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ABSTRACT 

The representation of concepts and antecedent-consequent productions is 
discussed and a method for inducing knowledge by abstracting such representations 
from a sequence of training examples is described. The proposed learning method, 
interference matching, induces abstractions by finding relational properties common to 
two or more exemplars. Three tasks solved by a program which performs an 
interference matching algorithm are presented. Several problems concerning the 
relational representation of examples and the induction of knowledge by interference 
matching are also discussed. 
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I. INTRODUCTION 

A number of distinct paradigms for studying learning machines have emerged 
during the last twenty years. Though each differs from the others in a variety of 
ways, the three differences which most clearly demark each paradigm are (1) the 
types of knowledge which can be acquired, (2) the way in which this knowledge is 
represented, and (3) the type of learning algorithm used. The learning machine which 
we will describe in this paper acquires concepts representable as conjunctive forms 
of the predicate calculus and behaviors representable as productions (antecedent-
consequent pairs of such conjunctive forms); these concepts and behavior rules are 
inferred from sequentially presented pairs of examples by an algorithm that is 
provably effective for a wide variety of problems. 

Learning is viewed here as a continual process of knowledge expansion, 
that is, as the acquisition, in adaption to training experiences, of higher-order, 
more complex, and more elaborate knowledge structures. One's knowledge at any 
point in time includes those concepts and productions innately provided or 
previously learned. The concepts are pattern templates; events which match a 
concept are recognized as belonging to the class delimited by that concept. The 
productions are pairs of concepts; one of the concepts functions as a recognizer, the 
other specifies the form of an associated action. A production is interpreted as 
a behavior generator in the sense that (in some computing environment with an 
appropriate control structure) the detection of a condition in the environment which 
matches the antecedent causes the consequent component to be instantiated and then 
evoked. Here both the antecedent and the consequent are templates; the 
antecedent determines whether the production is to be executed, and if so, what 
specific constants in the description of the event being attended to are to be bound 
to variables in the consequent. 

*** Figure 1 goes about here 

Within this framework, the machine learning problem with which we are 
concerned can be stated in the following way; Given a collection of concepts and 
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productions constituting what is known at some time and a way of describing events 
in terms of their structure, construct a machine wbkh is able to induce additional 
concepts or productions from training data. To make our treatment of this problem 
more concrete, we will use the simplest of the concept formation tasks attempted by 
our machine as an example throughout the paper. The task is to find what the 
three exemplars in Figure 1 have in common. Our program induces the following 
abstraction: 

There are three objects, including a small circle and a small square. 
The square is above the circle. The third object is large. 

This paper is divided into six sections. In the next section we discuss in general 
a way of describing events which facilitates finding what two or more events have in 
common and a matching algorithm which can be used to find these abstractions. Then 
we locate SPROUTER, our concept and production inducing program, within the 
broader context of our work. The third section describes SPROUTER's interference 
matching (induction) algorithm in some detail; we indicate here more specifically 
how SPROUTER makes use of structural representations of events to acquire and 
store knowledge. In the fourth section we present the results of two concept 
formation tasks and one production inducing task, and in the fifth section we discuss 
some of the representational issues which our results help make evident. In the sixth 
section we conclude with a brief consideration of the strengths and weaknesses of 
SPROUTER. 

II. STRUCTURAL REPRESENTATIONS AND INTERFERENCE MATCHING 

The problem which we are addressing is simply described: Design a program 
which can infer concepts and productions from illustrative instances. The method 
we employ is correspondingly straightforward: Extract commonalities from the 
examples and attenuate their differences. Such an approach is like Galton's very 
primitive "composite photograph theory" of concept learning [3] and the "positive 
focusing strategy" for conjunctive concept learning first studied by Bruner, et al 
[2]. While Galton's contribution was simply to propose that unknown patterns could 
be inferred by overlaying homologous memory representations of related examples 
(as if one were forming a composite of many photographs of the same subject), 
Bruner and his colleagues showed how such a process could in fact be realized. Each 
presented object (exemplar) is described as a conjunction of specific feature values. 
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To find the template which is matched by all of the presented objects, a feature 
vector containing only those features common to all of the exemplars is 
generated. This feature vector is the concept. Since that seminal work, many 
computer scientists have produced increasingly practical and sophisticated 
feature-value concept learners based on related techniques [6, 12, 13, 18]. 

Extending such learning models so that they can induce general (relational) 
classification and behavior rules is the goal of our work. In focusing on methods for 
generating relational abstractions which make possible the recognition of complex 
events, we encounter three problems not encountered in previous work. First we 
must develop a formal scheme for describing complex events which facilitates the 
generation of abstractions. Second, given descriptions of two examples of the same 
concept or production, we must develop a method for comparing them so that their 
commonalities can be identified, Third, it is necessary to develop a way of storing 
the discovered abstractions to facilitate their subsequent use in either of two ways: 
they may be used as templates for classification and behavior generation, or they 
may. be used as knowledge representations whose precision may later be improved 
by learning if new instances of the same concept or production are provided. 
These problems are referred to below as the description problem, the 
comparison problem, and the storage problem. Each is considered in more detail in 
the subsequent paragraphs. 

The description problem entails providing a symbolic representation of 
each exemplar which satisfies two demands. First, those attributes of the 
exemplar which are salient and potentially criteria! must be reflected in its 
description to insure that the classification rule induced will be sufficiently 
discriminating. Note that since an exemplar may be composed of many objects, the 
description must distinguish each object and indicate clearly how it relates to the 
others. Second, the descriptions should facilitate the identification of commonalities 
among the exemplars so that the abstraction being sought can be found quickly. 
Since each object may exhibit a variety of characteristics and participate in 
numerous relationships with other objects, finding commonalities between two or 
more examples will necessitate search. A representational scheme which helps direct 
this search is almost essential. 

The method of description we employ is built on three central concepts, the 
propertvi the case frame, and the parameter. A property is a feature or 
characteristic of an object. For example, SQUARE and SMALL name two properties 
of small squares; the properties ABOVE and BELOW are used in our work to describe 
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objects which are above or below others in pictorial displays. To define the 
relationship of one object being above another, a case frame of the sort {ABOVE, 
BELOW} is used. In general, case frames are sets of properties which are 
semantically related in some exogenously determined manner. To produce 
descriptions of objects, events, or behaviors, case frames are parameterized 
(instantiated); that is, a name is given to each object in the event being described 
and this name is associated with each property of the object. Parameterized 
case frames are called case relations. For example, if b is the name of a square 
above a circle named c, this might be described by the following set of case 
relations: {{SQUARE: b}, {CIRCLE: c}, {AB0VE:b, BELOW: c}}. Such a set of case 
relations interpreted as a conjunction of valid propositions is called a parameterized 
structural representation or PSR [5, 8, 9]. In this example, {b, c} is the parameter 
set of the PSR.1 

A structural description of the first two exemplars in the concept formation 

task discussed in the introduction is given below. 

E l : 
{{TRIANGLE:a, SQUARE:b, CIRCLE*}, 
{LARGE:a, SMALLb, SMALLx}, 
{INNf:R:b, OUTER:a}, 
{ABOVEca, ABOVE:b, BELOW.c}, 
{SAME!SIZE:b, SAME!SIZE:c}} 

E2: 
{{SQUARE.d, TRIANGLE:e, CIRCLE.f), 
{SMALLd, LARGE:e, SMALLf}, 
{INNER.f, OUTERie}, 
{ABOVEîd, BEL0W:e, BEL0W:f}, 
{SAME.SIZE-.d, SAME!SIZE:f}} 

The description of El asserts that there is an event composed of three objects, 
named a, b, and cj that the object labeled a has the properties of a triangle, of a 

1 The PSR, as a description, corresponds exactly to an existentially quantified 
conjunction of predicates. In this example, the PSR is interpreted as (3b,c) 
[SQUARE(b) A CIRCLE(c) A ABOVE(b,c)] with the appropriate interpretation for 
the three predicates. PSRs have proved to be more desirable bases for 
description than conventional predicate calculus formulae for numerous reasons: 
PSRs are easily written in compact forms embedding many case relations efficiently 
in a single set of property:parameter terms (each subset of such a compact relation 
instantiates any case frame comprising the same selection of properties); the 
interpretation of each argument (parameter) in a case relation is self-documented 
by the property name; and subsets of case relations are interpretable as 
abstractions of individual predicates. See Hayes-Roth [7]. 
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E1*E2: 

large object, and of containing the object labeled b; and so on. 

