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The common need of both Artificial Intelligence and Pattern Recognition for 

effective methods of automatic Knowledge acquisition is considered A pattern of 

induction is defined as a framework which relates a theory of behavior generation, 

underlying knowledge structures, and a learning methodology. One particular learning 

theory, called interference matching, suggests that knowledge structures which 

underlie behavior descriptions can be directly abstracted from those descriptions. 

Because of the close connection between descriptions and inferences in such a 

framework, the strengths and weaknesses of several types of descriptions are 

considered. Algorithms which exploit this theory are presented for three classes of 

problems: pattern learning and classification; induction of quantified production rules; 

and the induction of syntactic categories and phrase structure rules. Preliminary 

results are presented and directions for future research are outlined. 
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Despite many impressive advances in the areas of knowledge representation and 

engineering, Artificial Intelligence (AI) has made virtually no progress on general 

learning problems in the last 20 years. Both AI and Pattern Recognition (PR) currently 

experience a pressing need for automatic methods of knowledge acquisition, but their 

problems are somewhat different. Current efforts in AI aimed at building large-scale 

knowledge-based systems (e.g., for speech, vision, text understanding) are virtually 

overwhelmed by the task of knowledge engineering. The goal of this task is the 

implementation of all potentially valuable "knowledge sources," problem solving 

modules which exploit the known physical, syntactic, contextual, and semantic relations 

to constrain the search for solutions. The cost—in terms of people, time, and machine 

resources—of translating this human knowledge into computer programs is nearly 

insupportable. Furthermore, even after these handcrafted knowledge sources are 

developed, they are difficult to evaluate comparatively because each tends to be "one-

of -a-kind/ 1 a body of code specially tailored to operate in one specific system and to 

employ only one particular subset of the many potentially relevant problem solving 

techniques. Thus, to a large extent, the immediate need for general learning 

procedures in A I is to automate much of the work of knowledge programming. The 

field of PR, on the other hand, needs general learning procedures because the 

conventional methods of pattern description and learning do not perform well in most 

complex environments. The inadequacy of the well known dimensional, parametric, and 

syntactic techniques of representation and classification is made apparent by their 

inability to contribute significantly to modern AI understanding systems. In short, the 

field of PR has reached a point where its principal tools no longer seem sufficiently 

suited to the recognition problems being encountered. The development of general 

learning procedures which can generate symbolic pattern representations and facilitate 

improved classification in such domains is a goal of great importance for the PR field. 

This paper considers three types of general learning problems related to 

pattern classification, rule induction, and syntax learning. Each of these is approached 

within the theoretical framework of a related pattern of induction or learning paradigm. 

A pattern of induction Is an analytical framework which relates and organizes the 

various components of a learning problem and its solution. The first three components 

of the induction pattern are as follows: (1) a model of a knowledge-based system 

which defines a body of knowledge or information (K) and a behavior generating 

function (B) which operates on the knowledge to produce observable behaviors 
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(training data); (2) a collection of observed behaviors which constitute the training data 

( I ) for the induction algorithm; and (3) a learning algorithm (L) which operates on the 

training data to infer the Knowledge K which produces or "causes" the observations L 

If we assumed that the behavior generating function B were Known and invertible, the 

ideal knowledge acquisition algorithm L would be its inverse, such that L(I) - B ^ t t ) -

K; that is, we would simply apply the inverse function B" 1 to I to identify K. This view 

gives rise to the last component of the induction pattern, which is: (4) en induction  

theory which relates a learning algorithm L to a presumed behavior generator B. 

All three learning problems considered in this paper are approached uniformly 

b y means of the same induction theory, which is called interference matching (IM). 

Basically, this theory holds that the Knowledge underlying many training examples of 

the same pattern or rule may be directly identified by producing a representation (an 

abstraction) of the examples which emphasizes their commonalities and attenuates their 

differences. This theory is an extension of a primitive notion of Galton [4] called the 

composite photograph theory, which suggests that people learn to identify different 

v iews of the same object by developing a pattern template (a "composite photograph" 

transparency) by superimposing in memory many descriptions (transparencies) of 

varying training views of the object. Under this theory, the resulting template would 

retain only the essential features, those common to all examples. Any novel view of 

the same object would then be expected to exhibit (match) all criterial properties of 

the template. Of course. Gal ton's conception is completely dependent upon the 

presumed capacity to superimpose the multiple views in such a way as to preserve all 

criterial commonalities. Even the slightest difference in size or orientation would 

nullify the effectiveness of direct, physical super-imposition as a method of producing 

abstractions. Interference matching generalizes the process of extracting 

commonalities of pattern descriptions to feature and relational representations. It is 

considered in detail in section 4, after the various types of representations are 

introduced in section 3. 

The three types of learning problems considered in this paper are: symbolic  

pattern learning, the discovery of disjunctive and conjunctive formulae of the predicate 

calculus which characterize diverse examples of one pattern class and distinguish that 

class from other classes; rule learning, the identification of universally quantified 

[condition->action] productions derived from training data consisting of before-and-

after pairs of events which have been transformed by an unknown rule; and category  

learning, the formation of sets of functional substitutes or alternatives which constitute 

the domain of choices allowable within particular syntactic behavior rules. Each of 
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Three learning problems of considerable generality and wide applicability are 

considered here. The first is the pattern learning and classification problem: Given 

descriptions of an unclassified test item and several examples of each of a number of 

mutually exclusive pattern classes, identify the most probable class to which the test 

item can be assigned. The basic approach followed in solving this problem is to 

hypothesize that any set of properties (a characteristic) manifested by the test item 

might reliably distinguish the training exemplars of one class from all other classes. 

Each such hypothesis is more or less plausible depending on the empiricial likelihood 

that the associated characteristic occurs primarily among examples of a single class. 

The likelihood that a characteristic is matched only by examples of one class is called 

the diagnosticitv of the characteristic with respect to the class. To the extent that a 

characteristic is diagnostic with respect to some class, it is plausible to suppose that a 

test item matching the characteristic is actually an example of that class. The method 

used for determining classifications is simply to assign each test item to the one class 

which is indicated by the most diagnostic characteristic which the test item manifests 

[6, 7]. 

The second learning problem is that of rule induction and response selection: 

Given a description of a novel stimulus and training descriptions of previously 

experienced antecedent-consequent event pairs (or condition«>action sequences), 

these problems is described in more detail in section 2. Section 3 discusses a number 

of alternative knowledge representation schemes in terms of their capacity to facilitate 

learning from examples. The representations considered include simple feature codes, 

topological^ organized feature manifolds which facilitate generalization and 

discrimination of patterns over noisy and continuous attribute values, complementary 

feature codes for missing (negative) attributes which facilitate discovery of 

disjunctions, and relational descriptions which facilitate learning of structured patterns, 

production rules, and categories. Section 4 explains interference matching and two of 

its products, the abstraction and the residuals of compared representations. 

