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1. INTRODUCTION 

Let 

M(X) = X m + A.X™"1 + ... + A (1-1) 
v 7 1 m 

where Ai>***> A
m> x a r e n by n complex matrices. We call M(X) a monic matrix  

polynomial of degree m. A matrix S for which M(S) = 0 is called a right solvent (or 

briefly a solvent). In Dennis, Traub, and Weber [76] we studied the algebraic 

theory of matrix polynomials. In this paper we analyze two algorithms for 

calculating a "dominant1* solvent. (Dominant solvent is a generalization of 

largest zero of a scalar polynomial. See Definition 2.1.) 

Algorithm 1 of this paper is a generalization of an algorithm for scalar 

polynomials (Traub [66]). It is globally convergent in the following sense. 

If Stage One is done sufficiently long and if the hypotheses of Theorem 2.1 

hold, then the iteration of Stage Two is globally convergent. Stage One may 

be viewed as direct powering by a "block companion matrix11. We have not suc­

ceeded in devising an inverse powering process as used by Jenkins and Traub 

[70]. Algorithm 2 is a generalization of Bernoulli's algorithm. As in 

the scalar case, Bernoulli iteration may converge very slowly. 

In Dennis, Traub, and Weber [71] the relation between "block eigenvalue" 

and solvent is explored and two algorithms for the calculation of "block 

eigenvectors" are given. We do not pursue this here. 

M(\I) is called a lambda-matrix and a scalar \ such that M(XI) is singular 

is called a latent root. An application of solvents is to the calculation of 

latent roots. If all the latent roots are distinct, and if the hypotheses of 

Theorem 2.1 are satisfied, then the dominant solvent may be computed. The 

dominant solvent may be removed and Algorithm 1 or 2 applied to the deflated 
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polynomial. The process can be repeated until all the latent roots have 

been computed. Other proposed methods for the calculation of latent roots 

such as algorithms of Lancaster [64] and Kublanovskaya [70] are only locally 

convergent and do not have an associated method of deflation. See Dennis, 

Traub, and Weber [71, Appendix B] for additional material on algorithms for 

lambda-matrices. 

In Dennis, Traub, and Weber [71] we give two globally convergent algor­

ithms for calculating dominant latent roots. These results and their exten­

sions will be reported in a future paper where we will also show how systems 

of polynomial equations may be solved using lambda-matrices. 

We assume the reader is familiar with the notation and results of Dennis, 

Traub, and Weber [76]. For the reader's convenience, we state a number of 

definitions and results from the above cited paper crucial to this paper. 

If S.,...,S are any n by n matrices the block Vandermonde matrix is 1 m 
defined by 

If Si>«-»> s
m
 a r e n by n matrices the fundamental matrix polynomials are a set 

of m-1 degree matrix polynomials, M. ,... ,M , such that M.(S.) = Let 
I ' m ' I j uij 

M.(X) = A^V" 1 + ... + A ( i ) . 
l 1 m 

We have 
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Theorem 1.1. If Matrices S.,...,S are such that V(S-,...,S ) is nonsingular, 

then there exist unique matrix polynomials M^(X), i=1,...,m which are funda­

mental matrix polynomials. If, furthermore, V(S^,....,S^ ^ '^k+i9 • • • »^m^ 

is nonsingular, then is nonsingular. 

Theorem 1.2. If matrices S,,...,S are such that V(S,,...,S ) is nonsingular 1 m I ' m ° 
and M^ (X) ,... ,M^(X) are a set of fundamental matrix polynomials, then an 

arbitrary matrix polynomial G(X) can be written as 
m 

G(X) = ) G(S.)M.(X). 
i=1 

We summarize the remainder of this paper. In Sections 2 and 3 we state 

two algorithms for calculating solvents of matrix polynomials and prove global 

convergence of the algorithms for "dominant11 solvents. Numerical examples are 

provided in the last Section. 
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2. A MATRIX POLYNOMIAL ALGORITHM 

We show that a generalization of Traub1s scalar polynomial algorithm 

(Traub [66]) may be used to calculate a dominant solvent of the matrix poly­

nomial problem. A dominant left solvent may also be computed (Dennis, Traub, 

and Weber [71, Corollary 5.1]). 

