
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Tools for Creating User Interfaces:
An Introduction and Survey

Brad A. M y e r s
January, 1988

C M U - C S - 8 8 - 1 0 7 (V)

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA
15213-3890

bam@cs.cmu.edu

A B S T R A C T

Creating good user interfaces for software programs is a very difficult task. There arc no
guidelines or techniques that will guarantee that the software will be "easy-to-use,'* and
software implementors have generally proven poor at providing user interfaces that people like.
Consequently, user interface software must often be prototyped and modified repeatedly. In
addition, user interface software is inherently difficult to write, because it frequently requires
that multiple devices be controlled (for example, a keyboard and a mouse) each of which may
be sending streams of input events asynchronously. Also, user interfaces typically have
stringent performance requirements to insure that there is no perceived lag between a user's
actions and the system's response. The most popular style of user interfaces (called "Direct
Manipulation" interfaces) is one of the most difficult kinds to implement Therefore, there is a
great interest in software tools to aid in this process. This article discusses several different
types of software tools and examples of their use.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order
No. 4976 under contract F33615-87-C-1499 and monitored by the Avionics Laboratory, Air Force
Wright Aeronautical Laboratories, Aeronautical Systems Division (AFSQ, Wright-Patterson AFB, OH
45433-6543. The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency of the US Government.

mailto:bam@cs.cmu.edu

Brad A. Myers Tools for Creating User Interfaces

1. Introduction

The user interface (UI) of a computer program is the part that handles the output to the

display and the input from the person using the program. The rest of the program is called the

application or the application semantics. This paper discusses programs, called user interface

tools, that help create and manage user interface software. These tools come in two general

forms: user interface tool kits and User Interface Management Systems (UIMSs). A user inter­

face tool kit is a library of interaction techniques, where an interaction technique is a way of

using a physical input device (mouse, keyboard, tablet, rotary knob, etc.) to input a certain type

of value (command, number, percent, location, name, etc.). Examples of interaction techniques

are menus, graphical scroll-bars, and on-screen "light buttons.'* When using a user interface

tool kit, the programmer is responsible for invoking and organizing the interaction techniques.

A User Interface Management System (UIMS), on the other hand, is a tool that helps a pro­

grammer create and manage many aspects of user interfaces. In addition to a tool kit, UIMSs

usually contain a Dialogue Control Component, which handles the sequencing of events and

interaction techniques, and may also contain an Analysis Component, which helps study and

evaluate the user interface after it has been created. UIMSs have been studied at a number of

workshops and conferences [Thomas 83] [Olsen 84] [Pfaff 85] [Olsen 87a].

There are four different classes of people involved with any UIMS and it is important to

have different names for them to avoid confusion. One person is the designer of the UIMS,

who is called the UIMS creator. The next person is the designer of a user interface, and will

use a UIMS. This person may be a programmer or a graphic artist, depending on the

specification technique used by the UIMS, and will be called the user interface designer or just

designer for short. Another person involved is the programmer that creates the application

program which uses the user interface created by the user interface designer. This person is

the application programmer. The final person involved is the person who actually uses the

final product. This person is the end user or just user. Note that although this classification

discusses each role as a different person, in fact, there may be many people in each role or one

person may perform multiple roles.

This paper discusses why user interface software is hard to create and why user interface

tools are desirable. It then presents a number of existing styles of user interface tools and

discusses the advantages and disadvantages of each. The paper concludes with a summary of

the predominant problems with most existing user interface tools.

Tools for Creating User Interfaces - 2 - Brad A. Myers

2. Problems with User Interface Software

Creating a good user interface for a system is a difficult task, and a large number of

existing programs have very poor user interfaces: they are hard to learn, hard to remember,

inefficient to use, have limited on-line help, etc. In addition, user interface software is often

large, complex, and difficult to debug and modify. The user interface for an application is usu­

ally a significant fraction of the code. One study found that the user interface portion was

between 29% and 88% [Sutton 78]. In artificial intelligence applications, for example, surveys

report that 40% to 50% of the code and run-time memory are devoted to user interface aspects

[Bobrow 86] [Mittal 86]. Unfortunately, it is generally the case that as user interfaces become

easier to use for the end user, they become more complex and harder for the UI designer to

create. The easy to use "Direct Manipulation" interfaces popular with most modern systems

are among the most difficult kinds to implement [Williams 83] [Smith 82]. In these interfaces,

the objects of interest are visible on the screen and the user can operate on them by direct

reference and rapid, reversible, incremental actions [Shneiderman 83]. Some reasons that

Direct Manipulation interfaces are difficult to create are that they often provide (a) elaborate

graphics, (b) multiple ways for giving the same command, (c) multiple asynchronous input

devices (usually a keyboard and a locator or pointing device such as a mouse), (d) a "mode

free" interface, where the user can give any command at virtually any time, and (e) rapid

"semantic feedback." Semantic feedback is where determining the appropriate response to

user actions requires specialized information about the objects in the program. An example is

in the Apple Macintosh user interface, when icons highlight when another icon is dragged over

them if they perform semantically meaningful operations on the icon being dragged.

In addition to being difficult to create, there are no design strategies that will guarantee

that the resulting user interface will be learnable, easy to use, and "user-friendly." Conse­

quently, the only reliable method for generating quality user interfaces is to test prototypes

with actual end users and modify the design based on the users' comments [Buxton 80] [Swar-

tout 82] [Mason 83] [Anderson 85]. As reported by Sheil [83] "complex interactive interfaces

usually require extensive empirical testing to determine whether they are really effective and

considerable redesign to make them s o . " This methodology is called "iterative design" and

has been used in the creation of some of the best current user interfaces: the Xerox Star [Bew-

ley 83], the Apple Lisa [Morgan 83], and the Olympic Messaging system [Boies 85]. A par­

ticularly compelling example is presented by Good [Good 84] where a mail system with a con­

ventional textual command interface was iteratively modified. In the final version, without any

instruction, 76% of the commands that novices naturally generated performed the expected

operation, compared with 7% for the initial version.

Brad A. Myers Tools for Creating User Interfaces

Consequently, there is a great desire to make the creation of user interfaces easier and

quicker, and to make them easier to modify once created.

3. Motivation for User Interface Tools

To make the user interfaces cheaper and easier to design and implement, a number of

different tools have been created. Some of these have been very successful. For example, the

Apple MacApp UIMS has been reported to reduce development time by a factor of four or five

[Schmucker 86]. In general, the advantages of using user interface tools include:

• The quality of the interfaces should be higher. This is because:

o Designs can be rapidly prototyped and implemented, possibly even before the applica­

tion code is written.

o It will be easier to incorporate changes discovered through user testing.

o There can be multiple user interfaces for the same applicatioa

o More effort can be expended on the UIMS than may be practical on any single user

interface since the UIMS will be used with many different applications.

o Different applications are likely to have more consistent user interfaces if they are

created using the same user interface tool.

o Conversely, some user interface tools make it easier to investigate different styles for a

user interface, and thereby provide a unique " look and feel" for a program.

o A UI tool should make it easier for a variety of specialists to be involved in designing

the user interface, rather than having the user interface created entirely by program­

mers. Graphic artists, cognitive psychologists, and human factors specialists may all

be involved. In particular, professional user interface designers (sometimes called

"User Interface Architects" [Foley 84]), who may not be programmers, may be in

charge of the overall design.

o The ability to rapidly modify interfaces should allow system designers and salesmen to

try different interfaces on products in front of customers and end users, and immedi­

ately incorporate their suggestions.