Abstractions produced by IM provide the solution to the first two types of learning 

problems, and residuals provide the solution to the category learning problem. Related 

algorithms for knowledge acquisition are described in section 5, and directions for 

future research are considered in the last section. 
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choose the most plausible response to the current test stimulus. A special case of rule 

induction and response selection is that of classifying a test item as belonging to one 

of several alternative pattern classes. More generally however, we may wish to 

respond to a stimulus by transforming the stimulus description by adding or deleting 

relations (asserting or denying predicates). Examples of the Kinds of rules which might 

be induced are the problem solving rules of STRIPS [3] which relate conditions of a 

problem domain to actions taken on related objects, the rules of transformational 

grammar which relate before-and-after deep structures of sentences, and the premise-

conclusion rules of inferential reasoning systems such as MYCIN [15]. 

The basic approach taken to this type of problem is to hypothesize that each 

[condition->action] pattern which is a characteristic of some [antecedent-consequent] 

training sequences defines a plausible rule. Those hypothetical rules whose inferred 

action components are most reliably supported by the training data are considered 

most plausible. Maximally reliable support for a hypothetical [condition->action] rule 

can be claimed whenever all training data whose antecedent events satisfy (match) the 

condition component of the rule are associated with consequent events which also 

satisfy the hypothesized action or response component. This is equivalent to 

extending the notion of diagnosticity to apply to the measurement of the degree to 

which the presence of a certain condition indicates that a particular response pattern 

will follow (in the training data). The learning methods which are developed to handle 

the first learning problem (pattern learning and classification) can be extended in a 

straightforward manner to solve these rule induction and response selection problems 

too. 

The third learning problem considered is the category and syntax learning 

problem: Given training descriptions of behaviors generated by a system which 

arbitrarily selects and systematically relates elements chosen from specific classes of 

alternatives, identify the unKnown classes and the systematic ways in which they are 

. related. The classes are called categories; systematic constraints on the use of 

categories are called syntax. An example of this sort of problem is to infer from a 

corpus of natural language in which one class of words (adjectives) systematically 

precedes another class (nouns), the categories adjective and noun and the relationship 

that an element of the class of adjectives is usually followed by an element of the 

class of nouns. As another example, consider learning the category of animate noun 

from the fact that only such nouns are regularly used as agents of instrumental and 

reflexive actions and, also, as the objects of verbs expressing affect (such as "love," 

"admire," etc ) . The approach taKen to this problem is to hypothesize that several 
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Because the computational complexity of learning algorithms is likely to be 

exponential, the choice of data representation may significantly affect its feasibility. 

Four alternative types of representations are considered in this section. Each entails a 

different combination of desirable and undesirable properties, and these are briefly 

considered. The four types of representations, ordered in increasing completeness of 

representational power, are based on (1) simple feature or property lists, (2) 

objects which reliably occur in identical relationships with some other objects 

constitute a category. It may be inferred that membership in that category is a 

necessary and sufficient condition for objects to particpate in the observed 

relationships. Thus a reliably occurring relationship is inferred as a syntactic pattern 

(e.g., the adjective-woun sequence pattern) at the same time as the actual objects 

which play consistent functional roles (e.g., the adjectives "big," "brown," "cute," ... 

reliably precede nouns) enumeratively define related syntactic categories. 

Obviously, the approaches outlined above to all three of these learning problems 

are combinatorial in nature. In every case, it was superficially suggested that each 

possible hypothesis (characteristic, rule, or category) be considered as a potential 

solution to the corresponding induction problem. Two separate issues of feasibility 

must be considered. First, if the combinatorics of this hypothesize-and-test method 

could be sufficiently controlled, would the proposed method produce good results? 

That is, would such a method be an effective learning algorithm. Both theoretical 

arguments and some preliminary experimental data suggest that the answer is yes. 

Secondy, given that such an exhaustive evaluation of plausible inferred knowledge 

(patterns, rules, categories) is an effective learning procedure, can heuristic methods 

be devised which can adequately control the combinatorics of the search? The answer 

to this question is approached in two ways in this paper. Firstly, a number of 

alternative knowledge (data) representation schemes have been studied with respect 

to their providing a feasible basis for induction algorithms. Some surprisingly simple 

representations make possible quick, effective solutions to seemingly complex pattern 

learning problems. These alternative representations are considered in some detail in 

the next section before the related learning algorithms are presented. The second 

avenue of approach, development of specific heuristics to constrain the amount of 

computing of the learning algorithms themselves, is discussed in section 5. 
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topological^ organized feature manifolds, (3) enumerated complementary feature code 

manifolds, and (4) general relational descriptions. Each of these repesentation schemes 

is now considered in turn. 

Simple feature descriptions are well known. This sort of representation employs 

the concept of an exogenously identified object which is described by a list of features 

(i.e., properties, unBry predicates or attribute-value pairs). As in all of the four 

representation schemes considered, the segmentation and identification of objects as 

well as the feature coding processes are exogenous to the representation itself. The 

inability of feature list descriptions to express general relationships among several 

objects in a single event is their chief weakness. This limitation is shared by all of the 

representation schemes except relational coding. Conversely, it is just because they 

are so simple that property list descriptions are attractive. While only simple 

combinations of attributes can be abstracted from training descriptions and employed 

for pattern recognition, such processing can be performed with great efficiency. Each 

feature can be associated with a single value in a bit vector—the value being one if 

the feature is present and zero if not—and matching operations performed by simple 

bit comparison operations [7, 10]. Specifically, the bit-wise logical product ( A ) of two 

feature bit vectors is their maximal abstraction, the set of all features common to both 

of them. Furthermore, if a pattern template is represented by a bit vector of criterial 

features, the determination of whether any event description matches the template can 

be performed by a simple bit-wise masking operation. 

The attractiveness of bit operations to effect learning (abstraction) and pattern 

recognition in the framework of feature list descriptions is seriously diminished by the 

fact that such matching operations are fundamentally all-or-none. Each bit in a feature 

vector represents an attribute that is or is nst present and provides no basis for 

fuzzv comparisons of two objects. In this context, the term fuzzv refers to a graded 

measure of the degree to which the values of the same attributes of two objects are 

similar. The capacity to retain the information that two objects are fuzzily equal is 

important in many learning problems involving continuous, ordinal, or noisy data. In 

these tasks, it is often necessary to infer from examples of a pattern an exact range of 

values on each attribute dimension which is characteristic of the pattern to be learned. 

While feature list matching is inherently all-or-none, special organizations of features 

have been identified which enable the efficient production of graded comparisons in 

such domains. A collection of features organized to facilitate particular learning tasks 

is referred to as a feature manifold, and two special manifolds which are well suited to 

the fuzzy match problem are now discussed 
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t w o general principles of organization for fuzzy match feature manifolds have 

so far been identified. First, values on any ordinal dimension may be described by 

features which are organized in an overlapping receptive field (ORF) manifold to 

facilitate, simultaneously, maximum generalization and discrimination during learning. 

Consider the problem of representing sampled values of a continuous attribute (e.g., 

amplitude, frequency, duration) to facilitate the discovery of the range of variability 

exhibited by successive pattern examples. Many sophisticated approaches to similar 

problems (e.g., the mixture problem) have been developed which depend upon an a 

priori parametric model of the data (Cf., [2]). While such an approach may be v e r y 

efficient in some domains, ORF representations provide an efficient basis for the 

generation of non-parametric inferences. 