Algorithm 1. Stage 1. Let G Q(X) = I and define matrix polynomials G^(X) b^ 

G^CX) = Gn(X)X- c^M(X), (2.1) 

for n = 0,1 ,...,L-1, where 

G (X) = c^X111"1 + ... + an. (2.2) 
n 1 m 

-1 
Stage 2. Let X^ = (c^](o^ ' j and define matrices X. b^ 

x

i + i =
 g l (V G lVV ^ l ( V <2-3> 

Note. With G Q(X) = I, we find G ^ (X) = X m ~ \ We could of course take 

G Q(X) = X m 1 and this is what wo do in our programs. The choice G Q(X) = I 

makes the proof of Theorem 2.1 slightly simpler. 

Before proving convergence of Algorithm 1 we state a basic definition 

and prove a useful Lemma. 

Definition 2.1. Matrix A dominates matrix B if all the eigenvalues of A 

strictly dominate, in modulus, those of B. 

Lemma 2.1. If matrix A dominates matrix B, then lim A n C B n = 0, for any con-
n - > c o 

stant matrix C. 

Proof: For any c > 0, let 

B = PB(e)(JB(e))PB(er\ 

where 
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JB(.) -

B 
e \ B 

and where denotes eigenvalues of B. Then, 

l^ll* l|P,(€)|| IkCe)-1!! (c^ax|xJ)n, (2.4) 

using the infinity norm. 

Letting 

We similarly obtain 

A" 1 = P ,(c)(J ,(«))P .(c)' 1, 
A A - A"' 

llOl * II? .,(•)!! ||P («4tnax|X . | ) n 

A A A" 

= IK,(«)H IIP ,(.)-'II < ^ C T > n -
(2.5) 

Combining equations (2.4) and (2.5) we get 

IK"" CB n|| <: k[(e+maxl XJHK + m j x i)] n 

' A' 
where k, a function of e, is independent of n. 

th 

(2.6) 

When e == 0, the constant to the n u" power is less than one, since 

max)Xgl/minj\A| < 1. By continuity, there exists an e > 0 so that the 

constant is still less than unity and the result follows. 

We now state and prove the convergence theorem for Algorithm 1. Let 

G 00 s (a*)~]G (X), n 1 n 
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M.(X) - [A^^^M.CX) 

be monic matrix polynomials. Then we have 

Theorem 2.1. If M(X) is a matrix polynomial of degree m such that 

(i) it has solvents S,,«..,S , 

(ii) is a dominant solvent« 

(iii) v( si>** #> S
m) a n d V ^ S 2 , * * # , S m ^ a r e nonsingular  

then 

(i) lim G (X) = M-(X) n I 
n - > c o 

(ii) for L sufficiently large, 

lim X. « S ]. 

Proof of part (i). From (2.1) 

G (S.) = S n . (2.7) n 1 1 

By Theorem 1.2 and (2.7) 
m m 

G (X) = ) G (S.)M.(X) = } S?M.(X) f (2.8) 
n i - j n i l ¿ - . 1 1 

i=1 i=l 
and, thus, 

m 

«?• i s i A i a ) - ( 2 - 9 ) 

i=l 

By Theorem 1 . 1 , i s nonsingular. Since is also nonsingular there is 

an N such that for n a N, must be nonsingular, since using Lemma 2,1 and 

(2.9), 
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-. n / 0n A(1) N-1 
lim a (S^j ') = 1 . 

From (2.8), (2.9) and Lemma 2.1, we get, for n ^ 

• ( I (I 
and the conclusion follows by an application of Lemma 2.1. • 

We defer the proof of part (ii) of the Theorem to first obtain some 

lemmas needed in the proof. We assume the hypotheses of Theorem 2.1 hold. 

In Lemma 2.2 we show that every right solvent is a fixed point of ^ (X) 
Li 

for each L. Lemma 2.4 shows that >̂ (X) is defined for all X in some neighbor-
Li 

hood of the dominant solvent. Lemma 2.6 gives the local convergence of the 

second stage of Algorithm 1. Finally, Lemma 2.7 says that stage one will 

yield a point in the locally convergent region (Lemma 2.6) of the dominant 

solvent. Stage one supplies a sufficiently accurate starting value for the 

locally convergent stage two and, hence, the overall algorithm is globally 

convergent. The proof of part (ii) of Theorem 2.1 then immediately follows. 

Lemma 2.2. 4>L(S) = S for all L and any right solvent S. 

