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Pittsburgh, Pennsylvania 

This paper presents new algorithms for the 
parallel evaluation of certain polynomial expres
sions. In particular, for the parallel evaluation 
of x11, we introduce an algorithm which takes two 
steps of parallel division and r ic^n] steps of 
parallel addition, while the usual algorithm takes 
Tlog2nl steps of parallel multiplication. Hence 
our algorithm is faster than the usual algorithm 
when multiplication takes more time than addition. 
Similar algorithms for the evaluation of other 
polynomial expressions are also introduced. Lower 
bounds on the time needed for the parallel evaluation 
of rational expressions are given. All the algor
ithms presented in the paper are shown to be asymp
totically optimal. Moreover, we prove that by using 
parallelism the evaluation of any first order ra-
tional recurrence, e«g « ^ v i + ] a 2^yi*~y ^9 a n d a n y  

non-linear polynomial recurrence can be sped up at 
most by a constant factor, no matter how many pro
cessors are used. 

1. INTRODUCTION 

In this paper we consider the parallel evalua
tion of certain rational expressions. We assume 

This research was supported in part by the Nation
al Science Foundation under Grant GJ32111 and the 
Office of Naval Research under Contract 
N00014-67-A-0314-0010, NR 044-422. 

that several processors which can perform four 
arithmetic operations, +, -, X, /, are available, 
and that the time required for accessing data and 
communicating between processors can be ignored. 
This problem has been studied by many people. 
(See the surveys written by Brent [73] and Kuck 
[73].) Almost all papers in this field assume that 
every arithmetic operation takes the same time. 
However, this assumption is false for two reasons. 
For many processors, floating number multiplication 
takes more time than addition. Furthermore, if we 
deal with expressions involving, for example, ma
trices or multiple-precision numbers then multi
plication is of course more expensive than addi
tion. (Here we interpret arithmetic operations as 
matrix or multiple-precision number operations.) 
In this paper, we assume that multiplication takes  
more time than addition. 

Hence, to get better algorithms, we should 
avoid using multiplications. We derive new algor
ithms for the parallel evaluations of x11, 
2 3 n n n i {x ,x ,...,x }, II(x+a.), £ ax , etc., where the a 

1 1 0 1 1 

are scalars. Each of the algorithms minimizes the 
time needed for the multiplications to within a 
constant and can be shown to be faster than the 
best previously known algorithm for large n. More
over, all the algorithms, except the one associated 



with Theorem 3.4, have the following two character

istics : 

1) To run the algorithms each processor is 

either masked or performing the same opera

tion at any time. Hence the algorithm can 

be run on single-instruction stream-mul

tiple-data stream (SIMD) machines (Flynn 

[66]) sucfTalT ILLUC Tv.' 

2) The algorithms require a very simple inter

connection pattern. All we need is a bi

nary tree network between processors. 

Hence, for most machine organizations, we 

should not expect any significant delay 

caused by communication between processors. 

We also prove lower bounds on the time needed 

for the parallel evaluation of certain rational 

expressions, under the assumption that all proces

sors can perform different operations at any time. 

