXdt) otherwise 

Case II. 2 <. N £ +». 

(2.12) w(x; x d,F) = F ( X D ) + F 1 (x^) (x-x^) + ... + ly F
( S ) ( X-X ) S + 

+ c 
1 8 7 

| 8(T) F ( x D + T Y D ) D T - ^ [ R F ( i>(x D)Y D
I J G ( T ) T

I D T 

where 

c =V 
s+1 

if m « 0 

if m = 1 

if m ^ 2 
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Note that to find a good approximation of h in numerical practice it is 
d 

possible to perform a few Newton steps on the equation (2.9). 

We see that for m ~ 0 I 8 is equal "to the well known interpolatory 
- 1 , s 

iteration Irt which uses the standard information !Jl and is of order 0,s s 
s+1. Hence we assume that m ^ 1. 

One can verify that the polynomial w satisfies the following inter­

polatory conditions. For N = 1, 

w ( j ) ( x d ) = F ( j ) ( x d ) j = 0,1,...,s 
1 1 
£ g(t) w(x d+ty d)dt = J g(t) F(x d+ty d)dt. 

For 2 <> N £ 

w(x d) = F(x d) + 0(||c.xd||S-fl) 

w ( j ) ( x d ) = F ( j ) ( x d ) j = 1,2,...,s 

1 1 
| 8(t) w(x d+ty d)dt = | g(t) F(x d+ty d)dt + 0( |j<*-xd||S+1) , 

3. CONVERGENCE OF THE ITERATION I 8. 
-l,s 

If the function F is sufficiently smooth in the neighborhood of the 

zero a, then from (2.10), (2.11), (2.12) and due to the special form of 

y d given by (2.8) we have 

(3.1) F(x) - w(x; x^,F) - R(x), 

where 
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for N » 1 

- 1 Is+2) , .s+2 , n,, -s+3. 
T^zTi* ( V ^ - V + °«*-*d> ) + 

+ 0((z d-x d) 2(x-x d) S + 1) if m - 1 
m 

(3.2) R(x) =-< p F (x^)(x-xd) [(x-xd) - (z d-x d) ] + 
kL2 U + L O T F ( V 

+ 3 F ( s + I 4 i n \ x Hx-x ) S + 1 

(s+1-Hn) 1 * < V U V 
. s+2+m 

(x-xd) m 

m+1 s+1. (+ 0((x-xd) ) + 0((z d-x d) (x-xd) ) if m k 2, 

for 2 :£ N «£ + « 

y ) T C F ( s + ' ) < V < - V s + 1 - ' ' < s + , ) < V < v V s + , 

, 1 r(s+2) w .s+2 , -..I ,,s+3. , 
+ (s+2): F ^V^-V +0<llx-x

dli > + 

+ ° ( | l ZD- XDH S + 3> if m - 1 
(3,3) R(x) « ^ m . ! 

V ] r F ( s + 1 + k ) r v W Y v „(s+L+k) . ,s+L+k n 

4 (s+1+k)I C F < X
D

) ( X _ X D ) " F < X D ) ( Z D " X D ) ] + 

1 
(s+1+m): w v r 

(s+1+m) s , .s+1+m (s+L+m). w .s+L+m F U^tx-x^) - F (x d)(z d-x d) 

+ 0(|h-xd||S+2^) + 0(||zH.x ir 2 4 r a) if m * 2 d "d1 

From the Brouwer fix point theorem for N < + co or the Schauder fix point 
theorem for N « + » (see Ortega and Rheinboldt [70], p.164), from the defini­
tion (2.9) of I 8. and (3.1), (3.2) and (3.3) we get the following theorem 

-1, s 
cr 

about convergence of I - . In Section 4 we shall use the result below to 
-1 ,s 

establish the order of I 8 . 
-l,s 
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Theorem 1 

