NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Warp Programming Environment:
User Manual

Bernd Bruegge
20 January 1988
CMU-CS-88-105 ()

Abstract

The goal of the Warp Programming Environment is to provide easy access to the Warmp machine, a parallel
supercomputer based on the systolic array architecture. The Warp Programming Environment offers a uniform
environment for editing, compiling, debugging and executing Warp programs. It is based on an extensibie shell
written in Common Lisp and a runtime system writien in C. It runs on a SUN-3 workstation under UNIX 4.2 and
supports three types of users: Implementors of the environment itself who modify or enhance the functionality of
the environment. Developers using the compiler and debugger to write Warp programs. And programmers writing
application programs that call Warp programs. This document describes the Warp Programming Environment 2.6
from 08-Jan-88.

The research was supported in part by Defense Advanced Research Projects Agency (DOD), monitored by the Air
Force Avionics Laboratory under Contract F33615-81-K-1539, and Naval Electronic Systems Command under
Contract NO0039-85-C-0134, and in part by the Office of Naval Research under Contracts N00014-80-C-0236, NR
048-659, and N0O014-85-K-0152, NR SDRJ-007.

Warp Programming Environment 2.6

Table of Contents

1. Introduction :
1.1 How to get the Warp Programming Environment
1.2 How to run the Warp Programming Environment
1.3 System Configuration
1.4 Software Components
1.5 Organization of the Manual
1.6 Acknowledgments
2. The Warp Shell
2.1 Introduction
2.1.1 Syntax of Shell Commands
2.1.2 Warp Shell Objects
2.1.3 Customizing the Warp Shell
2.2 Warp Shell Commands
2.2.1 Interrupting Warp shell Commands
2.2.2 @ Command

b ot otk ek it
BAhAUWUWUNRROSOOOW -I-28 005K

223 PAUSE
2.2.4QUIT
225 RECORD
2.2.6 WPEVERSION
227 W2.BREAK 14
22.8 W2-COMPILE 16
2.2.9 W2-CONTINUE 17
2.2.10 W2-DELETE 18
2.2.11 W2-DISABLE 18
2212 W2-DOWNLOAD) 18
22.13 W2-EDIT 18
2.2.14 W2-ENAEBLE 19
2.2.15 W2-EXECUTE 19
22.16 W2-GET 20
2.2.17 W2-HALT 20
2.2.18 W2-INIT 21
2.2.19 W2-LOAD 21
2220 W2.LOCKWARP 21
2221 W2.RESET 22
2.2.22 W2.RESTART 22
2.2.23 W2.SANITY . 22
2.2.24 W2.SET 24
22,25 W2-SHOW 5
2.2.26 W2-SUGGESTBREAKS 27
2.2.27 W2.TRACE 27
2.2.28 W2.TYPE 28
2.2.29 W2.UNLOCKWARP 28
2.2.30 W2-VAR 28
2.2.31 W2-WARPQUEUE 29
2.3 How to load a Customized Warp Programming Environment 30
2.4 Customizing the Initial Startup 30
2.4.1 The Environment File: warprc 31
2.4.2 Editor Profiles 31
2.4.3 The Boot File: warpshell 32
2.4.4 The Directory File: wpe.slisp 32
2.4.5 The Configuration File: wpeprofile.slisp 32
2.4.6 The Update File: bugfixes.slisp 32
252 LOAD 33
2.6 Writing Warp Shell Commands 33
2.5 Special Warp Shell Commands 33
2.5.1 HANDLE-ERRORS 33
2.7 Debugging the Warp Shell 35

UNIVERSITY LIBRARIES
i CARNEGIE-MELLON UNIWERSITY
PITTSBURGH, PERNOYLVANIA 15212

Warp Programming Environment 2.6

2.8 Using the Warp Shell: An Example

2.8.1 Example Session
2.8.2 Example Command File

3. The Warp Monitor

3.1 Introduction

3.2 Classification of Warp Monitor Functions
3.3 Warp Server Control Functions

3.3.1 START WARPD
3.3.2 OPENCONN
3.4 Error Handling Functions
3.4.1 SERVER_ERROR
3.42 GET_| ERROR STRING
3.5 Warp Locking Mechanism
3.51 LOCK_WARP
3.5.2 UNLOCK_WARP
3.53 LIST QUEUE
3.5.4 NEXT ENTRY
3.6 Event Flag Functions
3.6.1 ALLOC_EF
3.6.2 FREE_EF
3.6.3 READ_EF
3.6.4 SET_EF
3.6.5 WAIT_EF
3.7 Memory Allocation
3.7.1 ALLOC_CLMEM
3.7.2 DEALLOC_CLMEM
3.73 GET_ UNINIT CLMEM
374 READ FROM CLMEM
.75 WRITE TO_ CLMEM
3.7.6 FREE_BUFFER
3.7.7 COPY_CTF
3.78 COPY_FTC
3.7.9 COPY_CTC
3.8 Downloading Functions
3.8.1 LOAD MICRO
3.82 CACHE MICRO
3.83 FAST_LOAD_MICRO
3.8.4 LOAD_CLUSTER
3.8.5 LOAD_ONE_CLUSTER
3.8.6 MAKE_CLUST_FUNC
3.9 Execution Functions
3.9.1 EXECUTE_WARP
3.92 START CLUSTER
3.93 START CLUSTER_A
3.9.4 START WARP
3.9.5 CONTINUE_WARP
3.9.6 EXECUTION_TIME
3.10 Debugging Functions
3.10.1 USE_PRINTF
3.10.2 SET_BREAK
3.10.3 CLEAR_BREAK
3.10.4 READ_ DATA MEM
3.10.5 WRITE DATA MEM
3.10.6 SET_PC
3.10.7 GET_PC
3.10.8 READ_MICROCODE
3.10.9 WRITE_MICROCODE
3.10.10 READ_CHAIN
3.10.11 WRITE_CHAIN

Warp Programming Environment 2.6

3.10.12 READ REGISTER
3.10.13 WRITE_REGISTER
3.10.14 GET_FIELD
3.10.15 PUT_FIELD
3.11 Miscellaneous F unctions
3.11.1 SET_DEBUG
3.11.2 SET_TIMEQUT
3.11.3 GET_VERSION
3.11.4 PARAM_CONST
3.11.5 SET_DIR
3.11.6 SANITY CHECK
3.11.7 RESET_WARP
3.12 Using the Warp Monitor
3.12.1 Pipe I: Using the Warp Monitor Inside a C Program
3.12.2 Pipe IT: Using Event Flags Functions

4. When Things Go Wrong
4.1 Known Bugs
4.2 Error Messages
4.3 Monitoring The Warp and Users Servers
4.4 Creating Bug Reports
L. Summary of Warp Shell Commands
II. Summary of Warp Monitor Functions

it

Warp Programming Environment 2.6

iv

Figure 1-1:
Figure 1-2;
Figure 2.1:
Figure 2-2;
Figure 2-3:
Figure 3-1:
Figure 3.2;
Figure 3-3;

Warp Programming Environment 2.¢

List of Figures
System Configuration of the Warp Programming Environment
Software Components of the Warp Programming Environment
Example of a warpre file’
Warp Shell: Implementation of the Command NoIsy
W2 Example: Polynomial Evaluation using the Horner Scheme
Architecture of Applications using the Warp Monitor
A C Program Calling a W2 Program
A C Program Using Event Flag Functions

31
34
37
42
67
68

Warp Programming Eavironment 2.6 Introduction

1. Introduction

The basic philosophy of the Warp Programming Environment (WPE) is to provide easy access to the Warp
machine, replacing the complexity of earlier programming environments for Warp. Warp is a low-cost
supercomputer based on the systolic array architecture!, The Warp Programming Environment offers the user the
ability to compile, execute and debug W2 programs? on the Warp machine in a uniform environment. Commands in
the Warp Programming Environment are provided in a uniform way based on an extensible shell. This sheil is cailed
the Warp shell.

The Warp shell has several attractive features. First of all, it provides a uniform help mechanism. An example
from the help description of a command can be fed to the command interpreter, providing an easy exploration of the
command language. Second, it takes care of different levels of sophistication, in particular of the novice and the
experienced user; this can often be the same person at different times during the program development. The
underlying Common Lisp implementation and the components of the environment are completely hidden from the
application programmer; this is useful for somebody who is just interested in using the Warp shell. However, the
Lisp implementation and all the software components comprising the Warp environment are easily available if so
desired. This makes the Warp shell extensible. In particular, an interested programmer can make use of Common
Lisp’s powerful control structures to implement new commands.

The Warp shell is designed to run inside a text editor, The advantage of using an editor is that featuyres such as
intra-line editing, history buffers, re-execution of commands of previous commands and creation of script files are
automatically available without any additional cost.

The Warp Programming Environment supports multiple user access, because the use of the Warp machine in a
typical user session is sporadic. And it supports multiple machine access: If there is more than one Warp machine
available, the user has the choice of connecting to any of these machines.

The Warp Programming Environment provides nerwork transparency which is achieved by servers
communicating with Warp shells running on remote workstations via remote procedure calls using the TCP-IP
protocol. This means that the Warp machine can be accessed from any site that understands the TCP-IP protocol.

Each server is based on the Warp monitor, a software package designed to provide a "virtual Warp machine",
The main goal of the Warp monitor is to shield the programmer from the complexity of the Warp array and yet make
the hardware accessible. The Warp monitor contains functions for locking the machine, allocation of memory, for
the execution and for the inspection of data and code.

In addition to providing a server for the Warp shell, the Warp monitor can also be used by programmers who want
to call W2 programs from their own application programs. This includes applications mnning inside the Warp shell,
for example debugging tools for the Warp machine as well as standalone applications. A package called the Warp
User Package® has been implemented on top of the Warp monitor that enables the application programmer to write
standalone applications using Warp programs from a library without having to know any details about the Warp
machine at all.

"Marco Annaratone, Emmanne] Amould, Robent Cohn, Thomas Gross, H.T. Kung, Monica Lam, Onat Menzilcioglu, Ken Sarocky, John
Senko, Jon Webb, “Architecture of Warp”, Compcon Spring 1987, [EEE Computer Society, 1987.

*Thomas Gross, Monica Lam, "A Description of W2", Warp Document D330R0S, Department of Computer Science, Carnegie-Mellon
University, September 10, 1986.

3Mosur Ravishankar, "Warp User Package”, Warp Document D150R00, Department of Computer Science, Camegie-Mellon University,
March 1987.

Introduction Warp Programming Environment 2.6

As a result of this structure, the Warp Programming Environment supports three types of users: The implementor
of the environment itself, who can use the Warp shell to define the functionality of the environment. Developers of
W2 programs, who can use the W2 compiler and W2 debugger to develop W2 programs. And application
programmers who can write standalone programs calling W2 programs provided by a library.

1.1 How to get the Warp Programming Environment

The Warp Programming Environment consists of several software components. The file system location of these
components is defined by a set of environment variables in the socalled environment file warpre. The location of the
warpre file is system dependent and is usually stored in the WPE bome directory. Ask your system maintainer for
the value of the environment variable $WPEhcome. Versions of WPE can be found in the directories
SWPEhome/current or $WPEhome/exp, respectively. The former one contains a stable version and the latter
one a more experimental version.

WPE is designed to be executable in several ways: as 2 standalone shell, inside a text editor and inside a window
manager. Currently two Emacs editors are supported: GNU Emacs® and Gosling’s Emacs’.

To install WPE under GNU Emacs, add the following lines to your . emacs profile (see file $WPEhome/.emacs):

(setq load-path (cons "SWPEeditor/” locad-path))
{load “warpshell.al” nil t)

(setg window-min-height 6)

(setg split-height-threshcld 6}

{glcbal-set-key "\“X*L" ’goto-lisp)

To install WPE under Gosling’s Emacs, we recommend you to add the following lines to your .emacs_pro

profile:

{ioad "$WPEhcme/maclib/procass.ml”)

(autoload "wsh" ¥ SWPEhome/maclib/warpshaell .ml")
(satqg aplit-height-threshhold 6)

{bind-to-key "send-int-signal” LANTobs |
{(bind-to-key "common-lisp" TAAXNALY)

The variable SPLIT-HEIGHT-THRESHHOLD determines the minimal size of lines of an Emacs buffer. Note the incorrect
spelling of threshhold in Gosling’s Emacs. We recommend to use 6, because WPE uses screen buffers extensively.
The Mock Lisp function SEND-INT-SIGNAL is bound to CTL C to send an interrupt signal to Emacs. This is useful for
interrupting the Warp shell in case it is doing something you don’t want it to do. The last line binds the key CTL X
CTLL to position the cursor at the end of the Warp shell buffer. This is useful if you are typing to an other editor
buffer and you want to return to the Warp shell buffer.

Note, that Gosling Emacs spells threshold incorrectly. As in GNU Emacs, we recommend to bind the key CTL X
CTL L to position the cursor at the end of the Warp shell buffer, which is implemented by the Lisp function
GOTO-LISP.

If you are using GNU Emacs, but prefer to use the key bindings from Gosling’s Emacs, add the following lines to
your . emacs:

(load "gosmacs" nil)
{set-gosmace-bindings)

WPE can be executed under SUNTOOLS or the X window manager. The display of images on Sun screens is

4Richard Stallman, GNU Emacs Manual, 4th cdition, Frec Software Foundation, Cambridge, Mass., February 1986,

3James Gosling, Emacs - Sereen Editor, Version 264, UniPress Software, Inc., Edison, N.J., 1983,

Warp Programming Environment 2.6 Introduction

supported only under X. If you are familiar with Gosling's Emacs and SUNTOOLS and would like to use GNU Emacs
and X, execute the shell script $WPEbin/get-gnu-and-x-defaults. It will copy the files .emacs,
-uwmrc, .xtools and . Xdefauits into your home directory. The keybindings are chosen to make X (almost)
look like SUNTOOLS and GNU Emacs (almost) look like Gosling’s Emacs. Add the lines

satanv DISPLAY unix:0
*xinit xtools

10 your . login file to invoke X at login time.

1.2 How to run the Warp Programming Environment
The Warp Programming Environment runs on top of Common Lisp under UNIX 4.2 on a SUN-3. If you are using
the CMU implementation, you have to have an account on a SUN-3 which has access to the file server kiwi. The
Warp Programming Environment can be started from any terminal that is connected to such a SUN. The startup time
is between 10-20 seconds. To set up the correct path names and environment variables, add the following line to
your . login:
source $WPEhome/ USE_CURRENT

where $WPEhome must be replaced by the system dependent path name prefixS.

To start WPE from the C shell without an editor, type
SWPEbin/wsh
This command loads the WPE core image and enters the top level of the Common Lisp interpreter. When the prompt
of the Lisp interpreter appears, type (warpshell) to enter the Warp shell.

To start WPE from the C shell using GNU Emacs, type
SWPEbin/wpeg

To start WPE from the C shell using Gosling’s Emacs, type
$WPEbin/wpe

These commands automatically fire up Emacs with a screen buffer for the Common Lisp interpreter, load the
Warp Programming Environment and start up the Warp shell”, While WPE is being loaded, the mode line
Warp Programming Envirenment: Wazrp Shell (Common Lisp)
is displayed if you are using Gosling’s Emacs. With GNU Emacs, the only difference in the mode line is that
Common Lisp is replaced by Infericr Lisp. Once loading is finished, the mode line display shows the

version number postfixed by the letter ¢ (which stands for core image), the Warp host and the user type:
Warp Programming Environment 2.6C: Warp shell (Eost: warpb User: developar)

1.3 System Configuration

Figure 1-1 shows the system configuration of the Warp Programming Environment used at Camegie-Mellon
University. The system consists of a set of workstations cormected to each other via an Ethemet. The majority of
the workstations are diskless. Workstations with attached disks are called file servers. Each workstation, a SUN-3,

SIf you want to use the experimental version, add the line source $WPEhome /USE_EXP.

"The wpe command is an alias for 'exec emacs -ewsh’. The wpeg command is an alias for *setenv EIPCCHAN E_IPC_$3; exec gemacs ¢
wsh’. If you are already running Emacs and want 16 invoke the Warp shell from within Emacs, call the Lisp function pewsh which is defined in
the cditor customization files warpshell.ml and warpshell.el, respectively.

Introduction Warp Programming Environment 2.6

can run one or more Warp shells or standalone® programs. A SUN-3 workstation called Warp host (also called
master processor in other papers) is physically connected via a bus repeater to the VME bus of the external host.
The external host consists of two cluster processors CP1 and CP2 with associated memoties, a support processor,
graphics devices for I/O and two switches SW1 and SW2, all connected to the VME bus®. The switches allow the
clusters to send and receive data to and from the Warp array (Cell 1...Cell 10) through the interface unit (IU) of the
Warp machine. Thus the Warp host is the intermediator between the workstations and the Warp machine itself.
Figure 1-1 shows two Warp hosts connected to two Warp machines.

The Warp host runs three kinds of servers: the Warp server, the WPE server and the user servers. The Warp
server manages the use of the Warp machine connected to the Warp host. It maintains the queue of users having
requested the Warp machine. The WPE server accepts remote requests to open connections to the Warp machine.
For each Warp shell and for each standalone program not rupning on the Warp host, the WPE server creates a
"shadow" process called the user server on the Warp host side. Each user server provides the functionality of the
Warp monitor described in section 3. The main purpose of the user server is to allocate and manage memary: Every
time the Warp server allocates the Warp machine to a particular user, the user memory is copied onto the memories
of the cluster processors (C1M1 and C2M2 in figure 1-1) and every time a user unlocks the Warp machine, the
memory of the cluster processors is copied back into the memory of the corresponding user server. This makes it
possible to multiplex the Warp machine between multipie users and maintain user specific state information across
several locks/unlocks of the Warp machine.

In the following we use the terms remote and local 1o characterize the location of a program in relation to the
- Warp host: Programs running on a Warp host are in local mode, programs running on other workstations are in
remote mode. Only remote programs have user servers associated with them and the communication between
remote programs and user servers is via the TCP-IP protocol. Local programs don’t need user servers: the Warp
monitor is directly linked into their code.

1.4 Software Components

Figure 1-2 shows the major software components of the Warp Programming Environment., The W2 compiler, the
W2 debugger and the W2 simulator support the development of Warp programs. The editor, window manager and
generalized image library are used for the preparation of programs and for the display of data structures and images.
The Warp monitor and the Warp shell support the execution of Warp programs. Communication between the
components is via the WPE database. Programs for the Warp array are written in W2 and compiled by the W2
compiler. The result of the compilation is an abstract syntax tree which is accessible by the other components of
the Warp Programming Environment. For example, the W2 debugger inspects the syntax tree when it searches for
the value of a variable; the Warp shell inspects the syntax tree when it matches the actual parameters of a Warp
program call with the formal parameters of the program.

The Warp shell provides the basic functionality of UNIX shelis, such as the C-shell, as well as commands to
compile and execute programs on the Warp amay. It maintains a set of environment variables such as SOURCEFILE
(the name of the current W2 program), WARP (the name of the current Warp machine) and BREAKPOINTS (the set of
currently defined breakpoints). These environment variables can be inspected and assigned new values with Warp
shell commands. The semantics of assignment is different for each environment variable. For example, assigning a

11 this manual the term standalone program denotcs an application program that does not use the Warp shell, but is calling Warp menitor
functions directly.

SThe support processor is not shown in figure 1-1. For a more detailed view of the Warp machine architecture sc¢ Annaratone et al.
» Architecture of Warp”, Compcon Spring 1987, IEEE Computer Society, 1987.

Warp Programming Environment 2.6 Introduction

Workstation 1 { Sun3 }
@\ Warp host 1 (Sun3) -,
Warp
Shell WPE Sarver
User 1
m User Cﬁla-L
Server
User Server m - 1
Workstation 2 (Sun3 [yyn|
(} User Server m =] SW1}
Stand
@ alone 2 Warp Server :J |
Wap | User3 '
Shell :
@ User 1 CELL
1

VME

WARP MACHINE 1

File Server (Sun3) Warp host 2 (Sun3)

@\ Warp WPE Server
Shell
W,
Shaerﬁ User m Standalone 1
User m-1 User m+1
/ User Server 2
| User Server 3]
@ Warp Server WARP MACHINE 2
TCPoP

Figure 1-1: System Configuration of the Warp Programming Environment

string "fo0.w2" to SOURCEFILE implies the compilation of the W2 program “foo", whereas assigning a value to HOST
changes the new Warp host which implies the connection to a different Warp array.

The Warp shell is programmed in Common Lisp whose garbage collector makes it impossible to achieve
predictable response times at the shell Jevel. This is tolerable when developing Warp programs, but not when
real-time behavior is needed. The Warp monitor supports applications which do not need the full functionatity of

the Warp shell and must run as fast as possible. In this case programs can run in standalone mode by calling the
Warp monitor functions exphicitly,

Standalone mode is supported for remote and local execution. In remote mode - Standalone 2 in figure 1-1 -

Introduction Warp Programming Environment 2.6

= * Sourceline

AN . Warp
a/ + / d Break at line 16 Experience
/ N Breakpoints

e c User

L+
Abstract S§ntax Tree for Buffers & Windows Environment Variables
Current Sourcefile
\ WPE DATABASE

Sourcefiles, Symboltables, etc.

Figure 1-2: Software Components of the Warp Programming Environment

the application is using remote procedure calls implemented with the TCP-IP protocol. In the local mode -
Standalene 1 in figure 1-1 - application programs are running on the Warp host and the Warp monitor functions are
executed as direct procedure calls. The local standalone mode is the mode with the lowest overhead and is the
preferred mode of execution when time is critical. However, the Warp monitor is implemented such that there is no
difference between the core image of an application running in remote mode or in local mode. Thus application
programmers can compile, link and test their applications in the familiar environment of their personal workstation
before they download them to the Warp host for local execution. Application programs in standalone mode can be
written in any language as long as the langnage implementation supports the call of external C routines (the Warp
monitor is written in C).

WPE can be executed inside a window of the X window manager. In this case, other X windows can be used for
the display of images. The display of these images is done via the generalized image library. The generalized
image library is current being developed at Camegie-Mellon University, providing device independent access to a
variety of image devices and disk formats'©,

10 eonard Hamey, "A User's Guide to the Generalized Image Library” and Leonard Hamey, Harry Prinez, Doug Reece, Steve Shafer, "A
Programmers's Guide io the Generalized Image Library”, Department of Computer Science, Camegie-Mellon University.

Warp Programming Environment 2.6 Introduction

The Warp shell can be executed inside one of two editors: Gosling’s Emacs or GNU Emacs. The communication
between WPE and these editors is as follows: Gosling's Emacs sets up a UNIX socket that accepts commands from an
external process (in our case WPE) and evaluates them as Mock Lisp commands. The name of the socket is
automatically put into the UNIX environment variable EIPCCHAN. The same communication mechanism is simulated
in GNU Emacs as follows: The name of the socket is manually put into the UNIX environment variable EPCCHAN
and a subprocess is started by start-~share-filtexr!! which accepts commands from Wre and prints them to
its standard output which is fed into an output filter'? which evaluates them as a GNU Emacs Lisp command.

Both, GNU Emacs and Gosling’s Emacs, support parallel editing, that is, the user can continue editing while the
Warp shell is executing a command. They also support features such as compiier error message positioning (CTL. X
CTL N), display of Warp shell variables in buffers, script files, etc. It is also possible to use the built-in Common
Lisp editor (ed), but in that case it is not possible to do parallel editing. Finally, the Warp shell can be executed
without an editor, but in this case none of the editor features are available.

1.5 Organization of the Manual

Chapter 2 deals with the Warp shell. Section 2.2 contains all the commands offered by the Warp shell. Section
2.3 is intended for users who want to do simple customizations of the Warp shell. Section 2.4 to Section 2.7 are for
the advanced user who wants to change the functionality of the Warp shell. In Section 2.8 we walk through an
example session with the Warp shell and explain the use of the commands.

Chapter 3 describes the Warp monitor. Section 3.3 to Section 3.11 list the functions currently implemented in the
Warp monitor. In Section 3.12 we show how to write and execute standalone programs using the Warp monitor, All
program examples have been tested.