This assumption corresponds to multiple-instruction 

stream-multiple-data stream (MIMD) machines (Flynn 

[66]) such as Cmmp, the multi-mini-processor sys

tem currently under construction at Carnegie-

Mellon University (Wulf and Bell [72]), It is 

clear that optimal algorithms with respect to MIMD 

machines must be also optimal with respect to SIMD 

machines. The lower bounds obtained in the paper 

imply that the algorithms presented in the paper 

are asymptotically optimal with respect to MIMD 

machines, although most of these algorithms can be 

run on SIMD machines, as noted above. Furthermore, 

these lower bounds imply that, by using parallelism, 

the evaluation of an expression defined by any first 

order rational recurrence or any non-linear poly

nomial recurrence can be sped up at most by a 

constant factor, no matter how many processors are 

used. Consider, for example, the evaluation of the 

defined by the recurrence, 

1 a 
yi+1 = l^iK } ' i = 0> 1* 2 > . . . > n - 1 , 

i 

which is the well-known recurrence for ap^roximat- * 

ing *ya. We show that for evaluating y any paral-

lei algorithm using any number of processors can

not be essentially faster than the obvious sequen

tial algorithm. Thus the theory for non-linear 

recurrences is completely different from the theory 

for linear recurrences, where good speed-ups have 

been obtained (for example, Heller [73], Kogge [72], 

Kogge and Stone [72], Maruyama [73], Munro and 

Paterson [73] and Stone [73a]), 

Suppose that we have a problem for which mul

tiplication is much more expensive than addition 

and that we want to minimize the number of mul

tiplications and divisions. Lower bounds on the ' 

time needed for the multiplications and divisions 

are also derived. 

In the next section, we give basic defini

tions and an abstract formulation of our problem. 

In Section 3 we derive algorithms for the parallel 

evaluation of various expressions. Lower bound 

results are given in Section 4. The final section 

deals with results on non-linear recurrences. 

2, ABSTRACT FORMULATION AND DEFINITIONS 

Let F be a commutative and algebraically 

closed field, e.g., F is the field CL of complex 

numbers. Let F[x] and F(x) be the ring of poly

nomials and the field of rational expressions in x 

over F, respectively. Our task is to evaluate a 

set of polynomials in F[x], {f 1(x),f 2(x),...,f m(x)}, 

under the following assumptions: 



1) By evaluating { f j ( x ) , . . . , f m < x ) } we mean 

computing the values of f ( x ) , . . . , f ^ ( x ) 

from FU{x}, inside the f ield F(x). The 

four binary operations, +, x, / , 

associated with the f ield F(x) are the 

ones we are allowed to use. 

2) The elements in F are called scalars. A 

multiplication of two elements in F(x) i s 

called a scalar multiplication i f one of 

the two elements i s a scalar; otherwise i t 

i s called a non-scalar multiplication. 

Scalar or non-scalar addition (subtraction) 

i s similarly defined. A division whose 

dividend is a non-scalar is called a non-

scalar divis ion. Let M, M , A, A denote 

* s s  

the time needed for one non-scalar multi

pl icat ion, scalar multiplication, non-

scalar addition (snbfrarfinn^ ^ a b r 

dit ion (subtraction), respectively. Let 
D,D denote the time needed for a d iv i -' s  

sion whose dividend i s a non-scalar,  

scalar, respectively. Assume that M > A. 

3) At any given time, up to k operations may 

be performed. This means that there are k 

processors which can perform the opera

t ions , +, x, / , at any time but some 

processors may be id le . If in a given 

time interval a l l processors, except the 

ones masked, perform the same operation, 

say, addition, then we refer to that time 

interval as a parallel step of addition. 

If the positive integer k in 3) is greater 

than one, we say { f j ( x ) , . . . , f ^ ( x ) } i s to be evalu

ated in paral le l , while i f k i s equal to one, we 
s a y { f i ( x )> • • •» f m ( x ) } i s to be evaluated 

sequentially. We define T (f ( x ) , . . . , f (x)) to be 
K, I m 

the minimum time needed to evaluate 

{f -J ( x ) , . . . > f m ( x ) } with k processors. 

To i l lus trate our notation given in 2 ) , we 

consider an example. Let F - £, and l e t x be a 

j&XJfc matrix A whose entries are in (D • Suppose that 
3 

we use an 0(j£ ) algorithm for matrix multiplication 

and inversion. (Here we interpret division as ma-
3 2 trix inversion.) Then M = 0 ( i ) , Mg =» 0(I ) , 

A = 0 ( / ) . A = 0(A), D = 0(j£ 3), D » 0(j&3). s s 

3 . NEW ALGORITHMS WHICH USE DIVISIONS FOR THE 
PARALLEL EVALUATION OF x*1, [x ,x , . . . , x n } , 
n n 
II(x+a.), Z a . x 1 , e t c . 
1 1 0 1 

We f irs t consider a well known problem, that 

of evaluating x*\ Knuth [69, § 4 .6 .3 ] gives a 

rather detailed survey of the sequential algorithms 

for this problem. It i s known that there ex is ts a 

sequential algorithm which takes time 

£log n + Q ( i 0 g ° i 0 g n)JM* ( I n t h i s P a P e r a 1 1 l o 8 ~ 

arithms are taken to base 2.) However, i t i s easy 

to show the following (see, for instance, Borodin 

and Munro [72]): 

Fact 3 .1 . 

