
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Basic Kernel Reference manual

Ellis Cohen
Bill Corwin

Dave Jefferson
Tom Lane
Roy Levin

Joe Newcomer
Fred Pollack

Bill Wulf

Department of Computer Science
Carnegie-Mellon University

November 4, 1976

£ ™ * t ***** Hsncy of tKe
the Air Force Office of Scientific R ^ c h] F 4 4 8 2 ° - 7 3 - C - 0 0 7 4 a*a monitored b?

S t a t e m e n t of C o n t e n t

This publication, a subset of the Hydra Reference Manual, is intended as a
general introduction to the details of the Hydra operating system. The
chapters selected were those considered relevant to a general understanding
and appreciation of the capability-based protection system of Hydra. The
material also. includes the introductory and reference material on the
mechanism for the switching of protection domains, the CALL mechanism.

This document includes the complete Table of Contents and Index from the
Hydra Reference Manual as an outline of the total work. Omitted are the
chapters on Paging, the Kernel Multiprogramming System (KMPS), the GST,
the Policy System Interface, the interprocess communication system (the
Port system), the physical device I/O support, and most of the appendices. A
section dealing wi th the fine details of LNS context blocks has also been
omitted.
For those who are actually programming Hydra, the Hydra Programmer's
Supplement is available, which includes the material on LNS context blocks
and nearly all of the appendices. The chapters on KMPS, the Port system, the
Policy system interface and device I/O are also available as separate
documents, since most users do not need to interact wi th the Kernel at those
interfaces.
The Reference Manual was published in parts in order to most efficiently
c a r ^ r p A l l classes of users. Reference copies of the complete manual have been serve all classes of users
made available locally,

4 - N o v - 7 6

1 . I n t r o d u c t i o n l - l

1.1. About the Reference Manual 1-1
1 .1 .1 . The Hydra user disk area 1 - 2
1.1.2. A Note on Notation 1-2
1.1.3. A note on the revised edition 1-2
1.1.4. A note on the flags 1-3
1.1.5. The Hydra Data Base 1-3
1.1.6. Acknowledgements 4 A

2 . T h e H y d r a K e r n e l

1-4

2 - 1
2 . 1 . The Basic Kernel 2 - 1
2 . 1 . 1 . A Capability System 2 - 1
2 . 1 . 2 . Objects, Capabilities, and Paths 2 - 2
2 . 1 . 3 . Generic Rights and Rights Restriction 2 - 4
2 .1 .3 .1 . Some Examples 2 - 6
2 . 1 . 4 . Auxiliary Rights 2 - 8
2 . 1 . 5 . Kernel-defined objects 2 - 8
2 .1 .6 . Empty slots 2 - 8
2 .1 .7 . Empty slots and the C-list length 2 - 9
2 .1 .8 . Types DATA and UNIVERSAL 2 - 1 0
2 .1 .9 . K-call Values and Signals 2 - 1 0
2 . 1 . 1 0 . Locking of Objects 2 - 1 1
2 . 1 . 1 1 . Memory Addresses and the Stack 2 - 1 1
2 . 1 . 1 2 . Indirect K-calls 2 - 1 4
2 . 1 . 1 3 . Conventions for K-call Specifications 2 - 1 5
2 . 1 . 1 4 . Some undefined concepts 2 - 1 6
2 . 1 . 1 5 . Specifications for Basic Kernel Calls 2 - 1 7
2 .1 .15 .1 . Informational K-calls 2 - 1 7
2 .1 .15 .2 . Simple DATA and UNIVERSAL Manipulation 2 - 1 9
2 .1 .15 .3 . Simple Manipulation of Capabilities 2 - 2 2
2 .1 .15 .4 . Date and Time K-calls 2 - 2 7
2 .1 .15 .5 . Indirect K-call specifications 2 - 2 9
2 . 2 . The Intermediate Kernel 2 - 3 0
2 . 2 . 1 . Domain Switching 2 - 3 0
2 . 2 . 2 . TEMPLATES and Merging 2 - 3 3
2 . 2 . 3 . NULLs Revisited 2 - 3 4
2 .2 .4 . Confinement, Freezing, and Revocation 2 - 3 5
2 .2 .5 . Types, Creating, and Erasing 2 - 3 7
2 .2 .6 . Protected Subsystems 2 - 3 9
2 .2 .7 . Specifications for Intermediate Kernel K-calls 2 - 4 0
2 .2 .7 .1 . Creation of TYPE objects 2 - 4 0
2 .2 .7 .2 . TEMPLATE Manipulation °

2 - 4 2

i i
4 -Nov-76

2 .2 .7 .3 . Object Manipulation
2.2.7.4. The CALL Mechanism.
2.2.7.5. Protected Subsystems
2 . 3 . More on PROCEDURES and LNS's
2 . 3 . 1 . PROCEDURE and LNS Context Blocks
2 .3 .2 . User Traps
2 .3 .3 . The PS and the Stack
2 .3 .4 . Specification for Context Block K-c<

3 . K M P S a n d p r o c e s s e s

3 . 1 . Processes and Policies
3 . 1 . 1 . PROCESS Objects
3 .1 .2 . The Process Base
3 . 1 . 3 . Policy Subsystems and Medium-term Scheduling
3 .1 .4 . KMPS and the PCB
3 .1 .5 . Execution Protection
3 .1 .6 . The Policy Queue
3 .1 .7 . Specifications for PROCESS and POLICY K-calls
3 .1 .7 .1 . PROCESS Context Block Operations
3 .1 .7 .2 . Process Base Operations
3 .1 .7 .3 . Performance Measurement Operations
3 .1 .7 .4 . Scheduling and Control Operations
3.1 .7 .5 . POLICY Operations

4 . P a g i n g

4 . 1 . Introduction
4 . 2 . Manipulating Page Sets
4 . 3 . CPS Size and the Working Set
4 . 4 . Initialization
4 . 5 . Auxiliary Rights for PAGEs
4 .6 . Copying PAGEs
4 .7 . Specification for Paging K-Calls
4 . 7 . 1 . Paging Signals for $LNSCALL and PROCESS $ CREATE

5 . T h e P a s s i v e GST

5 .1 . Introduction
5 .2 . Specifications for Passive GST K-Calls
5 .2 .1 . Precautions about the GST

6 . T h e M e s s a g e S y s t e m

6 . 1 . What is a Message?

2 - 4 3
2 - 4 8
2 - 5 5
2 - 5 5
2 - 5 5
2 - 5 7
2 - 6 1
2 - 6 3

3 -1

3 -1
3 - 2
3 - 3
3 - 4
3 - 4
3 -6
3 - 7
3 - 8
3 - 9

3 - 1 0
3 - 1 1
3 - 1 1
3 - 1 4

4 -1

4 - 1
4 - 2
4 - 3
4 - 4
4 - 5
4 - 5
4 - 6
4 - 9

5-1

5 -1
5 -1
5 - 3

6-1

6-1

4 - N o v - 7 6

6 . 2 . What is a PORT?
6 . 2 . 1 . Output Channels, Input Channels, and Connections
6 . 2 . 2 . Message slots
6 . 2 . 3 . Waiting PROCESSes
6 .2 .4 . Relation of PORTs to Device Objects
6 . 3 . Operations on PORTs
6 . 3 . 1 . $CREATE, of PORT
6 .3 .2 . SCONNECT K-call
6 . 3 . 3 . $NCONNECT K-call
6 . 3 . 4 . $DISCONNECT K-call
6 .4 . Operations on messages
6 . 4 . 1 . $MAKEMSG K-call
6 . 4 .2 . $READMSG K-call
6 . 4 . 3 . SWRITEMSG K-call
6 .4 .4 . SRSVPMSG K-call
6 .4 .5 . SSENDMSG K-call
6 .4 .6 . $REPLYMSG K-call
6 .4 .7 . $TIMEDRECEIVE K-call
6 .4 .8 . $RECEIVEMSG K-call
6 .4 .9 . SREQUEUEMSG K-call
6 . 4 . 1 0 . $TRUNCATEMSG K-call
6 .5 . Operations on capabilities in messages
6 . 5 . 1 . $PUTMSGCAPA K-call
6 . 5 . 2 . SDELETEMSGCAPA K-call
6 . 5 . 3 . $GETMSGCAPA K-call
6 .5 .4 . $TAKEMSGCAPA K-call
6 .5 .5 . $PASSMSGCAPA K-call
6 .5 .6 . Ports, Msgcapas, and Rights

7 . SEMAPHORES

7 . 1 , Conventional Operations on Semaphores
7 . 2 . Nonstandard Operations Associated wi th SEMAPHORES

8 . U s e r i / o O p e r a t i o n s

8 . 1 . Overview from a Subsystem Builder's Viewpoint
8 . 2 . Overview from a User Program's Viewpoint
8 . 3 . Conventions
8 .4 . Format Modifiers
8 .5 . Reply Type-codes
8 .6 . Specific Device Operations
8 . 6 . 1 . Operations Common to All Devices
8 . 6 . 2 . Line Frequency Clock
8 .6 .3 . Line Printer

4-NOV-76

8.6 .4 . Teletype 8 - 9
8 .6 .5 . DECtape 8 - 1 3
8 .6 .6 . RP11 (moving head disk) 8 - 1 5
8 .6 .7 . RF11 (Fixed head disk) 8 - 1 7
8 .6 .8 . ASLI Link (to another computer) 8 - 1 8
8 .6 .9 . IMP (Interface Message Processor Interface) 8 - 2 0
8 .6 .10 . KW1 IP programmable clock 8 - 2 2
8 .6 .10 .1 . Introduction 8 - 2 3
8 .6 .10.2 . KW1 IP operations 8 - 2 3

A p p e n d i K A : K e r n e l o b j e c t s A - l

A . l . Hydra Generic Rights A - l
A.2. Rights Restriction Format A-2
A.3 . Values for rights A ~ 3

A.4. Size Restrictions A " 6

A. 5. Kernel Types A-6

A p p e n d i x B: F o r m a t f o r t h e $OBJINFO K - c a l l B - l

A p p e n d i x C: $COMPARE F o r m a t C-l

A p p e n d i x D: $GMTTOLOCAL K-ca l l r e t u r n f o r m a t D- l

A p p e n d i x E: $GETCLOCK K-ca l l R e t u r n F o r m a t E- l

A p p e n d i x F: S y m b o l s , s i g n a l s , a n d n o i s e F - l

F . l . Implicit Signals - F - l
F.2. K-call Specific Signals F-2
F.3. Port-Related Signals F-3
F.4. Stack Bound Values F-4
F.5. Kernel Data Area Locations F-5
F.6. Error Codes F-6
F.7. ICB/LCB Fields F-6
F.8. Codes for Accessing Blocks in the ICB/LCB F-8
F .8 .11 . Introduction F-8
F.8 .12 . Example of Multiple Access with Structure F-9
F.8 .13 . Example of Non-Constant Field Access F-9
F.8 .14. Multiword ICB/LCB Access codes F-10
F.9. Kernel Call indices , F - l 2

4 - N 0 V - 7 6 v

A p p e n d i x G: P o l i c y S y s t e m I n t e r f a c e G- l

G. 1. Fields and Codes for Accessing the PCB G-1
G.2. SGETPOLICY K-call return format G-3
G.3. SPCBRCVCODE Values G-4

A p p e n d i x H: M i s c e l l a n e o u s t y p e s o f o b j e c t c r e a t i o n H - l

H . l . SCREATE, of PAGE object H - l
H.2. $ CREATE, of PORT object H-2
H.3. SCREATE, of SEMAPHORE object H-3
H.4. SCREATE, of PROCESS object H-3
H.5. SCREATE, of PROCEDURE object H-5
H.6. SCREATE, of DEVICE object H-5
H.7. $CREATE, of LNS object H-5
H.8. SCREATE, of NULL object H-5
H.9. SCREATE, of TYPE object H-S
H .10. SCREATE, of POLICY object H-6
H . l l . SCREATE, of templates H-6

A p p e n d i x I: $KALLINDIRECT s t a c k f o r m a t s 1-1

1.1. Introduction 1-1
1.2. Canonical K-call stack form 1-1
1.3. SCALL stack form 1-3
1.4. SCPSLOAD stack form 1-3

A p p e n d i x J : ' B a c k d o o r ' K - c a l l s

J. 1. Introduction
J. 2 . SRRLOAD stack form

J - l

J - l
J - l

A p p e n d i x K: K - c a l l m a c r o s u m m a r y K - l

A p p e n d i x L: B i b l i o g r a p h y L - l

I N D E X L- l 2

4 - N o V - 7 6 Basic Kernel ^

1. Introduction

1 . 1 . A b o u t t h e R e f e r e n c e M a n u a l

This document is a reference manual for the Hydra Kernel. It contains
a minimal amount of tutorial information. Readers who are not familiar

: with, the ideas behind the capability-based protection systems so vital to
; Hydra are encouraged to read first the Hydra article in the CACM [W u 7 4] ,

and the collection of papers given at the Fifth Symposium on Operating
Systems Principles, particularly the paper by Cohen [Coh75].

We want to emphasize that Hydra is not by itself an operating system
in the usual sense of the word: it does not perform the tasks of allocation,
scheduling, accounting, and handholding that are typical of conventional
operating systems. It is better to think of Hydra as an extension of the PDP-
11 hardware, one which extends the instruction set of the underlying
computer. Hydra and the host PDP-11 together form a virtual machine, and
Hydra is the kernel of an operating system to run on that virtual machine.
In fact, many different, competing "operating systems1* can be running on
Hydra simultaneously. There is a default user environment, consisting of
the Hydra kernel and a collection of subsystems, that a user initially faces
w h e n he logs on to Hydra.

Hydra is thus a software virtual machine implemented on C.mmp, a
closely-coupled PDP-11-based multiprocessor. The extended virtual
machine instructions, i.e. those not provided by the underlying hardware
but by Hydra, are called K-calls, or Kernel calls. Although these K-calls are
technical ly machine instructions for the virtual Hydra machine, they were
implemented w i t h the understanding that their major use would be in BLISS
programs, and they are all defined as macros for the BLISS-11 compiler.
BLISS-11 runs on the PDP-10, and there is a file (KERKAL.REQ[N811HY97])
that contains all these macro definitions, and which may be included in any
BLISS-11 compilation. Appendix K of this reference manual is a
l ist ing of these K-call macros.

This manual does not contain any information about the user
environment. There are separate documents describing the various
subsystems that form the the user environment. In particular, the reader is
referred to the Command Interpreter Reference Manual, the Directory-
Subsystem Manual, the Policy Module Manual, and various pieces of user
documentation. There is a document still in preparation that w i l l describe
the u t i l i ty functions available in the user environment.

1-2 Basic Kernel 4-Nov-76

1.1.1 Tiie Hydra user disk area

Since most of the development of software for Hydra has taken place
on the PDP-10, nearly all of the files of interest to users exist there. The
most important disk area is [N811HY97], on which all of the BLISS require
f i les reside. Also on this area can be found documentation, the system news,
various ut i l i ty packages, and many other useful files. Most of these are
described in the companion volume to this, The Hydra Songbook [Reid75].
The Songbook contains a user-level introduction suited to the user sitting at
a terminal and attempting to interact with the system. It describes the
command interpreter, interactive debugger, and utility programs w h i c h
exist on Hydra. This document is primarily for use by those users writ ing
programs (particularly BLISS code) and for those needing detailed
information during debugging.

1.1.2 A Note on Notation.

In this manual, fully capitalized words generally denote kernel
operations (K-calls) or object types. A special font identifies other Hydra
technical terms, e.g. type. Underlining indicates the defining occurrences
of a non-Hydra technical term, or otherwise suggests importance. Initially
capitalized words occasionally identify uses of technical terms in contexts
where italics would be confusing or overwhelming in number.

! Numbers wi l l always be written in decimal, unless preceded by a hash
mark (sharp sign, pound sign), i.e., #10 = 8.

1.1.3 A note on the revised edition

I The Revised Edition represents a major change in the naming
i conventions used in previous versions. The proliferation of symbols had
| reached the point where users could not determine which symbol should be
•! used for what purpose, and in many cases the symbols conflicted w i t h user-

defined symbols. The resultant difficulty in creating programs indicated
that a drastic change was necessary. Therefore, the current manual has
renamed every symbol in the Hydra interface code, albeit often in trivial
ways . Every symbol brought in by a BLISS "require" file now begins w i t h a

character. Furthermore, some of the naming conventions have been
made more consistent. In response to user suggestions some of the names
have been made more mnemonic or easier to remember, e.g., the old symbol
UCNFRTS has been redefined to be $UNCFRTS because most users
remembered that spelling rather than the former. Since the symbols used in

4 - N o v - 7 6 Basic Kernel 1 - 3

X
X
X

1.1.5 The Hydra Data Base

All of the symbols defined in this manual and their definitions are kept
in a large data base file. This file and a set of associated processing programs
are used to create all of the user "require files" used by BLISS/11 users. It is
recommended that designers of other systems use this data base facil ity to
obtain definition files for their programs, systems, or users. In this way ,

the old reference manual were generated over a long period of time and by a
number of people, the conventions and abbreviations used tended to be
inconsistent. In the revised edition, a concerted attempt has been made to
retain all vowels and consonants in symbols wherever this did not result in
absurdly long symbols. In such cases, the abbreviations were standardized.
Many n e w "require" files have been defined for obtaining useful symbols,
and all of these have been documented as thoroughly as is feasible. The
intent is that all of these changes, made when the system is still largely
uncommitted, w i l l make future use much more comfortable.

1 .1 .4 A note on the flags

Several sections of this manual are flagged wi th special symbols in the
margin. These symbols represent the status of Hydra on the date this manual
w a s compiled.

> An asterisk in the margin indicates that the feature described in the '
text was not implemented at the time this manual was compiled. If *
the feature is needed, you should check the Hydra news files or ask *
someone in the Hydra group to determine if it has been implemented. *

> The vertical bar symbol indicates a change from a previous version
of the manual. Since the changes from the February 14, 1975
edition are so extensive it was impractical to flag all of them, but
editions of the manual produced after November 1976 w i l l have
such sections flagged.

> A question mark indicates a feature of the system w h i c h was
undergoing redesign at the time the manual was compiled and is
l ike ly to change. This flag warns you that you should check the
Hydra news for the current specifications.

> An "X" indicates the feature is obsolete, but is maintained in the
documentation to help people read existing code, and to encourage
people to recede programs that use the obsolete features. Users are
strongly discouraged from using obsolete features, since there is no X
maintenance commitment to these features and future compatibility X
is not guaranteed.

1-4 Basic Kernel 4-Nov-76

1.1.6 Acknowledgements

As in all large systems, a great many people have participated in the
development of Hydra. In addition to the primary contributors to this
document, w e must acknowledge the contribution of all those users w h o
helped debug this manual and who provided the first user community for
Hydra. The list of users includes, but is not limited to, George Robertson,
Richard Suslick, Guy Almes, Rick Gumpertz, Philip Karlton, Peter Oleinick,
David Lamb and Brian Reid.

In addition to the original implementors of Hydra, a number of people
have contributed code to the Hydra Kernel. This list includes, but again is
not limited to, Sam Harbison, Joe Newcomer and George Robertson. The
awesome task of maintaining the Kernel is currently the responsibility of
Hank Mashburn.

As an aside, Brian Reid produced a special version of PUB that could
cope w i t h the enormous strain placed on it by the inordinate amount of PUB
hacking that was used to produce this document.

As in all cases of acknowledgements, there may have been omissions.
The editor wishes to take this space to apologize to anyone whose name has
been inadvertently omitted from the above list.

t h e y can be guaranteed that their files wi l l always be current w i t h the
latest changes in the system and not made obsolete by upward-compatible
extensions or rendered inoperable by possible non-compatible changes.
Although the Hydra group recognizes a responsibility to make as f e w non-
compatible changes as possible. Hydra must be considered a research system
and compatibility may conflict with other goals.

Large sections of this manual, particularly in the appendices, have
their contents generated entirely from this data base. Thus it w i l l be the
case that as extensions are added the manual wi l l be able to reflect these
w i t h a minimum amount of effort.

4 - N o v - 7 6 Basic Kernel

2. The Hydra Kernel

2 . 1 . T l i e B a s i c K e r n e l

2 . 1 . 1 A Capability System

The Hydra Kernel provides an execution environment in w h i c h
protection plays a key part. In some systems, files are the units of
protection, in others, segments. In Hydra, the basis of protection is an enti ty
called an object.

