
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Warp Programming Environment:
User Manual

Bemd Bruegge
20 January 1988
CMU-CS-88-105 Ci)

Abstract

The goal of the Warp Programming Environment is to provide easy access to the Warp machine, a parallel
supercomputer based on the systolic array architecture. The Warp Programming Environment offers a uniform
environment for editing, compiling, debugging and executing Warp programs. It is based on an extensible shell
written in Common Lisp and a runtime system written in C. It runs on a SUN-3 workstation under UNIX 4.2 and
supports three types of users: Implementors of the environment itself who modify or enhance the functionality of
the environment Developers using the compiler and debugger to write Warp programs. And programmers writing
application programs that call Warp programs. This document describes the Warp Programming Environment 2.6
from 08-Jan-88.

The research was supported in part by Defense Advanced Research Projects Agency (DOD), monitored by the Air
S i e l S r i S o r y under Contract F33615-81-K-1539 and Naval Electronic ^ ^ . ^ ^ ^
Contact N00039-85-C-0134, and in part by the Office of Naval Research under Contracts N00014-80-C-0236, NR
048-659, and N00014-85-K-0152, NR SDRJ-007.

Warp Programming Environment 2.6

T a b l e o f C o n t e n t s
1. Introduction 1

1.1 How to get the Warp Programming Environment 2
1.2 How to run the Warp Programming Environment 3
1 3 System Configuration 3
1.4 Software Components 4
1.5 Organization of the Manual 7
1.6 Acknowledgments 7

2. The Warp Shell 9
2.1 Introduction 9

2.1.1 Syntax of SheU Commands 9
2.1.2 Warp SheU Objects 10
2.13 Customizing the Warp SheU 12

22 Warp Shell Commands 12
2.2.1 Interrupting Warp shell Commands 12
2.2.2 @ Command 13
2.2.3 PAUSE 13
2.2.4 QUIT 14
2.2.5 RECORD 14
2.2.6 WPEVERSION 14
2.2.7 W2-BREAK 14
2.2.8 W2-COMPILE 16
2.2.9 W2-CONTINUE 17
2.2.10 W2-DELETE 18
2.2.11 W2-DISABLE 18
2.2.12 W2-DOWNLOAD 18
2.2.13 W2-EDIT 18
2.2.14 W2-ENABLE 19
2.2.15 W2-EXECUTE 19
2.2.16 W2-GET
2.2.17 W2-HALT
2.2.18 W2-INIT
2.2.19 W2-LOAD 21
2.2.20 W2-LOCKWARP 21
2.2.21 W2-RESET 22
2.2.22 W2-RESTART 22
2.2.23 W2-SANITY 22
2.2.24 W2-SET 24
2.2.25 W2-SHOW 25
2.2.26 W2-SUGGESTBREAKS 27
2.2.27 W2-TRACE 27
2.2.28 W2-TYPE 28
2.2.29 W2-UNLOCKWARP 28
2.2.30 W2-VAR 28
2.231 W2-WARPQUEUE 29

23 How to load a Customized Warp Programming Environment 30
2.4 Customizing the Initial Startup 30

2.4.1 The Environment File: warprc 31
2.4.2 Editor Profiles 31
2.43 The Boot File: warpsheU 32
2.4.4 The Directory File: wpcslisp 32
2.4.5 The Configuration File: wpeprofile.slisp 32
2.4.6 The Update File: bugfixes.slisp 32
2.5.2 LOAD 33

2.6 Writing Warp Shell Commands 33
2.5 Special Warp Shell Commands 33

23.1 HANDLE-ERRORS 33
2.7 Debugging the Warp Shell 35

20
20
21

i
UNIVERSITY LIBRARIES

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213

Warp Programming Environment 2.6

2.8 Using the Warp Shell: An Example 35
2.8.1 Example Session 36
2.8.2 Example Command File 39

3. The W a r p Monitor 41
3.1 Introduction 41
3.2 Classification of Warp Monitor Functions 41
33 Warp Server Control Functions 44

33.1 START WARPD 44
3.3.2 OPENCONN 44

3.4 Error Handling Functions 45
3.4.1 SERVER ERROR 46
3.4.2 GET_ERROR_STRING 46

3.5 Warp Locking Mechanism 47
3.5.1 LOCK WARP 47
3.5.2 UNLOCKWARP 47
333 LISTQUEUE 48
3.5.4 NEXT_ENTRY 48

3.6 Event Flag Functions 48
3.6.1 ALLOCEF 48
3.6.2 FREEEF 49
3.63 READ_EF 49
3.6.4 SET EF 49
3.6.5 WAITEF 49

3.7 Memory Allocation 50
3.7.1 ALLOC CLMEM 50
3.7.2 DEALLOC_CLMEM 51
3.7.3 GET_UNINIT CLMEM 51
3.7.4 READ FROM" CLMEM 51
3.7.5 WRITE TO CLMEM 52
3.7.6 FREEBUFFER 52
3.7.7 COPY_CTF 52
3.7.8 COPY FTC 53
3.7.9 COPY~CTC 53

3.8 Downloading Functions 54
3.8.1 LOADMICRO 54
3.8.2 CACHE_MICRO 54
3&3 FAST LOAD MICRO 55
3.8.4 LOAD CLUSTER 55
3.8.5 LOAD~ONE_CLUSTER 55
3.8.6 MAKE"CLUSTFUNC 56

3.9 Execution Functions 56
3.9.1 EXECUTE_WARP 56
3.93. START_CLUSTER 56
3.9 J START_CLUSTER A 57
3.9.4 START WARP ~ 57
3.9.5 CONTINUEWARP 58
3.9.6 EXECUTIONTIME 58

3.10 Debugging Functions 58
3.10.1 USE PRINTF 58
3.10.2 SET_BREAK 59
3.10 J CLEARBREAK 59
3.10.4 READ DATA MEM 59
3.10.5 WRITE DATA MEM
3.10.6 SET PC

60
60

3.10.7 GET_PC JJ
3.10.8 READ_MICROCODE "
3.10.9 WRITE_MICROCODE J J
3.10.10 READ_CHAIN g
3.10.11 WRITE CHAIN 6 2

ii

Warp Programming Environment

3.10.12 READJREGISTER
3.10.13 WRITE REGISTER
3.10.14 GET FIELD
3.10.15 PUTJFIELD

3.11 Miscellaneous Functions
3.11.1 SETJDEBUG
3.11.2 SET TIMEOUT
3.113 GET VERSION
3.11.4 PARAM_CONST
3.113 SETJDIR
3.11.6 SANITY_CHECK
3.11.7 RESET WARP

3.12 Using the Warp Monitor
3.12.1 Pipe I: Using the Warp Monitor inside a C Program
3.12.2 Pipe II: Using Event Flags Functions
3.123 Compiling, Linking and Executing C Programs
3.12.4 Using the Warp Monitor inside Common Lisp Programs

4. When Things Go Wrong
4.1 Known Bugs
4.2 Error Messages
4 3 Monitoring The Warp and Users Servers
4.4 Creating Bug Reports

I. Summary of Warp Shell Commands
EL Summary of Warp Monitor Functions

Ul

Warp Programming Environment 2.<

iv

Warp Programming Environment 2.6

List of Figures
Figure 1-1: System Configuration of the Warp Programming Environment 5
Figure 1-2: Software Components of the Warp Programming Environment 6
Figure 2-1: Example of a war pre file 31
Figure 2-2: Warp Shell: Implementation of the Command NOISY 34
Figure 2-3: W2 Example: Polynomial Evaluation using the Horner Scheme 37
Figure 3-1: Architecture of Applications using the Warp Monitor 42
Figure 3-2: A C Program Calling a W2 Program 67
Figure 3-3: A C Program Using Event Flag Functions *°

v

Warp Programming Environment 2.6 Introduction

1 Marco Annaratone, Emmanuel Amould, Robert Conn, Thomas Gross, H.T. Kung, Monica Lam, Onat Menzilcioglu, Ken Sarocky, John
Senko, Jon Webb, "Architecture of Warp", Compcon Spring 1987, TRFF. Computer Society, 1987.

2Thomas Gross, Monica Lam, "A Description of Warp Document D330R05, Department of Computer Science, Carnegie-Mellon
University, September 10, 1986.

3Mosur Ravishankar, "Warp User Package", Warp Document D150R00, Department of Computer Science, Carnegie-Mellon University, March 1987.

1

1. Introduction
The basic philosophy of the Warp Programming Environment (WPE) is to provide easy access to the Warp

machine, replacing the complexity of earlier programming environments for Warp. Warp is a low-cost
supercomputer based on the systolic array architecture1. The Warp Programming Environment offers the user the
ability to compile, execute and debug W2 programs2 on the Warp machine in a uniform environment. Commands in
the Warp Programming Environment are provided in a uniform way based on an extensible shell. This shell is called
the Warp shell.

The Warp shell has several attractive features. First of all, it provides a uniform help mechanism. An example
from the help description of a command can be fed to the command interpreter, providing an easy exploration of the
command language. Second, it takes care of different levels of sophistication, in particular of the novice and the
experienced user, this can often be the same person at different times during the program development. The
underlying Common Lisp implementation and the components of the environment are completely hidden from the
application programmer, this is useful for somebody who is just interested in using the Warp shell. However, the
Lisp implementation and all the software components comprising the Warp environment are easily available if so
desired. This makes the Warp shell extensible. In particular, an interested programmer can make use of Common
Lisp's powerful control structures to implement new commands.

The Warp shell is designed to run inside a text editor. The advantage of using an editor is that features such as
intra-line editing, history buffers, re-execution of commands of previous commands and creation of script files are
automatically available without any additional cost.

The Warp Programming Environment supports multiple user access, because the use of the Warp machine in a
typical user session is sporadic. And it supports multiple machine access: If there is more than one Warp machine
available, the user has the choice of connecting to any of these machines.

The Warp Programming Environment provides network transparency which is achieved by servers
communicating with Warp shells running on remote workstations via remote procedure calls using the TCP-IP
protocol. This means that the Warp machine can be accessed from any site that understands the TCP-IP protocol.

Each server is based on the Warp monitor, a software package designed to provide a "virtual Warp machine".
The main goal of the Warp monitor is to shield the programmer from the complexity of the Warp array and yet make
the hardware accessible. The Warp monitor contains functions for locking the machine, allocation of memory, for
the execution and for the inspection of data and code.