Basically, the maximum possible range of attribute values [A, Z] on any 

dimension of interest is divided into adjacent overlapping intervals. Each interval 

[Q,Q+G] is assigned to a single feature which represents a range of values in which an 

observed value may be contained. The term receptive field is borrowed from the 

psychology of vision. In that context, the receptive field of an individual neuron refers 

to the specific retinal pattern which causes it to fire. In a similar way, the receptive 

field of a feature is just the range of possible attribute values which cause it to be 

true. Adjacent receptive fields overlap so that their ranges include common values. 

The largest range of values of any feature, G, is the maximum generalizability of any 

single conjunctive pattern description. The amount of separation between adjacent 

overlapping fields, D, is the maximum amount of discriminability between any two 

patterns and corresponds to the psychophysical concept of a just noticeable difference 

(JND). The values of A, Z, G, and D are the basic parameters of the ORF manifold 

representation [1, 11]. With only minor modifications needed if D does not evenly 

divide G or G does not evenly divide (Z-A), the feature manifold F of the simplest ORF 

representation is defined to be G - {[A, A+D], [A, A + 2 D ] , [ A , A+G-D], [A, A+G], [A+D, 

A+G+D], [A+2D, A+G+2D], .... [Z-G-D, Z-D], [Z-G, Z], [Z-G+D, Z], .... [Z-D, Z]}. The data 

representation of any attribute value h in the manifold F is Rp(h) - {[a, b] : h « [a, b ] 

and [a, b ] < F}. As a result of such representation, two data values h and h' may be 

fuzzi ly compared by simple set intersection of Rp(h) and Rp(h'): Rp(h) n Rp(h') « {[a, b ] 

: h * [a, b ] and h' c [a, b] and [a, b] * F} » [min F(h, h'), max F(h, h*)], where minF<h,h*) is 

the minimum of h and h* modulo the precison specified by D and maxp(h, IV) is the 

corresponding maximum. For example, if A - l , Z-10, D - l , G-4, F«{[1,2], [1,3], [1,4], 

[1,5], [2,6], [3,7], [4,8], [5,9], [6,10], [7,10], [8,10], [9,10]}, h-4 and h'-6, then Rp(h) n 

Rp(h') « {[2,6], [3,7], [4,8]}. This set comprises just those features which would all be 

true of data values in the range [4,6]. Such a maximally informative abstraction (range 
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generalization) from the data values h-4 and h'-6 is what was desired Notice that 

this intersection can be achieved by the same bit-wise logical product that was 

suggested for the all-or-none simple feature comparison problem. ORF organization 

thus is an effective representational basis for abstracting fuzzy commonalities from 

ordinal (temporal, spatial, amplitudinal, etc.) data. 

The second principle for the organization of fuzzy match feature manifolds is 

that of a radius gf generalization for value coding. Essentially, any observed value h 

of an attribute is generalized so that it is treated as if it were actually a range of 

values, [ h - ( , h+<]. For example if some scalar attribute had features for each of the 

values in P »{1,2,...,10} and « « 3 , and any data value h were represented as Rp^(h) -

(f : f«F* and f * [ h - « , h-K]}, then the data values h«4 and h'-6 would be repesented 

R p » 3 ( h ) - {1,2,3,4,5,6,7} and R p ^ h ' ) « {3,4,5,6,7,8,9}and the common abstraction would 

be Rp»^(h) n Rp»f3(h') - {3,4,5,6,7}. Thus, the radius of generalization « provides a 

basis for fuzzy matching of data like that previously considered with ORF manifolds. 

Here however, the manifold consists of simple feature values organized so that 

whenever the feature h is directly matched, all adjacent features within radius « of h 

are also excited. This organization of features for value representation is referred to 

as a radial generalization (RG) manifold The organization of an RG manifold provides a 

suggestive basis for interpretation of the observation that perceptual system ganglia 

and cortex are organized so that physically adjacent neurons have approximately equal 

receptive field values. As a result, the excitation of any neuron is likely to occur only 

if adjacent neurons are also excited to some extent. 

Interestingly, both the ORF and RG manifolds produce equivalent repesentations 

and abstractions. This can be seen by comparing the abstractions Rp(4) n Rp(6) and 

RF',3<4) n Rp^3<6) of the preceding examples. The first represented all data values in 

the range [4, 6]. The second abstraction, which was {3,4,»*.|9}, contains features that 

would all be true only of values in the range [4,6]. Thus, the generalization 

. parameter G of the ORF manifold corresponds to the « of the value generalization 

manifold. In either case, this radius of generalization corresponds to the amount of 

variability of data values which may be tolerated as perturbation or noise in evaluating 

the difference between an observed (measured) data value and the "true" underlying 

value. Alternatively, the radius of generalization can be interpreted as the maximum 

difference between the values of the same attribute which can be viewed as fuzzily 

equal. Given the equivalence of the two organizational principles, it is apparent that if 

« is a function of the data value (for example, the error of measurement is often an 

increasing function of its magnitude), the corresponding generalizability parameter G of 
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the ORF manifold must also vary accordingly. The choice of a particular organization 

between these two types of manifold is largely arbitrary. Functionally, the ORF and 

RG manifold representations are not identifiably different, although it seems that RG 

representations may actually be easier to implement since all feature coding may be 

completed without comparisons between the observed data values and the boundaries 

of the receptive field intervals. The common strength of both representations is their 

ability to compensate for error of measurement and accomplish fuzzy comparisons of 

data values, up to a specified precision or JND, in ordinal or continuous scales by 

intersection of bit-vectors corresponding to discrete features. 

While abstractions derived from any of the preceding representations will 

reflect only common, conjunctive characteristics of compared data, the third type of 

data representation, enumerative complementary coding, provides a basis for 

abstracting disjunctive characteristics of patterns through simple bit matching 

operations. The organizing principles of complementary feature manifolds are two: 

first, mutually exclusive attribute values are organized into sets called categories; and 

second, one feature is defined for every attribute which is and one is defined for 

e v e r y value which is not a property of the data to be coded. For example, in speech 

learning, the category of vowels might be V • {AH, AX, AO, EH, E R , U H } . One feature 

might be assigned to represent the presence of each vowel in each example of an 

unknown pattern. Under enumerative complementary coding, features would also be 

assigned to represent the absence of each possible vowel type. Let the "positive" 

features be defined by the set V, and let the special feature *V represent that at least 

one vowel was detected. Let the complementary set of "negative" features be W -

{-^AH, -AX, -AO, -UH}. Now consider comparing two data examples (B, AH, G) and (B, 

AX, G) of some unknown phonetic sequence pattern. If only positive feature codes 

were used, the two examples would exhibit features AH and AX, respectively, as well 

as the common feature (V. The comparison of these two descriptions would be just 

{ «V } , representing only that each datum contained some vowel. Alternatively, suppose 

each of the examples were also described by complementary features. The data (B, 

AH, G) and (B, AX, G) would be described as C V(B,AH,G) - {(V, AH, -AX, -AO, -UH} 

and C V (B,AX,G) - {fV, AX, -AH, -AO, -UH}. A feature comparison would be 

Cy(B,AH,G) n C V (B,AX,G) - {«V, -AO, - E H , . U H } - {«V} u (W - { - A H -AX} ) • AH v AX. 