Many traditional operating systems are 'access control systems'; that is,
protection information is associated wi th the object being protected. For

i example, in the PDP-10 TOPS-10 Operating System, when an executing
i procedure tries to open a file (using an ASCII encoding of the file name), the
I access k e y associated w i th the file is checked.

| Hydra, on the other hand, is a capability system. As w e noted, the basis
of protection in Hydra is an entity called an object, and the protection

I system is invoked to determine whether particular accesses to objects w i l l
be allowed. In a capability system an executing procedure has associated
w i t h it a C~iist, a list of capabilities; each capability contains the name of an
object and a set of rights which determine how that object may be accessed
by the executing procedure.

Each different object is assigned a unique name by the Kernel. These
names are guaranteed unique for the entire existence of the system (or
3 6 , 0 0 0 years, should it live so long). Rather than showing 'rear unique
names in diagrams, (represented internally by 64-bit strings), w e w i l l
instead substitute unique alphanumeric names for pictorial clarity. In the
actual Kernel, alphanumeric print names are only associated wi th classes of
objects, called types. Users are cautioned, however, that the Kernel makes
no attempt to guarantee uniqueness of these print names, and in fact there is
nothing to prevent users from creating new object types (equivalence
classes) w i t h non-unique print names.

As indicated above, Hydra objects are typed. Examples of types built
into Hydra (called Kernel types) are PAGEs, DEVICES and PROCESSes. There
is also a facil ity to allow the creation of new user types. Certain types
represent physical resources (e.g. objects of type DEVICE represent actual
devices; one may represent a disk, another a line printer, etc.), but in
general, types represent abstractions of resources, both physical and virtual,
and objects, of such a type have meaning only in terms of their
representation and h o w that representation is accessed and manipulated.

2 - 2
Basic Kernel 4-Nov-76

Hydra is a paged system. When a procedure executes, its code and
directly accessible data are contained in pages represented by PAGE objects.
Capabilities for these PAGE objects must appear in the C-list of the executing
procedure. Section 4 describes how to indicate to the Kernel
w h i c h of these should be made directly addressable.

In Hydra, an executing procedure is a distinct type of object, called an
LNS (Local Name Space) 1 and differs from the type representing its static
counterpart, a PROCEDURE. PROCESS objects are the scheduling entities
provided by the Kernel. At any instant, each executing process has an LNS
associated w i t h it which determines the environment in which the process
runs. Hydra provides a call mechanism which changes environments by
associating a different LNS with a process.

2 . 1 . 2 Objects, Capabilities, and Paths

Every object has two parts, a C-list containing a list of capabilities, and
a data~part containing arbitrary data represented as a vector of 16-bit words.
The C-list and data-part of an object together comprise its representation.

Both the C-list and data-part are linearly ordered, based at 1. The
maximum number of capabilities in a C-list and the maximum length of a
data-part vary from type to type. Section A.4 contains those
numbers for Kernel types. Since C-lists are linearly ordered, w e w i l l often
refer to a capability as being in the k t h slot of a C-list.

As examples, let us consider the representation of some Kernel objects.
A PAGE object contains an empty C-list and its data-part contains the location
of the page (disk, drum, or core address) and its status. This data-part is
protected against examination or alteration by the user program. The data-
part of a DEVICE object contains some information identifying the device.
The data-part of an LNS contains (among other things) trap addresses, a mask
of processors on which the LNS may execute, and paging information, w h i l e
the C-list of the LNS contains the capabilities which define the environment
provided by the LNS.

| There are facilities for creating new types of objects as wel l as for
i creating objects of existing types and erasing them. For example, a user

might create a new type of object, a FILE, whose C-list might contain
I capabilities for PAGEs and whose data-part might contain information about
i the fi le (it could even be used to hold access keys as part of a system that

1 or, as has been suggested, Local Number Space.

4 - N 0 V - 7 6 Basic Kernel
2 - 3

could provide file access checking in a way similar to that of the PDP-10
TOPS monitor). Alternately, a user might create a DIRECTORY type. Objects
of type DIRECTORY might have a C-list containing capabilities for FILEs and
other DIRECTORYs. This could be used to build up an hierarchical FILE
system similar to the one in MULTICS ([0rg72]).

C-lists and data-parts can only be accessed and manipulated through
the Kernel via K-calls. Among the many operations provided by the Kernel
are some very basic K-calls that provide generic operations on all types of
capabilities. Typical operations allow a user to delete" capabilities from the
C-list of some object, move a capability from the C-list of one object to the
C-list of another object (perhaps the same) wi th or without deleting the
first capability, and move data between the data-part of some object and
directly addressable memory. Of course, we again stress that these
operations cannot be performed on arbitrary objects; rather, the executing
LNS must have a capability for the object to be accessed. In addition, as w i l l
be explained in the following sections, there may be additional restrictions
on the operations.

Most K-calls require some arguments which specify capabilities. In
the simplest case, these are denoted by simple indices into the C-list of the
LNS. For example, there is a K-call, $DELETE, and $DELETE (3) calls the
Kernel to eliminate the 3rd capability in the LNS executing that K-call. Of
course, most programs should use symbolic names or other mnemonic means
to create meaningful descriptors for slot indices. We use absolute numbers
here to illustrate the simplest possible form in a K-call.

Often, the Kernel wi l l allow a capability to be denoted by a path index
(see Figure 1). For example, $DELETE ($PATH(3,4,2,1)) wi l l delete the 1st
capability in the object referenced by the 2nd capability in the the object
referenced by the 4th capability in the object referenced by the 3rd
capability in the executing LNS, The capability deleted is called the target of
$PATH(3,4,2,1). The capability denoted by $PATH(3,4,2) is called the
pretarget and the capabilities denoted by $PATH(3,4) and 3 are called steps.
(Note: the denotation $PATH(3) is the same as just 3; such paths are called
simple paths.)

2 _ 4 Basic Kernel 4-Nov-76

LNS

step

istep

2 .1 .3 Generic Rights and Rights Restriction

As w e noted, Hydra implements basic protection through a set of
rights. The right to perform some class of accesses (via K-calls) w i t h respect
to a capability is determined by the presence of a particular bit in the rights
field of a capability 2 . The following is a description of the rights relevant to

4 - N o v - 7 6 Basic Kernel 2 - 5

2

3

4

5

There are 16 Generic Rights; thus the generic rights can be represented in a PDF-11 word

« » « • 'or a listing of all rights and t h e *

Also k n o w n , for historical reasons, as $LOADRTS.

Likewise , also k n o w n as $LOAD.

Likewise , also k n o w n as $STORERTS.

Likewise , also k n o w n as $ST0RE.

basic Kernel K-calls. In describing these rights, we consider the effect of
capability CAP having the right in question. If CAP is an object reference,
w e wr i t e OBJ as a shorthand for the object referenced by CAP.

Capability Rights

$DELETERTS- Allows CAP to be deleted from the C-list w h i c h
contains it; i.e., permits the $DELETE or $VACATE
operation on CAP.

$ENVRTS - Allows CAP to be stored in some object; i.e., it may
leave the environment.

C-list Rights

$GETCAPARTS3-Allows a capability to be extracted from QBJ's C-
list; e.g., permits the SGETCAPA4 operation on OBJ Note
also that this right is always required on all steps of a
path.

SPUTCAPARTS^-Allows a capability to be stored into QBJ's C-list;
e.g., permits the $PUTCAPA6 operation on OBJ.

$APPENDCAPARTS- Allows a capability to be appended onto OBJ's C-
list; permits the $APPENDCAPA operation.

SKILLRTS - Allows a capability to be deleted from OBJ's C-list;
permits the $DELETE or $VACATE operations on OBJ (as
opposed to $DELETERTS which permits the operation on
CAP).

2 - 6 Basic Kernel 4-Nov-76

Data-part Rights

$GETDATARTS-Allows data to be extracted from OBJ's data-part;
permits the $GETDATA operation on OBJ.

$PUTDATARTS-Allows data to put into OBJ's data-part; permits the
$PUTDATA operation on OBJ.

SAPPENDDATARTS-Allows data to be appended onto OBJ's data-part;
permits the $APPENDDATA operation on OBJ.

Restriction Rights

$MODIFYRTS- Allows modification of either OBJ's C-list or data-
part.

$UNCFRTS- Allows OBJ to be 'UNConFined', that is, an object
accessed through OBJ may be modified.

2.1.3.1 Some Examples

> $ DELETE (3)
(The capability denoted by LNS slot) 3 requires $DELETERTS

> $DELETE ($PATH(3,4))
3 requires $KILLRTS and $MODIFYRTS,
$PATH(3,4) requires $DELETERTS

> $DELETE ($PATH(3,4,2,1))
3 and $PATH(3,4) require $GETCAPARTS and $UNCFRTS,
$PATH(3,4,2) requires $KILLRTS and $MODIFYRTS,
$PATH(3,4,2,1) requires $DELETERTS

$GETCAPA(x,y) is a K-call which moves the capability at y to x,
retaining the capability at y. x must be a simple index.

> SGETCAPA (5, $PATH(3,4,2))
3 requires $GETCAPARTS
$PATH(3,4) requires $GETCAPARTS
5 must be an empty slot

4 - N o v - 7 6 Basic Kernel 2 - 7

> $PUTCAPA ($PATH(3,4,3), 2, addr)
3 requires $GETCAPARTS and $UNCFRTS
$PATH(3,4) requires SPUTCAPARTS and $MODIFYRTS
$PATH(3,4,3) must be an empty slot
2 requires SENVRTS

This call puts a copy of the capability in slot 2 in the destination
specified by $PATH(3,4,3). The rights are then restricted by the contents of

. the t w o memory locations specified by 'addr' (the format of this is irrelevant
at the moment, but readers wi th insatiable curiosity may find it in section
A.2). It is possible to restrict rights without moving a capability by
storing it into its own s lo t 7 .

If the address designating the rights restriction mask is zero, no rights
are restricted.

7 This latter case is the only case in which the result of a SPUTCAPA can be placed in a non­
empty slot. Users are encouraged to use the $RESTRICTI0N K-call to perform this operation.

Note that w h e n a capability is moved, it picks up $DELETERTS, w h i l e
the other rights remain the same as in the original,

> $TAKE(x,y)
l ike $GETCAPA but also deletes the capability at y.

> $TAKE (5, $PATH(3,4,3))
3 requires $GETCAPARTS and $UNCFRTS
$PATH(3,4) requires $GETCAPARTS, $MODIFYRTS, and $KILLRTS
$PATH(3,4,3) requires $DELETERTS
5 must be an empty slot

There is often a desire to restrict the rights of a capability w h e n it is
copied from one's own LNS to the C-list of another object. Hence, the K-call,
$PUTCAPA(x,y,a) moves the capability at y to x (y must be a simple index) ,
and then restricts the rights of the capability at x according to the contents
of a mask at address a (see section A, 2 for the format), by
el iminating those rights not represented by a 1 in the mask. Note that it is
a lways permissible to restrict the rights of a capability that one possesses.

2 - 8 Basic Kernel 4-Nov-76

2 . 1 . 4 A u x i l i a r y Rights

The r ights we have seen so far are called Generic rights because t h e y
have meaning for any capability regardless of the type of the object i t
references. The interpretation of these rights is performed by the Kernel, In
addition, each capability also contains a field of auxiliary rights tha t may be
defined differently for each type of object 8 . Their use wi l l become apparent
in f u t u r e examples. The assignment and interpretation of these aux i l i a ry
r i gh t s is left to the discretion of the subsystem designer; the Kernel
performs no interpretation on the auxiliary rights fields of user-defined
objects.

Note tha t al though the Kernel does not interpret these fields, in t he
sense tha t i t restricts the operations which may be performed on an object, i t
does perform the standard rights-checking which is performed w h e n
en te r ing a n e w environment, and allows such operations as rights
amplification; these concepts are explained in section 2.2.

2 .1 .5 Ke rne l -de f ined objects

The Kernel recognizes a basic set of types and treats them separately.
Thei r aux i l i a ry rights have predefined meanings and the Kernel also l imits
t h e Generic r ights that any capability for an object of one of these types may
have .

2 .1 .8 E m p t y slots

W h e n a slot in a C-list is created, unless it is created by storing a
capabil i ty into it, it is said to be uninitialized. With a few exceptions, any
a t tempt to access the contents of an unitialized slot in a C-list w i l l cause an
error . An uninitialized slot is one form of an empty slot.

Objects of type NULL represent absolutely nothing. They are
constrained by the Kernel to have neither a C-list nor a da ta -pa r t 9 . An

8 There are e ight auxi l ia ry rights bit., wh ich are stored in a single byte; for the exact format,

see sect ion A.2.

9 in fact, an object of type NULL never exists; only templates of type NULL can exist .
Templates are not discussed until section 2.2.2. But we digress.

4 - N o v - 7 6 Basic Kernel 2 - 9

1 0 A NULL template wi th $UNBOUNDFLAG turned on.

1 1 E.g., LISP, APL, WATFOR, WATFIV.

1 2 Actually, a NULL template wi th $UNBOUNDFLAG turned off.

uninitialized slot contains a special kind of reference to something of type
N U L L 1 0 . A capability of any type may be stored in an uninitialized slot.
Formally, w e w i l l say that an uninitialized slot is unbound, in the same w a y
many programming language s y s t e m s 1 1 mean that a value is unbound.

A slot in a C-list is also empty if it contains a reference to a NULL
o b j e c t 1 2 . In this case, the slot is said to be both defined and empty. The
capability in such a slot may be operated upon as any other capability. In
addition, the slot may be a target for any sort of store operation; a NULL
capability may be replaced by any other capability.

If a slot in a C-list contains a non-NULL capability, it is said to be
defined and nonempty. In most cases, an attempt to store a n e w capability
into such a slot w i l l cause an error.

A slot may be made empty by either the $DELETE or $VACATE K-calls.
The $ VACATE K-call deletes the capability at its target, leaving the target
empty and defined. $DELETE deletes the capability at its target, leaving the
target empty and unbound.

2 . 1 . 7 E m p t y slots and the C-list length

All C-lists have a length attribute. The length of a C-list is the index
of the highest defined slot in the C-list. If a slot at the end of the C-list is
made empty and unbound, the C-list size is reduced until it again reflects the
index of the highest defined slot in the C-list; it wi l l be at least one less than
the size of the C-list before the last slot was unbound. Note that if the slot is
s imply made empty, but not unbound, no change in the C-list size w i l l
occur.

A C-list is extended implicitly as a side effect of operations w h i c h
define the contents of a slot in the C-list. In general, any operation w h i c h
causes a slot to be defined wi l l cause the C-list size to be increased if the
reference is to a slot outside the current C-list size.

In general, any attempt to access an unbound slot in a C-list w i l l result
in an error. Any attempt to access a slot in the C-list beyond the current C-

2 - 1 0 Basic Kernel 4 -Nov-76

13 This is a simplified explanation; for more detail see section 2 ,2 .5 ,

14 The fixed stack page locations are described by the file STKPAG,REQ[N811HY97] and in

sect ion F.5.

1 5 The Symbols for the Kernel Signals are defined in file SIGNLS.REQ[N811HY97], See a lso

appendix F.

l is t size bu t less than the physical maximum permitted to that C-list w i l l be
t reated as an attempt to access an unbound slot; if the user is concerned about
t h e exact cause of the error, a check can then be made of the C-list size.

Each C-list has a maximum physical size, either an implementation
upper bound determined by the Kernel or a specific upper bound < t h e
Kernel l imi t as determined when an object is c r e a t e d ^ Any attempt to
access a slot beyond the physical limit of the C-list wi l l cause a MC-list bound
exceeded 1 1 error.

2 .1 .8 Types DATA and UNIVERSAL

It is often convenient to be able to create a new object w h i c h s imply
encapsulates some data. The Kernel provides a K-call, $MAKEDATA, w h i c h
does t he encapsulation, creating a new object of type DATA whose data-part
contains the data, DATA objects have no C-list and have no defined aux i l i a ry
r i g h t s .

The Kernel also provides a UNIVERSAL object, one w i t h both a C-list
and a data-part . The K-call $MAKEUNIVERSAL creates just such an object.

2 .1 . 9 K-cal l Values and Signals

Any K-call that executes successfully returns a non-negative value in
BLISS register VREG (assembly language R0), K-calls that fail (e.g. for
inadequate r ights) re turn a negative value, called a signal. In addition,
cer ta in additional signal related information is sometimes placed in
SSIGDATA, a fixed location in the stack p a g e 1 4 . There is also a mechanism
t h a t can force signals to cause user traps (see section 2.3.1 for more
details) . The meaning of the various signals that can occur dur ing basic
Kernel K-calls can be found in section F . l 1 5 . It should be noted
t h a t t h e Kernel signal mechanism is distinct from (and incompatible w i t h) a
s imi lar ly-named facility in BLISS-11.

4 - N o v - 7 6 Basic Kernel 2 - 1 1

2 . 1 . 1 0 Locking of Objects

Since it is possible for two separate LNS's to contain capabilities for the
same object, it is possible that both wi l l be executing simultaneously (on
different processors). Consider, as an example, the case where a
programming error results in both LNS's trying to $PUTCAPA different
capabilities in the same C-list slot of the shared object. Such operations are
performed indivisibly; when a capability or data is being moved either to or
from an object, that object wi l l (in general) be locked. Hence, in the
example above, one LNS (nondeterministically) wi l l gain access to the object
and $PUTCAPA a capability in it, while the other waits for the object to be
unlocked. When the $PUTCAPA K-call completes, the other LNS w i l l gain
access to the object, but its $PUTCAPA K-call wi l l fail (signal), since the slot
in the shared object w i l l no longer be empty.

For certain K-calls, if some referenced object cannot immediately be
locked, the K-call w i l l fail. To do otherwise in such cases would al low the
possibil ity of deadlock. For the same reason, any K-call that accesses a
PROCEDURE object (except when an LNS is being incarnated from it) must be
able to lock the procedure immediately or else the K-call w i l l fail.

In addition, it should be noted that there are some "composite"
operations, e.g., $APPENDCAPA, STAKE, $PASS, etc. (defined in section
2 .1 .15 .3) . These operations are defined in terms of simpler K-calls. Note,
however , that because of the locking phenomenon, they are not precisely
equivalent; if they were done as a series of K-calls, another process might be
able to access, or alter one of the C-lists between the operations. In the
composite operations these actions take place indivisibly, w i t h both the
source and target objects locked until the operations are complete.

2 . 1 . 1 1 M e m o r y Addresses and the Stack

PDP-1 Ts as modified for C.mmp have a 16 bit address space and a paged
architecture. Pages are 8192 bytes long. The lower 13 bits of the IS bit
address designate a byte within a page. The high order 3 bits select one of 8
pages that may be directly addressable at any given time. Page 0 is
designated the stack page to be used in conjunction w i th the PDP-11 SP
register and is treated somewhat specially by the Kernel. Hydra contains
various K-calls that allow the user to change other pages (virtual
overlaying). Details can be found in section 4.7. Details on the
C.mmp hardware may be found in a separate document ([WB72]).

Many K-calls require one or more arguments to be memory addresses.

2 - 1 2 Basic Kernel 4-Nov-76

Such, memory addresses are expected to be the origin (low order address) of a
block of memory from which the Kernel wil l retrieve information or into
w h i c h the Kernel wi l l store information. In most K-calls. these addresses
can be a n y w h e r e in the user's immediately addressible page s e t 1 5 and are
referred to as legitimate memory addresses. Historically, the Kernel
requi red many of these addresses be on the stack page, and these are referred
to as legitimate stack memory addresses. It is intended eventual ly tha t all
m u l t i w o r d blocks of data (except for rights restriction masks) w i l l be
permit ted to have legitimate memory addresses and not be confined to t he
stack; however , this document represents the restrictions as of November 4 ,
1976 .

In t he case where the Kernel demands that a legitimate stack memory
address be used, i t must have the following properties:

> The address must be in the stack page (high order 3 bits of t he
address must be 0).

> The block of memory to be accessed must lie wi th in the active
region of the stack. (When an LNS begins execution, SP, the stack
register, is set to point to an initial stack location. The modified
PDP-11 hardware insures that SP can never be set higher than th is
in i t ia l v a l u e T h e region between the initial SP contents and the
cu r r en t contents of SP is called the active region of the stack). See
f igure 2. Further explanation of the stack limits given in f igure
2 are given in section F.4.