PSRs provide a solution to the storage problem as well as to the description 
problem; that is, they can be used in storing discovered abstractions. In the case 
of descriptions, parameter symbols are chosen to name each object so that if the 
same object is part of more than one case relation, it is referred to in a consistent 
way. If one alters the interpretation so that each distinct parameter is considered 
as an unbound variable, the PSR can be considered a template for concept 
identification. Such templates have been used by several researchers [1, 5, 8-10, 
17] to specify what properties an object must have in order to satisfy membership in 
a pattern class. While the parameters in a description can be thought of as being 
existentially quantified, those in a PSR used as a template should be thought of as 
being universally quantified. When used as a template for pattern 
classification, the PSR is compared with an event (an existentially quantified PSR). 
If a mapping from the event to the template can be found which preserves the 
parameter bindings in the event description and which makes each case relation of 
the template true, the event is said to match the template. 

In addition to their role as classification rules, PSRs can be used as general 
behavior rules. In this case two templates are associated. One of them, the 
antecedent, is used to recognize a set of conditions (a context) which indicates that a 
particular set of actions is appropriate; when the antecedent template is matched by 
some event in the environment, the rule is invoked. The second template, the 
consequent, specifies what actions are to be performed. When the two templates 
share common parameters, each parameter in the consequent is bound to the same 
value as the corresponding parameter in the antecedent. These behavior rules 
may act, for example, as Post productions, transformational grammar rules, or the 
problem solving rules of STRIPS [3]. In short, a rule with the antecedent A(X) and 
the consequent C(X) over the variables in the set X is interpreted to mean (VX) [A(X) 
«> C(X)]. In actual applications, A defines a precondition which can be true of the 
contents of some working memory, and C defines what is to be done if the 
precondition is satisfied. Note that any such production can be described by a PSR 
in which each case relation in the antecedent includes a term of the sort EVENT:a, 
each case relation in the consequent includes a term of the sort EVENT*, and 
the PSR itself includes a case relation {ANTECEDENT^, CONSEQUENT,*}, 

The abstraction of the first and second examples in the sample concept 
formation task can be represented as below. 
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{{ABOVE: 1,BE10W:2}, 
{SAME!SIZE;2,SAME!SIZEil}, 
{SMALL2}, 
{SQUARE: 1}, 
{SMALLI}, 
{CIRCLE:2}, 
{TRIANGLE:3}, 
{LARGE:3}} 

Exemplar 1 is in fact an instance of this abstraction if the parameter 1 is replaced by 
the parameter b, the parameter 2 by c, and the parameter 3 by a. Likewise, 
exemplar 2 can be seen to match the abstraction if the parameter 1 is replaced by 
d, the parameter 2 by f, and the parameter 3 by e. 

**• Figure 2 goes about here 

The comparison problem can be solved by . using a technique celled 
interference matching or IM [7-8, 10]. It is a process for identifying all of the 
common properties of two PSRs and extracting a third PSR which is a template 
matched by the two exemplars. When two events have N attributes in common, their 
descriptions will contain at most N case relations which are identical (except for 
alphabetic differences between the names of corresponding parameters). Figure 2 
schematizes IM as a process for finding the intersection containing these case 
relations. The circular areas labelled A and B correspond to two PSRs; all of the case 
relations common to the two PSRs are in the area labelled A*B (read MA star BM). 
Because any subset of this (conjunctive) set of common relations also defines an 
abstraction of A and B, it is important to be able to distinguish between the set 
and its proper subsets. We call any abstraction of A and B which is properly 
contained in no other abstraction of A and B a maximal abstraction. More formally, if 
S (*) A denotes that A is a PSR matched by the PSR S, then a maximal 
abstraction, A, of two PSRs, S and T, satisfies S(*)A and T(*)A and (VB) [B(*)A A S(*)Ô A 
T(*)B -> A<*)B]. 

It should be pointed out that for any two PSRs, there may be more than one 

abstraction which is maximal in the above sense. For example, given the following 

two exemplars, 
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E3: {{CIRCLE*}, E4: {{CIRCLE:b}, {CIRCLE*}, {REO:b}, 
{RED:a},{LARGE:a}} {GREEN*}, {SMALL*}, {LARGE*}} 

two maximal abstractions exist. If the parameters a and b are considered to 
be identical, the maximal abstraction is 

E3*E4: {{CIRCLE:1}, {RED: 1}} 

If on the other hand, the parameters a and c are considered to be identical, the 
maximal abstraction is 

E3*E4: {{CIRCLE:l}f {LARGE: 1}} 

Thus in the language of PSRs, a maximal abstraction is defined to be the largest set of 
case relations that can be formed by intersection of the two compared sets of case 
relations when alphabetic differences between bound or corresponding parameters in 
the two PSRs are ignored. Parameter bindings may be defined by any one-one 
mapping between the parameter sets of the two PSRs. Note that an abstraction 
produced by assuming one particular set of parameter correspondences may be 
submaximah that is, it may contain fewer relations than another abstraction which 
matches it but was produced by assuming a different parameter binding relation. 

To perform interference matching on reasonably complex representations, we 
need an algorithm which, operating within as small a search space as possible, can 
discover the best maximal abstractions as quickly as possible. Two approaches to 
interference matching are known: (1) In the bind-first approach, each parameter in 
one PSR is associated with a parameter in the second PSR and then a maximal 
abstraction is found by extracting the case relations which are identical in the 
two PSRs (modulo the parameter bindings). In this case, if the lesser number of 
parameters (in either PSR) is MP and the greater number is NP, the number of 
possible binding functions is combinatorial, (binomial coefficient of NP over MP) * 
MP!. (2) Alternatively, in the match-first approach, all instantiations of case frames 
of one type in one PSR are compared.with all instantiations of the same type of case 
frame in the other PSR, and possible parameter bindings are identified by determining 
which parameters have corresponding properties in comparable relations. Here if NJ 
and MI are the numbers of case relations in the larger and smaller PSR (assuming 
only one type of case frame), the number of possible ways in which the relations 
can be forced into correspondence is similarly combinatorial. While it is true 
that if one were interested in computing abstractions of quite low-level event 
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descriptions (such as undirected graphs) neither method would be much preferable 
to the other, in most real problems the number of instances of any particular case 
frame is quite small relative to the number of parameters in the PSR, and so the 
second method is usually preferable to the first. It is this method which is used in 
our current work. 

The actual algorithm we use has the following form: A randomly selected case 
relation from one of the exemplar PSRs is put into correspondence with a case 
relation (which is a parameterization of the same case frame) from a second 
exemplar PSR; parameters having identical properties are identified as equivalent and 
the resulting common case relation becomes the (primitive) abstraction associated with 
that set of parameter bindings. Then other pairs of primitive case relations, 
one from each of the two exemplar PSRs, are put into correspondence. If a 
compared pair of relations entails parameter bindings consistent with those already 
identified, the common relation is added to the abstraction being produced. This new 
abstraction is the set union of the old abstraction and the new case relation, and the 
new set of parameter bindings is the set union of those bindings entailed by 
the previous abstraction and the forced bindings of the parameters in the 
compared pair of case relations. If a pair of case relations entails parameter 
bindings inconsistent with those already identified, the common case relation 
becomes a new (primitive) abstraction. 

Clearly, this algorithm may find a number of competing maximal abstractions. 
Our approach is to build as many distinct abstractions as possible, one relation at a 
time, until a limitation on the number of distinct abstractions which can be 
considered at one time is exceeded. At that point, only those abstractions which are 
most significant in terms of the number and type of case relations they include 
are retained. These abstractions continue to be extended as other pairs of 
consistent relations are found; at the same time, the least significant 
abstractions are continually pruned from further consideration in order to keep the 
search space as small as possible. 

The result of the process is a set of best maximal abstractions, represented 
as PSRs. Any one of these abstractions (interpreted as existentially quantified) can 
then be input to SPROUTER together with a third exemplar to produce a set of 
maximal abstractions of three exemplars, or the process may be repeated on as many 
additional exemplars as desired. Since a maximal abstraction is compared to an 
exemplar in the same way that an exemplar is compared to another exemplar, we find 
it desirable to store abstractions as PSRs, with the interpretation that their 



Hayes-Roth & McDermott 9 

parameters represent existentially quantified variables derived from the 
correspondence of case relations in the exemplars from which the PSR was induced. 