In addition to providing a server for the Warp shell, the Warp monitor can also be used by programmers who want
to call W2 programs from their own application programs. This includes applications running inside the Warp shell,
for example debugging tools for the Warp machine as well as standalone applications. A package called the Warp
User Package* has been implemented on top of the Warp monitor that enables the application programmer to write
standalone applications using Warp programs from a library without having to know any details about the Warp
machine at all.

Introduction Warp Programming Environment 2.6

As a result of this structure, the Warp Programming Environment supports three types of users: The implementor
of the environment itself, who can use the Warp shell to define the functionality of the environment Developers of
W2 programs, who can use the W2 compiler and W2 debugger to develop W2 programs. And application
programmers who can write standalone programs calling W2 programs provided by a library.

1.1 How to get the Warp Programming Environment
The Warp Programming Environment consists of several software components. The file system location of these

components is defined by a set of environment variables in the socalled environment file warprc. The location of the
warprc file is system dependent and is usually stored in the W P E home directory. Ask your system maintainer for
the value of the environment variable $wPEhome. Versions of W P E can be found in the directories
$WPEhome/ c u r r e n t or $WPEhome/exp, respectively. The former one contains a stable version and the latter
one a more experimental version.

W P E is designed to be executable in several ways: as a standalone shell, inside a text editor and inside a window
manager. Currently two Emacs editors are supported: GNU Emacs4 and Gosling's Emacs5.

To install W P E under GNU Emacs, add the following lines to your . emacs profile (see file $WPEhome/.emacs):
(satq load-path (cons "$WPE«ditor/M load-path))
(load "wazpahalLal" nil t)
(satq window-min-haight 6)
(satq split-haight-thrashold 6)
(global-sat-kay "\ AX\ AL" 'goto-lisp)

To install W P E under Gosling's Emacs, we recommend you to add the following lines to your ,emacs_pro

profile:
(load " $WPEhoma/maclib/procass. ml")
(autoload "wsh" "$WPEhoma/maclib/waxpshall.ml")
(satq split-haight-thrashhold 6)
(bind-to-kay Maand-int-signal" "\ AC M)
(bind-to-kay "common-lisp" M\ AX\ AL M)

The variable SPLIT-HEIGHT-THRESHHOLD determines the minimal size of lines of an Emacs buffer. Note the incorrect
spelling of threshhold in Gosling's Emacs. We recommend to use 6, because W P E uses screen buffers extensively.
The Mock Lisp function S E N D - I N T - S I G N A L is bound to C T L c to send an interrupt signal to Emacs. This is useful for
interrupting the Warp shell in case it is doing something you don't want it to do. The last line binds the key CTL x
C T L L to position the cursor at the end of the Warp shell buffer. This is useful if you are typing to an other editor
buffer and you want to return to the Warp shell buffer.

Note, that Gosling Emacs spells threshold incorrectly. As in GNU Emacs, we recommend to bind the key C T L X
C T L L to position the cursor at the end of the Warp shell buffer, which is implemented by the Lisp function

GOTO-LISP.

If you are using GNU Emacs, but prefer to use the key bindings from Gosling's Emacs, add the following lines to

your .emacs:
(load "gosmacs" nil t)
(sat-gosmacs-bindings)

W P E can be executed under S U N T O O L S or the X window manager. The display of images on Sun screens is

'Richard Stallman, GNU Emacs Manual, 4th edition, Free Software Foundation, Cambridge, Mass., February 1986.

5James Gosling, Emacs - Screen Editor, Version 264, UniPress Software, Inc., Edison, N J., 1983.

2

Warp Programming Environment 2.6 Introduction

supported only under x. If you are familiar with Gosling's Emacs and S U N T O O L S and would like to use GNU Emacs
and X, execute the shell script $ W P E b i n / g e t - g n u - a n d - x - d e f a u l t s . It will copy the files .emacs,
.uwmrc, . x t o o l s and .Xdef a u l t s into your home directory. The keybindings are chosen to make X (almost)

look like S U N T O O L S and GNU Emacs (almost) look like Gosling's Emacs. Add the lines
satanv DISPLAY unix:0
xinit xtools

to your . l o g i n file to invoke X at login time.

1.2 How to run the Warp Programming Environment
The Warp Programming Environment runs on top of Common Lisp under UNIX 4.2 on a SUN-3. If you are using

the CMU implementation, you have to have an account on a SUN-3 which has access to the file server kiwi. The
Warp Programming Environment can be started from any terminal that is connected to such a SUN. The startup time
is between 10-20 seconds. To set up the correct path names and environment variables, add the following line to
your . l o g i n :

s o u r c e $WPEhome/USE_CURR£NT

where $WPEhome must be replaced by the system dependent path name prefix6.

To start W P E from the C shell without an editor, type
$WPEbin/wsh

This command loads the W P E core image and enters the top level of the Common Lisp interpreter. When the prompt
of the Lisp interpreter appears, type (warp s h e l l) to enter the Warp shell.

To start W P E from the C shell using GNU Emacs, type
$WPEbin/wpeg

To start W P E from the C shell using Gosling's Emacs, type
$WPEbin/wpe

These commands automatically fire up Emacs with a screen buffer for the Common Lisp interpreter, load the
Warp Programming Environment and start up the Warp shell7. While W P E is being loaded, the mode line

Warp Programming Environment: Warp Shall (Common Lisp)
is displayed if you are using Gosling's Emacs. With GNU Emacs, the only difference in the mode line is that
Common Lisp is replaced by I n f e r i o r Lisp . Once loading is finished, the mode line display shows the
version number postfixed by the letter c (which stands for core image), the Warp host and the user type:

Warp Programming Environment 2.6C: Warp shall (Host: warpb Dsar:davalopar)

1.3 System Configuration
Figure 1-1 shows the system configuration of the Warp Programming Environment used at Carnegie-Mellon

University. The system consists of a set of workstations connected to each other via an Ethernet The majority of
the workstations are diskless. Workstations with attached disks are called file servers. Each workstation, a SUN-3,

6If you want to use the experimental version, add the line source $WPEhome/USE_EXP.

-JJ b e i7 P e C O m m a i K* 18 ai iaS

T5°r
 ' c x e c c m a c s - c w s h . - T*"5 *T*g command is an alias for 'setenv EIPCCHAN E IPC $$• exec eemacs -e

3

Introduction Warp Programming Environment 2.6

can run one or more Warp shells or standalone8 programs. A SUN-3 workstation called Warp host (also called
master processor in other papers) is physically connected via a bus repeater to the VME bus of the external host.
The external host consists of two cluster processors CP1 and CP2 with associated memories, a support processor,
graphics devices for I/O and two switches SW1 and SW2, all connected to the VME bus 9. The switches allow the
clusters to send and receive data to and from the Warp array (Cell L..Cell 10) through the interface unit (IU) of the
Warp machine. Thus the Warp host is the intermediator between the workstations and the Warp machine itself.
Figure 1-1 shows two Warp hosts connected to two Warp machines.

The Warp host runs three kinds of servers: the Warp server, the WPE server and the user servers. The Warp
server manages the use of the Warp machine connected to the Warp host It maintains the queue of users having
requested the Warp machine. The W P E server accepts remote requests to open connections to the Warp machine.
For each Warp shell and for each standalone program not running on the Warp host, the WPE server creates a
"shadow" process called the user server on the Warp host side. Each user server provides the functionality of the
Warp monitor described in section 3. The main purpose of the user server is to allocate and manage memory: Every
time the Warp server allocates the Warp machine to a particular user, the user memory is copied onto the memories
of the cluster processors (C1M1 and C2M2 in figure 1-1) and every time a user unlocks the Warp machine, the
memory of the cluster processors is copied back into the memory of the corresponding user server. This makes it
possible to multiplex the Warp machine between multiple users and maintain user specific state information across
several locks/unlocks of the Warp machine.

In the following we use the terms remote and local to characterize the location of a program in relation to the
• Warp host: Programs running on a Warp host are in local mode, programs running on other workstations are in

remote mode. Only remote programs have user servers associated with them and the communication between
remote programs and user servers is via the TCP-IP protocol. Local programs don't need user servers: the Warp
monitor is directly linked into their code.

1.4 Software Components
Figure 1-2 shows the major software components of the Warp Programming Environment The W2 compiler, the

W2 debugger and the W2 simulator support the development of Warp programs. The editor, window manager and
generalized image library are used for the preparation of programs and for the display of data structures and images.
The Warp monitor and the Warp shell support the execution of Warp programs. Communication between the
components is via the W P E database. Programs for the Warp array are written in W2 and compiled by the W2
compiler. The result of the compilation is an abstract syntax tree which is accessible by the other components of
the Warp Programming Environment. For example, the W2 debugger inspects the syntax tree when it searches for
the value of a variable; the Warp shell inspects the syntax tree when it matches the actual parameters of a Warp
program call with the formal parameters of the program.

The Warp shell provides the basic functionality of U N I X shells, such as the C-shell, as well as commands to
compile and execute programs on the Warp array. It maintains a set of environment variables such as SOURCEFELE

(the name of the current W2 program), W A R P (the name of the current Warp machine) and B R E A K P O I N T S (the set of
currently defined breakpoints). These environment variables can be inspected and assigned new values with Warp
shell commands. The semantics of assignment is different for each environment variable. For example, assigning a

'In this manual the term standalone program denotes an application program that does not use the Warp shell, but is calling Warp monitor
functions directly.

*Thc support processor is not shown in figure 1-1. For a more detailed view of the Warp machine architecture see Annaratone ct al.
"Architecture of Warp", Compcon Spring 1987, IEEE Computer Society, 1987.

4

Warp Programming Environment 2.6 Introduction

Workstat ion 1 (Sun3

Worksta t ion 2 (Sun3)

Fila Server (Sun3)

Warp host 1 (Sun3)

WPE Server

User
Server
User

Server

User Server m - 1 "

User Server m

Warp Server

Warp host 2 (Sun3)

WPE Server

Standalone 1

User m + 1

User Server 2

User Server 3 0
Warp Server WARP MACHINE 2

Figure 1-1: System Configuration of the Warp Programming Environment
string "foo.w2" to S O U R C E F I L E implies the compilation of the W2 program "foo", whereas assigning a value to H O S T

changes the new Warp host which implies the connection to a different Warp array.

The Warp shell is programmed in Common lisp whose garbage collector makes it impossible to achieve
predictable response times at the shell level. This is tolerable when developing Warp programs, but not when
real-time behavior is needed. The Warp monitor supports applications which do not need the full functionality of
the Warp shell and must run as fast as possible. In this case programs can run in standalone mode by calling the
Warp monitor functions explicitly.