> The address must be on a word boundary (low order bit 0).

In all o ther cases, the address must have the following properties:

> The page must be in the user's current RPS, i.e., directly addressible
b y the cur ren t ly executing code.

> The page must be writable if data is to be wri t ten into it . (This is
controlled by auxi l iary rights on the page; see section 4.5).

> The address must be on a word boundary, unless a byte address is
expl ic i t ly permitted for the K-call being specified.

16 K l l o w n a S the relocation page set or RPS, discussed in sections 4.1 and 4 .2 .

17 Recall t h a t the stack g rows down, i.e., towards lower-numbered addresses.

4 - N o v - 7 6 Basic Kernel 2 . 1 3

The stack may also be directly accessed using PDP-11 instructions
since the stack is page 0. The modified C.mmp hardware prevents accesses to
page 0 above the LNS's initial stack location; however, any access below that
i s al lowed.

The user has no control over the value of the initial stack pointer
w h e n a procedure is invoked; the value depends upon the current call stack
in the process and the amount of Kernel data placed in the stack. This
property is true in the current stack-page-per-process implementation.
Future revisions of the implementation may change tills property.

There are some operations in the I/O system (chapter 8)
w h i c h permit the user to specify an address which is not in the current RPS.
Such addresses are used only in special-purpose I/O handling and cannot be
specified in K-calls.

Locations # 2 0 0 - # 3 7 7 comprise the Kernel data area. When signals,
traps, and errors occur, certain additional information is placed in locations
w i t h i n this area. (Section F.5 lists these fields).

7

> ^V^I88
 S P e C i f i e S a b l o c l c o f m e m o ^ the block must not cross a page boundary.

2 - 1 4 Basic Kernel 4-Nov-7S

#17777

Stack grows
this direction

Addressable

stack

<j $SPUNDERFLOW

Active stack region

<£_

Active stack region

<£_ Current SP

Software limit
<i

Software limit

Hardware limit
<r

Hardware limit

Kernel data area

Figure 2: Stack page regions

2 . 1 . 1 2 I n d i r e c t K-calls

Often i t is useful to be able to build up the argument stack for a K-call
independent ly of the actual K-call itself (especially for interpretive and
debugging programs).

The special K-call, $KALLINDIRECT provides this function. Its
parameter specifies the beginning address of the argument stack and must be
a legit imate stack memory address. The complete specification for th is K-
call can be found in section 2.1.15.5. Section I contains all
detai ls necessary for constructing the argument stack.

4 - N o v - 7 6 Basic Kernel 2 - 1 5

2 . 1 . 1 3 Convent ions for k-cal l Specifications

There is a canonical format used in this manual to describe Kernel
calls. Each K-call description consists of several components:

> The K-call name and its formal parameter list. K-calls are described
in terms of Bliss macros. See appendix K.

> The 'parameters' section. Parameters to K-calls fall into three classes:

> An integer value, i.e., a 16-bit value, not to be confused w i t h
the integer used as a simple index to denote a capability (see
below).

> A legitimate memory address. In some cases this is restricted
to be a legitimate stack memory address; the differences and
constraints are described in section 2.1. Tl. Where a memory
address is optional, its absence is denoted by 0. The block of
memory w i l l in general be used either in conjunction w i t h
movement of data to or from a data-part or rights restriction.
See sections 2.1.3 and A.2. As a notational
convention, w e wi l l indicate memory locations w i t h the
symbols 'Mem' (for general memory locations) and fSmem*
(for stack memory locations). We wi l l suffix these symbols
w i t h W or R to indicate that the location wi l l be written into
or only read, and further suffix the symbol w i th a number
for the case where a block of memory is used. Thus
•SmemWlS' indicates a 16-word block of data w i l l be
writ ten into a valid stack memory address. When the
amount of data transferred is a parameter to the K-call, the
suf f ix ' W E ' or 'Rn' wi l l be used, wi th a 'Count1 parameter in
the K-call specifying the actual amount of data transferred.
Because of the frequency of rights-restriction masks, the
symbol 'SMemrts* wi l l be used to mean 'SmemR2f in such
usage.

> A denotation for a capability - either a simple index,
(sometimes negated *8 or 0 for a special effect) or a Path
index, or a $CALL parameter (to be defined in section

18 Of interest on ly to non-BLISS users and those usin£ the Indirect K-call, see section 2 . 1 . 1 2 .

2 - 1 6 Basic Kernel 4-Nov-76

>

2.2). We wi l l also indicate necessary rights, type or
k ind (object reference or template) for the target capability,
i ts steps, and its pretarget.

Again, as a notational convenience we wi l l often indicate
capabilities to be "source" capabilities (the targeted object is
usua l ly not a l t e r e d 1 9) and use the designators 'SPath' or
'SIndex', or "destination" capabilities (the targeted object is
altered) and use the designators 'DPath' or 'Dindex\

Unless w e note otherwise in the specifications, we require that each
step in a path (capabilities in the path other than the target or
pretarget) be an object reference capability wi th $GETCAPARTS.

We w i l l not list restrictions on arguments that seem obvious or
redundant and produce obvious signals if the restrictions are not met
- most notably, indices into C-lists or data-parts less than 1 or
greater than the maximum length (see section 2.1.7),

'Effect' is the effect of the K-call if no signal occurs. Except for a
small subcase of LNS incarnation, K-calls that fail have no side
effects.

> 'Signals' indicate that the K-call did not complete normally. Signals
tha t indicate bad arguments or arguments that denote capabilities of
t h e wrong kind or type or having inadequate rights are not
mentioned. These are a possibility in almost every K-call and are
described in section F. 1. For a detailed description of h o w
an LNS may handle signal conditions see section 2.3.2.

> 'Result' is the value of the K-call (returned in register VREG (RO))
assuming no signal occurred. (If a signal occurred, the value of the
K-call is the signal value instead.)

2 . 1 . 1 4 Some unde f ined concepts

(o 1 ^ e r e W i U h B a n u m b e r o f references in the forthcoming section
C2.1.15) to concepts which, for the sake of exposition, have not yet
been discussed. The comprehension of these concepts are not essential for

1 9 Except in certain K-calls w h i c h transfer (i.e. delete from the source site) capabili t ies or

^ M ^ % , n / ° ^ a V 0 n 5 l n t h e T 0 T m Q T C a S G t h e S 0 U r c e o p c n m d ^d ica te s w h e r e the capabi l i ty is obtained; in the latter case both may be considered destination operands.

4 - N o v - 7 6 Basic Kernel 2 - 1 7

| understanding the following section, but for completeness they must appear.
I References to aliases, freezing, confinement, and the associated rights,

$REALLYRTS, $FREEZEFIAG, and $UNCFRTS may be ignored unless such
i matters are truly the concern of the moment. Such matters are dealt w i t h in
| depth in section 2.2.4.

j 2 . 1 . 1 5 Specif ications for Basic Kernel Calls

J 2 .2 .25 .2 Informational K-calls

3LNSLENGTH ()

Parameters;

None
Effect;

None
Beiiillli

Length of the C-list of the executing LNS. The concept of
"length" is fu l ly described in section 2.1.7. Note that the length of
the LNS may change dynamically during program execution.

SCLENGTH (SPath)

Parameters;

SPath - Path index; Pretarget: $GETCAPARTS; Target:
object reference, $GETCAPARTS

None

Length of the C-list of the object referenced by SPath's
Target. The concept of "length" is ful ly explained in section 2.1.7.
Intuit ively it is the highest index of a defined capability.

SDLENGTH (SPath)

para-meters;

SPath - Path index; Pretarget: $GETCAPARTS; Target:
object reference, $GETDATARTS

2 - 1 8 Basic Kernel 4 -Nov-76

SCOMPARE (SPath, SIndex)

Parameters;

SPath - Path index; Pretarget: $GETCAPARTS; Target:
defined or unbound

SIndex - Simple index, defined or unbound, or 0
EffSCii

None
Signals;

This K-call wi l l not signal if either or both of its targets are
unbound.

Result?
A word of bits which indicate how the capabilities targeted

by SPath and SIndex compare. If SIndex is 0, then just those bits
pertaining to the capability targeted by SPath are set. See
Appendix C for the meaning of each bit.

E££ssli
None

Besjxlli
Size, in words, of the data-part of the object referenced b y

SPath's Target.

SOBJINFO (SMemW16, SPath)

Parameters;

SMemW 16 - Legitimate stack memory address

SPath. - Path index; Pretarget: $GETCAPARTS; Target:
defined or unbound

E£f££ii
Information about the capability targeted by SPath is stored

in the 16 word block of memory beginning at SMemW 16. See
Appendix B for the format. This K-call may be executed
on a unbound target without causing an error.

Signals;

This K-call w i l l not signal an unbound target.
Result,

4 - N o v - 7 6 Basic Kernel 2 - 1 9

2.1.15.2 Simple DATA and UNIVERSAL Manipulation

8GETDATA (MemWn, SPath, Disp, Count)

Parameters;

MemWn - Legitimate user address in the current RPS

SPath - Path, index; Pretarget: $GETCAPARTS; Target:
$GETDATARTS

Disp - Positive integer less than or equal to
$DLENGTH(SPath)

Count - Positive integer
Effect;

Moves up to Count words of data from the data-part of the
object referenced by the Target of SPath to the block of memory
beginning at MemWn. The data is copied beginning at the Disp'th
word of the data-part and continuing for a total of Count words or
unti l the end of the data-part is reached. Note that data parts are
indexed w i t h a 1-origin, i.e., the first word in the data part of an
object is word 1.

Result;
Total number of words copied

SPUTDATA (DPath, MemRn, Disp, Count)

Parameters;

MemRn - Legitimate user address in the current RPS

DPath - Path index; Steps and Pretarget: $GETCAPARTS,
$UNCFRTS; Target: $PUTDATARTS, $MODIFYRTS

Disp - Positive integer

Count - Positive integer
Effect;

Copies Count words of data beginning at MemRn into the
data-part of the object targeted by DPath. The data is stored
beginning at the Disp'th word of the data-part. The data-part w i l l
be extended if necessary to contain the data. If Lq was the length

2 - 2 0 Basic Kernel 4 -Nov-76

(see $DLENGTH) before the SPUTDATA, then the n e w data-part
length w i l l be max(Lg,Disp+Count-1).

Signals;
$HySDBOUND-(Disp+Count) would exceed either t"

implementation-defined limit for a data part (section
A.4) or the type-specific limit for the specific
object involved (section 2.2.5).

0

SMAKEDATA (DPath, MemRn, Count, Smemrts)

Parameters?

DPath - Path index; Steps: $GETCAPARTS, $UNCFRTS;
Pretarget: $PUTCAPARTS, $MODIFYRTS; Target:
empty

MemRn - Legitimate user memory address in the current
BPS

Count - Non-negative integer

Smemrts - Legitimate stack memory address, or 0

Creates a DATA object and places a capability for it in DPath's
Target. The data-part of the created object wi l l contain the Count
words of data copied from the block of memory beginning at
MemRn. The capability wi l l have all relevant rights except
$REALLYRTS and $FREEZEFLAG and wi l l be further restricted by
the contents of SMemrts if SMemrts is non-zero.

0

4 - N O V - 7 6 Basic Kernel 2 - 2 1

SAPPENDDATA (DPath, MemRn, Count)

Parameters;

DPath - Path index; Steps and Pretarget: $GETCAPARTS,
$UNCFRTS; Target: $APPENDDATARTS,
$MODIFYRTS

MemRn - Legitimate user memory address in the current _
RPS

Count - Positive integer
Effect;

Copies the Count words of data from the block of memory
beginning at MemRn onto the end of the data-part of the object
referenced by DPath's Target. If L 0 was the length of the data-part
before the operation, the new length is L 0+Count.

Signals;
See $PUTDATA.

Basiilii
Displacement in data-part of DPath's Target of first data word

stored, i.e. one greater than the length of the data-part before the
store occurred.

SSETDLENGTH (DPath, Count)

Parameters;

DPath - Path index; Steps and Pretarget: $GETCAPARTS,
$UNCFRTS; target: $MODIFYRTS, $PUTDATARTS

Count - Positive integer
Effect;

Sets the length of the data-part of the target object to be
Count. This is the only way to reduce the length of a data-part.
The value may be any value between 0 and the maximum data-
part length, either the implementation maximum defined in
section A.4 or the type-specific limit as explained in
section 2.2.5. If the data-part length was less than Count,
the data-part is extended and filled wi th zeroes.

Signals;
$HySDBOUND-Count would exceed either the implementation-

2 - 2 2 Basic Kernel 4 -Nov-76

defined limit for a data part (section A.4) or
the type-specific limit for the specific object involved
(section 2.2.5).

SMAKEUNIVERSAL (DPath)

ParamfitRrs;

DPath - Path index; Steps: $UNCFRTS, $GETCAPARTS;
Pretarget: $PUTCAPARTS, $MODIFYRTS; Target:
empty

Effect:

Creates a UNIVERSAL object and places a capability for it
w i t h all but $REALLYRTS and $FREEZEFLAG in DPath's Target.

0

2 .2 . 15 .3 Simple Manipulation of Capabilities

SPASS (DPath, SIndex, SMemrts)

Parameters;

DPath - Path index; Steps: $GETCAPARTS, $UNCFRTS;
Pretarget: $PUTCAPARTS, $MODIFYRTS; Target:
empty

SIndex - Simple index, $DELETERTS; if DPath is not simple,
requires $ENVRTS as well

SMemrts- Legitimate stack memory address, or 0
Effect;

Copies the capability in the SIndex'th slot of the current LNS
to DPath's target, restricting rights (if SMemrts is nonzero)
according to the contents of SMemrts. The capability at SIndex is
then made unbound. Future attempts to access the target of SIndex
w i l l (generally) signal.

Besiilii
0

4 - N o v - 7 6 Basic Kernel 2 - 2 3

STAKE (DIndex, SPath)

Parameters;

DIndex - Simple index, empty

SPath - Path index; Steps: $GETCAPARTS, $UNCFRTS;
Pretarget: $KILLRTS, $GETCAPARTS,
$MODIFYRTS; Target: $DELETERTS

Effect;
Copies the capability targeted by SPath to the- DIndex'th slot

of the current LNS. If any Step or Pretarget in SPath lacks
$UNCFRTS, then DIndex wi l l have $UNCFRTS, $MODIFYRTS and
SREALLYRTS removed. If any capability in SPath lacks $ENVRTS,
DIndex w i l l have $ENVRTS removed. The capability targeted by
SPath is then made unbound. Future attempts to access the target
of Spiath w i l l (generally) signal.

Result;
0

SPUTCAPA 2 0 (DPath, SIndex, Smemrts)

Parameters:

DPath - Path index; Steps: $UNCFRTS, $GETCAPARTS;
Pretarget: $MODIFYRTS, $PUTCAPARTS; Target:
empty

SIndex - Simple index, Defined; If DPath is not simple,
requires $ENVRTS as well.
If DPath and SIndex are the same, then none of the
above rights requirements holds, rather the
capability needs $DELETERTS.

Smemrts - Legitimate stack memory address, or 0
E£f££li

Copies the capability in the SIndex'th slot of the current LNS
to DPath/s target, setting $DELETERTS, and (if Smemrts is nonzero)
restricting rights according to the contents on Smemrts.

If DPath and SIndex are the same, however, the rights in the
target are simply restricted according to the contents of Smemrts
(if Smemrts is nonzero).

• 7

2 0 Also k n o w n , for historical reasons, as $ST0RE.

2 - 2 4 Basic Kernel 4 -Nov-76

Result:

SGETCAPA 2 1 (Dlndex, SPath)

Parameters:

Dlndex - Simple index, empty

SPath. - Path index; Pretarget: $GETCAPARTS; Target:
Defined

Copies the capability targeted by SPath to the DIndex'th slot
of the current LNS, and sets $DELETERTS. If any capability in
Target's Path lacks $UNCFRTS, Dlndex wi l l have $UNCFRTS,
SMODIFYRTS and $REALLYRTS removed. If any capability in
SPath lacks $ENVRTS, $ENVRTS wi l l be removed from Dlndex.

Besulli
0

SPASSAPPEND (DPath, SIndex, Smemrts)

Parameters;

DPath - Path index; Steps and Pretarget: $GETCAPARTS,
$UNCFRTS; Target: $MODIFYRTS,
$APPENDCAPARTS

SIndex - Simple index, $DELETERTS, $ENVRTS; defined

Smemrts - Legitimate stack memory address or 0

Appends the capability in the SIndex'th slot of the current
LNS onto the end of the C-list of the object referenced by DPath's
target, restricting rights (if Smemrts is nonzero) according to the
contents of Smemrts. The capability at SIndex is then made
unbound. Future attempts to access the contents of Sindex w i l l
(generally) signal.

Result;
Slot number in Target's C-list which received SIndex.

Also k n o w n , for historical reasons, as SLOAD.

4 - N O V - 7 6 Basic Kernel 2 - 2 5

$APPENDCAPA (DPath, SIndex, Smemrts)

Parameters;

DPath. - Path index; Steps and Pretarget: SUNCFRTS,
$GETCAPARTS; Target: $MODIFYRTS,
$APPENDCAPARTS

SIndex - Simple index, $ENVRTS

Smemrts- Legitimate stack memory-address or 0
El£££k

Appends the capability in the SIndex'th slot of the current
LNS onto the end of the C-list of the object referenced by DPath's
target, setting $DELETERTS, and restricting rights (if Smemrts is
nonzero) according to the contents of Smemrts.

Result;

Slot number in Target's C-list which received SIndex.

SVACATE (DPath)

Parameters;

DPath - Path index; Steps: SUNCFRTS, $GETCAPARTS;
Pretarget: $MODIFYRTS, $KILLRTS; Target:
$DELETERTS

Effect;
Deletes the capability targeted by DPath. See section

2.2.5 for other potential effects if this was the last
capability referencing an object. The slot targeted by Dpath is
empty but defined (see sections 2.1.7 and 2.1.6).

0

SDELETE (DPath)

Parameters:

DPath - Path index; Steps: $UNCFRTS, $GETCAPARTS;
Pretarget: $MODIFYRTS, $KILLRTS; Target:
$DELETERTS

Deletes the capability targeted by DPath. See section
2.2.5 for other potential effects if this 'was the last

2 - 2 6 Basic Kernel 4 -Nov-76

capability referencing an object. The slot targeted by Dpath is both
empty and unbound. This may also affect the C-list length of the
C-list containing the target. See sections 2.1.7 and 2.1.6.

Result:
0

^INTERCHANGE (DPath, Dlndex, Smemrts)

Parameters;

DPath - Path index; Steps: $UNCFRTS, $GETCAPARTS
Pretarget: $MODIFYRTS, SKILLRTS,
$GETCAPARTS, $PUTCAPARTS; Target:
$DELETERTS

Dlndex - Simple index, $DELETERTS, $ENVRTS

Smemrts - Legitimate stack memory address, or 0
Eflecli

Interchanges the capabilities targeted by DPath and by
Dlndex. Restricts rights (if Smemrts is nonzero) of the capability
placed into DPath's target according to the contents of Smemrts. If
any Step in DPath lacks $UNCFRTS, Dlndex w i l l have $UNCFRTS,
SMODIFYRTS and $REALLYRTS removed. If any Step lacks
$ENVRTS, Dlndex wi l l have $ENVRTS removed.

Result;
0„

SRESTRICT (DPath, Smemrts)

Parameters;

DPath - Path index; Steps: $GETCAPARTS, $UNCFRTS;
Pretarget: $GETCAPARTS, $PUTCAPARTS,
SKILLRTS, SMODIFYRTS; Target: $DELETERTS;
Target may be empty

SMemrts- Legitimate stack memory address, or 0
Effect;

Restricts the rights at DPath's target according to the
contents of SMemrts. If SMemrts is 0, no restriction is performed.

Result;
0

4 - N o v - 7 6 Basic Kernel 2 - 2 7

2.1 A 5.4 Date and Time K-calls

SGETGMT (MemW4)

Parameters;

MemW4 - Legitimate memory address, writeable.
Effect.

Returns the current time in microseconds in G M T 2 2 relative
to system date 0. MemW4 is a four-word area which contains the
result if no errors have occurred. This value may be subsequently
converted to other formats by use of the $GMTT0L0CAL K-call.
For the format of this area, see Appendix D.