The successive steps involved in producing the maximal abstraction of the 
first two examples in the concept formation task are shown below. 

(1) {SMALLl} 

(2) ({SMALL:!}, {AB0VE:2,BEL0W:1}) 

(3) (({SMALLl}, {AB0VE:2,BEL0W: 1 }), {SAME!SIZE:1,SAME!SIZE:2}) 

(4) ((({SMALL:1}, {AB0VE:2,BEL0W:1}), {SAME!SIZE:1,SAME!SIZE:2}), {SMALL2}) 

(5) (((({SMALL: 1}, {AB0VE:2,BEL0W:1}), {SAME!SIZE:1,SAME!SIZE:2})> {SMALL:2}), 
{SQUARE:2}) 

(6) ((((({SMALLl}, {AB0VE:2,BEL0W:1}), {SAME!SIZE:1,SAME!S!ZE:2}), {SMALL2}), 
{SQUARE:2}), {CIRCLE:1}) 

The case relation {SMALLx} is selected at random from El and is then put into 
correspondence with the case relation {SMALL.f} from E2. The parameters c and f 
are identified as equivalent and so (since c and f are the first pair of parameters 
bound) the primitive abstraction {{SMALL:1}} is generated. Then the pair of case 
relations {ABOVE.b, BELOW:c) and {ABOVE.d, BELOWif} are put into correspondence. 
Since the identification of c with f and of b with d is consistent with the already 
established binding, the primitive abstraction {{AB0VE:2, BELOW:l}} is added to 
{{SMALL:1}}. It should be noted that our basic IM algorithm actually finds only six 
of the eight case relations constituting the abstraction. This is because the 
partial abstraction {{TRIANGLE.3}, {LARGE.3}} was pruned from consideration 
early in the match under the space limitation constraint. To insure that such 
complementary relations are not missed, our algorithm, after completing the process 
described above, searches for additional relations which can extend the abstractions 
produced. Any such relations which are found are conjoined to the abstraction to 
produce a maximal abstraction. 

SPROUTER, the program which induces abstractions from structural descriptions, 
is only one part of a classification and learning system which we are developing. The 
top-level program, called SLIM [6], is a general space limited interference matching 
procedure which builds abstractions from examples and then uses these abstractions 
to classify test stimuli.1 While the abstraction of feature-value repesentations can 
be performed by simple bit vector operations (which SLIM itself is capable of), the 

1 Both SLIM and SPROUTER are implemented in SAIL for use on a PDP-10; SPROUTER 
loads in 14 thousand words of core. 
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generation of abstractions from PSRs requires the matching and parameter 
binding determinations discussed above. The program, SPROUTER, was created for 
this purpose. Once an abstraction is computed from some PSRs, it is nearly as 
complex a problem to use it for classification as it was to generate it originally. 
With this in mind, SPROUTER was designed to produce two outputs: one of these is 
a PSR, which as we have indicated can be matched with subsequent exemplars to 
produce more refined abstractions; the other is a special purpose recognition 
network used to exploit an abstraction as a template. 

SLIM provides a general operating environment for concept (pattern) 
learning and classification. It is first given a set of exemplars all of which are 
known to belong to the same pattern class, and it induces abstractions (with the help 
of SPROUTER when necessary) by finding sets of common features or properties. 
This procedure can be repeated for different sets of exemplars until a number of 
abstractions have been built, each of which is an implicit rule for determining 
whether an event belongs to a particular pattern class. When SLIM is given an 
event to classify, its confidence in any particular classification judgment is 
determined by the abstraction's performance measure. This measure is a weighted 
combination of the a posteriori Bayesian probability of a correct classification 
less the probability of an incorrect classification. During the learning phase of 
processing, this measure is also used to eliminate insufficiently discriminating 
abstractions. By keeping the most discriminating abstractions, SLIM optimizes 
the expected overall performance of the limited set of templates it keeps as 
classifiers. 

The templates which SPROUTER generates for. SLIM are automatically 
compilable recognition networks or ACORNs [8, 9]. An ACORN is a special data 
structure, equivalent in representational power to a PSR, but better adapted to serve* 
as a template; it is essentially a Pandemonium pattern recognition system [12]^ 
generalized to handle patterns and data described as general propositional formulae. 
Once an ACORN has been produced, SLIM can determine whether, a descriptive PSR 
matches it by using the PSR to create an instance list at each of the lowest-level 
nodes in the ACORN and then allowing the relevant instances of subpatterns of 
interest to percolate upward in the network. If any instances of the highest-level 
node are found, the template is matched by the stimulus pattern. The lowest-level 
nodes of an ACORN correspond to the distinct case frames in a universally quantified 
PSR and are like the feature demons of a Pandemonium system. A feature demon, 
however, reports only the number of instances of its particular feature to higher-
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level demons, whereas the node in an ACORN actually passes its instances up to the 
higher-level nodes which it supports. The higher-level nodes look for instances of 
the particular conjunction of case relations in which they are interested, just as 
higher-level "cognitive demons" in Pandemonium look for specific combinations of 
feature values. The highest-level node in an ACORN is instantiated if and only if the 
abstraction is matched by the PSR. Thus this highest-level node corresponds to 
a Pandemonium's highest-level cognitive demon which recognizes when a pattern of 
interest is matched. Because ACORNs have been developed to provide a means 
for sharing the results of the evaluation of subexpressions common to numerous 
templates, each conjunction of predicates or subtemplates is associated with a 
single binary-branching node whose two descendants represent the conjoined 
propositional formulae. 

Once a set of best maximal abstractions is computed for two or more 
exemplars, all training examplars (or a sample of them) may be examined to see if 
they match the inferred hypothetical concept or rule. Only to the extent that 
exemplars of the same class match an abstraction and those of the other classes do 
not, do we find support for the inference that the abstraction is the criterial concept 
underlying the training data [5-6]. ACORNs greatly facilitate this examination 
process. One simply instantiates the terminal nodes of the ACORN whose 
highest nodes represent the abstractions of interest, and then iteratively computes 
all instances of each higher-level node from those pairs of instances of its 
subordinate nodes which satisfy criterial tests on their values. If any instances of 
the abstraction are produced, the training exemplar matches the abstraction, 
Without ACORNs, it would be extremely difficult to determine which positive and 
negative training exemplars matched each abstraction. 

A second reason for using ACORN* rather than some other sort of intermediate 
data structure is that only one generic representation of any abstraction need be 
computed during the search for maximal abstractions. Since each abstraction is 
associated with a node in an ACORN, equivalent abstractions can be easily 
identified and pruned from memory. This is done by computing all instances of 
each abstraction of the two exemplar PSRs and storing these at the associated ACORN 
node. If two instances of two different higher-level nodes are produced by 
conjunctions of identical sets of instances of the terminal nodes, the higher-level 
nodes represent equivalent abstractions and one may be deleted. Equivalently, 
we can recognize automorphic substructures of the compared PSRs whenever we find 
that the tests for one abstraction are satisfied by exactly the same case relations 
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*** Figure 3 goes about here 

Figure 3 shows the ACORN that is produced by SPROUTER for the first two 
exemplars of the concept formation task. Each of the nodes, (1) through (6), in the 
network corresponds to one of the partial abstractions given in the step-by-step 
derivation shown earlier. Nodes (7) and (8) are produced when the ACORN is 
extended. Note that if this ACORN were used to determine whether the third 
exemplar in the concept formation task is an instance of the class defined by the 
first two exemplars, SLIM would find that it is not since the large object in the third 
exemplar is not a triangle. 