Tools for Creating User Interfaces - 4 - Brad A. Myers

• The user interface code will be easier and more economical to create and maintain.

This is because:

o There will be better modularization due to the separation of the user interface com­

ponent from the application. This should allow the user interface to change without

affecting the application, and a large class of changes to the application (such as

changing the internal algorithms) should be possible without affecting the user inter­

face.

o The reliability of the user interface should be higher, since the code for the user inter­

face is created automatically from a higher level specification.

o Interface specifications can be represented, validated, and evaluated more easily.

o It should be easier to port an application to different hardware and software environ­

ments since the device dependencies are isolated in the user interface tool.

A comprehensive user interface tool might handle all aspects of the user interface, which

include handling all user-visible parts of the display and all aspects of the dialogue between the

end user and the applicatioa In particular, the UIMS should:

• handle the mouse and other input devices,

• validate user inputs,

• handle user errors,

• process user-specified aborting and undoing of operations,

• provide appropriate feedback to show that inputs have been received,

• provide help and prompts,

• allow the end user to customize the interface,

• update the screen display when application data changes,

• notify the application when the user updates application data,

• deal with field scrolling and editing,

• insulate the application from the window or screen management functions, and

• automatically evaluate the interface and propose improvements, or at least provide infor­

mation to allow the designer to evaluate the interface.

The following sections survey a number of existing approaches to user interface tools and

evaluate how well they satisfy the above goals.

Brad A. Myers Tools for Creating User Interfaces

4. T o o l k i t s

Most window systems come with a tool kit containing routines that application programs

can use. These typically include menus of various types, scroll bars, etc. Tool kits come in

two basic varieties. The most conventional is simply a collection of procedures that can be

called by application programs. Examples of this style include SunTools [Sun 84] and the

Macintosh Toolbox [Apple 85]. The other variety uses an "object-oriented" programming

style with inheritance [Goldberg 83] which makes it easier for the designer to customize the

interaction techniques. Examples of this style include Smalltalk [Tesler 81], and the X . l l

Toolkit for the X Window Manager [Scheifler 86]. The GROW tool kit [Barth 86] adds "con­

straints" to a conventional object-oriented tool kit. Constraints allow the designer to specify

relationships among objects that are maintained by the system. For example, the designer can

specify that a line is connected to two rectangles, and the system will automatically move the

line whenever either rectangle is moved. With all tool kits, the designer writes programs in a

conventional programming language to control the user interface.

Using a tool kit has the advantage that the final UI will look and act similarly to other

UIs created using the same tool kit, but clearly the styles of interaction are limited to those

provided. In addition, the tool kits themselves are often expensive to create: "The primitives

never seem complex in principle, but the programs that implement them are surprisingly intri­

ca te" [Caixielli 85, p. 199].

Another problem with tool kits is that they are often difficult to use. There are typically

hundreds of procedures in tool kits implementing various interaction techniques, and it is often

not clear how to use the procedures to create a desired interface.

5. User Interface Management Systems

Due to the problems with tool kits, a number of User Interface Management Systems

have been created to help the designer combine and sequence the interaction techniques. For

example, Apple found that people were having difficulty using the Macintosh Toolbox, so they

created the MacApp UIMS [Schmucker 86] (see section 5.1.6). Other UIMSs help designers

create the tool kits themselves. Examples of this kind include Squeak [Cardelli 85] (section

5.1.4), Panther [Helfman 87] (section 5.1.7), and Peridot [Myers 87a] [Myers 87b] (section

5.2).

UIMSs come in a large variety of forms. One important way that they can be classified

is by how the designer specifies what the interface should be. As shown in Figure 1, some

UIMSs use special-purpose languages, some allow the interface to be graphically specified

directly, and others automatically generate the interface from the specification of the

Tools for Creating User Interfaces - 6 - Brad A. Myers

functionality of the application. Each of these types is discussed below. Of course, some

UIMSs use different techniques for specifying different parts of the user interface. These

UIMSs are classified by their predominant or most interesting feature.

Classification Examples
Language-Based

Menu Trees Tiger [Kasik 82]
State Transition Diagrams [Newman 68]

[Jacob 85]
RAPID/USE [Wasserman 82]
[Jacob 86]

Grammar Oriented Syngnroh [Olsen 831
Event Languages Squeak [Cardelli 85]

ALGAE [Flecchia 87]
Sassafras [HU1 87a]

Declarative Languages Cousin [Hayes 85]
Domain/Dialogue [Schulert 851

Object Oriented Languages MacApp [Schmucker 86]
GWUIMS [Sibert 86]
fflGGENS rHudson 861

Other Panther [Helfman 87]
Direct Graphical Specification Menulay [Buxton 83]

Trillium [Henderson 86]
RAPID [Freburger 87]
Grins [Olsen 85a]
Peridot [Myers 87a]

Automatic Creation Control Panel Interface [Fisher 87]
MIKE [Olsen 86]
IDL [Foley 87]

Figure 1.
Classification of User Interface Management Systems. These systems are discussed in the following
sections.

5.1. Language-Based Techniques

With most UIMSs, the designer specifies the user interface using a special-purpose

language. This language can take many forms, including simple menu trees, context-free

grammars, state transition diagrams, declarative languages, event languages, object-oriented

languages, etc. With most of these systems, the language is used to specify the syntax of the

user interface; i.e., the legal sequences of input and output actions. Green [Green 86] provides

an extensive comparison of grammars, state transition diagrams, and event languages.

Brad A. Myers Tools for Creating User Interfaces

5.1.1. Menu trees

One of the simplest forms of UIMS supports a hierarchy or network of menus. Selecting

an option on one menu causes another menu to appear. The Tiger UIMS [Kasik 82] supports

a sophisticated menu network which supports skipping levels, aborting, etc. Many of the

hypertext systems [Conklin 87] could also be considered UIMSs that manage networks of

menus.

5.1.2. State Transition Networks

Since many parts of user interfaces involve handling a sequence of input events, it is

natural to think of using a state transition network to code the interface. A transition network

consists of a set of states, with arcs out of each state labeled with the input tokens that will

cause a transition to the state at the other end of the arc (see Figure 2). In addition to input

tokens, calls to application procedures and the output to display can also be put on the arcs in

some systems. Newman implemented a simple UIMS using finite state machines in 1968

[Newman 68]. Many of the assumptions and techniques used in modern systems were present

in Newman's: different languages for defining the user interface and the semantics (the seman­

tic routines were coded in a normal programming language), a table-driven syntax analyzer,

and device independence. Newman's system only handled textual input, but it was apparently

the first UIMS.

