
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

NEW ALGORITHMS AND LOWER BOUNDS FOR THE
PARALLEL EVALUATION OF CERTAIN

RATIONAL EXPRESSIONS

H. T. Kung
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pennsylvania

February, 1974

N00014-67-A-0314-0010 SR 044 f2T » ^ ^search >""i« Contract
ACM S y m p „ s i u n o n neoryV^lL^Tw. ** "** ̂

NEW ALGORITHMS AND LOWER BOUNDS FOR THE PARALLEL EVALUATION
OF CERTAIN RATIONAL EXPRESSIONS

H. T. Kun£*
Department of Computer Science
Carnegie-Melion University
Pittsburgh, Pennsylvania

This paper presents new algorithms for the
parallel evaluation of certain polynomial expres
sions. In particular, for the parallel evaluation
of x11, we introduce an algorithm which takes two
steps of parallel division and r ic^n] steps of
parallel addition, while the usual algorithm takes
Tlog2nl steps of parallel multiplication. Hence
our algorithm is faster than the usual algorithm
when multiplication takes more time than addition.
Similar algorithms for the evaluation of other
polynomial expressions are also introduced. Lower
bounds on the time needed for the parallel evaluation
of rational expressions are given. All the algor
ithms presented in the paper are shown to be asymp
totically optimal. Moreover, we prove that by using
parallelism the evaluation of any first order ra-
tional recurrence, e«g « ^ v i +] a 2^yi*~y ^9 a n d a n y

non-linear polynomial recurrence can be sped up at
most by a constant factor, no matter how many pro
cessors are used.

1. INTRODUCTION

In this paper we consider the parallel evalua
tion of certain rational expressions. We assume

This research was supported in part by the Nation
al Science Foundation under Grant GJ32111 and the
Office of Naval Research under Contract
N00014-67-A-0314-0010, NR 044-422.

that several processors which can perform four
arithmetic operations, +, -, X, /, are available,
and that the time required for accessing data and
communicating between processors can be ignored.
This problem has been studied by many people.
(See the surveys written by Brent [73] and Kuck
[73].) Almost all papers in this field assume that
every arithmetic operation takes the same time.
However, this assumption is false for two reasons.
For many processors, floating number multiplication
takes more time than addition. Furthermore, if we
deal with expressions involving, for example, ma
trices or multiple-precision numbers then multi
plication is of course more expensive than addi
tion. (Here we interpret arithmetic operations as
matrix or multiple-precision number operations.)
In this paper, we assume that multiplication takes
more time than addition.

Hence, to get better algorithms, we should
avoid using multiplications. We derive new algor
ithms for the parallel evaluations of x11,
2 3 n n n i {x ,x ,...,x }, II(x+a.), £ ax , etc., where the a

1 1 0 1 1

are scalars. Each of the algorithms minimizes the
time needed for the multiplications to within a
constant and can be shown to be faster than the
best previously known algorithm for large n. More
over, all the algorithms, except the one associated

with Theorem 3.4, have the following two character

istics :

1) To run the algorithms each processor is

either masked or performing the same opera

tion at any time. Hence the algorithm can

be run on single-instruction stream-mul

tiple-data stream (SIMD) machines (Flynn

[66]) sucfTalT ILLUC Tv.'

2) The algorithms require a very simple inter

connection pattern. All we need is a bi

nary tree network between processors.

Hence, for most machine organizations, we

should not expect any significant delay

caused by communication between processors.

We also prove lower bounds on the time needed

for the parallel evaluation of certain rational

expressions, under the assumption that all proces

sors can perform different operations at any time.

This assumption corresponds to multiple-instruction

stream-multiple-data stream (MIMD) machines (Flynn

[66]) such as Cmmp, the multi-mini-processor sys

tem currently under construction at Carnegie-

Mellon University (Wulf and Bell [72]), It is

clear that optimal algorithms with respect to MIMD

machines must be also optimal with respect to SIMD

machines. The lower bounds obtained in the paper

imply that the algorithms presented in the paper

are asymptotically optimal with respect to MIMD

machines, although most of these algorithms can be

run on SIMD machines, as noted above. Furthermore,

these lower bounds imply that, by using parallelism,

the evaluation of an expression defined by any first

order rational recurrence or any non-linear poly

nomial recurrence can be sped up at most by a

constant factor, no matter how many processors are

used. Consider, for example, the evaluation of the

defined by the recurrence,

1 a
yi+1 = l^iK } ' i = 0> 1* 2 > . . . > n - 1 ,

i

which is the well-known recurrence for ap^roximat- *

ing *ya. We show that for evaluating y any paral-

lei algorithm using any number of processors can

not be essentially faster than the obvious sequen

tial algorithm. Thus the theory for non-linear

recurrences is completely different from the theory

for linear recurrences, where good speed-ups have

been obtained (for example, Heller [73], Kogge [72],

Kogge and Stone [72], Maruyama [73], Munro and

Paterson [73] and Stone [73a]),

Suppose that we have a problem for which mul

tiplication is much more expensive than addition

and that we want to minimize the number of mul

tiplications and divisions. Lower bounds on the '

time needed for the multiplications and divisions

are also derived.

