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The 

deve loped 
Hearsay II speech understanding system being 

at Carnegie-Mellon University has an independent 

Knowledge source module for each type of speech knowledge. 

Modules communicate by reading, writing, and modifying 

hypotheses about various constituents of the spoken utterance in 

a global data structure. The syntax and semantics module uses 

rules (productions) of four types: (1) recognition rules for 

generat ing a phrase hypothesis when its needed constituents 

have already been hypothesized; (2) prediction rules for inferr ing 

the l ikely presence of a word or phrase from previously 

recogn ized portions of the utterance; (3) respell ing rules for 

hypothes iz ing the constituents of a predicted phrase; and (4) 

postdict ion rules for supporting an existing hypothesis on the 

basis of additional confirming evidence. The rules are 

automatically generated from a declarative (ie^ non-procedural) 

descr ipt ion of the grammar and semantics, and are embedded in a 

paral lel recognit ion network for efficient retrieval of applicable 

rules. The current grammar uses a 450-word vocabulary and 

accepts simple English queries for an information retr ieval 

system. 

INTRODUCTION: THF PRORl FM 

The fundamental problem facing the syntax and semantics 

component of a speech understanding system is uncertainty. The 

system is uncertain about a variety of questions, including: 

whether a given word is really uttered by the speaker; when a 

recogn ized word begins and ends; whether a particular interval 

of the utterance contains a silence, a tilled pause ("er,M "urn," 

"uh"), an informationless interjection ( V k n o w , " "I mean"), or an 

information-bearing word or phrase; whether a recognized word 

or phrase is used in a particular sense; etc. Any decisions made 

on the basis of such uncertain information are potentially 

incorrect and must therefore be reversible. The classical method 

of revers ing decisions is backtracking. Backtracking and bes t -

f irst evaluation of alternative parses are the primary strategies 

employed by the Hearsay I speech understanding system (Reddy, 

et aL, 1973a, 1973b). 

In Hearsay II (Lesser, et aL, 1975) multiple alternatives are 

represented explicitly in a global data structure ("blackboard") 

and cons idered in parallel rather than one at a time as in Hearsay 

I. Process ing is dr iven by independent data-directed knowledge  

source modules (KSs) which create, examine, and revise 

hypotheses, stored on the blackboard, about the utterance. One 

dimension of the blackboard is level of representation: an interval 

of speech may be simultaneously represented at the acoustic, 

phonetic, phonemic, syllabic, word, phrasal, and conceptual levels. 

The KSs translate from one level to another with the ultimate 

object ive of representing the utterance at the conceptual level, 

i.e., understanding it. Hearsay II is a distributed logic system in 

that contro l of processing is distributed h ie ra r ch i ca l l y among 

the KSs rather than organized hierarchically. Each KS is 

respons ib le for deciding when it has useful information to 

contr ibute to the analysis of the input. 

The syntax and semantics KS in Hearsay II is called SASS, 

and deals with hypotheses representing words and phrases 

perce ived or expected in the utterance. From SASS's viewpoint, 

the b lackboard can be viewed as a chart of hypothesized words 

as in F igure 1, which represents the word hypotheses generated 
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by lower- leve l KSs in response to the utterance "Tell me about 

beef." In the figure, time goes from left to right and the vertical 

dimension represents hypothesis credibility on a scale from -100 

to 100, as estimated by other KSs. SASS's problem is to find the 

most plausible sequence of temporally adjacent words. 

Plausibi l i ty is defined by the credibility of the individual word 

hypotheses and the grammatically and meaningfulness of the 

sequence. The concept of temporal adjacency is general ized to 

tolerate fuzzy word boundaries, overlap between successive 

words, si lences in the middle of word sequences, and 

unintel l igible intervals. Since some of the uttered words may not 

have been hypothesized, SASS must be able to expand the 

solut ion space by inferring the likely presence of a missing word 

on the basis of existing word hypotheses. Such inferences are 

relat ively weak since several predictions may be plausible in a 

g iven context. In the example of Figure 1, SASS hypothesizes 

the missing word "tel l" in the interval preceding "me about beef." 

Since SASS is uncertain as to which word hypotheses are 

correct , it also makes several incorrect word predictions. Figure 

2 shows the words predicted by SASS on the basis of the words 

shown in Figure 1. The figures do not reflect the fact that the 

var ious hypotheses are generated at different times and SASS 

starts generat ing predictions prior to completion of the word 

recognit ion process. 