Jacob [Jacob 85] claims that defining a user interface using state transition diagrams is

better than using formal context-free grammars (section 5.1.3) because the time sequence is

explicit with diagrams. The specification can be created in a textual or graphical manner. Fig­

ure 2 shows a diagram created with Jacob's system. The diagrams can have recursive calls to

other diagrams on arcs, so they are classified as Recursive Transition Networks. The interface

among the various part of the interface and to the application is through a plethora of global

variables, and for all states there must be explicit arcs for any possible erroneous inputs and

any universal commands such as HELP and UNDO.

RAPID (RApid Prototyping of Interactive Dialogues) is another transition network sys­

tem. The user interface part, RAPID/USE (User Software Engineering) [Wasserman 82], is

just a small portion of a large system for supporting software engineering. The user interface

portion is very similar to Jacob's except that it has more powerful output primitives.

State diagram UIMSs are most useful for creating user interfaces where a large amount of

syntactic parsing is necessary or when the user interface has a large number of modes (each

state is really a mode). However, most highly-interactive systems attempt to be mostly

"mode-free" [Tesler 81], which means that at each point, the user has a wide variety of

Tools for Creating User Interfaces -JT- Brad A. Myers

Figure 2.
State diagram description of a simple desk calculator [Jacob 85].

choices of what to do. This requires a large number of arcs out of each state, so state diagram

UIMSs have not been successful for these interfaces. In addition, state diagrams cannot handle

interfaces where the user can operate on multiple objects at the same time (possibly using mul­

tiple input devices concurrently [Buxton 86]). Another problem is that they tend to get very

confusing for large interfaces, since they get to be a "maze of wires" and off-page (or off­

screen) arcs can be hard to follow.

Recognizing these problems, but still trying to retain the perspicuousness of state transi­

tion diagrams, Jacob [Jacob 86] has invented a new formalism, which is a combination of state

diagrams with a form of event languages (section 5.1.4). There can be multiple diagrams

active at the same time, and flow of control transfers from one to another in a co-routine

fashion. The system can create various forms of Direct Manipulation interfaces.

5.1.3. Context-Free Grammars

Most grammar-based systems are based on parser generators used in compiler develop­

ment. For example, the designer might specify the user interface syntax using some form of

BNF. These systems are good for textual command languages, but they have mostly failed

when used for graphics programs [Green 86]. Syngraph (SYNtax directed GRAPHics) [Olsen

Brad A. Myers - 9 - Tools for Creating User Interfaces

83] is a system that generates user interface programs in Pascal from a description written in a

formal grammar using an extended BNF. The system handles prompting, echoing and errors.

Syngraph provides menus and text input and also provides a few predefined interaction devices

(locator, valuator, pick, etc.) with some limited ability for tracking. Syngraph concentrates on

dealing with semantic error recovery, • 'Cancer 1 and " U n d o " at the semantic level, and the

problem of knowing what to select when multiple items are on the screen at the position of a

"p i ck . " Syngraph does not, however, provide semantic feedback or defaults since there is no

way for application routines to affect the parsing.

Grammar-based UIMSs, like state diagram UIMSs, are not appropriate for specifying

highly-interactive interfaces, since they are oriented to batch processing of strings with a com­

plex syntactic structure.

5.1.4. Event Languages

With event languages, the input tokens are considered to be "even t s " that are sent

immediately to event handlers. These handlers can cause output events, change the internal

state of the system (which might enable other event handlers), or call application routines.

The ALGAE UIMS [Hecchia 87] uses an event language which is an extension of Pas­

cal. The user interface is programmed as a set of small event handlers, which ALGAE com­

piles into conventional code.

The Sassafras UIMS, which implements an Event Response System (ERS) [Hill 87a]

[Hill 87b], uses a similar idea, but with an entirely different syntax. This system also adds

local variables called " f lags" to help specify the flow of control. ERS is especially well suited

for handling concurrent interfaces; for example, ones that use multiple input devices at the

same time (also called "multi-threaded dialogues"), since it incorporates synchronization

mechanisms. ERS can support Direct Manipulation interfaces since it facilitates efficient and

frequent communication between the interaction techniques and the application program.

Squeak [Cardelli 85], a textual language for programming mouse-based interfaces,

exploits concurrency. Squeak's processes are similar to event handlers and the messages sent

to processes are similar to events. Squeak supports many input devices active at the same

time, and the primitive input events are mouse button transitions, keyboard key presses, incre­

mental movements of the mouse or other devices, and clock timeouts. Squeak attempts to

compile the program into a non-sequential state machine. Although it provides a compact

notation for specifying complex, time-dependent interfaces, correct code is unfortunately still

fairly difficult to write in Squeak.

Tools for Creating User Interfaces - 1 0 - Brad A. Myers

All of the UIMSs in this category are explicitly designed to handle multiple processes,

which can be important in user interfaces. For example, research has shown that people can be

more effective when operating multiple input devices as the same time [Buxton 86]. It is also

often easier to program multiple interactions that are available at the same time (so the user can

pick which one to use) using multiple processes. The disadvantage of these event languages is

that it is often very difficult to create correct code, since the flow of control is not localized

and small changes in one part can affect many different pieces of the program. It is also typi­

cally difficult for the designer to understand the code once it reaches a non-trivial size.

5.1.5. Declarative Languages

Another approach is to try to define a language that is declarative (stating what should

happen) rather than procedural (how to make it happen). Cousin [Hayes 85] and Apollo's

Domain/Dialogue [Schulert 85] both allow the designer to specify user interfaces in this

manner. The user interfaces supported are basically forms, where fields can be text which is

typed by the user, or options selected using menus or buttons. There are also graphic output

areas that the application can use in whatever manner desired. The application program is con­

nected to the user interface through "variables" which both can set and access. Based on

Domain/Dialogue, Apollo has created a new UIMS called "Open Dialogue." Open Dialogue

runs on the X window manager so it is more portable.

The advantage of using declarative languages is that the user interface designer does not

have to worry about the time sequence of events, and can concentrate on the information that

needs to be passed back and forth. The disadvantage is that only certain types of interfaces

can be provided this way, and the rest must be programmed by hand in the "graphic areas"

provided to application programs. The kinds of interactions available are preprogrammed and

fixed. In particular, these systems provide no support for such things as dragging graphical

objects, rubber-band lines, or drawing new graphical objects.

5.1.6. Object Oriented Languages

An important new class of UIMSs provides an object-oriented framework in which the

user interface is programmed. These systems typically provide the higher-level "c lasses" that

handle the default behavior and the user interface designer provides specializations of these

classes to deal with specific behavior desired in the user interface. This uses the inheritance

mechanism built into object-oriented languages [Goldberg 83].