That is, the result of forming the intersection of complementary codes of data based on 

a category V is to produce a set of negative features which exactly represents the 

disjunction of common positive features. It is interesting again to speculate upon the 

relationship between such feature manifolds and neural organizations. It is a well 

known fact that much of the perceptual system is organized in paired opponent 
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processes, consisting of two or more mutually inhibitory assemblages of neurons 

whose receptive fields are complementary (e.g., represent the mutually exclusive 

alternatives of light on vs. light off at the same locus). Simply stated, a complementary 

manifold may be conceived of as a set of mutually inhibitory detectors, where the 

"excitation state" of one feature in a category causes the "inhibited state" of all the 

others to be registered. Both types of detector states are considered as elements of 

the pattern description. 

The last type of representation used is relational coding, which provides a basis 

for describing events in terms of objects, attributes, and relationships among objects. 

The basic elements of a relational representation are parameters, properties, and case  

frames. A parameter is a unique symbol which represents a constant or names an 

object in one or more relations. A property is a feature or attribute of an object. A 

case frame is a set of property:parameter terms which represents a relationship 

among the objects named by the parameters. A case frame is a generic type of 

relation and thus corresponds to an n-ary predicate. Instances of case ir*me*t 

produced by substituting constants or object names for the generic parameters, are 

called case relations. Entire events are described by sets of case relations called 

parameterized structural representations (PSRs). A PSR is normally interpreted as a 

conjunction of the corresponding constituent predicates [6, 7, 9, 10]. 

A simple example will illustrate these concepts. Consider the problem of 

representing the pronunciation of the word "America." Using the ARPA speech 

understanding project phonetic alphabet, one pronunciation is (AX, M, EH", R, IH, K, 

AX*). This may be easily described in terms of the case frame {phone:x, begin:t b , 

end : t e , stress:k} meaning that the phone between times t b and t e is of type x and its 

stress is level K (0, 1, or 2). A PSR for the preceding "America" pronunciation would 

then be: 

T - {{phone:AX, begin:tj, e n d ^ , stress:0}, 
{phone:M, b e g i n ^ , e n d ^ , stress.O}, 
{phone:EH, beginit^ end:t^j, stress:2}, 
(phone:R, begintt^ end.tg, stress:0}, 
{phonetlH, begin:tg, end:tg, stress:0}, 
{phone:K, begin.tg, end:tyY stress:0}, 

{phone:AX, begimty, end:tg, stresstl}} 

This PSR is interpreted as follows: The word "America" is described by T as a 

pattern in which the unstressed phone AX spans the time interval t j to t 2 , the 

unstressed phone M spans the interval t 2 to t 3 , the maximally stressed phone EH 

spans the interval t 3 to t/j, etc. It should be noticed that the parameters t } , t g may 
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Figure 1. A network representation of eight pronunciations of "America" 

Parallel paths represent acceptable phone alternatives at any point, while the 

left - to - r ight sequence of arcs represents a conjunctive set of necessary phones. The 

fact that either AX or AH may occur between t j and t 2 is represented by the PSR: 

S j • {{phone.AX, begin.tj, end:t 2 , stress:0}«>+l, 
{phone:AH, begin:tj, end:t 2 , stress:0}«>+l};>l 

This subtemplate asserts that if an unstressed AX occurs between times t j and 

t 2 , +1 is to be added to the match count of S j . Similarly, +1 is to be accumulated if AH 

occurs. The total match count is then checked to see if it is I> the specified PSR 

threshold of 1; if the threshold is equalled or exceeded, S j is matched, otherwise not. 

By convention, each case relation which is matched increments the match count of the 

containing PSR by 1 and the default threshold of a PSR with n case relations is n. 

Recursively, any matched PSR nested within another PSR counts as a single matched 

case relation and by default contributes 1 to the match count. Negated relations can 

be similarly represented by adding -1 to the match count for conditions that arft 

matched but are intended not to be matched. Thus, the PSR corresponding to the 

template in Fig. 1 is just: 

T m {{{phone:AX, begin:^, end:t 2 , stress.0}, 

be interpreted either as constants or variables. In the former case, T would be a 

description of some sequence of phones from a particular time t j to a time tg 

containing the word "America." If these parameters are considered as variables, on 

the other hand, T represents a template for the word "America." If the description of 

some stimulus event S is given such that correspondents (parameters) in S can be 

found to bind to the variables t j , tg which insure that all case relations in T are 

true of S, S matches the template T and contains the word "America." 

While it is usually true that pattern templates can be described by conjunctive 

sets of case relations as in the preceding example, it is sometimes desirable to 

represent disjunctive or negated case relations. In the framework of PSRs, this is 

done by augmenting the PSR to reflect component weights and overall thresholds for 

matching. For example, the series-parallel network of Fig. I represents the eight 

alternative pronunciations of "America" used in our speech work. 
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{phone:AH, begin.tj, end:t2i stress:0}}.>l, 
{phone:M, begin:t2i e n d ^ , $tress:0}, 
{phone:EH, b e g i n ^ , endtt/j, stre$s:2}, 
{phone:R, beginrt^, end:tg, stress:0}, 
{{phone:IX, begin.tg, end:tg, stress.O}, 
{phone:AX, beginrtg, end:tg, stre$s:0}}fci, 

{phone:K, begin.tg, er\d:tj> stress:0}, 
{{phone:AX, begin:t 7 > end:tg, stres$:l}, 
{phone:AH, beginjt^ end:tg, stress:! } }£ l } 

The default threshold for V is the sum of immediately nested PSRs or case 

relations which is 7. Thus, if each of the seven conditions is satisfied by some stimulus 

data description S, S contains the word "America." For example, noting that 

corresponding parameters in T and T* have been identically named, the pattern T which 

describes one particular pronunciation is seen to satisfy all the conditions of T\ 

Furthermore, it will be true that all specific occurrences of the word "America" will 

match r and, thus, it would be conceivable to abstract the definition of V directly from 

the common elements of the descriptions of such examples. Such comparisons of 

relational event descriptions require a general interference matching procedure that 

can identify which objects correspond and which case relations are true of 

corresponding objects in two compared events. One such procedure, SPROUTER [121 

has been implemented, and it is discussed in the next section. 

In summarizing the current section, it should be noted that a variety of methods 

exist for representing training data to facilitate the discovery of the criteria! 

characteristics of patterns by noting the common properties of several examples of the 

same pattern. Feature representations permit comparison operations through bit 

matching operations, but relational representations apparently necessitate more 

complex matching procedures. Interestingly, some problems which at first view appear 

to require relational coding and matching can be solved by appropriate application of 

the feature manifold techniques. In particular, the complex pronunciation template T ' 

can be directly inferred from examples which are simply described using an ordinal 

feature manifold and a complementary feature manifold for the temporal positions of 

phone labels [11]. Specifically, if the set of possible phone labels is P, let the ordinal 

feature manifold F - {(p,t) : p t P and t « 1,2,...,7}, where any feature (p,t) represents 

the occurrence of a phone p in temporal position t in an input sequence. Let the 

complementary manifold be P - {(«P,t), (-*p,t) : p « P and t - 1,2,...,7}, where (-«p,t) 

means p is not a phone in temporal position t. If every example of the word "America" 

is represented by all appropriate features in F and F\ the maximal abstraction of these 

examples will be a feature list equivalent to the PSR template T (ignoring stress 
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4. INTERFERENCE MATCHING: ABSTRACTIONS AND RESIDUALS 

Interference matching is the process of comparing two event descriptions to 

identify their commonalities and differences. Any set of properties which are common 

to two compared representations is an abstraction of them. A maximal abstraction 

comprises all properties common to the two. Properties which are true of one 

description but not the other constitute the residual of the first. Interference 

matching of any of the feature based representations can be performed by computng 

the set intersection of the property list descriptions. More simply, each attribute-

value pair can be associated with a particular bit in a bit vector, and the abstraction of 

two descriptions is simply the set of features corresponding to the bits in the logical 

product of the two bit vectors. If E and F are the two bit vectors, E*F - E A F is the 

maximal abstraction, and the residual of E with respect to E*F, E/E*F - E A ( -F). In 

the next section, several results of using maximal abstractions of feature-based 

repesentations to learn patterns and syntactic categories are reported. 