Let the iteration I g, be defined by (2.9) and g g B . If the function 
-1, s m 

F is sufficiently smooth in the neighborhood of its simple zero a, then the 

approximation h^ s I ^ s( x£> F ) i s w e * l defined for x^ sufficiently close to 

a and 

(i) For N - 1 

lim 
x d- a (a-xd) 

h d * a 

s+1+m if m - 0,1 

m > s+1 s+1 s+2 

min(s+1-hn,2s+2) 

s+1 s+2 

s+1+m 
if 2 s m i s+1 

if m > s+1 

(ii) For 2 <. N <• + » 

lk-a|| 

î s+lH 

\.1 * ^ + IK+2H 
6
m,s ' ( s + 1 )^s+ l ^ + 

l i m ,min(s+l+m,2s+l) *S 

ft? X1 

if m - 0 

if m - 1 

<s+1> • llVii 

HVl-hnll 
if 2 £ m £ s 

if m > s 

where Dfc « JrCF^a) ]"V k ) (a). 

Since x, is an arbitrary point, the theorem above describes the behavior d 
of the function h » I 8, (x; F) in the neighborhood of the zero or of F. 

-1 ,s 
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4. ORDER OF INFORMATION Sft8 AND MAXIMALITY OF THE ITERATION I 8-
- I, s - i, s 

Or 

In this section we show that the iteration I - has order equal to 

min(s+l-hn, 2s+l+6>T ,) whenever g € B . We prove that this order is maximal N, I m 
and given by (2.8) is optimal. 

For this purpose we define the order of iteration and the order of 

information as in Wozniakowski [75b]. 

Let 3 be a class of functions F, 

F: D p -+ B 2, Dj, c Bj , d i m ^ ) = dim(B 2) = N 

which have a simple zero a - a(F) and are analytic in its neighborhood. Let 

[x^] be a sequence converging to a, lim x^ = a* We shall say that {F^} c 3 
d 

is equal to F € 3 with respect to 918- iff 
-1, s 

(4.1) F d(a d) - 0, lim otd m a , 
d 

(4.2) lim F < k ) (<*) = G ( k ) (a) , k-0,1,..., 
d 

where G G % G(a) - 0, 

( 4 . 3 ) ^ l , s ( x d ; F ) = ^ l , s ( x d ; F d ) V d ' i- e*» 

F ( k ) ( x d ) = F ^ k ) ( x d ) , k = 0,1,...,s, 

1 1 
|g(t)F(xd + tyd)dt = |g(t)F d(x d + tyd)dt . 

The order of information P = PCJT 8, ) is a real number such that 
-l ,s 

sup A if A ^ 

0 otherwise 
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where 

A - [p * 1: V{x D3, lim x d = a, V F € 3, F(CR) - 0, 
d 

V{F,} equal to F it is true that 

L|ad-a|| 
lim - = 0 , Vc > 0} . 
d l|xd-a|!p-S 

Let cp8, be an iteration which uses the information 918 . The order of Y-l,s -l,s 
Iteration cp8.. , p 5 3 p(cp8-, ) is a real number such that — I JS — 1 Js 

sup B if B ̂  0 

0 otherwise , 

where 

B - {p * 1: V{x d}, lim x d = a , VF € 3, F(a) = 0, V{F D3 equal to F 
d it is true that 

HV̂ dll R 
lim " = 0, Ve > 0 where h, - cp* (x,;F)j 

d H K D - A I R * D - 1 > S D 

(see Wozniakowski [75b]). 

Wozniakowski [75a] proved that the order of information is equal to the 
maximal order of convergence. We shall use this property to show I is 

-1 ,s 
maximal. 

We now prove the theorem about order of information 51 - • 
- 1 , s 

Theorem 2 

Let 91 - be the integral information with a kernel -l,s 
( \ 1 

^1,s - 3 l - l F 8 ( x d ; F ) = ^ ( x d ) , F ' ( x d ) , . . . / S ; ( x d ) , |g(t)F(xd + tyd)dt} 

where 

• * 1. Y D - Y D < V F( xd),...,F ( s )(x d ) ), g = g (t) 
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is a complex function of a complex variable such that ^|g(t)|dt < + » and 

pCJt8- ) £ min(s+1-hn, 2s+1+6XT J • -I,s N, I 

g 6 B . Then ra 

Furthermore, if 
r 
arbitrary 

= - < z
d - x

d 

ir ( zd - xd> 

if m = 0, 

if m = 1, 

if m 2: 2, 

where z f l - I Q j S(x d;F) 

then 

) - min(s+1-hn, 2s+1+6 M 

• • , S IN , I 

Proof 

We shall prove the first part of Theorem 2, i.e., we shall show that there 

exist F £ J, F(a) = 0, {x^, lim x d « a and {F d} equal to F, ?d(ctd) • 0 such 
d 

that 

_ Ik- l̂l 
(4.4) lim 

d ||x H-a | r i n ( s + 1' h n' 2 s + 1 + 6N,l ) 

> 0. 