Result;
0

SGNAMETOGMT (MemW4,MemR4)

Parameters:

MemR4 - Legitimate memory address; contains the global
name of an object

MemW4 - Legitimate memory address, writeable; Note that
MemW4 may overlap or be identical to MemR4.

Effects
Converts the global name at MemR4 (such as is obtained from

the $OBJINFO K-call, see section 2.1.15.1) to a corresponding time
in microseconds in GMT and relative to system date 0. This value
could be used in the $GMTT0L0CAL K-call, below, to obtain a
creation date and time for the object.

Rssulli
0

Greenwich Mean Time.

2 - 2 8 Basic Kernel 4 -Nov-76

$GMTTOLOCAL (MemWn, Count)

Parameters;

MemWn - Legitimate memory address, writeable; length, is
specified by the Count parameter

Count - Integer, value >4.

The first four words at the location specified by MemWn
must contain a valid GMT time value (such as might be obtained
from the $GETGMT K-call, above). The value is converted to local
time and as many words as specified above the GMT date are filled
in w i t h this information. The exact format is given in Appendix
D. Note that if a Count larger than the current
implementation maximum is given, only as many words as the
maximum specifies are produced; the balance of the area is
unchanged. However, future extensions to this K-call may wri te
in these words, so this behavior should not be depended upon.
Note, however, that future extensions will never write more
words than Count specifies so users are guaranteed compatibility
between future extensions and existing code.

Signals;
$HySGMT - The GMT value cannot be converted wi th in the

current implementation-defined limits (dates beyond
the year 2060, approximately).

Result;
0

i SGETUPTIME (MemW4)

Parameters:

MemW4 - Legitimate memory address, writeable.

Returns the time, in units of microseconds, of the GMT time
that the system came up (relative to system date 0), MemW4 is a
four-word area which contains the result if no errors have
occurred. The value may be subsequently converted to other
formats by use of the $GMTT0L0CAL K-call, or used directly to

| compare previous time stamps obtained by this K-call.
i One use of this K-call is to allow the user to determine that

4 - N O V - 7 6 Basic Kernel 2 - 2 9

the system has been taken down since the last time the time stamp
w a s read. This permits the user to validate complex structures of
objects and data which might have been damaged if the system
was taken down when they were presumed to be in an
inconsistent state.

Result;
0

X
X

SGETCLOCK (SMemW4) X
X

Parameters; X
x

SMemW4- Legitimate stack memory address X
EflSfili X

Puts a reading of the system clock into the 4 word block of X
memory beginning at SMemW4. See Appendix E for the X
format. X

Note: This K-call is obsolete and has been superceded by X
the GMT conversion K-calls given previously. It is included X
here so that existing code may be understood. X

Signals X
Result x

o x
2.1.15.5 Indirect K-call specifications

SKALLINDIRECT (SMemRn)

Parameters;

SMemRn- Address of the start of the K-call parameter list
Effect

This K-call treats the data at SMemRn as if it were stacked as
parameters to the K-call. For details on the format see section
I.

Signals;

All signals are possible from this K-call. A signal may
indicate an error in the parameter stack, the address passed, etc., or
be generated by the K-call described at SMemRn.

RssuUi
Depends upon the K-call specified at SMemRn.

2 - 3 0 Basic Kernel 4 -Nov-76

2 . 2 . T h e I n t e r m e d i a t e K e r n e l

2 , 2 . 1 Domain S w i t c h i n g

Let us consider some standard protection problems:

> W h e n an executing program wishes to invoke another program (e.g.
call a subroutine), the caller may not trust the called program and
may w i s h to isolate it in a separate environment (LNS), specifying as
arguments only capabilities for those objects in its own LNS that it
w i shes the called program to be able to access.

> A program that manipulates a data base needs capabilities to access
the data base but it should never be possible for callers of the
program to have direct access to the data base.

* Since no program except those belonging to the data base
system can ever access the data base representation directly,
the system implementors may feel free to change internal
representations at any point.

* Since no program except those belonging to the data base
system can ever modify the data base, no user can
inadvertently or maliciously alter the structure of the data
base.

* Since no users can access the contents of the data base
wi thout using the data base system as an intermediary, the
system can restrict what information wi l l be passed out to
various classes of users and what modifications it w i l l accept
from various classes of users.

In response to these issues, Hydra provides PROCEDURE objects. The K-
call $CALL(Rtrn,Proc,A1,...,Ajc) creates a new LNS in which the procedure's
code w i l l execute and transfers control to it. (Proc denotes a capability for
an object of type PROCEDURE, Aj through A k denote capabilities to be passed
as arguments to the called procedure and Rtrn denotes a slot where the called
procedure may return a capability.) The K-calls $ RETURN and $SUSPEND
pass control back to the calling LNS, optionally returning a capability.

The C-list of a PROCEDURE contains capabilities that w i l l be duplicated
in each LNS incarnated from the PROCEDURE. These are called inherited

4 - N O V - 7 6 Basic Kernel 2 - 3 1

| capabilities2*** an^ c a n b e used to solve the data base problem just mentioned,
j In addition, some of the capabilities in the procedure's C-list are parameter
| templates. Capabilities passed as arguments to the procedure w i l l appear in
; those slots in the LNS's C-list where parameter templates appeared in the
j procedure's C-list. In addition to specifying where CALL arguments appear
J in the incarnated LNS, parameter templates also specify a type and check-

rights. A $CALL w i l l fail {signal) if some argument is not of the same type
and does not contain the minimum rights specified by the check-rights field
of the corresponding parameter template 2^. The initial value of the check-
rights field in a parameter template is 0 for both Generic and Auxil iary
rights, indicating that no rights-checking wi l l take place. See section
2 .2 .7 .2 and the $SETCHKRIGHTS K-call. A NULL parameter template

i m a y be used in cases where a number of different types of objects must be
accepted as parameters. In such cases, the user must perform the type-
checking explicitly, by using K-calls such as $COMPARE and $OBJINFO

| (section 2.1 .15.1) or by more powerful operations, such as $MERGE,
I described below and in section 2.2.7.4.

Procedures can be used to construct systems of programs collectively
j k n o w n as protected subsystems. Consider a Directory system where users
i have capabilities for directories they can access, but because the 'Directory
j subsystem' maintains the directories in a special private format, users should
j not be able to directly access or manipulate their directories except through
| the set of PROCEDURES which comprise the 'Directory subsystem',
! Therefore, the rights [in a capability] to a Directory object are restricted in
I such a w a y that no executing LNS outside the Directory subsystem can

access or modify a Directory object. However, the Directory subsystem itself
must be able to access and alter a Directory object; therefore it must gain the
rights necessary to do this, even though the [capability for a] Directory
object passed to it does not possess these rights. Hydra accomplishes this
through a process called rights amplification. Capabilities passed as
arguments in a $CALL need not have the same rights, either Generic or
Auxil iary, in the incarnated LNS as in the LNS of the caller. The parameter
template may specify new-rights which may be greater than the rights of

2 3 These are inherited from the PROCEDURE object which created the LNS, not the LNS w h i c h
invoked the procedure. This point is sometimes unclear. The analogous feature in some
programming languages is the ability to declare h o w "own" variables in a procedure or
coroutine are to be initialized upon an invocation.

2 4 N 0 t e that ^ o t r i the Generic Rights and the Auxiliary Rights fields are included in the r ights-
checking .

2 - 3 2 Basic Kernel 4 -Nov-76

Depending upon w h i c h rights were restricted.

the capability passed as an argument; in the incarnated LNS, the capability
w i l l have the n e w rights. Note that the new rights may, in some cases, be
less than the rights passed; for example, an information-delivering
procedure might, for the peace of mind and protection of its implementor,
restrict all rights which would allow it to modify the "read-only" objects
passed to it as parameters. This would prevent it from accidently modifying
s u c h objects, and furthermore m i g h t 2 ^ prevent any procedures it calls from
modifying the objects.

Figure 3 notes how this solves the Directory problem through the use
of auxi l iary rights and parameter templates which specify new-rights. The
user's capability for a Directory does not contain rights w h i c h a l low
manipulation of or access to the directories directly. Rather, various
procedures of the 'Directory subsystem1 have parameter templates w h i c h
specify these rights as new-rights, so that manipulation or access of a
directory can only take place in the protected environment pf the 'Directory
subsystem'. Auxiliary rights are used to control h o w a Directory may be
used. Since different procedures specify different check-rights for
Directories passed as arguments, auxiliary rights provide a w a y of
specifying procedural protection. Hydra does not permit unrestricted
creation of parameter templates which specify new-rights; otherwise the
protection afforded by the directory system could be easily circumvented.
Templates w h i c h specify new-rights can only be created using special
capabilities (see section 2,2.5), and since templates are capabilities,
their dissemination can be controlled. In the above case, the presumption is
that only PROCEDURES of the 'Directory subsystem' would have parameter
templates of Directory type wi th new-rights.

Creation of an LNS and transfer of control to its code can be separated.
The K-call $MAKELNS incarnates an LNS from a procedure and arguments,
w h i l e the K-call $LNSCALL transfers control to the LNS. The advantages of
having such pre-initialized LNS's are efficiency and the ability to build
coroutine structures. Once an LNS $SUSPENDs, it may be $LNSCALLed again.
Execution continues- after the $SUSPEND. The LNS's pages, its C-list and
registers RO and PC wi l l be retained; however, the rest of the registers w i l l
be destroyed

and the stack w i l l be reinitialized.

The same pre-initialized LNS may be used by more than one process at a

4 - N O V - 7 6 Basic Kernel 2 - 3 3

User environment

Capability available to user

e . * . S P U T D A T A R T S
S P U T C A P A R T S

Access blocked

Data part C-list

Directory subsystem environment

Capability in subsystem procedure LNS
New-rights

f t * * S P U T D A T A R T S
S P U T C A P A R T S

0

— $CALL — >

Access permitted-

Amplification template design © 1976 by Brian K. Reid

Figure 3: Example of a subsystem

time, but not s imul taneous ly 2 6 . It must $SUSPEND before it can be
SLNSCALLed again. The creator of a procedure can control whether or not i t
can be passed to $MAKELNS, whether or not it can be re-$LNSCALLed, and
w h e t h e r or not it can be used to instantiate a process.

2 . 2 . 2 TEMPLATES and Merging

The process of comparing a capability to a template and producing a
n e w capability is called merging. It is useful not only as part of the call
mechanism, but at other times as well. Hence, there are capability templates

The LNS Is serially reusable but not re-entrant. Note that these properties apply to the LNS
and not the code involved.

2 - 3 4 Basic Kernel 4 -Nov-76

(for general merging by use of the $MERGE K-call described in section
2 .2 .7 .4) as we l l as parameter templates (for $CALL-time merging).
Templates contain two flags:

$TemplateFlag - 1 - Capability template
0 - Parameter template

$AmplifyFlag - 1 - Amplify rights in merging (new-rights)
0 - No amplification

These flags, if set, may be cleared in exactly the same w a y that rights
ma}' be restricted (see section A.2). Once cleared, they may not be
set again. Since unlike object references, templates do not refer to specific
objects, there is little need for templates to have rights. Therefore, wi thout
m u c h conflict, rights and new-rights have been combined. Even w h e n
new-r ight s are specified, there are certain rights that cannot be amplified.
This is true of the Kernel rights $ENVRTS, $UNCFRTS, SFREEZEFLAG,
$MODIFYRTS, and $REALLYRTS. (Templates never have $REALLYRTS.) They
w i l l appear in the merged capability only if they appear both in the n e w -
rights of the template as wel l as in the original capability.

2 . 2 . 3 NULLs Revisited

An empty slot has already been defined as a slot containing a NULL
capability. In fact, it is impossible to create a NULL object, and empty slots
actual ly contain NULL templates.

NULLs have one auxiliary right predefined, $UNBOUNDFLAG. We use
the term unbound to mean a NULL template wi th both $UNBOUNDFLAG and
$TemplateFlag set. When an object is initially created, its C-list is set to
contain all unbound capabilities with all Kernel r ights 2 ^.

The length of a C-list is really the index of the last defined slot in the
C-list. Hence NULL parameter templates or NULL templates lacking
SUNBOUNDFLAG are included in the length.

2 7 7 h e initial size of the C-list of such objects is a parameter determined at the time the TYPE
representative is created; see sections 2.2.5 and 2 .2 .7 .3 . For Kernel types, it is
the implementation maximum given in section A.4.

4 - N O V - 7 6 Basic Kernel 2 - 3 5

| 2 . 2 . 4 Confinement, Freezing, and Revocation

A number of Generic rights are provided to solve some interesting
protection problems. $ENVRTS, SMODIFYRTS, and $UNCFRTS are all used to
solve variants of the confinement problem. That is, they may be used to
guarantee that capabilities and data do not escape from particular LNS's;
those LNSfs are then said to be confined or partially confined w i t h respect
to the information against whose leakage we wish to protect.

SENVRTS can be used to guarantee that capabilities are not stored by a
callee w h o is passed the capability. Without $ENVRTS, the capability cannot

j be placed in.the C-list of any object except the LNS which received it as a
I parameter. It may be used as an argument to an LNS which the callee CALLs,
i but $ENVRTS cannot be gained through rights amplification. Additionally,
! whenever a capability is loaded into an LNS through any path in w h i c h some
! capability lacks $ENVRTS, the loaded capability w i l l have $ENVRTS

removed. This guarantees that if a capability without $ENVRTS is passed to
' a procedure neither the capability, nor any capability in the object i t

references, may escape from the caller's environment. Each inherited
capability in an LNS incarnated from a procedure capability lacking

, $ENVRTS w i l l have $ENVRTS removed as well .

I As an example, capabilities for LNS's never have $ENVRTS and thus can
never be accessed or manipulated outside of the process in w h i c h the LNS
has been incarnated.

$MODIFYRTS and $UNCFRTS can be used to protect objects from
! modification through capabilities lacking those rights. If an LNS calls
i another LNS passing a capability lacking $MODIFYRTS, the callee cannot
| modify the accessed object through that capability regardless of
j amplification. This is assured because $MODIFYRTS cannot be gained

through rights amplification and any K-call that modifies an object requires
a capability for that object wi th SMODIFYRTS as wel l as other relevant
rights.

SUNCFRTS also cannot be gained through amplification and prevents
modification of any object reached through the C-list of an object referenced
through a capability lacking SUNCFRTS.

Users may w i s h to guarantee that information passed to an untrusted
procedure w i l l not be leaked to another user. The Generic right SUNCFRTS
also provides this guarantee. Any LNS incarnated from a procedure
capability lacking SUNCFRTS wi l l be confined. Each capability in the LNS
inherited from the Called procedure wi l l lose SUNCFRTS, SMODIFYRTS, and

2 - 3 6 Basic Kernel 4 -Nov-76

SREALLYRTS (explained later in this section). Confinement is then provided
in the fol lowing way. The reader may note that any K-call wh ich modifies
an object requires that the capability for the object have $MODIFYRTS and
that other capabilities in the path to the object have $UNCFRTS.
Additionally, whenever a capability is loaded into an LNS through a path
w h e r e some capability lacks SUNCFRTS, the loaded capability w i l l have
$UNCFRTS, $MODIFYRTS, and $REALLYRTS removed. Hence, information
and capabilities cannot be stored by a confined LNS through any capabilities
except those passed as parameters in incarnating the LNS.

Nbte that if a procedure capability wi th $UNCFRTS-is used as an
argument in incarnating a confined LNS, the confined LNS w i l l be able to
$CALL an unconfined LNS through it. Otherwise, since all inherited
capabilities of the confined LNS lack $UNCFRTS, any LNS called w i l l be
confined as wel l .

There are still a small number of ways to covertly leak a f e w bits of
information out of a confined LNS. It would be counterproductive to l ist
these. However, no large leakage of data is possible.

Users may also wish to guarantee that an object they have access to is
frozen; that is, the object and all objects reached by taking a path through it
w i l l never be modified, even by concurrently executing LNS's that may have
a capability for the same object. The flag SFREEZEFLAG is used l ike a right
to guarantee that an object is frozen. The K-call SFREEZE acts very much
l ike a $COPY, except that it also sets SFREEZEFLAG and eliminates SUNCFRTS
and $MODIFYRTS from the copy it creates. Since SUNCFRTS and
$MODIFYBTS cannot be gained through amplification, all capabilities for the
object w i l l lack them, guaranteeing that the object wi l l never be modified
once frozen. $FREEZE only succeeds if all capabilities in the object's C-list
are already frozen. So that SFREEZEFLAG can represent a guarantee of
frozen-ness, it also cannot be gained through amplification.

Hydra allows objects to act as aliases for other objects. Accessing such
an alias-ing object actually causes access of the aliased object. Aliases
themselves may have aliases, allowing up to 23 levels of indirection. The
object f inally accessed at the end of the alias indirection chain is called the
terminal object of an alias.

An alias may be created for any object, and a capability w i l l be
provided for the aliasing object wi th SREALLYRTS. With $REALLYRTS, the
aliasing object may be re-aliased with the $REALLY operation to act as alias
for a different object or even for no object at all. Thus, if a user wishes to
share a capability for an object wi th another user, but might want to revoke
the capability at some later time, he need simply create an alias for the object
and share the capability for the alias.

4 - N o v - 7 6 Basic Kernel 2 - 3 7

j To guarantee that re-allying cannot be used to il l icitly gain rights,
! w h e n e v e r rights are restricted in a capability, SREALLYRTS are removed as

w e l l .

2 . 2 . 5 Types, Creating, and Erasing

Objects of type TYPE represent all objects in the equivalence class of a
g i v e n type. For example, the object whose name is PROCEDURE and whose
type is TYPE represents all objects whose type is PROCEDURE. There is, of
course, an equivalence class for objects of type TYPE represented by an
object whose name is TYPE and whose type is TYPE. Some of these
equivalence classes (for Kernel-defined objects) are illustrated in figure 4 .

/
objects

of

type

TYPE
PROCESS o o o LNS

o

o
objects of type DATA

e x

objects of type PORT

Figure 4: Some Generic-defined objects

objects of
type

PROCESS

Objects of type TYPE are used to generate templates of the type named
b y the TYPE object. A template of a given type is then used in creating an
object of that type. There is a single object in the system whose name and
type are both TYPE which represents all the objects in the system (including
itself) whose type is TYPE. (See Figure 4.)

The w a y to create a new object of some type, say FILE, is to use the K-

2 - 3 8 Basic Kernel 4 -Nov-76

call SCREATE, supplying as an argument a FILE template w i t h SCREATERTS,
called a creation template. A FILE template can first be gotten by using the
K-call SMAKETEMPLATE, supplying a capability for the FILE TYPE object
w i t h STEMPLATERTS.

Note that as a matter of policy, a subsystem may not al low users to
have access to creation templates. Instead, a user who wishes to create an
object must call upon a procedure in the subsystem which does have access
to the creation templates. Thus, the subsystem is able to create an object and
init ial ize it in a well-defined way, and then protect it from the user by
restricting appropriate rights. The subsystem may also perform resource
control or accounting, and refuse to create an object if no resources are
available or the user has exceeded some quota.

Initially, Hydra provides templates for each Kernel type (though users
m a y not directly be able to access these). These templates do not have all
Generic rights, but rather a restricted set, depending on the type. For these
r ights limitations, see section A.5. Note that one does not need
access to a Kernel TYPE object in order to obtain templates for Kernel types.
See the $ M AKETEM PL ATE K-call in section 2.2.7.2.

SCREATE may expect some additional arguments when creating an
object of a Kernel t y p e 2 8 . For example, in creating a new TYPE object,
SCREATE expects a memory address as an additional argument. The Kernel
w i l l use the information in that block of memory to store the fol lowing data
i n the data-part of the TYPE object:

SCreatePNAME - word 0 of the type's print name. While all objects
have a 6 4 bit bit unique name, TYPE objects also have a 1 0 -
byte print name. The K-call S0BJINF0, given a capability for
an object, produces (among other information), the print name
of its type.

SCreateCapalnit and SCreateCapaMax - the initial length of the C-
list (filled wi th truenulls) and the maximum length of the C-
list of any object of the type created. Either or both of these
may be zero, but it must be true that
SCreateCapalnit < SCreateCapaMax.