To perform interference matching of relational descriptions is far more difficult. 

Basically, since PSRs can describe graphs, the production of a maximal abstraction of 

properties). This may be easily seen by considering just the abstraction of two 

examples, E{ « (AX, M, EH, R, 1H, K, AH) and E 2 - (AH, M, EH, R, AX, K, AX) whose 

representations are denoted R(Ej) and R(E 2). The abstraction E j * E 2 - R(Ej) n R(E 2 ) 

- ( «P ,D , H>,1> : P « (P-{AX,AH})} u {(M,2), «P,2), (-p,2) : p < (P - {M})} U . . . U {(*P,7), 

H>,7) : p < (P - {AH,AX})} • ((AX,1) v (AH,D) A (M,2) A (EH,3) A (R,4) A ((IH,5) V (AX,5)) 

A (K,6) A ((AX,7) v (AH,7)) « ((AX v AH), M, EH, R, (IH v AX), K, (AX v AH)). If this 

abstraction were matched to any of the other six pronunciations, the result would be 

equal to E j * E 2 . In this case, just two examples and simple bit-wise intersections 

would suffice to produce learning of a symbolic pattern equivalent to the seemingly 

complex PSR T\ 

Thus, it is apparent that some learning problems are made particularly simple by 

applying the IM procedure to an appropriately organized feature-based description of 

examples. The main objective of the current section has been to develop a familiarity 

with the variety of representation schemes available and to suggest the importance of 

choosing a representation which is as simple as possible for any particular induction 

problem. Later in this paper, several more examples will be given of the use of 

feature manifolds as bases for description and learning. 
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two PSRs is at least as difficult as finding a maximal subgraph of two graphs. Such 

problems are NP-complete, meaning that it is widely believed that this problem cannot 

be solved in an amount of time which is less than an exponential function of the 

number of case relations in the two compared PSRs. However, a heuristic program 

called SPROUTER has been implemented which performs interference matching and 

nearly always finds optimal abstractions in limited time and space [12]. 

The simplest way to understand interference matching in the framework of 

relational descriptions is as follows. Let E and F be two PSRs in which all parameters 

are variables.* Suppose E - { R j , R m } and F - { S j , S n } where each R f and Sj is a 

case relation, and let the parameters of E and F be Pg - { e j , e v } and Pp - {f j , 

f w } > respectively, where it is assumed that |Pg| £ |Pp|. A maximal abstraction of E and 

F can be computed by forming a 1-1 binding function B: Pp -> Pp such that each 

element e « Pp from the event E has the parameter f » B(e) i Pp as its correspondent 

in F. Ignoring alphabetic differences between corresponding parameters, the maximal 

abstraction of E and F under the binding function B is E * B F, the set of case relations 

common to both E and F when corresponding parameters are treated as identical. As 

an example, if the events "Mary is a tall, dark, female" and "John is a tall, fair, male" 

are represented, respectively, by E - {{name:m, wordtp}, {sex:m, valuers}, {female:s}, 

{height:m, valuetg}, {complexion™, valuerj}, {"Mary":p}, {talhg}, {dark:j}} and F -

{{name:n, word:q}, {sex;n, value:t}, {male;t}, {heightm, value:h} f {complexions, valuerk}, 

{"John":q}, {tall:h}, {faink}} and the binding function B » {(m,n), (p,q), (s,t), (g,h), (j,k)}, 

then E * B F - {{name:vj, word:v 2 } , {sex:vj , v a l u e ^ } , {height :^ , valueiv^}, 

{complexions j , value:v g } j {tallrv^}}. The residuals of E and F with respect to E * B F 

are E/E*BF - {{female:v 3}, {"Mary":v 2 } f {dark:v 5 }} and F/E*BF - { {male:v 3 } , 

{ M John" : v 2 } , { fa i r :v 5 } } . 

From this simple example, it is possible to see how the residuals of IM can be 

used to identify the elements of a category. Consider the parameters v 2 , v 3 , and v 5 

which occur in both residuals. v 2 , for example, is associated with the attribute values 

"John" in F/E*BF and "Mary" in E/E*BF. The comparability of "John" and "Mary," which 

is indicated by the fact that they serve similar descriptive functions in E and F and 

results in their attribution as different properties of the same parameter in the 

abstraction E* BF, suggests that they are both elements of the same syntactic category 

(say N). Thus, the hypothesis that there is a category N such that {"Mary", "John"} c N 

represents an inference that properties which play comparable roles in different event 

1 One may convert any constant c into a variable in a term such as attribute* by 
replacing the term by the variable term, attribute:*, and adding a un^ry relation 
{c:x} to the PSR. 
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descriptions are syntactically substitutable for one another. While at the outset of 

learning the only category known may be the set of all words, W - {"a", " b e " , " J o e " , 

" J o h n " , " M a r y " , " z o o " } , the use of similar assertions (e.g., {name:vj, word:vj} where 

{"Joe M :V j } or {"John":Vj} or ... {"Mary":Vj) supports the inference that a particular 

subset of W is the category of names, N - {"Joe", "John", "Mary"}. More complex 

bases for category induction are discussed in [9] and also in the next section. 

This section concludes with a brief description of the relational interference 

matching program SPROUTER (see [12] for more details). The program accepts as 

inputs (1) a lexicon of case frames which specify the types of properties and case 

relations which are used to describe events and (2) two descriptions, E and F, which 

are sets of parameterized case relations (PSRs). It is presumed that preprocessing has 

been done so that all relevant properties are present in E and F and all parameters 

are variables. SPROUTER computes a number of distinct binding functions B j , B k 

and, for each, outputs (1) a PSR corresponding to the maximal abstraction E tg, F and 

(2) a special recognition network called an ACORN [13] which can be used to decide, 

for any other PSR S, if S matches E *g, F. This is particulrly valuable if we are 

hypothesizing classification rules and must evaluate a rule's diagnosticity by 

determining how many training examples of each class match it. 