We consider two cases. 

Case I. N = 1 

Let F € 3, F( a) = 0 and e - <*-x,, where lim e . - 0. We set 

(4.5) F d(x) => F(x) + (x-x d) S + 1[(x-x d) m- Y-b d], Vd, 

where 

Y • b, - 0 for m » 0 and a 

0 

m-1 

y, i, 
if Ilia I 1 ~ ^ . ^ \ 

d e d i1 
otherwise, 
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m-v rri+l -v . . 
b s y ' *• f o r m ^ 1 . 
d a 1^ 

One can verify that [¥ d) is equal to F. Moreover, 

i s+1 if m = 0 

a-°dl = cdlFd ( a )l = cd-< 
s+1 i m-v m-v nH-l-vj otherwise, 

where 
F d(o d) = 0 and lim c d = c > 0. 

d 
From above we have 

L<*-<*DL 
< 4- 6> " » • , s + H t n > 0 > V t a-

D L ed' 

This proves (4.4) for = 0 or 1. Hence assume m ^ 2. Let us now consider the 

functions {F d} given by (4.5) with y = m-1« This means that 

I. s+1 2 F d(x) = F(x) + (x-xd) (x-x d-y d — ) . 
1 

Let z, be defined by d 
2 d = xd + 1 7 v v d 

and let the function F and the sequence {x,} be such that 

— L zcH 
lim — 
d |e 

s+1 > 0. 

Then (F d) is equal to F and 

LORORJ > 0 
< 4' 7> , ,2s+2 * d eJ 

Hence, (4.6) and (4.7) prove (4.4) for N = 1. 
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Case II, 2 £ N £ +» 

Since the inequality PCSR8- ) ^ min(s+1+m,2s+2) holds for N « 1 it also 
-1, s 

holds for any 2 £ N ^ +». Hence, we want to now show that for 2 £ N £ +» 

POJT 8 ) ^ 2s+l, i.e., that (4.4) holds for m > s. It suffices to consider 
* I 

the case N < Let = x d + ^ y d, yd, z d = z d(x d,F(x d) ,... , F ( s ) (x d) ). 

If there exist F € % F(«) » 0 and fx,}, lim x, = a such that a , a a 

_ iiv«ii lim TT RR > 0 
d N*d 

then the family of functions 

F d(x) « F(x) + [ ( x r x l d ) S + 1 ( x 2 - z 2 d ) , 0,...,0] T, Vd 
N-1 

is equal to F with respect to !Rg and (4.4) holds for zeros <*_ of F . 
• • 9s d d 

In the formula above, x ] d , z 2 d denote the components of vectors x d, z d 

respectively such that 

— H*-*dll _ . ^ I I ^ I I 

and 

d" „ llorad|, 
lim -i — r > 0 and lim T — R > 0, 

X ~" F X ,| 9 • • • »XJG^ • 
Hence assume 

_ Ik-orll 
(4.8) lim jr rr - 0 for any F and f X j}. 

d xd~a d 

Let the sequence {x d} satisfy the conditions 

a,-x, 
(i) lim x, « a* x, , 4 <y.. x_ . 4 . lim — — 

d V * 2 d 
where F(a) « 0. 

lim x d - a , x ] d J OR,, x 2 d J a 2 , 11,. - L — L - 1. * ± d - for i - 3,4 N, 
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From the assumptions above, it follows that y 2 d can be equal zero only for a 

finite number of d, hence without loss of generality we can assume that y 2 d j> 0 Vd. 