In the next section, we give basic defini

tions and an abstract formulation of our problem.

In Section 3 we derive algorithms for the parallel

evaluation of various expressions. Lower bound

results are given in Section 4. The final section

deals with results on non-linear recurrences.

2, ABSTRACT FORMULATION AND DEFINITIONS

Let F be a commutative and algebraically

closed field, e.g., F is the field CL of complex

numbers. Let F[x] and F(x) be the ring of poly

nomials and the field of rational expressions in x

over F, respectively. Our task is to evaluate a

set of polynomials in F[x], {f 1(x),f 2(x),...,f m(x)},

under the following assumptions:

1) By evaluating { f j (x) , . . . , f m < x) } we mean

computing the values of f (x) , . . . , f ^ (x)

from FU{x}, inside the f ield F(x). The

four binary operations, +, x, / ,

associated with the f ield F(x) are the

ones we are allowed to use.

2) The elements in F are called scalars. A

multiplication of two elements in F(x) i s

called a scalar multiplication i f one of

the two elements i s a scalar; otherwise i t

i s called a non-scalar multiplication.

Scalar or non-scalar addition (subtraction)

i s similarly defined. A division whose

dividend is a non-scalar is called a non-

scalar divis ion. Let M, M , A, A denote

* s s

the time needed for one non-scalar multi

pl icat ion, scalar multiplication, non-

scalar addition (snbfrarfinn^ ^ a b r

dit ion (subtraction), respectively. Let
D,D denote the time needed for a d iv i -' s

sion whose dividend i s a non-scalar,

scalar, respectively. Assume that M > A.

3) At any given time, up to k operations may

be performed. This means that there are k

processors which can perform the opera

t ions , +, x, / , at any time but some

processors may be id le . If in a given

time interval a l l processors, except the

ones masked, perform the same operation,

say, addition, then we refer to that time

interval as a parallel step of addition.

If the positive integer k in 3) is greater

than one, we say { f j (x) , . . . , f ^ (x) } i s to be evalu

ated in paral le l , while i f k i s equal to one, we
s a y { f i (x)> • • •» f m (x) } i s to be evaluated

sequentially. We define T (f (x) , . . . , f (x)) to be
K, I m

the minimum time needed to evaluate

{f -J (x) , . . . > f m (x) } with k processors.

To i l lus trate our notation given in 2) , we

consider an example. Let F - £, and l e t x be a

j&XJfc matrix A whose entries are in (D • Suppose that
3

we use an 0(j£) algorithm for matrix multiplication

and inversion. (Here we interpret division as ma-
3 2 trix inversion.) Then M = 0 (i) , Mg =» 0(I) ,

A = 0 (/) . A = 0(A), D = 0(j£ 3), D » 0(j&3). s s

3 . NEW ALGORITHMS WHICH USE DIVISIONS FOR THE
PARALLEL EVALUATION OF x*1, [x ,x , . . . , x n } ,
n n
II(x+a.), Z a . x 1 , e t c .
1 1 0 1

We f irs t consider a well known problem, that

of evaluating x*\ Knuth [69, § 4 .6 .3] gives a

rather detailed survey of the sequential algorithms

for this problem. It i s known that there ex is ts a

sequential algorithm which takes time

£log n + Q (i 0 g ° i 0 g n)JM* (I n t h i s P a P e r a 1 1 l o 8 ~

arithms are taken to base 2.) However, i t i s easy

to show the following (see, for instance, Borodin

and Munro [72]):

Fact 3 .1 .

If division i s not used, flog n]M i s a lower

bound on the time for the parallel evaluation of

x 1 1, no matter how many processors are used.

Hence, i f division i s not used, any parallel a l

gorithm cannot be essent ia l ly faster than the

sequential algorithm. In the proof of the follow

ing theorem we give an algorithm for the parallel

evaluation of x 1 1 which uses divisions and which

takes time less than flog n] when n i s large.