Standalone mode is supported for remote and local execution. In remote mode - Standalone 2 in figure 1-1 -

5

Introduction Warp Programming Environment 2.6

e c

tS>r

1 6 a : = (e + c) * d

Break at line 16

Abstract Syntax Tree for

Current Sourcefile
Buffers & Windows

Sourcefile
Sourceline

Warp
Experience
Breakpoints

User

Environment Variables

WPE DATABASE

Sourcefiles, Symboltables, etc.

Figure 1-2: Software Components of the Warp Programming Environment
the application is using remote procedure calls implemented with the TCP-IP protocol. In the local mode -
Standalone 1 in figure 1-1 - application programs are running on the Warp host and the Warp monitor functions are
executed as direct procedure calls. The local standalone mode is the mode with the lowest overhead and is the
preferred mode of execution when time is critical. However, the Warp monitor is implemented such that there is no
difference between the core image of an application running in remote mode or in local mode. Thus application
programmers can compile, link and test their applications in the familiar environment of their personal workstation
before they download them to the Warp host for local execution. Application programs in standalone mode can be
written in any language as long as the language implementation supports the call of external C routines (the Warp
monitor is written in C).

W P E can be executed inside a window of the X window manager. In this case, other X windows can be used for
the display of images. The display of these images is done via the generalized image library. The generalized
image library is current being developed at Camegie-Mellon University, providing device independent access to a
variety of image devices and disk formats 1 0.

10Leonard Hamey, "A User's Guide to the Generalized Image Library" and Leonard Harney, Harry Printz. Doug Reece, Steve Shafer, "A
Programmers's Guide to the Generalized Image Library", Department of Computer Science, Carnegie-Mellon University.

6

Warp Programming Environment 2.6 Introduction

The Warp shell can be executed inside one of two editors: Gosling's Emacs or GNU Emacs. The communication
between W P E and these editors is as follows: Gosling's Emacs sets up a U N I X socket that accepts commands from an
external process (in our case WPE) and evaluates them as Mock Lisp commands. The name of the socket is
automatically put into the U N I X environment variable E I P C C H A N . The same communication mechanism is simulated
in GNU Emacs as follows: The name of the socket is manually put into the U N I X environment variable E I P C C H A N

and a subprocess is started by s t a r t - s h a r e - f i l t e r 1 1 which accepts commands from W P E and prints them to
its standard output which is fed into an output filter12 which evaluates them as a GNU Emacs Lisp command.

Both, GNU Emacs and Gosling's Emacs, support parallel editing, that is, the user can continue editing while the
Warp shell is executing a command. They also support features such as compiler error message positioning (CTL X
CTL N), display of Warp shell variables in buffers, script files, etc. It is also possible to use the built-in Common
Lisp editor (ed), but in that case it is not possible to do parallel editing. Finally, the Warp shell can be executed
without an editor, but in this case none of the editor features are available.

1.5 Organization of the Manual
Chapter 2 deals with the Warp shell. Section 2.2 contains all the commands offered by the Warp shell. Section

2.3 is intended for users who want to do simple customizations of the Warp shell. Section 2.4 to Section 2.7 are for
the advanced user who wants to change the functionality of the Warp shell. In Section 2.8 we walk through an
example session with the Warp shell and explain the use of the commands.

Chapter 3 describes the Warp monitor. Section 3.3 to Section 3.11 list the functions currently implemented in the
Warp monitor. In Section 3.12 we show how to write and execute standalone programs using the Warp monitor. All
program examples have been tested.

Chapter 4 contains a list of known bugs and some error messages that might be printed while running the Warp
shell. It also explains how to monitor the message traffic between the servers and the Warp shell.

Appendix I summarizes the currently implemented Warp shell commands and Appendix II lists the Warp monitor
commands.

1.6 Acknowledgments
The Warp shell is based on the Lisp shell developed by Dario Giuse. The W2 compiler was developed by the

compiler group consisting of Chang-Hsin Chang, Robert Cohn, Thomas Gross, Monica Lam, Peter Lieu, Abu
Noam an and David Yam. The W2 simulator was implemented by Angelika Zobel. The Warp monitor was
implemented by Michael Browne. Ed Clune suggested several extensions to the Warp monitor. Parts of the Warp
monitor are based on an earlier runtime environment called W A R P C I developed by Francois Bitz and Jon Webb. The
generalized image library was developed by Leonard Harney. Marco Annaratone, Robert Cohn, Harry Printz and
Leonard Harney were the first users and made valuable suggestions.

n s e e S W P E e d i t o r / w a r p s h e l l . e l

2An output filter is a G M U Emacs Lisp routine which manipulates the output of a process.

7

Warp Programming Environment 2.6

8

Warp Programming Environment 2.6 Warp SheU

2. The Warp Shell

2.1 Introduction
The Warp shell is based on the Lisp shell currently being developed at Carnegie-Mellon University. Its intended

way of use is within a text editor. The implementation described here assumes that the user is running the shell
within an Emacs editor. The Warp shell provides an extensive online help facility. Type H E L P C to get help on a
specific command C. To get help on the shell itself type H E L P S H E L L . The K E Y W O R D command can be used to get
help on a given topic It searches the table of all currently defined commands and prints out all commands whose
description contains a word that matches the given key. For example, the command K E Y FILE currently prints out
the following:

copy : Copy one or more files
delete : Delete files
directory : List files that match a pattern
find : Find all occurrences of a file name
load : load a lisp file
rename : Rename or move one or more files
search : Search files for a string
touch : Change the creation date of a file
type : Type out a file
clean : Delete garbage files
grep : Search files for a string
11 : List files with size and creation date

Command names can be aliased to new names. The alias command can be explored by typing H E L P A L I A S :
ALIAS Define a new alias
SYNTAX: alias name [value] [description]

With one argument, show the current alias for <name>. With two arguments,
set the new alias for <name> to be <value>. If specified/ <description> is
used as a one-line help for <name>.

EXAMPLES:
alias 11 'directory -long' 'list file sizes and creation dates'
alias man 'keyword'

For example, if you are familiar with the U N I X C-shell, you can alias K E Y W O R D to K E Y and H E L P to M A N ,
respectively.

2.1.1 Syntax of Shell Commands

The Warp shell provides a standardized mechanism for command lines. A command consists of a sequence of
words separated by blanks and command options. An option is assumed to start with a minus sign. Options can be
either switches or (name,value) pairs. A switch is an option that does not take any argument. A (name,value) pair is
an option keyword followed by a value. For each (name, value) pair there is a default value which usually can be
found with the H E L P command. Commands and options can be uniquely abbreviated, since the shell performs name
completion of commands as well as options.

Command line input is not bound to one text line, but can span across several lines of input. If the input cursor is
at the end of the last command line, the command reader takes the whole piece of text between the last prompt and
the end of the line and passes it to the shell for evaluation. If the input cursor is not on the last command line, but
somewhere on a command line earlier in the editor buffer the whole command line that surrounds the input cursor is
inserted at the end of the buffer (after the last prompt), and immediately executed.

After the command text has been extracted by the command reader, it is passed to the Warp shell for evaluation.
If it starts with an open parenthesis it is treated as a Common l isp expression and the Warp shell passes it to the
Lisp interpreter. Otherwise it is treated as a Warp shell command. This means that the user can type any

9

Warp SheU Warp Programming Environment 2.6

combination of shell and Common Lisp expressions to the Warp shell. This makes it possible to write very

powerful and flexible shell scripts.

CELLS

D I S P L A Y

D E M O

E D I T O R

2.1.2 Warp Shell Objects
A Warp sheU object is a type or a variable. The Warp shell provides predefined variables called environment

variables and user defined variables. Currently the following environment variables are defined:

The list of Warp cells to which Warp sheU commands apply.
The display device to be used when displaying data or images. Possible values are: The name

of a generalized image as specified in the GEL manual 1 3 such as "net:warpm:cube", "xwindow",
etc, or one of the strings "buffer", "windowl", "window2" and "monitor". The default value is
"buffer". The value "buffer" binds the display to an Emacs screen buffer, "monitor" binds the
display to the Datacube display attached to the Warp machine, and "windowl" and "window2"
are X windows created by the generalized image library. These windows can be reused when
displaying images. Using the generalized image name "xwindow" will open a new X window
every time an image is displayed. X windows are created interactively with the mouse as
described in the W2-SHOW command in Section 2.2.25, page 25.

This environment variable determines how Warp shell commands in command files are
executed. Possible values are : "on" or "off". The default value is "off1. When D E M O is "on",
then Warp shell commands are executed in single step mode, that is, after each command the
user is prompted for an action to proceed with the execution of the command file or abort i t
Indicates whether the Warp shell is executed inside an Emacs editor or not. Possible values are:
"Emacs" (for Gosling's Emacs), "Gnu-Emacs" and "off1. The default value is determined by the
way W P E is invoked. If E D I T O R is not "off*, several Emacs features will be used by the Warp
sheU:

• When compiling a W2 program, a separate window called W2 E r r o r Messages
is used for compiler diagnostics (In Gosling's Emacs the name of the screen buffer
is error-log, in GNU Emacs it is called *compilation*). This window can be
scanned for error messages using the A X A N command. Notice that the W2
compiler compiles a preprocessed version of your source program. Thus the error
messages apply to the preprocessed version and not to the original file!

• When a breakpoint is encountered the source file will be opened in a separate
window and the source line of the current breakpoint is shown at the top of that
window. The breakpoint is shown in the file of the preprocessed program, not in
the original source program.

• When command files are executed, the current command is displayed in a separate
window. When in expert mode (see below), the current command will be shown in
Emacs' mini command buffer. When in beginner mode (see below), the command
file will be shown in a separate window and the current command is always
displayed at the top of the window.

Experience level of user. Possible values are "beginner" and "expert". The default value is
"beginner". If you are a beginner, the command N O I S Y O N is automatically executed at startup
time, which means the response to Warp sheU commands is shown.
User type. Possible values are "user", "developer" and "implementor". The default value is
"developer". If you are a user, you can use all the basic sheU commands and the Warp sheU
commands for the aUocation of variables, for the execution of W2 programs and for the
inspection of the results. The W2 programs themselves are treated as "black boxes". Thus,
compilation and debugging of W2 programs is not possible in user mode. If you are a
developer, you have aU the rights of a user and the W2 compiler and W2 debugger are available.

E X P E R I E N C E

U S E R

"Leonard Harney, "A User's GuUe U> tHe Generalized lnu,ge Library- Department of Computer Science, Carnegie-Mellon University, 14

April 1987.