If division i s not used, flog n]M i s a lower  

bound on the time for the parallel evaluation of  

x 1 1, no matter how many processors are used. 

Hence, i f division i s not used, any parallel a l 

gorithm cannot be essent ia l ly faster than the 

sequential algorithm. In the proof of the follow

ing theorem we give an algorithm for the parallel 

evaluation of x 1 1 which uses divisions and which 

takes time less than flog n] when n i s large. 



Theorem 3,1, 

If k ^ n, x n can be evaluated in two steps of  

parallel division and flog nl 4- 2 steps of paral 

lel addition. More precisely. 

(3.1) T (x n) * ["log n]A + 2(A +D ) . n s s 

Proof 

We establish the theorem by exhibiting an 

algorithm. 

Algorithm 3.1. [An algorithm for the parallel 

evaluation of x 1 1. ] 

1) Compute A^ • x-r^, i^l,...^, in parallel, 

where the r^ are in F and are the n dis

tinct zeros of x n-r for any non-zero ele-

~*aAnii r in F; 
2 3 

2) Compute = Sj/ A£> i a a l»*.*» n» in paral

lel, where s±
 8 3 r^/(nr); 
n 

3) Compute C • 2 B in parallel; 
1 1 

4) Compute D « l/C; 

5) Compute E « D+r. 

It is easy to check that E a x n . Hence Algorithm 

3.1 indeed evaluates x 1 1. Suppose that the number 

of processors k ^ n. Then clearly steps 1, 2, 3, 

4, 5 can be done in time A , D ,flog n]A,D , A , 
s s s s 

respectively. Therefore Algorithm 3.1 takes time 
Tlog nlA + 2(A +D ) . • 

s s 

Note that Tlog nlA + 2(A g+D g)< Tlog n]M when 

Tlog n] > 2(A g+D g)/(M-A). In fact, 

lim d o g nlM/CTlog n]A + 2<A +D^>] « m/A. 
n-K» 

Hence we have sped up the evaluation of x n by a 

factor M/A for large n. 

Remarks on Algorithm 3 < t1. 

1) The choice of r in step 1 depends on the ap

plication of the algorithm. For instance, if 

the algorithm is used to compute A n for a real 

matrix A then the number r should be chosen 

such that A - r^I is non-singular for all i; 

otherwise the algorithm would break down at 

step 2, where we have to compute s^(A-r^I) ^ 

for all i. (Note that for matrix computation, 

in the algorithm divisions should be interpret

ed as matrix inversions, and scalars r^, r 

should be interpreted as r_^* respectively, 

where I is the identity matrix.) 

2) The algorithm raises x to the nth power with

out using any multiplications but with two 

divisions. This may be surprising to those 

who are dealing only with sequential algor

ithms. This again demonstrates that there are 

intrinsic differences between sequential and 

parallel computation (Stone [73b]). 

Using these same ideas, we can immediately 

obtain the following 

Theorem 3.2. 

Let a^,...,a^ be n distinct elements in F. 
n 

If k £ n, then n(x+a.) can be evaluated in two 
1 1  

steps of parallel division and Llog 1 steps 

of parallel addition. More precisely, 

n ^ 
(3.2) T (n(x+a.)) <. Tlog n]A + A + 2D . 

n .j x s s 

Proof 

We establish the lemma by exhibiting an al-

gorithnu 

Algorithm 3.2. [An algorithm for the parallel 
n 

evaluation of l|[(x+aj_).] 



1) Compute A^ = x + a^, i=1,...,n, in paral

lel; 

2) Compute « b^/A^, i=1,...,n, in paral

lel, where b ± = [ II (a.-a.)]" 1; 

n 
3) Compute C = E B. in parallel; 

1 1 

4) Compute D = 1/C, 

Corollary 3.1. 