///. THE INTERFERENCE MATCHING ALGORITHM 

SPROUTER's function, as we have said, is to build ACORNs which can be used 
by SLIM for recognition. Before this construction process can begin, a set of 

as the tests for some other abstraction. As will be shown later, since the tests on 
ACORN nodes completely specify the underlying PSR, the only way two nodes' tests 
can be satisfied by identical case relations is if the two nodes represent 
equivalent logical structures. Thus, ACORNs provide a basis for overcoming a difficulty 
which invariably arises with string type representations of PSRs (or equivalent 
predicate formulae) because many alphabetically distinct abstractions can be 
equivalent (each can match the other). For example, one may induce from examples 
the following abstraction for the concept triangle: Three vertices connected by three 
lines. Because there are three factorial distinct parameter binding relations 
between the vertices of one triangle and those of another, there are 6 binding 
functions and related case relation correspondences which entail equivalent 
abstractions. If each distinct abstraction of two PSRs were repesented only by a 
symbolic string, there would be no efficient way to determine that all of these 
alternative descriptions were identical. ACORNs facilitate this determination. Each 
ACORN node repesents a distinct PSR, and consequently equivalent PSRs are 
recorded as distinct instances of the same node in the network. 
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SPROUTER will create two nodes, N1 and N2, and then produce four instance 
lists. Two of these lists, ([E5/a], [E5/b]) and ([E6/c]), are associated with node N1. 
The other two, ([E5/a, E5/b]) and ( ), are associated with node N2. 

When the primitive nodes have been instantiated, SPROUTER produces the 
set of maximal abstractions of the two PSRs by constructing, bottom-up, a binary-
branching ACORN. Each higher-level node of this network is a conjunction of two 
nodes, one of which is always a primitive node. Before initiating the building 
process, SPROUTER deletes all of the primitive nodes which do not have at least one 
instance from each exemplar. Then one exemplar, the one with fewer instances over 
the remaining nodes, is tagged E j n f r 0 ; the other exemplar is tagged E c o m p . And each 
instance of E j n | r 0 is marked as unused. SPROUTER then begins the actual 
construction. An unused E | n | r 0 instance from a primitive node is chosen as one of 
the two instances to be used in the construction; it is selected on the basis of the 
likelihood of its being an instance of a node which is a constituent of a best maximal 
abstraction. This instance is then paired with every instance from E j n f r 0 of every 
node. Each of these pairs of instances is used to construct a candidate node which 
will accept instance pairs only if they are equivalent to the prototypic pair. If 
there is at least one such pair of instances in E c o m p , the candidate node is added to 
the network and all instances of the node (from both exemplars) are computed. 
Thus, each step in the abstraction building process involves combining, iteratively, 
an unused instance from a primitive node with each other instance in the ACORN. 
After each of the resulting conjunctive nodes is generated for a pair of instances 
from Ej n t r 0 > all instances of that node, first from E c o m p and then from E j n | r 0 , are 
computed. If no instances are found in E c o m p , the node represents an abstraction 

primitive (bottom-level) nodes must be generated and then instantiated. To generate 
these nodes, SPROUTER reads in the set of case frames which are relevant to the 
task it is facing. For each of these case frames, a primitive node is created which is 
essentially a universally quantified case relation. SPROUTER then finds, in the 
descriptive PSRs of two exemplars, the set of distinct instances (case relations) which 
are instances of each of these nodes. Each node has two associated instance lists; 
each of these lists contains the instances of the case relation for one of the 
exemplars. For example, given the two case frames N1: {CIRCLE}, N2: {ABOVE, BELOW} 
and the two exemplars 

E5: {{CIRCLEra, CIRCLE.b}, E6: {{CIRCLE:c}} 
{ABOVE.a, BELOW.b}} 
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which is not true of the second exemplar and so the node is not added to the 
network. The process continues until all of the case relations that are common to 
both exemplars have been conjoined. 

Of course, this algorithm, left unconstrained, would build a node for each 
subset of case relations in E j n ( r 0 for which there was an equivalent subset in EComp* 
Clearly, the size of the search space would increase exponentially. Thus, for even 
small problems, it is important to somehow reduce the number of nodes which are 
constructed. We use two heuristics. The first of these enables us to keep the search 
space to a manageable size by providing for the automatic pruning of those 
conjunctions which are least likely to be part of a best maximal abstraction. To 
determine which partial abstractions are least promising, a value is computed 
which we call the utility of a node. Basically, the utility of a node is an increasing 
function of the number of properties covered by the node and a decreasing 
function of the number of distinct parameters needed to instantiate the node. 
More specifically, our current utility measure adds 1.0 for each property of a case 
relation and subtracts 1.0 for each distinct parameter in the associated PSR. Our 
justification for this rather rough measure of utility is that it will yield as the highest 
valued nodes, those with the greatest scope and connectivity. Equivalently, the 
higher the utility of a node, the more informative and apparently "better" it is as an 
abstraction. 

During the construction of the ACORN, a list of all nodes currently in the 
network is maintained. This list, which is ordered by the utility of its elements, has a 
stipulated maximum length. Whenever the number of total nodes in the ACORN 
exceeds this stipulated maximum, a primitive node which does not support any higher-
order nodes is marked as removed from consideration. If all remaining primitive nodes 
support some higher-level node, then the least valued maximal abstraction 
(provided there is more than one maximal abstraction in the network) and all nodes 
suporting it (or supporting one of its supports, recursively) and not supporting some 
other higher valued maximal abstraction are deleted (or marked as removed from 
consideration if they are primitive nodes). Thus, the number of nodes in the network 
can exceed the stipulated maximum only if just one maximal abstraction remains. 
While in some cases, it might be desirable to require that at least k (k>l) best maximal 
abstractions be maintained, we have not yet found a need for this option. 

As a result of the limitation on nodes in the ACORN, the typical behavior 
during construction is as follows: Instances are introduced one-at-a-time from & m \ r 0 

and are conjoined with other E j n j r 0 node instances to form PSRs representing 
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subsets of case relations of varying utility. As soon as the number of nodes 
corresponding to these nodes in the ACORN exceeds the stipulated maximum, the 
maximal node with the lowest utility together with all nodes which support only it are 
deleted from the network. This construction-and-pruning cycle is repeated until the 
set of best maximal abstractions has been found. 

The second heuristic provides the search with direction by indicating which 
one of the unused instances is to be used in the next cycle of construction. Our 
search for the best maximal abstractions is essentially hill climbing, but occurs on 
many hills simultaneously. Since our pruning heuristic enables us to maintain a 
gradually decreasing number of maximal abstractions, the number of hills under 
consideration is reduced as the search progresses. Clearly, if we could select first 
all of those instances from ^\^\r0 which were instances of the best maximal 
abstractions (the highest hills), then our search, since it would take place in an 
essentially unimodal space, would be as efficient as possible. Of course it is 
impossible to determine a priori which instances are instances of the best maximal 
abstractions. However, by using a variant of the utility function described above, it is 
possible to compute, fairly cheaply, the upper bound of the actual utility of any node 
which might be constructed. Using this strategy, we can, at relatively little cost, 
significantly increase the probability that the node constructed will be a constituent of 
a best maximal abstraction. The selection procedure we use is as follows: We set a 
sampling factor (currently 207.) for the proportion of the unused instances from 
E j n | r 0 which are to be examined, We select at random this percent of the unused 
instances (but at least three until there are fewer than three unused instances). For 
each of the instances in this sample, we determine an upper bound of the utility of 
all of the nodes which could be constructed by conjoining the sampled instance with 
the remaining instances of nodes still under consideration. The one instance which 
produces the node with the highest potential utility is constructed. 

The actual construction of a node is a two step process. First SPROUTER 
creates a set of tests which are both necessary and sufficient to accept just those 
instances which are equivalent to the pair of instances used as a model in building 
the higher-level candidate node. It is possible to create such a set of tests 
working only with the sameness or difference of selected parameters. For 
example, to construct an ACORN node to accept the two instances {CIRCLE.c} and 
{ABOVE.a, BELOWx}, a same parameter (SP) test is generated to insure that the first 
parameter of the first case relation is the same as the second parameter of the 
second relation, and a different parameter (DP) test is generated to insure that no 
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non-explicit SPs are accepted. If we think of this ACORN node as being constructed 
from a left and a right instance, where the parameter of the left instance is 
numbered 1, and the parameters of the right instance are numbered 2 and 3, then 
a minimally complete set of tests needed to exactly represent the same and different 
relations are {SP.l, SP:3} and {DP:1, DP:2}. 