Theorem 3,1,

If k ^ n, x n can be evaluated in two steps of

parallel division and flog nl 4- 2 steps of paral

lel addition. More precisely.

(3.1) T (x n) * ["log n]A + 2(A +D) . n s s

Proof

We establish the theorem by exhibiting an

algorithm.

Algorithm 3.1. [An algorithm for the parallel

evaluation of x 1 1.]

1) Compute A^ • x-r^, i^l,...^, in parallel,

where the r^ are in F and are the n dis

tinct zeros of x n-r for any non-zero ele-

~*aAnii r in F;
2 3

2) Compute = Sj/ A£> i a a l»*.*» n» in paral

lel, where s±
 8 3 r^/(nr);
n

3) Compute C • 2 B in parallel;
1 1

4) Compute D « l/C;

5) Compute E « D+r.

It is easy to check that E a x n . Hence Algorithm

3.1 indeed evaluates x 1 1. Suppose that the number

of processors k ^ n. Then clearly steps 1, 2, 3,

4, 5 can be done in time A , D ,flog n]A,D , A ,
s s s s

respectively. Therefore Algorithm 3.1 takes time
Tlog nlA + 2(A +D) . •

s s

Note that Tlog nlA + 2(A g+D g)< Tlog n]M when

Tlog n] > 2(A g+D g)/(M-A). In fact,

lim d o g nlM/CTlog n]A + 2<A +D^>] « m/A.
n-K»

Hence we have sped up the evaluation of x n by a

factor M/A for large n.

Remarks on Algorithm 3 < t1.

1) The choice of r in step 1 depends on the ap

plication of the algorithm. For instance, if

the algorithm is used to compute A n for a real

matrix A then the number r should be chosen

such that A - r^I is non-singular for all i;

otherwise the algorithm would break down at

step 2, where we have to compute s^(A-r^I) ^

for all i. (Note that for matrix computation,

in the algorithm divisions should be interpret

ed as matrix inversions, and scalars r^, r

should be interpreted as r_^* respectively,

where I is the identity matrix.)

2) The algorithm raises x to the nth power with

out using any multiplications but with two

divisions. This may be surprising to those

who are dealing only with sequential algor

ithms. This again demonstrates that there are

intrinsic differences between sequential and

parallel computation (Stone [73b]).

Using these same ideas, we can immediately

obtain the following

Theorem 3.2.

Let a^,...,a^ be n distinct elements in F.
n

If k £ n, then n(x+a.) can be evaluated in two
1 1

steps of parallel division and Llog 1 steps

of parallel addition. More precisely,

n ^
(3.2) T (n(x+a.)) <. Tlog n]A + A + 2D .

n .j x s s

Proof

We establish the lemma by exhibiting an al-

gorithnu

Algorithm 3.2. [An algorithm for the parallel
n

evaluation of l|[(x+aj_).]

1) Compute A^ = x + a^, i=1,...,n, in paral

lel;

2) Compute « b^/A^, i=1,...,n, in paral

lel, where b ± = [II (a.-a.)]" 1;

n
3) Compute C = E B. in parallel;

1 1

4) Compute D = 1/C,

Corollary 3.1.

If P(x) is the nth degree Chebyshev polynomial

with respect to some interval, then

(3.3) T (P(x)) £ |"log nlA + A + 2D .
n s s

Proof

Since the zeros of P(x) are distinct and are

known analytically, tne corollary follows from

Theorem 3.2, ft

It is clear that after some obvious modifica

tions of Algorithm 3.2, Theorem 3.2 can be extend-
n m.

ed to cover the general expression N(x+a.) where
1 1

the a. are distinct and the m. are positive inte-i l
gers. Since it is straightforward, we will not

give the details here.

There are several potential applications of

Algorithms 3.1 and 3.2. For example, by using

Algorithms 3.1 and 3.2 we can compute A n and P(A),

respectively, where A is a matrix and P(x) is

some Chebyshev polynomial0 A n and P (A) n can then

be used to approximate the dominant eigenvectors

of A. (See, for instance, Wilkinson [65, Chapter

9 J .) However, these applications do not fit the

topic of this paper. They will be reported in

another paper.

Lemma 3.1.

I F k £ jn(n+l) - 1, then the set

fx^.x"* x nl can be evaluated in two steps O F

parallel division and flog nl + 2 steps O F parallel

addition. More precisely.

(3.4) T. (x 2,x 3,...,x n) £ R I O G nlA + 2(A + D)

provided k ^ ^n(irH) - 1.