Chapter 4 contains a list of known bugs and some error messages that might be printed while running the Warp
shell. It also explains how to monitor the message traffic between the servers and the Warp shell,

Appendix I summarizes the currently implemented Warp shell commands and Appendix II lists the Warp monitor
commands.

1.6 Acknowledgments

The Warp sbell is based on the Lisp shell developed by Daric Giuse. The W2 compiler was developed by the
compiler group consisting of Chang-Hsin Chang, Robert Cohn, Thomas Gross, Monica Lam, Peter Lieu, Abu
Noaman and David Yam. The W2 simulator was implemented by Angelika Zobel. The Warp monitor was
implemented by Michael Browne. Ed Clune suggested several extensions to the Warp monitor. Parts of the Warp
monitor are based on an eadier runtime environment called WARPCI developed by Francois Bitz and Jon Webb, The
generalized image library was developed by Leonard Hamey. Marco Annaratone, Robert Cohn, Harry Printz and
Leonard Hamey were the first users and made valuable suggestions.

Vsec $WPEeditor/warpshell.el

12An output filter is a GMU Ermacs Lisp routine which manipulates the output of a process.

Warp Shell Warp Programming Envirenment 2.6

Warp Programming Environment 2.6 Warp Sheil

2. The Warp Shell

2.1 Introduction

The Warp shell is based on the Lisp shell currently being developed at Camegie-Mellon University. Its intended
way of use is within a text editor. The impiementation described here assumes that the user is running the shelil
within an Emacs editor. The Warp shell provides an extensive online help facility. Type HELP C to get help on a
specific command C. To get belp on the shell itself type HELP SHELL. The KEYWORD command can be used to get
help on a given topic. It searches the table of all currently defined commands and prints out all commands whose
description contains a word that matches the given key. For example, the command KEY FILE currently prints out

the following:

copy : Copy cne or more files

delate : Daleta files

directory : List files that match a pattarn

find * Find all occurrencaes of a fila name

leoad ¢ load a lisp file

raname : Raname or move one or more filas

asarch : Bearch files for a string

touch : Change the creation date of a fila

type : Typs ocut a file

claean ¢ Delaete garbage files

grep ! Saarch files for a string

1l : List files with size and creation datae

Command names can be aliased to new names. The alias command can be explored by typing HELP ALIAS:

ALIAS Define a new alias
SYNTAX: alias name [value] [description)

With one argument, show the currant alias for <nama>. With two argumentas,

sat the new alias for <name> to be <value>. If specified, <description> is

used ag a ocne-line help for <name>.
EXAMPLES:

alias 11 ’'directory -long’ ‘list file sizes and creation datas’
aliaz man ‘keyword’

For example, if you are familiar with the UNIX C-shell, you can alias KEYWORD to KEY and HELP 10 MAN,
respectively.

2.1.1 Syntax of Shell Commands

The Warp shell provides a standardized mechanism for command lines. A command consists of a sequence of
words separated by blanks and command options. An option is assumed to start with a minus sign. Options can be
either switches or (name,value) pairs. A switch is an option that does not take any argument. A (name,value) pair is
an option keyword followed by a value. For each {name, value) pair there is a default value which usually can be
found with the HELP command. Commands and options can be uniquely abbreviated, since the shell performs name
completion of commands as well as options.

Command line input is not bound to one text line, but can span across several lines of input. If the input cursor is
at the end of the last command line, the command reader takes the whole piece of text between the last prompt and
the end of the line and passes it to the shell for evaluation. If the input cursor is not on the last command line, but
somewhere on 2 command line earlier in the editor buffer the whole command line that surrounds the input cursor is
inserted at the end of the buffer (after the last prompt), and immediately executed.

After the command text has been extracted by the command reader, it is passed to the Warp shell for evaluation.
If it starts with an open parenthesis it is treated as a Common Lisp expression and the Warp shell passes it to the
Lisp interpreter. Otherwise it is treated as a Warp shell command. This means that the user can type any

Warp Shell

Warp Programming Environment 2.6

combination of shell and Common Lisp expressions to the Warp shell. This makes it possible to write very
powerful and flexible shell scripts.

2.1.2 Warp Shell Objects
A Warp shell object is a type or a variable. The Warp shell provides predefined variables called environment
variables and user defined variables. Currently the following environment variables are defined:

CELLS
DISPLAY

DEMO

EDITOR

EXPERIENCE

USER

The list of Warp cells to which Warp shell commands apply.

The display device to be used when displaying data or images. Possible values are: The name
of a generalized image as specified in the GIL manuai '3 such as "net:warpm:cube”, "xwindow",
etc, or one of the strings "buffer”, "windowl", "window2" and "monitor”. The default value is
"buffer”. The value "buffer” binds the display to an Emacs screen buffer, "moniter” binds the
display to the Datacube display attached to the Warp machine. and "window1" and "window2"
are X windows created by the generalized image library. These windows can be reused when
displaying images. Using the generalized image name “"xwindow” will open a new X window
every time an image is displayed. X windows are created interactively with the mouse as
described in the W2-SHOW command in Section 2.2.25, page 25.

This eavironment variable determines how Warp sheil commands in command files are
executed. Possible values are : "on" or "off". The default value is "off". When DEMO is “on",
then Warp shell commands are executed in single step mode, that is, after each command the
user is prompted for an action to proceed with the execution of the command file or abort it.

Indicates whether the Warp shell is executed inside an Emacs editor or not. Possible values are:
*Emacs” (for Gosling’s Emacs), "Gnu-Emacs” and “off". The default value is determined by the
way WPE is invoked, If EDITOR is not "off", several Emacs features will be used by the Warp
shell:

» When compiling 2 W2 program, a separate window called W2 Error Messages
is used for compiler diagnostics (In Gosling’s Emacs the name of the screen buffer
is emror-log, in GNU Emacs it is called *compilation*®). This window can be
scanned for error messages using the AX AN command. Notice that the W2
compiler compiles a preprocessed version of your source program. Thus the error
messages apply to the preprocessed version and not to the original file!

» When a breakpoint is encountered the source file will be opened in a separate
window and the source line of the current breakpoint is shown at the top of that
window. The breakpoint is shown in the file of the preprocessed program, not in

the original source program.

» When command files are executed, the current command is displayed in a separate
window. When in expert mode (see below), the current command will be shown in
Emacs’ mini command buffer. When in beginner mode (see below), the command
fle will be shown in a separate window and the current command is always
displayed at the top of the window.

Experience level of user. Possible values are "beginner" and "expert”. The default value is
"peginner". If you are a beginner, the command NOISY ON is automatically executed at startup
time, which means the response to Warp shell commands is shown.

User type. Possible values are user”, "developer" and "implementor”. The default value is
"developer”. If you are a user, you can use all the basic shell commands and the Warp shell
commands for the aliocation of varables, for the execution of W2 programs and for the
inspection of the results. The W2 programs themselves are treated as "black boxes”. Thus,
compilation and debugging of W2 programs is not possible in user mode. If you are a
developer, you have all the rights of a user and the W2 compiler and W2 debugger are available.

13 sonard Hamey, "A User's Guide to the Generalized Image Library” Department of Computer Science, Camnegic-Mellon University, 14

April 1987.

10

Warp Programming Environment 2.6 Warp Shell

In developer mode, the Warp shell is treated as a "black box". Thus, changing the functionality
of the Warp shell is not possible in developer mode. If you are an implementor, you have all the
rights of a developer and you can change the Warp shell. For example, you are able to load
Common Lisp files into the Warp shell. And you are able to invoke the Common Lisp debugger
to debug the Warp shell. You will also get a set of error messages that are not shown in user or
developer mode. For example, the Warp shell will automatically deallocate aii Warp shell
variables in the user server process whenever there is a problem with the server. The
implementor is notified of this event but not the other user types. The user type determines the
order in which the Warp shell tres to interpret a command. For the user types "user” and
"developer”, any command typed to the Warp shell is first tried as a Warp shell command and if
there is no such command it is tried as a Unix command. For user type "implementor”, the
Warp shell first tries to evaluate the command as a Lisp variable, and if that is not successful, it

is tried as a Warp shell command and then as a Unix command.

MODULE The name of the module of the current W2 program. The default value is NIL.,
SOURCEFILE The name of the source of the current W2 program. The default value is NIL.
SOURCEFILEDIRECTCRY
The name of the directory of the current W2 program. The default value is NIL.
HOST The Warp host. Possible values here at CMU are: "warpb", "warp8" and "warpm". The default
value is "warp8".

SERVERCOMMENT Comment displayed in Warp server queue entry while requesting or using the Warp machine.
Strings with blanks have to be enclosed by single quotes. The default value is "Running WPE".
When debugging a program foo.w2, the default value is changed to "debugging foo.w2",

FUNCTION The name of the current function of the current W2 program. The defanit value is NIL.

PROMPT The prompt of the Warp shell. Strings with blanks have to be enclosed by single quotes, The
default value is "%",

MINSOURCELINE ~ The smailest source line number in the current function. The default value is O,
MAXSOURCELINE The largest source line number in the current function. The default value is 9999999999,

WARP The target machine. Possible values and the default value are installation dependent. Most
Warp shell commands can be used for any value of WARP, but their interpretation depends on the
actual value. For example, If WARP is set to the name of a Warp machine, the W2-COMPILE
command generates C code for the cluster processors and W1 microcode for the Warp array, If
WARP is set to "simulator”, it generates C++ code. Similarly, W2-EXECUTE executes either Cs+
object code or Warp object code!4, Naturally, the Warp locking commands do not work if
WARP is set to "simulator”.

The current value of the environment variables can be determined with the command W2-SHOW -ENVIRONMENT. It
is possibie to change the value of environment variables with the W2.SET command. The semantics of this command
is different for each environment variable. For example, the command W2-SET -SOURCEFILE TEMP.W?2 sets the current
source file to temp.w2 which might imply a call to the W2 compiler to compile the program! The command
W2-SET -HOST WARPE changes the Warp host 1o "warpb” and in addition it changes the environment variable WARP to
the name of the Warp machine associated with "warpb".

In addition to environment variables, the Warp shell provides the ability to define user-defined objects. Warp
shell types and variables can be defined with the W2.TYPE and W2-VAR commands, respectively. Warp shell
variables can be initialized with W2.SET, displayed with W2-sHOW and modified with W2-EDIT. Individual Warp shell
variables are displayed in editor buffers. If the variable is allocated in cluster memory, the contents is copied into a
file in the /tmp/ file structure before it is displayed!S. The naming scheme for these files is of the form

"Execution of C++ code is not yet implemented,

SNOTE: If the file structure is full, you will get an error message when you are trying to display or edit a Warp shell variable.

11

Warp Shell Warp Programming Environment 2.6

/tmp/var.name.PID, where name is the name of the variable and P ID is the UNIX process id of the Lisp process. It
a Warp shell variable is edited that has not yet been initialized, a temporary empty file is created and visited. The
naming scheme for these files is of the form /tmp/var.$name$.PID. These temporary files are deleted when the
corresponding Warp shell variables are deleted with the W2-DELETE command.

2.1.3 Customizing the Warp Shell

After the Warp Programming Environment has been invoked, the Warp shell looks at a command file
warpshellinit.cmd. This file is looked up in three places until it is found: First in the current directory, then in the
user’s home directory, and finally in the directory $WPEhome/. If you want to do your own customizations, COpY
the file $WPEhome/warpshellinit.slisp into your current directory or home-directory and modify it. The command
file can contain any sequence of Warp shell commands as well as Common Lisp commands (see @ command).

2.2 Warp Shell Commands

The Warp shell offers two kinds of commands: First, commands such as delete, copy, remove, etc. These
commands are not described in this manual, because it is assumed that the reader is already familiar with them.
Type HELP COMMANDS to explore them. Second, commands to compile, debug and execute w2 programs on the
Warp. These commands are described in the following.

Depending on the user type, the Warp shell looks up commands in a certain order. If you are user type "user” or
"developer”, any command typed to the Warp shell is first tried as a Warp shell command. If there is no such
command, it is interpreted as a Unix shell command. If you are an “implementor”, the Warp shell tries to evaluase
the typed command as a Lisp variable. If that is not successful, it is successively tried as a Warp shell and a Unix
shell command.

UNIX shell commands are executed by invoking the shell defined in the UNIX environment variable SHELL'S.

A summary of all the Warp shell commands is contained in the Appendix I.

2.2.1 Interrupting Warp shell Commands

You can abort any Warp sheil command currently being executed and retwn back to the Warp shell command
interpreter, If you are using WPE inside GNU emacs, type CIL C twice to abort Warp shell commands. This is a
special feature of GNU Emacs: The Warp shell runs in Shell mode, which defines several special keys attached to
the C-c preﬁx”. In particular, C-c C-c is bound to interrupt~shell-subjob, which sends an interrupt
character to the shell. Thus, if you type CTL C once, it will appear as C-c- in the message window. Now type another
CTL C: You will see C-¢c C-¢ and the interrupt is generated. When the CTL C is acknowledged by the Warp shell,

you will see the message
>»>Interrupt: Keyboard

SYSCALL:
:A Abort to Lisp Top Lsval
:C Resuma intazrupted instructions

161f the environment variable SHELL is sct 1o the C-shell, the file .cshre is visited every time a UNIX command is exccuted. If your .cshre file
redefines the shell prompt, the prompt will be echoed by the Warp shell. The approved way to avoid echoing of the prompt is

if ($Pprompt) set prompt = <premptatring>

17Gee Section Shell Mode in the GNU Emacs manual for more details.

12

Warp Programming Environment 2.6 Warp Shell

If you now type :a, the Warp shell returns back to its top level. If you type :c, the Warp shell will try to continue
with what it was doing when the interrupt occurred,

2.2.2 @ Command

The @ command executes a Warp shell command file. The Warp shell permits the execution of command files
that can be nested to an arbitrary depth. Warp shell command files can contain any sequence of Warp shell
commands as well as Common Lisp code. An example of an initial command file is:

WPEVarsion

(format ¢ "Type help for help~%~%")
w2~sat -host warpm

; @$WPEhome/test /pipe/pipe.cmd

This command file prints out the WPE version and the string Type help for help followed by two carriage
retumns. The Warp host is set to "warpm”. The last line calls a command file located in $WPEhome/test/pipe/ but it
1s commented out (using the Common Lisp comment ";"),

Common Lisp code inside a Warp sheil command file that extends over more than one line has to be written as
follows: The last character of each Lisp line except for the last one has to be terminated by a semicolon (;). Warp
shell commands car be called within a Commeon Lisp function but must be passed as strings to the Warp shell
function SHELL:sH. For example, the following three Common Lisp lines check whether WPE is running inside
GNU Emacs. If yes, the Warp shell command W2-SET -SHOWCOMMANDFILE ON is executed. If not, W2-SET

-SHOWCOMMANDFILE OFF is called:

(when (string-equal shall::*editor* "Gnu-Emacs") ;
(shaell::ah "w2-set -showcommandfile on");
(aheall::sh "w2-sat -showcommandfila of£f"))

During their execution command files can be shown in a separate Emacs buffer. If the command w2-SET
-SHOWCOMMANDFILE ON has been issued, the currently executed command of the command file is displayed. The
display mode depends on the value of the environment variable EXPERIENCE. If it is set to "beginner”, the whole
command file is shown in a separate screen buffer and the currently executed command is always positioned at the
top of the buffer. If EXPERIENCE is "expert”, the command file is not shown but the currently executed command is
displayed at the bottom of all the editor windows,

NOTE: If the current directory is changed within a command file, it is restored to the onginal value when the
Warp shell retumns from the command file,

2.2.3 PAUSE

PAUSE Pausa tha Warp shell
SYNTAX: Pause [-silent]
CPTIONS:

-silent: Don‘t axplicitly prompt user for carriage return
EXAMPLES:

Pausa

Pause -silent

PAUSE pauses the Warp shell until the user types a response. The three response options are: Continue, Skip or
Abort. The PAUSE command is issued automatically after each command when in demo mode (see W2-SET -DEMO).

13

Warp Shell Warp Programming Environment 2.6

2.2.4 QUIT
QUIT Quit the shell
SYNTAX: quit [-noconfirm -save F]
OPTIONS:

-noconfirm: Don’t ask for confirmation [Switch (Default if expert)]
-save: Write current cors image in fila F [Default file name: wpecoreimage]
EXAMPLES:

quit
quit -savas /usc/bob/bin/wpe

QuIT deletes all temporary files created during the interactive session and exits the Warp Programming
Environment. If you are an implementor and the Lisp variable *load-core-image* was set to t when a customized
Warp Programming Environment was loaded (See Sections 2.3 and 2.4.5), the core image of WPE can be saved in a
file specified in the '-save’n option.

22,5 RECORD
RECORD Record the Warp monitor calls
SYNTRX: Record [on|off] -file F
OPTIONS:
-fila: Filename for recording the commands [No default]
EXAMPLES:

record on -file /usr/bob/wpe/racord.c
racord off

The idea behind this command is to support the user who would like to write standalone programs, but is not yet
familiar with the necessary calling sequences. The RECORD makes it possible to explore the use of the Warp monitor
functions (see Chapter 3) inside the Warp shell. RECORD ON FILEF creates a file F and writes all Warp monitor calls
into the file until a RECORD OFF is issued which turns the recording off and closes the file.

2.2.6 WPEVERSION
WPEVERSION Print the veraion number of WPE
SYNTAX: WPEVarsion
SEE ALSO: version
OPTIONS:
—all: Print the version numbers of all tha components of WRE.
EXAMPLES :

wpeversion -all .

WPEVERSION prints the current version number of the Warp Programming Environment, the date of the release
and the date of the last update (which is the time of the last modification of the update file (see Section 2.4.6)). If
you have loaded new files into the Warp shell (with the Warp shell LOAD command), the name of each of these files
and the time stamp of their last modification are printed. The -all option aiso prints the version numbers of the W2
compiler, W2 debugger, Warp monitor, Warp server, Lisp shell, generalized image library and Gou Emacs.

2.2.7 W2.BREAK
W2 -BREAK Set a source line break point
SYNTAX: w2-break sourceline filename
OPTIONS:
—actien: Action to be exacutad whan breakpeint is ancountaeraed. [Dofgult: {("w2-halt")]
—calls: list of cells to which tha breakpeint should be addad (default: all cells].
-condition: Pradicate to be avaluatad when breakpoint is ancountared. [Dafault: T]

-anabled: Spacifies whether breakpoint is initially snabled or disablad.[Default: T]
-file: scource file name [dafault: currentSourcaFilal].
~functien: Function nama [dafault: CurrentFunction].
~line: source line number.
-nodae: dag noda numbar {can ba determined with w2-suggestbreaks)
-nosalact: require user intaraction for node salaction whan
breakpoint not unidque [dafanlt].

14

Warp Programming Environment 2.6 Warp Shell

SEE ALEO: w2-dalete w2-sat w2-ghow w2-auggest

EXAMPLES :

w2-break -line 23 -file testl.w2 -salect

w2-break -line 23 -file sm -cell 1268

wZ~-break -ncde 13 -file test?.w2 -cell 12

w2-break -node 4 -file am.w2 ~-action "w2-go"

w2-braak -node 5 -acticn "({"w2-locals" "w2«gontinue")’ -conditien ‘ (egqual (i 3§))
w2-break -node 13 ~-functien foo -call 1 2

w2-break -line 23

The W2-BREAK command permits the user to set a breakpoint in the current W2 program. Breakpoints consist of
four parts: Status, Cell, Condition and Action part. The status specifies whether a breakpoint is enabled or disabled.
The cell part specifies the Warp cells to which the breakpoint applies. The condition part specifies a boolean
predicate. If it evaluates to TRUE the action part will be executed. The condition part can be any Common Lisp
expression and the action part can be any sequence of Common Lisp and Warp Shell commands. Thus breakpoints
are user programmable. The default values for the condition and action part can be changed by setting the
environment variables BREAKACTION and BREAKCONDITION, respectively (see W2-SET command). Any breakpoint
can be changed dynamically with the W2-EDIT command.

It is possible to mix Lisp and W2 values in breakpoint conditions. W2 values can be retrieved by calling the Lisp
function w2-get with any argument that is a valid argument to the Warp shell command W2.GET. W2.GET retumns
W2 values in the intemal representation used by Common Lisp. Examples of breakpoint conditions are:

(= (W2-GET "i%) 1)

= (W2-GET "-value glckbal"} 1.22333)

(and {= (W2-GET "-value i -cell 1"y 2
(= (W2-GET “-valuae i -call 2") 3)))

(= (W2-GET "-value array”) #{0.1 0.2 0.3))

In the following example, the breakpoint condition checks whether the W2 variable 1 has the value 1 every time a
breakpoint is encountered. If yes, the breakpoint action W2-HALT will be exeuted. If no, the execution of the W2
program is resumed without any breakpoint action. "Beginner" users are notified every time a breakpoint is
encountered, even if it evaluates to false. "Expert” users are only notified of breakpoints evaluating 1o true.

% w2-adit -break 1
Action {Continue, Skip, Abort) [Continuae]:

Name: 1 ENABLED Source Line: 45 in Functien: W2_PIPE
Conditien: {= {W2~GET "i") 1)
Action: { "w2-halt")
Cells: (L 234567805 10)
Noda: 1sl Namo:ﬂ!_?IPE$A Typa:FLOAT Op : SRECEIVE
Wi-Address: (458)

% w2-saet -usar baeginner

¥ wZ-execute -pipe input eutput

Copying input parametars into cluster MamcGIry. . .
Downloading microcoda for filae pipe.w2. ..
Locking Warp Excalibur...

Warp sarver queue is ampty,

Warp machine is yours:

Starting execution of module...

15

Warp Shell Warp Programming Environment 2.6

Braakpoint 1 encountared in cell 23: Line 45 in “/uarwél/bob/wpa/deb/pipe.w2"
Condition (= {(W2-GET "i") 1) i= falsa. Rasuming...

Breakpoint 1 encountaerad in cell 2: Line 45 in "/usrwél/bob/wpe/deb/pipe.w2"

Executing breakpoint actions...

@breakli®% w2-halt

breakl® w2-sat -exp axpert

breaklt w2-cont

Breakpeoint 1 encountered in cell 3: tine 45 in "/usrwél/bob/wpe/dab/pipe.w2"

breakl% w2-cont

Breakpeint 1 encountered in call 4: Line 45 in “/uc:wGl/bob/ﬂp./dab/pip..wz"

breakl% w2-cont

2.2.8 W2.COMPILE
W2-COMPILE Compile a W2 progranm
SYNTAX: w2-¢ [-file] filename [othar options (ses bealaw)]
OPTIONS:

-as (default "on"):

Assexble the output of the compiler (on, of£)

-chaeck: Cempile only if W2 scurce file or W2 cempiler varsion has been
changed [Switch].

-claan {default “en"}:

Remove compiler files n¢ longer nesdad after compilation {on, off}.