10

Warp Programming Environment 2.6 Warp Shell

In developer mode, the Warp shell is treated as a "black box". Thus, changing the functionality
of the Warp shell is not possible in developer mode. If you are an implementor, you have all the
rights of a developer and you can change the Warp shell. For example, you are able to load
Common Lisp files into the Warp shell. And you are able to invoke the Common Lisp debugger
to debug the Waip shell. You will also get a set of error messages that are not shown in user or
developer mode. For example, the Warp shell will automatically deallocate all Warp shell
variables in the user server process whenever there is a problem with the server. The
implementor is notified of this event but not the other user types. The user type determines the
order in which the Warp shell tries to interpret a command. For the user types "user" and
"developer", any command typed to the Warp shell is first tried as a Warp shell command and if
there is no such command it is tried as a Unix command. For user type "implementor", the
Warp shell first tries to evaluate the command as a Lisp variable, and if that is not successful, it
is tried as a Warp shell command and then as a Unix command.

M O D U L E The name of the module of the current W2 program. The default value is NIL.
S O U R C E F I L E The name of the source of the current W2 program. The default value is NIL.
S O U R C E F I L E D I R E C T O R Y

The name of the directory of the current W2 program. The default value is NIL.

H O S T The Warp host. Possible values here at CMU are: "warpb", "warp8" and "warpm". The default
value is "warp8".

S E R V E R C O M M E N T Comment displayed in Warp server queue entry while requesting or using the Warp machine.
Strings with blanks have to be enclosed by single quotes. The default value is "Running WPE".
When debugging a program foo.w2, the default value is changed to "debugging foo.w2".

F U N C T I O N The name of the current function of the current W2 program. The default value is NIL.
P R O M P T The prompt of the Warp shell. Strings with blanks have to be enclosed by single quotes. The

default value is "%".

M I N S O U R C E L I N E The smallest source line number in the current function. The default value is 0.

M A X S O U R C E L I N E The largest source line number in the current function. The default value is 9999999999.

W A R P The target machine. Possible values and the default value are installation dependent. Most
Waip shell commands can be used for any value of W A R P , but their interpretation depends on the
actual value. For example, If W A R P is set to the name of a Warp machine, the W2-COMPILE
command generates c code for the cluster processors and wi microcode for the Warp array. If
W A R P is set to "simulator", it generates C + + code. Similarly, W2-EXECUTE executes either C++
object code or Warp object code 1 4. Naturally, the Warp locking commands do not work if
W A R P is set to "simulator".

The current value of the environment variables can be determined with the command W2-SHOW - E N V I R O N M E N T . It
is possible to change the value of environment variables with the W2-SET command. The semantics of this command
is different for each environment variable. For example, the command W2-SET -SOURCEFILE TEMP.W2 sets the current
source file to temp.w2 which might imply a call to the W2 compiler to compile the program! The command
W2-SET - H O S T W A R P B changes the Warp host to "warpb" and in addition it changes the environment variable W A R P to
the name of the Warp machine associated with "warpb".

In addition to environment variables, the Warp shell provides the ability to define user-defined objects. Warp
shell types and variables can be defined with the W2-TYPE and W2-VAR commands, respectively. Warp shell
variables can be initialized with W2-SET, displayed with W2-SHOW and modified with W2-EDIT. Individual Warp shell
variables are displayed in editor buffers. If the variable is allocated in cluster memory, the contents is copied into a
file in the /tmp/ file structure before it is displayed15. The naming scheme for these files is of the form

uExecution of C + + code is not yet implemented.

"NOTE: If the file structure is full, you will get an error message when you are trying to display or edit a Warp shell variable.

11

Warp Shell Warp Programming Environment 2.6

2.1.3 Customizing the Warp Shell
After the Warp Programming Environment has been invoked, the Warp shell looks at a command file

warpsheUinitxmd. This file is looked up in three places until it is found: First in the current directory, then in the
user's home directory, and finally in the directory $WPEhome/. If you want to do your own customizations, copy
the file $WPEhome/warpshellinitslisp into your current directory or home-directory and modify it. The command
file can contain any sequence of Warp shell commands as well as Common Lisp commands (see @ command).

2.2 Warp Shell Commands
The Warp shell offers two kinds of commands: First, commands such as delete, copy, remove, etc. These

commands are not described in this manual, because it is assumed that the reader is already familiar with them.
Type H E L P C O M M A N D S to explore them. Second, commands to compile, debug and execute w2 programs on the
Warp. These commands are described in the following.

Depending on the user type, the Warp shell looks up commands in a certain order. If you are user type "user" or
"developer", any command typed to the Warp shell is first tried as a Warp shell command. If there is no such
command, it is interpreted as a Unix shell command. If you are an "implementor", the Warp shell tries to evaluate
the typed command as a Lisp variable. If that is not successful, it is successively tried as a Warp shell and a Unix
shell command.

U N I X shell commands are executed by invoking the shell defined in the U N I X environment variable S H E L L 1 6 .

A summary of all the Warp shell commands is contained in the Appendix I.

2.2.1 Interrupting Warp shell Commands
You can abort any Warp shell command currently being executed and return back to the Warp shell command

interpreter. If you are using WPE inside GNU emacs, type CTL c twice to abort Warp shell commands. This is a
special feature of GNU Emacs: The Warp shell runs in Shell mode, which defines several special keys attached to
the C - c prefix 1 7. In particular, C - c C - c is bound to i n t e r r u p t - s h e l l - s u b j ob , which sends an interrupt
character to the shell. Thus, if you type CTL C once, it will appear as C-c- in the message window. Now type another
C T L c: You will see C-c C-c and the interrupt is generated. When the C T L c is acknowledged by the Warp shell,
you will see the message

»Interrupt: Keyboard

SYSCALL:
:A Abort to Lisp Top Laval
:C Resume interrupted instructions

«K «hc environment variable SHEU. is set to the C-shell, the file .cshrc is visited every time a ^ - - i s « ^ If your xshrc file
redefineltn^ shell prompt, the prompt will be echoed by the Warp shell. The approved way to avo,d echomg of the prompt *

if ($?prompt) set prompt - <proxnptstring>

1 7 Sce Section Shell Mode in the G N U Emacs manual for more details.

12

/tmp/var.name.PID, where name is the name of the variable and P I D is the U N I X process id of the Lisp process. If
a Warp shell variable is edited that has not yet been initialized, a temporary empty file is created and visited. The
naming scheme for these files is of the form /tmp/var.$name$.PID. These temporary files are deleted when the
corresponding Warp shell variables are deleted with the W2-DELETE command.

Warp Programming Environment 2.6 Warp Shell

If you now type :a, the Warp shell returns back to its top level. If you type :c, the Warp shell will try to continue
with what it was doing when the interrupt occurred.

2.2.2 @ Command

The @ command executes a Warp shell command file. The Waip shell permits the execution of command files
that can be nested to an arbitrary depth. Warp shell command files can contain any sequence of Warp shell
commands as we l l as Common Lisp code. An example of an initial command file is:

WPEVarsion
(format t "Typa halp for halp~%~%")
w2-sat -host waxpm
;@$WPEhoma/tast/pipa/pipa.cmd

This command file prints out the W P E version and the string Type h e l p f o r h e l p followed by two carriage
returns. The Warp host is set to "waipm". The last line calls a command file located in $WPEhome/test/pipe/ but it
is commented out (using the Common Lisp comment";").

Common Lisp code inside a Warp shell command file that extends over more than one line has to be written as
follows: The last character of each Lisp line except for the last one has to be terminated by a semicolon (;). Warp
shell commands can be called within a Common Lisp function but must be passed as strings to the Warp shell
function SHELL::SH. For example, the following three Common Lisp lines check whether W P E is running inside
GNU Emacs. If yes, the Warp shell command W2-SET - S H O W C O M M A N D F I L E O N is executed. If not, W2-SET

- S H O W C O M M A N D F I L E O F F is Called:

(whan (string-aqual shall:: *aditor* "Gnu-Emacs");
(shall::sh Mw2-sat -showcoxmnandf ila on");
(shall: :sh "w2-sat -showcoxmnandfila off1'))

During their execution command files can be shown in a separate Emacs buffer. If the command W2-SET

- S H O W C O M M A N D F I L E O N has been issued, the currently executed command of the command file is displayed. The
display mode depends on the value of the environment variable E X P E R I E N C E . If it is set to "beginner", the whole
command file is shown in a separate screen buffer and the currendy executed command is always positioned at the
top of the buffer. If E X P E R I E N C E is "expert", the command file is not shown but the currently executed command is
displayed at the bottom of all the editor windows.

NOTE: If the current directory is changed within a command file, it is restored to the original value when the
Warp shell returns from the command file.

2.2.3 PAUSE
PAUSE Pausa tha Warp shall
SYNTAX: Pausa [-silant]
OPTIONS:
-silant: Don't axplicitly prompt usar for carriaga ratum

EXAMPLES:
Pausa
Pausa -silant

P A U S E pauses the Warp shell until the user types a response. The three response options are: Continue, Skip or
Abort The P A U S E command is issued automatically after each command when in demo mode (see W2-SET - D E M O) .

13

Warp Shell Warp Programming Environment 2.6

2.2.4 QUIT
QUIT Quit the shell
SYNTAX: quit [-noconfirm -save F]
OPTIONS:
-noconfirm: Don't ask for confirmation [Switch (Default if expert)]
-save: Write current core image in file F [Default file name: wpecoreimage]

EXAMPLES:
quit
quit -save /usr/bob/bin/wpe

Q U I T deletes all temporary files created during the interactive session and exits the Warp Programming
Environment. If you are an implementor and the Lisp variable *load-core-image* was set to t when a customized
Warp Programming Environment was loaded (See Sections 2.3 and 2.4.5), the core image of W P E can be saved in a
file specified in the '-save'n optioa

2.2.5 RECORD
RECORD Record the Warp monitor calls
SYNTAX: Record [on|off] -file F
OPTIONS:
-file: Filename for recording the commands [No default]

EXAMPLES:
record on -file /usr/bob/wpe/record.c
record off

The idea behind this command is to support the user who would like to write standalone programs, but is not yet
familiar with the necessary calling sequences. The R E C O R D makes it possible to explore the use of the Warp monitor
functions (see Chapter 3) inside the Warp shell. R E C O R D O N -FILE F creates a file F and writes all Warp monitor calls
into the file until a R E C O R D O F F is issued which turns the recording off and closes the file.