Proof

We establish the lemma by exhibiting an al

gorithm^

Algorithm 3.3. [An algorithm for the parallel

evaluation of {x 2,...,x n} by using at least

jn(n-il) - 1 processors.]

1) Assign i processors for the evaluation of

x 1 for each i=2,...,n. Use Algorithm 3.1

to evaluate x 1 for each i. Since
1 2 n

k 2> jn(n+1) - 1, x ,...,x can be evalu
ated simultaneously.

2) Step 4 of Algorithm 3.1 will not be per

formed for the evaluation of x 2,...,x n ^

until the time when step 4 of Algorithm

3.1 is ready to be performed for the

evaluation of x .

Clearly, the lemma follows from Algorithm 3.3. M

Theorem 3.3.

2 3 n If k ^ n, then the set (x «x »...,x) can be

evaluated in five steps of parallel non-scalar

multiplication or division and [log n]j+ 5;steps

of parallel addition. More precisely.

2 3 — _
(3.5) T (x ,x , . . . , x N) S R I O G nlA + A 44(A +D)+M.

1 1 s s

Proof

We establish the theorem for the case n ;> 9

by exhibiting an algorithm. Using the same ideas

of the algorithm, the theorem can be easily proven

for n * 8.

Algorithm 3 . 4 . [An algorithm for the parallel evalu-
2 3 n

ation of £x ,x ,...,x } by using n processors.]

1) Compute A± * x 1 , i«2,...,m by Algorithm
3 . 3 , where m » fjn];

2) Compute B̂ ^ - A*, i»2,...,m by Algorithm
3 . 3 ;

3) Compute C B_/ Aj» i,j-1,...,m-1, in

parallel, where A^ • x and B^ • A^.

It is easily seen that C. . • x**0*^ and that
*•» J 2 n

{x ,...,x } C {B m} U {C i > :j|i,j-1,...,m-l}. Hence

Algorithm 3 . 4 indeed evaluates {x 2,...,x n}. Note

that since IN(nrfl) - 1 £ n for n ̂ 9 , there are
_~——. — • m» '

enough processors to perform Algorithm 3 . 3 at

steps 1 and 2 • The total time needed for steps

1 and 2 is 2[flog mlA + 2(A +D)]. Since
. — s s

(ra-1) £ n, step 3 can be done in time M. There

fore Algorithm 3 . 4 takes time [log n]A + A 4 '
! •

4 (A +D) + M. i
s s , •

C6foTlarTl72V
If k < n. then x can be evaluated in 5jfrf1

S T E P S O F P A R A L L E L N O N - S C A L A R M U L T I P L I C A T I O N O R

D I V I S I O N A N D (T L O G K L + 5) 4 S T E P S O F P A R A L L E L

addition, where & • lo_g_n . More precisely,

T. (x") * A [T L O G k]A + A + 4(A +D) + M] + M,
K S S

for k n. ' ~ " '

Proof

We establish the corollary by exhibiting an

algorithm.

Algorithm 3 . 5 . [An algorithm for the parallel

evaluation of x 1 1 by using k processors, where.k<n.]

2 3 K {y i»Y i»...,y i} by Algorithm 3 . 4 ;

a a a
2) Compute A « y £ ^ ?fr2 w h e r e t h e

a are non-negative integers such that
^ I 0 £ a < K and n «• S A K . [Note that i . ̂ 0 i

ii n ^ K if n • K then x 8 8 V A . | A I M * hence step 2
need not be performed.] Clearly, A = x 1 1.

Observe that in the time when step 1 completes the

task for i = j, y^ ...y^^ can also be computed,

j = L , . . . , J M . •

Corollary 3 . 3 .

If k n. then a general nth degree polynomial
n i
£ a x can be evaluated by one step of parallel
0 1

scalar multiplication, five steps of parallel non-

scalar multiplication or division and 2flog n1| + 6
steps of parallel addition. More precisely.

(3 . 6) T (Da 4x) £ (2 T L O G n]+2);At4(A +D)4*HM . n Q l s s s

Proof

The theorem is proven by an algorithm which

computes [x 2,...,x n} in time' [log n]A+A+4(A +D)+M
_—, ^ s s

by using Algorithm 3 . 4 , then {a^,a^x,...» a
nx n} in

one step of scalar multiplication and finally com

bine these in a further [log n] + 1 steps of paral

lel addition. •

Note that the dominant term of the upper bound

in (3 . 6) is 2 T L O G nlA, while all other upper bounds

we have derived so far have the dominant term

T L O G nlA (see (3 . 1) ~ (3 . 5)) . In the following

theorem we show that the upper bound in (3 . 6) may

be improved to have T L O G n]A as the dominant term

by using 2 N processors.