Brad A. Myers - 11 - Tools for Creating User Interfaces

These systems can handle highly-interactive, Direct Manipulation interfaces since there is

a computational linkage between the input and the output which the application can modify to

provide semantic processing. Although these systems make it much easier to create user inter­

faces, they are still programming environments, and are clearly inaccessible to non-

programmers. Object oriented UIMSs and object-oriented tool kits (section 4) are receiving a

great deal of attention now, and show a lot of promise. Many articles about these appear in

the annual OOPSLA (Object-Oriented Programming: Systems, Languages and Applications)

conference, sponsored by ACM SIGPLAN.

MacApp [Schmucker 86] is programmed in Object Pascal and makes it easier to create

Macintosh programs. GWUIMS (George Washington User Interface Management System)

[Sibert 86] uses object-oriented programming in Lisp, and provides a classification of interface

operations and objects that fit into each class. HIGGENS [Hudson 86] adds a structured data

description that allows the UIMS to automatically manage the recalculation and redisplay of

objects in an intelligent way when data changes. The structure is also used to support UNDO

and REDO.

5.1.7. Other Language Approaches

Panther [Helfman 87] allows interaction techniques to be specified textually using tables.

Figure 3 shows an example of a Panther specification. The designer specifies what action

should happen in each region of the screen. The options include: the highlighting style, the

procedures for drawing the picture in the region, and the procedures to call when a button is

pressed in the region. Panther supports menus, forms and sliders (see Figure 3), but the entire

specification must be created using typed-in numbers and procedure calls.

52. Direct Graphical Specification

The UIMSs described in this section all allow the user interface to be defined, at least

partially, by placing objects on the screen using a mouse. This is motivated by the observation

that the visual presentation of the user interface is of primary importance in graphical user

interfaces, and a graphical tool seems to be the most appropriate way to specify the graphical

appearance. Another advantage of this technique is that it is usually much easier to use for the

designer, and some of these systems, including Menulay, Trillium, RAPID, and Peridot, can be

used by non-programmers. Some of the disadvantages with this style of UIMS are that the

UIMS itself is usually more complicated to build, the range of interfaces that can be created is

usually fairly limited, and application programs are required to handle such things as help,

Tools for Creating User Interfaces - 12 Brad A. Myers

Options -9.5 |Move| 0.5
8.123

name
coordinate* highlight draw parent W

draw routine selection routines
zl,xt,vl,Ve ityle flag name

OPTS { 1. 103, 1. 32. 1. 0, BAR, PANdbox("Options"). BARpopup(POP), 0. 0)
RANO { 104, 211. 1. 32. 1. 1. BAR, PANdran(RANO,0), PANpickran(0,l), 0. 0 }
MOVE { 212, 253. 1. 32, 1, 0. BAR, PANdboxCMove"), BARmoveparentO, 0. 0 }
RANI { 254. 360. 1. 32. 1, 1. BAR. PANdran(RANI.1), PANplckran(l,l), 0. 0 }
BARO < 104. 360. 38. 50, 2. 1. BAR, PANdbar(BARO.VALO), PANupbar(O). 0. 0 }
VALO { 2. 102. 34. 55. 1. 1. BAR. PANdval(0), PANplckval(O). 0, 0 }
OK { 1, 120, 1. 32, 1. 0, POP. PANdboxCOk") , BARokO , 0. 0 }
SET < 1, 120. 33. 65. 1. 0, POP. PANdbox(-Reset"). BARrsetO . 0, 0 }
RSET { 1. 120, 66. 98, 1. 0. POP. PANdbox("Reset Range"). BARransetO , 0, 0 }
BAR { 0, 361. 0. 57. 0, 0, 0, PANdplc(O), 0, 0. 0 }
POP { 0, 121. 0. 0 0 , 0. 0, BAR. PANdplc(O), 0, 0, 0 }

(b)

Figure 3.
Two interfaces (a) and their specification using an "input table" (b) in Panther [Helfman 87].

aborting, and prompting.

Some of these systems, including Menulay [Buxton 83], Trillium [Henderson 86], and

RAPED [Freburger 87], organize the user interface as a hierarchy or network of mostly static

" p a g e s " or " f rames ." Each page contains interaction techniques and text that appear together,

as well as commands that cause the system to erase the page and go to different pages. The

interaction techniques themselves usually must have been previously coded by hand in a con­

ventional programming language.

Menulay [Buxton 83] allows the designer to place text, graphical potentiometers, iconic

pictures, and light buttons on the screen and see exactly what the end user will see when the

application is run. The designer does not need to be a programmer to use Menulay. Each

active item in the display is associated with a semantic routine which is invoked when the user

selects that item with the pointing device. Like virtually all other UIMSs, the semantic rou­

tines are written in a conventional programming language. Menulay generates tables and code

which link to its run-time support package that executes the user interface for the application.

Brad A. Myers - 1 3 - Tools for Creating User Interfaces

Menulay generated its own user interface and it supports multiple input devices operating con­

currently. However, it has a rigid table-driven structure, so the interaction between the seman­

tic level and the user interface is limited. This prevents all forms of semantic feedback.

Trillium [Henderson 86], which is aimed at designing the user interface panels for photo­

copiers, is very similar to Menulay. One strong advantage that Trillium has over Menulay is

that the frames can be executed immediately as they arc designed since the specification is

interpreted rather than compiled. Trillium also separates the behavior of interactions from the

graphic presentation and allows the designer to change the graphics (while keeping the same

behavior) without programming. One weakness is that it has little support for frame-to-frame

transitions, since this rarely is necessary for photocopiers.

RAPID (RApid Prototyper for Interface Design) [Freburger 87] is similar to Trillium. It

is designed to allow non-programmer design engineers to prototype control panels for residen­

tial and office products at Honeywell, such as security systems and thermostats.

The GRINS (GRaphical INteraction System) UIMS [Olsen 85] combines a grammar pro­

cessor (an "Interactive Push-Down Automaton") with a constraint-based "input-output link­

a g e " system to handle semantic feedback. It incorporates a graphical editor that allows the

interaction techniques (menus, icons, and text areas) to be placed using a mouse.

RAPID/USE [Wasserman 82] (discussed in section 5.1.2) also allows interaction tech­

niques to be placed using a mouse. Nevertheless, it supports only limited mouse-based inter­

faces.

Peridot [Myers 87a] [Myers 87b], which stands for Programming by Example for Real­

time Interface Design £)bviating Typing, is very different from the systems discussed above in

that it allows the interaction techniques themselves to be created. The primitives that the

designer manipulates with the mouse are rectangles, circles, text, and lines. Out of these,

menus, scroll bars, sliders, light buttons, etc. can be constructed. The system generalizes from

the designer's actions to create parameterized, object-oriented procedures like those that might

be found in interaction technique tool kits. Figure 4 shows some snapshots during the creation

of a menu using Peridot The system created its own user interface and can also create most

of the interaction techniques in the Macintosh Toolbox, so it is a very powerful system. Peri­

dot can also be used by non-programmers.