In order to control the potentially explosive search 

through this combinatorial and expanding solution space, SASS 

must be able to reflect the variable reliability of its inference 

rules and to relax its plausibility criteria dynamically so as to 

stimulate processing on unrecognized portions of the utterance. 

SASS must be able to use partial information to guide further 

process ing in useful directions. To avoid duplicated computation, 

SASS must store and use partial parses, which are intermediate 

computations (plausible subsequences) common to many potential 

parses. SASS must combine these partial parses into plausible 

complete parses, select the best complete parse, interpret the 

meaning of the recognized utterance, and respond appropriately. 

The problems faced by SASS -- uncertainty, combinatorial 

search, fuzzy pattern-matching, strong and weak inferences, and 

the need to exploit partial information -- are common to many 

large knowledge-based systems. Efficient solution of these 

problems appears to require a system organization in which the 

schedul ing of inferential processes is sensitive to various 

cooperat ive and competitive relationships among the inferred 

hypotheses. For example, processing should be facilitated on an 

hypothesis supported cooperatively by multiple sources of 

information. Conversely, processing should be inhibited on an 

hypothesis which competes -- Le^ is inconsistent with - - a 

strongly credible hypothesis. Inhibition in an environment of 

uncerta inty must be implemented non-deterministically, since the 

weaker hypothesis may in fact be correct. Non-deterministic 

inhibit ion is ef fected in Hearsay II by a focus of attention 

mechanism which allocates computational resources so as to 

consider the most promising hypotheses before others (Hayes-

Roth & Lesser, 1976). 

The approach used in SASS is relevant to pattern 

recognit ion for its fuzzy pattern-matching; to problem solving for 

its f lexible combination of bottom-up, top-down, fo rward 

inferencing, and problem reduction mechanisms; and to 

information retrieval and the problem of pattern-directed 

funct ion invocation for its efficient mechanism for continuously 

monitoring a data base for occurrences of any of a large number 

of relational patterns or templates. 



OVERVIEW OF METHOD 

Given a declarative (le^ non-procedural) description of the 

target language which our system is to understand, we need to 

convert it into behavior which is adequate to understand 

utterances in the language efficiently and robustly. Our approach 

has been to automate this conversion as much as possible. 

Syntactic and semantic knowledge about the \arge\ language is 

expressed in a compact, readable grammar. A compiler converts 

the grammar into precondition-response productions. The 

product ions are embedded in a recognition network to enable 

eff ic ient continuous monitoring of the blackboard for stimuli 

matching production preconditions. In general, many productions 

wil l be invocable at any given time. Various scheduling policies 

se rve to hasten the invocation of productions which are 

cons idered likely to generate useful (correct, relevant, and 

necessary) results and to inhibit or defer less promising 

invocations. 

LINGUISTIC KNOWLEDGE 

The grammar describing the target language is expressed 

using parameterized structural representations (PSRs), which are 

sets of attr ibute-object pairs. We use a PSR to define a class of 

words and phrases which can fulfill the same syntactic or 

semantic function in the target language. The current target 

language consists of simple English queries for a news retr ieval 

program. For example, the PSR 
(SCLASS: SQUERY, 8PNAME: "PARSED QUERY", 

<•: 8GIMME+8WHAT, 
c-: TELL+8ME+8RE+8TOPICS, 
U WHAT+HAPPENED+8 ANYWAY, 

<: WHAT+8BE+THE+8NEWS+8RE+8TOPICS, 

<: 8BE+THERE+8ANY+8PIECES+8RE+8TOPICS, 

FACTION: PASS, 

8LEVEL: 300) 
def ines the class "8QUERY" of possible queries in terms of its 

alternative syntactic realizations. The attribute V denotes 

membership in the class. Each member of the class is a sequence 

template whose constituents, separated by "+", are words or 

phrases. Phrasal constituents are prefixed by "8" and def ined in 

turn by other PSRs. Additional attributes of the class are def ined 

by other components of the PSR. "FACTION: PASS" means that 

SASS's response upon recognizing an instance of any of the f ive 

templates in the class should be to treat it as an instance of 

SQUERY. The 8LEVEL attribute estimates the relative 

completeness of the partial parse underlying the hypothesized 

phrase. The PSR 

(SCLASS: ATOPICS, 

«: 8PLACE, 

<: 8F00D, 

<: ^TECHNOLOGY, 

(-: 8SCIENCE, 

€: ^GOVERNMENT, 
0: ^POLITICS, 

(: 8PE0PLE, 
<-: 8TOPICS+8CONJUNCTION+8TOPICS, 

8ACTI0N: PASS, 8LEVEL: 40) 

def ines the class of possible topics in the news in terms of its 

semantic subclasses. The grammar for the current 450-word 

target language consists of 113 PSRs. 

