NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A PRODUCTION SYSTEM MONITOR
FOR PARALLEL COMPUTERS .

Charles L. Forgy _
Department of Computer Science
Carnegie~Mellon University
Pittsburgh, Pennsylvania

April, 1977

Abstract: Production systems cannot compete on an equal “basis ‘with conventional
programming languages until the efficiency of their monitors is improved. The process that
finds the true productions on every cycle is most in need of improvement; even in today’s
. small systems this process is often expensive and it is likely to become more expensive if
productions systems:-become larger. There are a number of possible ways to achieve the
greater efficiency, including taking advantage of the slow rate of change of the data base,’
taking advantage of similarities in structure of the antecedent conditions of productions,
expending a minimum of effort on false antecedent conditions, avoiding whenever possible
the operations that are likely to be most time consuming, and making efficient use of
hardware. Since computer power is achieved most ecanomically today through parallelism, no
algorithm can be truly efficient in its use of hardware unless it can be executed in parallel,
A production system monitor has been implemented that responds in a reasonable manner to
both the peculiar nature of the task and the realities of current hardware technology.

This work was rsupported by the Defense Advanced Research’ Projects Agency
(F44620-7:_3—C-0074) and monitored by the Air Force Office of Scientific Research.

I. Introduction

Production systems have generated much interest in the "Artificial Inte!ii'gence_
community in recent years. In just over a decade they have evolved from little more than an
interesting mathematical formalism into tools that have been used to good effect in both
practical [2; 10] and theoretical [3; 9] areas. The successes of these and like endeavors
argue that the use of production systems will continue to spread, but there are problems
that will hinder the spread if they cannot be overcome. One of these problems, the -
comparatively high cost of using production systems is examined in this paper. The concern
here is less with the rather small systems in use today than ‘with the much larger systems
that may soon appear. ' ' S '

Although the four systems cited above are like enough to all be called production
systems, they differ enough to make it unlikely that efficiency can be achieved in the same
manner for all. This paper treats only one kind of production system. It assumes that
production systems are programs whose active part comprises a large number of imperative
statements called productions and whose passive part (i.e,, data part) comprises a smaller
number of assertions called data elements. Data elements are discrete, usually simple symbal
structures (list structures, associative structures, etc.). They are held in working memory,
the single global data base of the system. A production is an ordered pair (LHS, RHS). LHS
is a conditional expression; RHS, an unconditional sequence of actions. The condition
expressed by each LHS in a production system can be interpreted as the description of some
state that working memory may attain. The existence of a producticn is an assertion that
- whenever working memery is such that LHS is true, then the actions in RHS are appropriate.
Each step in the execution of a production system involves choosing one production that is
appropriate to the current state and executing the actions in its RHS. The actions performed
in executing a production cause the state of working memory to change, and a new set of
LHSs will gererally become true after each step. Processing terminates when an
_ unrecognizable state is reached. ' * : o

Production sys'iems lack much of the structure found.in conventional programs.
Conventional {anguages provide statements of various kinds, means to group statements into

2

targer units {(compound statements, etc.), and means to group these inta still larger units
(programs and subprograms). In most languages means are provided for making the
information in one subprogram either completely unavailable or available- only with difficulty
to the other subprograms. In contrast, if the programmer wishes to incorporate such
structures into a production system, he must create the means himselt.] In a production
system all productions bear the same relation to the system as a whole and all have access
to the whole of working memory.

An interpreter for production systems is called a moniter. The name recognrize-act
cycle has been given to the control cycle of production system monitors. The details of the
recognize-act cycle are most easily discussed if it is assumed that there are three distinct
phases to the eycle, mateh, conflict resolution, and action. In match the monitor computes
the conflict set, the set of all productions with true LHSs. In conflict resolution it applies one
or more conflict resolution rules 1o eliminate . all but one from the set: Finally in action it
executes the actions in the remaining production’s RHS. Within the monitor there is often
only a single process for the two phases of match and conflict resolution. When the conflict
resolution rules are simple, a single process that attends simultaneously to the needs of both
phases can usually select the production to execute without computing the entire conflict set.
Unfortunately, the two phases cannot always be performed simultaneously; some of the more
useful conflict resclution rules cannot reasonably be applied unless the entire conflict set is
available to be examined [6] Thus there are two types of monitors in use, those with three
distinct processes for the three phases of match, conflict resolution and action, and those
with one process for action and another process that combines match and conflict resolution.

All four of these processes (action is the same in both types of monitors) must be
considered in the design of algorithms for monitors, but they do not merit like amounts of
effort. The malch is expensive to perform even with today's small production systems and is
likely to become more expensive if production systems grow larger. Conflict resolution and
match together are also expensive now and likely to become more expensive. Conflict
resolution alone may be expensive if the rules used are complex or if the size of the conflict
set is large, but it is hard to justify a study of conflict resolution. Conflict resolution involves
little more than the already extensively studied process of sorting (of the conflict set).
Action will probably never be expensive to perform because production systems encourage a
style of programming in which only a few simple actions are performed on any one cycle.
Thus, most of the effort of a study should be directed toward the pr0cesses for match alone
and for match and conflict resolutIOn together.

These consideraiions shape the discussion in this paper. The primary focus of the
paper is on increased sophistication in the algorithms for performing the match, with the
intent of making the algorithms more responsive to the peculiar nature of the task. The

1 This is not a weakness of production systems. Many of their advantages, including
extensibility and modifiability, arise because so much of the structure that is implicit in
conventional programs is made explicit and brought out into the Open in production
systems.

3 .

secondary focus is on efficient use of hardware. One of the realities of current hardware
technology is that a problem may be solved more economically on many small computers than
on one larger computer of comparable power -- provided the power of the multiple small
computers can be applied efficiently.

1.2. Introduction to OPS

The examples in this paper use OPS [4], a production system implemented using the
techniques to be presented here. Since OPS is new and not widely known, an overview of
the language is in order. : '

OPS is embedded in L%, a list processing system, and all structures within ops;_'
including both data elements and productions, are list stryctures. An OPS ptoduction has the
form : .

PNAME (CEl Ce2 ... CEm --> AEl AE2 AEn).

where PNAME is the name of the production, the CEi, which constitute the LHS, are condition
elements, and the AEi, which constitute the RHS, are action elements. There are many kinds
of actions, but only two, those that add new elements to and those that delete old elements
from working memory, are of interest here.Z Condition elements are patterns to be
instantiated by data elements from working memory. A data element may instantiate a
“condition element if the two are EQUAL (the Lisp function) constants, if the condition element
is a variable that can be bound to the data element, or if the corresponding subelements of
‘each match according to this rule. A variable, which is distinguished from a constant by

being preceded by =", may be bound to any single condition subelement. If a variable
- occurs multiple times within an LHS, all occurrences must receive EQUAL bmdmgs Thus, the

- condition element,

(Q 19 =X =X),

_ ' whach contains two constants, Q and 19, and two occurrences of the variable X, woufd match
‘ the data elements :

- {Q19 A A),
- (Q 19 (A) (A)), and -
(Q 1919 19),

but not

2 It is sufficient to restrict attentlon in th1s discussion of monitors to Just these two actions.
Any action that transforms working memory can be constructed from these two. An

existing data element may be modified, for example, by deleting the old form of the
element and adding the new.