Proof. The result follows from (2.7). 
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Lemma 2.3, There exists a nontrivial ball B, centered at , such that for 

all X c B 

(i) ||x-m1 <X> || * K < 1, 

and 

(ii) |Mj(X)|| * 1, j + 1 . 

Proof. A matrix polynomial is a continuous function of its matrix variable. 

The results thus follow from continuity and the facts that Mj(Sj) - I and 

MjCS^ = fl for j / 1. 

It follows from Lemma 2.3 that for all X e B, M 1(X) is nonsingular and 

'K1 ( X ) H * i • HiIm, (x) |i ' 

Lemma 2.4. If X e B, then there exists an L 1 such that <|>L(X) is defined for  

every L ^ L 1. 

Proof. For x 6 B, let 
m 

v (x) =m j(x)m^ 1(x), wL(x) - \ sjLsV(x), 
J-2 

Then, 
m 

g l - i ( x ) - X s - ~ V o ° 

(X) 

S l ' ^ ^ L - l W ) M l W . (2.10) 
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Note that lim W (X) = 0 uniformly for X e B since 

l|Vj(X)|| = ItyjOMjV)!! ^j^rj 

by Lemma 2.3. Thus, I + W L(X) is invertible for large L. By ( 2 . 1 0 ) , 

GL_^(X) is invertible for large L and the result follows. 

Lemma 2.5. If X e B, then 

||sV. (X)S;L|| £ TaL|Mj(X)M^1(X)|| * ( 2 . 1 1 ) 

where 0 <. a < 1 , and T is a constant independent of L and X. 

Proof. The result follows from (2.6), where 

a = max)X |/min|Xc | < 1 for j £ 1. 
s j si 

Lemma 2,6, If X^ e B and L is sufficiently large, then 

lim X. = S,. 
i^oo 1 1 

Proof. Let X e B and L s L' as in Lemma 2.4. Set 

E L(X) = «|>L(X) - S r 

Then, since 

4>L(X) = G L(X)G^ l (X) 

•1 
m \ / m \ 

IMil *5 rV>, 
•'1 / 

it follows that 
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rn m 
E (X) Y S^ _ 1V (X) = Y (S - S J S ^ V ^ X ) . 

j»l J-2 

Let 

Thus, by Lemma 2.5, 

T. _<X) = S L" 1V.(X)S: ( L" 1 ) 

3 9L J J 1 

Choose L large enough so that 
m 
£ ||T j > L(X)|| ̂  F < 1 
J-2 

for all X E B. Then, 

E L(X) 

gives, by (2.11), 

m 
I + Y T, . (X) U j,L 
. J= 2 

m 

m 

" I ( V S l ) T
j ( L ( X ) 

j-2 

||S -S, lira1-1 |k (X) II IN?1 (X) || 
|^ L(X)|| * I — L - J ] 3 1 - F 

j-2 

for all X C B. A matrix polynomial is continuously differentiable. Since 

Mj(SP = 0 for j <f 1, the result 

|H.(X)|| <• t l M J . 

where j / 1, t = sup |JM* CX) ||, follows from the mean value theorem. Finally, 
xeB J 

H^CX)-S 11| £ ca 1" 1 I M T I (2.12) 

for all X C B, where 
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c = aba 
||s -s1 IhrtX 

(l-F)O-K) 

The result follows from (2.12), since 0 ^ a < 1 and L can be taken large 

enough so that ca^ ^ < 1. • 

The preceding lemma gave convergence for the second stage of Algorithm 1 

if XQ e B. The next lemma shows that X^ is in B if the first stage is con­

tinued long enough. 

Lemma 2.7, For L sufficiently large, (a" ') e B. 
m mi 

Proof. Noting that = ^ S ^ A ^ , a proof similar to that in Lemma 2.6 
3=1 yields 

-1 
= S r (2.13) 

The second part of Theorem 2.1 can now be easily proved using these lemmas, 

Proof of Part (ii) of Theorem 2.1. For L sufficiently large, X Q c B by Lemma 

2.7. Lemma 2.6 then shows that lim X^ = . • 

Equation (2.12) reveals the rate of convergence. 