After the set of tests has been created, the candidate node is associated 
with a generator set which specifies how the parameters of its instances are to be 
extracted from pairs of subordinate instances which satisfy the node's SP and 
DP tests. Because of the implicit requirement for DP relations to hold on all 
distinct parameters, the order of the new relation is exactly the number of 
distinct parameters in the two relation instances used in building the node. In 
the above example, there would be two parameters in each instance of the new node 
and these would correspond to parameters 1 and 2 (since 1 and 3 are identical). 
The generator list for this node would be just (1,2). From the nature of the explicit 
SP and DP tests used, it follows that any two nodes having instances derived from 
equivalent pairs of instances must bo equivalent. Whenever such a duplicate 
node is constructed, it is removed from the ACORN, 

It should be apparent that an ACORN constructed in the fashion described 
above will not necessarily contain a maximal abstraction. Whether or not it 
will is partially dependent on what maximum has been stipulated for the number of 
nodes in the ACORN. But even if the stipulated maximum is large enough so that the 
highest node in the ACORN is a constituent of a maximal abstraction, the ACORN may 
not be complete; that is, some of the case relations in the abstraction may have 
been lost. This can occur if one or more primitive nodes whose instances are a part of 
the abstraction were removed from consideration early in the construction process. 
In such a case, however, it is always possible to extend the ACORN with 
conjunctions of these lost primitive node instances. This is done by successively 
re-introducing into the construct-and-prune cycle each instance in. E| nf r 0 which 
does not support all of the instances of all of the highest nodes in the ACORN. 
Each re-introduced instance is conjoined with each of the instances of each highest 
node to produce candidate nodes. If instances of any of these new abstractions are 
found in E C C W p , these new nodes are retained; the ACORN is then extended further, In 
the same way, until the best maximal abstractions have been found. 
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IV. THREE TASKS 

In this section we will discuss SPROUTER'S performance on three tasks. The 
first of these is just the simple concept formation task which we have been using 
as an example. The second task is a considerably more difficult concept 
formation problem. The third, the most difficult of the three, is a production inducing 
task; SPROUTER is given three pairs of sentences, each pair containing the active 
and passive version of the same sentence, and induces the general rule for 
transforming active sentences into passive ones. We have chosen these three tasks 
because each draws attention to an important dimension of SPROUTER'S 
performance. The simple concept formation task shows SPROUTER'S inability to 
deal with many-one parameter correspondences, a recently discovered problem of 
some importance that is discussed in the next section. The more complex concept 
formation task provides an example of the consequences of stipulating different 
values for the maximum number of abstractions that SPROUTER can retertain at 
any one time. Finally, the production learning task demonstrates that SPROUTER 
is powerful enough to find the best maximal abstractions in extremely large search 
spaces and, incidentally, that the IM algorithm is effective for inducing such rules of 
transformational grammar. 

We have already seen the abstraction which SPROUTER constructs given the 
first two exemplars in the first concept formation task. The set of case frames 
from which the primitive nodes were' created,* all three exemplars, and the best 
maximal abstraction found by SPROUTER are given below. 

CF: 
{N1:{CIRCLE}, 
N2:{SQUARE}, 
N3:{TRIANGLE}, 
N4;{LARGE}, 
NS:{5MALL}, 
N6:{INNi;R, OUTER}, 
N7:{AB0VE, BELOW}, 
N8:{LEFT, RIGHT}, 
N9:{SAME!SHAPE, SAMEISHAPE}, 
N10:{SAME!SIZE, SAME.SIZE}, 
N11:{BESIDE, BESIDE}, 
NONCONTIGUOUS, CONTIGUOUS}} 

El : 

1 This set, CF, was used for both concept formation tasks. 
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{{TRIANGLE:a, SQUARE:b, CIRCLEx}, 
{LARGE:a, SMAt.L:b, SMALL*}, 
{INNI:R:b, OUTER:a), 
{ABOVE:a, ABOVE:b, BELOWic}, 
{SAME!SlZE:b, SAME!SIZE:c}} 

E2: 
{{SQUARED, TRIANGLE:*, CIRCLE*}, 
{SMALL:d, LARGE:e, SMALL:f}, 
{INNI:R:f, OUTER*}, 
{ABOVE:d, BELOW:e, BELOW:f}, 
{SAME!SIZE:d, SAME!SIZE:f}} 

E3: 
{{SQUARE:g, CIRCLEih, CIRCLE:i}, 
{SMALL:g, LARGE:h, SMALL:!}, 
{INNI:R:i, OUTERsh}, 
{ABOVE:g, BELOW:h, BELOW:!}, 
{SAME!SHAPE:h, SAME!SHAPE:i}, 
{SAME!SIZE:g, SAME!SIZE:i}} 

E1*E2*E3: 
{{N10:{SAME!SIZE:1,SAME!S1ZE:2}}, 
{N7:{ABOVE:l,BELOW:2}}, 
{N1:{CIRCLE:2}}, 
{N5:{SMALL:1}}, 
{N8:{SMALL:2}}, 
{N2:{SQUARE:1}}, 
{N4:{LARGE:3}}} 

INSTANCES FROM EXEMPLAR E1*E2 
<[El*E2/2,El*E2/l,El»E2/3]> 
INSTANCES FROM EXEMPLAR E3 
([E3/g,E3/i,E3/h]) 

SPROUTER took 6 seconds of cpu time on a PDP-10 (model KA-10) to produce E1*E2 
which it found after constructing 14 nodes (7 more than necessary). SPROUTER took 3 
seconds and constructed 6 nodes (the fewest possible) to produce (El*E2)*E3. The 
abstraction which SPROUTER found, however, though it is the best abstraction 
producible using our match-first method, is not maximal. It is missing two case 
relations. As we indicated in the first section of the paper, the abstraction which 
SPROUTER induces is the following: 

There are three objects, including a small circle and a small square. 
The square is above the circle. The third object is large. 
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The best maximal abstraction includes the specification that the large object 
contains another one which is one of the two small objects. SPROUTER is unable to 
find this abstraction for two reasons: (1) The grain size of the representations used in 
describing the examples is too big; more atomic uniform representations are needed to 
make abstraction, which is a subtractive process, more generally applicable. (2) Many-
one parameter correspondences must be allowed in order to insure that relevant 
correspondences are not lost. These two problems, whose solution requires methods 
of greater generality than we have currently implemented, are discussed in detail in 
the next section. For the moment, the reader need know only that to produce a 
uniform PSR, every occurrence of the same parameter in the PSR is replaced by a 
distinct parameter and the several symbols referring to the same object are then 
related to one another by using the SP (same parameter) case frame {SP, SP}. The 
three exemplars in uniform PSR notation and the more complete abstraction which 
SPROUTER took a total of 5 minutes and 3 seconds to find are shown below. 

E l : 
{{TRJANGLEiBl, SQUARE:bl, CIRCLExl}, 
{LARGE:a2, SMAI.L:b2, SMAI.L:c2}, 
{INWER:b3, 0UTER:a3}, 
{AB0VE:a4, AB0VE:b4, BEL0W:c3}, 
{SAME!SlZE:b5, SAME!SIZE:c4}, 
{SP:al, SP:a2, SP:a3, SP:a4}( 

{SP:bl, SP:b2, SP:b3, SP:b4, SP:b5}, 
{SP:cl, SP:c2, SP:c3, SP:c4}} 

E2: 
{{SQUARE:dl, TRIANGLE* 1, CIRCLE:fl}, 
{SMAI.L:d2, LARGE:e2, SMAI.L:f2}, 
{INNER:f3, 0UTER:e3}, 
{AB0VE:d3, BEL0W:e4, BEL0W:f4}, 
{SAME!SIZE:d4, SAME!SIZE:f5}, 
{SP:dl, SP:d2, SP:d3, SP:d4}, 
{SP:el, SP:e2, SP:e3, SP:e4}, 
{SP:fl, SP:f2, SP:f3, SP:f4, SP:f5}} 

E3: 
{{SQUARE:gl, CIRCLE:hl, CIRCLE:il}, 
{SMALL:g2, LARGE:h2, SMALL:i2}, 
{INNI.:R:i3, 0UTER:h3}, 
{AB0VE:g3, BEL0W:h4, BEL0W:i4}, 
{SAME!SHAPE:h5, SAME!SHAPE:i5}, 
{SAME!SIZE:g4, SAME!SIZE:i6}, 
{SP:gl, SP:g2, SP:g3, SP:g4}, 
{SP:hl, SP:h2, SP:h3, SP:h4, SP:h5}, 
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{SPAI, SP.-Ì2, SP:i3, SP:i4, SP:i5, SP:i6» 