Tools for Creating User Interfaces - 14 - Brad A. Myers

(d) (e) (f) (g) (h)

Figure 4.
A sequence of snapshots during the creation of a pop-up menu using Peridot [Myers 87b]. (a) shows
the Peridot windows and command menu. The upper window contains the names of the parameters and
active values used by "PopMenu" and example values for each. The center window contains the inter­
face being created, and the bottom window contains the prompts and error messages from Peridot. In
(a), a gray rectangle for the shadow has been drawn, followed by a black rectangle. Peridot has in­
ferred that the black rectangle should be the same size as the gray rectangle but in a different place.
The designer confirms that this guess is correct, and the black rectangle is adjusted to be exactly the
size of the gray one (b). Similarly, in (c), a white rectangle has been drawn in the black one, and a
string centered at the top of the white rectangle. The designer drew these in approximately the correct
position and Peridot adjusted them to be exact The string is the first element of the parameter
"Items." The designer next places the second element of "Items" centered beneath the first one (d).
Peridot now infers that an iteration is desired, and calculates how to display the rest of the elements in
a similar manner (e). Next, the designer modifies the rectangle to be the size of the strings (f) and de­
clares that the parameter "IUegalltems" controls which elements should be gray. The XORed black
rectangle should follow the mouse, so the designer moves the mouse icon over it with its left button
down (g). Now the menu is complete, and it can be used with a different set of parameter values (h).

Brad A. Myers - 15 - Tools for Creating User Interfaces

S3. Automatic Creation

A new class of UIMSs attempts to create the user interface directly from a specification

of the application semantic procedures, and then allows the designer to modify the interface to

improve it. One motivation for this is the difficulty people have using other types of UIMSs.

The Control Panel Interface [Fisher 87] uses the types of the parameters of a procedure to

create a graphical interface using buttons for booleans, knobs or bars for integers, etc. (see Fig­

ure 5). The designer can specify different displays and change the values using the controls,

and then execute the procedure.

m

Parameter Information

Error Window (error free)-

Control Functions

View Indicators

Parameters and Values

Sample Alternate Views-
(gauges, bar)

PARAMETER: ' P a r a m e t e r 3 '
TYPE - Integer
CLASS - variable
OEFAULT - 7
VALUE - 15
HISTORY - [13, 7, 8, 8,]
HELP • Help for parameter 3

8-ERROR WINDOW

[Run] [Run&Done] [A b o r t] [P a n e l H I p] [P r o g H l p]

(AltvNeu.) (Inc/Bec) { Zoom) [Default \ (rHstory) (Undo

3: Parameter3 - Alt Views: • Oone Hf Change Defaults

© 1 Parameterl ©
[5

© 2. Parameter2 © [• •
© 3. Parameter3 ©

C 15
4. Parameter*
[false

5. Parameter5
[array [1..18] of Integer

m 0.00
7 . 0 0 ^ ^ 1 . 0 0

6 . 0 0 ^ ^ ^ . O C

5.0?«4*J»*3.00
4.00

20
15
10

Scroll Bars

Figure 5.
A Control Panel Interface [Fisher 87] automatically created for a procedure. Three of the parameters
are represented graphically in the bottom three windows.

MIKE, the Menu Interaction Kontrol Environment [Olsen 86], creates a user interface

based on a list of the application procedures. The initial default interface is menu-oriented and

rather verbose, but the designer can change the menu structure, use icons for some commands,

Tools for Creating User Interfaces - 1 6 - Brad A. Myers

and even make some commands operate by Direct Manipulation. The designer uses a graphi­

cal editor, like those described in section 5.2, to specify these changes. Current research on

MIKE is aimed at adding automatic user interface evaluation capabilities.

EDL (Interface Definition Language) [Foley 87] requires that the semantics of the applica­

tion be defined in a special-purpose, Pascal-like language, and therefore might be included in

section 5.1. It is placed here because the language is used to describe the fiinctions that the

application supports and not the desired interface. The system automatically generates a

menu-based interface from that description. The interesting part of this system is that the user

interface designer can apply "transformations" to the interface. These change the interface in

various ways. For example, one transformation changes the interface to have a currently

selected object instead of requiring that an object be selected for each operation. Another

transformation provides fiinctions specialized for various types ("delete-square" and "delete-

triangle"), rather than general-purpose functions ("delete") . IDL applies the transformations

and insures that the resulting interface remains consistent.

6. Communicat ion

Another way to classify user interface tools is by how they communicate with application

programs at run-time. With "Application Control" (also called "Internal Control"), the appli­

cation simply calls user interface pic-csdaiss when input is desired. This is the model used by

user interface tool kits. With "UIMS control" (also called "External Control"), the user

interface procedures call the application when the user gives a command. This is the model

used by most UIMSs, and it can be further classified by how the UIMS interfaces with the

applicatioa The most popular method is to use "call-back" procedures, where the application

passes to the UIMS the names of procedures to call, and the UIMS calls those procedures

when necessary. The application is therefore organized as a set of procedures that the user

interface calls. Another possibility is to use shared memory, with each side either polling the

data to check for changes, or automatically being notified of changes. One way to implement

the latter is by using "active values" [Stefik 86], which notify relevant programs when their

value changes. Other UIMSs use multi-process message passing or event handling mechan­

isms to communicate to applications. The final communication choice is " m i x e d " control

where either party can be in charge.

An important issue with communication is how high the bandwidth is between the appli­

cation and the user interface. An early model for UIMSs promoted a narrow connection so

that the application would be more independent from the user interface (see Figure 6a). This

model has been used by some UIMSs, such as Cousin, and provides "coarse grain control."

Brad A. Myers - 17 - Tools for Creating User Interfaces

That is. the user interface and the application communicate only rarely, for example when the

user has completely specified an action to be performed along with all of its arguments.

Unfortunately, this model makes it difficult or impossible to provide "fine-grain control"

which is needed for semantic feedback. Here, the application and the user interface often need

to communicate frequently, such as once for each incremental mouse movement (up to 60

times a second). Typically, the amount of information passed each time is fairly small, how­

ever. Newer UIMS models, such as shown in Figure 6b, have tried to provide for this kind of

feedback by sharing application data with the UIMS. Szekely [Szekely 87] discusses various

ways to enable this information sharing and still provide the advantages of modularization, but

much more research is needed in this area.

Presentation Dialogue Application
Interface
Model Control

Application
Interface
Model

dialog and
presentation

control

semantic
application support application

component

(a) (b)

Figure 6.
(a) The "Seeheim" model for UIMSs [Green 85] has a narrow connection between the application and
the dialogue control, (b) A newer model [Dance 87] proposes sharing the application information using
a "Semantic Support Component" to support semantic feedback.

7. Problems with Existing User Interface Tools

The concept of user interface tools has gained general acceptance in the research com­

munity. This can be seen by the large number of papers on UIMSs that appear in conferences

and magazines, and the frequent requests from businesses for tools to help build user inter­

faces. Although there is a rising use of user interface tool kits, very few commercial UIMSs

have been used to any large extent [Myers 87c]. This section lists some problems with user

interface tools in general.