If P(x) is the nth degree Chebyshev polynomial 

with respect to some interval, then 

(3.3) T (P(x)) £ |"log nlA + A + 2D . 
n s s 

Proof 

Since the zeros of P(x) are distinct and are 

known analytically, tne corollary follows from 

Theorem 3.2, ft 

It is clear that after some obvious modifica

tions of Algorithm 3.2, Theorem 3.2 can be extend-
n m. 

ed to cover the general expression N(x+a.) where 
1 1 

the a. are distinct and the m. are positive inte-i l 
gers. Since it is straightforward, we will not 

give the details here. 

There are several potential applications of 

Algorithms 3.1 and 3.2. For example, by using 

Algorithms 3.1 and 3.2 we can compute A n and P(A), 

respectively, where A is a matrix and P(x) is 

some Chebyshev polynomial0 A n and P ( A ) n can then 

be used to approximate the dominant eigenvectors 

of A. (See, for instance, Wilkinson [65, Chapter 

9 J . ) However, these applications do not fit the 

topic of this paper. They will be reported in 

another paper. 

Lemma 3.1. 

I F k £ jn(n+l) - 1, then the set 

fx^.x"* x nl can be evaluated in two steps O F 

parallel division and flog nl + 2 steps O F parallel  

addition. More precisely. 

(3.4) T. (x 2,x 3,...,x n) £ R I O G nlA + 2(A + D ) 

provided k ^ ^n(irH) - 1. 

Proof 

We establish the lemma by exhibiting an al

gorithm^ 

Algorithm 3.3. [An algorithm for the parallel 

evaluation of {x 2,...,x n} by using at least 

jn(n-il) - 1 processors.] 

1) Assign i processors for the evaluation of 

x 1 for each i=2,...,n. Use Algorithm 3.1 

to evaluate x 1 for each i. Since 
1 2 n 

k 2> jn(n+1) - 1, x ,...,x can be evalu
ated simultaneously. 

2) Step 4 of Algorithm 3.1 will not be per

formed for the evaluation of x 2,...,x n ^ 

until the time when step 4 of Algorithm 

3.1 is ready to be performed for the 

evaluation of x . 

Clearly, the lemma follows from Algorithm 3.3. M 

Theorem 3.3. 

2 3 n If k ^ n, then the set (x «x »...,x ) can be 

evaluated in five steps of parallel non-scalar 

multiplication or division and [log n]j+ 5;steps 

of parallel addition. More precisely. 

2 3 — _ 
(3.5) T (x ,x , . . . , x N ) S R I O G nlA + A 44(A +D )+M. 

1 1 s s 

Proof 

We establish the theorem for the case n ;> 9 



by exhibiting an algorithm. Using the same ideas 

of the algorithm, the theorem can be easily proven 

for n * 8. 

Algorithm 3 . 4 . [An algorithm for the parallel evalu-
2 3 n 

ation of £x ,x ,...,x } by using n processors.] 

1) Compute A± * x 1 , i«2,...,m by Algorithm 
3 . 3 , where m » fjn]; 

2) Compute B̂ ^ - A*, i»2,...,m by Algorithm 
3 . 3 ; 

3 ) Compute C B_/ Aj» i,j-1,...,m-1, in 

parallel, where A^ • x and B^ • A^. 

It is easily seen that C. . • x**0*^ and that 
*•» J 2 n 

{x ,...,x } C {B m} U {C i > :j|i,j-1,...,m-l}. Hence 

Algorithm 3 . 4 indeed evaluates {x 2,...,x n}. Note 

that since IN(nrfl) - 1 £ n for n ̂  9 , there are 
_~——. — • m» ' 

enough processors to perform Algorithm 3 . 3 at 

steps 1 and 2 • The total time needed for steps 

1 and 2 is 2[flog mlA + 2(A +D )]. Since 
. — s s 

(ra-1) £ n, step 3 can be done in time M. There

fore Algorithm 3 . 4 takes time [log n]A + A 4 ' 
! • 

4 (A +D ) + M. i 
s s , • 

C6foTlarTl72V 
If k < n. then x can be evaluated in 5jfrf1 

S T E P S O F P A R A L L E L N O N - S C A L A R M U L T I P L I C A T I O N O R  

D I V I S I O N A N D ( T L O G K L + 5 ) 4 S T E P S O F P A R A L L E L 

addition, where & • lo_g_n . More precisely, 

T. (x") * A [ T L O G k]A + A + 4(A +D ) + M] + M, 
K S S 

for k n. ' ~ " ' 

Proof 

We establish the corollary by exhibiting an 

algorithm. 