Corollary 2.1. ||<j>L(X) -S 1 || £ ca 1" 1 ||x-S1 || for all X e B, where 0 <; a < 1 . • 

This corollary shows that even though the second stage is only linearly 

convergent, the asymptotic error constant can be made as small as desired by 

increasing the number of iterations of the first stage. The asymptotic error 
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constant for stage one depends on a = maxjX |/min|\ | < 1, while that of 
j 1 

stage two can be significantly faster than stage one. This is the purpose 

of the second stage, for (2.13) shows that stage one can also yield . 

Computational considerations of Algorithm 1, a flow-chart, and an APL 

program may be found in Dennis, Traub, and Weber [71]. 
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3. THE BLOCK BERNOULLI ALGORITHM 

A generalization of Bernoulli's scalar polynomial algorithm may be used 

to calculate a dominant solvent of the matrix polynomial problem. A relation 

between the block Bernoulli algorithm and the first stage of Algorithm 1 is 

established at the end of the Section. 

Algorithm 20 Let X = X_ = ... = X = 0, X = 1 and define matrices X. by — « 0 1 m-2 — m-l l 

X. + A.X. + ... + A X. - = 0. (3.1) 1+1 1 i m i-m+1 -

The general solution to the matrix recursion (3.1) is given by 

Theorem 3.1. If S.,...,S are right solvents of M(X)« such that V(S,,....S ) — I m ' 1 7 m 
is nonsingular« then 

X. - S-V + ... + S 1^ (3.2) i l l m m 

is the general solution to the matrix difference equation (3.1), where 

are matrices determined by the initial conditions. I m rf 

Proof. Substitution of equation (3.2) into equation (3.1) yields 

m m m 
7 A.X. + . + 1 = Y A ) s i + j + 1 a 

3=0 j - o k=l 

m / ra 

• I I v r J j * r 2 J - + \ • s 
k-1 \j-0 

where A Q = I. The nonsingular block Vandermonde insures that can 
1 m 

be uniquely calculated in terms of X Q,X 1 .....X^. If x\ is the general 



-14-

solution to equation (3.1) and = X^ for the first m consecutive sub-
A 

scripts, then X^ = X^ for all i. • 

In the scalar Bernoulli method, if there is a dominant root, then the 

ratio of the Bernoulli iterates converges to the root. This is generalized 

to matrix polynomials by 

Theorem 3.2. If M(X) is a matrix polynomial of degree m such that 

(i) it has solvents S S , 

(ii) is a dominant solvent, 

(iii) V(S],...,Sm) and V(S 2,...,S m) are nonsingular, then 

lim X X"\ = S-. n n-1 1 
n - * o o 

Proof. From Theorem 3.1 we have 

m 
«n X = ; S.a.. n u l l 

i=1 

Combining this with the starting conditions that X Q = X^ 

X - = I we get m-1 ° 

= X = 0 and m-2 = 

I 

S 

.m-T 

m 

m-li 
W sjn 

m-2 
m-1 

Partitioning, we get 
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>-2 

and 

a, + V(S 2,. 

Qm-1 / O 1 1 1 " 1 am~^\ 
S 1 a 1 + ( S 2 " • " S m > 

Combining these equations, we get 

s?" 1 - ( s ™ - 1 , . . . ^ - 1 ) v-\s2„ 

/a2 

• sm> 

/A 

I. 

«1 " 1 

and hence is nonsingular. Now observe that 

where 

Since 

m m -1 

X x " \ 
n n-1 Li=1 / 

m m 
W = V c n c-(n - l ) _ \ Qn -1 -(n-1) 

L S j ^ s i • v n - L s j «jsi 
J-2 J-2 

TT - l 0-(n - l ) A , . w c n - l - l_-(n - l ) _ n lim W S- a, S, v = 0 , lim V S. 3. S. - 0, n 1 1 1 - n I I ' 

the result follows. 
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Note that the theorem could have been made somewhat more general by re­

moving the condition on V(S2*....Sm) and relaxing the initial conditions on 

Xg,...,Xm .j to just insuring being nonsingular. 

The quantity X also converges, but not to S^. See Dennis, Traub, 

and Weber [71, Theorem 6.2]. 

The block Bernoulli iteration (3.1) can also be written as 

X. 

A 

w V m m-1 V \ i (3.3) 

where X is a matrix of order n. Equation (3.3) looks like eigenvector 

/ X i - m + \ 

is not a vector in the usual sense. A theory of 
i-1 

X. 

powering except 

such power methods" is studied in Dennis, Traub, and Weber [71, Chapter 8]. 