(QI9 AAA),
- (Q 19 A (A)),

(QA A A)oor

(19Q A A)

A condltlon element may be negated by preceding it with "~". An LHS is satisfied
when all its non-negated condition elements and none of its negated condition elements are
instantiated. If negated and non-negated condition elements have variables in common,
whether the negated condition elements can be instantiated will often depend on the bindings
of the shared variables. For example, the production '

PO ((A =X) - (B =X) = {C =X) --> ...)
has only one legal instantiation (the one binding X to 2) when working memory contains

{A 1),
(A 2),
(A 3), ,
- {B 1), and
{C 3)

Lest this brief introduction give a false impression of the power of OPS and, by
association, the power of the methods used in its implementation, it should be noted that the
introduction has omitted most features of OPS entirely and presented the rest in their
simplest forms, OPS Is actually a powerful and flexible production system.

1L The Match: A Model

Figure .l shows ‘a sample production, P1, a small working memory, WMI, and the data
from WM1 matched by Pl (the symbol ":" is read "matches™). In this section the question of
how the monitor might find this instantiation of P1 is considered. One answer to the question’
is given. In the next subsection a broad class of match routines, which we call the
discriminating matches, is described. Then in subsection 'IL3 a simple model of the
discriminating matches is developed. This model will be of use in the discussion in the rest of
the paper. ' '

P1 ({=X) (A =X) (=X B =X) > .)
WMIL ((A 1) (A2)(A3){A B) (1) @) (P)(123){(1B2)(1 B 1))
La()ALn{aB1))

Figure 1. Insiantiation of P1.

11.2. Discriminating Matches

Perhaps the most widely used match routine is the one that we will call the basic
match. The basic match instantiates LHSs one at a time. Beginning with the leftmost
condition element of an {HS it tests dala elements one a! a time until it finds a legal
instantiation for the condition element. Then one by one, the remaining condition elements
. are instantiated in a similar fashion. Since variables are bound as the match proceeds, the
condition elements become progressively more difficult to instantiate. When unable to
instantiate some condition element, the basic match backs up-and attempts to re-instantiate
the previous condition element. If it succeeds in finding an instantiation for the entire LHS, it
reports that fact and then, since it must find all instantiations, attempts to re-instantiste the
last condition element. Exhausting the possible instantiations for the first condition element
terminates processing of the LHS. In short, the basic match searches depth first through a
space of possible partial :nstanhahons for each LHS.

After making a move in the space, the basic match performs a number of tests and
will abandon the point just reached if any one of the tests fails. This, the importance it
ascribes to the failure of a test, marks it as belonging to the class of d;scrlmmahng matches
The discriminating matches include all match routines that:

1. Determine from an LHS the characternshcs reqwred of .any data
matching the LHS.
2. Propose trial instantiations for the LHS :
3. Apply tests based on the characteristics for the purpose of showmg
the proposed instantiations illegal.
4. Find a proposed instantiation 1o be legal by wrtue of its not havmg
failed any test.

Precisely what forms these characteristics can take depends, of course, on the Ianguage
implemented. Typical characteristics are shown in Figure 2, which again shows praoduction P1
and the data from WM1 matched by Pl. This time the data are labeled with the

characteristics that a monitor for OPS would have to check to show the legality of the
mstanttahon

P1 ((=X) (A =X} (=X B =X) -->..)

EQUAL

EQUAL |EQUAL

Pla((L)(AL}(1BIL))

onstant "B"

Length 3

Constant "A"

. Length 2

| length 1

Figure 2. Characteristics of instantiations of P1.

) The importance ascribed to the failure of tests by discriminating matches makes them
inappropriate for showing the legality of LHSs that contain negated condition elements. In
the simple discrim'inating_match, the failure of a single test is taken as proof that a trial
instantiation is illegal. If an LHS contains negated condition elements, however, failure of
some tests s not only acceptable, but required. Such LHSs are generally dealt with not by
extending a discriminating match in some way, but by combining several’ discriminating
matches. As an example, consider what the basic match would do in finding ‘an instantiation
for the production ‘ c : ‘ ' '

P2 ((A) (B =X) (A =X) -->..)
when working memory contains

(A),
(B 1}, and
(A A).

. : ' 7
It would find the instantiations for the two non-negated condition elements as before. It
would then use the same techniques in an attempt to instantiate the negated condition
element; in this it would fail, and by this local failure, succeed in its main task of instantiating
the LHS. 1f there were other negated condition elements, the techniques would again be
used. In general, an LHS with N negated condition elements requires N+l discriminating

matches, and Iegallty of an instantiation is proven by success of the farst and failure of the
remalnmg N.

Even if the special needs of negated condition elements are ignored, the class of
discriminating matches fails to be inclusive. Match routines falling properly outside this class
include unification algorithms, which cannot make the distinction between patterns and data
required by discriminating matches, and the abstracting match in Newell, Shaw, and Simon [8],
whose basic operations remove rather than test for differences between patterns and data.
Nevertheless, the class is large enough to be interesting, and the discussion in this paper is
limited to the discrlmmatmg matches.

11.3. The Model

‘Discriminating matches differ from one another in the order in which they test
characteristics, the number of LHSs instantiated at one time, the criteria by which thay
decide when to give up, the forms taken by their intermediate results, ete. Some of these
will be discussed later in the paper, and others will be ignored. The mode! presented here
- will aid in focusing attention on the things of interest. '

The primary difference to be hidden is the representation chosen for the
intermediate results of the match process. While the objects processed by one match routine
may differ greatly from those processed by another, they will have one important similarity:
they will both contain some information found in the attempt to instantiate one or more LHSs.
Any intermediate result can be equated with the set of fully specified instantiations to which
it can be extended. The object that represented the intermediate result then, in a sense,
describes a set. This object will be called a set description. (This will sometimes be
shortened to just set or description.) The operatlons performed by the match then become
operations on sets, :

Match predicates allow a time independent statement of the processing of sets
needed to perform the match. A match predicate is a truth valued function on (descriptions
of) sets. Predicates are in a2 one-one correspondence with the characteristics used by
discriminating matches, and a predicate has value true when applied to a set if all elements of
the set possess the predicate’s characteristic. The responsibility of the match is to compute
for each LHS the subset of mstant:atlons that make the LHS's predncates true.