SCreateDatalnit and SCreateDataMax - the initial length of the data-
part (zeroed) and the maximum length of the data-part of any
object of the type created. As wi th the C-list limits,
SCreateDatalnit < SCreateDataMax.

2 8 ° The complete set of Kernel types, their symbols, and their creation arguments, is g i v e n in
sect ion A,5).

4 - N o v - 7 6 Basic Kernel 2 - 3 9

SCreateTempFlag - an indication as to whether objects of this type
are to be retained between activations of Hydra. If
SCreateTempFlag is set in the TYPE representative of an
object, then that object wi l l (effectively) be destroyed
whenever the system is shut down. Such objects are used to
contain transient status, e.g., open-file records.

SCreateRetrieveFlag - an indication of whether objects of this type
are to be retrieved when all references to the object are
deleted (see following paragraph).

When all capabilities for an object have been deleted, the space
occupied by the object is normally reclaimed. However, it is possible to
retrieve such objects and prevent reclamation on a type-by-type basis (see
RTRVFLAG above). The K-call $TYPERETRIEVE returns a capability for an
object, all of whose references have been deleted (including aliases). To
actually reclaim a retrievable object, the K-call $ERASE rather than
$DELETE must be used to delete the last capability for the object. Aliasing
objects are never retrieved.

The fields for a type creation block are defined in
CREATE.REQ[N811HY97].

2 . 2 . 6 Protected Subsystems

Since protected subsystems are generally built around a particular type
of object (e.g. the Directory subsystem mentioned earlier), Hydra provides a
w a y to use a subsystem without unnecessarily proliferating capabilities for

I the procedures wh ich define it.

! The C-list of a type object is used to implement protected subsystems
easi ly by listing the procedures which define it, and supplying access to
those procedures through the K-call STYPECALL.

If the Ndx'th capability in the current LNS is of type T, and w e use the
notation T< to indicate the j'th capability in the C-list of the T-TYPE object,
then STYPECALL (Rtrn,Ndx, j , a 2 > . i s the same as
$CALL(Rtrn,Tj,a 2,-..,a k). See figure 5.

There are several advantages to using the $TYPECALL mechanism. Two
major advantages are:

> Users do not have direct access to capabilties for the subsystem
procedures. Thus new procedures may be installed by changing the
capabilities in the TYPE object. This makes management of complex
systems much easier.

2 - 4 0 Basic Kernel 4 -Nov-76

LNS

object of type TYPE

Object of type GORP

2

$CALl< 2, <args>)
/

$CALl< 2, <args>)
/

object of

type

PROCEDURE

STYPECALU^Vargs^

Figure 5: A STYPECALL example

> Standard interfaces can be provided. For example, the convention
may be adopted that slot 2 of the TYPE object contains the creation
procedure capability.

2 . 2 . 7 Specif ications for Intermediate Kernel K-calls

2.2.7.1 Creation of TYPE objects

! SCREATE (Dlndex, SType, SMemRlO)

Parameters?

Dlndex - Simple index, empty

SType - Simple index, TYPE template, SCREATERTS.

SMemRlO - Legitimate stack memory address. For
details of contents, see section 2.2.5.

i
j
i

4 - N O V - 7 6 Basic Kernel 2 - 4 1

Effect;
Creates a TYPE object for a user-defined type. The type print

name, C-list limits, data-part limits, temporary flag and
retrievability flag are all set according to the contents of
SMemRlO.

Signals;

This K-call w i l l signal if any of the parameters in the type
creation block are out of range or inconsistent. The index of the
offending word for the signal wi l l be placed in $SIGDATA.
SHySTYPEBOUND - One of SCreateCapalnit, SCreateCapaMax,

$CreateDataInit or SCreateDataMax larger than the
implementation-defined maximum; or
SCreateCapalnit > SCreateCapaMax or
SCreateDatalnit > SCreateDataMax.

Bssiilli
0

SCHANGETYPESPECS (DIndex, SMemRlO)

Parameters;

DIndex - TYPE object reference; Steps and Pretarget:
SGETCAPARTS, SUNCFRTS; Target:
SCHANGETYPERTS, SMODIFYRTS

SMemRlO - Legitimate stack memory address
Effect;

Allows the parameters set at creation of a TYPE object to be
altered. Note that these changes wi l l affect only future creations
done for objects of this TYPE. The only change to existing objects
is that the print name is changed. Note: if a -1 (# 1 7 7 7 7 7) is
stored in a word of the type specification block, the contents of
that field in the TYPE object is not altered.

Signals;

This K-call w i l l signal if any of the parameters in the type
specification block are out of range or inconsistent. The index of
the offending word for the signal wi l l be placed in SSIGDATA.
SHySTYPEBOUND - One of SCreateCapalnit, SCreateCapaMax,

SCreateDatalnit or SCreateDataMax larger than the
v implementation-defined maximum; or

SCreateCapalnit > SCreateCapaMax or
SCreateDatalnit > SCreateDataMax.

2 - 4 2 Basic Kernel 4 -Nov-76

0

SMAKETEMPLATE (DPath, SIndex, Smemrts)

Parameters;

DPath. - Path index; Steps: $GETC AP ARTS, SUNCFRTS;
Pretarget: SPUTCAPARTS, SMODIFYRTS; Target:
empty

SIndex - Simple index, type TYPE, STEMPLATERTS or a
negative integer (see below)

Smemrts - Legitimate stack memory address, or 0
Effect;

If SIndex is a simple index, then SMAKETEMPLATE places a
template in DPath's Target whose type is the name of the SIndex'th
capability in the current LNS. The template w i l l only have
SUNCFRTS set if SIndex has SUNCFRTS. The template w i l l have all
other flags and rights (both Generic and Auxiliary) set except for
SREALLYRTS.

If SIndex is negative, then a template for the (-SIndex) ? th
Kernel type is placed in DPath's Target wi th STemplateFlag set as
w e l l as various rights depending on the type. (See section
A.5.) The first 13 types are the predefined Kernel types.
The symbols which map these names into types are described in
section A. 5 and in the Bliss require file
TYPES.REQ[N811HY97]. Note that the symbols given in this fi le

.are positive integers, and must be negated by the user w h e n used
in this K-call.

In either case, the rights of the new template are further
restricted according to the contents of Smemrts (if Smemrts is
nonzero).

Result;
0

2.2.7.2 TEMPLATE Manipulation

4 - N O V - 7 6 Basic Kernel 2 - 4 3

SSETCHKRIGHTS (DPath, SMemrts)

Parameters;

DPath - Path index; Steps: SGETCAPARTS, SUNCFRTS;
Pretarget: $GETCAPARTS, SPUTCAPARTS,
SKILLRTS, SMODIFYRTS; Target: template,
SDELETERTS

SMemrts- Legitimate stack memory address
Effect;

Sets the check-rights of the template at DPath according to
the contents of SMemrts.

Rssiilk
0

2 .2 .7 .3 Object Manipulation

SCREATE (Dlndex. SIndex, <argument$>)

Parameters;

Dlndex - Simple index, empty

SIndex - Simple index, template, SCREATERTS; must not be
NULL; Also requires SUNCFRTS if the type is
Retrievable

- For description of additional <arguments> (only
applicable when SCREATEing a Kernel object) see
section A.5.

Effect;
Creates a new object of the same type as SIndex and places a

capability for it in Dlndex. The rights in Dlndex are the same as
those in SIndex except that SFREEZEFLAG wi l l be removed,
SDELETERTS, SENVRTS, and SMODIFYRTS w i l l be added,
SUNCFRTS wi l l be added unless SIndex is a procedure template and
the current LNS is confined.

0

! 2 - 4 4 Basic Kernel 4 -Nov-76
i

*
*
*
*
X

*
*

X

*

3C0PY (DIndex, SIndex, <arguments>)

Parameters:

DIndex - Simple index, empty

SIndex - Simple index, object reference, SCOPYRTS

- For description of additional <arguments> (only
applicable when $COPYing a Kernel object) see
section A.5.

Effect;
Creates a new object of the same type as SIndex and places a

capability for it in DIndex. In addition, the contents of the C-list
and data-part of the new object wi l l be the same as those of the
original.

The rights of the new capability in DIndex wi l l be exactly
the same as those for SIndex plus $DELETERTS, unless the object is
of a Kernel type, in which case additional rights may be added.
Note that some Kernel types cannot be copied. See section
A. 5 for details.

EfiSlllli
0

*

* SDESTROY (DPath)

Parameters;

DPath - Path index; Steps and Pretarget: $GETCAPARTS,
SUNCFRTS; Target: object reference,
$MODIFYRTS, $OBJRTS

Effect;
Destroys the object referenced by the Target and deletes all

capabilities in the object's C-list.
Future accesses of the object wi l l fail w i t h either

$HySCBOUND or $HySDBOUND signals.
When the last capability for the object is deleted, the object

w i l l not be retrieved.
Result;

0

2 - 4 5

SSWITCH (DPath, Dlndex)

Parameters;

DPath - Path index; steps and pretarget: SGETCAPARTS,
SUNCFRTS; Target: object reference,
SMODIFYRTS, SOBJRTS, SUNCFRTS

Dlndex - Simple index, same type as DPath's target,
SOBJRTS, $UNCFRTS,$MODIFYRTS

Effect!
Switches the C-list and data-part of the objects referenced by

DPath's target and Dlndex,
Signals;

SHySCANTLOCK-The object referenced by Dlndex cannot be
immediately locked.

Result;
0

SFREEZE (Dlndex, SIndex, <arguments>)

Parameters;

Dlndex - Simple index, empty

SIndex - Simple index, object reference, SOBJRTS,
SMODIFYRTS; SIndex must not be an alias; each
capability in C-list of the object must have
SFREEZEFLAG

- For description of additional <arguments> (only
applicable when performing SFREEZE on a Kernel
object) see section A.5.

Effecli
Performs a SCOPY of the object, then sets SFREEZEFLAG and

turns off SUNCFRTS and SMODIFYRTS in Dlndex. Otherwise the
same as SCOPY.

Signals;
SHySFREEZE- Some capability in the object's C-list is not frozen.

SSIGDATA indicates the index of the last such
capability.

SHySNOTUNIQUE-DIndex is not the only reference to the object.
SHySALIAS - Dlndex references an alias.

Besulli
0

2 - 4 6 Basic Kernel 4 -Nov-76

* SMAKEALIAS (DIndex, SIndex)
X

* Parameters:
x
* DIndex - Simple index, empty

SIndex - Simple index, object reference
Effect;

Creates an object in DIndex of the same type as SIndex to act
as an alias for the object referenced by SIndex. Any future
references to to the new object (unless changed by $REALLY) w i l l
in fact access SIndex's Terminal object. DIndex wi l l have the same
rights as SIndex except SDELETERTS and $REALLYRTS w i l l be
added and it wi l l not have $FREEZEFLAG.

Result?
0

* SREVOKE (DIndex)
X

* Parameters;
X

i
f DIndex - Simple index, $REALLYRTS
* Effect:
* Revokes alias until re-ally-ing occurs. Future references
* through the alias wi l l fail with signal $HySNOALIAS,
* Result:
* 0
x
i
X

* 8REALLY (DIndex, SIndex)
X

* Parameters;
X

* DIndex - Simple index, SREALLYRTS (insures aliasing
f object)
X

* SIndex - Simple index, must reference DIndex's original
* alias. SIndex, except for $DELETERTS and
* SREALLYRTS, must have at least all the rights
* that DIndex has.
* Effect;
* Re-allies the object referenced by DIndex to be an alias for
* the object referenced by SIndex.
! Result;
i o

4 - N o v - 7 6 Basic Kernel

STYPERETRIEVE (Dlndex, SIndex)

2 - 4 7

Parameters;

Dlndex - Simple index, empty; or 0

SIndex - Simple index, TYPE object reference, $UNCFRTS,
SRETRIEVERTS

Effect;
If Dlndex is not zero, retrieves a capability for an object of

the type named by SIndex, all of whose references have been
deleted. The Kernel maintains the retrieval queue for each object
in FIFO order. The retrieved capability has all rights except
SFREEZEFLAG land $REALLYRTS (aliasing objects are not
retrieved). If Dlndex is zero, the K-call is executed for its result
value only.

Besiilii
Number of objects in SIndex's type's retrieval queue,

including object retrieved, if any. Note a result of 0 indicates no
object was retrieved.

SERASE (Dlndex)

Parameters;

Dlndex - Simple index, must be only reference to object,
SOBJRTS, SDELETERTS

Effecli
Deletes last reference to an object without placing it in its

type's retrieval queue. Also deletes each capability in the object's
C-list. (If the capability is for an aliasing object, or no retrieval is
indicated for the type, simply deleting the last reference to the
object has the same effect as SERASEing it.)

Signals;

SHySNOTUNIQUE-DIndex is not the only reference to the object

0

I 2 - 4 8 Basic Kernel 4 -Nov-76

EMERGE (DIndex, STempI, SPath)

Parameters:

DIndex - Simple index, empty

STempI - Simple index, template, $TemplateFlag •

SPath - Path index; Pretarget: $GETCAPARTS; Target:
defined, r ights must contain all those specified by
check-rights field of STempI. If STempI is not
NULL, must be an object reference and must be of
the same type as STempI, If STempI is NULL, may
be of any type and may be either an object
reference or a template.

Effect;
Copies the capability targeted by SPath to the DIndex'th slot

of the current LNS and sets $DELETERTS. If SPath's Target is a
capabili ty for an aliasing object and STempI has $AmplifyFlag set,
a capability for the alias's terminal object is copied instead.

If STempI has SAmplifyFlag set, STempl's (new-r igh ts) are
copied to DIndex, except for SENVRTS, SUNCFRTS, SMODIFYRTS
and $FREEZEFLAG w h i c h must appear in SPath's Target as wel l .

If any capability in the Path's steps or pretarget lacked
$UNCFRTS, then $MODIFYRTS, SUNCFRTS and $REALLYRTS w i l l
be removed from DIndex. If any capability in the SPath lacked
$ENVRTS, then $ENVRTS wi l l be removed from DIndex.

Signals;
$HySCHECKRTS-Check-rights failure
$HySMERGE- STempI is not a template or does not have

$TemplateFlag set;
SHySSTYPE - Types of SPath's Target and STempI are not the same.

Result;
0

i i
2 .2 .7 .4 The CALL Mechanism

4 - N o v - 7 S Basic Kernel 2 - 4 9

SMAKELNS (Dlndex, Nproc, <arguments>)

Parameters;

Dlndex - Simple index, empty

Nproc - Simple index, procedure object reference;
$LNSRTS

The 0 or more <arguments> must each, be of the following
form:

> SPATH (SPath)
Path index; Pretarget: SGETCAPARTS;
Target: Requires SENVRTS if Nproc has
$PROCESSRTS

> $RESTRICTION (SPath, Smemrts)
SPath: as for $PATH
Smemrts: Legitimate stack memory
address, or 0

> STRANSFER (SPath, Smemrts)
SPath: Path index;
Steps: SUNCFRTS, SGETCAPARTS;
Pretarget: SMODIFYRTS, SGETCAPARTS,
SKILLRTS;
Target: SDELETERTS, also requires
SENVRTS if Nproc has SPROCESSRTS.
Smemrts: Legitimate stack memory
address, or 0

> SMEMDA.TA (MemRn, Count)
MemRn: Legitimate user memory address
Count: Positive integer

> SSTKDATA (<data>) 2 9

<data>: 0 or more expressions, each of
which generates one word of data

An obsolete contract w h i c h is included here for completeness. Users may encounter it in
older code and confuse it with $STACKDATA.

2 - 5 0 Basic Kernel 4 -Nov-76

> SSTACKDATA (<data>)
<data>: 0 or more expressions, each of
which generates one word of data

> $LNS()

> $LNSRESTRICT (Smemrts)
Smemrts: Legitimate stack memory
address, or 0

Arguments $LNS and $LNSRESTRICT are
permitted only if Nproc does not have
both $PROCESSRTS and $ENVRTS. The
capability denoted by each argument must
also satisfy the requirements of its
corresponding parameter template (see
$MERGE).

Effect;
* An LNS is incarnated from the procedure and arguments and
* a capability for it is placed in DIndex wi th $DELETERTS. In
* addition it wi l l have $UNCFRTS and $FREEZEFLAG, and the
* auxiliary rights $LNSRTS and $PROCESSRTS if Nproc does. If
* Nproc lacks $PROCESSRTS or $ENVRTS, the Capability for the LNS
* w i l l lack SENVRTS.
* The LNS wi l l be made confined if Nproc lacks $UNCFRTS.

All capabilities in the C-list of the PROCEDURE w h i c h are
either object references or capability templates. ($TemplateFlag
set) are copied to the same slot in the C-list of the incarnated LNS.
These are the inherited capabilities. If Nproc lacks $UNCFRTS,
each of these wi l l have $UNCFRTS, $MODIFYRTS and $REALLYRTS
removed. If Nproc lacks $ENVRTS, each inherited capability w i l l
have SENVRTS removed.

Parameter templates in the C-list of the PROCEDURE are
capabilities specified by the arguments. Arguments are matched
w i t h parameter templates in descending slot number order. The
"rightmost" parameter is merged to the highest-numbered
parameter slot, the "next-rightmost" parameter to the next -
highest-numbered parameter slot, e tc , until all parameters have
been merged. If insufficient parameters are provided, the
remaining lower-numbered parameter slots are filled w i t h
unbound templates (see section 2.3.1).

The capabilities that wi l l be placed in the parameter slots of
the LNS are the result of $MERGEing the parameter template w i t h
a capability specified by the corresponding argument. For details

76 Basic Kernel 2-

of each individual merge, see the 'Effect1 part of the SMERGE
call. As noted, arguments come in 7 flavors. The capabilities th
specify and additional side effects are as follows:

> $PATH: Capability is SPath's Target.

> $RESTRICTION: Capability is SPath's Target, restricted by
the contents of Smemrts if Smemrts is non-zero.

> STRANSFER: Capability is SPath's Target, restricted by the
contents of Smemrts if Smemrts is non-zero. In addition,
the capability at SPath's Target is deleted. (N.B. Use
wisely , because if the K-call fails the capability may be
lost.) This option is equivalent to the $PASS K-call.

> SMEMDATA: Capability is for a newly created DATA object
w i t h all rights but SFREEZEFLAG and SREALLYRTS. The
data-part of the new object wi l l contain the Count words
of data copied from the block of memory beginning at
MemRn.

> SSTKDATA: Capability is for a newly created DATA object
w i t h all rights but SFREEZEFLAG and SREALLYRTS. The
data-part of the new object w i l l consist of '<data>' i n
reverse or£g£. Thus SSTKDATA (11,22,33) produces a data
object containing words 33, 22, and 11 in positions 1, 2,
and 3, respectively.

> SSTACKDATA: What SSTKDATA was really meant to be.
Creates a capability for a newly-created DATA object w i t h
all rights but SFREEZEFLAG and SREALLYRTS. The data
part of the new object wi l l consist of '<data>' in the

. correct order. SSTACKDATA (11,22,33) produces a data
object containing words 11, 22, and 33 in positions 1, 2,
and 3, respectively.

> SLNS: Capability is for the caller's LNS w i t h SDELETERTS,
SMODIFYRTS, SUNCFRTS, SGETCAPARTS, SPUTCAPARTS,
SAPPENDCAPARTS, SKILLRTS, SGETCBRTS, SSETCBRTS,
SGETSTACKRTS, and SPUTSTACKRTS.

> SLNSRESTRICT: Capability is as in SLNS w i t h rights
additionally restricted by the the contents of Smemrts if
Smemrts is non-zero.

2 - 5 2 Basic Kernel 4 -Nov-76

Signals;
SHySFARG - Too few arguments. $SIGDATA indicates the

minimum number of arguments acceptable.
$HySMARG - Too many arguments. $SIGDATA indicates the

maximum number of arguments acceptable.
$HySCANTCONFINE-LNS is not allowed to be made confined. (See

section 2.3,1.)

If an argument is bad or any merge failed, the usual signal
w i l l be generated wi th SHySMAKELNS or'ed in as wel l . In
addition, the fixed location SSIGDATA in the stack page w i l l
contain the index of the affected slot in the incarnated LNS in its
l o w order byte and the number of the affected argument in its
h igh order byte.