-debug: Gaherats clustar code for debugger (Warp) [Switch]

—dewnleoad: Download the microcoda onte the Warp array after the compilation [Switeh]
-file: Filas to be compiled (name of file) [Dafault valua: Current source filal
-hax (default “off"):
Produce taxt cutput (in hexadecimal} instead of binpary output ({(om,off)
~host (default "vmx"):
{vine: Do not use extarnal host for I/0, vmx: Uses axternal host for I/O)
~keap-error-log: Do not erasse Emacs buffar /arror-leg’ whan compilation
is started. [Switch]

-mdopt (default "7):

Pass M4 option to the M4 preprocessor.
-optimize {dafault "off"):

If off, do not generate optimized code.
~praserve (default TofifY) :

Keep the output of the macze axpander in FILE-RAME.pw2 (en, off)

—raelink: save files nasdad for relinking [Switech]
-reamote: Assambla Warp host coda on specifisd ramote machine (name of hoat)
-silent: Kesp the verbosity of the compiler messagas to a minimum [Switeh]
~spicy (default 0y
Charaterizes the size of the W2 program:

0 indicates a normal program, 10 a very large program {0,...,10}

-target {default “warp"):

Target architecturs for the W2 simulator {(warp, 2D, eend
-timing: Print timing information when running the W2 simulator
—verbose: Do not suppress compiler massages {Switch]

EXAMPLES:
w2-compile $WPEaxamples/w2/pipe.w2
w2-compile -file pipe.wZ -opt off
w2-compile pipe ~dag 10000 -basic 300 -ramota warpb -as on
w2-cempile -file pips.w2 -presarva on -download

To be able to execute this command, you must be a developer (see W2-SET). The simplest form of the

W2-COMPILE commang is
w2~compile -fils foo.w2

where foo.w2 is a w2 program. The option key word '_file’ and the extension *.w2’ are optional. If the Warp shell
environment variable WARP is set to the name of a Warp machine, code is generated for the cluster processors and
w1 microcode for the Warp array. If it is set to "simulator”, C++ code is generated. All W2-COMPILE options are
shown above. The ’-as on’ option assembles the microcode, *.as off* suppresses the assembly. The *-debug’ option
generates symbolic information needed for the debugger. The "_remote’ option is needed when the W2 program is

16

Warp Programming Environment 2.6 Warp Shell

compiled on a workstation that does not have access rights to the C compiler that translates the cluster code. In this
case the "-remote’ option can be used to specify a workstation with has access rights to the compiler. If you are
compiling large W2 programs, it is possible that certain data structures of the W2 compiler overflow. In this case
you can specify larger sizes with the spicy option. For example

w2-compile -file foo -spicy 2
will compile a medium program (some of the bigger programs in the WEB library, for example egpr). The spicy
flag will also ask for more space for your lisp system. Currently, the sizes are

apicy Lisp image size

1 26 MBytas
2 23 MBytaes
3 32 MBytes
4 36 MBytas
5 39 MByteas

It is a bad idea to use the spicy flag when there is another LISP/WPE job running on your machine. WPE will ask for
the space, but UNIX won’t deliver. (You can check the actual sizes while the system is running by using the "ps"
command, i.e. "ps ux") You should also keep in mind that the assembler & post-processors need some space of their
own. If you have 35 MBytes of swap space and run with -spicy 3, your post-processing jobs will die, and you get
the message "error in postprocessing”. Consider if you really need such a big WPE job, or use a machine with more
swap space.

If the first source line of a w2 program contains a comment of the form

/* configqure 01 V1 02 V2 On Vn *x/
where Oi is a w2-compile option and Vi is its value, then the program is compiled with these options. Options
added to the W2-COMPILE command line overwrite options in the source program. For example, if the first line in
foo.w2 contains

/* configure -spicy 2 */
and you type

% w2-compile foo.w2 -spicy 3
the w2 compiler is reconfigured with spicy option 3.

When compiling a W2 program, a separate Emacs window called W2 Error Messages is used for compiler
diagnostics (In Gosling’s Emacs the name of the screen buffer is error-log, in GNU Emacs it is *compilation*).
This window can be scanned for error messages using the X AN command. If the W2 compiler encounters an
internal error when in developer or user mode, the following message is printed out:

INTERNAL ERROR in W2 compilar:
Kaybcard intaerrupt or unknown Coempiler Bug.
Plaase send majil with datails to system maintainar.

The W2-COMPILE command is also available as a Unix shell command $WPEbin/w2¢. All the options mentioned
above are available. For example,
$WPEbin/w2c pipe.w2 -always
compiles the program pipe.w2 and returns back to the Unix shell,

2.2.9 W2-CONTINUE

W2 -CONTINUE Start or continue current W2 program
SYNTAX: w2-continue
OPTIONS:

«in: Warp shell variahles tc read from

~out: Warp shaell variables to write into.

Continue the W2-program from current the breakpoint.

17

Warp Shell Warp Programming Environment 2.6

2.2.10 W2-DELETE

W2-DELETE Delete a Warp shell object

SYNTAX: w2-delete opticn name
OPTIONS:

—cellis: List of calls of braakpeint to be deleted [daefault: *].
-type: Delets Warp shell type [no default].
-variable: Delets Warp shell variable [no default].
-breaks: Deleta braakpeint [no defaultr] .
EXAMPLES:

w2-dalete -breaks 5 -cells 1 23

w2-deleta -type pixel

w2-delete -var *

wz~delaets -braaks *

W32.DELETE deletes a Warp shell object such as a type, a variable, or a breakpoint.

2.2.11 W2-DISABLE

W2-DISABLE Disabla a breakpeint
SYNTAX: w2-disable
OPTIONS:

-breaks: Name of braakpoint. [* means all breakpointa]
EXAMPLES:

w2-disable -breaks 5

w2-disable -breaks 4 5 6

w2-disabla -breaks *

W2-DISABLE disables all cells of a currently active breakpoint.

2.2.12 W2-DOWNLOAD
W2 -DOWNLOAD down load micro code for program onto Warp array

SYNTAX: w2-download
OPTIONS:

-all: download clustarcode and microceds

—cluster: dewnload clustarcods

-micro: downlead micrecods

-file: source file name [daefaunlt: CurrentSourcaFilal.
EXAMPLES:

w2-download ~fils test2.w2
w2-download

The W2.DOWNLOAD command checks whether the Warp array is allocated. If not, it locks the Warp machine.
Then it downloads the micro and/or cluster code for the specified file. The file must have been compiled and linked
before. Note that downioading is automatically performed by the W2-COMPILE if the -download option is specified
and by the W2-EXECUTE command. '

2.2.13 W2.EDIT
W2-EDIT Edit user definaed Warp shall variable
SYNTAX: w2-adit
CORPTIONS:

~break: Name of breakpoint to be edited [No default].

-var: Name of Warp shall variabla to be adited [No default].
EXRMPLES:

w2-adit -break 1

w2-adit -var foo

W2-EDIT -VAR V opens an Emacs buffer for the Warp shell variable v and permits you to change its value with any
Emacs command. When editing is finished, the buffer has to be saved with a CTL C (There is no other way to save
the value!). Note the following distinction: If the Warp shell variable is already allocated in cluster memory, the
cluster memory will be updated with the new value, but the file associated with it will not be changed. If the

18

Warp Programming Environment 2.6 Warp Shell

variable is not yet inidalized in cluster memory, the file associated with the variable is changed. If a Warp shell
variable is edited that has not yet been initialized, a temporary empty file is created and visited. The naming scheme
for these files is explained in section 2.1.2.

WI-EDIT -BREAK permits to change several aspects of a breakpoint: the breakpoint condition, the action to be
executed and whether the breakpoint is enabled or disabled. An action can be any Lisp expression or a shell
command. It is also possible to write actions consisting of multiple Lisp expressions and Lisp shell commands. In
this case they must be enclosed by parentheses and Warp shell commands must be enclosed within double quotes.
The following is a transcript of an example session in the Warp shell where the user has set a break point 1 and
modifies it twice. First, we want the breakpoint to occur only if i is equal j and halt the Warp machine in this case:

% w2-adit -break 1
Enablad (T or NIL) [nil}: &
Condition [t]: (= i 3)
Action [w2-continue]: ("w2-halt")
Calls (Liat of integers hatwean 1..10) [{(1 23 4567839 10)1: 1 3

Then we would like to change this breakpoint such that it occurs unconditionally, prints out the values of the locals
of the current function and continues the execution without returning to the Warp shell;

* w2-edit -braeak 1
Enabled (T or WNIL) [T]: t
Condition [(= i 3¥1: ¢
Action [w2-halt): ((format t “Locals:~%")
"w2-locala"
{format ¢ "Continuing axecution...")
"s wZ-continue")
Calls (List of integers Letweean 1..10) [(1 3)]: 12 345 ¢

Note that any changes to the parts of a breakpoint take place only after the user finishes the whole editing cycle.
That is, if the user interrupts the modification of a breakpoint before the editing session is finished, the breakpoint is
not changed.

2.2.14 W2-ENABLE
W2 -ENABLE Enable a breakpoint

SYNTAX: wZ2-anabla
OPTIONS:

~breaks: Name of breakpoint. [* means all breakpoints]
EXAMPLES:

wi-anable -breaks 5
w2-enable ~breaks 4 5 ¢
w2-anable -breaks *

WZ-ENABLE enables all cells of a currently active breakpoint specified with the -breaks option.

2.2,15 W2-EXECUTE

W2-EXECUTE Execute w2 modulae
SYNTAX: w2-exscute
OPTIONS:
~file: File name of w2 pProgram to be exacuted (extension .w2 can be omittaed)
[Dafault: Curraent scurce fila]
~antolock: Leck and unlock warp machina avtomatically (en, 0ff) [Dafault: on]
~commant: String te be displayed when inspecting tha Warp server queue.
[Dafault: Specified in wpaprofila.slisp].
-time: Milliseconds alapsed during execution of laat W2 program
(Write also inte file, if file name specifiad) [Switahj
~parameters: List of actual pParamstara for w2 modula. Opticnal
EXAMPLES :
wZ-axecute ~file tast2, w2 “parametars indata cutdata -comment 'Tasting test2.w2’
wZ-axacute -f tast2. w2 -P indata outdata -tima testZ.time
w2Z-axecuta

19

Warp Shell Warp Programming Environment 2.6

The W2-EXECUTE command executes a W2 program specified with the -file option. If the -file option is not
specified, the w2 program specified in the last compilation is executed. If there is no such program, an eror
message is issued. Otherwise w2-¢xecute comparcs the actual parameter list given in the -parameters option with
the formal parameter list of the w2 module specified in the -file option. Actual parameters must have been defined
before as Warp shell variables (see W2-VAR command) and must be passed in the same order as defined in the W2
program‘s. Parameter comparison is done by position, that is, the first actual parameter is compared with the first
formal parameter, etc. If the types match, the microcode and cluster code of the module is downloaded and the
execution is started. It is possible to omit the actual parameter list. In this case the user is asked interactively to
provide them. If the -autolock option is on, the Warp machine is automatically locked and unlocked when the
W2.EXECUTE command is finished. If the -autolock option is off but the Warp machine is not locked, it is
automatically locked and it stays locked after the execution is finished.

22,16 W2-GET

W2-GET print a value
SYNTARX: w2-gat
OPTIONS:

—cells: Cells to inapect (* means all calls) [Dafault: Cells in which the current
breakpoint occurred]

-columns: How many columns to use for printing valuas [dafault: 1}.

~function: Function name (* means all functions) [default: CurrentFunction] .

-var: Varisble nana [No default].

-glcbals: Display the glcbals of tha call program {external to all functions).
~locals: Display the locals of the funccion. .

-moda: Display format (INT FLOAT BINARY OCTAL EEX or *) [Dafault: W2 Type of variabla]

EXAMPLES:
w2-gat ~-value tamp -calls 1

w2-gat Lemp

w2-gat =-locals

w2-gat =-locals -function init -mods *
w2-get -globala

w2-gat temp -mode *

w2~get temp -mode hex

Print the vaiue of varables. The keyword -value is optional. If it is omitted, the variable name has to be the first
argument of the command. If the -locals option is specified, the command prints the values of the specified
function. If the function is not allocated, an error message is printed. If the -cells option is specified, the values are
shown for the selected cells, otherwise only the values of the cell in which the current breakpoint occurred are are
shown. The -mode option permits the user to specify one of several display formats. For example -mode int will
display the value as an integer. -mode * will display the value as an integer, float, binary, octal and hexadecimal

2.2.17 W2-HALT
W2 -HALT Balt the Warp Machine
SYNTAX: w2-Halt

Ealt the Warp Machine
This command instructs the Warp shell that the Warp machine is halted.

137§ 1he user executes 2 W2 program that has been previously compiled with the w2.COMPILE command, the Warp shell accesses the syntax tree
to do the parameter checking. If the syntax tres is not available, the Warp shell tries to access a file whose name is derived from the concatenation
of the file root specified in the -file option and the extension .param The .paran file is a text file that specifies things like the location of the
micro code and cluster code, the name of the W2 module and the number and types of the formal parameters.

20

Warp Programming Environment 2.6 Warp Shell

2.2.18 W2.INIT
W2-INIT Initialize the GIL
SYNTAX: w2-init
QPTIONS:

=gil: Init the GIL
SEE ALSC: w2-load

Initializes the generalized image library. If this command has not been issued when the user tries to use the
generalized image library, the initialization will be done automatically,

22.19 W2.-LOAD
W2-LOAD Load a component
SYNTAX: w2-load [~compiler | -debugger | -warpshall]
OPTIONS:

-compilar: Load the w2 compilar,
~debuggar: Load the w2 debugger.
~warpshell: Load the Warp shell.

-startupfile: Name of Lisp file that contains tha loading commands.
EXAMPLES:

w2-load -Warpshall

w2-load -dabugger -compilar

w2-load -compilaer -startupfila /uur/bob/wpo/start.sliap

Load a component of the Programming environment into the Warp Shell. Current components are the compiler,

the debugger and the Warp shell. The command W2-LOAD -COMPILER -STARTUPFILE F can only be used when you
have loaded WPE using the wpel or wpegl command (see Section 2.3), that is, if you don't use the core image
version. Loading a compiler into the core image version with another compiler already being loaded is not very
useful : old defvar declarations won't be overrridden.

2.2.20 W2-LOCKWARP

W2-lockwarp resarves the Warp machine
STHTAX: w2-lockwarp
OPTIONS:

~quauas: Display the quaue of users currently using the Warp er
reguesting it.
-timecut: Number of minutas baefors timing ocut [Default: -1 (Eorevar)].
-noqueus: Don’t list the users whoe have currantly raquasted Warp [Switch (Dafault)]
~comment: String to be displayed whan inspecting the Warp sarver quala.
(Any string without blanke) [Default: Running_ﬁa:p_progrsmming~environment].
~notifyme: Send a request if somebody wants to use Warp (ON, OFF) (Default: Oon].
SEE, ALSO: w2-unlock w2-warpqueue
EXAMPLES:
w2-lockwarp

This command tries to allocate the Warp machine for you. To release Warp, use the shell command W2-UNLOCK.
If the machine is already in use by another user a string specified by the -comment option is sent to that user and you
are appended at the queue of users waiting for the Warp machine, If the -queue option is used, this queue will be

displayed. The head of the queue specifies the current owner of the Warp machine. Once you are at the head of the
queue, the message

Warp machine is yours:

appears on your screen and the Warp machine is locked.

21

Warp Shell Warp Programming Environment 2.6

2.2.21 W2.RESET

W2-RESET Raset the W2 debugger, the Warp servar or
the Warp machine teo ita initial stata.
SYNTAX: w2-Resat
‘—varbosa: Be varbose when rasetting [8witeh {(no default)]
-parvar: Rasat the sarver
—debugger: Resst the debugger
_file: Current source file [Default: CurrentSourcaFila]
-Warp: Reset the Warp array

Initializes the W2 debugger or the Warp server to its inital state.

The memory descriptors of all allocated Warp shell variables are invalidated. The W2-RESET -DEBUGGER
command should be used whenever the debugger is in a dubious state. The command deietes ail currently defined
breakpoints, and any assumptions about the last compiled w2 file.

The W2-RESET -SERVER starts or restarts the Warp server. This command should be used after it has been
determined that the Warp host and file server are working correctly (Use the W2-SANITY command to check the state
of the file server, Warp host, Warp server and Warp machine). The W2-RESET -SERVER command might not be
successful in restarting the Warp server. For example, if the current Warp server is hung, this command has no
effect. In this case, login on the Warp host and call $WARPmisc/reset_server to reset the server!®. The
reset_server program unconditionally kills any existing Warp server even if there are users currently using the
Warp machine (because of this reason it should be used with care!). Then it pauses for 60 seconds, tries to restart
the Warp server and exits with "Reset complete". However, if you also get the error message "Cannot
bind socket address!",the reset wasnot successful and you have to try again.

The W2.RESET -WARP should only be done after the W2-SANITY command has determined that the Warp machine is
in a bad state.

2.2.22 W2.RESTART

W2-RESTART Rastart currant W2 program
SYNTAX: w2-zestart

Restart the current W2 program with the i/o parameters from the last W2-EXECUTE command. Note: W2-RESTART
cannot be used if the Warp server has died after the last W2-EXECUTE.

2.2.23 W2-SANITY
W2-5ANITY Check the state of Warp hest, WPE server, Warp saerver and Warp array.
SYNTAX: w2-sanity

Checks the stata of the Warp server, WPE sarver, the Warp host and the Warp array
The state of thae Warp machine is checked cnly if all the other componants
sesm to be working. If the Warp host is up, w2-sanity checks ita uptime
Warp host. If the -statistics option is specifiaed, it prints several
statistics about the Warp array (ses WPE usar manual} .
OPTIONS:
—statistics: Print statistica about Warp array
EXAMPLES : -
w2-sanity

Because of its distribution over several machines, the Warp Programming Environment is less reliable than a
single machine environment. The purpose of the W2-SANTTY command is to give the user some help t0 check the
state of the components of the environment.

19Exgcuting reset_server onany other workstation than the Warp host will have no effect. If you are not autherized o login on the Warp
host, ask the system maintainer to do the reset for you.

22

Warp Programming Environment 2.6 Warp Shell

It consists of two parts: First it checks the state of the Warp host, Warp server, WPE server and Warp array. The
following responses are possible:

-==> Internal error in sanity check.

===> Warp hosat not up.

-=~> Warp server not running.

===> WPE server not running.

—~-> Cannct test Warp array (problem with user sarver) .
~——> Warp array is not accessibla,

==-> Warp host, Warp server, WPE servaer and Warp array ara all accessibla.
The messages Problem with user server usually means that there is not enough memory space available on the
Warp host to fork off a user server to do the testing.

If the Warp host is up the command then checks the uptime of the Warp host. For example:

Checking uptima of Warp host...
1:45pm up 41 mins, 3 users, 2load average: 2.73, 2.14, 1.57

Finally, if the -statistics option was specified, the command checks several statistics about the Warp array. These
statistics characterize the past behavior of the Warp array while running a program cailed idle, a Warp monitor
program executed by the Warp server whenever there is no other entry in the Warp server queue. Idle repeatedly
runs a W2 program which retumns known results, compares the actual results with the known values and tabulates
the number of failures/successes?©,

The fields have the foilowing meaning:

Total time since Date
Time of the interval from when reporting started until the moment that the last idle run started or

stopped.
Total downtime Accumulated down time of the Warp host or Warp array. during the reporting interval.

Total valloc downtime
Accumulated time where idle cannot run because of lack of virtual memory on the Warp host.

Total non-idle time Accumulated time of Warp array usage,

System Crashes Crashes of the Warp host.

Valloc Fajlures ~ Number of failures during a valloc call.

Successes Number of successful completions of the idle program.

Failures Number of completions of the idle program.
The following is an example of the behavior of Warp:

Checking Warp Array statistica...

Total time since Wed Jul 29 16:51:5¢ 1987 = 380:53:09
Total downtime = 08:17:30

Total vallec dewntime = 01:56:55

Total non-idle time = 33:58:13

Systam Crashas = 20, Valloec Failures = 5§

Successes = 3446690, Failures = 0
As we can see from this example, the Warp array has been up for more than 380 hours and has been used for almost
34 hours in this period.

P4dle is located in SWARPmisc/idle. For each idle run the Warp server adds information to a file SWARPmisc/idle log.

23

Warp Shell Warp Programming Environment 2.6

Note that the W2-SANITY command is only checking whether each of the above components are running. It does
not guarantee that they are working correctly. The command issues a remote shell call to the Warp host to look for
the Warp server process and applies the following heuristics: If the remote shell call cannot be executed for some
reason it returns the message Internal error in sanity_check. If the remote shell call times out, it assumes that the
Warp host is dead?!. If it cannot find a process with the name warpd running on the Warp host, it assumes the
Warp server is dead. If it cannot find a process with the name /netimaged it assumes the WPE server is dead.
Finally it checks whether the Warp machine is in a bad state.

2.2.24 W2-SET
W2-SET Set an environment or usar defined variable
SYNTAX: w2-sat
OPTIONS:

-binaryfile: Binary file that contains value of Warp shell variable [Ne default] .
-breakaction {default "w2-halt"}:
Dafault action for breakpoints.
-breskcondition (default T):
Dafault condition for breakpoints.
—calls: Cell list to be used for othar dabuggar commands [No daefault].
-damo: Single step Warp shell comuands in command filaes [Default: off}.
-display {dafault "huffar"):
Display device (buffar, monitor, window).
-schocommandfilecommands: NWIL
—aditor: Use taxt editer facilities {Gnu~Emacs, Emacs, off)
{Dafault: Depands on invocation].

-axparience: Leval of exparience (beginner, eaxpart) [Dafault in wpaprofile].
-functien: Current function [Ne default]
-gimage: Geperalized image that contains value of Warp shaell variable (Ho default].

-host: Warp host (warp8, warphb) [Default in wpeprofila].
~prompt: Prompt string [Dafault specifiad in wpeprofils}.
-printarrays: Print arrays in w2-get command (on, off) [Dafault: off]
—showcommandfile: Show command file when executing it (on, off)

[Dafault in wpeprofila]
_sourcefila: Currsnt scurcefile [Dafault: Fila nama of last compilation].
—teaxtfile: Taxt file that c¢ontains valua of Warp shall variable [No default] .

—timecut: Seconds to wait for the axacution of Warp programs before timing out
[Dafault: 15].

~user: Type of user (usar, developer, implamentor} [Default in wpeprofile].

~valuea: Valua for the user variabla [No default].

—var: User variable te be set [No default].

-warp: Warp machine (installation depandant) [Default in wpaprofila].

-servercomment: Comment displaysd when waiting in Warp server quaue.

EXAMPLES:

w2-set -cells 01 23 4567859

w2-sat -cealls 1

w2-set -var in -binaryfile * fusr/bok/wpe/input . image"
w2-set -var out -taxt * /usz/bob/test/output”

w2-set -printarrays on

w2-gat -function init
w2-sat -host warp8

w2-sat -editor Emacs
w2-gat -exparienca beginner
w2-set -user implementor

21The remote shell call looks into your .cshre file before executing the remote command. If there are bugs in your . cshre file, the W2SANITY
command might tzll you that it cannot conncct 10 the Warp host, even if the Warp host is up. In this case, issue the command W2.TRACE -SERVER
oN and waich the message traffic. You might get a message like

<<< tarm: undefined variable
The problem in this case is that your .cshre file did not define the C-shell environment variable TERM before it used it.

24

Warp Programming Environment 2.6 Warp Shell

W2-SET changes the value of user-defined variables defined with W2-VAR and environment variables such as the
current target process, the current source file, the active cell list, etc. If -editor is Emacs (=Gosling's Emacs) or
Gnu-Emacs, then the Warp shell will assume that it runs inside a text editor and will try to make use of editor
facilities such as multiple windows when it is compiling W2 programs, executing command files or displaying
breakpoints. Note that setting the Warp host with the -host option automatically sets the Warp machine, and setting
the Warp machine with the -Warp option automatically sets the Warp host. For example, W2-SET -HOST WARPS sets
the Warp machine to GE. The -di splay option changes the default display device used for displaying variables
with the W2-SHOW command. Display option value "buffer" binds the display to an Emacs buffer, "window" binds
the display to an X window and "monitor” binds it to the Datacube display attached to the Warp machine. Note that
the default display can be overwritten for any Warp sheil type (see W2-TYPE command) and when displaying
variables (see W2-SHOW command).

2.2.25 W2-SHOW

W2-SHOW Show environmant variablas
SYNTAX: w2-ahow
-all: show anvironmant, user defined variables and breakpoints [dafault].
~binaryfile: Writa Warp shell variabla into binary file
~breaks: show currently defined breakpoints.
~display (default "buffar”):

Display to be usaed {(Buffar, <GIL-Nama>, Windowl, Windowz, Monitor)
-environment: show anvirenment variablas: user typa, scurce fila, atc.
~gimagefile: Write Warp shaell variabla into a compact GIF format fila.