k
1) F O R I " 0 , . . . , J T - 1 , L E T Y . • X A N D E V A L U A T E

Theorem 3.4.
n . 1

T 0 (S a.x 1) <: (log n)A + O((log n)2)M.
2 n Q 1

Proof

We apply a recursive evaluation procedure due

to Maruyama [73] and (independently) Munro and

Paterson [73, Algorithm A] . The procedure will

not be described here. However, we note that the

procedure required x at time iA + constant, for

i=1 9••• 9I log nj. We then assign n processors for

the procedure and another n processors for the

evaluation of x for all i by using Algorithm 3.1
2 1

for each i. Hence at time iA + constant, x is

always available. •

4. LOWER BOUNDS

In this section we shall assume the same nota

tion as in the previous sections, except that now

x may also stand for a set of indeterminates

{x 1,x 2,...,x r) over F. Also recall that we allow

different processors perform different operations

at any time. Let f(x) be a rational expression in

F(x). Define the degree of f(x) to be

deg f «• max(deg g,deg h)

where g(x), h(x) are two relatively prime poly

nomials in F[x] such that f = g/h.

Lemma 4.1.

Let f(x).g(x) € F(x) and h(x) = f(x) op g(x)

where op € f+.-.X./l. Then if op is a non-scalar

addition, multiplication or division then

deg h £ (deg f)(deg g) . otherwise deg h «

max(deg f. deg g) .

Proof

Trivial.

Theorem 4.1.

Let f(x) 6 F(x) with deg f(x) « n. Then

T k(f(x)) * [log n]U, Vk,

where U = min(A.M.D).

Proof

The proof follows from a growth argument.

Consider an arbitrary algorithm for the parallel

evaluation of f(x) by using arbitrary number of

processors. Let denote the set of rational ex

pressions which can be created by the algorithms

in time iU. It suffices to show by induction that

elements in R i have degrees at most 2*. Obviously,

the statement holds for i « 1. Suppose that it

holds for i £ j. Let r̂ € R j + 1 • W e w a n t t o prove

deg"r 1 <L 2 j + 1 . If r] € Rj then deg r] £ 2 j < 2 J + 1

We are done. Suppose that r^ R^. Let us con

sider how r^ is computed from R^ by the algorithm.

Since r^ is created by the algorithm, is the re

sult of a binary operation op,j of the algorithm
with operands r v and r. 0 . Similarly, for

1,1 1,2
i"1,2, if r 1 i /t Rj, r^ ^ is the result of another

binary operation op. . of the algorithm with oper-

ands r- - and r. 9 . Hence r. is associated
1,1,1 i,i,z I

with a binary tree whose nodes represent results of

the binary operations and whose leaves represent

the elements in R^ which are used for computing r^.

By the construction of the tree, the rational ex

pressions associated with the nodes are not in Rj.

(It is clear that the tree is finite, since there

is a positive lower bound on the time needed for

every operation.) We note that if the binary op

eration associated with a node is a non-scalar ad

dition, multiplication or division then the two

successors of the node must be leaves. Hence along

~each path of the tree there is at most one node

with which a non-scalar addition, multiplication

or division is associated. Then by Lemma 4.1 and

the induction hypothesis one can easily show that

deg r^ £ 2 - . The induction is complete. •

By Theorem 4.1 and the results obtained in

Section 3, we have the following

Corollary 4.1.

If M > A and D > A. then

T (x n) £ riog nlA + 2(A +D) n s s
n

T (II(x+a,)) £ riog nlA + A + 2D e n .J i s s

T (x 2,x 3,...,x n)^log nlA+A+4(A +D)+M
n , ° ° ^ -

n i- 2 T 0 (Sa.x^^log n)A+0((log n))M,where
2 n 0 1

a / 0.
n '

Hence the algorithms corresponding to the upper

bounds are asymptotically optimal as n -» °°.

Suppose that we have a problem for which D » A ,

M » A and D » A. Hence we want to minimize the s

number of non-scalar multiplications and divisions.

The following theorem gives a lower bound on the

time needed for the non-scalar multiplications and

divisions.

Theorem 4.2.

Suppose that we do not count the time needed

for addition, subtraction and scalar multiplica

tion. Let f(x) € F(x) with deg f • n. Then, if

k ^ n,

T R(f(x)) * log(k+1 •+1)1

where V - min(D g ,D,M),

Proof

parallel evaluation of f(x) by using k processors.