Filters allow expressing the order in which (partlcular) match routines evaluate match
predicates. A filter is a function from descriptions of sets to descriptions of sets. Filters are -
in a ohe-one correspondence with predicates, and the result of a filter applied to a set is the

8 s

subset that makes the filter’s predicate true. Sequential execution of filters is indicated By
composition of the filters. If the symbol @ is used to denote composition of functions, and
the usual convention of right to left execution is followed, the expression

F2eF1(S)

indicates that filter F1 is applied to the set S and then F2 applied to the value produced by
F1. To model purely sequential match routines requires only one more piece of machinery, a
function to generate the initial set descriptions. This function, i, maps from working memory
to the sets of all possible matches. For example, one match for an LHS with five
characteristics to be checked, and thus five filters, say, Fa, Fb, Fc, Fd, and Fe, to be
processed, would be

Fe@Fd@Fcer_@Faen.

' Parallel® execution of filters is modeled by mtersectlon of composed sequences - One
possible parallel match for the same LHS is

(FeeFben) n (FdeFceFaen),

which indicates the sequence Fb-Fe is to be execuited in parallel with the sequence Fa-Fe¢-Fd,
and the results of the two sequences intersected to provide the final result.

Sets, match predicates, and sequences of filters constitute ihe model. Of course, this
mode! hides features in addition to the already mentioned representation of intermediate
results. Depending on the representation chosen, the number. of LHSs .in the system, the
number of elements in worklng memory, the c0mplex1ty or simplicity of n, etc,, the match may
have to process many sets. The malch may choose to order this processing in any of a
number of ways, from processing all sets in parallel to processing each to completion
individually. The model does not represent this choice. Neither does it try to represent the
modifications to set descriptions that occur as the match progresses. A more general model
would include functions that map from set descriptions to more fully specified set
descriptions. These functions would occur along with filters in the compositions of functions
that define match routines. For the purposes of this paper it will be sufficient to assume
‘that set descriptions are modified by filters. When a filter processes a set whose description
it finds in some way inadequate, it creates a new description for the set.

In summary, the model is concerned. with timé. Match predicates make possible a time
independent statement of the responsibility of routines: to compute the conflict set, a match
routine must find the instantiations that make each LHS’s match predicates true. Time

3 Parallel is used in a weak sense to indicate only that there is no [oglcal dependency
between the filters and that they could therefore execute in parallel. Conceivably, a-
monitor could be such that parallel execution is not used, and yet the model of its match
for some LHSs would show parallel execution of filters.

9

~ dependence of one kind, the order in which particular match routines perform each
necessary test, is modeled by compositions of functions. Time dependence of another kind,
the relative order in which sets are processed, is ignored by the m_odel.

III. Issues

Some characteristics of production systems that affect the efficiency of monitors are
discussed in this section. Suggestions are given as to how monitors should respond to the
~ characteristics. No attempt is made to evaluate the relative importance of the characteristics.
Because the relative importance varies with factors such as the number of productions in the
system, the complexity of the LHSs, and the number of elements in working memory, such an
attempt would be futile. Many of the characteristics have received attention elsewhere; see,
for example, McDermott, Newell, and Moore [7] and Hayes-Roth and Mostow [5]. '

I11.2. Selectivity of Fillers
In a compesition of filters like ' .
_ F5eF4eF3eF26F 1on S

the first filter will process every set in existence, the second will process only those passed
by the first, the third only those passed by both the first and second, and so on. If there
are N sels to be processed and the probability that filter Fj will pass any given set is Pj, the
expected number of filter evaluations is '

N(1 + P1 + PIP2 + P1P2P3 + P1F52P3i54)'
= N(1 + PI(1 + P2(1 + P3(1 + P4)))).

Other compositions will result in expressions with similar form but with the positions of the
Pi’s interchanged. The above will have the minimum value of all the expressions if

P1<P2<P3<P4<PS.

Hence, if the filters are ordered by their selectivity, most selective first, the number of
required filter evaluations is minimized.)

Unfortunately, expected total cost of filter evaluation, which is a more realistic
measure than expected number of filter evaluations, is not so easily minimized. An
expression similar to the above, but iné_orporating factors for cost of filter evaluation is easy
to construct. Without some. knowledge of the relative costs and of the Pi’s, however, little
information can be extracted from the expression, '

10
" HI1.3. Structural Similarity

Because a production can perform only a limited amount of processing, most tasks will
require more than one production. The productions for each task will certainly have much
commonality of structure. There will be LHSs containing identical condition elements,
condition elements containing identical subelements, condition elements with identical lengths,
and LHSs containing similar patterns of variable occurrences. Whichever of these forms it
takes, commonality of structure has only one effect on the -match: it causes multiple
occurrences of match predicates. If there exist two filters based on the same match
predicate and always processing the same input sets, the two will always produce the same
results, and the two filters will be completely equivalent. The match would do well to avoid
the evaluation of more than one of a group of equivalent filters.

A match routine needs two abilities to take full advantage of muitiply occurring match
 predicates. The ability to recognize equivalence of filters is basic, but not in itself sufficient.
Also needed is the ability to bring about equivalence. Since equivalence of filters depends
on the filters’ inputs as well as on their predicates, a rearrangement of the filters for the
LHSs of two productions will sometimes cause nearly equivalent filters to become fully
equivalent. For example, even though there are three pairs of filters performing identical
tests in the following two sequences: :

FaeFbeFceFden
FaeFbeFcen

none of the fi[ter_s_ are erqui\lfaient. Rearrahging t.he _first sequence to
Fa@Fb@FdQFcen
makes the fi!te'rs_of one péir equivalent. -Again ;ear-rangin”g to
| FdeFaer\sF;@n

makes the filters of ail three pairs equivalent.

111.4. Temporal Redundancy

One philosophy of production system. use holds that working memories should be
small. Even when this philosophy is followed and working memory is kept small in an
absolute sense, it will almost certainly be large relative to the number of actions in a typical
RHS. When the philosophy is. not followed, working memory may be orders of magnitude
targer. Thus the number of elements changed on any cycle will be small compared to the
number left unchanged, and the match routine will find it advantageous te process only the
‘changed elements. If it has retained the information (ie, the set descriptions) from the -
previous cycle, this is possible. To revise the information from the previous cycle it need

+

11

only delete from the sets all references to the elements that were just deleted from working
memory and add, where appropriate, references to the elements that were just added.