The method SPROUTER employs is as follows. Suppose the PSR E has the 

smaller cardinality of E and F. One node in the ACORN is generated ("sprouted") for 

each generic abstraction of E which is also an abstraction of F. Originally, (terminal) 

nodes are created for each generic case frame present in both E and F. Iteratively, 

case relations A E and fig from two nodes A and B are selected and are conjoined to 

form a tentative higher-order binary node. This node represents the abstraction of E 

corresponding to the set of case relations {Ag, Bg}. If at least one corresponding pair 

of case relations in F can be found, the new node is permanently added to the 

sprouting ACORN. Otherwise, the tentative node is deleted. The process is limited by 

a best-f i rst search of alternative binding functions after a breadth-first growth 

process has generated a pre-specified number of nodes. When the process 

terminates, the maximal nodes in the ACORN correspond to maximal abstractions of E 

and F, 

Hayes-Roth and McDermott discuss the strengths and weaknesses of this 

particular method of IM and suggest directions for further improvements. The major 

issues considered are: (1) methods for increasing the amount of real-world knowledge 

that can be brought to bear in specific abstraction problems to increase SPROUTER'S 

appreciation of the relative utilities of the various commmonalities it finds; and (2) the 
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5. KNOWLEDGE ACQUISITION PROCEDURES 

In this section, algorithms are described for the three learning problems 

introduced in section 2 and, where possible, empirical results obtained using these 

methods are presented. 

Pattern learning and classification. The algorithm used to solve these problems is 

called SLIM (Space Limited Interference Matching, [7]). Briefly, SLIM compares the 

examples of each pattern class using IM to develop maximal abstractions. Each 

abstraction is evaluated for its diagnosticity, and those which are expected to produce 

the greatest net (weighted) number of correct less incorrect judgments are given 

highest priority in the competition to persist in the limited memory space. 

Subsequently, novel test items are classified according to the most diagnostic 

abstraction they match. If a test item T matches no stored abstraction, a new 

abstraction T*A is generated from T and each stored abstraction A. Since T does 

match each T*A, T is classified in the class indicated by the most diagnostic T*A. 

The example used to illustrate pattern learning through SLIM is taken from [11]. 

The problem is to classify speech syllable types from training examples which are 

sequences of sets of machine generated alternative labels for a series of acoustic 

segments. The difficult aspects of this problem include: (1) the syllable types are 

theoretical clusters of confusable speech patterns which do not necessarily share a 

close relationship with characteristics of the machine generated data themselves; (2) 

even if a theoretical syllable type consisting of n acoustic segment labels were valid, 

the machine segmentation of a spoken syllable frequently contains errors of insertion 

and deletion; and (3) in addition to the fact that the machne segmentation often inserts 

or deletes some segments compared to a theoretically perfect segmentation, the 

segmenter-labeller which generates hypothetical phonetic labels for each segment of 

speech makes many errors, including both assignments of multiple, incorrect labels and 

failures to assign the correct label to each segment. Thus, the type of training 

examples one might receive for the syllable corresponding to the theoretical sequence 

(M,EH,R) in "America14 would be as follows (where multiple labels within column i 

represent alternative phonetic hypotheses for the i-th segment): 

need which arises in some contexts to generalize the concept of a binding function to 

permit one-many mappings between parameter sets. These issues, while v e r y 

important, are simply beyond the scope of this paper. 



Hayes-Roth 
17 

SEGMENTS 
1 2 3 4 5 

Theoretical: M EH R 

Example 1: T 
B 

N AX AX M 
M EL EL N 
V ER EH R 
F IH N 

Example 2: M AX B 
N ER R 

IH G 
H 

The basic approach taken to this learning problem is to develop a method of 

description which relates the training data to the presumed underlying behavior 

generator. The model posits that the underlying knowledge is the sequence pattern 

(M,EH,R) and the result of applying the behavior generating function (the effect of 

speech plus the effect of machine segmentation and labelling) is to insert and delete 

segments as well as add incorrect additional labels and delete proper labels from the 

segments that remain. Thus, interference matching (SLIM) will be an effective learning 

procedure only if the feature coding employed is robust with respect to the sources of 

variability. Only in that case will an abstraction of training data retain criterial 

properties of the underlying pattern (knowledge). 

The data repesentation employed in this case is a composition of both the ORF 

and the enumerative complementary coding feature manifold techniques. Each training 

example E - ( A ^ A k ) - ( { a n , . . . . a ^ } , { a 2 l , a ^ } , { a k l , . . . . a ^ } ) , where Aj -

i a i l ' a i n J contains the n f alternative machine generated hypothetical labels assigned 

to the i-th segment, is coded as having the following features: {(ajj . i) : a fj « A j t i - 1, 

k} u {(-*b,i): b is a possible label not in Aj}, To compensate for the expected error |i-i f| 

between the theoretical position of the i-th segment and the position P of the 

corresponding machine generated segment in the sequence ( A j , A k ) , overlapping 

receptive fields are used. Because the expected error is an increasing function of i, 

the features used are (a, [i-Gj,i+Gj]) where the radius of generalization Gj is the 

smallest integer which is at least i/2. The labels used were the 44 acoustic labels of 

the Hearsay I I speech understanding system [5]. 

SLIM was used to search for diagnostic abstractions of the training examples of 

the 12 most frequent syllable types. There were between 4 and 16 training examples 
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of each class and five novel test items per class (total test set size - 60). The 

segmenter-labeller used performs at about 60% accuracy at labelling and about 80% at 

segmentation (by a number of measures, see [5]). SUM 'S performance in this task was 

85% correct classifications of novel test items on the basis of the most diagnostic 

matched abstraction. A performance of 987, was achieved when SLIM was applied in 

its "filtered classification mode,M in which the abstraction process is re-performed for 

each item to be classified and all intermediate abstractions are masked by the features 

which are present in the test item. These results can be compared to the performance 

of a refined, theoretically motivated syllable classifier which was specially designed 

and hand-tuned to perform the syllable recognition task in the Hearsay I I system [16]. 

On exactly the same task, using the best matched syllable network template, the 

handcrafted knowledge source module achieved 682 correct. We think that this test 

provides impressive evidence of the capacity of the proposed techniques to achieve 

effective learning even in very noisy problem domains. 

Rule learning. The algorithm used to induce quantified production rules from 

before-and-after examples of situations where the rule was applied is called 

SPROUTER [12]. Basically, as previously described, SPROUTER computes maximal 

abstractions of any two relational descriptions. In particular, if Aj is a PSR describing 

an antecedent situation which was transformed into a consequent situation described 

b y the PSR Cj (i - l , . . . ,n), SPROUTER compares the two-tuples (Aj, Cj) and (Aj,Cj) to 

produce the abstraction (Aj*Aj, Cj*Cj). The procedure used for rule induction is, 

roughly, to compute (Aj» . . .*A n , Ci*„.*C n) and infer that Ajt . . .*A n - > C^ . . . sC n . 

As an illustration, consider the problem of inducing an unknown rule of 

transformational grammar from the following three antecedent-consequent example 

pairs. 

(1) "The little man sang a lovely song." —> 
"A lovely song was sung by the little man." 

(2) "A girl hugged the motorcycles." —> 
"The motorcycles were hugged by a girl." 

(3) "People are stopping friendly policemen." —> 
"Friendly policemen are being stopped by people." 