Algorithm 3 . 5 . [An algorithm for the parallel 

evaluation of x 1 1 by using k processors, where.k<n.] 

2 3 K {y i»Y i»...,y i} by Algorithm 3 . 4 ; 

a a a 
2) Compute A « y £ ^ ?fr2 w h e r e t h e 

a are non-negative integers such that 
^ I 0 £ a < K and n «• S A K . [Note that i . ̂  0 i 

ii n ^ K if n • K then x 8 8 V A . | A I M * hence step 2 
need not be performed. ] Clearly, A = x 1 1. 

Observe that in the time when step 1 completes the 

task for i = j, y^ ...y^^ can also be computed, 

j = L , . . . , J M . • 

Corollary 3 . 3 . 

If k n. then a general nth degree polynomial  
n i 
£ a x can be evaluated by one step of parallel 
0 1  

scalar multiplication, five steps of parallel non- 

scalar multiplication or division and 2flog n1| + 6 
steps of parallel addition. More precisely. 

( 3 . 6 ) T (Da 4x ) £ ( 2 T L O G n]+2);At4(A +D )4*HM . n Q l s s s 

Proof 

The theorem is proven by an algorithm which 

computes [x 2,...,x n} in time' [log n]A+A+4(A +D )+M 
_—, ^ s s 

by using Algorithm 3 . 4 , then {a^,a^x,...» a
nx n} in 

one step of scalar multiplication and finally com

bine these in a further [log n] + 1 steps of paral

lel addition. • 

Note that the dominant term of the upper bound 

in ( 3 . 6 ) is 2 T L O G nlA, while all other upper bounds 

we have derived so far have the dominant term 

T L O G nlA (see ( 3 . 1 ) ~ ( 3 . 5 ) ) . In the following 

theorem we show that the upper bound in ( 3 . 6 ) may 

be improved to have T L O G n]A as the dominant term 

by using 2 N processors. 

k 
1 ) F O R I " 0 , . . . , J T - 1 , L E T Y . • X A N D E V A L U A T E 



Theorem 3.4. 
n . 1 

T 0 (S a.x 1) <: (log n)A + O((log n)2)M. 
2 n Q 1  

Proof 

We apply a recursive evaluation procedure due 

to Maruyama [73] and (independently) Munro and 

Paterson [73, Algorithm A ] . The procedure will 

not be described here. However, we note that the 

procedure required x at time iA + constant, for 

i=1 9••• 9I log nj. We then assign n processors for 

the procedure and another n processors for the 

evaluation of x for all i by using Algorithm 3.1 
2 1 

for each i. Hence at time iA + constant, x is 

always available. • 

4. LOWER BOUNDS 

In this section we shall assume the same nota

tion as in the previous sections, except that now 

x may also stand for a set of indeterminates 

{x 1,x 2,...,x r) over F. Also recall that we allow 

different processors perform different operations 

at any time. Let f(x) be a rational expression in 

F(x). Define the degree of f(x) to be 

deg f «• max(deg g,deg h) 

where g(x), h(x) are two relatively prime poly

nomials in F[x] such that f = g/h. 

Lemma 4.1. 

Let f(x).g(x) € F(x) and h(x) = f(x) op g(x)  

where op € f+.-.X./l. Then if op is a non-scalar  

addition, multiplication or division then  

deg h £ (deg f)(deg g ) . otherwise deg h « 

max(deg f. deg g ) . 

Proof 

Trivial. 

Theorem 4.1. 