I11.5. Match Predicate Semantics
The three oécurrences of the variable X in the producti‘on
P3 (=X (=X =X} --> ..}

make possible six match predicates concerned with equality of variable bindings: those
requiring equal bindings for the first and second, the first and third, the second and third, the
third and second, the third and first, and the second and first occurrences of X. The match
need not use all six. Because EQUAL is a commutative, transitive -relation, any group of
predicates that together mention all three occurrences of X captures the semantics of all six
predicates. This is only one example of the fact that most LHSs admit of more than one
formulation for their match. Certainly, some formulations will be preferable to others; some
will include fewer predicates; some, predicates that are less expensive to evaluate; and some,
predicates that are more likely to occur in other LHSs. Strangely, many match routines
ignore these differences and choose formulations at random. For. example, in processing P3
the basic match would use the predicates requiring equal bindings for the first and second
and the first and third occurrences of X. Section IIL7 will explain why this is not the best
choice,

I11.6. Independence of Predicates

The last section pointed out that the match can take édvantage of redundant
predicates. It seems reasonable also fo try to take advantage of nearly redundant
' predicates, that is, of those predicates whose truth is usually, but not always, implied by that
of others. Such predicates typically arise from the use of non-minimal encodings in .the
condition elements. For example, if the constant "ISA" appears as the first subelement of a
condition element, the probability is high that the condition element will have three
subelements. An appropriate response to the existence of nearly redundant predicates is to
process the filters based on those predicates first. This order is justified by the principle of
section 111.2; if one predicate is seldom true unless all of another group of predicates is true,
the filter for that predicate will be almost as selective by itself as the collection of all filters
for the other predicates. It will therefore probably be the most selective of the filters.

I1.7. Entropy of Set Descriptions

When a set is tested by a filter or intersected with another set, energy is expended
and information is created. If this information is not to be lost, it must be encoded in the
descriptions of any sets that resuit from the processing. The descriptions of the resulting

12

sets, containing as they do both the information created during the processing and the
information encoded in the descriptions of the original sets, represent the elements of the
sets more precisely than did the descriplions of the original sets. Sometimes innocuous, this
increase in specificity can at other times make more work for the later stages of the match.
When the result of the increase is to make a sel’s description so precise that it is incapable
of covering all elements of the set, the set must be split into several smaller sets whose
descriptions are of like specificity, but whose contenls can be covered by a single
description. The new setls, though smaller than the original set, take individually as much
effort to process on the succeeding steps as the original set would have taken if it could
have been processed as a whole.

Filters decrease something besides the ability of descriptions to cover many
elements. Before the first step, sets are large and descriptions imprecise. As the match
proceeds, elements are eliminated, set descriptions become more precise, and the number of
elements to be covered decreases at the same time that the covering power of descriptions
decreases. The two effects often counteract one another. It becomes necessary to split sets
into smaller sets only when the ability of set descriptions to cover elements decreases faster
than the number of elements to be covered, :

It can be shown that only one type of filter can make necessary the splitting of sets,
but to do so directly without appealing to a particular representation is difficult. To argue
about the effect of the splitting on the total effort of the match is less difficult, and that path
is taken here. Because their condition elements can be processed individually, LHSs with no
variables common to multiple condition elements require effort directly proportional to the
number of condition elements that they contain. Some LHSs witk variables common to
muitiple condition elements require effert that is an exponential function of the number of
condition elements. Examples of these are LHSs that solve NP-complete problems such as the
K-clique problem {1] by recognition. Thus, the efficiency of the match is greatly atfected by
(some) filters that test for equality of bindings to variables. -

The monitor can eliminate some of these filters and can take steps to lessen the
impact on efficiency of the rest. When there exist alternative formulations of the match (see
section II1.5), the monitor can chose the formulation that results in the fewest such filters.
Those it cannot eliminate can be delayed until late in the match; the reduction in number of
candidate instantiations brought about by the earlier filters will then minimize the; number of
highly specified sets these filters must produce.

The mistake made by the simple match routine in section IIL5 can now be explained.
It chose to use the predicates requiring equal bindings for the first and second and first and
third occurrences of X. Since the second and third occurrences are within the same condition
element, a better choice would have been to use the predicates requnrmg equal bindings for
the first and second and second and third occurrences. :

13
. I11.8. Context of Filters

The final observation to be made here is that filters do not work in isolation. The set
of filters that work together to perform the match for an LHS (ie., the set that belong to cne
composed sequence) will be called a context. In the parallel match examp?e-ysed earlier,

(FesFben) n (FdeFceFaen),

alt five filters belong o the same context. Filters that are shared in response to structural
similarity ‘may belong to many contexts. Certainly, if the fillers of a context are to work
together, they must communicate some information among themselves. The minimum to
communicate is the descriptions of the sets passing the tests at each filter. But to
communicate onfy the minimum makes the match less efficient than it could be. For example,
if one filter shows an LHS to be unsatisfiable and if it communicates that fact to the other
filters in the same context, those filters can cease to process their sets. Any results they
might produce while the LHS is unsatisfiable would be of no use. When the first filter -
determines that changes to working memory have made the LHS possibly satisfiable again
and communicates that fact to the other filters, they can resume work, Nothing will have
been lost by this, but some unnecessary filter evaluations will have been avoided.

There is an interaction between this use of cortext and temporal redundancy. If the
monitor takes advantage of temporal redundancy and saves the results of all computations,
there is a likelihood that there will eventually be a need for the results of any cémputatiOn.
The importance of context is thus lessened. But because data elements eventlally leave
working memory, it is not completely eliminated. If a filter is inactive for a long period, an
element can enter working memory, remain for a time, and then leave, all within the period of
inactivity of the filter. - '

IV. The Rete Match

The match routine to be described here, the rete match, makes use of a process that
can reasonably be called compilation of productions. Before beginning interpretation of a
production system, the monitor compiles the LHSs of the system into a program to perform
the match for that one production system. - Since the compiler builds into the program all
information from the LHSs neéc_ied to perform the 'match, the LHSs need never be examined
again. . ’ :

The bulk of this section is devoted to a description of the programs built by the LHS
compiler. Particular attention is paid to the response of the rete match to the issues of the
last section. Since ordinary compiling techniques are quite sufficient, there will be no
discussion of the LHS compiler. | 7

14
IV.2. Basic Organization

The programs constructed by the LHS compiler are based on the data flow model. A.
. data flow program takes.the form of a graph structure in which the nodes are procedures
and the. edges communication paths. Entities called tokens flow through the graph
communicating both data and control between nodes. A node, normally inactive, becomes
active upon the arrival of a token on one of its inputs, performs some computation, and when
the computation is completed, becomes inactive again. If the node has results to communicate
to other nodes it creates tokens to hold the results and sends the tokens out along the
appropriate edges. If an attempt is made to send a token to a node that is unable to accept
‘the token immediately, the token will be -queued by the edge carrying it until the node is
ready. A data flow program interacts with' its environment by sendmg tokens to and -
receiving tokens from the enwronment

This descriptlon of data flow programs in general is a correct it superficial,
description of the programs constructed by the LHS compiler. As will become apparent when
the rete match is described in more detail, the nature of the task has made it worthwhile to
deviate from the data flow model in a few particulars, :

Even at this level of detail, the program is somewhat constrained by the nature of the
task. The nodes, or at least some of the nodes, will contam filters ~- perhaps one per node,
perhaps several per node. The tokens passed between nodes will contaln set descriptions.
The nodes receiving input from the environment will be those contam:ng the first level of
filters, and will receive tokens whose set ‘descriptions are of sets of all candidate
instantiations. The nodes giving outputs to the environment will be those containing the last
leve! of filters, and will output tokens whose set descriptions are of sets of fully verified
mstanhatlons ' : :

The program that the OPS LHS compiler would construct for production Pl is shown
in Figure 3. If the reader assumes for the moment that the tokens are simply warking
memory elements and lists of working memory elements, he can see how the match would
proceed. Assume the elements in WMI1 are depesited into an initially emply working memory.
Tokens representing ali ten elements will be sent to each of the three nodes at the bottom of
the graph. Each node will produce one output token for each input passed by the filter at
that node. The output tokens will be identical to the input tokens. The output of the node
testing "Length 3" will be tokens representing T : :

{12 3),
{! B 2), and
(1B1).