The relational descriptions of these sentence pairs consist of three types of 

components: (1) syntactic phrase structures and markers (e.g., NUMBER:SINGULAR, 

TENSE:PRESENT)j (2) a property which distinguishes elements of the antecedent 

sentence from elements of the consequent sentence (EVENT:ei and ANTECEDENTS as 

opposed to EVENT:e2 and CONSEQUENT*^ and (3) same-tvoe relations joining any 

pair of antecedent and consequent syntactic components which are identical types (i.e., 
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are distinct tokens of the same type or, equivalently, are the roots of identical directed 

phrase structure graphs). The PSR for the first sentence pair is shown below. 

{{ANTECEDENT* 1, CONSEQUENT:e2}, 
{ S : s l , NP :np l l , VP :vp l , EVENT:el}, 
{S:s2, NP:np21, VP:vp2, EVENT:e2}, 
{ N P : n p l l , DET:thel, ADJ:littlel, NOUN:nounll, EVENT:el}, 
{NP:np21, DET:al, ADJ:lovelyl, NOUN:noun21, EVENT»2}, 
{NOUNmounll , NST:manl, NUMBER:nll, EVENT:el}, 
{NOUN:noun21, NST:songl, NUMBER:nl2, EVENT:e2}, 
{ S I N G U L A R S 1, EVENT:e 1}, 
{SINGULARS 12, EVENT:e2}, 
{ V P : v p l , AUX:aux l l , VERB:verbl l , NP:np22, EVENT»1}, 
{SAME!NP:np21, SAME!NP:np22}, 
{NP:np22, DET:a2, ADJ:lovely2, NOUN:noun22, EVENT* 1}, 
{SAME!NOUN:noun21, SAME!NOUN:noun22}, 
{NOUN:noun22, NST:song2, NUMBER:nl3, EVENT:el}, 
{SINGULAR* 13, EVENT:el}, 

{VP:vp2, AUX:auxl2, PB:pbl, VERB:verbl2, PP:ppl, EVENT:e2}, 
{AUX iaux l l , AUXST:havel, TENSE:t l l , NUMBER:nl5, EVENT* 1}, 
{AUX:auxl2, AUXST:have2, TENSE:tl2, NUMBER:nl6, EVENT:e2}, 
{SAME!AUX:auxl 1, SAME!AUX:auxl2}, 
{VERB:ve rb l l , VST:singl, TENSE:t21, NUMBER:nl5, EVENT* 1}, 
{VERB:verbl2, VST:sing2, TENSE:t22, NUMBER:nl6, EVENT»2} , 
{SAME!VERB:verb 11, SAME!VERB:verbl2}, 
{PB:pb l , PBST:bel, TENSE:t23, NUMBER:nl6, EVENT»2}, 
{SAME!TENSE:tl 1, SAME!TENSE:tl2}, 
{SAME!TENSE:t21, SAME!TENSE:t22, SAME!TENSE:t23}, 
{SINGULAR:nl5, EVENT* 1}, 
{SINGULAR* 16, EVENT:e2}, 
{PRESENTS 11, EVENT:e 1}, 
{PRESENT:! 12, EVENT:e2}, 
{PAST-PART:t21, EVENT* 1}, 
{PAST-PART:t22, PAST-PART:t23, EVENT»2}, 
{PP:ppl , PREP:byl, NP:npl2, EVENT:e2}, 
{SAME!NP:npl l , SAME!NP:npl2}, 
{NP:npl2, DET:the2, ADJ:little2, NOUN:nounl2, EVENT:e2}, 
{SAME!NOUN:nounl 1, SAME!NOUN:nounl2}, 
{NOUN:tK>unl2, NST:man2, NUMBER:nl4, EVENT:e2}, 
{SAME!NIJMBER:nl 1, SAME!NUMBER:n 12, SAME!NUMBER:nl3, 
SAME!NUMBER:n 14, SAME!NUMBER:n 15, SAME!NUMBER:n 16}, 

{SINGULAR* 14, EVENT:e2}, 
{THE:thel , EVENT* 1}, 
{THE:the2, EVENT*2}, 
{SAME!WORD:the 1, SAME!W0RD:the2}, 
{LITTLE:l itt lel , EVENT* 1}, 
{LITTLE:little2, EVENT*2}, 
{SAME!WORD:littlel, SAME!W0RO:little2}, 
{MAN:manl, EVENT* 1}, 
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{MAN:man2, EVENT:e2}, 
{SAME!WORD:manl, SAME!W0RD:man2}, 
{HAVE:havel , EVENTiel}, 
{HAVE:have2, EVENT:e2}, 
{SAME!WORD:havel, SAME!W0RD:have2}, 
{SING-.singl, EVENT:el} , 
{SING:Ging2, EVENT:e2}, 
{SAME!WORD:sing I , SAME!W0R0:sing2}, 
{Ara l , EVENTie 1}, 
{A:a2, EVENT:e2}, 
{SAME!WORD:al, SAME!W0RD:a2}, 
{LOVElYilovely 1, EVENT:e 1}, 
{L0VELY:lovely2, EVENT:e2}, 
{SAME!WORD:lovely 1, SAME!W0RD:lovely2}, 
{SONGiGOngl, EVENTiel} , 
{S0NG:song2, EVENT:e2}, 
{SAME!WORD:song 1, SAME!W0RD:song2}, 
{BE :be l , EVENT:e2}, 
{ B Y : b y l , EVENT:e2}} 

This corresponds to Fig. 2. The PSRs for all 3 sentence pairs were supplied to 

SPROUTER, which abstracted the structure illustrated in Fig.3. 

insert Figs.2-3 here 

Here, same-type relations which were common to all examples have been 

retained and are represented by arrows linking subgraphs in the antecedent sentence 

structure with corresponding subgraphs in the consequent sentence structure. These 

correspondences represent identical quantified variables in the left and right-hand 

ssides of the inferred production. When the rule is applied, the actual parameter in a 

stimulus event which matches the antecedent will be bound to the corresponding 

quantified variable and should be substituted into the corresponding locus of the 

consequent structure. If this is done, the inferred production will effect the act ive-to-

passive transformation rule. 

How general is such a rule learning paradigm? In my opinion, all rule learning 

will correspond, in part, to the preceding methodology. The basic elements of the 

induction procedure are: (1) a set of antecedent-consequent examples I - {(Aj, Cj)}; (2) 

instantiation of a set of predicates which can describe the criterial properties, 

relations, and common subpattern types of each exemplar pair) (3) an interference 

matching algorithm to identify the rule F • [Aj»...*An - > Cj*...*CnJ (4) a method for 

evaluating the goodness of the rule F by ascertaining the diagnosticity of the rule, i.e., 

the extent to which F is a reliable description of the way in which each Aj can be 
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altered to produce the corresponding C ( ; and (5) a method of implementing the inferred 

rules as universally quantified productions so that the most reliable rules execute first. 

The keystone of this framework is (2), the instantiation of criterial predicates. Of 

course, in any reasonably complex learning environment, either there may be an 

excessive number of potentially criterial properties to evaluate or, worse, the 

properties that are criterial to the rule may themselves be yet unknown (undiscovered, 

undefined). In the former situation, heuristics must be used to evaluate only the most 

promising properties first. In the latter case, discovery of criterial properties must 

precede or, at least, occur simultaneously with discovery of an unknown rule. Such a 

situation arises when, for example, one wishes to infer Newton's law F - ma and any of 

the concepts of force, mass, acceleration or multiplication is unknown. In the next sub­

section a similar problem, that of discovering syntactic categories, is considered in 

some detail. 