Filename is checked for extension .gif
-ranga: show slicas of the apecified array-variabla(s).
Spacify a pair l:u for each dimension of the array
{1 = lowar bound, u = uppar bound of alicae).
-textfila: Write Warp shell variable intoc a taxt file
-types: show currently defined Warp shall type T [Default: all types].
~trywarp (default 5):

Seconds to wait for Warp to do halftoning for imaga display on X window.

-variables: show user definad Warp shell variable V [Dafault: ail variablas].
EXAMPLES:

wZ2-show -break

w2-ahow -variablas

wZ-show -var foo -taxtfilae /usr/bob/wpe/foo
w2-show -var image -gimage /ua:/wp./imagoa/imago
wZ-show -typas

w2-show -var brain —display nat:warpm:cube
w2-show -var kung -display windewl -trywarp 10
w2~show -var foc -range 0:3 0:11

w2-show

w2-show -environmant

W2-SHOW shows environment variables such as the current target process, the current source file, user defined
Warp shell types and Warp shell variables and breakpoints. If a file option -binaryfile, -gimage or -textfile is given,
the contents of the Warp shell variable is written into a file. Files of type -gimage are created by a space saving
compaction algorithm and have the extension .gif. Binary files will be converted into text files for the time of the
viewing. The -range option can be used for binary files to display slices of arrays. For example, w2-show -var b
-range 0:3 0:13 displays the first 14 elements of the first four rows of (array) variabie b.

If no file option is given, the variable will be displayed in the display device specified in the W2.TYPE declaration.
A noninitiatized Warp shell variable that is associated with a file is initialized in user server memory before it is
dispiayed. Thus the Warp shell always tries to display user server memory instead of file contents. As a side effect,
after the Warp shell has detected that the user server has died, for example as a result of a Warp host crash, and a
Beéw user server has been created, the W2-SHOW command re-initializes the Warp shell variable in user server
memory with the associated file value before it displays it.

25

Warp Shell Warp Programming Environment 2.6

The -display option can be used to overwrite the display device binding of the type definition. Display option
value "buffer” displays the variable in an Emacs buffer. Display option value "windowl" or "window2" displays the
varable in an X window and "monitor” displays it on the datacube display attached to the Warp machine??.
<GIL-Name> can be the name of a generalized image as specified in the GIL user manual.

When displaying an image in a X window on a binary screen display, error propagating half-toning is performed
on the fly. This permits the binary Sun screen display to be used for grey-level displays. The haif-toning algorithm
is slow, but results in relatively good looking images. If speed or accuracy is important, the Datacube monitor or a
color screen should be used instead. If the display option "windowl” or "window2" is used, and the Warp shell
variable has been declared of type array[512 512] of byte, then halftoning is attempted on Warp using the WEB
library routine display. This is 20 times faster than the halftoning performed by the GIL and has a much better
algorithm. The -trywarp option determines how long the Warp shell tries to lock the Warp when attempting to do
the halftoning: If the Warp is not available within the specified time. the halftoning is performed by the GILZ.

X windows are created interactively with the mouse. If you press the left mouse button, the default size indicated
by the flashing identification window will be used. The middie button permits you to chose the size of the window.
Press the button to define the upper left comer of the window, move the cursor to where the opposite comer of the
window shouid be and release the button, Pressing the right button produces a window with the upper left comer at
the cursor and the lower left comer at the bottom of the screen®*. At window creation time, the image is transformed
by the generalized image library to fill up the whole window. Note that once the window is created, changing the

shape of the window does not change the shape of the image.

If the variable is not bound to a file, the value will be displayed in the Warp shell buffer. The contents is copied
into a file in the /tmp file structure before it is displayed. The naming scheme for these files is explained in section
2.1.2. The -range option permits the display of slices of arrays. For example,

w2-shew -var b -range 0:3 0:13

displays the first 14 elements of the first 4 rows of variable B.

For each Warp shell type the W2-SHOW -TYPES command displays the name, basetype, bounds (if an array) and the
size of bytes. The following shows all predefined types as well as two user defined types £loat 10 and intyp:
Warp Shaell Typas:

Nama Basatyps Bounds Size(Bytes)
integer intager - 4
floatlQ float (19) 40
byte byta ——— 1
unsigned-byts byte -—- 1
unsigned char char -— 1
char char -——— 1
intyp integer (12 12) 576
flcat float — 4
signed-hyta byte -——— 1
signad char char -— 1

The display format for all Warp shell variables uses seven columns:

22[f the -monitor option is used, the Warp is locked before the datacube is opened. This avoids sending 2 VME reset signal te the external host
when somebody uses the Warp while displaying on the datacube, which causcs the datacube access to get lost (and sometimes the Warp host to
crash).

2The halftoning is always performed by the GIL if the display option "xwindow” is used.

242,51 more details on the creation of X windows, sce the section Sizing Windows in the X (1) entry of the UNIX manual,

26

Warp Programming Environment 2.6 Warp Sheil

Warp Shell Variablas:

Nama Typa Mamcry MDesc Moda Init’d Value
data floatld clm2 0 text yas /uar/bob/wpn/tast/poly/data
cepyin intyp d/e -1 binary ne /usrw62/yam/w2/test/indata

The first two columns, Name and Type contain the name of the variable and its Warp shell type. Memory indicates
where the variable will be allocated in the cluster memories when the user locks the Warp machine. For example,
clml means memory 1 in cluster processor 1, and d/c means don’t care. The column titled MDesc describes
whether the variable has been allocated in the address space of the associated user server. A memory descriptor -1
indicates no allocation, any other integer indicates that the variable has been allocated. Init’d shows whether the
user server memory has been initialized or not. If the variable is 2 file, value contains the file name and Mode
shows whether the associated file is in binary or in text mode.

2.2.26 W2-SUGGESTBREAKS
W2-SUGGESTEREARS suggest posaibla breakpoints

SYNTAX: w2 -~suggestbreaks
CPTIONS:
~line: source line number Iange. (* denctaes all source lines of current fila)
[Dafault: *]
-function: function name. (* denctas all functions) [Default: CurrentFunction]

~fila: source file name [default: CurrentSourceFila].

SEE ALSO: w2-braak
EXAMPLES :

w2-suggesthreaks -file tast2.w?
w2-suggestbreaks -line 23 34

w2-suggestbreaks -line *
w2-suggest -line 12 36 -funation initialize

This command suggests possible breakpoints in the specified source line range. Because the w2 compiler is
highly optimizing, source lines which look like possible breakpoint candidates may actuafly not be used. The
W2-SUGGESTBREAKS command permits the user to explore the possible breakpoints of the object code on a source
line basis,

2.2.27 W2-TRACE
W2-TRACE Turn on or off tracing information for Warp server and aditer.
SYNTAX: W2-Trace
OPTIONS:

—sarvar: Monitor message traffic between sarver and Warp shaell (on, off) [off]
-editor: Monitor message traffic between aditor and Warp shell (on, off) [off]
SEE ALSC: w2-lockwarp w2-unlockwarp w2-sanity
EXAMPLES:

W2~Trace ~servar on

W2-Trace -editer con

W2-Trace -szarver off

The W2 TRACE -SERVER command is useful whenever the user suspects that there is something wrong with Warp
machine or with the user server. For example, it should be used whenever the Warp machine times out. Messages
sent to the server are prefixed with ">>>", messages returned from the server are prefixed by "<<<". The format of
the error messages is described in Section 4.3. The command W2-TRACE -EDITOR ON is for debugging the interface
to the editor. Messages sent to the editor are prefixed with "Editor>>>",

27

Warp Shell Warp Programming Environment 2.6

2.2.28 W2-TYPE
W2-TYFE Daclaze a Warp shell type.
SYNTAX: w2-type T TD
CPTIONS:

-display (default "buffar”):
Display to be used (buffer, windowl, window2, monitor, <GI>)
SEE ALSO: w2=-var
EXAMPLES:
w2-typs PIXEL unsigned-byte
w2-type IMAGE ARRAY[512 512] of pixel

The W2-TYPE command defines a type T using the type descriptor TD. If the —~display option is used, it will be
used to select the display when displaying Warp shell variables of type T with the W2-SHOW command (see Section
2.2.25). If T has already been declared the old declaration is no longer available (if NOISY is on, 2 warning is issued
in this case). TD can be composed of other user defined w2-types and any of the types described below:

- Siza
unsigned-byte 8 bit
signed-byte 8 bit
char B bit
intager 32 kit
float 32 bit
arcay[diml] of T {diml+l) * {(aize of T}
array(diml dim2] of T (diml+1) * (dim2+41) * (size of T)

dim1 and dim2 are the upper bounds of arrays starting at lower bound 0. Arrays of higher dimensions than 2 have 10
be composed by using amray of array constructions. For example: 'array[3] of array[2] of array(3] of integer’ defines
a 3-dimensional array of integers. Dimensions can be separated by a comma or by a space.

2.2.29 W2.UNLOCKWARP

W2-unlockwarp releases the Warp machine
SINTAX: w2=-Unlockwarp
OPTIONS:
—killserver: Unlock Warp and alaso %ill the user servaer.
SEE ALSO: w2-lock wZ-warpqueue
EXAMPLES:
w2-unlockwarp
wZ2-unlockwarp -killssrver

This command releases the Warp array locked by a previous W2-LOCKWARP command,

2.2.30 W2-VAR
W2-VAR Declares a Warp shall variable.
SYNTAX: w2-var -name N -type T -file F -component C
CPTIONS:

-name: Name ¢f the Warp shall variable
-type: Type of the Warp shell variable

-initialize: Initialize variable in cluster mamory at declaration time [Switch].
-input: Initialize variable in input cluster mamory at declaration time [Switch].
-output: Initialize variable in cutput clustar mamery at declaration time [Switch].
-binaryfile: Initial valua is in binary file ¥

-gimagae: Initial value is in G which is a generalized image

—textfila: Initial value is in text fila F

—valua: Initial valua is in lisp variakle L

—noarror: Mo error if variable is already declared. [Switchl
~component: Host component whare to allocate tha variable:
{sun, clm2,c1m3,c2m2,=2m3,31m2,31m3,dk) {default: dk (=don’t care)]

SEE ALSO: w2-type
EXAMPLES:
w2-var -name foo -type image -binary /uar/beb/tast .bin -initialize
w2-var -name bar -type imaga —cemponant clmi -taxt /uar/bob/tast . dat
w2-var -pame bar -type float -value BAR
wZ-var -name rasult -type image

- Warp Programming Environment 2.6 Warp Shell

The W2-VAR command declares a variable of type T and binds it to the name N. If N has already been declared,
the old declaration is no longer available (A warning is issued if NOISY is on).

T can be a built-in type or a user-defined ype (see W2-TYPE command). The -component option specifies the
component where the variable will be allocated. Possible components are “sun", "CIM2", "CIM3", "C2M2",
"C2M3", "dk” (which means don’t care).

The W2 compiler generates DMA code by default for all W2 programs compiled without -debug option. To
effectively use DMA, inpur Warp shell variables have to be allocated in C1IM* (CIM1, C1M2, CIM3) and output
Warp shell variables in C2M* (C2M1, C2M2, C2M3). The options -input and -output indicate these components.
For example, to allocate Warp shell input variable IN and output variable QUT, use

w2-var -name IN -typa float -input
w2-var -name OUT -type float ~output

If memory allocation fails in a cluster component specified with the -component option, for exatmple becanse there
is not enough space, a wamning is issued and the Warp shell tries to allocate the requested variable in a component
selected by the Warp monitor (same as dont’t care). This allocation will be successful as long as there is enough
memory space available in the memory boards.

The value of the variable can be associated with a binary file, text file or a generalized image file F with the
-binaryfile, -textfile or -gimage option, respectively. These options are useful when you want to initialize a Warp
shell variable with the contents of a fileS. If the -gimage option is used, the variable has an initial variable which is
contained in the generalized image G. The -value option associates the variable with the value of a Lisp variableZ6,
If a Warp shell variable is not associated with a file, then its value is only kept in cluster memory (or in Lisp
memory) and is deleted when quitting the Warp shell.

The -initialize option is useful for Warp shell variables used as input parameters for W2 programs. If the
-initialize option is used, then the user server memory is initialized at declaration time with the associated value (The
Warp shell does not do any type checking during this initialization). Otherwise the initialization is delayed until the
input parameter is actually used (for example in a W2-EXECUTE command). Normally, a warning message is issued
if the variable is already declared. This is suppressed in expert mode or with the -noerror option.

It is possible to issue W2-VAR commands even if you have not locked the Warp machine. In this case Warp shell
variables are allocated in the address space of the user server process. When you finally get access to the Warp
machine, the memory associated with the variables is copied into the cluster processor memories. And when the
machine is unlocked, the variables are copied back from the cluster memories to the user server’s address space.

2.2.31 W2-WARPQUEUE

w2-warpqueue Show the users currently owning the Warp machine or waiting for it.
SYNTAX: w2-warpqueuas
SEE ALSO: w2-lockwarp w2-unlockwasp
EXAMPLES:
w2-warpquauae
This command shows the current entries in the Warp server queue. If there are no users, the Warp queue is

empty. Otherwise the first entry of the queue is the current owner of the Warp machine and the other entries are

25 In older versions of WPE, it was also possible 1o associate a file name with a Warp shell variable to store an execution result. This is no
longer pessible. To write the value of a Warp shell variable into a file, use the w2.SHOW command.

2€The -value option is not yet implemented.

29

Warp Shell Warp Programming Environment 2.6
users who have requested Warp and are waiting for it.

2.3 How to load a Customized Warp Programming Environment

The Warp shell can be customized in various ways, for example by use of the ALIAS command and by changing
the default values of environment variables in the initial command file warpshellinit.cmd. This section is intended
for users who want 1o customize their shell even further.

The wpe and wpeg commands start up a core image of the Warp Programming Environment with a stable version
of the W2 compiler. If you need to load a customized environment, for example because you are working on an
experimental compiler, you have to load the whole environment from scratch. This can be done with the commands

SWPEbin/wpagl {for GNU Emacs)

SWPEbin/wpel (for Gosling’s Emacs)
These commands "source” an environment file warprc (see Section 2.4.1) and invoke the editor function loadwsh
instead of pcwsh. When WPE is loaded, the version number is printed out, followed by the name of the editor and
the full pathname of the directory file wpe.slisp (see Section 2.4.4). In the following example WPE is read from
$WPEroot/ inside the GNU Emacs editor:

> "Warp Programming Environment 2.6, 08-Jan-~-88"
> “Ghu-Emacs"”
> "S$WPEroot/wpe.slisp”®

The version number in the mode line in the Emacs buffer is postfixed by anL:

Warp Programming Environment 2.6L: Warp shell (EHost:warpm User:Inmplementor)

Loading the Warp Programming Environment this way takes about 5-15 minutes, depending on the main memory
configuration and the job load of your workstation and whether all the components are being loaded. The W2
compiler is not loaded by default. When a user types the W2.COMPILE command the first time, a W2 compiler will be
loaded automatically before the command is executed. This compiler is a "stable version” that has successfully
compiled a test suite of W2 programs. To load the stable version of the compiler at startup time, the Lisp-variable
Load-Compiler defined in the configuration file (Section 2.4.5) must be set to t. To load an experimental
compiler at startup time, change the setting of the environment variables W2root and W2compiler (see Section
2.4.1).

2.4 Customizing the Initial Startup
Six files are initially looked up when loading a customized WPE:
¢ Environment file (warprc)

« Editor profile (.emacs for GNU Emacs or .emacs_pro for Gosling’s Emacs)
e Boot file (warpshell.el for GNU Emacs or warpshell.ml for Gosling's Emacs)
» Directory file (wpe.slisp)
« Configuration file (wpeprofile.slisp)
o Update file (bugfixes.slisp)
The update file is for temporary bug fixes that ‘have not yet been incorporated into the current releass. The
configuration file wpeprofile.slisp specifies the initial software configuration as well as the default settings of

several Warp shell variables. The directory file wpe.slisp specifies the location of various directories and files
needed when loading WPE. The location of wpe.slisp is wired into the boot file warpshell.ml or warpshell.el,

30

Warp Programming Environment 2.6 Warp Shell

whose locaticn in tumn is determined by your .emacs or .emacs _Pro, respectively. The environment file defines the
Unix environment variables which specify the absolute path names of the locations of the wWpE components.

The environment file is "sourced"” first during a customized startup. The directory file is the first Common Lisp
file to be loaded, which loads the configuration file as its first action. Thus the names of all the directories and the
initial configuration are known before the rest of the directory file and the other files are executed.

2.4.1 The Environment File; warpre

The environment file defines several Unix environment variables needed by the various users of the Warp
Programming Environment. warprc is Iooked up in two places: First in the current directory, then in the user’s
home directory. If it is found, it is automatically "sourced" before WPE is invoked. If it is not found, it is assumed
that the user has already source the warpre file (for example in the .Jogin file)).

Figure 2-1 is an example of a subset of the environment variable definitions in a typical a warpre file, Note, that
all directory names must be terminated with a "/ and that the names are case sensitive.

satenv WARPtype PCW

satenv WARPhoat WATrpm

setanv WARPbin /uer/pewarp/bin/

setenv WARPinclude /usr/powarp/include/

satenv WARPLlib /usz/powarp/lib/

satenv WPEhoma ~ /uer/wpa/

setenv WPErcot /usz/wpa/exp/

satsanv WARPsarvaer /usr/pcwarp/support/servar/
setenv WARPmiasc /usz/pcwarp/misc/

setaenv WARPaxtarnare /uar/pcva:p/holt/src/axtornal/
sstanv WPEdec /usc/wpa/doc/

satenv WPEbin /uar/wpa/bin/

setenv WPEaditor /usz/wpe/gnu-ext/

sstaenv WPEwarpshell /u-r/wpc/exp/wnrpuhall/
setanv WPElispshall /usr/wpa/exp/lispshall/
setany W2root /uar/np-/oxp/compilor/common/
setanv W2compiler /usr/wpe/axp/compilec/pow/
sstenv W2dabugger /usr/wpa/exp/debugger/

setanv W2simulator /usc/wpe/exp/simulator/
sstanv WPEexamples /usr/wpa/examples/

setanv WPEdamo /uaz/wpe/demo/
setanv Mdinclude /uer/wpe/include/

satanv GIL /usr/viaion/axparimantal/lih/
satenv WindowManager /usr/misc/.X/lib/ -

set path = (SWARPbin SWPEbin Spath)

Figure 2-1: Example of a warpre file

If you maintain a private version for any of the WPE components, make your own copy of the warprc file and
copy it into your working or home directory.

2.4.2 Editor Profiles

Hf you are using GNU Emacs, your .emacs file should contain at Ieast the following lines:
(satg load-path (cona "S$WPEaditor/" load-path)}
{setqg window~-min-height &)
(satq split-height-threshold 6)
{glcbal-set-key "\AX\~L™ ‘run-lisp)
{(load "$WPE-ditor/varpsh-ll.al" nil t)

31

Warp Shell Warp Programming Environment 2.6

If you are using Gosling’s Emacs, your .emacs_pro file should contain the following lines:

{load “$H?Ehom./n;clih/p:ocols.ml")

(aatg -plit-hoight-thr-shhold &)

{autoload “"wsh" “$ﬂPEhomn/m;clib/wl:pahall.ml")

{autoload "common-lisp-mode "$WPEhome/maclib/common-1isp.ml")
(bind-to-kay "cemmon-lisp" PNAXNALY)

Note that common-lisp-mode rebinds the CTL Z key. To make the common-lisp-mode available when visiting files
with the extension " slisp” or ".lisp", add the MLisp lines

(auto-execute "common~lisp-mode™ "*.slisp”)

{auto-execute "oommon-lisp-mode™ "*, lisp™)

to your .emacs_pro.

2.4.3 The Boot File: warpshell
If you are using GNU Emacs, the default location of the boot file is $WPEeditor/warpshell.el. If you are using
Gosling’s Emacs, the defanlt location of the boot file is $WPEhome/maclib/warpshell.ml.

The boot file specifies the location of the directory file. This is done in the Lisp function loadwsh by setting the

variable *LoadingFromDirectory*:
(satf *LoadingFromDirectory* {(concat (gestenv "WPErcet' “wpa.alisp”)))

If you want to load the WPE version from fust/foofbar/, then change the environment variable WPEroot in your

warpre file:
sstanv WPEroct Jusx/foc/baz/

2.4.4 The Directory File: wpe.slisp

The directory file wpe.slisp binds the environment variables defined in the environment file to the Common Lisp
names of files and directories used by WPE The directory file is located in $WPEhome/current/wpe.slisp and
$ WPEhome/exp/wpe.slisp, respectively.

2.4.5 The Configuration File: wpeprofile.slisp

When loading a customized environment, the file wpeprofile.slisp determines the initial configuration of the
Warp Programming Environment. For example, the file specifies whether the W2 compiler is initally loaded
(*load-compiler*), whether garbage collection is done noisy or silently (*ge-silence), whether the core image can
be saved (*load-core-image*), eic. The configuration file is looked up in three places untl a file is found: First in
the curmrent directory, then in the user’s home directory and finally in the directory $SWPEhome/. The file
$WPEhome/wpeprofile.slisp contains the default configuration. If you want to specify your own configuration,
copy it into your home-directory or current directory and modify it.

2.4.6 The Update File: bugfixes.slisp

Sometimes a bug has already been fixed by the maintainer, but has not yet been incorporated into a released
version. The purpose of the update file is to deal with those bugs. In general, the update file will contain commands
to load some Lisp code that contains the bug fix. Tt can also be used to temporarily overwrite default settings of
environment variables. For example, it could contain a command to set the Warp host to "warpb", if the default
Warp host is down because of hardware problems. The update file is looked up in two places, the current directory

32

Warp Programming Environment 2.6 Warp Shell

or SWPEhome/current/?’. It controls whether the Warp shell should handle ail errors that occur during command
execution. If ’yes’ (the default), the shell handles errors by printing out an emror message and simply continuing, If
‘no’, no handling occurs and the Common Lisp debugger is called instead. This makes it possible to use the normal
Common Lisp debugging mechanisms to debug the Warp Programming Environment. Note that this command has
no effect when executing Common Lisp expressions inside the Warp shell. In this case the Common Lisp debugger
is always called if an error occurs.

2.5.2 LOAD
LOAD load a lisp file
SYNTAX: load
OPTIONS:

-silent: Do not warn user about redefinitions (Dafault) [(Switch]
~varbosa: Warn user sbout tedafinitions [Switch)
EXAMPLES :

load foo.slisp -varbose

load foo.lisp

load foo

This command can only be executed when you are in implementor mode (see W2-SET). LOAD permits the user to
load a Common Lisp file. It is equivalent to the Lisp "load’ function, except that one does not have to type any
parentheses or quotes. The extension is optional. If the extension is missing, the default extensions are looked up in
this order:". *.slisp’, "* lisp’.

When a LOAD command is executed the first time, the. version aumber in the mode line of the Warp shell buffer is
extended by a version increment number (initially .1} and marked with a "*", For every following LOAD command
the version increment number is increased by L.

2.6 Writing Warp Shell Commands

The functionality provided by the Warp shell might not be sufficient for the needs of the user. In the following I
give a rough idea of how to program the shell23. WARNING:This section is written for users who want to
customize their shell. The description applies to the Lisp shell version 2.3.2 of November 2, 1987. Send mail to
wpe@sam before you start writing your own shell commands to find out about any changes in the Lisp sheil. END
OF WARNING.

o SWPEhome/exp/ if you are using the experimental version, respectively, until it is found. If the update file is found in the current
directory, say fusr/foo, the following message is printed at startup:

Reading bug fixes from fila "/uar/fco/bugfixaa.sliap" .

The update file is cxecuted afier aill Wre files have been read, but before the Warp shell initial command file warpshellinit.emd is executed. It
should not be used by any other person than the current maintainer of the Warp Programming Environment,

2.5 Special Warp Shell Commands
The following Warp shell commands are useful when you are programming and debugging the Warp shell.

2.51 HANDLE-ERRORS
HANDLE~ERRCRS Handlae arrors that cc¢cur within commandas
SYNTAX: handle-errors [no}

This command is automatically executed when you switch 1o implementor mode (see w2.sET

A more complete description is contained in Dario Giuse, "Programming the Lisp Shell”, Carnegie Metlon University, October 1985.