Let f(x) 6 F(x) with deg f(x) « n. Then 

T k(f(x)) * [log n]U, Vk, 

where U = min(A.M.D). 

Proof 

The proof follows from a growth argument. 

Consider an arbitrary algorithm for the parallel 

evaluation of f(x) by using arbitrary number of 

processors. Let denote the set of rational ex

pressions which can be created by the algorithms 

in time iU. It suffices to show by induction that 

elements in R i have degrees at most 2*. Obviously, 

the statement holds for i « 1. Suppose that it 

holds for i £ j. Let r̂  € R j + 1 • W e w a n t t o prove 

deg"r 1 <L 2 j + 1 . If r ] € Rj then deg r ] £ 2 j < 2 J + 1
# 

We are done. Suppose that r^ R^. Let us con

sider how r^ is computed from R^ by the algorithm. 

Since r^ is created by the algorithm, is the re

sult of a binary operation op,j of the algorithm 
with operands r v and r. 0 . Similarly, for 

1,1 1,2 
i"1,2, if r 1 i /t Rj, r^ ^ is the result of another 

binary operation op. . of the algorithm with oper-

ands r- - and r. 9 . Hence r. is associated 
1,1,1 i,i,z I 

with a binary tree whose nodes represent results of 

the binary operations and whose leaves represent 

the elements in R^ which are used for computing r^. 

By the construction of the tree, the rational ex

pressions associated with the nodes are not in Rj. 

(It is clear that the tree is finite, since there 

is a positive lower bound on the time needed for 

every operation.) We note that if the binary op

eration associated with a node is a non-scalar ad

dition, multiplication or division then the two 

successors of the node must be leaves. Hence along 

~each path of the tree there is at most one node 



with which a non-scalar addition, multiplication 

or division is associated. Then by Lemma 4.1 and 

the induction hypothesis one can easily show that 

deg r^ £ 2 - . The induction is complete. • 

By Theorem 4.1 and the results obtained in 

Section 3, we have the following 

Corollary 4.1. 

If M > A and D > A. then 

T (x n) £ riog nlA + 2(A +D ) n s s 
n 

T (II(x+a,)) £ riog nlA + A + 2D e n .J i s s 

T (x 2,x 3,...,x n)^log nlA+A+4(A +D )+M 
n , ° ° ^ -

n i- 2 T 0 (Sa.x^^log n)A+0((log n) )M,where 
2 n 0 1  

a / 0. 
n ' 

Hence the algorithms corresponding to the upper  

bounds are asymptotically optimal as n -» °°. 

Suppose that we have a problem for which D » A , 

M » A and D » A. Hence we want to minimize the s 

number of non-scalar multiplications and divisions. 

The following theorem gives a lower bound on the 

time needed for the non-scalar multiplications and 

divisions. 

Theorem 4.2. 

Suppose that we do not count the time needed  

for addition, subtraction and scalar multiplica 

tion. Let f(x) € F(x) with deg f • n. Then, if  

k ^ n, 

T R(f(x)) * log(k+1 •+1)1 

where V - min(D g ,D,M), 

Proof 

parallel evaluation of f(x) by using k processors. 

Let be the set of rational expressions in F(x) 

which can be evaluated in time iV by the algorithm. 

We shall show by induction that there exists a com

mon denominator D^ for the elements in R^ such that 

deg D 1 £ (k+1) 1 and such that if r £ and 

r • r/D i where r £ F[x], then deg r £ (k+1) 1. The 

induction statement clearly holds for i 8 3 1 • Assume 

that it holds for i £ j. Let r^,...,^, I & k, be 

the results immediately following from the non-

scalar multiplications or divisions of the algor- , 

ithm, which occur in the time interval (j V, (j.+l) V]. 
Then „ 
(4.1) R J + 1 = + ur|u £,u € F and r £ R^l. 