(1) Too difficult to use. Tool kits typically contain hundreds of procedures which

interact in subtle ways. Most UIMSs require that the designer learn a new special-

purpose language in order to specify the interface. When the designers are program­

mers, as is usually the case, they are very reluctant to learn a new language to specify

the interface [Olsen 87b]. Since these languages are usually like programming

Tools for Creating User Interfaces - 18 - Brad A. Myers

languages, they are also inappropriate for professional user interface designers who

are not programmers. The UIMSs which use direct graphical specification and

automatic creation of user interfaces are addressing this problem, but these are still,

for the most part, experimental.

(2) Too little functionality. Most UIMSs and tool kits only support a small part of the

user interface design task. Whereas they are very good at handling menus and

scrollbars, they rarely can be used to help control the display and manipulation of the

real application data objects. Many of these tools do not make any attempt to handle

output from the application program. For a Macintosh-like interface, this can be

characterized as the tools controlling the "borders" of a window but not the

" ins ides ." In particular, few UIMSs can support Direct Manipulation interfaces.

One reason for this is that Direct Manipulation interfaces often use semantic feed­

back, which is not supported by many UIMSs. Although they are easier to use, the

direct graphical specification and automatic creation UIMSs typically have the most

restricted functionality. The language approaches are usually more general, but still

rarely address Direct Manipulation interfaces.

(3) Not available a n d not portable. Very few user interface tools are publicly available,

and the ones that are available typically do not work on very many systems. For

example, many people would like to use the Macintosh Toolbox and MacApp, but

they cannot unless they are developing software to run on the Apple Macintosh.

More portability for user interface software is just becoming possible with the advent

of the X window manager and its tool kit, and UIMSs which run on it (such as Open

Dialogue).

(4) Lack of concrete evidence of their worth. Although there is a lot of talk about the

importance and difficulty of creating good user interfaces and how user interface tools

will help, there are so few UIMSs in use that it is perceived as very risky to invest

money in developing UIMSs. This is part of a general problem in convincing

businesses that it is worth developing tools to increase programmer productivity.

There are few conclusive studies that show how much money and time can be saved

by using these tools. Clearly, problems (3) and (4) form a "chicken-and-egg" prob­

lem, since there will not be significant evidence of their worth until there are many

UIMSs in use.

(5) Difficulty with unders tanding and editing specifications. Closely related to problem

(2) is the issue of how to change the interface after it has been created. The

specification languages used by many UIMSs to specify the user interface are poorly

structured, in the Software Engineering sense: they use global variables, non-local

Brad A. Myers - 1 9 - Tools for Creating User Interfaces

control flow, explicit gotos, etc. Some of the graphical techniques, such as state tran­

sition diagrams, are easy to understand when the user interface is small, but tend to

become an incomprehensible maze of wires as the interface gets to be a non-trivial

size. Consequently, with many UIMSs, understanding an interface specification can

be very difficult.

(6) Belief that the quality of the user interface will be worse if UI tools are used. It is

possible that the UI tools will significantly slow down the execution speed since often

a layer of interpretation is added. The designers are also usually giving up the ability

to hand-tune various aspects of the user interface, which may make the interface

worse than one that was carefully crafted.

(7) Unwillingness to give up control. This is closely linked with problems (2) and (6).

The problem here is that most user interface tools enforce a particular interface style

on application programs. The advantage of this is that multiple applications will have

similar user interfaces and the user interface designer does not have to worry about

creating a style for the program. On the other hand, some designers are unwilling to

give up this flexibility, because they want their products to have a unique "look and

feel ." This might be important for differentiating their company's products from the

competitors'. A few experimental UIMSs, such as Peridot, attempt to be somewhat

style independent, but this makes the design task more difficult. It is probably

impossible for a user interface tool to be totally style independent if it provides more

support than a conventional programming language.

(8) Difficulty in building good user interface tools. This is closely related to (4). There

is clearly a great deal of research on how to make successful UIMSs and user inter­

face tool kits. Unfortunately, no UIMS has been extremely successful. In addition,

most of the tools that are useful have taken a large amount of effort to produce.

(9) No support for evaluation. Very few user interface tools provide any support for

evaluating the interface after it has been created. Such tools might automatically

evaluate the interface from the specification, or collect information that would be use­

ful in evaluating the interface while it is being tested with users. Unfortunately,

further research is necessary on how to perform the evaluation and what information

should be saved, before this will be practical

(10) Difficulty in separating the "user interface" from the application. One study

[Rosson 87] reported that 50% of the user interface designers surveyed

indicated that the user interface had not been considered distinct from the rest of the sys­
tem during design; many seemed to have real difficulty in even imagining how such a
separation might apply to the system they had designed, and a few made strong

Tools for Creating User Interfaces - 2 0 - Brad A. Myers

statements about the inadvisability or impossibility of making such a distinction [Rosson
87, p. 140].

8* Conclusions

Although many of the user interface tools described here had only limited success, and

there are still a large number of research issues to be addressed, the future for user interface

tools is bright. The various tool kits are proving to be very popular and widely used, and a

recent surge of new research in user interface management systems has produced a number of

new approaches. It is certainly not clear at this point which approaches are the most fruitful

for further research and commercial development, but it is clear that there is a rising need and

demand for these tools so the pace of investigation is likely to accelerate.

ACKNOWLEDGEMENTS
This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA

Order No. 4976 under contract F33615-87-C-1499 and monitored by the Avionics Laboratory, Air Force
Wright Aeronautical Laboratories, Aeronautical Systems Division (AFSQ, Wright-Patterson AFB, OH
45433-6543. The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency of the US Government For help and support with this paper, I
would like to thank Dario Giuse, Doug Bunting, Pedro Szekely, Randy Pausch, Tom Cobourn, Len
Bass, Stephan Greene, and Bernita Myers.

BIOGRAPHY OF Brad Myers
Brad A. Myers is a research computer scientist at Carnegie Mellon University. From 1980 until

1983, he worked at PERQ Systems Corporation. His research interests include User Interface Manage­
ment Systems, user interfaces, Programming by Example, Visual Programming, interaction techniques,
window management, programming environments, debugging, and graphics. Myers recendy completed
a PhD in computer science at the University of Toronto. He received the MS and BSc degrees from
the Massachusetts Institute of Technology during which time he was a research intern at Xerox PARC.
He is a member of SIGGRAPH, SIGCHI, ACM, and the IEEE Computer Society.

Myers's address is Computer Science Department, Carnegie Mellon University, Pittsburgh, PA
15213-3890.

R E F E R E N C E S

[Anderson 85] Nancy S. Anderson and Judith Reitman Olson, eds. Methods for Designing
Software to Fit Human Needs and Capabilities, Proceedings of the Workshop on
Software Human Factors. 1985: National Academy Press, Washington, D.C. 34 pages.

[Apple 85] Apple Computer, Inc. Inside Macintosh. Addison-Wesley, 1985.