33

Warp Shell Warp Programming Environment 2.6

The implementation of a Warp shell command consists of two constructs: A definition which defines the
functionality of the command, and an entry in the command descriptor table which describes the command.

Let’s say we want to write a Warp shell command that controls the echoing of all commands being executed by
the Warp shell. We would like to provide an option that restricts the echoing to noninteractive commands. The
Common Lisp code to achieve this is shown in figure 2-2 and we will now briefly discuss how that is done.

{in-package ‘shall)
(defun sh-Neisy (&rest argumants)
{lat (({BatchCnly ({menber :batchmoda arguments))
(ON (string-ecual (First argqumsnta) “ON"))}
({OFF {string-equal (First arguments} "QFF")))

; ; ;argument checking

{(unless (or ON OFF')
{format t "argumant must ba ON or CFF~%"}
(raturn-from sh-Noisy nil))

{setf Noisy-Switch
{and ON (not BatchOnly)))
{seatf Batch-Noisy-Switch ON)
)}

{createa-antry
commands-table "Noisy" ‘sh-Noisy
"gontrols echoing of shall ccmmands baefors they ara executed." YNoisy [on|off]l"
¥ 'Noisy on’ turms echeing on. 'Hoisy off’ turns echoing eff. Echeing
means that a shell command is echoed beforw it is exacuted.
{The expandsd command itself is not printed. This is contreolled by
the varbose command}.™

’ (eptions . ({:batchmode nil nil
*Echo only noninteractive commands ")})
/! (pma-alse . {(varbosa))
/! (axamplas . { *noisy on ~batchmode”))
! {argument-count . (0 1)))

Figure 2-2: Warp Shell: Implementation of the Command NOISY

The shell command must be defined in package 'shell. The definition of the command consists of two parts: 2
function definition, sh-Neisy, defining the functionality of the Noisy command, and a call to the function
create-entry which sets up a command descriptor for the Noisy command. sh-Noisy is passed a parameter
arguments from the Warp shell. arguments is determined from the user input as follows: The first complete word
of the user input is interpreted as the name of the command to be invoked. This first word is not passed in
arguments. Words that start with a minus sign are considered as options and are converted to keywords, ie.
symbols interned in the Common Lisp KEYWORD package. The name of the symbol corresponds to the whole
option name, with the minus sign replaced by a colon sign. All remaining words are converted to strings, without
further interpretation. The result of this parsing is a list of elements, either strings or keywords, passed to the Lisp
function. For example, if the user types 'moisy on -batchmode’, the Warp shell issues the call "(sh-noisy "on"
:batchmode)’.

The sh-Noisy function is implemented as follows. First it checks arguments for the occurrence of the keyword
:batchmode and stores the result in the local variable BatchOnly. Then it does some type checking on the
argument list (this is only necessary because the Lisp shell does not do any type checking yet). The remainder of
sh-noisy is very simple. Echoing of commands is controlled by the two global variables Noisy-Switch and
Batch-Noisy-Switch which are set accordingly to whether "ON" or "OFF" was passed in arguments.

The command descriptor provides the link between the Lisp function and what the user types. It also provides
information for the help facility type checking of arguments (the latter is not yet implemented). A command

34

Warp Programming Environment 2.6 Warp Shell

descriptor entry consists of several parts:
* *commands-table* is the name of the command descriptor table.

® User string. This is the name of the command as typed by the user.

* Lisp Function Name. The name of the lisp function to be called if the command line input starts with
the user string.

* One-line command description. This is a short summary of the main function performed by the
command. This one-line help is printed by the generic help function as the only description of a
command; it is also printed by the extensive command-specific help as the header. This information is
also the only piece of information about 2 command (besides the command name) examined by the
KEYWORD command.

* Syntax. This is a one-line entry that describes the syntax for a given command. This entry follows the
same rules that are used in the UNIX manual; for instance, optional parameters are listed in square
brackets. This information is printed by the specific help for a command in the SYNTAX section.

® Help. This is an extensive, multi-line description of the command. This entry describes not only the
general behavior of the command, but also all the specific details about its unusual aspects or about
specific options.

» Options. This list of lists describes the options the command can take. Each option is a list consisting

of the full option name, followed by the number of parameters the option can take, followed by the
default vaiue of the option (if any) and finally a short explanation of what the option does.

* See-Also. This is a list of other Shell commands that are related to the command being described, and
is printed by the extensive command help.

® Argument-Count. This is a list of two values specifying the minimum and maximum number of
parameters of the command.

¢ Examples. This is a set of examples that are meant to illustrate the usage of a command. If the shell
command is used within an editor, the example allow for easy exploration of the command language,
because they can be directly fed to the shell command interpreter.

For example, after the definition of the noisy command has been loaded into the Warp Shell and the user types help
noisy, the following output will appear on standard output:

NCIsY Contrels echoing of shell commanda before they ara executed.

SYNTAX: Neisy [on|off]

‘Noisy on’ turns echoing on. 'Noisy off’ turns achoing off. Echein
¥ g Y g g

maans that a shell command is echoad bafore it ias exacutad.
(The expanded command itself is not printed. This is controllad by
the varbosa command) .
OPTIONS:
-batehmode: Echo enly noninteractive commands
SEE ALSO: varbosae
EXAMPLES:
noisy on -batchmode

2.7 Debugging the Warp Shell

If HANDLE-ERRORS NO has been issued and the Warp Shell encounters a bug, the Common Lisp debugger is
entered. The debugger can also be entered by a keyboard interrupt. If you are using Gosling’s Emacs, call the
Mock Lisp command SEND-INT-SIGNAL. If you are using GNU Emacs, type CTL C twice.

2.8 Using the Warp Shell: An Example
In this section we walk through a session using WPE and explain the use of some of the Warp shell commands,
The session contains commands to set a breakpoint and inspect some variables.

35

Warp Shell Warp Programming Environment 2.6

2.8.1 Example Session
In this example we are starting WPE by typing wpeg to the UNIX shell. Various comments will appear on the
screen during the loading process:

> "Gnu-Emacs”

> *18.36.6"

> Warp Programming Environment 2.6, 08-Jan-88
Startup command file ¥ fusr/wpe/warpshellinit .cmd". ..
Type halp for help

2% w2-set -host waripm

Warp machine set to "Bxcalibur”

Warp host sat to "warpm®

%

The @ sign in front of the prompt sign (@%) indicates that a command file - in this case warpshellinit.cmd - is
executed. The single prompt sign % indicates that we can start typing commands. Let us assume we want 10
compile the W2-program poly.w2 shown in figure 2-3 and that the program is located in directory
Jusriwpe/hot/test/poly/.

% path /usr/wpa/hot/test/poly/
% w2-compile -file poly.w2 -dabug
Compiling: pely.w2
Opt: Local - Off. Global - Off.
All addrasses are coemputed locally on CELL
Parsing and samantic analysis
Cempiling for cells 0 through %
Processing function #0: INIT
Generating cell code

>> Execution time on a cell = 1.22E-5 &8 {61 cyclas)
Processing functien #l: FOLY '

Genarating cell code
»» Execution time on a call = 4.654B-4 s (2327 cycles)
Generating host and iu cedes
Processing function #0: INIT fer last cellprogram
Processing function #0: INIT for first callprogram
»> Execution time on IU = 2.3995999E-6 msec. [l2 cyclas]
Processing function #1: POLY for last cellprogram
Processing function #1: POLY for first cellprogram
»> Execution time op IU = 4.1199997E-5 sac. [206 cyclas]
Total W2 compilation tims : O minutaes 33 seconds
Post-Processaing...
Post-processing complated successfully.
Compilatien of /usr.WARR/wpe/hot/test/poly/poly. w2 finished.

When the w2-compiler has finished the compilation of the program we define two Warp shell types float10 and
float100:

&t w2-type floatll array[10] of float
Types “floatlO” created

% w2-typs floatlOD array[100] of float
Type "floatlo0” craatad

% w2-show -types
Warp Shell Types:

Name Basestyps Bounds Size(Bytes) Display
£floatl0 float (10) 40
unsigned-byta byte —— 1
char char —— 1
floatr fleat —— 4
unsigned char char -— 1
integer int —— 4
floatl00 float (100) 400
signad-byte byta —— 1
signad char char -w-— 1
byte byta -— 1
int int -—]

36

Warp Programming Environment 2.6 Warp Shell

medule polynomial (data in, polycceffa in, results out)
fleat datafl00], polycocef£fs[10];
float reasults[100];
cellprogram(eid : 0 : §)
bagin
float coaff;
function init
begin
int i;
float temp;

/*Every cell saves tha first coafficiant that
reachas it, consumes the data and passaes tha

remaining coefficients, Evary cell generatas
an additicnal item at the and to conserve tha
number of receivaes and sands. */

raceive(L, X, coeff, pPolycoetffa[0]);
for i:= 1 to 5 do
bagin
receive(L, X, tamp, polycoaffa[il);
sand({R, X, tamp);
and;

sand (R, X, 0.0);
and

functien poly
begin
£loat xin, yin, ana[100}; /% tamporaries */
int i;
int j;
/% Inplamenting Horner’s rule, each cell

multipliaes the accumulated result ¥yin with
inceming data xin and addas the next

coeafficiant */
J o= 0;
for i := 0 to 100 do bagin
ji= § o+ 1;

recaive (L, X, xin, datafil};
recaive (L, X, yin, 0.0};
saend (R, X, xin);

ana{j] := coeff + yin*xin;
sand (R, X, ans[j], results{i]);
and;
and
¢all init;
call pely;

and

Figure 2-3: ‘W2 Example: Polynomial Evaluation using the Homer Scheme

Furthermore we define 3 Warp shell variables named data, polycoeffs and results:

37

Warp Shell . Warp Programming Environment 2.6

% w2-var -name data -type floatl0d -init -text /usr/wpc/hot/tost/pcly/data -comp €2m2
Connecting to Warp host "warpm" ...

...initializing...

variable "data" created in componant "c2m2"

% wZ-var -nam polycoceffs -ty floatll —tex /usr/wpc/hot/t.st/poly/palycooffa -comp c2m2
vVariable "polycceffs" created in component "c2m2"

% w2-var -name results -type floatl00 -taxt /usrc/wpe/hot/test/poly/results

Variable "results" creatad

% wi-show -var

Warp Shell Variablas:

Name Type Mamcry MDesc Moda Init’d Fila

polycoeffs floatlo czm2 1 text no /uaz/wpa/hot/tast/poly/polycceifs
results £floatl00 d/e 2 taxt no /uar/wpe/hot/test/poly/reaults
data £floatlO0 «2m2 o taxt yes /usz/wpa/hot/test/poly/data

We would like to set a breakpoint in function init, but we do not exactly know where, so we ask the shell 1o

suggest some:

¥ w2-suggestbreaks -line 25 30 ~function init
Poasible breakpeoints in function INIT (source line range 25 to 30):
Node:13 Line:25 Addr: (276} Type:$DYRDICE Op:$I-PLUS
Node:14 Linae:25 Addr: (278) Type: $STORE Nama:INITSI
Noda:4 Linae:25 Addr: (266) Type:$S5TORE Name: INITSI
Node:7 Line:27 Addr: (272) Typa: $STCRE Hame: INITSTEMP
Node: 6 Line:27 Addr: (270} Type: $MONADICS Wame: INITSTEMP Type:FLOAT Op:$RECEIVE
Node:9 Line:28 Rddr: (272) Type: SMONADICS Mama:INITSTEMP Type:FLOAT Op:3SEND

After deciding to break on line 28 we type:

4 w2-break -line 28 -functien init
Breakpoint 1 antared inte break table:

Nama: 1 ENABLED Scurce Line: 28 in Function: TINIT
Condition: T
Action: { "w2-halt” }
Calls: (012345678 29)
Node: 9 Name: INITSTEMP Type:FLOAT Op: $SEND
wWli-Address: (272)

Now the program can be executed on the Warp machine. We issue a W2-EXECUTE command which by default
locks the Warp machine?®:

% wZ-executa -parameters data polyccaffs rasults
Copying input paramatars into cluster mamory...

Prying to lock Warp Excalibur...

Warp sarvar queus is empty.

Warp machine is yours:

Downloading cluster and micro code for pely.w2..
Starting execution of modulas...

Breakpoint 1 encountazed in cell 0: Line 28 in "poly.w2”
Executing breakpoint actions...

@breakl% w2-halt

Once Warp is allocated, the microcode for the clusters, the interface unit and for the Warp cells is automatically
downloaded. When the breakpoint is encountered in cell 1, the condition is checked. It evaluates to T (=TRUE) and
the action part of the breakpoint is executed, which is W2-HALT. Now the user types: W2-GET -LOCALS -CELLS 1 to get
the values of the locals of the current function celis 1. The function INTT has just two locals I and TEMP:

29Note that if the program was not compiled with the -debug option you would get the following error message:

? Warning: /us:wsl/hob/wp./tnst/poly/poly.w2 was not compilad with -debug optien.
Breakpoints cannot bae sat.

and the execution would proceed without the breakpoints.

38

Warp Programming Environment 2.6 Warp Sheil

breakl® w2-get -locals -cells 1

[Call 0):
Locals in function INIT:
I= 1
TEMP = 0.21
[Call 1]:

Locals in functiom INIT:
I = 1038174126
TEMP = 0.61

At this point we decide to delete the breakpoint and start the execution again:

breakld® w2-delete -braeak 1

Breakpoint 1 daletad

breakl% w2-unlock

Unlocking Warp Excalibur. .,

% w2-axecute -paramaters data polycceffs rasults

Cepying input parametars into clustar mamory. . .

Downlcading micrecoda from directory "/ua:wGl/bcb/upe/tnat/poly/"
Starting axecution of modula...

?User servaer: User servar died.
Invalidating mamory for all defined Warp shell variablas.

Apparently there is a problem with one of the components of the Warp Programming environment. We use the
W2-SANITY command to find out that the Warp host "warpm" is down:
% w2-sanity

Checking state of Warp hoat "warpm®, Warp sarver, WPE sarver and Warp array...
~==> Warp host is not up.

At this point we could wait until "warpm” is up again. Instead, we switch to the other Warp host "d2" and try the
execution once more:

% w2-set -hoast d2

Warp machine set to "Galileo"

Warp host set teo "d2" .

% wZ-axecute -parametars data polycoceffs resultas
Raallocating memory for "data" in clustar "a2m2". ..
Reallocating memory for “polycoeffes" in clustaer "a2m2" ., .
Reallocating memory for “"results” in cluster Tdk". ..
Copying input parametars into eluster MemMOTY. . .
Trying to lock Warp Galilae...

Warp server gquaeue iz ampty.

Warp machine is yours:

Starting execution of medula...

Executioen cemplated.

Onlecking Warp GE...

We now look at the value of the Warp shell variable results:

% w2-show -var rasults -rangs 0:3

which will display the first four elements of the variable result in an editor buffer called results:
1023.000000 1023.000000 1023.000000 1023.0600000

2.8.2 Example Command File
The following is a summary of all the commands we have typed in the previous example session:

39

Warp Shell Warp Programming Eavironment 2.6

path /usz/wpo/hot/tost/poly/

w2-compile -file poly.w2 -debug

w2-type £loatlO array[l0] of fleoat

w2-type £loatlOO array[100] of float

wZ-show -typesa

w2-var -name data -type fleoatlQ0 -init -taext /usz/wpe/hot/test/poly/data —comp c2m2
w2-var -nam polycceffs -ty floatlld -tex /usz/wpa/hot/tast/poly/polycceifs -comp c2m2
wZ-var -name results -typs f£loatlQ0 -taxt /usr/wpe/hot/test/poly/results

w2-ghow -var

w2-suggestbreaks -line 25 30 -function init

w2-break -lina 28 -function init

w2-axecute -parameters data polycosffs results

w2-get -locals -cells 1

w2-delete -breaks 1

w2-unlock

w2-axecute -paramatars data polycoaffs results

w2-ganity

w2-seat -host d2

w2~axacute -parameters data polycceffs rasults

w2-show -var results -range 0:3

40

Warp Programming Environment 2.6 Warp Monitor

3. The Warp Monitor

3.1 Introduction
The Warp monitor is intended as a building block for the implementation of tools such as the Warp shell or the
W2 debugger as well as for standalone applications using the Warp machine and its individual compenents.

The main goal of the Warp monitor is to shield the programmer from the complexity of the Warp array and yet
make the hardware accessible. The programmer can access the Warp array via a set of diagnostic routines
collectively called the Warp library and a set of routines called the Master Host Library. The Warp Library accesses
the interface unit and the cells of the Warp machine via serial chains. The Master Host Library provides control over
the cluster processors*. Both libraries assume that the Warp machine is used by only one user.

The abstractions provided by the Warp meonitor are more complete and on a higher level than these libraries. The
Warp monitor provides access to the Warp array as well as to the cluster processors. The goal is to provide the
programmer with a "virtual! Warp machine": The Warp monitor provides a set of functions to acquire and release
the Warp machine, to allocate memory in the Warp host and cluster memories, to download Warp micro code and
cluster code, to control the execution of Warp programs and to monitor their behavior.

Figure 3-1 shows the architecture of applications using the Warp monitor. The Warp machine level consists of
the Cluster Processors, Interface Unit and the Warp Array (see also Figure 1-1). Above the hardware levetl is the
first software level implemented by the Warp Library, the Master Host Library and the Warp Monitor. The
second software level implements the application programs. In the figure, Application 1 is a standalone program
calling the Warp monitor functions directly. Application 2 is an application program written in C built on top of the
Warp User Packagé. Application 3 is an application written in Common Lisp running on top of the Warp shell.
And as we can see, the Warp shell alone is also an example of an application program.

3.2 Classification of Warp Monitor Functions
The Warp monitor functions are grouped in several parts: Warp server control, error handling, Warp locking
mechanism, event flags, memory allocation, downloading, execution, debugging and miscellaneous functions.

The Warp server control functions provide control over the Warp server and the user servers. st art_warpd
Starts or restarts the Warp server. The openconn function supports multiple Warp machines. It permits the user to
select a particular Warp host on which to run the application and the type of user server to be used for the
application. There are four different types of user servers. Server type 0 provides only the Warp locking
mechanism functions {lock_warp, unlock _warp, list_gqueue and next_entry) needed to support
multiple users. Server type 1 provides all the Warp moniter functions documented in this section via TCPAIP 0 a
user server process. Server type 2 is an experimental server used for development purposes. Server type 3 is similar
to Server type 1, except that it knows whether the application is running in local or remote mode. If in remote mode,
a user server process is started up on the Warp host side and the communication between application and user server
will be via TCP/IP. If in local mode, only the Warp server is a separate process providing the Warp locking
mechanism functions. All the other Warp monitor functions are linked into the application program and are
executed directly. Note that in local mode the cluster memory, that is about 8 Mbytes, is mapped into the memory
space of the application program. This causes problems for the Lisp interpreter, because it should not be managed

305ee Warp Library User Manual and User Manual for the Warp Host Software, both by General Electric, Radar Systems Department,
Syracuse, for more details.

41

Warp Monitor Warp Programming Environment 26

User Interface

Application 2 Application 3
Application 1 I B it Warp Shell
Warp User
Package Warp Shell

virtual Warp Machine Intertace

Warp Monitor

, Master Host
Warp Library Library
Warp Machine Interface
Cluster Processors
Interface Unit Warp Array

Figure 3-1: Architecture of Applications using the Warp Monitor

by Lisp’s memory manager. Thus, for Lisp applications, server type 1 should be used, whereas for real-ime
applications server type 3 should be the preferred server.

Error handling is done by the functions server error and get_error_string. Most of ithe Warp
monitor functions return a 0 if the call was successful and a 1 if it was not successful. The function
server_ error can be called which retuns an index into a string table that stores all possible error messages.
get error_stringretums the corresponding string.

The Warp Locking mechanism is provided by the functions lock_warp, unlock_warp, list_gueue and
next entry. These functions control the queue of users who have requested the use of the Warp machine. The
lock_warp checks whether the gueue is empty and if yes, it enters the user into the queue and locks the machine
for him. If it is not empty, the user is appended at the iail of the queue. The unlock_warp checks whether the
gueue is empty and if yes, it takes the user from the head of the queue, therefore making the machine accessible for
the next queue entry. The funcoons 1ist_gueue and next_entry permit the inspection of the queue.

One of the purposes of the Warp monitor is to permit programmers to view the Warp machine as a sequential
machine. However, it is also possible to view the Warp machine as a set of five processors. The programmer can
execute concurrent tasks on the Warp array (start_warp), the two cluster processors and the support processor
(start_cluster)and onthe Warp host. Event flag functions control the execution of these tasks. alloc_ef

42

Warp Programming Environment 2.6 Warp Monitor

and free_ef manage the allocation of event flags. The set ef function sets an event flag to one of the
following states: PENDING, INPROGRESS, DONE, ERROR and UNUSED. Event flags states are also set by the
processors. For example, when a processor starts a service associated with a specific event flag, it changes the status
to INPROGRESS. When the service has been completed, the status is changed to DONE. The wait_ef function
permits the programmer to wait for an event flag to reach a certain state. An event flag is basically a smail integer
which serves as an index into an event table. The event table is stored in the memory of the Support processor.
Whenever the Warp machine is unlocked, the event table is swapped into the user server address space, and when
the Warp machine is locked again, the event tabie is swapped back into the support processor. Thus event flags are
valid across several locks/unlocks of the Warp machine.

The memory allocation functions provide the user with the ability to allocate and deallocate memory on the
cluster processors (get_uninit llmem, alloc_clmem, dealloc_clmem, free_buffer) and copy data
between the application program’s address space and the cluster memory (read_from_clmem,
write_to_clmem) or between files and cluster memory (copy_cte, copy_f£fte, copy_ct£). User server
and cluster processor memory is represented by so called memory descriptors which are basically small positive
integers. File names are always interpreted in the naming context of the file system used by the Warp monitor, not
by the application.

Downloading functions load micro code into micro code memory (load micro) or load cluster code into
cluster processor memory {1oad_cluster, load_cne_cluster) Downloading functions using event flags
are of advantage if a real-time application program makes use of more than one Warp program. Such applications
can cache the cluster code (make_clust_func) and microcode {cache _micro)forall Warp programs in Warp
host memory. When switching from one Warp program to another, microcode can be quickly downloaded into the
Warp array with fast_load_micro. Note that load_micro or fast_load_micro have to be called every
time before a program is executed on Warp, even if the the Warp is kept locked during repeated executions of the
same program. The reason is that these routines also reset the Warp array.

Execution functions control the execution of the components of the Warp machine. The programmer has the
choice to execute the components as a unit or individually. execute_warp starts the execution of all the
components, that is, the cluster processors as well as the Warp array. start_cluster starts a function
previously defined with make_clust_func on an individual cluster Processor. start warp starts the
execution of a previously downloaded Warp program on the Warp array but does not touch the cluster processors.
continue_warp resumes the execution of a Warp program after one or more cells have encountered a
breakpoint. execution time retumns the time elapsed during the execution of the last W2 program.

Debugging functions permit the user to set breakpoints and to inspect various resources in the hardware. The
function use_print £ permits the user 1o enable print statements inserted in cluster code programs. All the other
debugging functions are concerned with debugging the Warp array. set_break and clear break set and
delete breakpoints in the micro code in one or more cells. set pc and get_pc manipulate the program counters
of the interface unit and the cells. There are functions to inspect and write the micro code (read_data_mem,
write data mem), 1o read or write single registers (read register, write register), to read or wrts
serial chains (read_chain, writ e_chain) or parts of it (get_field, put_field).

There are several miscellaneous functions: set_debuqg tums on a tracing mechanism to report the message
traffic between application and the Warp monitor. set_timeout sets the length of time-out for Warp programs.
get_version returns the version number of the Warp monitor. set_dix changes the current directory on the
Warp monitor side. The sanity check checks the state of several components of the environment such as the
file system, the Warp host, the Warp and WPE servers and the Warp array. If there is any problem with the Warp

Warp Monitor Warp Programming Environment 2.6

array, it can be reset to a defined state with the reset_warp command.