Assume that r. = s^ op. t. where s.,t. £ R„ and l i ri l i i j 
op^ € {x,/}. By the induction hypotheses, 

S i ~ ^i^ Dj a n d t i * ^i^ Dj w h e r e ^ F'-x-' a n d 

i 2 both have degree £ (k+1) J. Hence r.=s.t./D. when 
I l r j 

op i » X and = s^/t^ when op^ « /. Without loss 

of generality, assume that op^ 8 3 / for i £ h £ I 

and op^ 8 3 X for i > h. Define 

j + 1 \ t r . . t h D j if h < I. 

It is easy to see that D . is a common denominator 

for R j + 1 by (4.1), and that deg D j + ] £ (k+1) J , 

since deg t ± £<k-H) j and deg D^ £ (k+1) J A l s o > 

j+1 

Consider an arbitrary algorithm for the 

it is easy to show that if r € R ^ and r - r/D 

with r € F[x] then deg f £ ( k + 1 ) ^ + \ Therefore 

the induction is complete and hence we have proven 

the theorem. • 

Corollary 4.2. 

Suppose that we do not count the time needed  

for addition, subtraction and scalar multiplica 

tion. If k ^ n, then 

8 



where V = min(D g,D,M). 

Proof 

The proof follows from Corollary 3.2 and 

Theorem 4.2. • 

5. RESULTS ON NON-LINEAR RECURRENCE PROBLEMS 

It frequently occurs in applied mathematics 

that the solution to some problem is given by a 

recurrence relation. Hence we often have to com

pute y n from y0>y_-| > • • • ,y_ m where y^ is defined 

°y y-_i_i s co(y. ,...,y. ) for some function 
I T I I 1 -m 

c p C x j , . . . ^ j ) . It is natural to try to use parallel 

computation to speed up the process of computing 

y^. Karp, Miller and Winograd [67] studied some 

general aspects of parallelism and recurrence. 

Recent work in this area includes, for example, 

Heller [73], Kogge [72], Kogge and Stone [72], 

Maruyama [73], Munro and Paterson [73] and Stone 

[73a], These works concentrate essentially on 

linear recurrence problems. In particular, Kogge 

[72] has given a unified treatment for general 

linear recurrence problems and has shown for a 

very general class of linear recurrence problems 

that we can have the n/log n speed-up ratio,, 

which can be shown to be, in some sense, optimal. 

Therefore the linear recurrence problem is essen

tially settled. However, we do not know how to 

construct efficient parallel algorithms for even 

very simple non-linear recurrence problems. (Note 

that non-linear recurrence problems occur in prac

tice very often.) For example, it seems very dif

ficult to use parallelism for the following non

linear recurrence equations: 

which is the well-known recurrence for approximat

ing (The question of using parallelism for the 

recurrence problem (5.1) was asked by Professor 

H. S. Stone [73c].) In this section we shall show 

that any parallel algorithm using any number of  

processors cannot be essentially faster than the  

obvious sequential algorithm, for any first order  

rational recurrence problem like (2.1). and for any  

non-linear polynomial recurrence problem like 

(5.2) y . + 1 - 2 ^ + 3 j l m 2 . 

Lemma 5.1. 

I f q > ( x ) . * ( x ) g F ( x ) . t h e n deg(cD . • ) 
| 

" }<deg co)*(deg ft).. 

Proof 

Write cd =» cp 1 / cp 2 , where cp-j, cp2 are two relative

ly prime polynomials in F[x]. Assume that the lead

ing coefficient of cp2 is unity. Then write 
ml "h cpj(x) » a(x-a 1) ...(x-a h) and cp2(x) nl nJL = (x-bj) ...(x-b^,) , where the a is in F, the â ^ 

are distinct elements in F, the b^ are distinct 

elements in F and the nu, are non-negative inte

gers. Clearly, deg cp̂  5 3 2m^ and deg cj^ a 2n^. 