Let us define 

(4.9) F d(x) - F(x) + ( xl" Xld ) 

s+1 
s+1 y1d , v s+1 . n 

' ~ s + T ( V x 2 d } ' °»---»° 

-.T 

'2d N-1 

One can verify that (F d) is equal to F. From (4.9) it follows that 

(4.10) Hc-aJI = h d ||Fd(a)|| = h ^ a ^ - a , ) - ( z ^ - c ^ l • 

* I a d ( z 2 d " x 2 d ) S + a d " 1 ( 2 2 d - x 2 d ) S " 1 ( z 1 d - x 1 d ) + 

• • • +
 a d ( * 2 d - x 2 d ) ' ^ i d ^ i d ^ " 1 +

 ( z i d " x i d . ^ » 

where 

lim ST - h > 0, F.fa.) = 0, a, - I Q (lim a - 1). 
d d d d d a 2 - x 2 d d d 

It can be verified that there exists a function F and {x d} satisfying the 

(i) condition such that 

(4.11) lim rn > 0. 
d IMdl|S+1 

Indeed, otherwise (due to the similar argument which was used by Kacewicz [75b]) 

the iteration cp for the solution of the nonlinear scalar equation f(y) e 0 

defined as follows 

Pd+1 " ' < P d ; £ ) " ^ d V ^ ' ^ ^ d ^ " z l d(x d,F(x d),...,F ( s )(x d)) 
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where (3. is close to the solution (but not equal), 

F(x) = [x^ f(x 2), x ^ • • • 9 

and 

x 
N-2 

has the order of convergence greater than s+1, i.e., greater than the order of 

used information, which is a contradiction. 

Finally, from (4.11) and (4.10) follows the inequality (4.4) for m > s, 
g 

which means that p(51 . ) ^ 2s+1. This proves Case II and also the first part 
-1, s 

of Theorem 2. 

We shall prove the second part of Theorem 2. We want to show that for 

arbitrary F g % F(«) « 0, {x d}, lim x d - a, {Fd} equal to F, F d(a d) - 0 we 

have 

^ i ix d - a i r i n ( s + 1 4 m ' 2 s + 1 + 8 N, i ) 

Since • | | o N O f d | | is at least of order s + 1 , (4.12) holds for m « 0. Assume m £ 1. 

Since {F,} is equal to F we have 

(4.13) | | P d ( o f ) | | £ | | w ( a ; x d , F ) | | + C o r > - w ( c r ; x d > F d ) || 

where the polynomial w - w(x;xd,F) is given by (2.10) for N - 1 and (2.12) for 

2 <; N < + ». 

From (3.2) for N * 1 and (3.3) for 2 £ N £ 4- • we get 

(4.14) llor-orjl - 0(||Fd(«)||) - 0( | | x d . f l f | f l l l n ( 8 + 1' h l l' 2 8 + 1 + 8N f 1 } ) . 

Hence (4.12) holds which completes the proof of the Theorem 2. 
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Since 

l l ^ i ^ V 1 0 - 0 ^ s HI?i,8(xd;F)"°'ll + L | A " A D H 

we get from Theorem 1 and (4.14) 

— l l ^ . s ^ D ' ^ - D H 
LIM . \ ... 0 ,T , E R < + 0 0 

d H x d . rY | r i n ( 8 + 1 " h n , 2 l , + 1 + 6N . l ) 

for any F 6 3, F(a) = 0, {x d}, lim x d = a, and {F d} equal to F, Fd(<*d) 8 3 0 o 

d 
Hence, from the definition of the order of iteration and Theorem 2 we have 

Corollary 1 

Let g 6 B . Then m 

p(I 8 ) - min(s+L+m,2s+L+6M n ) . • 
- I , S JNI , I 

From Corollary 1 and Theorem 2 there follows immediately 

Corollary 2 
Let 4 8 be the class of iterations which use information 918, . Then 

Y-L,s -L,s 

p(I 8 ) « SUP p(CD8 ) , 

TPS, € # 8 , ,s *-L,s 

i.e., the iteration I , is maximal. • 
-1,8 

Note that the order of information and at the same time order of iteration 

I 8 is maximized and equal to 2s+L+6 > T n iff m £ s+6,T . Thus, for the function -L,s ^ N,L N,L 
g chosen such that m « s+8*T i (see (2.6) and (2.7)) one additional value of the 