TYPES OF BEHAVIOR RULES 

SASS has a repertoire of strong and weak methods, 

represented by different types of behavior rules used in 

understanding. 

A recognit ion rule generates a phrase hypothesis in 

response to suff iciently credible hypotheses for the phrase's 

const ituents. SASS considers an hypothesized constituent to be 

recognizab le if its credibil ity rating, determined by other KSs, 

exceeds a minimum threshold for plausibility. The hypothesized 

const i tuents may also have to satisfy some structural condition 

such as temporal adjacency between sequential constituents of a 

phrase. A recognition rule represents a strong inference; its 

s t rength is the probabil ity that the recognized constituents can 

be in terpreted as an instance of the phrase. For example, "beef" 

can be interpreted as a food or as a complaint, depending on 

context. Recognition rules drive processing upward toward a 

complete parse of the utterance from plausible partial parses. 

Recognit ion behavior can be thought of as bottom-up parsing. 

A predict ion rule hypothesizes a word or phrase which is 

l ikely to occur in the context of a previously recognized port ion 

of the utterance. Prediction rules drive processing outward in 

time from "islands of plausibility," and are necessary since not all 

words in a spoken ^utterance may be recognized bottom-up by 

lower-level KSs. Predictive behavior can be thought of as 

f o rwa rd inferencing. \ The strength of a predictive inference is 

the conditional probabi l i ty that the predicted constituent occurs, 

g iven that its predictive context has been recognized. This 

s t rength is inversely related to the number of constituents which 

can plausibly occur in the given context. 

A respel l ing rule enumeratively hypothesizes the 

const i tuents of a predicted phrase, by subdividing an 

hypothes ized sequence into hypotheses for its sequential 

const ituents, or by splitting an hypothesized class into alternate 

hypotheses for its various members. Respelling rules dr ive 

process ing downward toward the word level, so that high-level 

phrasal predict ions can ultimately be tested word-by-word by 

lower-level KSs. Respelling can be thought of as top-down 

behavior or generation of subgoals from goals. 

Finally, a postdiction rule solicits post hoc support for (i.e., 

se rves to increase the credibil ity ratings of) existing hypotheses 

f rom other hypotheses in whose context they are plausible. 

Postdict ion rules include prediction and respell ing rules which are 

too weak to justify creation of hypotheses, but can contribute 

useful information when the hypotheses already exist. For 

example, an expectation for an instance of STOPICS fol lowing the 

w o r d "about" should not be respelled into hypotheses for all the 

nouns in the vocabulary, since to do so would explode the search 

space. However, once the word "beef" is hypothesized in the 

correct time interval on the basis of other knowledge, the 

hypothes is should receive support from the expectation for a 

topic word . 

Postdict ion rules serve three functions: they allow 

cooperat ion between inferences which support the same 

hypothes is on the basis of different evidence; they allow words 

and phrases hypothesized with initial low credibil ity ratings to be 

recogn ized on the basis of their contextual plausibility; and they 

help focus attention in productive directions by increasing the 

ratings of hypotheses which are contextually plausible (and thus 

re lat ively likely to be correct) so that processing on them is 

scheduled sooner. In the sense that postdiction responds to 

weak ly- ra ted hypotheses by seeking causal antecedents 

(predictors) for them, postdiction can be thought of as post hoc 

inferenc ing or "twenty-twenty hindsight " 

CONVERSION OF STATIC KNDWI FDGE TO RFHAVIOR RULES 

Most of the information necessary for understanding the 

target language is implicit in the grammar which describes it. The 

automatic conversion of this static information into a usable 

procedura l form is effected by a simple compiler called CVSNET, 

wh ich translates the PSRs into recognition, prediction, respel l ing, 

and postdict ion rules. A few rules hand-coded in explicit ly 

procedura l form are then added, for example a rule that prints a 

message when a sentence is recognized. The only linguistic 

knowledge in CVSNET itself is an elementary understanding of 

sequences and classes. CVSNET decomposes the sequence 

templates cj+C2+...+c n into pairs of subsequence templates. For 

example, from the sequence template TELL+8ME+8RE+8TOPICS, 

CVSNET generates the new templates 8ME+8RE+8TOPICS and 

8RE+8TOPJCS. 