The Warp monitor is written in C and therefore the following specifications are also in C. However, application
programs using the Warp monitor functions can be written in any language as long as its implementation Supports
the call of C functions. For example, the Warp shell is written in Lucid Common Lisp, which contains a Common
Lisp exiension to call C functions.

3.3 Warp Server Control Functions

33.1 START WARPD

Start the Warp server.
Interface:
start._warpd {)
Parameters: None.
Returns: None.
Notes: Normally the Warp server can be assumed to be up and running. This function should be used

only if the Warp server is not running. start_warpd only attempts to restant the Warp server.
There is no guarantee (or indication) of success.

3.3.2 OPENCONN
Open a connection to a Warp host, that is, create a user server process or reconnect to it

Interface:
openconn {host, mode)
char *host;
int mode;

Parameters:

host The name of the Warp host to (re)connect to, or 0 if a defanlt host should be
used. The default host is determined as follows: First openconn checks
whether a UNIX environment variable WARPhost has been defined3!. If
yes, the defanlt host is the first string extracted from WARPhost
{WARPhost can be a list of strings separated by blanks). If not, a
hardwired name is used?Z.

mode The type of server subprocess to use. Legal types are:
0 = No user server process {use Warp server for queueing only).
o 1 = Normal user server process (use server for all Warp monitor
operations).
e2 = Experimental user server process {for development
purposes).

e 3 = If in remote mode, Start up a user server process on the
Warp host side. In this case the communication between

NyaRPhost is automatically defined if the environment file $WPEhome/warpre has been “"sourced”.

3254 CMU, the possible Warp host names are "warpb”, "warp8" and “"warpm®. The hardwired default is "warpm® unless the application is
running on workstation warpb, in which case "warpb” is the default.

Retums:

Notes:

Warp Programming Environment 2.6 Warp Monitor

application and user server will be via TCP/IP. If in local

mode, only the Warp server is a Separate process and provides

the Warp monitor functions lock_warp, unlock warp,

list _queue and next_entry. All the other Warp monitor

functions are linked into the application program and are called

as direct procedure calls. In this case the cluster memory, that is

about 8 Mbytes, is mapped into the memory space of the

application program.
Rewurmns 0 if successful, 1 otherwise. If this call fails, the Warp Host does not exist or it was not
up.
The name of the Warp host must be in lower case. If successful, openconn connects to a
Warp host, that is, it creates a user server process, or it reconnects to it, if there is already an
open connection to that host. openconn automatically performs a set_dir call to the
current directory of the application program. A call to openconn does not close any previous
Warp connections. Therefore, if you wish to be greedy, you can have several open Warp
connections at once. If multiple connections are used, the Warp host mentioned in the last
openconn call determines the current Warp host. The connection to the current Warp host can
be closed with an unlock_warp (1) call.

3.4 Error Handling Functions

This section describes the functions that inspect the error state after a previous Warp monitor function cail.
Server error retumns an index pointing to a position in an array of strings and get_error_string returns
that string. Both functions always refer to the last Warp monitor cail that was not an error handling function. The
error strings are defined by the following C data structure:

45

Warp Monitor

fifdef GIL
char *WP_s.w_-rr[] = {

fialsa

char *serv_err(} = {

$andif

"No Errer",

"Onknown Error”,

"Garbled Command”,

"Too Few Parasmetars”,

"Queus Full™,

v"Can’t Create User Sarver”,
"Usar Server Died™,

"Uger Interrupt”,

*User Interrupt, Closed Connection™,
"can’t Access Directory”,
“Illegal Clustar Matrory™,
v“ean’t Allocate Mamory”,

"“Ne Such Mamory Dascripter”,
"Meamory Descriptor Too Small”™,
“Can’t Open Fila",

"Not Enough Data®,

"WARP Not Locked",

"No PC Set",

»pimecut During Event Flag Wait",
"Ne Appropriate Cluster Coda",
"Breakpoint Encountered”,

"Ne DProcedure Running”,

*Low Bound Is Larger Than High Bound®,

"No Such Chain™,

"Ne Such Registarc',

"Ne Such Field",

"No Such Operation”,

uField Is Largar Than 32 Bits",

"No Event Flaga Left”,

"Bad Event Flag",

“Illagal Clustar Function',

"Error In Reading .parsam File",
"Illegal Clustar Mamory Dascriptor”,

3.4.1 SERVER_ERROR
Return error index of last Warp monitor call.

Tmerface:

Parameters:
Retums:

Notes:

int server_ error ()

None.

the error index from the last Warp monitor function call. The error code is
data stracture serv_erx defined above.

Successive calls to server_error don't change the error index.

3.4.2 GET_ERROR_STRING
Get the error string from the last Warp monitor call.

Interface:

Parameters:

Retums:

int get_error st ring (buffer)

char *buffer;

buffer A buffer in which to store a description of the last error.

Warp Programming Environment 26

an index into the

Warp Programming Environment 2.6 Warp Monitor

0 if successful, 1 otherwise.
Notes: Successive calls to get_erxor_string don't change the error index.

3.5 Warp Locking Mechanism

3.5.1LOCK_WARP
Lock the Warp machine so it cannot be accessed by other users,
Interface:
int lock _warp (delay, send ok, comment)
int delay, send ok;
char *comment;
Parameters:
delay 0 = don’t wait for the lock, 1 = wait in the Warp server queue if somebody
else is currently using the Warp machine.
send ok 0 = don’'t send messages to the terrinal, 1 = OK to notify.
comment An identifying string for the Warp server queue.
Retums:

0 if lock was granted and 1 otherwise.

Notes: Users are treated in FIFO order by the Warp server. A message is sent to the current owner of
the Warp machine, that is, the head of the Warp server queue, if delay is 1. lock warp can
2130 be used to double check if the Warp is locked.

3.5.2 UNLOCK_WARP
Unlock the Warp machine so it can be accessed by others.

Interface:

int unlock__warp {£inish)
int f£inish;

Parameters:

finish = close user server connection, 0 = leave user server connection open.
Retumns:

0 if connection is in expected state, 1 if connection had to be closed anyway.
Notes: When the Warp machine is unlocked, memory allocated with alloc_clmen is saved into the

user servery memory. After the Warp is unlocked, the following is true:

* The event table is swapped from Support processor memory to the user server
memory.

* Cluster memory described by memory descriptors is swapped from cluster memory
to the user server memory.

* Cluster code loaded by load_cluster and locad_cne_cluster is
invalidated33, : .

*Micro code loaded into the Warp array with load micre and
fast_lcad_micro is invalidated.

* Cluster code function ID's are invalidated.

BInvalidated means the user must load the cluster code everytime the Warp machine is locked.

47

Warp Monitor Warp Programming Environment 2.6

« ID’s of micro code loaded with cache_micro are still valid.

The unlock warp always succeeds in uniocking the Warp, regardiess of the returm code. The
Warp is automatically uniocked when the process that called lock_warp dies.

3.5.3 LIST_QUEUE
Determine the length of the Warp server queue, that is, the number of users that have issued a Lock_warp call,
but not yet an unlock_warp call.

Interface:
int list_gqueue ()
Parameters: None.
Retums: the number of jobs in the quene, or -1 if this cannot be deterined.
Notes: next_entry must be called after List_queue was called.

3.5.4 NEXT_ENTRY
Get next entry from Warp server queue.

Interface:
int next_entry (buf)
char *buf;
Parameters:
buf An array of characters in which the next queue entry will be stored. Each
entry has the form: user machine ty "comment"”
Returns:

0 if an entry was retrieved, 1 if not.

Notes: list_gueue must be called before this routine can be called. After List gueue is called,
you must call next_entry repeatedly until it returns 1 (no more queue entries}.

3.6 Event Flag Functions
All event flag functions use a type EFLAG, which is defined in $W ARPinclude/monitor.h or gilmon.h.

3.6.1 ALLOC_EF

Allocate event flag.
Interface:
EFLAG alloc_ef()
Parameters: None.
Retumns: An event flag or 0 if no flags are available.
Notes: Obsolete event flags can be deallocated with free_e ¢. For efficiency reasons, the event flag

table is stored in the memory of the support processor. When unlocking the Warp machine, the
event flag table is copied into Warp host memory. Thus, event flags can also be used when the
Warp is not locked. When the Warp locked again, the event flag table is copied back from Warp
host memory to SUPport processor memory.

Warp Programming Environment 2.6 Warp Monitor
362F REE_EF
Free evemt flag.
Interface:
int free_ef (flag)
EFLAG flag;
Parameters:
flag An event flag to be released.
Retumns:
An event flag or 0 if no flags are available.
3.6.3 READ _EF
Read event flag,
Interface:
int read ef(flag)
EFLAG flag;
Parameters:
flag An event flag to be read.
Retums:
Status of the event flag (either UNUSED (=0), PENDING (=1), INPROGRESS (=2), DONE (=3),
ASYNCDONE (=4) or ERROR (=128)) or -1 if there is an error.
Notes: ERROR is a status from a successful read.
3.6.4 SET_EF
Set event flag to a certain value.
Interface:
int set_ef (flag, event)
EFLAG flag;
int event:;
Parameters:
flag An event flag to be set.
event The value of the flag (either UNUSED (=0), PENDING (=1), INPROGRESS (=2),
DONE (=3), ASYNCDONE (=4} or ERROR (=128)).
Returns:
0 if successful, 1 otherwise,
3.6.5 WAIT EF
Wait for event flag to be set to a certain valye,
Interface:
int wait_ef (flag, event, timeout)
EFLAG flag;
int event, timeout;
Parameters:
flag An event flag to wait for. 7
event The value of the flag to wait for {either UNUSED (=0), PENDING (=0),

49

Warp Monitor Warp Programming Environment 2.6

INPROGRESS (=2), DONE (=3), ASYNCDONE (=4) or ERROR (=128)).

timeout The timeout delay (0 = wait forever).
Retms:
0 if successful, 1 otherwise.
Notes: If the event value is DONE, this call retumns immediately. The timeout value is in no

recognizable units.

3.7 Memory Allocation

From the point of view of the programmer, there are three kinds of memory: application memory, user SeIver
memory and cluster memory. If the application is in local mode, then application and user memory are identical.
Cluster memory is only accessible if the Warp machine is locked. Furthermore, cluster memory is reallocated every
time the Warp machine is locked. Thus pointers to cluster memory obtained by calling get_uninit_clmem are
only valid for the time the machine is locked. In order to maintain consistency between remote and local operations,
the following rules must be followed when dealing with buffer pointers in application or user server memory that
point to cluster memory:

oIf the buffer is modified, the cluster memory is not automatically updated. Therefore,
write to_clmem must be called to make the same change in the cluster memory.

 Before unlocking the Warp, the cluster memory pointed to by the buffer pointers should be saved into
user memory and then the buffer should be freed. Once the Warp machine is uniocked, the buffer
pointer are no longer valid (If Warp locked again, those buffer pointer would point to illegal memory
because of the reallocation of the cluster memory).

3.7.1 ALLOC_CLMEM
Allocate memory in cluster memory.

Interface:
int alloc_clmem {type, size)
char *type;
int size;
Parameters:
type Where the memory should be allocated (one of "sun", "c¢lml”, "clm2",
“clmsl!’ "czml", ‘!c2m2'l, ll'c2m3"' Or "dk").
size The number of bytes to be allocated.
Returns:

either a "memory descriptor” (a positive integer), or -1 if there is a problem.

Notes: Memory cannot be allocated in "cl ml” or "c2ml”. When the Warp machine is already locked,
memory is allocated in the cluster memory of the Warp machine. If it is not yet locked, it is
allocated in the user server memory and downloaded automatically when the user gets the Warp
machine. "dk" stands for don’t care. Certain efrors such as "Server Process Died” invalidate all
memory descriptors.

Each cluster memory board contains 1 MByte of memory. Starting with Warp monitor version 4.13, it is possible to
allocate cluster memory of up to 2 MBytes in C1 or C2. The cluster memory components cim2
+ clm3 and ¢2m2 + c2m3, respectively, have been merged into 2 Mbytes of consecutive
memory. The old naming scheme bas been kept for compatibility purposes. However, when
calling alloc_clmem with clm2 or clm3 (c2m2 or c2m3), the Warp monitor will always start
allocating memory in the ¢1m2 (¢c2m2) memory board and allocate memory until it runs out of
memory in board c1m3 (c2m3).

50

Warp Programming Environment 2.6 Warp Monitor

3.7.2 DEALLOC_CLMEM
Deallocate memory in cluster memory.

Interface:

Parameters:

Returns:

int dealloc_clmem (desc)
int desc;

desc A memory descriptor returned by ALLOC_CLMEM.,

0 if memory is freed, 1 if there was some problem.

3.73 GET_UNINIT_CLMEM
Get uninitialized cluster memory.

Interface:

Parameters:

Retuins:

Notes:

char *get_uninit_clmem(desc, offset, size)
int desc, offset, size;

desc The memory descriptor to Zet a pointer to.
offset Where in the memory descriptor to point to.
size How many bytes should be pointed to.

0 if there was a problem with the descriptor and a pointer to an uninitialized buffer for the
cluster memory otherwise.

When in local mode, then get_uninit_clmem retuns a pointer to the cluster memory
described by memory descriptor desc and offset. When in remote mode, then
get_uninit_clmem calls malloc to create a buffer in the client address space that will be
used to hold the cluster memory described by memory descriptor desc and offset in the
server address space and retums a pointer to that buffer. As a result, don’t expect to read
anything useful out of this buffer when in remote mode. When the Warp machine is already
locked, memory is allocated in the cluster memory of the Warp machine. If it is not vet locked, it
is allocated in the user server memory and downloaded automatically when the user gets the
Warp machine.

3.7.4 READ FROM_CLMEM
Copy from cluster memory into a buffer.

Interface:

Parameters:

Retumns:

Notes:

char *read from clmem (desc, offset, size, buf)

int desc, offget, size:;

char *buf;
desc The memory descriptor to read from.
offset Where in the memory descriptor to start reading from,
size How many bytes to read.
buf A buffer to hold the data or 0 if a buffer should be allocated.

0 if there was a problem with the read and a buffer pointer otherwise.
When in local mode and bur = 0, read_from clmem retums a pointer to the cluster

5

Warp Monitor Warp Programming Environment 2.6

memory described by memory descriptor desc and cffset. When in remote mode and buf
= 0, read_from_clmem calls malloc to creaie a buffer and reads over the network the
cluster memory described by memory descriptor desc and offset into that buffer. When in
either remote or local mode and buf <> 0, read_ from clmem copies the cluster memory
described by desc and cf £set into the buffer described by buf.

3.7.5 WRITE_TO_CLMEM
Copy from a buffer to cluster memory.

Interface:
int write_to_clmem (desc, offset, size, buf)
int desc, offset, size;
char *buf;
Parameters:
desc The memory descriptor to write to.
offset Where in the memory descriptor to start writing.
size How many bytes to write.
buf A baffer holding the data to be written.
Retums:

0 if the write was successful, 1 if there was some problem.

Notes: When in local mode and buf is pointing to cluster memory, then write to_clmemis a
NOOP. When in local mode and buf does not point into cluster memory, then the memory
contained pointed to by buf is copied to cluster memory described by desc and offset.
When in remote mode, then write_to_clmem copies the buffer over the network from the
buffer described by buf to the cluster memory described by desc and of£set.

3.7.6 FREE_BUFFER
Free memory allocated by read_from clmemor get_uninit_clmem

Interface:
free buffer (buf)
char *buf;
Parameters:
N buf A buffer allocated by read_from_clmem or get_uninit ¢ lmem
otes:

When in local mode, a call to £ree_buffer is a NOOP, because there is no buffer to free.
When in remote mode, the memory described by buf is freed (by calling £ree).

3.7.7 COPY_CTF
Copy cluster memory into a file.

Interface:
int copy_ctf {desc, offset,size, filename, type)
int desc, offset, size;
char *filename, *type;
Parameters:
desc The memory descriptor to copy from.
offset ‘Where in the memory descriptor to start copy from.

52

Warp Programming Environment 2.6 Warp Monitor

size How many bytes to copy.

filename The name of the file to store the data in,

type The format to use, one of:
"Byte" 8 bit decimal integers.
"Char" Binary.
"Hex" 32 bit hexidecimal integers.
"Int" 32 bit decimal integers.
"Float" 32 bit floating point numbers.

Returns:
0 if successful,] otherwise.

3.7.8 COPY _FTC
Copy a file into cluster memory.

Interface:
int copy_ftc(desc, offset, size, filename, type)
int desc, offset, size;
char *filename, *type;
Parameters:
desc The memory descriptor to Copy to.
offset Where in the memory descriptor to start writing.
size How many bytes to copy.
filename The name of the file containing the data.
type The format to use, one of:
"Byte" 8 bit decimal integers.
"Char" Binary.
"Hex" 32 bit hexidecimal integers.
"Int" 32 bit decirmnal integers,
"Float" 32 bit floating point numbers.
Returmns:
0 if successful, 1 otherwise.
3.7.9 COPY_CTC
Copy cluster memory to cluster memory after event flag is done.
Interface:

EFLAG copy_ctc(from, to, size, proc, efnc)
int from, to, size, proc;
EFLAG efnc;

Parameters:

from The source memory descriptor.

to The destination memory descriptor,

size How many bytes to copy.

proc Who should do the copy (0 = MASTERI, 1 = CLUSTERL, 2 = CLUSTER2,

and 3 = SUPPORTI).

53

Warp Monitor

Retorns:

Warp Programming Environment 2.6

efnc An event flag to be set to DONE before the copy is done. In case there is
nothing to wait for, e £nc can be replaced with the constant NOWAIT?4.

An event fag if the function is started, 0 otherwise.

3.8 Downloading Functions

3.8.1 LOAD_MICRO
Load Warp micro code into the interface unit and the Warp array.

Interface:

Parameters:

Returms:

Notes:

int lcad micro {file)
char *file;

file The simple filename of the microcode (no pathname prefix, no extension) to
be loaded.

0 if successfui, 1 otherwise.

load_micro has to be called every before executing a program on Warp. The filename is looked
up in the directory set by SET_DIR. Loading new microcode invalidates the result of the last
set_pc call. This call also attempts to read the “.param” file to find the starting addresses of
the warp cells and the interface unit. If this is successful, the program counters are initialized to
these values. Note that Load_micro or fast_load miczo have to be called every time
before a program is executed on Warp, even if the if the Warp is kept locked during repeated
executions of the same program. The reason is that these routines also reset the Warp array.
However, the routines are clever enough to check whether the micro code has already been
downloaded.

3.8.2 CACHE_MICRO
Load W1 micro code file into Warp host memory.

Interface:

Parameters:

Retumns:

Notes:

int cache_picro(file)
char *file;

file The filename of the microcode (without extension) to be cached into the
Warp host memory.

A "microcode ID" (a positive integer) if successful, -1 otherwise.
This call doesn’t touch the Warp machine.

34The constants MASTER1, CLUSTER1,CLUSTER2, SUPPORT] and NOWAIT are defined in the include file $WARPInclude/Weonfig.h

(See page 69)

54

Warp Programming Environment 2.6 Warp Menitor

3.8.3 FAST_LOAD_MICRO
Download cached W1 micro code from Warp host into Warp array after event flag is done,

Interface:
EFLAG fast___load__micro (id, efnc)
int id;
EFLAG efnc;

Parameters:

id A "microcode ID" returned from cache_micro identifying microcode to
be loaded into the Warp array.

efnc An event flag to be set to DONE before the micro code is loaded. In case
there is nothing to wait for, efne can be replaced with the constant
NOWAIT.

Retums: An event flag if the load is started, 0 otherwise.

Notes: load micro or fast_load micro have to be called gvery time before a program is
executed on Warp, even if the if the Warp is kept locked during repeated executions of the same
program. The reason is that these routines also reset the Warp array. However, the routines are
clever enough to check whether the micro code has already been downloaded.

3.8.4 LOAD CLUSTER

Load the files containing cluster code for the two cluster processors.

Interface:

int load cluster (file)
char *file;

Parameters:
file The filename of the cluster code (no pathname prefix, no extension) to be

loaded.

Retumns:

0 if successful, 1 otherwise.
Notes: The filename is looked up in the directory set by s et _dir.
3.8.5 LOAD_,ONE_CLUSTER
Load one file containing cluster code.

Interface:

int load_one_cluster (file, proc}

char *file;

int proc;

Parameters:
file The filename of the cluster code (with extension!) to be loaded.
prog The processor to load it into:

» { = Cluster Processor 1
e 1 = Cluster Processor 2

* 2 = Support Processor

Retumns: .
0 if successful, 1 otherwise.,

Warp Monitor Warp Programming Environment 2.6

3.8.6 MAKE__CLUST_FUNC
Load cluster code, create function and retum "function code ID".

Interface:
int make_clust_func {file)
Parameters:
file The filename of the cluster code (with extension!) to be loaded.
Returns:

This call returns a "function code ID" (a positive integer) if successful, or -1 otherwise.

3.9 Execution Functions

3.9.1 EXECUTE_WARP
Execute a Warp program by starting the cluster processors and the Warp machine.

Interface:
int execute_ warp {cycles,nin, nout, parin, parout)
int cycles, nin, nout;
int parin[], parout [1:
Parameters:
cycles How many cycles to run (-1 = run 10 completion or until breakpoint is
encountered).
nin The number of input parameters. The maximum of input parameters is 30.
nout The number of output parameters. The maximum of input parameters is 30.
parin The input parameters (memory descriptors from alloc_clmem).
parout The output parameters (memory descriptors from alloc_clmem).
Returns:
0 if the execution completes, 1 otherwise.
Notes: execute warp starts the execution of a Warp program consisting of cluster code for the

cluster processors and micro code for the Warp machine. If cycles is not equal to -1,
breakpoints will be ignored. It can only be called after the micro code and the cluster code have
been loaded and memory has been allocated for the input and output paraneters. Each
parameter is assumed 10 be a memory descriptor returned by alloc_clmem. However, 30 bit
integers may also be passed by encoding them using the param const function. (Two bits
are used as a tag.) These constants will be sign-extended to 32 bits when actually used.
execute warp expects the program counter for the warp cells and the interface unit to be set,
either automaticaily by calling load _microor explicity by calling set_pc.

3.9.2 START CLUSTER
Start cluster processor given a list of parameters after event flag is done.

Interface:
EFLAG start_cluster (proc, func, efnc,pl,p2, ..., -1)
int proec, fune, pl, P2, ...}
EFLAG efnc;
Parameters:
proc The processor to start ruoning: 1 = CLUSTERI, 2 = CLUSTER2, and 3 =
SUPPORTIL.

56

Warp Programming Environment 2.6 Warp Monitor

func The "function code ID" of the function to execute (may either be a built-in
function or the result of a make_clust_func call).

efnc An event flag to be set to DONE before the processor is started. In case there
is nothing to wait for, efnc can be replaced with the constant NOWAIT.

Pl, p2,... A [ist of parameters to the function.

-1 Indicator to terminate the list of parameters,

Rewms:
An event flag if the function is started, 0 otherwise,

Notes: Each parameter is assumed to be a memory descriptor returned by alloc_clmem However,

30 bit integers may also be passed by encoding them using the param_const function. (Two
bits are used as a tag.) These constants will be sign-extended to 32 bits when actually used.

3.9.3 START_CLUSTER_A
Start clusier processor given an array of parameters after event flag is done.

Interface:
EFLAG start_ cluster_ a(proc, func, efnc, params)

int proc, func, params[];
EFLAG efnc;

Parameters:

proc The processor to start ruoning: 1 = CLUSTER], 2 = CLUSTER2, and 3 =
SUPPORTI.

func The function to execute (may either be a built-in function or the result of a
make_clust func call).

efne An event flag to be set to DONE before the processor is started. In case there
is nothing to wait for, e £nc can be replaced with the constant NOWATT,

params A list of parameters to the function, terminated by -1.

Returns:;
An event flag if the function is started, 0 otherwise.