N, 1 
integral which is represented by N new data increases the order by s+& N -| • 
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5. COMPLEXITY INDEX 

Or 

We want to compare the complexity indices of the iterations I , and 
•» " • 9  s  

IQ ^* The complexity index z is defined by 

2 « 2 ( c p ; F ) = c(tt;F)+c<y) 
log p 

where cp is an iteration of order p which use the information 91, c(!Jl;F) is the 

information cost and c(cp) is the combinatory cost (see Traub and Wozniakowski 

[75]). For the integral information with a kernel the cost c(5l8- ;F) consists 
-1 ,s 

of the costs of the standard information c(5l ;F) and the computed integral c(I). 
s 

Let us assume that m » s+6XT n. Then p(I 8, ) = 2s+l+6>T n
 and one can verify 

that «(I? l f a;F) < .<I 0 > k;) iff 

(5.1) c(I) 
log(2s+l+6N J log(2s+l+6M J 

Let 2 £ N < + «> and c ( F ^ ) denote the cost of computing F ^ ( x ) * c ( F ^ ) 

depends on the total number of arithmetical operations as well as on the cost 

of data access (which is usually greater than the cost of single arithmetical 

operation). Let c(F) » N. Then we assume that c(I) = 0(N) and since F ^ ( x ) 

can be represented in general by 0 ( N i + 1 ) scalar function evaluations, assume 

that c ( F ^ ) = 0 ( N 1 + 1 ) . Since the information costs c O ^ F ) and cCJt8^ ;F) 
k+1 s+1 * are of order N and N respectively and the combinatory costs c(I ) and 

U , K 
Or c(I • ) are increasing functions of k and s respectively, we have for large N -1 , s 

(5.2) min z(I ;F) = z(I_ .;F) and 
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(5.3) min z(I 8 ;F) = z(I ;F), 
s*l , S " 1 , 1 

However, it should be stressed that if c(F**^) is essentially less than N* +^ 

then (5.2) and (5.3) are not necessarily true. Under our assumptions 

(log 3-l)c(3li;F) + log 3 c(I Q j) - c(lf1 ̂ ) = 0(N 2) 

which means that (5.1) holds for large N. From here, (5.2) and (5.3), it follows 

that I j .j has smaller complexity index than any iteration 1^ ̂ , k ^ 1 and any 

6. EXAMPLES 

1. Let g(t) H 1. Then m - 2 and order p(I^ g ) = min(s+3,2s+l+&N j) - s+3-6 

where 
(0 if N = 1 or s £ 2 

6 -

( 1 otherwise, 

which agrees with Kacewicz's [75b] result. 
2. Let N • 1 and g(t) = 8(t-1), where ft is a generalized function such that 

+00 

J 6(t-1)F(t)dt = F(1) 

for any function F with bounded support (see Gelffand and Shilov [64]). Then 

the information is of the form 

^ I . S " o ^ x d ) , . . . , F ( s ^ V ' F ( x d + y < i ) } -

Note that I^ - 1, Vj and hence — = / » formally we can set 
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m = + o o and the order of information 
pen 8, 

) is equal to min(s+l+<»,2s+2) - 2s+2, 
-1, s 

which agrees with the optimal order of this special Hermitian information (see 

Woz'niakowski [75b]). 

3. Let N - 1 and g(t) - 6 k(t-1), where J 6k(t-1)f (t)dt = F ( k )(l) for any suf-

ficiently smooth F with bounded support. 

Then the information is of the form 
^ 1 , s = tF(x d),F»(x d),...,F ( s )(x d),F ( k )(x d+y d)} 

and it was considered by Brent [74]. It is easy to see that if k > s+1 then 

I- - 0, hence m « 0 and the order is equal to s+1. If k £ s+1 then I. • ( 8*3) * 
1 J (s+j-k). 

hence m • 2 and order is equal to s+3 which agrees with Brent1s result. 
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