E1*E2*E3: 
{{N6:{INWf:R:l,OUTER:2}}, 
{N0:{SP:3,SP:4}}, 
{N7:{AB0VE:3,BEL0W:5}}, 
{N5:{SMALL:4}}, 
{NO:{SP:6,SP:2}}, 
{N4:{LARGE:6}}, 
{N0:{SP:7,SP:2}}, 
{N0:{SP:6,SP:7}}, 
{N0:{SP:2,SP:8}}, 
{N0:{SP:8,SP:6}}, 
{N0:{SP:8,SP:7}}, 
{N0:{SP:9,SP:5}}, 
{N10:{$AME!S1ZE:9,SAME!SIZE:10}}, 
{N0:{SP:10,SP:4}}, 
{N0:{SP:10,SP:3}}( 

{N0:{SP:11,SP:9}}, 
{N!>:{SMAl.L:ll}}, 
{NO:{SP:12,SP:ll}}, 
{N0:{SP:9,SP:12}}, 
{N1:{CIRCLE:12}}, 
{N0:{SP:13,SP:10}}, 
{N0:{SP:13,SP:4}}, 
{N0:{SP:3,SP:13}}, 
{N2:{SQUARE:13}}} 

Though this abstraction includes the specification that the large object contains 
another object, it does not specify that this contained object is one of the two small 
objects. To induce that the contained object is small requires using a many-one 
parameter binding approach to interference matching discussed in the next section. 

*** Figure 4 goes about here 

The second concept formation task is significantly more complex than the 
previous one. Figure 4 displays the task. When SPROUTER was given this task and 
allowed a maximum of 9 nodes, it induced the following best maximal abstraction: 

E1*E2*E3: 
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{{N10:{SAME!SIZE:1,SAME!SIZE:2}}, 
{N7:{ABOVE:2,BELOW:l}}, 
{N2:{SQUARE:1}}, 
{N6:[INNERi3,0UTERil}}, 
{M5:{SMAI.L:3}}, 
{N11:{BESIDE:1,BES1DE:2}}, 
{N4:{LARGE:2}}, 
{N7:{ABOVE:2,BELOW:3}}, 
{Nll:{BESIDE:3,BESIDE:2}}, 
{N7:{AB0VE:4,BEL0W:1}}, 
{N9:{SAME!SHAPE:2,SAME!SHAPE:3}}, 
{N4:{LARGE:1}}, 
{N1:{CIRCLE:4}}, 
{N10:{SAME!SIZE:4,SAME!SIZE:3}}, 
{N5:{SMALL:4}}, 
{N7:{AB0VE:4,BEL0W:3}}} 

INSTANCES FROM EXEMPLAR EUE2 
([El*E2/l,El*E2/2,El*E2/3,EUE2/4]> 
INSTANCES FROM EXEMPLAR E3 
<[E3/m,E3/j,E3/n,E3/l]) 

Ih other words: 

There are four objects. ehj(2) is the same shape as dgn(3) and is the 
same size as cfm(l). ehj(2) is above and beside both dgn(3> and cfm(i). 
dgn(3)'is a small object and is contained in cfm(l) which is a large 
square. bil(4) is a small circle which is above both dgn(3) and cfm(l). 

SPROUTER took 58 seconds to find EUE2 and built 66 nodes. It took 47 seconds 
and built 52 nodes before finding (E1*E2)*E3, which is a conjunction of 16 nodes. 

Given the same task, but with the constraint that the total number of nodes in 
the ACORN must not be greater than 8, SPROUTER produced the following abstraction: 

E1*E2*E3: 
{{N7:{AB0VE:1,BEL0W:2}}, 
{N7:{AB0VE:3,BEL0W:2}}, 
{N8:{LEFT:2,RIGHT:1}}, 
{Nll:{BESIDE:l,BESIDE:2}}, 
{N10:{SAME!SIZE:3,SAME!SIZE:2}}, 
{N10:{SAME!SIZE:4,SAME!SIZE:1}}, 
{N9:{SAME!SHAPE:2,SAME!SHAPE:1}}, 
{N7:{ABOVE:l,BELOW:4}}, 
{N7:{AB0VE:3,BEL0W:4}}} 

INSTANCES FROM EXEMPLAR E1*E2 
(tEl*E2/2,El*E2/3,El*E2/4,El*E2/l]) 
INSTANCES FROM EXEMPLAR E3 
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<[E3/l,E3/k,E3/j,E3/n]) 

Though the stimpulated maximum for this run is only one less than the maximum of 9 
stipulated for the previous run, the abstraction induced is very different: 

There are four objects, ehl(l) is the same shape as dgk(2) and is the 
same size as bij(3), ehl(l) is to the right of dgk(2). dgk(2) is the seme 
size as cfn(4). ehl(l) and cfn(4) are above dgk(2) and bij(3). 

This abstraction was sub-optimal because the stipulated node maximum was 
insufficient to allow SPROUTER to see beyond the seemingly promising LEFT, RIGHT 

relations. 

The production inducing task is, of the three, by far the most difficult because 
the search space is so much larger and the abstraction so much more complex. 
SPROUTER was given the following three pairs of sentences: . 

(1) "The little man sang a lovely song." — > 
"A lovely song was sung by the little man." 

(2) "A girl hugged the motorcycles." —> 
"The motorcycles were hugged by a girl." 

(3) "People are stopping friendly policemen." — > 
"Friendly policemen are being stopped by people." 

*** Figure 5 goes about here 

Figure 5 gives a graphical deep-structure representation of the first sentence. 

In PSR notation, this sentence is described by the following set of 64 case 

relations. 

E l : 
{{ANTECEDENT*l, CONSEQUENTS}, 
{S:sl, NP:npll, VP:vpl, EVENT:el}, 
{S:s2, NP:np21, VP:vp2, EVENT:e2}, 
{NP:npll, DET.thel, ADJ:littlel, NOUN:nounll, EVENT:el}, 
{NP:np21, DET.al, ADJ.Iovelyl, NOUN:noun21, EVENT:e2}, 
{NOUN.nounll, NST.manl, NUMBER.nl 1, EVENT.el}, 
{NOUN;noun21, NST:songl, NUMBER:nl2, EVENT :e2}, 
{SINGULARS 11, EVENT.el}, 
{SINGULARS 12, EVENT:e2}, 

http://NUMBER.nl
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{VP:vpl, AUX:auxll, VERB:verbli, NP:tip22, EVENT:el}, 
{SAME!NP:np21, SAME!NP:np22}, 
{NP:np22, DET:a2, ADJ:lovely2, N0UN:noun22, EVENT:e t}, 
{$ AME!NOUN:noun21, SAME!N0UN;noun22}, 
{NOUN:noun22, NST:song2,'NUMBER:nl3, EVENT:e I}, 
{SINGULAR:* 13, EVENT* 1}, 
{VP:vp2, AUX:auxl2, PB:pbl, VERB:verbl2, PP:ppl, EVENT:e2}, 
{AUX:auxll, AUXST.-havel, TENSE:tl 1, NUMBER:nl5, EVENT:eI}, 
{AUX:auxJ2, AUXST:have2, TENSE:tl2, NUMBER:nl6, EVENT:e2}, 
{$AME!AIJX:auxl 1, SAME!AUX:3Uxl2}, 
{VERB:verbll, VST:singl, TENSE:t21, NUMBER:nl5, EVENT:e 1}, 
{VERB:verbl2, VST:sing2, TENSE:t22, NUMBER:nl6, EVENT:e2}, 
{SAME!VERB:verbll, SAME!VERB:verb 12}, 
{PB:pbl, PB$T:bel, TEN5E:t23, NUMBER:nl6, EVENT:e2}, 
{SAME!TENSE:tll, SAME!TENSE:tl2}, 
{SAME!TENSE:t21, SAME!TENSE:t22, SAME!TENSE:t23}, 
{SINGULARS 15, EVENT:e 1.}, 
{SINGULAR^ 16, EVENT:e2}, 
{PRESENT:! 11, EVENT:e 1}, 
{PRESENTS 12, EVENT:e2}, 
{PAST-PART:t21, EVENT:e 1}, 
{PAST»PART:t22, PAST-PART:t23, EVENT:e2}, 
{PP:ppl, PREP:byl, NP:npl2, EVENT:e2}, 
{SAME!NP:npll, SAME!NP:npl2}, 
{NP:npl2, DET:the2, ADJ:little2, NOUN:nounl2, EVENT:e2}, 
{SAME!NOUN:iK>unl 1, SAME!N0UN:nounl2}, 
{NOUN:nounl2, NST;man2, NUMBER:nl4, EVENT:e2}, 
{SAME!NUMBER:nll, SAME!NUMBER:nl2, SAME!NUMBER:n 13, 
SAME!NUMBER:nl4, SAME!NUMBER:nl5, SAME!NUMBER:n 16}, 