Result;
0

I

x
* SLNSCALL (DIndex, Nlns)

* Parameters;
*
* DIndex - Simple index, empty
*
* Nlns - Simple index, LNS object reference, SLNSRTS;
X

* The LNS must be "usable" (see sections 2.3.2 and
* 3.1.1)
* Effect;
* The LNS is called and execution begins in its environment.
* When the called LNS $SUSPENDs, it may specify a capability to be
* returned. If DIndex is not zero, it designates the slot where that
* capability wi l l be put. If DIndex is zero, a returned capability is
* simply discarded.
* Signal??
? SHySNOSTACK-Inadequate stack space available to run the LNS
? (see section 2.3.1). $SIGDATA contains amount
? of additional stack space needed.

$HySCONTROL-Callee returned by 'Punting a Control* rather than a
$SUSPEND (see section 2.3.1).

$HySCANTLOCK-LNS is currently in use (see section 3.1.1).
SHySREUSE - LNS may not be reused (see section 2.3.3).

For paging-related signals, see section 4.7.1.

When the callee $SUSPENDs, it specifies a return value. If
that value is negative, it is treated as a signal.

4 - N o v - 7 6 Basic Kernel

Value returned by the callee

2 - 5 3

SCALL (Dlndex, Sproc, <arguments>)

Parameters;

Dlndex - Simple index, empty, or 0

Sproc - Path, procedure object reference, SCALLRTS

- Specifications for <arguments> are exactly as for
SMAKELNS.

Effect;
The effect is almost equivalent to the sequence

8MAKELNS < *, Nproc, <arguments>)*
SLNSCALL < Dlndex, *) .

That is, the Kernel incarnates the LNS and calls it, without the
caller ever having a capability itself for the incarnated LNS. The
only difference is that, unless required by check-rights in a
parameter template, an argument's target does not require
$ENVRTS, regardless of whether or not Nproc has SPROCESSRTS.
SLNS and SLNSRESTRICT are always allowed.

Signals;
See SMAKELNS and SLNSCALL

Result;
Value returned by callee

SSUSPEND (Value, SIndex, Smemrts)

Parameter*;

Value - Integer

SIndex - Simple index, SENVRTS, or 0

Smemrts - Legitimate stack memory address, or 0
EffSCii

Causes return of control to current LNS's caller w i t h result
Value. If Value is negative, Value is signalled as we l l in the
caller's environment. If the caller specified a Return slot and
SIndex is non-zero (and the return slot has not otherwise had a
capability stored into it), the capability denoted by SIndex is

Result;

2 - 5 4 Basic Kernel 4 -Nov-76

returned to that slot in the caller's LNS wi th rights restricted by
the contents of Smemrts (if Smemrts is not zero) and w i t h
$DELETERTS added.

If the current LNS has no caller, the current PROCESS w i l l be
stopped. Attempts to restart it wi l l be unsuccessful. See sections
3.1 .7 .4 and G.3.

R££lilli
Current value of RO. Control returns to caller (unless a

signal occurs). Control only continues normally after a $SUSPEND
if the current LNS is subsequently $LNSCALLed again.

SRETURN (Value, SIndex, Smemrts)

Parameters:

Value - Integer

SIndex - Simple index, $ENVRTS, or 0

Smemrts- Legitimate stack memory address, or 0
Effect;

Causes return of control to current LNS's caller w i t h result
Value. If Value is negative, Value is signalled in the caller's
environment. If the caller specified a Return slot and SIndex is
non-zero (and the return slot has not otherwise had a capability
SPUTCAPAd into it), the capability denoted by SIndex is returned
to that slot in the caller's LNS wi th rights restricted by the
contents of Smemrts (if Smemrts is nonzero), and w i t h
SDELETERTS added.

If the current LNS has no caller, the current PROCESS w i l l be
stopped. Attempts to restart it wi l l be unsuccessful.

Result;
Current value of RO. Control returns to caller (unless a

signal occurs). Any attempt to resume execution via $LNSCALL
w i l l result in a signal SHySREUSE 3 0.

3 0 Actually, SRETURN is not a separata K-calij it is a macro w h i c h expands into a $SUSPEND,
fo l lowed by a loop containing a $SUSPEND which signals $HySREUSE. There are several
reasons for renaming the old $RETURN K-call to be $SUSPEND and creating this macro.
They deal primarily wi th concepts of program clarity and ease of understanding; it is (or
should be) perfectly obvious to both programmer and reader of code that a procedure is
intended to resume after a $SUSPEND but not after a $RETURN. It also means that an LNS
w h i c h w a s not intended to be re-used wil l not be inadvertently re-used because someone
forgot to set the re-use flag.

I
i

4 - N o v - 7 6 Basic Kernel 2 - 5 5

2.2.7.5 Protected Subsystems

8TYPECALL (Dlndex, SPath, TPath, <arguments>)

Parameters!

Dindex - Simple index, empty or 0

SPath - Path, defined

TPath - Path beginning in the C-list of the TYPE object
whose name is the type of SPath, PROCEDURE
object reference, $CALLRTS

- Specifications for <arguments> are exactly as for
SMAKELNS..

Effscl;
If w e let T Y P S p a t l l be the TYPE representative for the

capability (object or template) targeted by SPath, then the effect is
(roughly) equivalent to:

8GETCAPA < * , T Y P S P a t h) i . '

8CALL < Dindex, SPATH(*,TPath), <arguments>);

that is , the Kernel $CALLs the procedure in the type object
w i t h o u t the caller getting a capability itself for the procedure.
See section 2.2.6 and Figure 5.

Signals;
See $CALL

Value returned by callee

3 - 1 2

7

4 - N o v - 7 6 ' K _ 1

Appendix K: K-call macro summary

This appendix summarizes the Kernel calls and their parameters and
provides a quick reference both to the calls and to their descriptions in the
manual. The flags in the left column are those which appear w i t h the
Kernel call in its description in the manual, and are explained in section
1.1.4.

SAPPENDCAPA (DPath, SIndex, Smemrts) 2 - 2 5
SAPPENDDATA (DPath, MemRn, Count) 2 - 2 1

P SATTACHPOLICY (Nprcs, Npol, SBase) 3 - 1 5
SB ASECALL (Dindex, SPath, arguments) 3 - 1 0
$CALL (Dlndex, Sproc, arguments) 2 - 5 3

SCHANGETYPESPECS (Dlndex, SMemRlO) 2 - 4 1
SCLENGTH (SPath) 2 - 1 7
$C0MPARE (SPath, SIndex) 2 - 1 8
SCONNECT (Port 1, Outchan, Port2, Inchan, Connid) 6 - 9

P $CONTROL (Nprcs, Code)

$C0PY (Dlndex, SIndex, arguments)
SCOPY (Dlndex, SPage, Ncps)
SCPSLOAD (Dins, Pairlist)
SCREATE (Dlndex, SType, SMemR 10)
SCREATE (Dlndex, SIndex, arguments)

SCREATE (Dlndex, SPrcs, SLns) 3 - 2
SCREATE (Dlndex, SPrcs, args, SProc) 3 - 3
SCREATE (Dlndex, SPol, Data) 3 - 1 4
SCREATE (Dlndex, SPort, NMsgSlots, NDummy, NOutchan, NResources)

6-8
SCREATE (Dlndex, SSem, Count) 7 -1

SCREATE (Dlndex, SPage, Flags) H-1
SCREATE (Dlndex, SPort, NMsgSlots, NDummy, NOutchan, NResources) H-

2
SCREATE (Dlndex, SSem, Count) H-3
SCREATE (Dlndex, SPrcs, SLns) H-3
SCREATE (Dlndex, SPrcs, args, SProc) H-4

SCREATE (Dlndex, SProc) H-5
SCREATE (Dlndex, SPol, Data) H-6
$ DELETE (DPath) 2 - 2 5
SDELETEMSGCAPA (Port, MsgSlot) 6 - 3 3

* $ DESTROY (DPath) 2 - 4 4

2 - 4 4
4 - 5
4 - 6

2 - 4 0
2 - 4 3

K-2
4 - N o v - 7 6

2 - 2 4
X SGETCLOCK (SMeniW4) 2 - 2 9

SGETDATA (MemWn, SPath, Disp, Count) 2 - 1 9
SGETGMT (MemW4) , 2 - 2 7
$GETICB (SMemWn, SPath, Code) 2 - 6 3
$GETLCB (SMemWn, SPath, Code) 9 c A

2 - 6 4
SGETMSGCAPA (Port, MsgSlot, DIndex) 6 - 3 3

P SGETPCB (SMemWn, SPath, Code) 3 - 9
P $GETPOLICY (SMemWl6, Npol) 3 - 1 5

SGETPROCESSID () 3 - 9
SGETSTACK (SMemWn, SLns, MemLns, Count) 2 - 6 5

$GETUPTIME (MemW4) 2 - 2 8
SGMTTOLOCAL (MemWn, Count) 2 - 2 8
$GNAMETOGMT (MemW4,MemR4) 2 - 2 7

P $INFPOLICY() 3 - 1 7
$INTERCHANGE (DPath, DIndex, Smemrts) 2 - 2 6

$KALLINDIRECT (SMemRn) 2 - 2 9
* $ LNS CALL (DIndex, Nlns) 2 - 5 2

$LNSLENGTH() 2 - 1 7
* SMAKEALIAS (DIndex, SIndex) 2 - 4 6

$MAKEDATA (DPath, MemRn, Count, Smemrts) 2 - 2 0

* SMAKELNS (DIndex, Nproc, arguments) 2 - 4 9
$MAKEMSG (Port, Buflen, Stkdep) 6 - 1 2
SMAKEPAGE (DPath)
$MAKETEMPLATE (DPath, SIndex, Smemrts)
SMAKETEMPLATE (DPath, SIndex, Smemrts)

$MAKEUNIVERSAL (DPath) 2 - 2 2
SMERGE (DIndex, STempI, SPath) 2 - 4 8
SNCONNECT (Portl, Outchan, Port2, Inchan, Connid, Disconnopt) 6 - 1 0
$0BJINF0 (SMemWl6, SPath) 2 - 1 8
$P (DIndex) 7 - 2

$PASS (DPath, SIndex, SMemrts) 2 - 2 2
$PASSAPPEND (DPath., SIndex, Smemrts) 2 - 2 4

4 - 6
2 - 4 2

H-7

Also k n o w n , for historical reasons, as SL0AD.

$DISCONNECT (Port, Outchan) 6 - 1 1
SDLENGTH (SPath.) 2 - 1 7

« $ ERASE (DIndex) 2 - 4 7
* $ FREEZE (DIndex, SIndex, arguments) 2 - 4 5

SGETCAPA 1 6 (DIndex, SPath.)

I
I

4 - N o v - 7 6
K-3

2 - 2 3

* SPASSMSGCAPA (Port, MsgSlot, SIndex, Memrts)
SPCONDITIONAL (Dlndex)
$PROCESSTIME (SMemW2)

$PUTCAPA 1 7 (DPath, SIndex, Smemrts)
SPUTDATA (DPath, MemRn, Disp, Count) 2 - 1 9
SPUTMSGCAPA (Port, MsgSlot, SIndex, Memrts) 6 - 3 2
SPUTSTACK (DLns, MemLns, SMemRn, Count) 2 - 6 5
$READMSG (Port, MsgSlot, Pos, Len, MemWn) 6 - 1 3

* $ REALLY (Dlndex, SIndex) 2 - 4 6
X $RECEIVEMSG (Port, Ctype, Class, Mask, SMemW6) 6 - 2 6

SREPLYMSG (Port, MsgSlot, Type) 6 - 2 0
SREQUEUEMSG (Port, MsgSlot, Type, Channel, Messid, Connid, Replybit)

6 -29
$ RESCHEDULE (Tim) 3 - 1 3

* $RESTRICT (DPath, Smemrts) 2 - 2 6
$ RETURN (Value, SIndex, Smemrts) 2 - 5 4

* $ REVOKE (Dlndex) 2 - 4 6
$RPSLOAD (Nlns, Nrps, Ncps) 4 - 7
SRRLOAD (Nrps, Ncps) 4 - 8

$RRUNL0AD (Nrps) 4 - 8
$RSVPMSG (Port, MsgSlot, Type, Outchan, Messid, Inchan, Replym) 6 - 1 6
SSENDMSG (Port, MsgSlot, Type, Outchan) 6 - 1 9
$SETCHKRIGHTS (DPath, SMemrts) 2 - 4 3
SSETDLENGTH (DPath, Count) 2 - 2 1

SSETICB (DPath, SMemRn, Code) 2 - 6 3
SSETLCB (DPath, SMemRn, Code) 2 - 6 4

P SSETPCB (DPath, SMemRn, Code) 3 - 1 0
P $SETP0LICY(Dlndex, SIndex, SMemRl6) . 3 - 1 6
P $ START (SIndex) 3 - 1 1

P $ST0P (Nprcs, Code) 3 - 1 2
$SUSPEND (Value, SIndex, Smemrts) 2 - 5 3
SSWITCH (DPath, Dlndex) 2 - 4 5
STAKE (Dlndex, SPath) 2 - 2 3

* STAKEMSGCAPA (Port, MsgSlot, Dlndex) 6 - 3 4

STIMEDRECEIVE (Port, Timeout, Typemask, Chanmask, Messid, SMemW6)

6 - 2 2
$TRUNCATEMSG (Port, MsgSlot, Length) 6 - 3 1

6 - 3 5
7 - 4

3 - 1 1

K-4

STYPECALL (Dindex, SPath, TPath, arguments)
* $TYPERETRIEVE (DIndex, SIndex)

$ UPDATE (SPath)

* SUPDATEN (SPath,Depth)
$V (DIndex)
$ VACATE (DPath)
$VALL (DIndex)

P $WHATPOLICY (SMemW16, Npol)

* $WORKSET (Nlns, Size)
$WRITEMSG (Port, MsgSlot, Pos, Len, MemRn)

4-Nov-76
L-l

[0rg72]

[Reid75]

[WB72J

[Wu74]

[Wu74]

Cohen., E., et. al., "Protection in the Hydra Operating System, in
Proceedings of the Fifth Symposium on Operating Systems
Principles, (SOSP5), November, 1975.

Organick, E. The Multics System: An Examination of its
Structure, MIT Press, 1972

Reid, B. K., The Hydra Songbook: A Vigilante Users' Manual,
Computer Science Department, Carnegie-Mellon University,
1975

Wulf, W. A., and Bell, C. G., "C.mmp—a multi-mini-
processor", Proc. AFIPS 1972, FJCC. Vol 41, AFIPS Press,
Montvale, N.J., pp. 765-777

Wulf, W. A., et. al. "Overview of the Hydra Operating System
Development", in Proceedings of the Fifth Symposium on
Operating Systems Principles, (S0SP5), November, 1975.

Wulf, W. A. et. al, "Hydra: The Kernel of a Multiprocessor
Operating System", CACM 17,6 (June 1974), pp. 337-345

Appendix L: Bibliography

[Coh75]

Index-1

Act ive GST 5 - 1
Act ive region of stack 2 - 1 2
Address, trap, user 2 - 5 7
Alias 2 - 3 6
Alias, Creation of 2 - 4 6
Amplification, rights 2 - 3 1
Amplification, rights w h i c h cannot be obtained

2 - 3 4
APPENDCAPA, K-call 2 - 2 5
APPENDCAPARTS, right defined 2 - 5 , A - l
APPENDDATA, K-call 2 - 2 1
APPENDDATARTS, right defined 2 - 6 , A- l
APPENDDATARTS, right used/required A-13
ARGMIN, ICB/LCB field 2 - 6 2 , F-6
ARPAnet interface 8 - 2 0
ASLI l ink 8 - 1 8
A s y n c h r o n o u s Line Interface (ASLI) 8 - 1 8
ATTACHPOLtCY, K-call 3 - 4 , 3 - 1 5
ATTACHPOLRTS, right defined A-10, A - l 1
ATTACHPOLRTS, right used/required 3 - 1 5
Aux i l i ary rights 2 - 8

Backdoor K-cal ls J -1
Base, process 3 - 3
BASECALL, K-cali 3 - 1 0
BASERTS, right defined A - l 1
BASERTS, right used/required 3 - 1 5 , A- l 1
BPTPC (BPT trap PC) 2 - 5 7
BPTPC, ICB/LCB field F-8
Buffer s ize , device 8 - 3
Buffer, indirect 8 - 3 , 8 - 4

C-l is t 2 - 1 , 2 - 2
C- l l s t r ights 2 - 5
C-list , maximum s ize A-6
Cacheable page 4 - 5
CACHERTS, right defined 4 - 5 , A-12
CACHERTS, right used/required 4 - 5 , 4 - 7
Call mechanism 2 - 2
CALL, K-caii 2 - 5 3
CALL, stack format 1-3
CALLRTS, right defined A-9
CALLRTS, right used/required 2 - 5 3 , 2 - 6 5 , 2 - 6 0 ,

3 - 1 0 , A-2
Capabilities 2 - 1
Capabilities, inherited 2 - 3 0
Capability part, in message 6 -1
Capabil ity rights 2 - 4
Capability, confined 2 - 3 5

CBALLREGS, ICB/LCB field F-10
CBARGINF, ICB/LCB field F-10
CBARGS, ICB/LCB field 2 - 6 2 , F-6
CBCALLINF, ICB/LCB field F-10
CBCPSLIMIT, ICB/LCB field 4 - 3 , 4 - 4 , 4 - 9 , F-6
CBDATA, ICB/LCB field F-10
CBDEBUG, ICB/LCB field F-10
CBERRORTRAPS, ICB/LCB field F-10
CBICPSLENGTH, ICB/LCB field 4 - 4 , F-6
CBINITCPS, ICB/LCB field 4 - 4
CBINITCPSBLOCK, ICB/LCB field F-10
CBINITCPS[i], ICB/LCB field F-6
CBINSTRAPS, ICB/LCB field F-10

CBLCBINF, ICB/LCB field F-10
CBLNSDATA, ICB/LCB field 2 - 6 2
CBLNSDATABLOCK, ICB/LCB field F-10
CBLNSDATA[l], ICB/LCB field F-6
CBLNSET, ICB/LCB field F-10
CBLNSGET, ICB/LCB field F-11
CBPC, ICB/LCB field F-7
CBPCTRAPS, ICB/LCB field F- l 1
CBPROCDATA, ICB/LCB field 2 - 6 2
CBPROCDATABLOCK, ICB/LCB field F - l 1
CBPROCDATA[i], ICB/LCB field F-7
CBPROCSET, ICB/LCB field F- l 1
CBPS, ICB/LCB field 2 - 6 1 , 4 - 5 , F-7
CBPSPC, ICB/LCB field F-l 1
CBREG1, ICB/LCB field F-7
CBREG2, ICB/LCB field F-7
CBREG3, ICB/LCB field F-7
CBREG4, ICB/LCB field F-7
CBREG5, ICB/LCB field F-7
CBREGS, ICB/LCB field F- l 1
CBSAVEAREA, ICB/LCB field F- l 1
CBSAVEREG, ICB/LCB field F-7
CBSAVEREGS, ICB/LCB field F- l 1
CBSAVEVAL, ICB/LCB field F-7
CBSP, lCB/LCB-field 2 - 6 2 , F-7
CBSTACKGROW, ICB/LCB field 2 - 6 2 , F-7
CBSTKOWN, ICB/LCB field F-7
CBTRAPS, ICB/LCB field F- l 1
CBUSERTRAPS, ICB/LCB field F- l 1
CBVREG, ICB/LCB field 2 - 6 1 , F-7
CHANGETYPERTS, right defined A-7
CHANGETYPESPECS, K-caii 2 - 4 1
Check rights field 2 - 3 1 , 2 - 4 3 , 2 - 4 8
Check rights, default 2 - 3 1
CLENGTH, K-call 2 - 1 7

Index-2

fclock, Line Frequency S -8
COMPARE K-cail, format C-l
COMPARE, K-call 2 - 1 8
Confined capability 2 - 3 5
Confined LNS 2 - 3 5
Confinement 2 - 3 5
tONNECT, K-call 6 - 4 , 6 - 9 , 8-1
Connection ID, port 6 - 4
Connection, port 6 - 3
CONNECTRTS, right defined 6 - 5 , A-4, A-5, A-14
CONNECTRTS, right used/required 6 -9 , 6 -11
Context block, initial 2 - 5 5
Context block, local 2 - 5 5
Context blocks, examining 2 - 6 3 , 2 - 6 4
Context blocks, setting 2 - 6 3 , 2 - 6 4
Control interrupts 2 - 6 0
CONTROL on blocked process 7 - 3 , 7 - 5
CONTROL, K-cali 2 - 6 0 , 3 - 1 2
Control, Punting 2 - 6 0
COPY, K-call 2 - 4 4 , 4 - 5
COPY, of PAGE object 4 - 5
Copying a PAGE object 4 - 5
fcOPYRTS, right defined 4 - 5 , A- l
COPYRTS, right used/required 2 - 4 4 , 4 - 5 , A-9, A-