Category and syntax learning. The algorithm used to discover syntactic 

categories attempts to invert the assumed syntactic behavior generator. For the sake 

of simplicity, assume surface strings of words are generated by context free rules in 

Chomsky normal form, such as D -> EF. That is, words or phrases in category E 

precede words or phrases in category F when generated as respellings of category D. 

To induce categories of single words from a corpus of text T - t ^ . . ^ , one must 

identify systematic sequential constraints on word sets. Suppose two sets of words W 

• {w i , . . . ,w m } and Y - { y j , .... y n } exist such that (Vi,j) P r [ t K + 1 - y j < Y | t K - W j « W] is 

significantly better than chance. In that case, one may reasonably infer that W and Y 

are subsets of some categories E and F such that, for some D, D EF is a rule of the 

language. (This may also re represented as the probabilistic rule E «> F.) If W and Y 

are maximal, in the sense that the addition of any word to either one reduces the 

significance of the prediction of Y from W, a reasonable inference is that D WY is a 

rule of the language. Once such inferences are made, the categories W and Y become 

unary predicates W(w) and Y(y); i.e., the category name is a property of any word 

which is contained in the corresponding set. Subsequent inferences may depend upon 

discovery of categories of categories, n-ary relations of categories, or sequences of 

categories [9]. For example, if the categories of determiner (words that precede 

adjectives, numbers, and nouns), adjective (words that precede numbers and nouns and 

succeed determiners), and noun (words that follow determiners, adjectives, and 

numbers and precede verbs) have been induced, the rule NP -> 

(determiner)(adiective)(number)noun can be inferred from the fact that all eight 

possible sequences of these categories reliably precedrelative qualifying pronouns 

(e.g., which, who, that,...) as well as precede and succeed verbs. 
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Three algorithmic approaches to this sort of induction problem are being 

pursued. First, Rich [14] showed that fairly effective categorizing of words could be 

accomplished simply by clustering words according to proximity in Euclidean N-space 

where each word Wj was represented by a vector of N numbers (vj,...,V|y|) where v j 

represented the probability that word Wj followed Wj in the training corpus. This 

method has two chief problems. First, clustering must be heuristically controlled either 

by some arbitrary proximity criterion or by some predetermined number of clusters. 

Secondly, the clustering can assign any word token to at most one category (cluster). 

Thus, distinct syntactic roles or senses of the same word token cannot be found. The 

second approach to this problem aims to correct these deficiencies by attempting to 

compute directly the probability that any two words are in one of the same categories 

b y computing the extent to which the two words have significant concordances of 

predecessors and successors. Once hypothesized subsets of size n are formed, the 

algorithm is iterated to attempt to combine these into sets of size n+1 which preserve 

the significant concordance of successors and predecessors (n«2,3,...). 

Finally, the third approach being pursued employs the enumerated 

complementary coding technique and IM to generate category inferences. Each 

sequential pair of words S m WjWj from the training corpus is represented by the set 

of properties R(S) - { ( W j , l ) , (Wj,2)} U {(^Wj», l) , (-<Wj>,2) : P * i, j ^ j*} which, in turn, is 

efficiently represented by the bit string B(S) - ( b j j , b j ^ , C J J , c ^ b 2 i ) .... b2|^, 

c 2 i i C2fv4>. where b h k - l only if (w k ,h) is a feature and c ^ - 1 only if ( -w k ,h ) is a 

feature of R(S). Then, the bit-wise logical product of B(S) and B(T) « S*T represents 

the common information about sequences S and T. For example, if S - (a, dog), T -

(the, dog), then S*T represents ((a v the), (dog)). The statistical information relevant 

to assessing the goodness (diagnosticity) of the inference that the category {a,the} 

predicts the category {dog} includes F({a}), F({the}), F({dog}) and F({dog} | {a,the}) 

which are, respectively, the frequencies of the words Ma," "the," and "dog" and the 

frequency with which the word "dog" follows the words "a" or "the." One possible 

measure of the goodness of the inference that some rule of grammar is X -> {a, the} 

{dog} then is M({dog} | {a,the}) - F({dog} | {a,the}) / expected F({dog} | {a,the}) where 

the expected F({dog} | {a,the}) - F({dog}) F({a,the}) / N and N is the total number of 

words in the training corpus. Basically, this measure M(V|U) is the ratio of the 

observed positive frequency of the sets U followed by V divided by the expected 

(chance) frequency of such sequences. 

If the goodness measure M replaces the expected net number of correct 

classifications (the performance) of hypothetical classificatory rules, if inferred syntax 
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rules are represented by bit string products of the sort described above and ordered 
so that the best rules occur highest in the working list of intermediate abstractions, 
and if the observed positive frequency of a rule is conditionalized upon (reduced by ) 
the postive frequency of the higher performing rules with which it is redundant (see 
[7]), the SLIM algorithm is effective for finding categories and related syntactic rules. 
As an illustration, the following corpus of partial sentences (noun phrases) were 
described using enumerative complementary codes and supplied for training of 
categories. 

S } a dog ... 
s 2 the dog ... 
5 3 a cat... 
5 4 the cat... 
5 5 a big dog... 
sg a green cat... 
S 7 the yellow dog ... 
sg the big cat... 

The following sequences of categories were inferred and are written here as 
prediction rules: 

EULE GOODNESS INTERPRETATION 

{big,green,yellow} adjective 
- > {dog,cat} 2.5 «> noun 

{a,the} - > {big,green, determiner - > 
yellow,dog,cat} 1.67 adjective v noun 

Note that these two rules account for all 12 sequential pairs of words in the 
training set. The first rule accounts for 4 pairs of words when a chance co-occurrence 
would yield 1.6 sequences of these words. The second rule accounts for 8 sequential 
pairs of words when 4.8 are expected. All other possible rules are lower performing 
and redundant with these. 

A full investigation of such syntactic inference is beyond the scope of this 

paper. It would be necessary to augment training descriptions by properties 

corresponding to membership of words in inferred categories and then to reiterate this 

non-supervised learning procedure. This would facilitate discovery of rules based on 

higher-order syntactic relations as in transformational grammar. For the present 

purposes, it suffices to say that the outlook is bright for learning categories and rules 

of syntax by simple generalization of the methods which are proving so useful for the 

induction of patterns and rules from examples. 
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Within the framework of the present paper, it is easy to understand where the 

chief obstacles and most promising applications of such learning techniques are likely 

to be in the near future. The most difficult problems remaining to be solved concern 

the combinatorics of relational matching and the need to restrict the evaluation of 

potential predicates to the most criterial ones first. The possibility of finding a feature 

manifold representation for general relational structures (like those found for 

disjunctions and sequences) must be considered a significant goal. The wide-scale 

application of the interference matching algorithm to many AI and PR learning problems 

is apparently warranted. Both in areas where much theoretical knowledge exists about 

potentially criterial properties and in areas where combinations of large numbers of 

primitive features need to be evaluated as possible bases for pattern description, 

interference matching provides an effective technique for abstracting patterns and 

rules from examples. 

4. 
5. 
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passive transformational rule. 
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Figure 3 . Graphical representation of the induced active-to-passive transform-
tional rule. 