These are sent to the node testing "Constant *B’-Position 2", which examines the second
subelement (this is the meaning of "Position 2") of the datum of the tokens and produces one
output for each that has a "B" in this position. The outputs of this node will be tokens
representing ' '

15
[P1]

Variable
Position 1,1; Position 1

Variable Variable
Paosition 1; Position 2 Position 1
Position 3
Constant "A" Constant "B"
Position 1 Position 2
Length 1 Length 2 Length 3

Figure 3. Match routine for P].

{1 B2)and
_ {1B1)

These are sent to the node testing "Variable-Position 1-Position 3" "Position 1" and
"Position 3" indicate that the first and third subelements are to be tested. This node tests

for equality of the subelements Ain these two positions. The node produces only one output,
a token representing :

(1B1).
The node to which this token is sent, "Variable-Position '1,1;Position 1", differs from
the previous three nodes in that there are two edges leading into it. At the right input it
receives the token whose processing has just been described,

(1B

At the other input it will receive two tokens,

16

({1)(A 1)) and
((3)(A3))

The process by which these two tokens arrive at the left input is identical to that in the part
of the graph being described. The node compares the first subelement of the first data
element of each token on the left (i.e., "Position 1,1") with the first subelement of the data
elements of each token on the right ("Position 1), There are two pairs of tokens compared
in this example. Only one pair has equal subelements ‘and passes the test,

~({(1Y(A1))and (1 B 1) ‘
j
By appending the data of the left token to the data of the right token, the node buﬂds a
single token to represent the pair. The data of the new token is

(A1 BL)).
There are no nodes to which the token can be sent.

Because there are no more filters to evaluate, any token output by this node is a
legal instantiation for production P1. The association between Pl and the node is shown in
Figure 3 by placing Pl in brackets above the node. {In the programs actually constructed by
the OPS LHS compiler, the information that a given node is the last node for some. production
is stored in the node itself.) Whenever this node creates a token to output, it informs the
processes for conflict resolution that the data of the token is a legal instartiation for PI.
The processes for conflict resolution must then modify the conflict set accordingly. '

IV.3. Parallelism

There is much potential for parallel execution within the rete match. Every token in
the graph represents a potential locus of control that can be processed independently of (in
parallel with) the other loci. When a node is activated by the arrival of a token, the
processing it undertakes involves the data from that token and possibly other data already
stored in the node, but nothing from elsewhere in the graph. Any activity at the other nodes
in the net, including the creation or destruction of other tokens, is of no concern te this node.
The only limit to the parallelism, other than the physical limit imposed by the machine on
which the program is run, is that a node can process only one token at a time. -

There is potential for parallel execution even in the processing of a single LHS. As
can be seen in Figure '3, the processing for each condition element is kept independent of
that for the other condition elements as long as possible. In OPS, the only dependencies
between condition elements are those arising because the condition elements have variables
in common. The filters concerned with the bindings to these variables are processed last.
Logically, since the nodes containing: these filters combine the results of other filters
processed in parallel, these nodes must also perform set intersections. In fact, the

17

intersections, and thus the parallelism, are free, a side effect'of‘the_ evaluation of this kind of
filter on the sel representations used. :

The rete match will support even greater degreés of parallelism, though at some cost.
Any sequence of nodes in a graph may be split into two or more parallel sequences if other
nodes are provided to intersect the results of the several paths. The cost of the additional
parallelism is the cost of the intersection nodes, the space they occupy and the time required
for their execution. : '

IV.4. Number of Input‘s ‘

Nodes with any number of inputs are possible, but OPS makes use only of nodes with
one input and with two inputs. The subgraph that performs the match for any one LHS takes
the form of a tree rooted at the last node. Although it is impossible to build non-degenerate
trees using nodes of one input only, it is possible o build the equivalent {in some sense) of

any tree using both nodes of one input and nodes of two inputs. Nodes with higher numbers .

of inputs can be simulated by grouping several nodes with two inputs. For example, a node
with three inputs can be simulated by two nodes with two inputs; a node with four inputs by

~ three nodes with two inputs. Thus, OPS is not restricted in having only two kinds of nodes.

Nodes with one input are called gpg-i» ni2t oodes; nodes with two inputs, twg-ienpt pofes

~The number of inputs that a node should have depends on its function. Nodes that
perform set intersection must have two inputs (or more) to get the sets to intersect. Al
other nodes need only one input. As noted in the previous subsection, some nodes perform
implicit sel intersections. These must have two inputs just as the nodes that perform explicit
intersections must. : ' '

IV.5. Ordering Filters

Ordering of filters, which Section 1lI showed essential to efficiency in the match, is

~ almost completely unconstrained in the rete match. Since compilation is performed only once,

the compiler can spend much time choosing a reasonable ordering. It has complete freedom

-in effecting the chosen ordering; it can put filters in different nodes and order by linking the

nodes appropriately, or it can put filters in the same node and order by specifying the node
appropriately. Generally, it will use a combination of the two methods. '

iV.S. Temporal Redundancy

The rete match occupies an exireme point on the store/recompute spectrum, choosing
to store everything and recompute nothing. Al the beginning of each cycle, the processes
that maintain working memory inform the process for the match of all changes made to
working memory on the previous cycle (by inputting tokens representing the changed

s

18

elements to the first level of nodes). The match processes map from these changes to
changes in the set descriptions retained from the previous cycle -and from there to changes
in the conflict set. They then inform conflict resolution of the changes in'the conflict set and
rely on conflict resolution to make the changes. '

The space required to store the sets from cycle to cycle is not excessive; only
two-input nodes store information. A one-input node need save no state from one cycle to -
the next because the tests it performs are independent of the history of the node. Whether
a given token will pass the tests at a one-input node depends only on the contents of the
token. Whether a token -will pass the tests at a two-input node depends on both the
contents of that token and the contents of the tokens that arrived earlier on the node’s other
input. Consider again the example program in Figure 3. Recall that the final node received
two inputs on the left, ' o ' B '

((1)(A 1)) and W
((3)(A3)) o @

and one input on the right,
asn. |)