CVSNET then generates the appropriate rules for each 

template. The recognition rule for a sequence is to concatenate 

its hypothes ized subsequences provided they are temporally 

adjacent and sufficiently credible. The respell ing rule respel ls a 

pred ic ted sequence into its two subsequences. Prediction rules 



are generated to predict the remaining constituents of the 

sequence when a subsequence of it has been recognized. 

Similarly, CVSNET generates rules for recognizing an instance of 

a class from an hypothesized constituent of the class and for 

respel l ing a predicted class into its constituents. CVSNET 

estimates the strength of each such rule as an inverse function of 

class size. CVSNET also generates the relevant postdiction rules. 

Some of the rules generated from the PSRs are shown below; 

rule type is indicated by the type of arrow separating stimulus 

and response ("-*" for recognition, "=>" for prediction, "+>" for 

respel l ing, and "<=" for postdiction) and rule strength is shown in 

parentheses. 

TELL & 8ME -> TELL+8ME < CONCATENATE (100) (100) > 

TELL & 8ME <= TELL+8ME < POSTDICTISEQ (100) (100) > 

TELL+8ME +> TELL & HME < RESPELLISEQ (100) (100) > 

8ME -> TELL < PREDICTJLEFT (50) > 

TELL <= 8ME < POSTDICTiLEFT (50) > 

TELL => 8ME+8RE+8TOPICS < PREDICTJRIGHT (100) > 

SME+8RE+8TOPICS <= TELL < POSTDICT.'RIGHT (100) > 

8F00D -» 8T0PICS < PASS (100) > 

8T0PICS +> 8F00D < RESPELUCLASS (70) > 

8FOOD <= 8T0PICS < P0STDICT1ELEMENT (88) > 

The linguistic knowledge expressed compactly in the 

grammar is represented highly redundantly in the generated 

rules. This redundancy provides the basis for robust 

performance in the errorful domain of speech: in regions of the 

utterance where strong inferences (recognition rules) are 

inadequate (for example, because lower-level KSs have failed to 

hypothes ize some of the uttered words), weaker inferences must 

be appl ied in order for the utterance to be understood. 

IDENTIFICATION OF INVOCABLE RULES 

All of the rules described have the form 

[p r e cond i t i on^^, . . . , x n ) =>̂  re$ponse(xj,X2i...,xn)]> signifying that 

a spec i f ied response can be inferred with strength f from the 

objects X | , X2, x n whenever these objects are in the 

relat ionships descr ibed by the associated precondition. The large 

number of rules required even in a relatively simple system (over 

3 000 rules for a 450-word vocabulary) necessitates an eff icient 

means of continuously monitoring the blackboard to determine 

wh ich rules are currently invocable because of data satisfying 

their preconditions. 

This problem is solved by embedding the rules in an 

automatically compilable recognition network (ACORN), as . 

d iscussed e lsewhere (Hayes-Roth & Mostow, 1975). In brief, 

each grammatical constituent (word or phrase) is assigned a 

unique node in the network. Rules whose preconditions refer to 

the constituent are stored at the node. Whenever an hypothesis 

for the constituent is created or revised, its node is activated and 

the relevant rules become invocable. 

PRINCIPLES OF CONTROL 

The rule preconditions are defined in terms of various 

thresholds for plausibility, temporal adjacency, etc. These 

thresholds can be given values specific to a particular region of 

the utterance and are dynamically modifiable. Thus rules are 

invoked not only in response to new hypotheses but also in 

response to local threshold changes. This mechanism allows 

f lex ib le matching of rule preconditions. Thresholds can be 

re laxed in unrecognized regions of the utterance to permit 

local ized application of methods whose weakness would cause 

combinatorial explosion if they were applied uniformly throughout 
the utterance. 

Hypotheses are explicitly linked in the data base to 

hypotheses which support them inferentially, and the links are 

marked with the strengths of the inferences. A rating pol icy 

module (RPOL) rates the plausibility of new hypotheses on the 

basis of the ratings of the hypotheses which support them and 

the strengths with which they do so. RPOL updates these ratings 

when an hypothesis receives new support or when the rating of 

one of its support ing hypotheses is changed. Hypotheses are 

rated separately on their contextual plausibility and on the 

extent to which they are supported by lower-level hypotheses. 

The combinatorial search can be controlled by modifying 

the appropr iate threshold values. For example, the search can 

be broadened or narrowed by relaxing or tightening criteria for 

recognizabi l i ty, since the solution space consists only of 

sequences of recognizable words. A best-first search policy can 

be implemented simply by ordering rule invocations according to 

the strengths of the rules and the- plausibility ratings of the 

hypotheses matching the rules' preconditions. The search can be 

further focussed by inhibiting low-level processing within a 

reg ion already accounted for by a credible high-level hypothesis. 