12, A - 1 3
CPS, current page set 4 - 1
CPSLOAD, explained 4 - 2
pPSLOAD, K-call 4 - 6
pPSLOAD, stack format 1-3
CPSRTS, right defined 4 - 5 , A-5, A-12
CPSRTS, right used/required 4 - 4 , 4 - 5 , 4 - 7 , 4 - 9 ,
I A - 1 2
pPUMASK, ICB/LCB field 2 - 6 0 , F-7
CREATE, K-cali 2 - 4 0 , 2 - 4 3 , 3 - 2 , 3 - 3 , 3 - 1 4 , 6 -8 ,
I 7 - 1 , H - l , H-2, H-3, H-4, H-5, H-6
CREATE.REQ[N811HY97] 2 - 3 9
CREATEBLOCK, $CREATE parameter block field A-

8
CreateCapalnit, $CREATE parameter block field

A-8
CreateCapaMax, $CREATE parameter block field

A - 8
CreateDatalnit, $CREATE parameter block field A-

8
CreateDataMax, $CREATE parameter block field

A - 8
CreatePNAME, $CREATE parameter block field A-

8

CreateRetrieveFlag, $CREATE parameter block
field A-8

CREATERTS, right defined A-1
CREATERTS, right used/required 2 - 3 7 , 2 - 4 0 ,

2 - 4 3 , 3 - 2 , 3 - 3 , 3 - 1 4 , 6 - 8 , 7 - 1 , A-
7, A-9, A-12 , A-13 , A - 1 4 , A - 1 5 , H-
2 , H-3, H-4, H-6

CreateTempFlag, $C RE ATE .parameter block field
A-8

Creation of Alias 2 - 4 6
Creation of DATA object 2 - 2 0
Creation of LNS object 2 - 4 9
Creation of Message 6 - 1 2
Creation of NULL object H-5
Creation of PAGE object 4 - 6 , H- l
Creation of POLICY object 3 - 1 4 , H-6
Creation of PORT object 6 -8 , H-2
Creation of PROCEDURE object H-5
Creadon of PROCESS object 3 - 2 , 3 - 3 , H-3 , H - 4
Creation of SEMAPHORE object 7 - 1 , H-3
Creation of Template 2 - 4 2 , H-7
Creation of TYPE object 2 - 4 0 , H-6
Creation of UNIVERSAL object 2 - 2 2
CTLCODE, ICB/LCB field 2 - 6 0
CTLCODE, stack page location F-5
CTLDEBUG, ICB/LCB field F- l 1
CTLMASK (Control mask), ICB/LCB field 2 - 6 0
CTLMASK, default F-5
CTLMASK, ICB/LCB field F-7
CTLPC (Control PC), ICB/LCB field 2 - 6 0
CTLPC (Control trap PC) 2 - 5 8
CTLPC, ICB/LCB field F-7
CTLRTS, right defined A-l 1
CTLRTS, right used/required 3 - 1 2
CTLTRAP, ICB/LCB field F- l 1
Current page set, CPS 4 - 1

DATA A-13
Data area, Kernel 2 - 1 3
DATA object, Creation of 2 - 2 0
Data part 2 - 2
Data part rights 2 - 6
Data-part, maximum size A-6
Date 2 - 2 7 , D-l
Debugging procedure 2 - 6 0
DEBUGINDEX, ICB/LCB field 2 - 6 0 , F-7
DEBUGMASK, ICB/LCB field F-7
DECtape 8 - 1 3
Default $CTLMASK F-5

Index-3

DELETE, K-caii 2 - 2 5
DELETEMSGCAPA, K-call 6 - 3 3
DELETERTS, right defined 2 - 5 , A - l
DELETERTS, right used/required 6 - 3 4
DESTROY, K-caii 2 - 4 4
DESYNCH on blocked process 7 - 3 , 7 - 5
DEVICE A - 1 4
Dev ice , buffer s ize 8 - 3
Device , operation code 8 - 2
DIDENT1FY, I/O opcode 8 - 6
DIndex, K-call parameter symbol 2 - 1 6
DISCONNECT, K-cali 6 - 4 , 8 - 1 1 , 8 -1
Disk, f ixed head 8 - 1 7
Disk, m o v i n g head 8 - 1 5
DLENGTH, K-call 2 - 1 7
DPath, K-call parameter symbol 2 - 1 6
DSTATUS, I/O opcode 8 - 7 , 8 - 8 , 8 - 9 , 8 - 1 1 , 8 - 1 4 ,

8 - 1 6 , 8 - 2 0 , 8 - 2 2

Empty s lot 2 - 3 4
EMTPC (EMT trap PC) 2 - 5 7
EMTPC, ICB/LCB field F-7
Environment 2 - 2
ENVRTS, right defined 2 - 5 , A - l
ENVRTS, right used/required 2 - 3 4 , 2 - 3 5 , 2 - 5 3
ENVRTS, special case in LNS incarnation 2 - 5 3
ERASE, K-call 2 - 4 7
ERRCOD.REQ[N811HY97] F-6
ERRCODE, stack page location F-5
Error code SHyErrBADRTI F-6
Error code $HyErrBADSP F-6
Error code $HyErrCPU F-6
Error code $HyErrILL F-6
Error code $HyErrNXM F-6
Error code $HyErrSPRANDOM F-6
Error flag 2 - 5 8
ERRPC (error trap PC) 2 - 5 8
ERRPC, ICB/LCB field 2 - 5 8 , F-7
ERRSP, stack page location F-5
ERRTYPE, I/O reply type 8 - 5 , 8 - 6
ESL (K W 1 1 P) 8 - 2 3
Event frame (KW1 IP) 8 - 2 3
Event Signal Locations (KW1 IP) 8 - 2 3
Execut ing procedure 2 - 2

Fixed head disk 8 - 1 7
Frame, e v e n t (KW1 IP) 8 - 2 3
FREEZE, K-call 2 - 4 5

FREEZEFLAG 2 - 3 4 , 2 - 4 7 , 2 - 4 8 , 2 - 5 0 , 2 - 5 1 , 4
4 -7 , A - l , A-10, A - 1 2

FREEZEFLAG, right defined A-4

Generic rights 2 - 8
GETCAPA, K-cail 2 - 2 4
GETCAPARTS, right defined 2 - 5 , A - l

11
GETCBRTS, right used/required 2 - 5 1 , 2 - 5 6 ,

2 - 6 3 , 2 - 6 4 , 3 - 9 , A-10
GETCLOCK K-call Return Format E- l
GETCLOCK, K-call 2 - 2 9
GETDATA, K-call 2 - 1 9
GETDATARTS, right defined 2 - 6 , A - l
GETDATARTS, right used/required A - 1 3
GETGMT, K-call 2 - 2 7
GETICB, K-call 2 - 6 3
GETLCB, K-call 2 - 6 4

GETPCB, K-call 3 - 9
GETPOLICY K-call, format G-3
GETPOLiCY, explained 3 - 7
GETPOLICY, K-call 3 - 1 5
GETPOLICYRTS, right defined A-10
GETPOLICYRTS, right used/required 3 - 1 5
GETPROCESSID, K-call 3 - 9
GETSTACK, K-call 2 - 6 5
GETSTACKRTS, right defined A-10
GETSTACKRTS, right used/required 2 - 5 1 , 2 - 6 5 ,

A-10
GETUPTIME, K-cail 2 - 2 8
GMT, $GMTT0L0CAL result field D- l
GMT.REQ[N811HY97] D- l
GMTBLOCK, $GMTTOLOCAL result field D-2
GMTDATEO, $GMTT0L0CAL result field D-2
GMTDAY, SGMTTOLOCAL result field D-2
GMTDECDATE, $GMTTOLOCAL result field D-2
GMTDST, $GMTT0L0CAL result field D-2
GMTHR, $GMTTOLOCAL result field D-2
GMTJULIAN, $GMTTOLOCAL result field D-2
GMTLEAP, $GMTT0L0CAL result field D-2
GMTMIN, $GM7TOLOCAL result field D-2
GMTMON, $GMTTOLOCAL result field D-2
GMTOFFSET, $GMTT0L0CAL result field D-2
GMTSEC, SGMTTOLOCAL result field D-2
GMTTOLOCAL K-call return format D- l
GMTTOLOCAL, K-call 2 - 2 8
GMTWKDAY, $GMTTOLOCAL result field D-2

Index-4

GMTYEAR, $GMTTOLOCAL result field D-2
GNAMETOGMT, K-call 2 - 2 7
GPERROR, $GETPOLICY field G-4
GPNSLJCES, $GETPOLICY field G-3
GPPOLID, $GETPOLrCY field G-3
GPRCVCODE, $GETPOLICY field G-3
GPSTR, $GETPOLICY field G-3
GPTIMER, $GETPOLICY field G-3
GPT1MREQ, $GETPOLICY field G-4
GPWSLIMIT, $GETPOLICY field G-4
GPWSREQ, $GETPOLICY field G-4
GPWSSiZE, $GETPOLICY field G-4
GST, act ive 5 - 1
GST, pass ive 5 - 1

High-resolut ion clock 8 - 2 2
Hydra User Area 1-2
HyErrBADRTl, error code F-6
HyErrBADSP, error code F-6
HyErrCPU, error code F-6
HyErrILL, error code F-6
HyErrNXM, error code F-6
HyErrSPRANDOM, error code F-6
HyPSCC, Virtual PS field 2 - 5 7
HyPSCONFINED, Virtual PS field 2 - 5 7
HyPSERR 2 - 5 8
HyPSERR, Virtual PS field 2 - 5 7
HyPSPRIORITY, Virtual PS field 2 - 5 7
HyPSREUSE, Virtual PS field 2 - 5 7
HyPSSPACE, Virtual PS field 2 - 5 7
HyPSTT, Virtual PS field 2 - 5 7
HyPSword, Virtual PS structure 2 - 5 8
HySALIAS, signal 2 - 4 5 , F-2
HySALREADYCONNECTED, signal 6 - 1 0 , F-4
HySBADCOUNT, signal 7 - 1 , F-3
HySBADTYPESPEC, signal F-2
HySBUFFBOUNDS, signal 6 - 1 4 , 6 - 1 5 , 6 - 3 1 , F-3
HySBUFFLENGTH, signal 6 - 1 3 , F-3
HySCANTCONFINE, signal 2 - 5 2 , F-2
HySCANTLOCK, signal 2 - 4 5 , 2 - 5 2 , 3 - 2 , F - l , H-4
HySCBOUND, signal 2 - 4 4 , F - l
HySCBPS, signal 2 - 6 3 , F-2
HySCBSP, signal 2 - 6 4 , F-2
HySCHECKRTS, signal 2 - 4 8 , F-2
HySCODE, signal 2 - 6 3 , 2 - 6 4 , 3 - 9 , 3 - 1 0 , F-2
HySCONNECT, signal 6 - 1 0 , F-4
HySCONTROL, signal 2 - 5 2 , 2 - 6 0 , F-2
HySCPSBOUND, signal 4 - 6 , 4 - 7 , 4 - 8 , 4 - 9 , F-3

HySCREATEMSG, sjgnal 6 - 1 2 , F-4
HySDBOUND, signal 2 - 2 0 , 2 - 2 1 , 2 - 4 4 , F - l
HySDISCONMSG, signal 6 - 1 9 , F-3
HySDISCONNECT, signal 6 - 1 2 , F-4
HySDKIND, signal F- l
HySDOWN, signal 6 - 1 0 , F-4
HySDRTS, signal F- l
HySDTYPE, signal F- l
HySEXCLUSIVE, signal 6 - 1 0 , F-4
HySFARG, signal 2 - 5 2 , 2 - 6 2 , F-2
HySFREEZE, signal 2 - 4 5 , F-2
HySGETMSGCAPA, signal 6 - 3 4 , F-4
HySGMT, signal 2 - 2 8 , F-2
HySGUAR, signal 3 - 1 2 , 3 - 1 6 , F-2
HySICHANRANGE, signal 6 - 1 0 , 6 - 1 9 , 6 - 3 0 , F - 3
HySIGBIT, signal F-l
HySIPSMAX, signal 4 - 9
HySKJNDP, signal F- l
HySLNSMEM, signal 2 - 6 5 , F-2
HySLPS, signal 2 - 6 4
HySMAKELNS, signal 2 - 5 2 , F-2
HySMARG, signal 2 - 5 2 , F-2
HySMEM, signal F-l
HySMERGE, signal 2 - 4 8 , F-2
HySMSGRTSADDR, signal 6 - 3 2 , 6 - 3 5 , F - 4
HySMSGSLOTFREE, signal 6 - 1 4 , 6 - 1 5 , 6 - 1 9 ,

6 - 2 1 , 6 - 3 0 , 6 - 3 1 , 6 - 3 2 , 6 - 3 4 ,
6 -35 , F-3

HySMSGSLOTRANGE, signal 6 - 1 4 , 6 - 1 5 , 6 - 1 9 ,
6 - 2 1 , 6 - 3 0 , 6 - 3 1 , 6 - 3 2 , 6 - 3 4 ,
6 -35 , F-3

HySNOALIAS, signal 2 - 4 6 , F- l
HySNOCLIST, signal F-2
HySNOCORE, signal F-2
HySNOFREEMSGSLOT, signal 6 - 1 3 , 6 - 2 5 , 6 - 2 8 ,

F-3
HySNOFREEOCHAN, signal 6 - 1 0 , F-4
HySNOKCALL, signal F- l
HySNOLNS, signal 3 - 1 2 , F-2
HySNOMSGCAPA, signal 6 - 3 4 , F-4
HySNOPOLBOX, signal F-2
HySNOPOLlCY, signal 3 - 1 2 , F-2
HySNOSTACK, signal 2 - 5 2 , 2 - 6 2 , F-2
HySNOTNULL, signal 6 - 3 4 , F-4
HySNOTUNIQUE, signal 2 - 4 5 , 2 - 4 7 , F-2
HySOCHANRANGE, signal 6 - 1 0 , 6 - 1 2 , 6 - 1 9 , F-<
HySPACKADR, signal 6 - 2 5 , 6 - 2 8 , F-3
HySPAGE, signal 4 - 7 , 4 - 9 , F-2
HySPARITY, signal F-2

HySPASSMSGCAPA, signal 6 - 3 6 , F-4
HySPATHRTS, signal F- l
HySPIOERR, signal F - 4
HySPORTDESYNCH, signal 6 - 2 5 , 6 - 2 8 , F-4
HySPORTERASE, signal 6 - 2 5 , 6 - 2 8 , F-4
HySPUTMSGCAPA, signal 6 - 3 2 , F-4
HySREAD, signal 6 - 1 4 , F -4
HySRECEIVE, signal 6 - 2 5 , 6 - 2 7 , F-4
HySREPLY, s ignal 6 - 2 1 , F-4
HySREQUEUE, signal 6 - 3 0 , F-4
HySRESOURCES, signal 6 - 1 3 , F-4
HySREUSE, s ignal 2 - 5 2 , 2 - 5 4 , 3 - 2 , F-2, H-4
HySRPSBOUND, signal 4 - 8 , F-3
HySRSVP, s ignal 6 - 1 8 , F-4
HySSEM DESYNCH, signal 7 - 3 , 7 - 5 , F-3
HySSEMERASE, signal 7 - 2 , 7 - 4 , F-3
HySSEMOVERFLOW, signal 7 - 3 , F-3
HySSKIND, signal 3 - 1 1 , F - l
HySSP, s ignal F - l
HySSRTS, s ignal F - l
HySSTACKDEPTH, signal 6 - 1 3 , F-3
HySSTACKOVFL, signal 6 - 1 9 , F-3
HySSTKFK, signal F-2
HySSTYPE, signal 2 - 4 8 , F- l
HySTAKEMSGCAPA, signal 6 - 3 4 , F-4
HySTBND, signal F-2
HySTEXTADR, signal 6 - 1 4 , 6 - 1 5 , F-3
HySTIME, s ignal 3 - 1 4 , F-2
HySTIMEDRECEIVE, signal F-4
HySTRUNCATEMSG, signal 6 - 3 1 , F-4
HySTYPBND, signal F-2
HySTYPEBOUND, signal 2 - 4 1
HySTYPERANGE, signal 6 - 1 9 , 8 - 2 1 , 6 - 3 0 , F-3
HySUNCONNECTED, signal 6 - 1 2 , 6 - 1 9 , F-3
HySVALL, s ignal 7 - 2 , F -3
HySVKSEM, signal F-2
HySWRITE, s ignal 8 - 1 5 , F-4
HySWRONGSTATE, signal 3 - 1 0 , 3 - 1 2 , F-2

ICB (Initial context block) 2 - 5 5
IMP dev ice 8 - 2 0
Implicit s ignals , summary F- l
IMPREAD, I/O opcode 8 - 2 1
IMPWRITE, I/O opcode 8 - 2 1
INDBUF, I/O format modifier 8 - 3 , 8 - 4
Index, path 2 - 3
Index, s imple 2 - 3
Indirect buffer specification in message 8 - 3 , 8 - 4
INFPOLICY, explained 3 - 7

INFPOLICY, K-cail 3 - 1 7
Inherited capabilities 2 - 3 0
Initial context block 2 - 5 5
Initial context block, examining 2 - 6 3
Initial context block, setting 2 - 6 3
Initial page set, IPS 4 - 4
Initialization page 4 - 5
INITRPS, ICB/LCB field 4 - 4
INITRPSBL0CK, ICB/LCB field F - l 1
!NlTRPS[i], ICB/LCB field F-7
Input channel, port 6 - 3
INTERCHANGE, K-call 2 - 2 6
INTERRUPT type linkage, in BLISS 2 - 5 8
Interrupts, control 2 - 6 0
100PN, I/O opcode synthesizer 8 - 4
IOT, backdoor K-call J - l
IOTPC (IOT trap PC) 2 - 5 8
I0TPC, ICB/LCB field F-8
IPS, Initial Page Set 4 - 4

Jiffy, defined 6 - 2 3

K-calls, backdoor1 J - l
KALLINDIRECT, K-cail 2 - 1 4 , 2 - 2 9
KALLINDIRECT, stack formats 1-1
KALSTACKBOUND, stack limit 2 - 6 2
KERKAL.REQ[N811HY97] 1-1
Kernel data area 2 - 1 3
Kernel Data Area Locations F-5
Kernel signal 2 - 1 0
Kernel types 2 -1
KILLRTS, right defined 2 - 5 , A - l
KI0NAM.REQ[N811HY97] J - l
KKLNAM.REQ[N811HY97] F-12 , 1-1
KLASCIIREAD, I/O opcode 8 - 1 9
KLBINARYREAD, I/O opcode 8 - 1 9
KLINCLEAR, I/O opcode 8 - 1 9
KLSETSPEED, I/O opcode 8 - 1 8
KLWRITE, I/O opcode 8 - 2 0
KMPSDESYNCH, KMPS stop code G-4
KMPSNOCORE, KMPS stop code G-4
KMPSPGO, KMPS stop code G-4
KMPSPOPPED, KMPS stop code G-4
KMP5PRCERROR, KMPS stop code G-4
KMPSPWAIT, KMPS stop code G-4
KMPSREQCPS, KMPS stop code G-4
KMPSREQTIM, KMPS stop code G-4
KMPSTIMEND, KMPS stop code G-4
KW1 IP programmable clock 8 - 2 2