Notes: When the function st art_cluster is executed, a message is sent from the calling program
to the appropriate cluster processor. The processor may or may not start the function it is told to
execute depending on the value of e fnc. However, after the message has been sent, the calling
program continues its execution. Each parameter is assumed to be a memory descriptor returned
by alloc_cimem. However, 30 bit integers may also be passed by encoding them using the
param_const() function. (Two bits are used as a tag.}) These constants will be sign-extended to
32 bits when actually used.

3.9.4 START _WARP
Start Warp machine after event flag is done.

Interface:
int start_waxp (efnc)
EFLAG efnc;
Parameters:
efne An event flag to be set to DONE before the Warp array is started. In case
there is nothing to wait for, efnc can be replaced with the constant
NOWAIT.
Retumns:

0 if the Warp is started, 1 otherwise.

57

Warp Monitor Warp Programming Environment 2.6

3.9.5 CONTINUE_WARP
Continue the execution of the cluster processors and the Warp array after a breakpoint was encountered.

Interface:
int ccntinue_warp(cycles)
int cycles;
Parameters:
cycles How many cycles to run (-1 = until breakpoint or completion).
Returns:

0 if the execution completes, 1 otherwise.

3.9.6 EXECUTION_TIME
Return number of clock ticks elapsed during execution of last W2 program.

Interface:
int execution time {)
Parameters: None.
Retumns: Return number of clock ticks elapsed during execution of last W2 program.
Notes_: A clock tick is 100 microsecends. To get the ime in milliseconds, divide by 10.

3.10 Debugging Functions

3.10.1 USE_PRINTF
When running standalone applications, it is possible to insert print statements of the ferm
printf {"format stzing”, pl, P2, .../ pu);

into cluster code programs. The function use_print£ enables or disables these print statements when execution

the application.

Interface:
int use _printf (flaqg)
int flag:
Parameters:
flag if £1ag == 1, printing is enabled. If £1lag = 0, printing is disabled. By
default, printing is disabled.
Returns:
0 if successful, 1 otherwise.
Notes: openconn must have been called before use_printf canbe called. use_printf can only

be issued in direct mode, that is, when running on a Warp host. It is a NOOP when running in
remote mode, The implementation of printf is restricted: At most 8 arguments can be used
and the format string must be a literal with less than 128 characters (that is, statements like

{ char *as = nresting.\n"; printf(s); }

won't work). When printing is enabled, a SIGALRM is periodically generated and caught to poll
the cluster processors. As a resuit, other uses of SIGALRM are prohibited. The cluster processors
do not quene multiple print requests, so execution speed is largely controlied by the frequency of

polling.

58

Warp Programming Environment 2.6 Warp Monitor

3.10.2 SET_BREAK

Set a breakpoint.
Interface:
int set_break(cell,cnt,brks)
int cell, cnt, brks [1:
Parameters:
cell Which cell to test (-1 = all Warp cells, § = [U).
ent How many breakpoints are to be set.
brks An array of addresses of micro-instructions in which to set the breakpoint
point bit.
Retums:

0 if successful, 1 otherwise.

3.10.3 CLEAR_BREAK
Delete a previously set breakpoint.
Interface:
int clear_break {cell, cnt, brks)
int cell, cnt, brks [1:
Parameters:
cell Which cell to test (-1 = all Warp cells, 0 = IU).
cnt How many breakpoints are to be cleared.
brks An array of addresses of micro-instructions in which to clear the breakpoint
bit. (An entry of -1 means clear al] breakpoints for this cell).
Returns:

0 if successful, 1 otherwise.

3.10.4 READ DATA_MEM
Read data memory from one or more Warp cells.

Interface:
char *read_data_mem (cell,lo,hi, buf}
int cell, lo, hi:
char *buf;
Parameters:
cell Which cell {or cells) to read from 0=IU n=cellm, -0 =cells 1 through n).
lo The lowest address to be read.
hi The highest address to be read.
buf A buffer to hold the data. If 0, a buffer will be allocated.,
Retumns:

0 if there was a problem with the read and a buffer pointer otherwise.

59

Warp Monitor Warp Programming Environment 2.6

3.10.5 WRITE_DATA_MEM
Write data memory into one or more Warp cells.

Interface:
int write_data_mem (cell, 1o, hi, buf)
int cell, lo, hi;
char *buf;
Parameters:
cell Which cell (or cells) to write from (0 = [Un=celln -n=cells 1 through
n.
lo The lowest address to be written.
hi The highest address to be written.
buf A buffer that holds the data to be written.
Retums:

0 if successful and 1 otherwise.

Notes: In the case of multiple cells, both read_data_mem and write data_mem assume that all
the data for the first cell appears before any data from another cell.

3.10.6 SET_PC
Set the program counter for the Warp cells and the Interface Unit (IT).

Interface:
int set_pc {ent, vector)
int cnt, vectox[];
Parameters:
ent The number of cells to be used.
vector An array of program counters for the TU and Warp cells.
Returns:

0 if successful and 1 otherwise.

Notes: vector [0] is the IU program counter, and vector[l]..vectoxr[cnt] are the program
counters for the Warp cells. Microcode programs generated by the W2 compiler generally start
at microcode address 100. Loading new microcode invalidates the result of this call.

3.10.7 GET_PC
Get the program counter for the Warp cells and the Interface Unit (TU).

Interface:
int get_pc {vector)
int vector(];
Parameiers:
vector A buffer to store program counters for the TU and all Warp cells.
Retums:
0 if successful and 1 otherwise.
Notes: vector has to be declared as an array of 11 integers.

60

Warp Programming Environment 2.6 Warp Monitor

3.10.8 READ MICROCODE
Read microcode from a Warp cell.

Interface;

char *read__microcode (cell, start, end, data)
int cell, start, end;

char *data;
Parameters:
cell Where to read the microcode from (0=1IU, n = cell n).
start First address to read.
end Last address to read.
data A buffer to store the microcode in. If 0, a buffer will be allocated.
Returns:

0 1f there was a problem with the read and a buffer pointer otherwise,

3.10.9 WRITE_MICROCODE
Write microcode into a Warp cell.,

Interface:
int write microcode (cell, start rend, data)
int cell, start, end;
char *data;
Parameters:
cell Where to write the microcode to (0 =IU, n =cell n).
start First address to write,
end Last address to write.
data A buffer containing the microcode.
Returns:

0 if successful and 1 otherwise.

3.10.10 READ_CHAIN
Read from a serial chain.

Interface:
char *:ead_chain (cell, chain, buf)
int cell;
char *chain, *buf;
Parameters:
cell What cell to examine.
chain Which chain to examine:
"ec" IU control chain,
"cd” 1U data chain,
"ca" 1U address chain.
"sc" Warp coatrol chain,
"sd" Warp data chain.
st Warp status chain.

61

Warp Monitor Warp Programming Environment 2.6

buf A 40 byte buffer to store the chain in. If 0, a buffer will be allocated.
Retums:
0 if there was a problem with the read and a buffer pointer otherwise.

3.10.11 WRITE_CHAIN
Write to a serial chain.

Interface:
int write_chain {ceall, chain, buf)
int cell;
char *chain, *buf;
Parameters:
cell What cell to store into.
chain What chain to write into:
"ce" U control chain.
"cgd"” IU data chain
"ca" IU address chain.
"sc" Warp control chain.
"sd" Warp data chain.
"st" Warp status chain.
buf A 40 byte buffer containing the new chain data.
Retums:

0 if successful and 1 otherwise.

3.10.12 READ_REGISTER

Read from register.
Interface:
int read_register (reg, val, op}
char *reg, *op;
int val;
Parameters:
reg The register to be read. The names of the registers can be found in
$WARPserver/MONITOR.SRC/hardware.c.
val A bitmask.
op An operation to be performed on the bitmask and the value read. (One of
the following: "NOP", "OR", "AND", "XOR", "TAG" ., "BYPASS",
“CV 16UI“, ||CV16SII, "CVSUII, llcVSS")
Returns:

0 if there is a problem, otherwise the register vaiue.

Notes: The function server errox should be used to determine if a returmn value of 0 is an error or
the value of the register.

62

Warp Programming Environment 2.6 Warp Monitor

3.10.13 WRITE_REGISTER
Write a register.

Interface:
int write_registe:(reg,val,op)
char *reg, *op;
int wval;
Parameters:
reg The register to be written. The names of the registers can be found in
$WARPserverIMONITOR.SRC/hardware.c.
val A bitmask,
op An operation to be performed on the bitmask and the value read from the
register. The result is written back to the register. (One of the following:
"NOPII, IlOR", I!AN‘D"’ ll'XORll, "TAG", "BYPASS", lva16UN, HCVIGS",
HCVSUII’ HCVSS")
Retumns:

0 if successful and 1 otherwise.

3.10.14 GET_F IELD]
Get a field from a serial chain.
Interface:

int get_field(chain, field, buf)
char *chain, *field, buf[40];

Parameters:

chain chain
The name of the chain containing the field

"ec 1U control chain,
"cd" IU data chain.

"ca” IU address chain,
“sc” Warp control chain.
"sd" Warp data chain.

st” Warp status chain.
field The name of the fieid to be extracted. The names of the fields can be found
in SWARPserver/inciude/chain.h,

buf A buffer containing the chain data.
Retumns:
0 if there is a problem with the read and the value read otherwise,

Notes: The function server error should be used to determine if a retum value of § is an error or
the value of the register. Only fields that are 32 bits or less can be retrieved.

3.10.15 PUT_FIELD
Put a value into a field of a serjal chain.
Interface:

int put_£field(chain, field, value , buf)
char *chain, *field, buf{40];
int value;

63

Warp Monitor Warp Programming Environment 2.6

Parameters:
chain The name of the chain containing the field
"o U control chain,
"ed” It data chain.
"ca" TU address chain.
"sc" Warp control chain.
"sd" Warp data chain.
"st” Warp status chain.
field The name of the field to be set. The names of the fields can be found in
$W ARPserver/include/chain.h.
value The new value of the field.
buf A buffer containing the chain data.
Returns:
0 if successful and 1 otherwise.
Notes: This function does not modify the Warp machine, only the contents of the puffer. The function
write chain must be used to actually make the change. Only fields that are 32 bits or less
can be set.

3.11 Miscellaneous Functions

3.11.1 SET_DEBUG
Trace message traffic between application and Warp/user server. The format of the messages is described in

Section 4.3.

Interface:
set_debug (£lag)
int £lag;
Parameters:
flag
0 = Don’t print any debugging information.
1 = Trace network traffic between application and user server.
5 = Announce whenever microcode is actually being loaded as a result of
calling load_micre of fast_leoad_micro.
3 = Do both options, 1 and 2.
Returns:
None.

3.11.2 SET_TIMEOUT
Set length of time-out for the execute_warp call.

Interface:

set__timeout (secs)
int secs;

Parameters:
secs The time-out value in seconds. The default value is 15.

64

Warp Programming Environment 2.6 Warp Monitor

Retums:
0 if successful and 1 otherwise.

Notes:
set_timeocut should be used if the Warp machine times out too early. Any time-out value
less than 15 seconds defaulis to 15.

3.11.3 GET_VERSION
Return the version number of the Warp monitor.

Interface:
get _version (buf, which)
char *bhuf;
int which;
Parameters:
buf A buffer that holds the version number.
which
0 = Version number of Warp monitor linked into the application.
1 = Version number of Warp monitor used by the user server.
Retumns: ’
0 if successful and 1 otherwise,
Notes:
When munning in local mode, the two version numbers are always identical, because the
application runs without a user server. In remote mode, the version numbers should also be
identical. Differing version numbers indicate that a new Warp monitor was installed after the
application program was compiled and linked. In this case, it is recommended to recompile the
application program.
3.11.4 PARAM_CONST

Create a constant that can be passed as Parameter to execute_warp of start_cluster.

Interface;

int param const (const)
int const;

Parameters:

const Constant to be encoded. Constant must be 30 bits long.
Returns:
a 32 bit integer where the two high order bit indicate this to be a constant.

3.11.5 SET DIR
Change the current directory for file lookups done by the user server.

Interface:
int set dir (dirname)
char *dirname;
Parameters:
dirname The absolute pathname of the directory that the server should use.
Returns:

0 if directory was changed, 1 otherwise.

65

Warp Monitor _Warp Programming Environment 2.6
Notes: openconn automatically performs a set_dixr callto the current directory of the application.

3.11.6 SANITY_CHECK
Check the state of the file server, Warp host, the Warp server, WPE server and Warp array..

Interface:
int sanity_che ck ()

Parameters: None.
Returmns:
1 Cannot execute a remote shell call.
2 Can’t connect to Warp host.
4 Cannot find Warp server.
8 Cannot find WPE server.
16 Cannot fork off user server.
N 32 Warp array is not accessible (Not able to find the IU).
otes:

If sanity _check finds multiple errors , then the above return codes are added together.

3.11.7 RESET_WARP
Reset the Warp machine to a defined state.

Interface:
int reset_warp ()
Parameters: None.
Returns: 0 if the machine has been reset and 1 otherwise.
Notes: This function is the same as running $WARPbin/reset_warp.

3.12 Using the Warp Monitor _

This section contains examples of standalone application programs. First we give a detailed discussion of two C
programs using the Warp monitor. We will explain the use of the Warp monitor functions and how to compile, link
and execute the programs. Then we show how the Warp monitor can be made available to the Common Lisp

programmer.

3.12.1 Pipe I: Using the Warp Monitor inside a C Program

The basic task of the C program in figure 3-2 is to create ten input data, call a Warp program pipe which adds
the value 1 to each input value and to print the result on the terminal. The Warp program is located in directory
$WARPserver/W2/PIPE/.

Line 2 includes the file monitor.h which contains constant and variable definitions needed by the Warp monitor,

Line 7 declares the variables parin and parout that will contain the memory descriptors of the input and
output parameters of the Warp Program. Line 8 declares a variable data as a pointer to a float. data holds a
buffer pointer returned by get_uninit_clmem and read_£rom_clmem. Inline 10the Warp monitor function
openconn is called. The first parameter is the name of a Warp host and must passed from the C-shell to the C
program. The second parameter selects the server type 3: If the C application is in remote mode, all Warp monitor

66

Warp Programming Environment 2.4 Warp Monitor

calls are remote procedure calls, if it is in local mode, all Warp monitor calls are done by direct procedure calls. The
call set_debug in line 11 tums on tracing of the message traffic between Warp server and the C program (This
call can be omitted or changed into set_debug (0) after the program is debugged). Line 12 tells the user server
the directory for looking up the micro and cluster code for the pipe program.

In line 13 the Warp machine is locked. In lines 14 10 15 cluster memory is allocated for the input and output
parameter of the Warp program. If the memory allocation was successful, then parin([0] and parout (0]
contain memory descriptors for the allocated cluster memory areas. The call get _uninit clmem in line 16
returns a buffer for the cluster memory described by parin(0]. Lines 17 to 19 initialize data and in line 20 the
contents of data is copied into the cluster memory described by memory descriptor parin[0]. £ ree buffer
in line 22 disposes of the input data pointer because it is no longer needed. Lines 23 to 24 load the micro code and
cluster code which will looked up in directory " SWARPserver/W2/PIPE/" in our example.

In Line 25 the Warp program is called. Line 26 reads the result from the cluster memory described by memory
descriptor parout [0] into the variable data. Lines 27 to 28 print the result on the terminal. In line 29 the Warp
machine is released.

#include <stdio.h> /* 1x/
#include <monitor.h> /* 2%/
axtazn char *getenv(); /* 3%/
main (arge, argv) VAN
int arge; char ** argv; /* Bx/
{ char *axdir; char pipedir{256j; /x E*/

int Parin[l], parout[l], i; /x TS

float *data; /* gx/
opsnceonn (argv([l], 3); /* 9%/

sat_ dabug(l); /*10%/
exdir = g‘et.nv("ﬂ?!{nxamplol "): sprintf {pipedir, YSa%a", axdir, "w2"); /*11%/
sat_dir(pipedir); /EL2x/

if (lock_warp(l, 1, "Taating”) == 1) eaxit (0); /*13%/
parin{0] = alloc_clmem({"dk"”, 10 * sizeof({float}); /x14*/
parcut [0] = alloc_clmem{“dk", 10 * sizacf (float)); /*15%/
data = (float *) gat__uninit_clmem(parin[O], 0, 10 » sizaeof (flcat)}); /*1E*/

for (i = 0; i < 10; i++) data[i] = i; /*LTR/

for (i = 0; i < 10; i++) printf("%4.1f ", data[i]}; /*lgwn/
printf("\n"}); /*1o%x/

if (w:it-_to_clm (pacin[0], 0, 10 * sizeof (£loat), data)) /®20%/

axit (0}, /*21%/
frea_buffer(data); /*22%/

load micro(“"pipa"); /*23%/

load clustaer("pipa"): f*k24%/

if (axecute warp(-1, 1, 1, parin, parout} < 0) axit (0); /*25%/

data = (flcat *) road_f:om_clmnm(pa:out[O], g, 10 = sizeof (float), 0}; /*26%/

for (i = 0; i < 10; it++) printf(*s4.1f ", datali]); /*2T%/
printf("\n"); /*28%/
unlock _warp(l); /*x29%/

} /*30%/

Figure 3-2: A C Program Calling a W2 Program

3.12.2 Pipe II: Using Event Flags Functions

This section contains an example of an application using event flag functions. The program in figure 3-3
basically performs the same task as in figure 3-2. The main difference is that the cluster processors and the Warp
array are now treated as separate processors. Functions are explicitly started on each of these components and event
flags are used to synchronize their execution. In the following we discuss only those pants of the program that are
different from the previous example.

Line 3 includes the file Weonfig.h which contains constant and variable definitions needed by the event flag

67

‘Warp Monitor Warp Programming Environment 2.6

fincluda <stdio.h> /* 1%/
#include <moniter.h> /x 2%/
#include <Weenfig.h> /* 3x/
#define SIZE 10 /* A/
axtarn char *getenv(); /* 5%/
main (argc, argv) /* g%/
int arge; /e T*/
char *k argv;: /% 8%/
{ char *axdir; /* o/
char pipedir[256]; /*10%/

int parin{l], parcutil]. i; J*11x/

float *data; Je12x/

EFLAG of, ofl, ef2; /*13x/

int mid; /*14x/

int funcl, func2; J*15%/
openconn {argv[1], 3}; Jr16%/

axdir = g.t.nv("mﬂqxnmplol“): /ELT*/
sprintf (pipediz, “$gha" , axdir, "w2"); /*18%/
sat_dir(pipedir); /*19%/

if {(lock warp(l, 1, "Testing") == 1} eaxit (0}’ /*2o%x/
parin[C] = alloc:_clm.m(“cm", SIZE * aizecf(float})}; J*21*/

parout [0] = alloc_clmam("C2M2", gIZE * aizaecf(float)); /x22%/

mid = uch-_micro("pipn“); /*23%x/

ef = fast_load micre {mid, NOWAIT):; /*24%x/

funel = nako_cluat_func("pipoin.m"); /*25%/

func2 = m.n.ku_clust__func("pipoout.mam“); /*26%/

data = {float *) got_uninit_clmm(pn::’.n[()] , 0, SIZE * sizeocf (float)); /*x27%/

for (i = 0; i < SIZE; i++) datal[i] = i; /x28*/

printf ("\nInput:\n"}; Jx29%/

for (i = 0; i < SIZE; i++) pl:intf("%S.lf ", datafil); p:intf("\n"): J*30%/

if (writo_to_clmm(pu:in [0], 0, SIZE * aizeof (float), data)) axit {0); /*31x/
f:u_huffor(data) H [*az2x/
start_warp(ef); JH*33%/

ofl = start_clu-t-:(CLUS'.l’ERl, funcl, eof, parin[0], -1); /*34x/

af2 = start_clulto:(CI.USTER.Z, funec2, ef, parout[0], -1} /*35x/
wait_ef (ef2, DONE, 0); /x36x/
free_ef (efl); free_ef (0f2); froe_af (af); /*3T%/

data = {float *) r.nd_!ron_clm-m(parout.[ol, 0, SIZE * sizecf (float}, 0);/*38%/
printE{"\nOutput:\n"); /*39x/

for (i = 0; i < SIZE; i++) printf("%5.1f *, data[i]); printf("\n"): /*40*/

unlock warpi{l); /xar*/

} /xaz2*/

Figure 3-3: A C Program Using Event Flag Functions

functions. Line 11 defines three event flag variables, line 12 a microcode ID variable, and line 13 two cluster code
function ID’s. Lines 23 and 24 load the micro code. The primary use of cache_micro and fast_load micro
is to cache microcode into Warp host memory so it can be loaded more guickly into the Warp array. This is of
advantage for real-time application that switches between several Warp programs. If the micro code has to be loaded
only once, the load_micro function of the previous example is sufficient. Lines 25 to 26 load two cluster code
functions into cluster processor memory. Two function code ID’s are returned, which are stored in the variables
funcl and £unc2, respectively.

Lines 33 to 35 are equivalent to the function call execute_warp in line 25 of the example in figure 3-2. Line
33 starts the Warp array, line 34 starts function funcl in cluster processor CLUSTERI and line 35 starts func2 in
CLUSTER2. All of these functions wait for the event flag ef to be set to DONE before they start their execution.
Line 36 waits for event flag e£2 to be set to DONE, which means the output result of the Warp program is available
and can be printed. Line 37 deallocates the event flags ef, efl and e£2.

file:///nlnput

Warp Programming Environment 2.6 Warp Monitor

3.12.3 Compiling, Linking and Executing C Programs

The Warp monitor is implemented such that there is no difference between the core image of an application
running in remote mode or in local mode, Thus, application programmers can compile, link and test their
applications in the familiar environment of their personal workstation before they download them to the Warp host
for local execution. Let us assume the C programs from Section 3.12.1 and 3.12.2 are called test.c and
testef.c, respectively. The following Makefile compiles and links them into runfiles test and testef,
Compiling these files requires access to the directory $WARPIib/. In addition, the compilation of testef requires
access to the directory $WARPinclnde/ which contains the definition file Weonfig.h for the event flag functions:

LIBS = SWARPlib/master.a SWARPLib/warplib.a

teat: test.c $WARPRlib/monitor.a
St ~o test test.c SWARPlib/meonitor.a $ (LIBS)
testef: tastef.c S$WARPlib/menitor.a
cc -0 tastaef testaf.c ~ISWARPincluda/ \
SWARPlib/monitor, a ${LIBS)

claan:
~rm Makefile.doc
-rm teat
-Im testef
=Im *. arr
~¥m * . otl
-Im %~

Let us assume the runfile test resides in directory /usr/bob/wpe/test/C/ and we want to execute it on Warp host
warpm. Typing the command
& /unr/bob/wp./t-lt/c/tnst warpm

to the Warp shell on the workstation st orch generates the following output:

>>> 1000 bob storch /tmp/E IPC_ 3145 “v 1
<<< 2000 "Connection Accepted”
>>> 1004 /usr/pcwa:p/support/norv.r/WZ/PIPE/
<<< 2004 "Diragtory Changed"
>>> 1001 -1 1 "Tasting"
<<< 2001 1 "Lock Grantad"
>>> 1005 dx 40
<<< 2005 0 "Mamory Allocated"”
»>>»> 1005 dk 40
<<< 2005 1 "Memory Allocataed”
>>> 1007 0 0 40 "' p
<<< 2007 "Read Dona"
.0 1.0 2.0 3.0 ¢&.0 5.0 6.0 7.0 8.0 9.0
>»> 1008 0 0 40 »» ¢
<<< 2008 "Write Dona"
>>> 1009 pipa
<<< 2009 "Microceda Loaded"
>>> 1010 pipe
<<< 2010 "Cluater Code Loaded"
>»»> 1011 -1 11901
<<< 2011 “Exaecution Complated” 0
>>> 1007 1 0 40 " ¢
<<< 2007 "Read Decna*
1.6 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
>>> 1002
<<< 2002 "Warp Raeleazad"
5

Executing testef yields the following output on the terminal:
Input:
9.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Cutput:
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Warp Monitor Warp Programming Environment 2.6

3.12.4 Using the Warp Monitor inside Common Lisp Programs
The Warp monitor is also accessible for Lucid Common Lisp users. The Lisp interface to the Warp monitor
resides in the file $WPErcot /warpshell/w2rpc. slisp and is defined in the package Shell. If you are
running the Warp shell, this file is already loaded by default. If you are running a standalone application, the Warp
imonitor can be loaded with the following Common Lisp command3®:
(load "$WPErocot/warpshell/w2rpe. sliap")

The function Shell: :DefineServerFunctions defines the Common Lisp interface to the C functions. For
example, the line

{lueid: .define-c-function lecad micro (file) :rasult-typs rintegaer)
makes the Warp monitor function load_micro accessible within the package Shell and can be called like a
normally defined Lisp function. For example, the command

{setf returnceods {load miczo "/u-r/bob/t.ut/pip-/pip."))
downloads the microcode file pipe.w1 stored in directory fusr/bobtest/pipe/ to the Warp machine.