We do not pursue this here. 

Consider the same power-like method on the transpose of the matrix in 

equation (3.3). That is, 

i+ 
m 

i+1 
2 
i+1 
1 

0 - A T \ / W 1 

m \ / m 
-A m-1 

w; 

1 \r f 

Multiplying out, the system 
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W i + 1 = - A T WJ m m l 

W i + ; = W 1 - A T w 1 

m-1 m m-1 1 

W 1 - w2 - A 1 w, 

results. Multiply the j t h equation on the left by ( X T ) ^ - 1 and add. The 

result is 

G I + 1 ( X ) = G 1 ( X ) X - (WJ-)TM(X), 

where 

G.(X) = (whV"1 + ... + ( W 1 ) 1 . l I m 

This is precisely stage one of Algorithm 1. These results are generaliza­

tions of what occurs in the scalar case. See Traub [66]. 
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4. NUMERICAL EXAMPLES 

Four numerical examples of Algorithm 1 are given. The first illustrates 

the case where the convergeace theorem applies and the iteration converges. In 

the second example convergence occurs even though hypothesis (iii) of Theorem 

2.1 is violated. In the last two examples hypothesis (ii) is violated and 

Algorithm 1 does not converge. Modifications of Algorithm 1 are discussed. 

Additional numerical examples may be found in Dennis, Traub, and Weber 

Start Stage one with G (X) * X . After five steps of Stage one we have 

[71]. 

Example 4.1. Consider the monic cubic matrix polynomial 

-2.026 
-1.856 7.593, 

3.711 1.715 -9.193 
4.597 12.075 

Stage two then gives 

7.1067 
2.0892 

-2.0179 
7.0195 
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X3 = 
3.9985 
1.0017 

'3.9997 
1.0003 

-2.003V 
7.0035, 

-2.0006 
7.0006, 

and 
3-9999 -2.0001 
.1.0001 7.0001, 

S, - I j is a dominant right solvent of the matrix 

polynomial. 

Example 4.2. Consider the matrix polynomial 

3. 4202̂ 9653' 3 /-11.1*14382802 
M(X) - X + ( IX' 

0.8613037448 -5.556I71983 

41.02912621 
0.5533980583 

-39.65603329 

-20.93481276 
7.332871012 

23.56171983 

It has a solvent, 

s 2 - s 3 

0.6074895978 -3.386962552̂  

The eigenvalues of are 5 and 6, while 

and 

while the eigenvalues of S2 are 1 and 2. Clearly, VCS^S^S^ 
and V(S2,S^) are singular, with L = 6, we get 
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o -1.0231 
6.7783 

3.9215 
1.2464 

and 

-1.0000 

-1.0011 

6.9997 

6.9896 

3.9999 

3.9975 

1.9995 

1.9764 
9 

The convergence is fast, though linear, since the asymptotic error constant 

The corresponding lambda-matrix has latent roots -16,05113, -.4215 and 

-.2637 + 1.8649i. There exist two solvents having these as their eigenvalues, 

but neither can dominate, since there is a complex pair of latent roots whose 

absolute value is between the two other latent roots. Algorithm 1 does not 

converge. A complex shift of the variable in the lambda-matrix can be used 

to break up complex pairs of latent roots. With a shift of i, Algorithm 1 

converges with no difficulties. • 

Example 4.4. Consider the quadratic 

is (.4)6. 

Example 4.3. 
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The corresponding lambda-matrix has latent roots 1,2,3,4 with corresponding 
T T T T latent vectors (1,0) , (0,1) , (1,1) , (1,1) • The problem has 

- • c 

1 2\ /4 0s 

solvents S, =( land S =1 1. M(X) has additional solvents 
3/ 1 \0 2 / 

with eigenvalues 1,2; 1,4 and 2,3. The only pair chosen from 1,2,3,4 which 

cannot be the eigenvalues of a solvent is 3,4. Thus, there is no dominant 

solvent and Algorithm 1 did not converge. 

Reversing the order of matrix coefficients has the effect of making the 

latent roots the reciprocals of the original latent roots. The right solvents 

are the inverses of the original ones. Thus, 1 and ~ are the new dominant 
1 0\ 

latent roots. Algorithm 1 converges to ( ^ ), and, hence, the solvent 
1 0\ \° 2 

is found for the original problem. 
P 2/ 
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