2.2.6 WPEVERSION
WPEVERSION Print the version number of WPE
SYNTAX: WPEVers ion
SEE ALSO: version
OPTIONS:
-all: Print the version numbers of all the components of WPE.

EXAMPLES:
wpeversion -all

W P E V E R S I O N prints the current version number of the Warp Programming Environment, the date of the release
and the date of the last update (which is the time of the last modification of the update file (see Section 2.4.6)). If
you have loaded new files into the Warp shell (with the Warp shell L O A D command), the name of each of these files
and the time stamp of their last modification are printed. The -all option also prints the version numbers of the W2
compiler, W2 debugger, Warp monitor, Warp server, Lisp shell, generalized image library and Gnu Emacs.

22.1 W2-BREAK
W2-BREAK Set a source line break point
SYNTAX: w2-break sourceline filename
OPTIONS:
-action: Action to be executed when breakpoint is encountered. [Default: ("w2-halt")]
-cells: list of cells to which the breakpoint should be added [default: all cells].
-condition: Predicate to be evaluated when breakpoint is encountered. [Default: T]
-enabled: Specifies whether breakpoint is initially enabled or disabled.[Default: T]
-file: source file name [default: CurrentSourceFile].
-function: Function name [default: CurrentFunction].
-line: source line number.
-node: dag node number (can be determined with w2-suggestbreaks)
-noselect: require user interaction for node selection when

breakpoint not unique [default].

14

Warp Programming Environment 2.6 Warp Shell

SEE ALSO: w2-delete w2-set w2-show w2-suggest
EXAMPLES:
w2-break -line 23 -file tast2.w2 -select
w2-break -line 23 -fila am -call 1 2 6
w2-break -noda 13 -fila test2.w2 -call 1 2
w2-break -noda 4 -fila sm.w2 -action "w2-go"
w2-braak -noda 5 -action '("w2-locals" "w2-continue")' -condition ' (aqual (i j))'
w2-break -noda 13 -function foo -call 1 2
w2-break -line 23

The W2-BREAK command permits the user to set a breakpoint in the current W2 program. Breakpoints consist of
four parts: Status, Cell, Condition and Action part. The status specifies whether a breakpoint is enabled or disabled.
The cell part specifies the Warp cells to which the breakpoint applies. The condition part specifies a boolean
predicate. If it evaluates to TRUE the action part will be executed. The condition part can be any Common Lisp
expression and the action part can be any sequence of Common Lisp and Warp Shell commands. Thus breakpoints
are user programmable. The default values for the condition and action part can be changed by setting the
environment variables BREAKACTION and BREAKCONDITION, respectively (see W2-SET command). Any breakpoint
can be changed dynamically with the W2-EDIT command.

It is possible to mix Lisp and W2 values in breakpoint conditions. W2 values can be retrieved by calling the Lisp
function w2-get with any argument that is a valid argument to the Warp shell command W2-GET. W2-GET returns
W2 values in the internal representation used by Common Lisp. Examples of breakpoint conditions are:

(= (W2-GET "i") 1)

(= (W2-GET "-value global") 1.22333)

(and (» (W2-GET "-value i -cell 1") 2
(a (W2-GET "-value i -cell 2") 3)))

(= (W2-GET "-value array") #(0.1 0.2 0.3))

In the following example, the breakpoint condition checks whether the W2 variable i has the value 1 every time a
breakpoint is encountered. If yes, the breakpoint action W2-HALT will be exeuted. If no, the execution of the W2
program is resumed without any breakpoint action. "Beginner" users are notified every time a breakpoint is
encountered, even if it evaluates to false. "Expert" users are only notified of breakpoints evaluating to true.

% w2-edit -break 1
Action (Continue, Skip, Abort) [Continue]:
Name: 1 ENABLED Source Line: 45 in Function: W2_PIPE

Condition: (» (W2-GET "i") 1)
Action: ("w2-halt")
Calls: (1 2 3 4 5 € 7 8 9 10)
Noda: 161 Name:W2_PIPE$A Type:FLOAT Op:$RECEIVE
Wl-Address: (458)

% w2-set -user beginner
% w2-execute -pipe input output
Copying input parameters into cluster memory...
Downloading microcode for file pipe.w2...
Locking Warp Excalibur...
Warp server queue is empty.
Warp machine is yours:
Starting execution of module...

15

Warp Shell Warp Programming Environment 2.6

Breakpoint 1 encountered in cell 3:
Condition (= (W2-GET "i"

Breakpoint 1 encountered in cell 2:
Executing breakpoint actions...
@breakl% w2-halt
breakl% w2-set -exp expert
breakl% w2-cont
Breakpoint 1 encountered in cell 3:
breakl% w2-cont
Breakpoint 1 encountered in cell 4:
breakl% w2-cont

Line 45 in "/usrw61/bob/wpe/deb/pipe.w2"
) 1) is false. Resuming...
Line 45 in "/usrw61/bob/wpe/deb/pipe.w2'

Line 45 in "/usrw61/bob/wpe/deb/pipe. w2"

Line 45 in "/usrw61/bob/wpe/deb/pipe.w2"

2.2.8 W2-COMPILE
W2-COMPILE Compile a W2 program
SYNTAX: w2-c [-file] filename [other options (see below)]
OPTIONS:
-as (default "on"):
Assemble the output of the compiler (on,off)
-check: Compile only if W2 source file or W2 compiler version has been

changed [Switch].
-clean (default "on"):
Remove compiler files no longer needed after compilation (on, off).
-debug: Generate cluster code for debugger (Warp) [Switch]
-download: Download the microcode onto the Warp array after the compilation [Switch]
-file: File to be compiled (name of file) [Default value: Current source file]
-hex (default "off"):
Produce text output (in hexadecimal) instead of binary output (on,off)
-host (default "vrnx"):
(vme: Do not use external host for I/O, vmx: Use external host for I/O)

-keep-error-log: Do not erase Emacs buffer 'error-log' when compilation
is started. [Switch]

-m4opt (default " ") :
Pass M4 option to the M4 preprocessor,
-optimize (default "off"):
If off, do not generate optimized code,
-preserve (default "off"):
Keep the output of the macro expander in FILE-NAME.pw2 (on, off)
-relink: save files needed for relinking [Switch]
-remote: Assemble Warp host code on specified remote machine (name of host)
-silent: Keep the verbosity of the compiler messages to a minimum [Switch]
-spicy (default 0):
Charaterizes the size of the W2 program:

0 indicates a normal program, 10 a very large program (0,...,10)
-target (default "warp"):
Target architecture for the W2 simulator (warp, 2D, ...)
-timing: Print timing information when running the W2 simulator
-verbose: Do not suppress compiler messages [Switch]

EXAMPLES:
w2-compile $WPEexamples/w2/pipe.w2
w2-compile -file pipe.w2 -opt off
w2-compile pipe -dag 10000 -basic 300 -remote warpb -as on
w2-compile -file pipe.w2 -preserve on -download

To be able to execute this command, you must be a developer (see W2-SET). The simplest form of the

W2-COMPDLE command is
w2-compile -file foo.w2

where foo.w2 is a w2 program. The option key word '-file' and the extension '.w2' are optional. If the Warp shell
environment variable W A R P is set to the name of a Warp machine, code is generated for the cluster processors and
wi microcode for the Warp array. If it is set to "simulator", C + + code is generated. All W2-COMPILE options are
shown above. The '-as on' option assembles the microcode, '-as off suppresses the assembly. The '-debug' option
generates symbolic information needed for the debugger. The '-remote' option is needed when the W2 program is

16

Warp Programming Environment 2.6 Warp Shell

compiled on a workstation that does not have access rights to the C compiler that translates the cluster code. In this
case the '-remote' option can be used to specify a workstation with has access rights to the compiler. If you are
compiling large W2 programs, it is possible that certain data structures of the W2 compiler overflow. In this case
you can specify larger sizes with the spicy option. For example

w2-compile -file foo -spicy 2

will compile a medium program (some of the bigger programs in the WEB library, for example egpr). The spicy
flag will also ask for more space for your lisp system. Currently, the sizes are

spicy Lisp image size
1 26 MBytes
2 29 MBytes
3 32 MBytes
4 36 MBytes
5 39 MBytes

It is a bad idea to use the spicy flag when there is another LISP/WPE job running on your machine, W P E will ask for
the space, but U N I X won't deliver. (You can check the actual sizes while the system is running by using the "ps"
command, i.e. "ps ux") You should also keep in mind that the assembler & post-processors need some space of their
own. If you have 35 MBytes of swap space and run with -spicy 3, your post-processing jobs will die, and you get
the message "error in postprocessing". Consider if you really need such a big WPE job, or use a machine with more
swap space.

If the first source line of a w2 program contains a comment of the form
/* configure Ol VI 02 V2 On Vn */

where Oi is a w2-compile option and Vi is its value, then the program is compiled with these options. Options
added to the W2-COMPILE command line overwrite options in the source program. For example, if the first line in
foo.w2 contains

/* configure -spicy 2 */
and you type

% w2-compile foo.w2 -spicy 3
the w2 compiler is reconfigured with spicy option 3.

When compiling a W2 program, a separate Emacs window called W2 Error Messages is used for compiler
diagnostics (In Gosling's Emacs the name of the screen buffer is error-log, in GNU Emacs it is *compilation*).
This window can be scanned for error messages using the A X A N command. If the W2 compiler encounters an
internal error when in developer or user mode, the following message is printed out:

INTERNAL ERROR in W2 compiler:
Keyboard interrupt or unknown Compiler Bug.

Please send mail with details to system maintainor.

The W2-COMPILE command is also available as a Unix shell command $WPEbin/w2c. All the options mentioned
above are available. For example,

$WPEbin/w2c pipe.w2 -always
compiles the program pipe.w2 and returns back to the Unix shell.

2.2.9 W2-CONTINUE
W2-CONTINUE Start or continue current W2 program
SYNTAX: w2-continue
OPTIONS:
-in: Warp shall variables to read from
-out: Warp shall variables to write into.

Continue the W2-program from current the breakpoint

17

Warp SheU Warp Programming Environment 2.6

2.2.10 W2-DELETE
W2-DELETE Delate a Warp shell object
SYNTAX: w2-delete option name
OPTIONS:
-cells: List of cells of breakpoint to be deleted [default: *] .
-type: Delete Warp shell type [no default].
-variable: Delete Warp shell variable [no default].
-breaks: Delete breakpoint [no default].