354 WPEroot has to be replaced by its value.

70

Warp Programming Environment 2.6 When Things Go Wrong
4. When Things Go Wrong

4.1 Known Bugs

1. T™MP-BUG: Currently it is not possible to allocate Warp shell variables on the ftmp file structure. The
reason is that two different ftmp’s exist: /tmp on your workstation and /tmp on the Warp host. The

current time all file names should therefore be located in structure /usr/, BUG.FIX: A machine-wide
file naming system will fix this problem.

2. COMPOSITE C SHELL COMMANDS: The pipe command (1) does not work for C-shell commands.

3. Bugs when using GNU Emacs:
¢ GOTO-SHELL-BUG: The GNU Emacs command CTL X CTL W{write-file)usedto change
the name of the buffer to the name of the file being written, This has been changed in WPE 2.4;
The buffer name is not changed.
4. Bugs when using Gosling’s Emacs:

® PR-DOT-BUG: Every now and then Gosling’s Emacs gets confused which buffer to use for the
current output. In this case you will get the message "progn variable pr-dot has been unbound"
or "process output with no destination”. Common to all appearances of the PR-DOT-BUG is that
everything seems to be frozen, but as soon as you move the cursor with CTL N or CTL P, you
get one of the above error messages. Please send mail to the system maintainer you run into this
problem. BUG-FIX: The command W2-SET -SHOWCOMMANDFILE OFF usually minimizes the
occurrence of the bug and is therefore currently automatically executed by
SWPEhome /warpshellinit . cmd.

5. SUAND LOGIN: When using the UNIX shell commands su {superuser) or LOGIN, the password is echoed.
And it is not possible 1o return to the Warp shell afterwards.

4.2 Error Messages

This section contains error messages issued by the WPE components. The list of error messages is by no means
exhaustive. We have selected those error messages that seem to be especially obscure for the first-time or casual
WPE user. Please send mail to the WpE maintainer, if you experience other error messages that deserve to be
included here,

Problems with $WPEDbin/wpecoreimage
If you start too many WPE’s on one workstation, you get the GNU Emacs error message

Couldn’t exec the program SWPEbin/wpecoreimage
Process lisp exited abnormally with code 1

or the Gosling Emacs error message

SWPEbin/wpecoreimage: Not enough core
Exited Abnormally

Usually this occurs when an obsolete WpE core image has not been killed properly. Type ps aux | grep
wpecoreimage to determine the process id of the associated UNIX process and kill it with kill -9,
Symbol’s function definition is void
If you get the error message:
Erreor in init file: Symbol’s function definition is void: wsh

then the boot file warpshell.el is not accessible. Check your ~/.emacs file, whether load-path is defined such that it
looks up files in the directory $WPEeditor/.

71

When Things Go Wrong Warp Programming Environment 2.6

Not enough memory
The error messsage
not enough memory!!!
might occur during the compilation of a W2 program. It means that there are too many UNIX processes runming on
your workstation while one of the W2 compiler utilities is trying to allocate memory. Kill some processes and retry
the compilation. If there are still problems, try to compile with a different -spicy option (see W2-COMPILE, section
2.2.8, page 16).

Lisp Errors
Messages of the form
>>Error:

are generated by a call to the Common Lisp function exror. Many functions in the W2 compiler call exror when
they encounter an unrecoverable error. Usually these error messages are self-explanatory. For example, if you try to
compile a nonexisting W2 program foo.w2, you will get the error mesage

>>Error: the file foo.w2 does not exist

If you are a "developer” or "user”, the Warp shell will return back to the prompt. If you are an "implementor”, the
Warp shell will invoke the Common Lisp debugger.

XI10: Broken pipe
If you telnet to a remote workstation and you invoke WPE without having authorized the remote workstation to
invoke GNU Emacs on your local workstation, then you get the error message
XI10: Broken pipe
Set the environment DISPLAY on the remote workstation to the name of your workstation and run xhost so the
semote workstation can display on your workstation.

Could not copy variable into cluster memory
If you try to initialize a Warp shell variable, you might get the following dialog:

% w2-type £f£leatlO array[10] of £loat
Type "floatlO" created
% w2-var -name input -type f£loatl0 -init -textfile indata
Allocating memory for "input" .. .initializing...
% Could not copy variable "ipput” into cluster memory
variable "input" created

Note that the variable has been created. The error message means that the variable was not initialized. There are
several possible reasons: The file might contain too few data. Maybe it is empty or it does not exist. Or the file is
in a protected directory.
gec: Command not found

This error message might occur, when WPE is running in remote mode and you are trying to compile a W2
program. The problem is usually that your workstation does not have access to the Green Hills C compiler. The
Green Hills C compiler is invoked by the W2-COMPILE command to generate the code for the cluster processors.

Invoke W2-COMPILE with the -remote option and specify the name of the Warp host (see Section 2.2.8, page 16).
There is always a Green Hills compiler on the Warp host.

72

Warp .Programming Environment 2.6 When Things Go Wrong

Unexpected end-of-file
>>Error: Unexpected end-of-file encountered during read.
READ:
Optional arg 0 (STREAM): #<Stream BUFFERED-STREAM 86101B>
Cptional arg 1 (EOF-ERROR-P): T
Opticnal arg 2 (EOF-VALUE) : NIL
Optional arg 3 (RECURSIVE-P): NIL

A Abort to Lisp Top Level
->

This error message occurs, if you load a Warp shell command file with multiple lines of Common Lisp code
where the individual lines are not terminated by semicolons (see Section 2.22).

Lisp process finished
If you get the message
Lisp process finished
right after invoking WPE, then the run file wpecoreimage found by the wpeg command is not a lisp core image,
Check out whether you have a bad core image hanging around somewhere.

Problem Sending Commmand to Emacs
WPE communicates with EMACS with the help of a file whose name is of the form "E_IPC_pid=", which is
allocated on the /tmp/ file structure when WPE is started up (pid is the UNIX process id number of WPE).

Error messages of the form
? Problem sending command " {foo) " to Emacs
occur if you have deleted this file while WPE is running. This can happen if you clean /tmp too thoroughly.

GIL Error Messages
Error messages from the generalized image library are prefixed with the name of the routine (usually of the form
GIL: i_<foo>) followed by a short description of the error and an interrupt which causes a segmentation violation in
the Warp shell. Type :a to retumn to the command interpreter. The following is are typical GIL error messages:
i_net: Read error on network. Connection timed out
You try to read an image over the network and the other site is down.

i_malloc: Waming: Called from IM_strepy for 8022 bytes
Error messages of this form are used for debugging the GIL in its use of memory. They can be
ignored.

Could not open X display

If you are trying to create an X window on a workstation specified by the UNIX environment variable DISPLAY you
must have access rights to this display. An error message like
GIL: i_xwincreat: Could not open X display ’ (default)’
occurs when you try to display an image on an X window and you don’t have any display rights on that workstation.
You have to run xhost to add the workstation to the list of workstations allowed to open connections.

4.3 Monitoring The Warp and Users Servers

The Warp and user servers manage the Warp machine in a location-transparent way. Ideally, they should not be
visible to the user. Of course, sometimes this does not work. A problem occurs, for instance, if you have locked the
Warp machine and the Warp server crashes. Or the Warp server might be down when you try to lock the Warp
machine. In this case you will get the message

73

When Things Go Wrong Warp Programming Environment 2.6

*Usar servaer:@ Uaser server died.

You can use the W2-SANTTY command to check whether the Warp host or the Warp server is causing the problem.

Every now and then there will be less obvious problems. For example, the user server might tell you that it
cannot allocate memory in the cluster processor memory, cannot read a file, cannot load micro code, or you might
get a message that the file system is full. In this case, tum on a tracing facility with the command W2-TRACE
_SERVER ON that allows you to watch the message raffic between the Warp shell and the user server. Messages
prefixed by a >>> indicate a message from the Warp shell to the user server, and messages prefixed by a <<<
indicate a message from the user server to the Warp shell. A summary of all error codes used by the Warp shell is
described below. The message tracing facility is enabled until you issue the command W2-TRACE -SERVER OFF.

All messages to and from the user server are Tines of text terminated with a newline. Each line consists of a
number of fields separated by spaces. (Spaces may be included in a field by quoting the entire field in double quotes
(). The first field is always a four digit number that identifies the message. The most significant digit of this
nomber is the type of the message: 1 = Server command, 2 = command completed, 3 = command failed, 4 = fatal
command failure. The last three digits identify the command being performed. So for command N, 1000+N is the
client request, 2000+N is the success indicator, and 3000+N is the failure indicator. The possible commands are as
follows:

- Tnitialize connaction te Warp sarver.

- Leoek the Warp machine.

- Unlock tha Warp machine.

- Ligt the joba in the gquaue.

Change tha current directory.

= Allocate mamOIY .

- Deallocate meamory .-

- Read into memory allocated by command 5.
- Write from memory allecated by command 5.
- Load Warp microccds from a fila.

10 - Load cluster coda from a fila.

om~lamewWhNKHO
]

11 - Start running ths cluster processora and the Warp machine.
12 - Continus runaing the Warp machine {after a breakpeint).

13 - Read into Warp cell data memory.

14 - Write from Warp cell data memory.

15 - Set cell program countera.

16 - Read cell program counters.

17 - Set breakpoint(s).

18 « Clear breakpoint(s).

19 - Read into microcoda memoTy.

20 - Write from microcode mamory.

21 - Read saerial chain.

22 - Write serial chain.

23 - Read from register.

24 - Write to register.

25 -~ Resst Warp machine.

26 - Allocate event flag.

27 - Set avent flag.

28 - Wait for event flag.

29 - Cache microcods.

30 - Make ¢luster function.
31 - Load cached microcoda.
32 - Start cluster function.
33 - Start Warp machine.

34 - Cepy cluster to cluster.

The following is an example of a message trace created during the successful execution of a w2 program:

74

Warp Programming Environment 2.6 When Things Go Wrong

% w2-trace -sarvar on
Message traffic batwaeen Warp server and Warp shell will ba tracad

% w2-axecute -fila /u'r/bob/wpo/tast/pip./pipo ~parametars input output
Copying input pParamaters inteo clustar MemOory. . .

>>> 1004 /uarwSl/bob/up./tnst/pipo/

<<< 2004 "Diractery changed.”

Dewnloading microcede for modula "pipe"” from directery “/usrwGl/bob/wpe/tast/pip./"
Locking Warp GE...

>>> 1003

<<< 2003 0 "Quaeue Follows.,"

<<< .

Warp server queue is ampty.

>>> 1001 -1 1 "Running Warp Programming Environment"

<<< 2001 "Lock Granted."

Warp machine is yours:

>>> 1009 pipe

<<< 200% pipe "“Loaded."

>>> 1010 pipae

<<< 2010 pipa "Leadad. ™

>>> 1015 1 100 100

<<< 2015 "BC aset."

Starting execution of modula...
»>>> 1011 -1 11 02
<<< 2011 1 “Execution complate."”

Execution complatad.
Copying ocutput parametaers from cluster mamery...
Writing "output” into file "/usr/bob/wpa/tast/pipo/oucdata"...

>>> 1008 1 0 40 /usr/bob/wqutont/pipo/outdata float
<<< 2008 "Elements written,"

Unlocking Warp GE...

>>> 1002

<<< 2002 "Lock Relsased."

%

4.4 Creating Bug Reports
If you have found a bug in the Warp Shell, do the following steps:

1. Execute Warp shell command W2-SET -USER IMPLEMENTOR (This will invoke the Common Lisp
debugger when the bug is repeated).

2. Repeat the last command and wait until the prompt of the Commeon Lisp debugger appears.
3. Get a trace of the call stack by typing :b to the Lisp debugger.
4. Save the session into a file and send it with other important files to the maintainer of the Warp
Programming Environment35,
If you suspect a bug in the W2 compiler, do the above steps and in addition

5. Save the buffer error-logor *compilation#* and mail it as well,

361f you are & CMU user, send the bug report to wpe@sam.cs.crnu.cdu.

75

http://cs.cmu.edu

Warp Shell Summary Warp Programming Environment 2.6

76

Warp Programming Environment 2.6 Warp Shell Sﬁmmary

I. Summary of Warp Shell Commands
Any UNIX shell command is known by the Warp shell. In addition, the following commands are implemented:

alias Define & new alias
copy Copy one or more files

date Print the current date and tima

defcommand Dafine a new command {as & Lisp function)

delets Dalata filas

directeory List filaes that match a pattaern

acho Eche argumenta

adit Edit a file in an editor window

find Find all occurrences of a fila namae

grep Search a file for a pattern

handle-arrors Bandle errors that occur within commanda

halp Print this text, or help about a command or alias

history Print recently exaecuted commands

keayword Print all commanda matching a given key

load Load a lisp fila

maka Maintain related sats of programs

Noisy Centrel the verbosity level of shall commands when thay are aexecuted
path Change tha currant directory

Pause Pause the shell

popdizr Change thae currant directory te the one on top of tha stack
pushdir Mova to a new, or praeviocus, diractory

Quit Cuit the shaell

Tanamnae Rename or mova one or more filas

saarchpath Show the current asearch path

setsearch Set the dafault saearch path

show Show the value of an envircnment variakla

sort Sert lines from standard input

time Time the execution of a Shall command

touch Change tha creation date of a fila

typa Type out a fila

undefcommand Ramove an alias or a command (in that ordar)

verbose Print expanded version of commands bafore executing them
version Current Shell varsion

w2-brasnk Set a scurce linae break peint

w2-compile Compila a W2 program

wZ-continue Continue current W2 Frogram

w2-dalata Delete & Warp shell objact

w2-disable Disabkle a breakpoint

w2-download Download micre code for W2 brogram onto Warp array
wZ-adit Edit a user definad Warp shell variabla

w2-anable Enable a breakpoint

w2-axeacute Execute w2 module

wZ-get Print all lccals of the currant function

w2-halt Halt the Warp machine

w2-init Initialize a WPE Somponant

w2-load Lead a WPE componaent

w2-lockwarp Resarve the Warp machine

w2-printnodas Pratty print the dags of tha flow graph

w2-raset Reset the W2 debugger or the Warp server to its initial stata
w2-rastart Restart curraent W2 program

wZ-sanity Chack state of fila server, Warp host, Warp server, WPE sarver and Warp.
w2-set Set a variable of the current environment of thae debuggar
w2-show Show the current envirenment

w2-suggestbraaks Suggest possibla breakpointa
w2-targatToSourca Gat all w2 source lines for givaen wi addrass

W2-tracae Turn on or off tracing information feor Warp servar and aditor
w2-type Daclare a Warp shall type

w2-unlockwarp Release the Warp machine

w2-var Declars a Warp shell variabla

w2-warpqueuas Show the users currantly owning the Warp machine or waiting for it
wpavarsion Print the version numbar of WPE

77

Warp Monitor Summary Warp Programming Environment 2.6

78

Warp Programming Environment 2.6

II. Summary of Warp Monitor Functions

The following functions are currently implemented:

allec_af

allos clmam
clear braeak
cache micro
continue warp
copy_cte
copy_ctf
copy_fte
doalloc_clm-m
axecute warp
faut_lond_yicro
freaa buffar
frea af
get_arror string
gat fiald
gat_pe
get_uninit_clmenm
get _varsion
list_quens

load cluster
loaq_on-_clustor
loaQJnicro

lock warp
mak._pluut_func
next entry
openconn
put_fiaeld
Param const
raad chain
ronq_gntq_m-m
read of

raad from clmam
read microcoda
read registar
resst_warp
sanity check
SBarver error
sat_break
sat_debug
sat_dir

sat af

sat_pc
saet_timacut
atart clustar

ata:tqclustor_g

start_warp
start_warpd
staps dona
unlock warp
use printf
wait af
writo_chain
write_datQJmmn
write microaccde
write register
write to _clmam

Allocate avent flag
Allocate memory in clustar memcry

Celate a breakpeint

Cache micro code file into Warp hoat mamory

Continue execution

Copy cluster mamory to clustar mamory after event flag is done
Copy cluaster mamcry inte a filae

Copy a file into clustar RAMOTY

Daallocate memory in cluster memory

Start the cluster procassors and the Warp machine

Download cached micre coda after event flag is done

Free memory allocataed by read_from clmem or get-uninit_clmam
Fraa event flag

Get the erxor string from the last Warp monitor call

Get a fiald from a serial chain

Get program counter

Get uninitialized cluster mansry

Return the vaersion number of the Warp moniter

Return the numbaer of jebs in the Warp servaer quaeue

Lead cluster coda for the two cluataer processcrs

Load cluster code for ona clustar proceasor

Load Warp microcode into interface unit and Warp array

Lock the Warp machine

Load cluster ccde, creatae function and return function coda ID
Gat next entry from Warp sarver queue

Connect te a Warp hest and saelact a Warp servaer type

Put a value into a field of a sarial chain

Creata constant paramater for axecute warp or atart cluster
Read from a serial chain

Read from Warp cell data memory

Read event flag

Copy from cluater memory into a buffar

Ragd microcods from a Warp cell

Read from register

Raset the Warp machine to a defined state

Chaeck state of fila sarvar, Warp host, Warp server

Raturn error index of last Warp monitor call

Set a bresakpoint

Trace messzage traffic betwaen applicaticon and Warp/usar sarvaer
Changs current directory for fila lockups done by user servar
Set avant flag

Set program countar

Sat time-out for exacutae _warp call

Start cluster processor given a list of parametara

after event flag is done

Start cluster processor given an array of paramatars

aftar event flag is dona.

Start the Warp machine after evant flag is dene

Start the Warp servaer (demon)

Number of atepa executad

Unlock the Warp machine

Enabla ox disable printf stataments in cluster coda PTrograms
Wait for avent flag

Write to a smarial chain

Write to Warp cell data mamory

Write microcode

Write to register

Copy from a buffer to cluater meamory

79

Warp Monitor Summary

Warp Programming Environment 2.6

Topical Index
Beginner 10 Impiementor 10
Breakpoints 15 Interrupting Warp shell Commands 12
Bug fixes 32
Bugs 71 Known Bugs 71
Known Bugs 71 Lisp shell 9,33
Sending bug reports 75 Local mode 4,5
C Shell 12 Master processor 4
Cells 10 Memory allocation 43
Cluster processor 4 Mouse Buttons 26
Command file 13
Common Lisp 13 Prompt 11,12

Debugger 33 . .
Loading files into WPE 33 %g::::‘;ggg"ja‘?‘“ 5,6,42, 43
Customizations ’

Warp shell 12 Standalone mode 3,5

Datacube Display 26 Support processor 4

Demo 10 TCP-IP 4
Developer 10 .
Display 10 Unix shell commands to start up WPE
Displaying Warp shell variables 10,26 wpe 3)
_ wpeg 3
Editor 2,6, 10 wpegl 30
Key bindings 2 wpel 30
Profile 31 wsh 3
Emacs 2,7,10 User 10
Error messages User server 4
General 71 Debugging 27
Warp monitor 45 Different types 41
Exampies Local/remote mode 41
Common Lisp in command file 13 User type 10
Compiler options 17)
Editing a breakpoint 19 W2 compiler 4
GNU Emacs Profile 2 W2 debugger 4
Gosling’s Emacs Profile 2 W2 program
Implementation of a Warp shell command 34 Compiling 16
Makefile for C program 69 Example 36

spicy option 17

Pipe (C 66
pe (C program) W2 Simulator 11

Pipe with event flags (C program) 67

User server message trace 74 Warp host 3,11
W2 program 36 Openmg_ a connection 25, 44
Warp shell session 36 Warp machine
warpre file 31 Locking Functions 42
warpshellinit.cmd 13 Qverview 4
Experience 10 Warp server 4
Expert 10 Warp monitor 1,5, 41
External host 4 Classification of functions 41
Debugging 73
File server 3 Debugging functions 38
. s . Downloading functions 34
Generalized image library -
Display of images 26 EEf-rrg[lrlna:(«ishni 4455
Initialization 21 F MesSag

Event flags 48

Generalized image library 6, 10 Execution functions 56

GNU Emacs 2,7, 10 :
. > Memory allocation 50
Gosling’s Emacs 2,7, 10 Miscellaneous functions 64

Half-toning 26 Warp locking 47

80

Warp Programming Eavironment 2.6

Warp server control 44
Warp server 4, 41
Warp shell §
Command syntax 9
Commands 12
Customizations 33
Debugging 35
Example 35
Execution of Unix commands 11
Features 1
Implementing a Warp shell command 33
Injtial command file 12
Objects 10
Overview 9
Special commands 32
Types 26
Variables 26
Warp shell environment variables
Cells 10
Comment 11
Demo 10
Display 10
Editor 10
Experience 10
Function 11
Host 11
MaxSourceLine 11
MinSourceLine 11
Module 11
Prompt 11
SourceFile 11
SourceFileDirectory 11
User 10
Warp 11
Warp User Package 1, 41
Window manager 2, 6
Suntools 2
X 2
Windows 10, 26
WPE
Customnizations 30, 33
Debugging 27
Ermror messages 71
Getting it 2
Running it 3
Software components 4
System configuration 3
WPE server 4

X Window Manager 10, 26
Creating a window 26
Using the mouse 26

81

Warp Programming Environment 2.6

Warp Monitor Functions

allec clmem 50
alloc_ef 48

cache_micro 54
clear | “break 59
continue warp 38
copy_cte 33
copy_ctf 52
copy_fte 33

dealloc_clmem 51

EFLAG 48
execute _warp 356
execution time 58

fast load micro 55
free | buffer 52
free Tef 49

get_error_string 46
get field 63

get _pc 60
get_uninit _clmem 51
get _version 65

list_gueue 48
load_cluster 55
load_micro 54

load cne_cluster 55
lock _warp 47

make_clust_func 56
next_entry 48
openconn 44

param_const 65
put_£field 63

read chain 61
read_data_mem 59

read “ef 49

read from clmem 51
read 1 “microcode 61
read _register 62
reset_warp 66

sanity check 66
server error 46
set_ break 59
set_debug 64
set_dir 65
get_ef 49

set_pc 60

set timeout 64
start cluster 356
start_ cluster a 57
start_warp 57
start warpd 44

82

unlock_warp 47
use printf 58

wait_ef 49

wzltﬂ chain 62
write data mem 60
write] “microcede 61
write reg;ster 63
write to_clmem 52

Warp Programming Environment 2.6

Warp Shell Functions

8 Command 13
alias 9
handle-errors 32
load 33

pause 13

quit 14

record 14

w2-break 14
w2-compile 16
wZ2-continue 17
w2-delete 18
wZ2=-download 18
wZ2-edit 18
w2-enable 19
wZ2-exaecute 19
w2-get 20
wZ-halt 20
w2-init 21
w2-load 21
wZ-lockwarp 21
w2-reset 22
w2-restart 22
w2-sanity 22
wl2=-get 24
w2-show 25
wZ~suggestbreaks 27
wZ2-trace 27
w2-type 28
wZ2-unlockwarp 28
w2=var 28
wZ2-warpqueue 29
wpeversion 14

83

Warp Programming Environment 2.6

84