Suppose these had arrived in the order, (1) -- (3) -- (2). When (1) arrived there would be
nothing from the other side with which it could be compared. The token would have to be
stored until something arrived. When (3) arrived it could be compared with (1). The tests
would succeed and an output token would be produced.” When (2) arrived it could be
compared with (3). Since the tests would fail, no output would be produced. This token
would then be stored away to await the arrival of other tokens on the right input. The
- processing of a two-input node can be described more formally. When processing a newly
arrived token, a two-input node intersects the set of the new token with the sets of all
tokens that arrived earlier on the other input. It produces one output for each resulting set
that passes all the filters at the node. It then stores away the new token so that’ the set of
the token may be intersected with the sets of tokens that arrive later on the other input.
The token must be stored as long as it remains valid. g

- When an element leaves working memory, all sets depending on that element for their
* validity must be deleted from the node memories. The match finds and deletes these sets
using methods that differ iny'slightly from the methods used in generating the sets: initially.
When an element is deleted from working. memory, tokens are created and input to the’
bottom of the net as before. This time, however, the tokens are tagged as representing an
‘outgoing working memory element. These tokens pass through the graph as before, moving
along the same arcs, activating the same nodes, and causing the nodes to produce outputs
that are, with one exception, identical to earlier outputs. The exception is that all outputs
are tagged, as the initial tokens were, as resulting from the processing of an outgoing
working memory element. When a node with an input memory processes a token with such a
tag, instead of storing the token in its memory, it deletes from the memory a token that is

| 19
identical except for the tag (i.e., the token stored when the element entered working
memory). When conflict resolution receives a token with such a tag, it understands the token
to mean that an LHS has just become false and modifies the conflict set accordingly. The
final result of processing the tagged tokens is to delete from the node memories all sets
made invalid (and from the conflict set all productions whose LHSs became false} without
examining any node memories unnecessarily.’

' Adds and delet_eé afé processed simultaneously in the rete match. The processing of
one does hot interfere with the processing of the other. ‘

IV.7. Structural Similarity ‘ | i .

The rESpbnse of discriminating matches in general to structu-ral similarity is to share
filters; the response of the réte match in particular is to share nodes. Sharing of nodes is
. effected through the use of multiple output edges. When a node has two or more edges
outgoing, the work of both that node and all its predecessor nodes is shared. Figure 4
shows how the graph of Figure 3 would be modified to allow processing of the production

" PA((=Y)(B =Y =Y) -)

This production, with condition elements nearly identical to those of P1, shares six of its
seven nodes with P1. One of the nodes shared is a variable node -- even though the names
of the variables in P1 and P4 differ. As it should be, the OPS LHS compiler is insensitive to
the renaming of bound variables. : : '

IV.s. Co'ntéxt

The rete match can be quite responsive to context. Since there are explicit links (the
edges in the graph) between nodes in the same context, communication between the nodes
- presents no difficulties. This section examines the questions of what types of information
should be communicated and how a node is to determine that it has some information of value
to the other nodes. Only the common use of context is considered: allowing one node to
inform the others that it has shown the LHSs to be unsatisfiable and that they may therefore
suspend processing. ' ‘

_ An agreement about dil;ecfions within the graph will be of use in the discussion of
context. The following discussion will assume the conventions that the direction in which
tokens travel is up and that the inputs of a two-input node are left and right. '

The use of tokens, which communicate control as well as data between nodes, gives
the match already described some sensitivity to context. If a token moving upward reaches a -
node that has shown the LHSs above to be unsatisfiable, the node will produce no output,
and processing of the set represented by the token will be suspended. For example,

20

| Pa)

Variable
Position 1; Position 1

(P1]

Variable
Position 1,1; Position 1

Variable : Variable
Paosition 1; Position 2 Position 1
Position 3
Constant "A" Constant "B"
Position 1 Position 2
Length 1 Length 2 Length 3

Figure 4. Match routine for Pl and P4.

suppose the token reaches a two-input node that has nothing in the memory of the other
side. For most types of two-input nodes this guarantees that the tests will fail if performed.
If this node is one of those, it will produce no output at that time. Later, if a set arrives on
the other input and if the tests at the node are all successful, a token will be output and
processing wﬂ! resume. In effect, each node helps to determine the context of its successor
nodes '

The sensitivity to context provided by the use of tokens is limited by their ability to

pass control upward only. Certainly, if nodes can pass control upward only, each node can
 control only those nodes lying directly above itself. If nodes could pass control both up and
down, a control signal originating at any node in a context could propagate to every other

21

node in the context. Thus a full sensitivity to context requires extensions to the already
described mechanisms. :

One typical extension requires that the communication paths (the edges in the graph)

be made bidirectional and two bits of state be added to each node. The two bits of state
 allow four states for each node, passive, full active, left active, and right active. A passive
node accepts no inputs; it relies on the edges leading into the node to queue all arriving
tokens. A full active node accepts and processes all inputs, A left active node accepts and
processes only the tokens arriving on its left input; a right active, only those arriving on its
right. Nodes with associated productions are always in one of the active states. All other
nodes are passive until made aclive by one or more of their immediate successors. A full
active node signals b.ot'h its predecessor nodes to become active, a left. active signals its left
predecessor, and a right active signals its right predecessor. A node signaled to become
active chooses for itself which of the three active states to assume. A one-input node has
no choice; all active states are equivalent for one-input nodes. A two-input node makes its
choice based on the current state of its input memories. A node with at least one taken in
each of its memories becomes full active. A node with tokens only ‘in the left memory
becomes right active. A node with tokens only in the right memory becomes left active. A
node with no tokens in either memory can be either left or right active -- it does nat matter
which. Nodes are sensitive to the arrival of new control signals just as they are sensitive to
the arrival of tokens. When a contro! signal arrives, the nodes awakens, examines the sighal
and the contents of its memories, and if necessary, changes state, -

A change in state may result in the node’s initiating further activity. If it makes one
(or both) of its inputs active, it will process any tokens that have been queued on the input.
In addition, it will send a signal to the node below that input telling it to become active. If it
‘makes one of its inpute passive, it will send a signal to the node below telling it to become
passive, ' :

Using a2 very conservative definition of unsatisfiability, these rules try to maintain a
single active path from each nede associated with an unsatisfiable production to the first
tevel of nodes. The rules take advantage of the fact that a two-input node will produce no
outputs while either of its memories is émpty.q Their criterion of ynsatisfiability of a
production is the existence of one node in the production’s subgraph that has an empty
memory. If such a node exists, the rules suspend all activity in the subgraph below the node
except that which can result in something being deposited into the empty memory. To see
how this works, consider the graph in Figure 3. When processing first begins, before
anything has been deposited into working ‘memory, only the top node is active. It is a
two-input node with two empty input memories so it may become either left or right active.
Assume right active is chosen. It will activate the one-input node below its right input. This
node will activate the node below itself, and that node will activate the bottom node on the
path. No changes in state will occur until the token for :

(1B

4 This will be qualified somewhat in Subsection 1V.10, -

reaches the top node. This node will then have one token in its right memory and none in its
left; it wili become left active. Passing signals down both sides, it will deactivate the nodes
below it on the right and activate those below it on the ieft. Because there is a two-input
node below it on the left that has two empty input memories, not all the nodes become
active. As processing proceeds, however, the lower two-input node will get tokens in first
one and then the other of its two memories and become full active. Similarly, the top node
will finally receive a token on its left input and become fyll active. Finally, the entire
subgraph for Pl will be active. P1 will then be shown satisfied. The entire subgraph for
" any production will become active before the production is shown satisfied.