Let be the set of rational expressions in F(x)

which can be evaluated in time iV by the algorithm.

We shall show by induction that there exists a com

mon denominator D^ for the elements in R^ such that

deg D 1 £ (k+1) 1 and such that if r £ and

r • r/D i where r £ F[x], then deg r £ (k+1) 1. The

induction statement clearly holds for i 8 3 1 • Assume

that it holds for i £ j. Let r^,...,^, I & k, be

the results immediately following from the non-

scalar multiplications or divisions of the algor- ,

ithm, which occur in the time interval (j V, (j.+l) V].
Then „
(4.1) R J + 1 = + ur|u £,u € F and r £ R^l.

Assume that r. = s^ op. t. where s.,t. £ R„ and l i ri l i i j
op^ € {x,/}. By the induction hypotheses,

S i ~ ^i^ Dj a n d t i * ^i^ Dj w h e r e ^ F'-x-' a n d

i 2 both have degree £ (k+1) J. Hence r.=s.t./D. when
I l r j

op i » X and = s^/t^ when op^ « /. Without loss

of generality, assume that op^ 8 3 / for i £ h £ I

and op^ 8 3 X for i > h. Define

j + 1 \ t r . . t h D j if h < I.

It is easy to see that D . is a common denominator

for R j + 1 by (4.1), and that deg D j +] £ (k+1) J ,

since deg t ± £<k-H) j and deg D^ £ (k+1) J A l s o >

j+1

Consider an arbitrary algorithm for the

it is easy to show that if r € R ^ and r - r/D

with r € F[x] then deg f £ (k + 1) ^ + \ Therefore

the induction is complete and hence we have proven

the theorem. •

Corollary 4.2.

Suppose that we do not count the time needed

for addition, subtraction and scalar multiplica

tion. If k ^ n, then

8

where V = min(D g,D,M).

Proof

The proof follows from Corollary 3.2 and

Theorem 4.2. •

5. RESULTS ON NON-LINEAR RECURRENCE PROBLEMS

It frequently occurs in applied mathematics

that the solution to some problem is given by a

recurrence relation. Hence we often have to com

pute y n from y0>y_-| > • • • ,y_ m where y^ is defined

°y y-_i_i s co(y. ,...,y.) for some function
I T I I 1 -m

c p C x j , . . . ^ j) . It is natural to try to use parallel

computation to speed up the process of computing

y^. Karp, Miller and Winograd [67] studied some

general aspects of parallelism and recurrence.

Recent work in this area includes, for example,

Heller [73], Kogge [72], Kogge and Stone [72],

Maruyama [73], Munro and Paterson [73] and Stone

[73a], These works concentrate essentially on

linear recurrence problems. In particular, Kogge

[72] has given a unified treatment for general

linear recurrence problems and has shown for a

very general class of linear recurrence problems

that we can have the n/log n speed-up ratio,,

which can be shown to be, in some sense, optimal.

Therefore the linear recurrence problem is essen

tially settled. However, we do not know how to

construct efficient parallel algorithms for even

very simple non-linear recurrence problems. (Note

that non-linear recurrence problems occur in prac

tice very often.) For example, it seems very dif

ficult to use parallelism for the following non

linear recurrence equations:

which is the well-known recurrence for approximat

ing (The question of using parallelism for the

recurrence problem (5.1) was asked by Professor

H. S. Stone [73c].) In this section we shall show

that any parallel algorithm using any number of

processors cannot be essentially faster than the

obvious sequential algorithm, for any first order

rational recurrence problem like (2.1). and for any

non-linear polynomial recurrence problem like

(5.2) y . + 1 - 2 ^ + 3 j l m 2 .

Lemma 5.1.

I f q > (x) . * (x) g F (x) . t h e n deg(cD . •)
|

" }<deg co)*(deg ft)..

Proof

Write cd =» cp 1 / cp 2 , where cp-j, cp2 are two relative

ly prime polynomials in F[x]. Assume that the lead

ing coefficient of cp2 is unity. Then write
ml "h cpj(x) » a(x-a 1) ...(x-a h) and cp2(x) nl nJL = (x-bj) ...(x-b^,) , where the a is in F, the â ^

are distinct elements in F, the b^ are distinct

elements in F and the nu, are non-negative inte

gers. Clearly, deg cp̂ 5 3 2m^ and deg cj^ a 2n^.