EXAMPLES:
w2-delete -breaks 5 -cells 1 3
w2-delete -type pixel
w2-delete -var *
w2-delete -breaks *

W2-DELETE deletes a Warp shell object such as a type, a variable, or a breakpoint

2.2.11 W2-DISABLE
W2-DISABLE Disable a breakpoint
SYNTAX: w2-disable
OPTIONS:
-breaks: Name of breakpoint. [* means all breakpoints]

EXAMPLES:
w2-disable -breaks 5
w2 -disable -breaks 4 5 6
w2-disable -breaks *

W2-DISABLE disables all cells of a currently active breakpoint.

2.2.12 W2-DOWNLOAD
W2-DOWNLOAD down load micro code for program onto Warp array
SYNTAX: w2-download
OPTIONS:
-all: download clustercode and microcode
-cluster: download clustercode
-micro: download microcode
-file: source file name [default: CurrentSourceFile].

EXAMPLES:
w2-download -file test2.w2
w2-download

The W 2 - D O W N L O A D command checks whether the Warp array is allocated. If not, it locks the Warp machine.
Then it downloads the micro and/or cluster code for the specified file. The file must have been compiled and linked
before. Note that downloading is automatically performed by the W2-COMPDLE if the -download option is specified
and by the W2-EXECUTE command.

2.2.13 W2-EDIT
W2-EDIT Edit user defined Warp shell variable
SYNTAX: w2-edit
OPTIONS:
-break: Name of breakpoint to be edited [No default] .
-var: Name of Warp shell variable to be edited [No default].

EXAMPLES:
w2-edit -break 1
w2-edit -var foo

W2-EDIT - V A R v opens an Emacs buffer for the Warp shell variable v and permits you to change its value with any
Emacs command. When editing is finished, the buffer has to be saved with a CTL C (There is no other way to save
the value!). Note the following distinction: If the Warp shell variable is already allocated in cluster memory, the
cluster memory will be updated with the new value, but the file associated with it will not be changed. If the

18

Warp Programming Environment 2.6 Warp Shell

variable is not yet initialized in cluster memory, the file associated with the variable is changed. If a Warp shell
variable is edited that has not yet been initialized, a temporary empty file is created and visited. The naming scheme
for these files is explained in section 2.1.2.

W2-EDIT - B R E A K permits to change several aspects of a breakpoint: the breakpoint condition, the action to be
executed and whether the breakpoint is enabled or disabled. An action can be any Lisp expression or a shell
command. It is also possible to write actions consisting of multiple Lisp expressions and Lisp shell commands. In
this case they must be enclosed by parentheses and Warp shell commands must be enclosed within double quotes.
The following is a transcript of an example session in the Warp shell where the user has set a break point 1 and
modifies it twice. First, we want the breakpoint to occur only if i is equal j and halt the Warp machine in this case:

% w2-edit -break 1
Enabled (T or NIL) [nil]: t
Condition [t]: (= i j)
Action [w2-continue]: ("w2-halt")
Cells (List of integers between 1..10) [(1 2 3 4 5 6 7 8 9 10)]: 1 3

Then we would like to change this breakpoint such that it occurs unconditionally, prints out the values of the locals
of the current function and continues the execution without returning to the Warp shell:

% w2-edit -break 1
Enabled (T or NIL) [T]: t
Condition [(= i j)]: t
Action [w2-halt]: ((format t "Locals:~%")

"w2-locals"
(format t "Continuing execution...")
"s w2-continue")

Cells (List of integers between 1..10) [(1 3)]: 1 2 3 4 5 6
Note that any changes to the parts of a breakpoint take place only after the user finishes the whole editing cycle.
That is, if the user interrupts the modification of a breakpoint before the editing session is finished, the breakpoint is
not changed.

2.2.14 W2-ENABLE
W2-ENABLE Enable a breakpoint
SYNTAX: w2-enable
OPTIONS:
-breaks: Name of breakpoint. [* means all breakpoints]

EXAMPLES:
w2-enable -breaks 5
w2-enable -breaks 4 5 6
w2-enable -breaks *

W2-ENABLE enables all cells of a currently active breakpoint specified with the -breaks option.

2.2.15 W2-EXECUTE
W2-EXECUTE Execute w2 module
SYNTAX: w2-execute
OPTIONS:
-file: File name of w2 program to be executed (extension .w2 can be omitted)

[Default: Current source file]
-autolock: Lock and unlock warp machine automatically (on,off) [Default: on]
-comment: String to be displayed when inspecting the Warp server queue.

[Default: Specified in wpeprofile.slisp]. -time: Milliseconds elapsed during execution of last W2 program
(Write also into file, if file name specified) [Switch]

-parameters: List of actual parameters for w2 module. Optional
EXAMPLES:
w2-axecute -file test2.w2 -parameters indata outdata -comment 'Tasting test2.w2'
w2-execute -f test2.w2 -p indata outdata -time test2.time
w2-execute

19

Warp Shell Warp Programming Environment 2.6

The W2-EXECUTE command executes a W2 program specified with the -file option. If the -file option is not
specified, the w2 program specified in the last compilation is executed. If there is no such program, an error
message is issued. Otherwise w2-execute compares the actual parameter list given in the -parameters option with
the formal parameter list of the w2 module specified in the -file option. Actual parameters must have been defined
before as Warp shell variables (see W2-VAR command) and must be passed in the same order as defined in the W2
program 1 8. Parameter comparison is done by position, that is, the first actual parameter is compared with the first
formal parameter, etc. If the types match, the microcode and cluster code of the module is downloaded and the
execution is started It is possible to omit the actual parameter list. In this case the user is asked interactively to
provide them. If the -autolock option is on, the Warp machine is automatically locked and unlocked when the
W2-EXECUTE command is finished. If the -autolock option is off but the Warp machine is not locked, it is
automatically locked and it stays locked after the execution is finished.

2.2.16 W2-GET
W2-GET print a value
SYNTAX: w2-get
OPTIONS:
-calls: Calls to inspect (* means all cells) [Default: Cells in which the current

breakpoint occurred]
-columns: How many columns to use for printing values [default: 1].
-function: Function name (* means all functions) [default: CurrentFunction].
-var: Variable name [No default].
-globals: Display the globals of the cell program (external to all functions),
-locals: Display the locals of the function.
-mode: Display format (INT FLOAT BINARY OCTAL HEX or *) [Default: W2 Type of variable]

EXAMPLES:
w2-get -value temp -cells 1
w2-get temp
w2-get -locals
w2-get -locals -function init -mode *
w2-get -globals
w2 -get temp -mode *
w2-get temp -mode hex

Print the value of variables. The keyword -value is optional. If it is omitted, the variable name has to be the first
argument of the command. If the -locals option is specified, the command prints the values of the specified
function. If the function is not allocated, an error message is printed. If the -cells option is specified, the values are
shown for the selected cells, otherwise only the values of the cell in which the current breakpoint occurred are are
shown. The -mode option permits the user to specify one of several display formats. For example -mode int will
display the value as an integer, -mode * will display the value as an integer, float, binary, octal and hexadecimal.

2.2.17 W2-HALT
W2-HALT Halt the Warp Machine
SYNTAX: w2-Halt

Halt the Warp Machine
This command instructs the Warp shell that the Warp machine is halted.

20

Warp Programming Environment 2.6 Warp Shell

2.2.18 W2-INIT
W2-INIT Initialize tha GIL
SYNTAX: w2-init
OPTIONS:
-gil: Init tha GIL

SEE ALSO: w2-load

Initializes the generalized image library. If this command has not been issued when the user tries to use the
generalized image library, the initialization will be done automatically.

2.2.19 W2-LOAD
W2-LOAD Load a component
SYNTAX: w2-load [-compiler | -debugger | -warpshell]
OPTIONS:

-compiler: Load the w2 compiler,
-debugger: Load the w2 debugger,
-warpshell: Load tha Warp shall.
-startupfila: Name of Lisp file that contains tha loading commands. EXAMPLES:

w2-load -Warpshell
w2-load -debugger -compiler
w2-load -compiler -startupfila /usr/bob/wpe/start.slisp

Load a component of the programming environment into the Warp Shell. Current components are the compiler,
the debugger and the Warp shell. The command W2-LOAD -COMPILER -STARTUPFILE F can only be used when you
have loaded W P E using the wpel or wpegl command (see Section 2.3), that is, if you don't use the core image
version. Loading a compiler into the core image version with another compiler already being loaded is not very
useful: old defvar declarations won't be overrridden.

2.2.20 W2-LOCKWARP
W2-lockwarp reserves the Warp machine
SYNTAX: w2-lockwarp
OPTIONS:
-queue: Display the queue of users currently using the Warp or

requesting it.
-timeout: Number of minutes before timing out [Default: -1 (forever)].
-noqueue: Don't list the users who have currently requested Warp [Switch (Default)]
-comment: String to be displayed when inspecting the Warp server queue.

(Any string without blanks) [Default: Running^Warp^rogramming__environment] .
-notifyme: Send a request if somebody wants to use Warp (ON, OFF) [Default: On].

SEE ALSO: w2-unlock w2-warpqueue
EXAMPLES:
w2-lockwarp

This command tries to allocate the Warp machine for you. To release Warp, use the shell command W2-UNLOCK.

If the machine is already in use by another user a string specified by the -comment option is sent to that user and you
are appended at the queue of users waiting for the Warp machine. If the -queue option is used, this queue will be
displayed. The head of the queue specifies the current owner of the Warp machine. Once you are at the head of the
queue, the message

Warp machine is yours:
appears on your screen and the Warp machine is locked.

21

Warp Shell Warp Programming Environment 2.6

2.2.21 W2-RESET
W2-RESET Reset the W2 debugger, the Warp server or

the Warp machine to its initial state.
SYNTAX: w2-Reset
-verbose: Be verbose when resetting [Switch (no default)]
-server: Reset the server
-debugger: Reset the debugger
-file: Current source file [Default: CurrantSourceFile]
-Warp: Reset the Warp array

Initializes the W2 debugger or the Warp server to its initial state.

The memory descriptors of all allocated Warp shell variables are invalidated. The W2-RESET - D E B U G G E R

command should be used whenever the debugger i s in a dubious state. The command deletes all currently defined

breakpoints, and any assumptions about the last compi led w2 file.