Sometimes nodes do not become passive when signaled to do so. If the graph is
processed in parallel, a node may process many tokens before the signal arrives. Because
some nodes are shared, a node may not be able to become passive after the signal arrives; if
even one of ils successor nodes requires it to be active, it must remain active. Since a node .
stops accepting tokens immediately after passwahng an mput 'the edge below that input
must be ready lo queue any arrwmg tokens. -

The edge should do more than jUS'(queue the tokens. If the tokens arriving at an
inactive input were simply queued, when the input was reactivated the node would process
exactly what it would have processed if the input had been continuously active. Much of this
processing might have been avoided if the edge leading into the node had the power to
delete tokens. Deletion under certain circumstances is warranted. It can be expected that if
~an inpul remains inactive for any significant period of time, there will be queued up some
pairs of tokens, one token resuiting from the entry of an element into working memary and
the other resulting from the departure of the same element. There is litlle reason for
processing such pairs. If the edges in the graph are given enough processing power to
locate and delete these palrs, the match becomes quite effective a’(taking advantage of

context.

Both simpler and more',c0mpléx implementations of context sensitivity are possible. A
simpler implementation might use fewer states or work for only certain kinds of nodes
(perhaps only for the two-input nodes). A more complex implementation might try to take
advantage of sharing of nodes. For productions that share no nodes the implementation
described will maintain whenever possible a single active path from the node associated with
the production to one node on the lowest level of the graph. Since it does not take into
account the existence of other active paths when setting up a new_path, however, it will
sometimes make several active paths for a production sharing nodes with other productions.
For the same reason, it will sometimes set up separate active paths for two productions that
- share nodes and could therefore share one active path. :

IV.9. Computing Parlial Conflict Sets

The preceding sections have described a version of the rete match that computes the
entire conflict set. That is the most useful form of the match; most conflict resolution rules

23

demand that the match work this way. Some, however, will allow the match to compute only
part of the conflict set. The rule that chooses on the basis of. an ordering on the productions
is a common example. This rule assumes there to be a total ardering on the productions. [t
chooses the first production in the order that has an instantiation. When this rule is used, it
is advantageous to look first for instantiations of the first production, then for instantiations
of the second, and so on. The match can then terminate after the first’instantiation is found.

A simple modification to the context mechanisms will allow the rete match to compute
the conflict. set in this incremental manner. In the earfier version of the context mechanism,
all ‘nodes that had associated productions were made permanently active. In the modified
mechanism, they are activated one at 3 time -- or several at a time if the conflict resolution
rule is less selective than the production order rule described above -- as ‘the match
proceeds. At the beginning of the match, the nodes with associated productions are all made
passive except the node associated with the dominant production. Then the match . is
performed as before. When the program quiesces, if there is an instantiation for the
production, the match phase is ended. If not, another node associated with a production is
activated. Because there are now tokens queued at the lower level nodes, there is no need
for the processes that maintain working memory to again input tokens. Pracessing begins
again as soon as the activation signals have filtered down a few levels. If there is no
instantiation found after the program again quiesces, another node is activated. This
continues until either an instantiation is found or there are no more nodes to activate.

1V.10. Negated Condition Elements ° .
, Since the rete match will support languages .that, like' OPS, allow negated condition
elements, it is not a pure discriminating match. ' -

In the rete match, the multiple discriminating matches required by LHSs containing
negated condition elements coexist: within the single graph structure (and sometimes share
nodes). For an LHS with one negated condition element, there will be one subgraph for the
non-negated condition elements, another for the negated condition element, and one node to
combine the results of the two subgraphs. Except at this last node, the negated condition
element is treated by the match as if it were a non-negated condition element. That is, the
match tries to find legal instantiations for the negated condition element. If any are found,
the filters at the last node check for consistency of variable bindings between these and any
instantiations found for the non-negated part of the LHS. An instantiation for the
non-negated part is a legal instantiation for the entire LHS only if there are no instantiations
for the negated condition element with consistent variable bindings,

24

tokens with augmented. data parts. That these two node type;s should be so similar is not
unreasonable when one considers the similarities in productions like '

P5 ((A =X =X) (B =X =Z) --> ...) and
P6 ((A =X =X) = (B =X =2).-> ..).

These nodes differ in some ways from the other nodes; it is necessary to make
changes in the mechanisms for context and temporal redundancy if they are to operate at
these nodes. Since neither the presence nor the absence of a possible instantiation for a
negated condition element can make an LHS unsatisfiable, the context mechanisms must ignore
these in deciding whether {o passivate other nodes. Since satisfiability is an absolute, to
take advantage of temporal redundancy at these nodes requires that all changes be noted,
. but only some be acted upon. Only the changes that make an instantiation change from legal
to illegal or illegal to legal should be acted-upon. For example, if working memory contained

(Al L),
(B'11) and
(B12),

P6 would have no Jegal instantiations. 1 (B 1 1) were deleted from working memory, it would
still have no legal instantiations. But if (B 1 2) were then also deleted, it would finally have a
legal instantiation. The common way to take advantage of temporal redundancy at these
nodes is to keep a count of the number of times an instantiation is made. illegal. The count.is
adjusted as necessary in response to changes in working memory. When the count changes
from zero to one, an instantiation becomes illegal. When the count changes from one to zero,
the instantiation becomes legal. No other changes are of immediate consequence. 'In the
example above, the original count for the instantiation was two. -After the first deletion it
became one. After the second deletion.it became zero and the instantiation was thereby
shown legal, ' ' - '

. V. Correctness of the Rete Match '

The - correctness of the rete match is less than obvious; there are the paraliel
execution of the program, the simultaneous processing of adds to and deletes from working
memory, the changing of state of nodes in response to changes in context, the occasional
deletion of tokens by the communication paths, etc. Certainly anyone who intends to use the
rete match would be well advised to convince himself of the correctness -—- and thereby to
determine the details to which he must attend to preserve the correctness. The following
paragraphs sketch out proofs by which this correctness can be established. (Full proofs
cannot be given because these involve case analysis, and the cases depend on the language
implementeth) . o L. oL e

http://deletion.it

25

Inductive arguments of correctness are appropriate with these graph structured
programs. In such an argument, the first step is to show that the individual components of
the graph, the nodes and edges, always produce the correct output when given the correct
input. Then it must be shown that the match will not terminate before all tokens have been
processed. Assuming the bottom nodes receive the correct inputs from the processes
maintaining working memory, the correctness of the match as a whole then follows by an
inductive argument. ‘ ' '

The first programs o consider are those in which the edges are nothing more than
queues. In these programs each node receives exactly the tokens produced by its
predecessor node, in exactly the order produced. Given that its inputs arrive in order, all
that must be shown to establish the correctness of a one-input node is that it correctly
implements its filters. A two-input node must in addition be shown to be independent of the
relative order of arrival of tokens on its two inputs. For while the edges maintain the
correct order at each individual input, the parallel exscution of the program as a whole
means there can be no guarantee of relative order on different inputs. Since this
independence of order is achieved through the use of input memories,. a proof of
independence is primarily a proof of correct use of the input memories. .