{SINGULARS4, EVENT:e2}, 
{THErtheL, EVENT:e 1.}, 
{THE:the2, EVENT:e2}, 
{SAME!WORD:lhel, SAME!W0RD:the2}, 
{LlTTLE:littlel, EVENT:ei}, 
{LITTLE:little2, EVENT:e2}, 
{SAME!WORD:litflel, SAME!W0RD:little2}, 
{MAN:manl, EVENT:ei}, 
{MAN:man2, EVENT:e2}, 
{SAME!WORD:manl, SAME!W0RD:man2}, 
{HAVE:havel, EVENT:e 1}, 
{HAVE:have2, EVENT:e2}( 

{SAME!WORD:havel, SAME!W0RD:have2}, 
{SING:r,ingl, EVENT:e 1}, 
{SING:oing2, EVENT:e2}, 
{SAMEÎWORDisingl, SAME!W0RD:sing2}, 
{A:al, EVENT:e J.}, 
{A:a2, EVENT:e2}, 
{SAME!WORD:al, SAME!WORD:a2}, 
{LOVELYHovelyl, EVENT:e 1}, 
{LOVELY:lovely2, EVENT:e2}, 
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{SAME!WORD:lovelyl, SAME!W0RD.Iovely2}, 
{SONG.songl, EVENT.el}, 
{SONG:song2, EVENT:e2}, 
{SAME!WORD:songl, SAME!W0RD:song2}, 
{BE:bel, EVEI\IT:e2}, 
{BY;byl, EVENT:e2}} 

*** Figure 6 goes about here 

The best maximal abstraction found by SPROUTER is illustrated in figure 6. The 
arrows in figure 6 indicate where the abstraction contains case relations representing 
that the connected nodes are the same part of speech (e.g., are both noun phrases, 
nouns, verb phrases, etc.) or have the same value (e.g., are both singular or both the 
same word). These case relations were provided for each training sentence as 
indicated in the preceding PSR for the sentence pair El . Basically, these case relations 
connect two "tokens" of the same grammatical "type" Those relations that have 
survived the interference matching process can now be interpreted as identifying 
parameters in the antecedent and consequent events which should be considered 
identical. As previously explained, when the inferred production is used to produce 
behavior and a PSR in working memory matches the antecendent component of this 
rule, variable values will be bound and substitutions will be made into the consequent 
event as prescribed by the arrows. In an effort to simplify the figure, boxes have 
been constructed around any group of antecedent nodes where each contained 
parameter is connected by a "same" type relation to the corresponding parameter in 
the consequent box. SPROUTER took 19 minutes and 15 seconds and built 124 nodes 
in constructing E1*E2 and took 14 minutes and 33 seconds and built 97 nodes in 
constructing (E1*E2)*E3. Since the rule which it induced contains 45 distinct 
parameters over 40 case relations, we can take 45! as a lower bound on the size of 
the search space; that is, there are 45! (approximately 10^) possible one-one 
parameter binding relations which could be established between any pair of parameter 
sets from E l , E2, or E3. SPROUTER made 81 bad decisions (constructed nodes which 
did not support the eventual maximal abstraction) in computing E1*E2 and 57 bad 
decisions in computing (E1*E2)*E3. 
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As SPROUTER's performance on the first of the concept formation tasks shows, 
there are two problems which arise in the learning methodology that we have 
described. The first is that some learning problems can only be solved if the implicit 
semantics of the case frame structure are made explicit in more elaborate and 
primitive uniform representations. The second is that, even with uniform 
representations, some learning problems require the identification of many-one 
parameter correspondences in order to produce maximal abstractions and thus cannot 
be solved by SPROUTER or any other program using a one-one matching method. Each 
of these problems is discussed in turn. 

The need for uniform representations can best be conveyed through a simple 
learning example. Suppose we have two examples of the concept "two line segments, 
connected in at most one place" whose descriptions are provided in terms of the 
binary symmetric case frame {ENDPOINT, ENDPOINT} identifying the two endpoints of a 
line segment. Let the two examples be E l : {{ENDPOINT:a, ENDPOINT.b}, {ENDPOINT:c, 
ENDPOIN7:d}} and E2: {{ENDPOINT:w, ENDPOINT:x}, {ENDPOINT:x, ENDPOINT.y}}. E l 
describes two disjoint lines and E2 describes two lines connected at vertex x. Implicit 
in these PSRs are the assumptions that two endpoints are the same if and only if they 
are labeled by the same parameter. In order to recognize that both El and E2 match a 
maximal abstraction which represents the concept to be learned (two lines whether or 
not connected at a common point), it is apparently necessary to establish parameter 
correspondences between two parameters in El (say b and c) and one parameter in E2 
(say x). To avoid this necessity and to permit induction of the most informative 
abstractions, uniform PSRs are employed which make explicit the same parameter (SP) 
and different parameter (DP) relationships between each pair of parameters in a 
description. 

While a detailed discussion of the formal characteristics of uniform 
representations occurs elsewhere [7, 10], several important properties will be pointed 
out here. First, rather than using one parameter (say p) in every case relation in 
which the same object is cited, uniform PSRs employ distinct symbols (e.g., p\ p", ...) 
for each. To preserve the information that the various parameters all refer to the 
same object, every pair (e.g., p', p") of these parameters is used to instantiate an SP 
case frame, such as {SP:p\ SP:p"}« Similarly, every pair of parameters (p\q*) which 
refer to distinct objects in the PSR are used to instantiate a DP case frame, {DP:p\ 
DP:q'}. If the preceding exemplars El and E2 are represented by uniform PSRs, the 

V. PROBLEMS IN REPRESENTATION AND MATCH {NQ 
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maximal abstraction which would be produced by SPROUTER would be E1*E2* 
{{ENDPOINT:!, ENDPOINT:?}, {ENDPOINT.3, ENDPOINT.4}, {DP:1, DP:2}, {DP:1, DP:3}, 
{DP:1, DP:4}, {DP:2, DP:4}}. This abstraction would be entailed by the parameter 
bindings l«*a~w, 2»b«-x\ 3«*c*x" 4~d=y. The fact that the case relations {DP:b, DP:c} 
in E l and {SP:x', SP:x"} in E2 did not match would simply be lost. The resulting 
abstraction E1*E2 would then be properly interpreted as meaning, "There are two 
lines, with endpoint pairs (1,2) and (3,4), such that all points are distinct except 
perhaps 2 and 3. Without uniform representations, SPROUTER's requirement for one-
one parameter correspondences would have meant that the best abstraction that could 
have been produced would include only the one case relation {ENDPOINT:1, 
ENDPOINT:?}. 

Furthermore, it can be seen that there are other induction problems which will 
not be solved correctly by SPROUTER's match-one~case-relation~at-a~time approach. 
Specifically, when abstractions entail discovering that only some parts of case relations 
of two PSRs match, the maximal abstraction should reflect the common subset of 
property.object terms. This can be accomplished if each case relation of the form 
{property^x j , {property n :x n} is replaced by the set of uniform case relations 
{ { p r o p e r t y ^ } , {property n:x n}, {SCRix^ SCR:x2}, { S C R J X ^ , SCR:x n}}, 
interpreted as follows. Each object Xj has some attribute property; and each pair of 
objects Xj, Xj (l<i<j<n) occurred in the same case relation (SCR), As a result of this 
more atomic description of the case relation, abstractions including only a part of a 
PSR case relation will be reflected as the largest subset of the associated uniform case 
relations which is common to the two compared PSRs. 