Since cp̂ and cp2 are relatively prime, we have

a i ^ b j ' V i , J # L e t *l a n d ^2 b e t W 0 r e l a t i v e l y

prime polynomials such that if • t-j/^* Note that

CP o \[f (x)
(• (x) - a) ' . . . (^ - a j

i" •— h

(• (x) - b 7) 1 . . . (* (x) - b i i) n X

(5.3)
i (j r] (x) - a , ^ (X)) 1 . (t f (X) , a ^ (x)

< + 7 < x > " b 1 t 2 (x)) n i . . . (t l (x) - b f (x)) 1

• • 9 < x)

9

We claim that ^ (x)-a^^ (x) and ^ (x)-b ty2 (x) are

relatively prime for all i,j. We prove this by

contradiction. Assume that there exists h(x)£F[x]

with deg h £ 1 such that ^^"^^2 = and

^l" bj^2 = n 2 n w n e r e t n e n } > h 2 ^ These imply

that * 2 « [h 1-h 2)/(b j-a i)]h and

=* [h] + a i(h 1-h 2)/(b j-a j L)]h. Hence h is a com

mon divisor for ^ and ty2. This is a contradic

tion. Similarly, we can prove that there are no

non-trivial common divisors between ty2(x) and

^ (x) - a^ty2(x) and between ty2(x) and

\|r̂ (x) - bji|r2(x). Therefore, from (5.3), one can

easily check that deg(CFOT)j) « (deg cp) • (deg ty) . (§

Theorem 5.1.

Let y n be defined by y^+-j c co(y^) where

cp(x) € F(x) with dee CQ g d. Then

T k(y n) * T N log dlU, Vk

where U = min(A,M,D).

Proof

Let y^ 8 5 x. Then y n - $(x) where $ is the n

times self-composition of CD« Then by Lemma 5.1,

deg $ = (deg c p) n = d n. The theorem follows from

Theorem 4.1. •

Under the assumptions of Theorem 5.1, y n

clearly can be computed sequentially in time

nT^ (cp) • CD is called a rational recurrence if

d > 1. In this case, we have

W T i (c p)

f ^ T T * Hog d]u = c o n s t a n t . vn.vk.

Hence, we have the following

Corollary 5.1.

By using parallelism the evaluation of an ex

pression defined by any first order rational recur

rence can be sped up at most by a constant factor.

problem (5.1). Assume that we work with real num

bers and that every arithmetic operation takes the

same time U. Then to evaluate y^ the obvious se

quential algorithm takes time 3nU, while by Theorem

5.1 any parallel algorithm takes time at least nU.

Hence by using parallelism the evaluation of y^ can

be sped up at most by a factor of 3, for all n.

This is completely different from the evaluation of

linear recurrence where n/log n speed-ups can be

obtained.

Now we consider higher order recurrences, i.e.

yi+l 3 c p ^ y i , y i - 1 , # # , , y i - m ^ f ° r m > °* S u P P ° s e

that CD is a multivariate polynomial of degree > 1.

Let y 0 = y.-, = • = y_ m = *. Then y 1*y 2»-'-> v
n

are rational expressions in x» It is very easy to

see that there exists a constant 0 > 1 such that

the degree of in x is £ 9* for all i. For ex

ample, consider the third order recurrence (5.2).

Let a^ be a lower bound on the degree of y^ in x.

Then by (5.2) we have £ + a ^ . By a

standard technique on difference equations, we
i 2 know a. can be chosen as 0 where 0 = 2 0 + 1 and

1

hence 0 > 1.

Since the degree of y n in x is ^ 0 R, by

Theorem 5.1 we have

T k(y n) * \n log 0"|U

where U « min(A,M,D). Let T^ (CD) denote the time

for evaluating co(x̂ ,x 2,.. • > x
i + d + i) sequentially.

Then Tj (y) £ n ^ (cp) and hence

T (y) T (cp)
' , l\ <: r\ = constant, Vn,Vk.

T k(y n) [log 0]U

Hence, we have the following

Corollary 5.2.

By using parallelism the evaluation of an ex

pression defined by any non-linear polynomial recur

rence can be sped up at most by a constant fact. Consider, for example, the recurrence 10

ACKNOWLEDGMENTS

I want to thank Professor J. F, Traub for

his helpful comments on this paper.

Problem. Oxford University Press (Clarendon),
London and New York.

Wulf, W. A. and Bell, C. G. [72]. C.mmp - A Multi-
Mini-Processor, AFIPS Conference Proc. Vol 41
Part II, FJCC 1972, pp. 765-777. ' '

REFERENCES

Boudin, A, B. and Munro, I. [72]. Notes on Ef
ficient and Optimal Algorithms, University of
Toronto and University of Waterloo.