The W2-RESET -SERVER starts or restarts the Warp server. This command should be used after it has been

determined that the Warp host and file server are working correctly (Use the W2-SANITY command to check the state

of the file server, Warp host, Warp server and Warp machine). The W2-RESET -SERVER command might not be

successful in restarting the Warp server. For example , if the current Warp server is hung, this command has no

effect. In this case, login on the Warp host and call $WARPmisc/reset_server to reset the s e r v e r 1 9 . The
r e s e t _ s e r v e r program unconditionally kil ls any exist ing Warp server even if there are users currently us ing the

Warp machine (because of this reason it should be used with care!). Then it pauses for 60 seconds , tries to restart

the Warp server and exits with " R e s e t c o m p l e t e " . However, i f you also get the error message " C a n n o t

b i n d s o c k e t a d d r e s s ! ", the reset w a s not successful and you have to try again.

The W2-RESET -WARP should only be done after the W2-SANITY command has determined that the Warp machine is

in a bad state.

2.2.22 W2-RESTART
W2-RESTART Restart current W2 program
SYNTAX: w2-restart

Restart the current W2 program with the i /o parameters from the last W2-EXECUTE command. Note: W 2 - R E S T A R T

cannot be used i f the Warp server has died after the last W2-EXECUTE.

2.2.23 W2-SANITY
W2-SANITY Check the state of Warp host, WPE server, Warp server and Warp array.
SYNTAX: w2-sanity
Checks the state of the Warp server, WPE server, the Warp host and the Warp array
The state of the Warp machine is checked only if all the other components
seem to be working. If the Warp host is up, w2-sanity checks its uptime
Warp host. If the -statistics option is specified, it prints several
statistics about the Warp array (see WPE user manual).
OPTIONS:
-statistics: Print statistics about Warp array

EXAMPLES:
w2-sanity

Because o f its distribution over several machines , the Warp Programming Environment i s less reliable than a

s ingle machine environment. The purpose o f the W2-SANITY command is to g ive the user s o m e help to check the

state o f the components o f the env ironment

"Executing r . s . t _ s . r v e r on any o«hcr workstation than the Warp host wiU have no effect If you are not authorized to login on th* Warp
host, ask the system maintainer to do the reset for you.

22

Warp Programming Environment 2.6 Warp Shell

It consists of two parts: First it checks the state of the Warp host, Warp server, WPE server and Warp array. The
following responses are possible:

> Internal error in sanity_check.

> Warp host not up.

> Warp server not running.

> WPE server not running.

> Cannot test Warp array (problem with user server) .

> Warp array is not accessible.

> Warp host, Warp server, WPE server and Warp array are all accessible.
The messages Problem with user server usually means that there is not enough memory space available on the
Warp host to fork off a user server to do the testing.

If the Warp host is up the command then checks the uptime of the Warp host. For example:
Checking uptime of Warp host...

1:45pm up 41 mins, 3 users, load average: 2.73, 2.14, 1.57
Finally, if the -statistics option was specified, the command checks several statistics about the Warp array. These
statistics characterize the past behavior of the Warp array while running a program called idle, a Warp monitor
program executed by the Warp server whenever there is no other entry in the Warp server queue. Idle repeatedly
runs a W2 program which returns known results, compares the actual results with the known values and tabulates
the number of failures/successes20.

The fields have the following meaning:

Total time since Date
Time of the interval from when reporting started until the moment that the last idle run started or
stopped.

Total downtime Accumulated down time of the Warp host or Warp array, during the reporting interval.
Total valloc downtime

Accumulated time where idle cannot run because of lack of virtual memory on the Warp host.
Total non-idle time Accumulated time of Warp array usage.
System Crashes Crashes of the Warp host.
Valloc Failures Number of failures during a valloc call.
Successes Number of successful completions of the idle program.

Failures Number of completions of the idle program.
The following is an example of the behavior of Warp:
Checking Warp Array statistics...
Total time since Wed Jul 29 16:51:56 1987 = 380:53:09
Total downtime = 08:17:30
Total valloc downtime = 01:56:55
Total non-idle time » 33:58:13

System Crashes = 20, Valloc Failures = 56
Successes = 3446690, Failures = 0

As we can see from this example, the Warp array has been up for more than 380 hours and has been used for almost
34 hours in this period.

°idle is located in $WARPmisc/idIe. For each idle run the Warp server adds information to a file $WARPmisc/idle.log.

23

Warp Shell Warp Programming Environment 2.6

Note that the W2-SANITY command is only checking whether each of the above components are running. It does
not guarantee that they are working correctly. The command issues a remote shell call to the Warp host to look for
the Warp server process and applies the following heuristics: If the remote shell call cannot be executed for some
reason it returns the message Internal error in sanity_check. If the remote shell call times out, it assumes that the
Waip host is dead 2 1. If it cannot find a process with the name warpd running on the Warp host, it assumes the
Waip server is dead. If it cannot find a process with the name /netimaged it assumes the WPE server is dead.
Finally it checks whether the Warp machine is in a bad state.

2.2.24 W2-SET
W2-SET Set an environment or user defined variable
SYNTAX: w2-set
OPTIONS:
-binaryfile: Binary file that contains value of Warp shall variable [No default].
-breakaction (default "w2-halt"):
Default action for breakpoints,
-breakcondition (default T):
Default condition for breakpoints.
-calls: Call list to be used for other debugger commands [No default].
-demo: Single step Warp shell commands in command files [Default: off].
-display (default "buffer"):
Display device (buffer, monitor, window).

-echocoTnmandf ilecommands: NIL
-editor: Use text editor facilities (Gnu-Emacs, Emacs, off)

[Default: Depends on invocation].
-experience: Level of experience (beginner, expert) [Default in wpeprofile].
-function: Current function [No default]
-gimaga: Generalized image that contains value of Warp shell variable [No default],
-host: Warp host (warp8, warpb) [Default in wpeprofile].
-prompt: Prompt string [Default specified in wpeprofile].
-printarrays: Print arrays in w2-get command (on, off) [Default: off]
-showcommandfila: Show command file when executing it (on, off)

[Default in wpeprofile]
-sourcefile: Currant sourcafila [Default: File name of last compilation].
-textfile: Text file that contains value of Warp shell variable [No default].
-timeout: Seconds to wait for tha execution of Warp programs before timing out

[Default: 15].
-user: Type of user (user, developer, implementor) [Default in wpeprofile].
-value: Value for the user variable [No default].
-var: User variable to be set [No default].
-warp: Warp machine (installation dependent) [Default in wpeprofile].
-servercomment: Comment displayed when waiting in Warp server queue.

EXAMPLES:
w2-set -cells 0 1 2 3 4 5 6 7 8 9
w2-set -cells 1
w2-set -var in -binaryfile "/usr/bob/wpe/input.image"
w2-set -var out -text "/usr/bob/test/output"
w2-set -printarrays on
w2-sat -function init
w2-sat -host warp8
w2-sat -editor Emacs
w2-set -experience beginner
w2-set -user implementor

ON and watch the message traffic. You might get a message like
« < term: undefined variable

The problem in this case is that your .cshrc file did not define the C-shell environment variable TERM before it used it

24

Warp Programming Environment 2.6 Warp SheU

W2-SET changes the value of user-defined variables defined with W2-VAR and environment variables such as the
current target process, the current source file, the active cell list, etc If -editor is Emacs (=Gosling ,s Emacs) or
Gnu-Emacs, then the Warp shell will assume that it runs inside a text editor and will try to make use of editor
facilities such as multiple windows when it is compiling W2 programs, executing command files or displaying
breakpoints. Note that setting the Warp host with the -host option automatically sets the Warp machine, and setting
the Warp machine with the -Warp option automatically sets the Warp host. For example, W2-SET -HOST WARP8 sets
the Warp machine to GE. The - d i s p l a y option changes the default display device used for displaying variables
with the W2-SHOW command. Display option value "buffer" binds the display to an Emacs buffer, "window" binds
the display to an X window and "monitor" binds it to the Datacube display attached to the Warp machine. Note that
the default display can be overwritten for any Warp shell type (see W2-TYPE command) and when displaying
variables (see W2-SHOW command).

2.2.25 W2-SHOW
W2-SHOW Show environment variables
SYNTAX: w2-show
-all: show environment/ user defined variables and breakpoints [default].
-binaryfile: Write Warp shell variable into binary file
-breaks: show currently defined breakpoints,
-display (default "buffer"):
Display to be used (Buffer, <G1L-Name>/ Windowl, Window2, Monitor)
-environment: show environment variables: user type, source file, etc.
-gimagefile: Write Warp shell variable into a compact GIF format file.

Filename is checked for extension .gif
-range: show slices of the specified array-variable(s).

Specify a pair l:u for each dimension of the array
(1 = lower bound, u = upper bound of slice).

-textfile: Write Warp shell variable into a text file
-types: show currently defined Warp shell type T [Default: all types],
-trywarp (default 5):
Seconds to wait for Warp to do halftoning for image display on X window,

-variables: show user defined Warp shell variable V [Default: all variables].
EXAMPLES:
w2-show -break
w2-show -variables
w2-show -var foo -textfile /usr/bob/wpe/foo
w2-show -var image -gimage /usr/wpe/images/image
w2-show -types
w2-show -var brain -display net:warpm:cube
w2-show -var kung -display windowl -trywarp 10
w2-show -var foo -range 0:3 0:11
w2-show
w2-show -environment

W2-SHOW shows environment variables such as the current target process, the current source file, user defined
Warp shell types and Warp shell variables and breakpoints. If a file option -binaryfile, -gimage or -textfile is given,
the contents of the Warp shell variable is written into a file. Files of type -gimage are created by a space saving
compaction algorithm and have the extension .gif. Binary files will be converted into text files for the time of the
viewing. The -range option can be used for binary files to display slices of arrays. For example, w2-show -var b
-range 0:3 0:13 displays the first 14 elements of the first four rows of (array) variable b.

If no file option is given, the variable will be displayed in the display device specified in the W2-TYPE declaration.
A noninitialized Warp shell variable that is associated with a file is initialized in user server memory before it is
displayed. Thus the Warp shell always tries to display user server memory instead of file contents. As a side effect,
after the Warp shell has detected that the user server has died, for example as a result of a Warp host crash, and a
new user server has been created, the W2-SHOW command re-initializes the Warp shell variable in user server
memory with the associated file value before it displays it.

25

Warp Shell Warp Programming Environment 2.6

The - d i s p l a y option can be used to overwrite the display device binding of the type definition. Display option
value "buffer" displays the variable in an Emacs buffer. Display option value "window 1" or "window2" displays the
variable in an X window and "monitor" displays it on the datacube display attached to the Waip machine 2 2.
<GH--Name> can be the name of a generalized image as specified in the GIL user manual.