Since cp̂  and cp2 are relatively prime, we have 

a i ^ b j ' V i , J # L e t *l a n d ^2 b e t W 0 r e l a t i v e l y 

prime polynomials such that if • t-j/^* Note that 

CP o \[f ( x ) 
( • ( x ) - a ) ' . . . ( ^ - a j 

i" •— h 

( • ( x ) - b 7 ) 1 . . . ( * ( x ) - b i i ) n X 

(5.3) 
i ( j r ] ( x ) - a , ^ ( X ) ) 1 . ( t f ( X ) , a ^ ( x ) 

< + 7 < x > " b 1 t 2 ( x ) ) n i . . . ( t l ( x ) - b f ( x ) ) 1 

• • 9 < x ) 

9 



We claim that ^ (x)-a^^ (x) and ^ (x)-b ty2 (x) are 

relatively prime for all i,j. We prove this by 

contradiction. Assume that there exists h(x)£F[x] 

with deg h £ 1 such that ^^"^^2 = and 

^l" bj^2 = n 2 n w n e r e t n e n } > h 2 ^ These imply 

that * 2 « [h 1-h 2)/(b j-a i)]h and 

=* [h ] + a i(h 1-h 2)/(b j-a j L) ]h. Hence h is a com

mon divisor for ^ and ty2. This is a contradic

tion. Similarly, we can prove that there are no 

non-trivial common divisors between ty2(x) and 

^ (x) - a^ty2(x) and between ty2(x) and 

\|r̂  (x) - bji|r2(x). Therefore, from (5.3), one can 

easily check that deg(CFOT)j) « (deg cp) • (deg ty) . (§ 

Theorem 5.1. 

Let y n be defined by y^+-j c co(y^) where 

cp(x) € F(x) with dee CQ g d. Then 

T k(y n) * T N log dlU, Vk 

where U = min(A,M,D). 

Proof 

Let y^ 8 5 x. Then y n - $(x) where $ is the n 

times self-composition of CD« Then by Lemma 5.1, 

deg $ = (deg c p ) n = d n. The theorem follows from 

Theorem 4.1. • 

Under the assumptions of Theorem 5.1, y n 

clearly can be computed sequentially in time 

nT^ (cp) • CD is called a rational recurrence if 

d > 1. In this case, we have 

W T i ( c p ) 

f ^ T T * Hog d]u = c o n s t a n t . vn.vk. 

Hence, we have the following 

Corollary 5.1. 

By using parallelism the evaluation of an ex 

pression defined by any first order rational recur 

rence can be sped up at most by a constant factor. 

problem (5.1). Assume that we work with real num

bers and that every arithmetic operation takes the 

same time U. Then to evaluate y^ the obvious se

quential algorithm takes time 3nU, while by Theorem 

5.1 any parallel algorithm takes time at least nU. 

Hence by using parallelism the evaluation of y^ can 

be sped up at most by a factor of 3, for all n. 

This is completely different from the evaluation of 

linear recurrence where n/log n speed-ups can be 

obtained. 

Now we consider higher order recurrences, i.e. 

yi+l 3 c p ^ y i , y i - 1 , # # , , y i - m ^ f ° r m > °* S u P P ° s e 

that CD is a multivariate polynomial of degree > 1. 

Let y 0 = y.-, = • = y_ m = *. Then y 1*y 2»-'-> v
n 

are rational expressions in x» It is very easy to 

see that there exists a constant 0 > 1 such that 

the degree of in x is £ 9* for all i. For ex

ample, consider the third order recurrence (5.2). 

Let a^ be a lower bound on the degree of y^ in x. 

Then by (5.2) we have £ + a ^ . By a 

standard technique on difference equations, we 
i 2 know a. can be chosen as 0 where 0 = 2 0 + 1 and 

1 

hence 0 > 1. 

Since the degree of y n in x is ^ 0 R, by 

Theorem 5.1 we have 

T k(y n) * \n log 0"|U 

where U « min(A,M,D). Let T^ (CD) denote the time 

for evaluating co(x̂  ,x 2,.. • > x
i + d + i ) sequentially. 

Then Tj (y ) £ n ^ (cp) and hence 

T (y ) T (cp) 
' , l\ <: r\ = constant, Vn,Vk. 

T k(y n) [log 0]U 

Hence, we have the following 

Corollary 5.2. 

By using parallelism the evaluation of an ex 

pression defined by any non-linear polynomial recur 

rence can be sped up at most by a constant fact. Consider, for example, the recurrence 10 
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