Of course this policy must be pursued with caution since the 

high- level hypothesis may be incorrect. Cautious inhibition is 

implemented as deferred processing. A similar policy of 

procrast inat ion can be used to defer application of weak 

inferences in a region until strong methods fail. An inferential 

process can be deferred by scheduling it with low priority (so 

that it may never in fact be executed), or by scheduling it only 

when the relevant thresholds are relaxed. The latter mechanism 

permits reconsideration of previously rejected alternatives. 

Discourse rules can also help to focus the search. For 

example, an hypothesis that the current topic of conversation is 

food increases the a priori probability that the word "beef" will 

be uttered. If we can predict subject matter or syntax from any 

one of many knowledge elements (e.g., a recognized cue word in 

the same utterance, semantic analysis of previous utterances, 

knov/ledge of the particular speaker's interests), we can create 

such an hypothesis. This form of semantic and syntactic priming 

is non-restr ict ive in that it does not preclude recognizing an 

utterance which is inconsistent with an hypothesized topic of 

conversat ion or an expectation for a particular grammatical 

construct ion. The mechanism is also graceful in that it does not 

impose a strict hierarchy of topical domains, and in fact tolerates 

ambiguity and uncertainty in the expectations generated by 

prev ious discourse. 

Inexact matching can also be carefully controlled with 

thresholds. An interval of silence in the middle of an utterance 

can be accepted by relaxing temporal adjacency thresholds in the 

region of the si lence so that hypothesized sequence constituents 

temporal ly separated by the silence will be considered 

temporal ly adjacent. For example, if the speaker says "Tell me 

about . . . beef," this mechanism allows the words "about" and 

"beef" to be considered temporally adjacent. Interjections and 

unclear intervals of speech can be nondeterministically ignored 

by treat ing them as silences. Sometimes the uttered words 

cannot be recognized by lower-level KSs even after SASS 

hypothes izes them on the basis of surrounding context. In such 

cases, partial ly-matched phrases can be recognized by lowering 

credib i l i ty thresholds in unintelligible intervals so that unfulfi l led 

expectat ions for missing constituents are treated as if they had 

been fulfi l led. These mechanisms can even be used to tolerate 

some variation from the target language by ignoring extra 

verb iage not accounted for in the grammar and by filling in 

omitted constituents required by the grammar. 

PERFORMANCE EVALUATION 

The contribution of e»arh k'Q u 
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hand, the word-hypothesizer KS might eventually have lowered 

its own thresholds enough to have weakly hypothesized the 

missing "tell." In this case, SASS's postdiction of the hypothesized 

" te l l " from its surrounding context might have been critical in 

increasing its credibi l i ty rating sufficiently to permit it to be 

recognized. 

Despite the complex dynamics of the integrated system, we 

do have an evaluation methodology for SASS which will be 

pursued in the next year. Basically, our strategy is to generate a 

var ie ty of artificial problems, each defined by a set of 

hypothes ized words, and measure the elapsed time until SASS 

parses the utterance. In particular, we should be able to 

evaluate the relative efficacy of the four types of behavior rules 

in overcoming various kinds of error in the artificial input. If we 

can then estimate the relative frequencies of different kinds of 

e r ro rs generated by lower-level KSs, we can attempt to optimize 

SASS's behavioral profile. 
CONCLUSION 

There are many functions to be performed by a syntax and 

semantics knowledge source within a speech understanding 

system. In addition to simply parsing a sentence, the knowledge 

source must use a variety of strong and weak inferencing 

methods to hypothesize missing constituents and adduce support 

for exist ing hypotheses found in appropriate contexts. A 

product ion system using four types of rules has been developed 

to implement such desirable "knowledgeable" behaviors, which 

are automatically inferred from a simple declarative 

representat ion of the language to be understood. By making the 

invocat ion of a rule be dependent upon both the credibi l ity of 

the data matching the rule's preconditions and the estimated 

s t rength of the rule as a useful inference, the entire search 

process may be controlled so as to pursue dynamically modifiable 

global and local processing objectives. In sum, such a production 

system provides a general framework for represent ing 

"knowledgeable" syntactic and semantic behaviors. Moreover, the 

f ine computational grain of the behavior rules makes possible the 

f lex ib le and precise control needed to avoid a combinatorial 

exp los ion in the search for a plausible interpretation of 

cont inuous speech. 
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