Brent, R. P. [73]. The parallel evaluation of
arithmetic expressions in logarithmic time, in
Complexity of Sequential and Parallel Numerical
Algorithms (J. F. Traub ed.), pp. 83-102.
Academic Press, New York.

Flynn, M. J. [66], Very high-speed computing sys
tems, Proc IEEE, Vol. 54, pp. 1901-1909.

Heller, D. [73]. A determinant theorem with ap
plications to parallel algorithms. To appear
in SIAM J. Numer. Anal. (Also available as a
CMU Computer Science Department Report.)

Karp, R. Miller, R. and Winograd, S. [67], The
organization of computations for uniform recur
rence equations, JACM 14, pp. 563-590.

Kogge, P. M. [72]. Parallel algorithms for the
efficient solution of recurrence problem, Tech.
Report 43, Digital System Laboratory, Stanford
University*

Kogge, P. M. and Stone, H. S. [72]. A parallel al
gorithm for the efficient solution of a general
class of recurrence equations, Tech. Report 25,
Digital System Laboratory, Stanford University.

Knuth, D. E. [69]. The Art of Computer Programming»
Vol. 2, Seminumerical Algorithms, Addison-Wesley,
Reading, Mass.

Kuck, D. J. [73]. Multioperation machine computa
tional complexity, in Complexity of Sequential
and Parallel Numerical Algorithms (J. F. Traub
ed.), pp. 17-46. Academic Press, New York.

Maruyama, K, [73]. On the parallel evaluation of
polynomials, IEEE Trans, on Comp., C-22, pp. 2-5.

Munro, I. and Paterson, M. [73]. Optimal algorithms
for parallel polynomial evaluation, JCSS 7,
pp. 189-198.

Stone, H. S. [73a]. An efficient parallel algor
ithm for the solution of a tridiagonal system of
equations, JACM, 20, pp. 27-38.

Stone, H. S. [73b]. Problems of parallel computa
tion, in Complexity of Sequential and Parallel
Numerical Algorithms (J. F. Traub ed.), pp. 1-16.
Academic Press, New York.

Stone, H. S. [73c]. Private Communication.

Wilkinson, J. H. [65]. The Algebraic Eigenvalue

11

JSecurit^Classifica^
D O C U M E N T C O N T R O L D A T A - R & D

(Security classification of title, tody o f a b s t r a c t a n d i n d e x i n g a n n o t e t i o n m u a , b e e „ , e r e d ^ ^ ^ ^
|1 ORIGINATING ACTIVITY (Corporate author)

Department of Computer Science; Carnegie-Mellon li
Pittsburgh, Pennsylvania 15213

J L
2a. 1EPORT SECURITY CLASSIFICATION

unclassified
26. GROUP

3 R E P N E W ALGORITHMS AND LOWER BOUNDS FOR THE PARALLEL EVALUATION OF CERTAIN RATIONAL*
EXPRESSIONS

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

*UTHOR<3> (First name, middle initial, last name)

H. T. Kung

|6 REPORT DATE

February. 1974
8a. CONTRACT OR GRANT NO.

N00014-67-A-0314-0010, NR 044-422
6. PROJECT NO.

10. DISTRIBUTION STATEMENT

7a. TOTAL NO. OF PAGES

12
76. NO. OF REFS

16
9a. ORIGINATOR'S REPORT NUMBER(S)

9t>' ?hlsHr%po*JPORT N O l S) ^ ^ nUmb9r" **f b e

approved for public release; distribution unlimited

11 SUPPLEMENTARY NOTES

[13. ABSTRACT

12. SPONSORING MILITARY ACTIVITY

Mathematics Program
Office of Naval Research
Arlington, Virginia 22217

This paper presents new algorithms for the parallel evaluation of certain
polynomial expressions. In particular, for the parallel evaluation of x , we
introduce an algorithm which takes two steps of parallel division and [log2 r0

steps of parallel addition, while the usual algorithm takes [log^n] steps of

parallel multiplication. Hence our algorithm is faster than the usual algorithm
when multiplication takes more time than addition. Similar algorithms for the
evaluation of other polynomial expressions are also introduced. Lower bounds on
the time needed for the parallel evaluation of rational expressions are given. All
the algorithms presented inthe paper are shown to be asymptotically optimal.
Moreover, we prove that by using parallelism the evaluation of any first order

rational recurrence, e. g., y ^ _ l/2 (y j+ ~)> a n d a^Y non-linear

polynomial recurrence can be sped up at most by a constant factor, no matter how
many processors are used.

FORM
1 4 7 3

Security Classification