[Barth 86] Paul S. Barth. " A n Object-Oriented Approach to Graphical Interfaces," ACM Tran­
sactions on Graphics. Vol. 5, No. 2, April 1986. pp. 142-172,

[Bewley 83] William L. Bewley, Teresa L. Roberts, David Schroit, William L. Verplank.
"Human Factors Testing in the Design of Xerox's 8010 'Star' Office Workstation,"
Proceedings SIGCHI'83: Human Factors in Computing Systems. Dec. 12-15, 1983. Bos­
ton, Mass. pp. 72-77.

Brad A. Myers - 2 1 - Tools for Creating User Interfaces

[Bobrow 86] Daniel G. Bobrow, Sanjay Mittal, and Mark J. Stefik. "Expert Systems: Perils
and Promise," CACM, Vol. 29, no. 9, September 1986. pp. 880-894.

[Boies 85] S.J. Boies, J.D. Gould, S. Levy, J.T. Richards, and J.W. Schoonard. "The 1984
Olympic Message System—A Case Study in System Design," IBM Research Report.
RC-11138. 1985.

[Buxton 80] William A. S. Buxton and R. Sniderman. "Iteration in the Design of the Human-
Computer Interface," Proceedings: 13th Annual Meeting, Human Factors Association of
Canada, pp. 72-81.

[Buxton 83] W. Buxton, M.R. Lamb, D. Sherman, and K.C. Smith. "Towards a Comprehen­
sive User Interface Management System," Computer Graphics: SIGGRAPH'83 Confer­
ence Proceedings. Detroit, Mich. Vol. 17, no. 3. July 25-29, 1983. pp. 35-42.

[Buxton 86] William Buxton and Brad Myers. " A Study in Two-Handed Input," Proceedings
SIGCHV86: Human Factors in Computing Systems. Boston, MA. April 13-17, 1986.
pp. 321-326.

[Cardelli 85] Luca Cardelli and Rob Pike. "Squeak: A Language for Communicating with
Mice , " Computer Graphics: SIGGRAPH'85 Conference Proceedings. San Francisco, CA.
Vol. 19, no. 3. July 22-26, 1985. pp. 199-204.

[Conklin 87] Jeff Conklin. "Hypertext: An Introduction and Survey," IEEE Computer, Vol.
20, No. 9, September 1987. pp. 17-41.

[Dance 87] John R. Dance, Tamar E. Granor, Ralph D. Hill, Scott E. Hudson, Jon Meads,
Brad A. Myers, and Andrew Schulert. "Report on the Run-time Structure of UIMS-
Supported Applications," Computer Graphics, Vol. 21 , no. 2, April 1987. pp. 97-101.

[Fisher 87] Gene L. Fisher and Kenneth I. Joy. " A Control Panel Interface for Graphics and
Image Processing Applications," Proceedings SIGCHI+GI'87: Human Factors in Com­
puting Systems. Toronto, Ont., Canada. April 5-9, 1987. pp. 285-290.

[Flecchia 87] Mark A. Flecchia and R. Daniel Bergeron. "Specifying Complex Dialogs in
ALGAE," Proceedings SIGCHI+GI'87: Human Factors in Computing Systems.
Toronto, Ont., Canada. April 5-9, 1987. pp. 229-234.

[Foley 84] James D. Foley. "Managing the Design of User-Computer Interfaces," Proceedings
of the Fifth Annual NCGA Conference and Exposition. Anaheim, CA. Vol. II. May 13-
17, 1984. pp. 436-451.

[Foley 87] James Foley. "Transformations on a Formal Specification of User-Computer Inter­
faces," Computer Graphics, Vol. 21 , no. 2, April 1987. pp. 109-112.

[Freburger 87] Karl Freburger. "RAPID: Prototyping Control Panel Interfaces," OOPSLA'87
Conference Proceedings. October 4-8, 1987, Orlando, Florida, Special issue of SIGPLAN
Notices, Vol. 22, No. 12. December, 1987. pp. 416-422.

[Goldberg 83] Adele Goldberg and Dave Robson. Smalltalk-80: The Language and Its Imple­
mentation. Reading, MA: Addison-Wesley Publishing Company, 1983.

[Good 84] Michael D. Good, John A. Whiteside, Dennis R. Wilson, and Sandra J. Jones.
"Building a User-Derived Interface," CACM. Vol. 27, no. 10. Oc t 1984. pp. 1032-
1043.

Tools for Creating User Interfaces - 2 2 - Brad A. Myers

[Green 85] Mark Green. "Report on Dialogue Specification Tools ," User Interface Manage-
ment Systems. Gunther E. Pfaff, ed. Berlin: Springer-Verlag, 1985. pp. 9-20.

[Green 86] Mark Greea " A Survey of Three Dialog Models ," ACM Transactions on Graph-
ics. Vol. 5, No. 3, July 1986. pp. 244-275.

[Hayes 85] Philip J. Hayes, Pedro A. Szekely, and Richard A. Lerner. "Design Alternatives
for User Interface Management Systems Based on Experience with COUSIN," Proceed­
ings SIGCHT85: Human Factors in Computing Systems. San Francisco, CA. April 14-
18, 1985. pp. 169-175.

[Helfman 87] Janathan Helfinan. "Panther A Tabular User-Interface Specification System,"
Proceedings SIGCHI+GI'87: Human Factors in Computing Systems. Toronto, Ont ,
Canada. April 5-9, 1987. pp. 279-284.

[Henderson 86] D. Austin Henderson, Jr. "The Trillium User Interface Design Environment,"
Proceedings SIGCHT86: Human Factors in Computing Systems. Boston, MA. April
13-17, 1986. pp. 221-227.

[Hill 87a] Ralph D. Hill. "Event-Response Systems — A Technique for Specifying Multi-
Threaded Dialogues," Proceedings SIGCHI+GI'87: Human Factors in Computing Sys­
tems. Toronto, On t , Canada. April 5-9, 1987. pp. 241-248.

[Hill 87b] Ralph D. Hill. "Supporting Concurrency, Communication and Synchronization in
Human-Computer Interaction—The Sassafras UIMS," ACM Trans, on Graphics, Volume
5, No. 3, July, 1986. pp. 179-210.

[Hudson 86] Scott E. Hudson and Roger King. " A Generator of Direct Manipulation Office
Systems," ACM Transactions on Office Systems. Vol. 4, no. 2, April 1986. pp. 132-163.

[Jacob 85] Robert J.K. Jacob. " A State Transition Diagram Language for Visual Program­
ming ," IEEE Computer. Vol. 18, no. 8. Aug. 1985. pp. 51-59.

[Jacob 86] Robert J.K. Jacob. " A Specification Language for Direct Manipulation Interfaces,"
ACM Transactions on Graphics. Vol. 5, No. 4, October 1986. pp. 283-317.

[Kasik 82] David J. Kasik. " A User-Interface Management System," Computer Graphics:
SIGGRAPH'82 Conference Proceedings. Boston, MA. Vol. 16, no. 3 . July 26-30, 1982.
pp. 99-106.