Index-6

KWPlOOKHz, K W l l - P control 9 - 1 8
KWPlOKHz, K W l l - P control 9 - 1 8
KWP60HZ, K W 1 1 -P control 9 - 1 8
KWPADD, K W l l - P control 8 - 2 5
KWPASL, K W l l - P control 8 - 2 5
KWPASR, K W l l - P control 8 - 2 5
KWPBIC, K W l l - P control 8 - 2 5
KWPBIS, K W l l - P control 8 - 2 5
KWPCOUNTDOV?N, K W l l - P control 9 - 1 8
KWPCOUNTUP, K W l l - P control 9 - 1 8
KWPCYCLE, K W l l - P control 8 - 2 3 , 9 - 1 8
KWPDEC, K W l l - P control 8 - 2 5
KWPEVENT, I/O opcode 8 - 2 3 , 8 - 2 4
KWPExtcrnal, K W l l - P control 9 - 1 8
KWPINC, K W l l - P control 8 - 2 5
KWPMODE, I/O opcode 8 - 2 3 , 8 - 2 5 , 9 - 1 8
KWPMOV, K W l l - P control 8 - 2 5
KWPPENDING, I/O reply type 8 - 2 5
KWPREPEAT, K W l l - P control 8 - 2 3 , 9 - 1 8
KWPSTOP, K W l l - P control 8 - 2 3 , 9 - 1 8
KWPSUB, K W l l - P control 8 - 2 5
KWWA1T, I/O opcode 8 - 8

LCB (Local context block 2 - 5 5
Legitimate memory address 2 - 1 2
Legitimate stack memory address 2 - 1 2
Length of message 6 - 2
Line Frequency Clock 8 - 8
Line Printer 8 - 8
Link, ASLI 8 - 1 8
L N S A - 1 0
LNS object, Creation of 2 - 4 9
LNS, $CALL parameter function 2 - 5 0
LNS, confined 2 - 3 5
LNS, partially confined 2 - 3 5
LNSCALL, K-call 2 - 5 2
LNSLENGTH, K-cali 2 - 1 ?
LNSRESTRICT, $CALL parameter function 2 - 5 0
LNSRTS, right defined A-9 , A-10
LNSRTS, right used/required 2 - 4 9 , 2 - 6 0 , 2 - 6 2 ,

A - 2 , A - 1 0
Local context block 2 - 5 5
Local context block, examining 2 - 6 4
Local context block, setting 2 - 6 4
Local time 2 - 2 8
Locked object 2 - 1 1
LOSTINFOTYPE, I/O reply type 8 - 5 , 8 - 6
LPWRITE, I/O opcode 8 - 8

MAKEALIAS, K-call 2 - 4 6
MAKEDATA, K-call 2 - 1 0 , 2 - 2 0
MAKELNS, K-call 2 - 4 9
MAKEMSG, K-call 6 - 1 2
MAKEMSGRTS, right defined A-14
MAKEMSGRTS, right used/required 6 - 1 2
MAKEPAGE, K-call 4 - 6
MAKETEMPLATE, K-call 2 - 4 2 , H-7
MAKEUNIVERSAL, K-cali 2 - 1 0 , 2 - 2 2
Mask, processor 3 - 4
Mem, K-call parameter symbol 2 - 1 5
MEMDATA, $CALL parameter function 2 - 4 9
Memory address, legitimate 2 - 1 2
Memory address, legitimate stack 2 - 1 2
MemR num, K-cail parameter symbol 2 - 1 5
MemW num, K-call parameter symbol 2 - 1 5
MERGE, K-call 2 - 4 8
Merging rights 2 - 3 3
Message length 6 -2
Message slot, port 6 - 3 , 6 -5
Message system 6-1
Message type 6-1
Message, Creation of 6 - 1 2
Messages 6-1
MODIFYRTS, right defined 2 - 6 , A - l
M0DIFYRTS, right used/required 2 - 3 4 , 2 - 3 5 ,

2 - 3 6
Moving head disk 8 - 1 5

N811HY97, Hydra user area 1-2
NCONNECT, K-cail 6 -4 , 6 - 1 0 , 8 -1
New rights field 2 - 3 1
NOCOUNT, I/O format modifier 8 - 4
NULL A-9
NULL capability 2 - 3 4
NULL object, Creation of H-5

Object 2 - 1
Objects, typed 2 - 1

OBJRTS, right defined A-1
OBJRTS, right used/required 2 - 4 4 , 2 - 4 5 , 2 - 4 7 ,

A-9, A-13
OLDPC, BLISS symbol 2 - 5 8
OLDPS, BLISS symbol 2 - 5 8
OPDONETYPE, I/O reply type 8 - 4 , 8 - 6
Operation code, device 8 - 2
Output channel, port 6 - 3

Index-7

Owner , port 6 - 1

P, K-call 7 - 2
Page 4 - 1
PAGE A - 1 1
Page frame 4 - 1
PAGE object 4 - 1
PAGE object, copying 4 - 6
PAGE object, Creation of 4 - 6 , H- l
Page set, current 4 - 1
Page set, initial 4 - 4
Page set , relocation 4 - 1
Parameter templates 2 - 3 1
Partial ly confined LNS 2 - 3 6
PASS, K-call 2 - 2 2
PASSAPPEND, K-call 2 - 2 4
P a s s i v e GST 5 - 1
PASSMSGCAPA, K-caii 6 - 3 5
Path index 2 - 3
PATH, $CALL parameter function 2 - 4 9
PATH, parameter format 1-1
Path, pretarget 2 - 3
Path, steps 2 - 3 , 2 - 1 6
Path, target of 2 - 3
Path, w i t h confinement 2 - 3 6
PC, BPT trap 2 - 5 7
PC, control 2 - 5 8
PC, CONTROL trap 2 - 6 0
PC, EMT trap 2 - 5 7
PC, error 2 - 5 8
PC, IOT trap 2 - 5 8
PC, s ignal 2 - 5 8
PC, trace trap 2 - 5 8
PCB (Process control block) 3 - 4
PCBCPUMASK, PCB field 3 - 4
PCBCTLCODE, PCB field 3 - 6
PCBCTLMASK, PCB field 3 - 6
PCBNSLICES, PCB field 3 - 5
PCBNUSLICES, PCB field 3 - 5
PCBPOLID, PCB field 3 - 5
PCBPRIORITY, PCB field 3 - 5
PCBRCVCODE, PCB field 3 - 6
PCBSLICESIZE, PCB field 3 - 5
PCBSTATE, PCB field 3 - 6
PCBTJMER, PCB field 3 - 5
PCBWSLiMIT, PCB field 3 - 5 , 4 - 3 , 4 - 9
PCBW5SIZE, PCB field 3 - 5
PCONDITIONAL, K-call 7 - 4
PCONDRTS, right defined A-12

POLICY A-10
POLICY object, Creation of 3 - 1 4 , H-6
P0LKAL.REQ[N811HY97] 3 - 8
PORT A-14
Port connection 6 - 3
PORT object, Creation of 6 -8 , H-2
Port signals, summary F-3
Port system 6-1
Port, connection ID 6 - 4
Port, input channel 6 - 3
Port, message slot 6 - 3 , 6 - 5
Port, output channel 6 - 3
Port, owner 6-1
Port, resource account 6 - 3
Ports 6-1
Pretarget 2 - 3
Printer 8 -8
PROCEDURE A-9
PROCEDURE object, Creation of H-5
PROCESS A-l 1
Process base 3 - 3
Process control block: see PCB 3 - 4
PROCESS object, Creation of 3 - 2 , 3 - 3 , H-3 , H - 4
Processor mask 3 - 4
PROCESSRTS, right defined A-9
PROCESSRTS, right used/required 2 - 4 9 , 2 - 5 0 ,

2 - 5 3 , 3 - 2 , 3 - 3 , A-10 , H-3 , H - 4
PROCESSTIME, K-call 3 - 1 1
Programmable clock 8 - 2 2
Protected subsystems 2 - 3 1
PRTS, right defined A-6, A-12
PRTS, right used/required 7 - 2 , 7 - 4
PS, virtual 2 - 5 7

PUTCAPA, K-cail 2 - 2 3
PUTCAPARTS, right defined 2 - 5 , A - l
PUTDATA, K-call 2 - 1 9
PUTDATARTS, right defined 2 - 6 , A - l
PUTDATARTS, right used/required A - 1 3
PUTMSGCAPA, K-call 6 - 3 2
PUTSTACK, K-call 2 - 6 5
PUTSTACKRTS, right defined A-10
PUTSTACKRTS, right used/required 2 - 5 1 , 2 - 6 5 ,

A-10

RO, return value of K-cail 2 - 1 0
RO, return value of signal 2 - 1 0
READMSG, K-call 6 - 1 3

Index-8

READMSGRTS, right defined A-14
READMSGRTS, right used/required 6 - 1 3
REALLY, K-cali 2 - 4 6
fcEALLYRTS, right defined A- l
REALLYRTS, right used/required 2 - 3 4 , 2 - 3 5 ,

2 - 3 6 , 2 - 3 7 , 2 - 4 2 , 2 - 4 6 , 2 - 6 0 ,
2 - 5 1 , 4 - 6 , H - 7

RECEIVEMSG, K-call 6 - 4 , 6 - 2 6
flECElVEMSG, timed 6 - 2 2
flECEI VERTS, right defined A-14
RECEIVERTS, right used/required 6 - 2 6 .
Relocation page set, RPS 4 - 1
Reply stack 6 - 1 , 6 - 2
Reply types 8 - 5
REPLYM5G, K-call 6 - 2 0
REPLYMSGRTS, right defined A-14
REPLYMSGRTS, right used/required 6 - 2 0
Representation 2 - 1
Representation of object 2 - 2
REQBADBUF, I/O reply type 8 - 5 , 8 - 2 5 , 9 - 1 8
REQDEVDOWN, I/O reply type 8 - 5
REQILLDP, I/O reply type 8 - 6
REQILLFMT , I/O reply type 8 - 6
REQILLMODE , I/O reply type 8 - 2 5 , 9 - 1 8
REQILLOP, I/O reply type 8 -6
R E Q T O O S M A L L , I/O reply type 8 - 5
REOUEUEMSG, K-call 6 - 2 9
R E S C H E D U L E , cancellation 3 - 1 0
R E S C H E D U L E , explained 3 - 7
R E S C H E D U L E , K-call 3 - 1 3
Resource account, port 6 - 3 •
RESTRICT, K-call 2 - 2 6
Restriction rights 2 - 6
R E S T R I C T I O N , $CALL parameter function 2 - 4 9
RETRIEVERTS,, right defined A-7
RETRIEVERTS, right used/required 2 - 4 7
RETURN, K-call 2 - 5 4
R E T U R N I N D E X , ICB/LCB field 2 - 6 2 , F-8
Reuse flag 2 - 6 1 , 4 - 5
REVOKE, K-call 2 - 4 6
RF11 (f ixed head disk) 8 - 1 7
RFREAD, I/O opcode 8 - 1 7
RFWRITE, I/O opcode 8 - 1 7

RFWRITECHECK , I/O opcode 8 - 1 7
Rights 2 - 1
Rights amplification 2 - 3 1
Rights field 2 - 4
kights, auxi l iary 2 - 8
Rights, C-list 2 - 5

Rights, capability 2 - 4
Rights, checkrights 2 - 3 1 , 2 - 4 3 , 2 - 4 8
Rights, data part 2 - 6
Rights, Generic 2 - 8
Rights, list of 2 - 5 , 2 - 6
Rights, n e w 2 - 3 1
Rights, non-amplified 2 - 3 4
Rights, restriction 2 - 6
RP11 (moving head disk) 8 - 1 5
RPREAD, I/O opcode 8 - 1 5
RPS, Relocation Page Set 4 - 1
RPSEEK, I/O opcode 8 - 1 5
RPSLOAD, explained 4 - 2
RPSLOAD, K-call 4 - 7
RPWRITE, I/O opcode 8 - 1 5
RPWRITECHECK, I/O opcode 8 - 1 6
RRLOAD, explained 4 - 2
RRLOAD, K-cali 4 - 8
RRLOAD, stack format J - l
RRUNLOAD, K-call 4 - 8
RSVPMSG, K-call 6 -16
RSVPMSGRTS, right defined A-14
RSVPN1SGRTS, right used/required 6 - 1 6 , 6 - 1 9
RT1 instruction 2 - 5 7
RTS.REQ[N811HY97] A - l , A-7
RTSSTR.REQ[N811HY97] A-2
RTT instruction 2 - 5 7

SAVAREA, stack page location F-5
SAVREG, stack page location F-5
SAVVAL, stack page location F-5
SEMAPHORE A-12
SEMAPHORE object, Creation of 7 - 1 , H-3
SENDMSG, K-cail 6 -19
SETCBRTS, right defined A-9, A-10 , A - l 1
SETCBRTS, right used/required 2 - 5 1 , 2 - 5 6 ,

2 - 6 1 , 2 - 6 3 , 2 - 6 4 , 3 - 1 0 , 4 - 6 , 4 - 7 ,
4 - 9 , A-10

SETCHKRIGHTS, K-call 2 - 4 3
SETDLENGTH, K-call 2 - 2 1
SETHOSTDOWN, I/O opcode 8 - 2 0
SETHOSTUP, I/O opcode 8 - 2 0
SETICB, K-call 2 - 6 3
SETLCB, K-call 2 - 6 4
SETPCB, K-call 3 - 1 0
SETPOLICY, K-call 3 - 4 , 3 - 1 6
SETPOLICYRTS, right defined A-5, A-10
SETPOLICYRTS, right used/required 3 - 1 6
SIGDATA, stack location 2 - 1 0

Index-9

SIGDATA, stack page location F-5
Signal 2 - 1 0
Signal handler, example 2 - 5 9
Signals , implicit, summary F- l
S ignals , port, summary F-3
Signals , specific, summary F-2
SIGNLS.REQ[N811HY97] 2 - 1 0 , F - l
SIGPC (Signal trap PC) 2 - 5 8
SIGPC, ICB/LCB field F-8
SIGVAL, stack page location F-5
Simple index 2 - 3
SIndex, K-call parameter symbol 2 - 1 6
Size limit, of C-list A-6
Size limit, of data part A-6
Slot 2 - 2
Slot, empty 2 - 3 4
SMem, K-call parameter symbol 2 - 1 5
SMemR num, K-call parameter symbol 2 - l £
SMcmrts, K-call parameter symbol 2 - 1 5
S M e m W num, K-call parameter symbol 2 - 1 5
SPath, K-call parameter symbol 2 - 1 6
Specif ic s ignals , summary F-2
SPUNDERFLOW, ICB/LCB field 2 - 6 2 , F-8
Stack boundary va lues F-4
Stack limit $KALSTACKBOUND 2 - 6 2
Stack memory address, legitimate 2 - 1 2
Stack page 2 - 1 1
Stack, act ive region 2 - 1 2
STACKDATA, $CALL parameter function 2 - 5 0
START, K-call 3 - 1 1
STARTRTS, right defined 3 - 4 , A - l 1
STARTRTS, right used/required 3 - 1 1
Steps, in path 2 - 3 , 2 - 1 6
STKDATA, $CALL parameter function 2 - 4 9
STKOWN, stack page location F-5
STKPAG.REQ[N811HY97] 2 - 1 0 , F-5
STOP, K-call 3 - 1 2
STOPCD.REQ[N811HY97] G-4
STOPRTS, right defined A- l 1
STOPRTS, right used/required 3 - 1 2
Subsys tems , protected 2 - 3 1
SUSPEND 2 - 3 3
SUSPEND, K-cail 2 - 5 3
SWITCH, K-cali 2 - 4 5
System up time 2 - 2 8

JAKE, K-call 2 - 2 3
TAKEMSGCAPA, K-call 6 - 3 4
Target, path 2 - 3

TCFINDBLOCK, I/O opcode 8 - 1 4
TCREAD, I/O opcode 8 - 1 4
TCREWIND, I/O opcode 8 - 1 3
TCSETUNIT, I/O opcode 8 - 1 3
TCWRITE, I/O opcode 8 - 1 4
Teletype 8 -9
Template 2 - 3 7
Template, Creation of 2 - 4 2 , H-7
TemplateFlag 2 - 3 4 , A-7, A-9, A-10 , A - l 1, A - 1 2 ,

A-13, A-14, A-15
TEMPLATERTS, right defined A-6, A - 7
TEMPLATERTS, right used/required 2 - 3 8 , 2 - 4 2 ,

H-7
Templates, parameter 2 - 3 1
Terminal object (of alias) 2 - 3 6
Text buffer 6 - 1 , 6 - 2
Time 2 - 2 7 , 2 - 2 8 , D-l
Timed $RECEIVEMSG 6 - 2 2
TIMEDRECEIVE, K-call 6 -4 , 6 - 2 2
TRANSFER, $CALL parameter function 2 - 4 9
Trap address, user 2 - 5 7
Trap routines, requirements 2 - 5 8
TRCPC (Trace trap PC) 2 - 5 8
TRCPC, ICB/LCB field F-8
Tructure $HyPSword 2 - 5 8
TRUNCATEMSG, K-cail 6 - 2 , 6 - 3 1
TTEXCP, I/O opcode 8 - 1 2
TTINCLEAR, I/O opcode 8 - 1 2
TTINRESET, I/O opcode 8 - 1 2
TTMODECTL, I/O opcode 8 - 1 1
TTOUTRESET, I/O opcode 8 - 1 2
TTREAD, I/O opcode 8 - 1 0
TTWRITE, I/O opcode 8 - 1 0
Type 1-2
TYPE A-7
TYPE object, Creation of 2 - 4 0 , H-6
Type TYPE object 2 - 3 7
Type, of message 6-1
TYPECALL 2 - 3 9
TYPECALL, K-call 2 - 5 5
Typed objects 2 -1
TYPERETRIEVE, K-call 2 - 4 7
TYPES.REQ[N811HY97] 2 - 4 2 , A-6, H-7

UI0.REQ[N811HY97] 8 -6 , 8 - 7
Unbound 2 - 3 4
Unbound slot 2 - 8
UNBOUNDFLAG, right defined A-5, A-9
UNBOUNDFLAG, right used/required 2 - 3 4

Index-10

bNCfRTS, right defined 2 - 6 , A-1
UNCFRTS, right used/required 2 - 3 4 , 2 - 3 5 , 2 - 3 6 ,
J 2 - 4 2 , H-7
Uninit ial ized slot 2 - 8
UNIVERSAL A - 1 3
UNIVERSAL object, Creation of 2 - 2 2
UPDATE, K-call 5 - 1
UPDATEN, K-cali 5 - 2
User Area, Hydra 1 - 2
User trap address 2 - 5 7

V, K-cali 7 - 3
VACATE, K-call 2 - 2 5
VALL, K-call 7 - 3
VALLRTS, right defined A-12
VALLRTS, right used/required 7 - 4
Virtual PS 2 - 5 7
VREG, return va lue of K-cali 2 - 1 0 , 2 - 1 6
VREG, return va lue of signal 2 - 1 0
VRTS, right defined A-12
VRTS, right used/required 7 - 3

WHATPOLICY, K-call 3 - 1 6
W o r k i n g set 4 - 3
WORKSET, K-call 4 - 9
WRITEMSG, K-call 6 - 1 4
WRITEJVJSGRTS, right defined A-14
WRITEMSGRTS, right used/required 6 - 1 4
WRITEPAGERTS 4 - 5
WRITEPAGERTS, right defined A-12
WRITEPAGERTS, right used/required 4 - 5 , 4 - 8 , A

12

[N 8 1 1 H Y 9 7] CREATE.REQ 2 - 3 9
[N 8 1 1 H Y 9 7] ERRCOD.REQ F-6
[N 8 1 1 H Y 9 7] GMT.REQ D-l
[N 8 1 1 H Y 9 7] KERKAL.REQ 1-1
[N 8 1 1 H Y 9 7] K10NAM.REQ J - l
[N 8 1 1 H Y 9 7] KKLNAM.REQ F-12 , 1-1
[N 8 1 1 H Y 9 7] POLKAL.REQ 3 - 8
[N 8 1 1 H Y 9 7] PS.REQ 2 - 5 7
[N 8 1 1 H Y 9 7] RTS.REQ A - l , A-7
[N 8 1 1 H Y 9 7] RTSSTR.REQ A-2
[N 8 1 1 H Y 9 7] S1GNLS.REQ 2 - 1 0 , F- l
[N 8 1 1 H Y 9 7] STKPAG.REQ 2 - 1 0 , F-5
[N 8 1 1 H Y 9 7] STOPCD.REQ G-4
[N 8 1 1 H Y 9 7] TYPES.REQ 2 - 4 2 , A-6, H-7
[N 8 1 1 H Y 9 7] UIO.REQ 8 - 6 , 8 - 7