Because SPROUTER knows nothing about the semantics of its PSRs, learning 
tasks may be specified using PSRs whose case frames are at the highest level of 
description appropriate, which in some cases will be the atomic level of uniform PSRs. 
SPROUTER simply assumes that every pair of references to identical (different) 
parameters entails an SP (DP) test. Thus, the user of SPROUTER can choose the level 
of representation which is suitable for the learning problem to be solved. Because 
uniform PSRs include more case relations and parameters, abstractions based on them 
require more search and consequently more computing time. Thus, we use the uniform 
reprsentation only when necessary. As this discussion suggests, determining the 
appropriate grain for a representation seems not as much a formal question as a 
question of empirical sufficiency in particular induction task domains. Therefore, we 
see the aspect of our work concerned with finding the appropriate grain of 
representation for various problems as inherently experimental and empirical. 
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The second problem we encountered concerns the feasibility of abstraction 
methods based on one-one parameter binding functions. SPROUTER requires this type 
of binding and exploits this restriction to reduce the search space of possible 
solutions. If one thinks of PSRs as graph representations, where vertices correspond 
to parameters and edges to SP, DP, and SCR relations, it is possible to show that 
interference matching is equivalent to finding the common subgraphs of two event 
description graphs [7, 10]. In other words, the one-one parameter correspondence 
requirement is a restriction that each vertex in one event graph is permitted to match 
at most one vertex in the other graph. While this seems "formally" attractive, it is 
overly restrictive for a variety of learning tasks. For example, in order to find the 
best maximal abstraction in the first concept formation task, for each pair of examplars, 
the small object which is inside the large object in one of the exemplars must be 
permitted to match both small objects in the other exemplar. Though this problem is 
superficially similar to the grain size problem, the use of uniform PSRs with explicit SP 
and DP relations is inadequate to overcome it. The problem can be solved only by 
allowing many-one parameter correspondences and consequently requires more 
general methods than those currently developed. A very simple example can illustrate 
the general problem. Let El be {{SMALLx}, {SQUARE:x}, {RED.x}} and E2 be 
{{SMALL.y}, {SQUARE.y}, {SQUARE*}, {RED:z}}. In both examples, there is a small 
square and a red square, but there is only one square in El and there are two in E2. 
In order to produce the correct abstraction of El and E2, which in uniform 
representation is {{SMALL: 1}, {SQUARE.2}, {SP:1, SP:2}, {SQUARE.3}, {RED:4}, {SP:3, 
SP:4}}, our method needs to be modified to allow the single instance of the SQUARE 
case frame in El to match two instances of it in E2. Because it is impossible to know a 
priori which case relations must be matched to more than one case relation in a 
compared PSR, it would be very difficult to modify the match-first IM algorithm to 
handle such problems even if many-one bindings were allowed. 

The best solution we know of to this problem uses the bind-first approach to 
interference matching. The method can be described as follows: First, uniform PSRs 
EV and E2* are generated to replace the exemplar PSRs El and E2. If the parameter 
sets of EV and E2' are P and Q, where |P| is less than or equal to |Q|, then each 
possible parameter binding relation for an abstraction is a set B « {(p,q) : p « P, q * 
Q} where (V p < P, V q c Q) (3 p' < P, 3 q' < Q) (p,q') ( B A (p\q) < B A |B| « |Q|. In 
other words, each correspondence binding relation between the parameters of the 
uniform PSRs associates at least one parameter in ET to each parameter in E2' (and 
vice versa) and establishes one correspondence for each of the parameterized 
references to objects in the other PSR. Of course, those binding relations which entail 
the identification of many commalities between ET and E2' are the most preferred. 
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While it appears that this generalization of the one-one binding method will be 
infrequently needed, such a generalization now seems essential for the development of 
completely general learning machines. We are currently designing a many-one, bind-
first interference matching program which can overcome the now apparent weaknesses 
of the one-one, match-first method. 

At this point, it is desirable to relate our work to earlier reseach efforts. . • 
Similar, but less general, relational abstraction methods have been studied by Plotkin 
[14, 15], Vere [19], and Winston [20]. Weaknesses of the previous work which are 
considered here include the failure to utilize DP relations, a dependence upon 
restricted and exponential enumerative algorithms, and an assumption of the 
sufficiency of the one-one binding relation. Because all of the earlier researchers 
failed to realize the necessity for DP relations to force distinct value bindings for 
distinct variables, their learning algorithms would, for example, permit a single line 
segment to instantiate all three distinct line segment predicates in the triangle 
template, "three line segments, L I , L2, and L3, connected at their endpoints." Winston'* 
learning methods were restricted to toy block construction problems using only unary 
and binary predicates such as adjacency of two blocks and are apparently not 
extensible to different domains. On the other hand, Plotkin and Vere studied the 
abstraction problem in terms of general n-ary predicates, but could infer concepts only 
corresponding to sets of (non-uniform) case relations and SP tests. While Hayes-Roth 
[7, 10] was the first to show formally that the IM algorithm could be used for inducing 
productions from antecedent-consequent training examples, our work is the first to 
demontrate its feasibility. The chief drawback of all of the previous work, however, 
was its reliance upon enumerative matching procedures. As we have tried to show, 
interference matching is best viewed as an exponential search problem which is, 
fortunately, apparently amenable to simple heuristic methods. Because IM is an IMP-
complete procedure (it subsumes the graph monomorphism problem), exhaustive 
procedures are simply not feasible for solving even moderately complex problems. 

Interestingly, Hayes-Roth, Plotkin, and Vere each independently proved that 
their particular enumerative algorithms provided effective solutions to the "induction 
problem" which each of them had formalized in terms of various assumptions about 
what needed to be learned. All of these previous formalizations are inadequate to 
solve the type of learning problem introduced in this paper as necessitating many-one 
bindings. That is, all previous theoretical approaches assume the sufficiency for 
abstraction of the one-one parameter binding relation. As we have shown, however, 
with one simple example, any axiomatic system incorporating this assumption is 
inadequate as a general framework for representation and learning. 
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VI. CONCLUDING REMARKS 

SPROUTER has already solved learning problems of theoretical significance 
and of considerable complexity. Because of the extensive size of the search spaces, 
such learning could not be clone with simple enumerative matching algorithms. In 
essence, SPROUTER establishes the feasibility of induction from non-trivial exemplar 
descriptions. In many respects, however, SPROUTER is quite primitive. It is a purely 
syntactic matcher; it knows nothing at all about the underlying structure or 
significance of any of the predicate descriptions it operates upon. For this reason, its 
utility function, and thus its heuristics, are very weak. One interesting aproach to 
improving the performance of SPROUTER would be to provide it with domain-specific 
utility functions. For example, if SPROUTER knew that concordance on antecedent or 
consequent relations was more important than concordance on most other relations, it 
would never attempt to match the antecedent part of an example with a consequent 
part. Similarly, if it knew that concordance of higher-order grammatical 
constructs (e.g., a sentence) was more significant than concordance on lower-
order ones, it could quickly zero in on the concordances of two sentence 
structures and then continue building abstractions in an essentially top-down 
fashion. 

Even though SPROUTER's performance has been quite impressive on several 
tasks, there are a number of difficulties impeding the use of such a learning machine 
in general applications. First, an empirical question has been raised regarding the 
preferability of approaches to induction based on the one-one and many-one binding 
alternatives. If object integrity in representations is generally tenuous--that is, if each 
object in one PSR can correspond to multiple, diverse objects in another PSR, as was 
the case in the first concept formation task—abstraction procedures based on the 
many-one approach will have to be developed. Secondly, one must identify which 
real-world problems can be solved by interference matching methods. Because the 
case frames which SPROUTER uses in inferring abstractions are assumed to be 
externally provided, the utility of our method depends upon the prior identification 
of the criteria! properties of events. Thus while SPROUTER can solve many 
concept learning and production inducing problems if it is provided the relevant case 
frames, it remains to be shown * that this will be a sufficiently powerful basis 
for computer-based learning. 
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FIGURE CAPTIONS 

Figure 1. The first concept formation task. 

Figure 2. Interference matching. 

Figure 3. The ACORN for El * E2 in the first concept formation task. 

Figure 4. The second concept formation task. 

Figure 5. Example El for the production inducing task. The example comprises two 
sentences, the antecedent above and the consequent below. 

Figure 6. The active-to-passive transformational grammar rule induced from 3 

examples. Arrows indicate variable substitutions from the antecedent to the 

consequent components. 
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Figure 2. Interference matching. 
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Figure 3. ACORN for El * E2 in the first concept formation task. 



Figure 4. The second concept formation task. 
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