[Mason 83] R.E.A. Mason and T.T. Carey. "Prototyping Interactive Information Systems,"
Communications of the ACM. Vol. 26, no. 5. May, 1983. pp. 347-354.

[Mittal 86] Sanjay Mittal, Clive L. Dym, and Mahesh Morjaria. "Pride: An Expert System for
the Design of Paper Handling Systems," IEEE Computer. Vol. 19, no. 7, July, 1986. pp.
102-114.

[Morgan 83] C. Morgan, G. Williams, and P. Lemmons. " A n Interview with Wayne Rosing,
Bruce Daniels, and Larry Tesler," Byte. Vol. 8, no. 2, February, 1983. pp. 90-114.

[Myers 87a] Brad A. Myers. "Creating Interaction Techniques by Demonstration," IEEE
Computer Graphics and Applications, Vol. 7, no. 9, Sept. 1987. pp. 51-60.

[Myers 87b] Brad A. Myers. Creating User Interfaces by Demonstration. PhD Dissertation,
Department of Computer Science, University of Toronto. May, 1987.

Brad A. Myers - 23 - Tools for Creating User Interfaces

[Myers 87c] Brad A. Myers. "Gaining General Acceptance for UIMSs," Computer Graphics,
Vol. 21 , no. 2, April 1987. pp. 130-134.

[Newman 68] William M. Newman. " A System for Interactive Graphical Programming,"
Proceedings of the AFIPS Spring Joint Computer Conference. 1968. pp. 47-54.

[Olsen 83] Dan R. Olsen, Jr. and Elizabeth P. Dempsey. "Syngraph: A Graphical User Inter­
face Generator," Computer Graphics: SIGGRAPH'83 Conference Proceedings. Detroit,
Mich. Vol. 17, no. 3. July 25-29, 1983. pp. 43-50.

[Olsen 84] Dan R. Olsen, Jr., William Buxton, Roger Ehrich, David J. Kasik, James R. Rhyne,
and John Sibert. " A Context for User Interface Management," IEEE Computer Graphics
and Applications. Vol. 4, no. 2. Dec. 1984. pp. 33-42.

[Olsen 85] Dan R. Olsen, Jr., Elisabeth P. Dempsey, and Roy Rogge. "Input-Output Linkage
in a User Interface Management System," Computer Graphics: SIGGRAPH'85 Confer­
ence Proceedings. San Francisco, CA. Vol. 19, no. 3. July 22-26, 1985. pp. 225-234.

[Olsen 86] Dan R. Olsen, Jr. "Mike: The Menu Interaction Kontrol Environment," ACM
Transactions on Graphics. Vol. 5, No. 4, October 1986. pp. 318-344.

[Olsen 87a] Dan R. Olsen, Jr., ed. " A C M SIGGRAPH Workshop on Software Tools for User
Interface Management," Computer Graphics, Vol. 21 , no. 2, April 1987. pp. 71-147.

[Olsen 87b] Dan R. Olsen, Jr. "Larger Issues in User Interface Management," Computer
Graphics, Vol. 2 1 , no. 2, April 1987. pp. 134-137.

[Pfaff 85] Gunther R. Pfaff, ed. User Interface Management Systems. Berlin: Springer-Verlag,
1985. 224 pages.

[Rosson 87] Mary Beth Rosson, Suzanne Maass, and Wendy A. Kellogg. "Designing for
Designers: An Analysis of Design Practices in the Real World," Proceedings
SIGCHI+GI'87: Human Factors in Computing Systems. Toronto, Ont , Canada. April
5-9, 1987. pp. 137-142.

[Scheifler 86] Robert W. Scheifler and Jim Gettys. "The X Window System," ACM Transac­
tions on Graphics, Vol. 5, No. 2, April 1986. pp. 79-109.

[Schmucker 86] Kurt J. Schmucker. "MacApp: An Application Framework," Byte, August
1986. pp. 189-193.

[Schulert 85] Andrew J. Schulert, George T. Rogers, and James A. Hamilton. "ADM—A
Dialogue Manager," Proceedings SIGCHI'85: Human Factors in Computing Systems.
San Francisco, CA, April 14-18, 1985. pp. 177-183.

[Sheil 83] Beau Sheil. "Power Tools for Programmers," Datamation. Vol. 29, no. 2. Feb.
1983. pp. 131-144.

[Shneiderman 83] Ben Shneiderman. "Direct Manipulation: A Step Beyond Programming
Languages," IEEE Computer. Vol. 16, no. 8. Aug. 1983. pp. 57-69.

[Sibert 86] John L. Sibert, William D. Hurley, and Teresa W. Bleser. " A n Object-Oriented
User Interface Management System," Computer Graphics: SIGGRAPH '86 Conference
Proceedings. Vol. 20, no. 4, August 18-22, 1986. Dallas, Texas, pp. 259-268.

[Smith 82] David Canfield Smith, Charles Irby, Ralph Kimball, Bill Verplank, and Erik
Harslem. "Designing the Star User Interface," Byte Magazine, April 1982, pp. 242-282.

Tools for Creating User Interfaces - 2 4 - Brad A. Myers

[Steflk 86] Mark Stefik, Daniel G. Bobrow, and Kenneth M. Kahn. "Integrating Access-
Oriented Programming into a Multi-Paradigm Environment," IEEE Software. Vol. 3, no.
1, Jan, 1986. pp. 10-18.

[Sun 84] Sun Microsystems, Inc. SunWindows Programmers' Guide, January, 7, 1984. 2550
Garcia Avenue, Mountain View, CA 94043.

[Sutton 78] Jimmy A. Sutton and Ralph H. Sprague, Jr. A Study of Display Generation and
Management in Interactive Business Applications. IBM Research Report RJ2392. Nov. 9,
1978. 20 pages.

[Swartout 82] W. Swartout and R. Balzer. "The Inevitable Intertwining of Specification and
Implementation," Communications of the ACM. Vol. 25, no. 7. 1982. pp. 438-440.

[Szekely 87] Pedro Szekely. "Modular Implementation of Presentations," Proceedings
SIGCHI+GV87: Human Factors in Computing Systems. Toronto, On t , Canada. April
5-9, 1987. pp. 235-240.

[Tesler 81] Larry Tesler, "The Smalltalk Environment," Byte. Vol. 6, No. 8, Aug., 1981, pp.
90-147.

[Thomas 83] James J. Thomas and "Griffith Hamlin, eds. "Graphical Input Interaction Tech­
nique (GIIT) Workshop Summary." ACM/SIGGRAPH, Seattle, WA. June 2-4, 1982. in
Computer Graphics. Vol. 17, no. 1. Jan. 1983. pp. 5-30.

[Wasserman 82] A.I. Wasserman and D.T. Shewmake. "Rapid Prototyping of Interactive
Information Systems," ACM Software Engineering Notes. Vol. 7, no. 5. pp. 171-180.

[Williams 83] Gregg Williams. "The Lisa Computer System," Byte Magazine, February 1983,
pp. 33-50.