Because it executes in parallel, the graph may pass through incorrect states, but it
need never terminate in an incorrect state. For example, suppose a node receives two
tokens on some cycle, the first of which adds something to the memory of one side, and the
second of which deletes something from the memory of the other side. 1t is possible that the
arrival of the first will make it appear that an output token should be produced and the
arrival of the second show that it was incorrect to produce the output. If the token had
already been output when the second token arrived, the part of the graph above this node
would be in an incorrect state'_. To correct the mistake, the node could create another token
like the first except tagged as resulting from an outgoing warking memory element, To the
nodes above, it would appear as if a working memory element had been added and then
immediately deleted. If these nodes reacted correctly to the two tokens, the graph would be
in a correct state when the match process terminated. Fortunately, it is not necessary that
the nodes have the ability to recognize when they or their predecessors have made
mistakes. It is sufficient that they treat the arrival of each token as an individual event. If
every node processes each token to completion, modifying its internal memories and
producing all outputs that appear necessary before turning its attention to the next token,
mistakes will be corrected without ever being recognized as mistakes.D

. The correctness 'arguments become more complicated when edges are given the
power to delete tokens. Because this moves some of the processing out of the nodes and
into the edges leading into the nodes, it becames difficult to treat nodes and edges

5 Since even the highest nodes can receive incorrect inputs and produce incorrect outputs,
conflict resolution must cooperate with the match and be ready to accept infarmation to

correct earlier erronecus information. Here also it is sufficient to treat the arrival of each
token individually. ‘

26

- - , |
individually in the proofs. The number of cases that must be examined in ‘proving the
correctness of the larger entity of a node and the edges leading mto lt is somewhat greater
than the number otherwise requ:red

VI The Comp!ete Monitor

Even though the hme spent in ‘action and confhct rescﬂutlon is small compared to the
time spent in match, it is unwise to execute the match in. parallet and then fail to take
advantage of parallelism in the other two phases <0 o .

One form of parallel execution, overlapping execution of conflict resolution and action
with execution of the ‘malch, is not always possible. First, of course, the.machine on which
the monitor is to be implemented must support this kind of parallelism (array processors will
not). In addition, match and conflict resolution must support incremental computation of the
following kind. The Recognize-Act cycle begins at action; match and conflict resolution are
idle. Action completes one RHS action and informs match of the change to working memory.
Match then begins computing changes to the conflict set. When match finds the first change,
it informs conflict resolution, and conflict resolution begms making the change. While match
executes, action continues to report changes to working memory; while conflict resolution
executes, match continues to report changes to the conflict set. Finally, all changes will have
been reported and responded to, all phases will have completed their work, and it will be
time for another action phase to begin. The rete match will support this kind of incremental
execution (incremental execution is its normal mode of operation).” Conflict resolution might
not. It is difficult to perform conflict resolution incrementally when the relations of
dominance induced ' by the conflict resolut:on rules are lacking etther transitivity or
trlchotomy

An alternative form of parallel execution, parallel execution within each phase, may
be easier. Parallel execution within conflict resolution is nothing more than the familiar
problem of sorting in parallel. Parallel execution within action is trivially easy when the RHS
actions have no side effects; it can be quite difficult when the act10ns have side effects.

Since both forms of parailelism present certain difficulties, use of both forms may be
indicated for some production systems. To prevent the problems that can result from side
effects in the RHS actions, action might be performed serially, but overlapped with the match.
To prevent the problems that can result from complex conflict resolution rules, conflict
resolution might be perfOrmed in parallel, but with no overlap with the’ match

27

VII. Conclusion

This paper has described a new architecture for production system monitors, an
architecture for efficient execution of large production systems, probably on paraliel
computers. Detlailed analyses of performance have not yet been made, but preliminary
studies with serial computers, small production systems (never more than a few hundreds of
productions), and small working memories (again, never more than a few hundreds of
elements) show the performance of this architecture to compare favorably with that of
alternative architectures. And arguments can be made that this architecture will be more
attractive with large production systems, large working memories, or both. Its responses to
the issues of context (which takes advantage of differences in productions) and structural
similarity {which takes advantage of similarities in productions) together should make the rete
match relatively insensitive to the number of productions in the system. Its response to
temporal redundancy should make it relatively insensitive to the number of elements in
working memory. ‘ o

Balanced against the advantage of efficiency is the disadvantage of difficulty in
implementation. Monitors making use of the rete match are no larger than other monitors,
but they are somewhat more difficult to implement. As section V attempted to show, one
must attend to many details to insure a correct implementation.

28

.....

10.

References

. Aho, A, Hopcroft, J, and Ullman, J. The Desegn and An.o.lyscs of Computer Algorcthms
Addison-Wesley, 1974.

. Anderson, R. H,, and Gillogly, J. . Rand mtelhgent terminal agent (RITA) des:gn phulosophy

The Rand Corporahon, 1976

. Erman, L. D. and Lesser, V. L. A multi-level organization for problem solving using many,

diverse, cooperating sources of knowledge. Proceedings of the Fourth International
Joint Conference on Artificial Intelligence, 1975, pp. 483- -490,

Forgy, C. and McDermott, J. The OPS reference manual. Technical Report, Computer
Science Department, Carnegie-Mellon University, 1976. '

. Hayes-Roth, F. and Mostow, J An automatically compilable recognition network for

structured patterns. Proceedings of the Fourth Internata.ona.l Joint Conference on
Artificial Intelligence, 1975, pp. 246-252. '

. McDermott, J.- and Forgy, C. Production system conflict resolution sirategies. Technical

Report, Computer Science Department Carnegle—Mellon University, 1976.

. McDermott J, Newel! A, and Moore, J. The efficiency of certain productlon system

implementations. Technlcal Report, Computer Science Department, Carnegie-Melion
University, 1976. :

. Newell, A, Shaw, J. C, and Simon, H. A. A variety of mtelhgenl learning in a general

problem solver. Y__owls and Cameron (eds), Self-Orgaenizing Systems. Pergamon 1960,
PP- 153-180.

. Rychener, M. D. Production systems as a programming language for Artificial Intelligence

applications. Technical Report, Computer. Science Department, Carnegie- Mellon-
University, 1976 (forthcoming). '

Shortliffe, E. H. Computer-Based Medical Consultations: Mycin. American Elsevier, 1976.