When displaying an image in a X window on a binary screen display, error propagating half-toning is performed
on the fly. This permits the binary Sun screen display to be used for grey-level displays. The half-toning algorithm
is slow, but results in relatively good looking images. If speed or accuracy is important, the Datacube monitor or a
color screen should be used instead. If the display option "window 1" or "window2" is used, and the Waip shell
variable has been declared of type array[512 512] of byte, then halftoning is attempted on Warp using the WEB
library routine d i s p l a y . This is 20 times faster than the halftoning performed by the GIL and has a much better
algorithm. The -trywarp option determines how long the Warp shell tries to lock the Warp when attempting to do
the halftoning: If the Warp is not available within the specified time, the halftoning is performed by the GIL 2 3 .

X windows are created interactively with the mouse. If you press the left mouse button, the default size indicated
by the flashing identification window will be used. The middle button permits you to chose the size of the window.
Press the button to define the upper left comer of the window, move the cursor to where the opposite corner of the
window should be and release the button. Pressing the right button produces a window with the upper left comer at
the cursor and the lower left comer at the bottom of the screen 2 4. At window creation time, the image is transformed
by the generalized image library to fill up the whole window. Note that once the window is created, changing the
shape of the window does not change the shape of the image.

If the variable is not bound to a file, the value will be displayed in the Warp shell buffer. The contents is copied
into a file in the Amp file structure before it is displayed. The naming scheme for these files is explained in section
2.1.2. The-range option permits the display of slices of arrays. For example,

w2-show -var b -range 0:3 0:13
displays the first 14 elements of the first 4 rows of variable B.

For each Waip shell type the W2-SHOW - T Y P E S command displays the name, basetype, bounds (if an array) and the
size of bytes. The following shows all predefined types as well as two user defined types f l o a t 1 0 and i n t y p :

Warp Shell Types:
Name Basetype Bounds Size(Bytes)
integer integer 4
floatlO float (10) 40
byte byte
unsigned-byte byte
unsigned char char
char char
intyp
float float
signed-byte byte
signed char char

1
1
1
1

integer (12 12) 576

The display format for all Warp shell variables uses seven columns:

crash).
2 3Tbe halftoning is always performed by the GIL if the display option "xwindow" is used.

"For more details on the creation of X windows, see the section Sizing Windows in the X (1) entry of the UNDC manual.

26

Warp Programming Environment 2.6 Warp SheU

Warp Shall Variables:
Name Type Memory MDesc Mode Init'd Value
data floatlO clm2 0 text yes /usr/bob/wpe/test/poly/data
copyin intyp d/c -1 binary no /usrw62/yam/w2/test/indata

The first two columns, Name and Type contain the name of the variable and its Warp shell type. Memory indicates
where the variable will be allocated in the cluster memories when the user locks the Warp machine. For example,
clml means memory 1 in cluster processor 1, and d/c means don't care. The column titled MDesc describes
whether the variable has been allocated in the address space of the associated user server. A memory descriptor - 1
indicates no allocation, any other integer indicates that the variable has been allocated. I nit' d shows whether the
user server memory has been initialized or not If the variable is a file, Value contains the file name and Mode
shows whether the associated file is in binary or in text mode.

2.2.26 W2-SUGGESTBREAKS
W2-SUGGESTBREAKS suggest possible breakpoints
SYNTAX: w2-suggestbreaks

OPTIONS:
-line: source line number range. (* denotes all source lines of current file)

[Default: *]
-function: function name. (* denotes all functions) [Default: CurrentFunction]
-file: source file name [default: CurrentSourceFile].

SEE ALSO: w2-break
EXAMPLES:
w2-suggestbreaks -file test2.w2
w2-suggestbreaks -line 23 34
w2-suggestbreaks -line *
w2-suggest -line 12 36 -function initialize

This command suggests possible breakpoints in the specified source line range. Because the w2 compiler is
highly optimizing, source lines which look like possible breakpoint candidates may actually not be used. The
W2-SUGGESTBREAKS command permits the user to explore the possible breakpoints of the object code on a source
line basis.

2.2.27 W2-TRACE
S Y ^ S f S r a c e 0 " *** f ~ — e r and editor.
OPTIONS:

'l^ZV M ° n i ! ! 0 r a M " g * t r a f f i C b * t W ~ n M r V * r W a r ? i o n , off) [off]
S ^ S O w2 I" T " a g * ! r a f f i C b * t W ~ n a d i t ° r W a r * <«' off off SEE ALSO: w2-lockwarp w2-unlockwarp w2-sanity
EXAMPLES
W2-Trace -server on
W2-Trace -editor on
W2-Trace -server off

The W2-TRACE -SERVER command is useful whenever the user suspects that there is something wrong with Warp
machine or with the user server. For example, it should be used whenever the Warp machine times out. Messages
sent to the server are prefixed with " » > " , messages returned from the server are prefixed by " « < " . The format of
the error messages is described in Section 4.3. The command W2-TRACE -EDrroR ON is for debugging the interface
to the editor. Messages sent to the editor are prefixed with "Editor»>".

27

Warp Shell Warp Programming Environment 2.6

2.2.28 W2-TYPE
W2-TYPE Declare a Warp shell type.
SYNTAX: w2-type T TD
OPTIONS:
-display (default "buffer"):
Display to be used (buffer, windowl, window2, monitor, <GI>)

SEE ALSO: w2-var
EXAMPLES:
w2-type PIXEL unsigned-byte
w2-type IMAGE ARRAY [512 512] of pixel

The W2-TYPE command defines a type T using the type descriptor TD. If the - d i s p l a y option is used, it will be
used to select the display when displaying Waip shell variables of type T with the W2-SHOW command (see Section
2.2.25). If T has already been declared the old declaration is no longer available (if N O I S Y is on, a warning is issued
in this case). TD can be composed of other user defined w2-types and any of the types described below:

Type Size
unsigned-byte 8 bit
signed-byte 8 bit
char 8 bit
integer 32 bit
float 32 bit
array[diml] of T (diml+1) * (size of T)
arrayCdiml dim2] of T (diml+1) * (dim2+l) * (size of T)

diml and dim2 are the upper bounds of arrays starting at lower bound 0. Arrays of higher dimensions than 2 have to
be composed by using array of array constructions. For example: 'array[3] of array[2] of array[3] of integer* defines
a 3-dimensional array of integers. Dimensions can be separated by a comma or by a space.

2.2.29 W2-UNLOCKWARP
W2-unlockwarp releases the Warp machine
SYNTAX: w2-Onlockwarp
OPTIONS:
-killserver: Unlock Warp and also kill tha user server.

SEE ALSO: w2-lock w2-warpquaue
EXAMPLES:
w2-unlockwarp
w2-unlockwarp -killserver

This command releases the Warp array locked by a previous W 2 - L O C K W A R P command.

2.2.30 W2-VAR
W2-VAR Declares a Warp shall variable.
SYNTAX: w2-var -name N -type T -file F -component C
OPTIONS:
-name: Name of tha Warp shall variable
-type: Type of the Warp shell variable
-initialize: Initialize variable in cluster memory at declaration time [Switch].
-input: Initialize variable in input cluster memory at declaration time [Switch].
-output: Initialize variable in output cluster memory at declaration time [Switch]
-binaryfile: Initial value is in binary file F
-gimage: Initial value is in G which is a generalized image
-textfile: Initial value is in text file F
-value: Initial value is in lisp variable L
-noerror: No error if variable is already declared. [Switch]
-component: Host component where to allocate the variable:

(sun, Clin2 /clm3,c2m2 /c2m3 /slm2,slm3,dk) [default: dk (=don't care)]
SEE ALSO: w2-type
EXAMPLES:
w2-var -name foo -type image -binary /usr/bob/test.bin -initialize
w2-var -name bar -type image -component clm3 -text /usr/bob/test.dat
w2-var -name bar -type float -value BAR
w2-var -name result -type image

28

Warp Programming Environment 2.6 Warp SheU

The W2-VAR command declares a variable of type T and binds it to the name N. If N has already been declared,
the old declaration is no longer available (A warning is issued if NOISY is on).

T can be a built-in type or a user-defined type (see W2-TYPE command). The -component option specifies the
component where the variable will be allocated. Possible components are "sun", "C1M2", "C1M3", "C2M2",
"C2M3", "dk" (which means don't care).

The W2 compiler generates DMA code by default for all W2 programs compiled without -debug option. To
effectively use DMA, input Warp shell variables have to be allocated in C1M* (C1M1, C1M2, C1M3) and output
Warp shell variables in C2M* (C2M1, C2M2, C2M3). The options -input and -output indicate these components.
For example, to allocate Warp shell input variable IN and output variable OUT, use

w2-var -nam* IN -type float -input
w2-var -name OUT -type float -output

If memory allocation fails in a cluster component specified with the -component option, for example because there
is not enough space, a warning is issued and the Warp shell tries to allocate the requested variable in a component
selected by the Warp monitor (same as dont't care). This allocation will be successful as long as there is enough
memory space available in the memory boards.

The value of the variable can be associated with a binary file, text file or a generalized image file F with the
-binaryfile, -textfile or -gimage option, respectively. These options are useful when you want to initialize a Warp
shell variable with the contents of a file25. If the -gimage option is used, the variable has an initial variable which is
contained in the generalized image G. The -value option associates the variable with the value of a Lisp variable2 6.
If a Warp shell variable is not associated with a file, then its value is only kept in cluster memory (or in Lisp
memory) and is deleted when quitting the Warp shell.

The -initialize option is useful for Warp shell variables used as input parameters for W2 programs. If the
-initialize option is used, then the user server memory is initialized at declaration time with the associated value (The
Warp shell does not do any type checking during this initialization). Otherwise the initialization is delayed until the
input parameter is actually used (for example in a W2-EXECUTE command). Normally, a warning message is issued
if the variable is already declared. This is suppressed in expert mode or with the -noerror option.

It is possible to issue W2-VAR commands even if you have not locked the Warp machine. In this case Warp shell
variables are allocated in the address space of the user server process. When you finally get access to the Warp
machine, the memory associated with the variables is copied into the cluster processor memories. And when the
machine is unlocked, the variables are copied back from the cluster memories to the user server's address space.

2.2.31 W2-WARPQUEUE
w2-warpqueue Show the users currently owning the Warp machine or waiting for it.
SYNTAX: w2-warpqueue
SEE ALSO: w2-lockwarp w2-unlockwarp
EXAMPLES:

w2-warpqueue

This command shows the current entries in the Warp server queue. If there are no users, the Warp queue is
empty. Otherwise the first entry of the queue is the current owner of the Warp machine and the other entries are

2 6The -value option is not yet implemented.

29

Warp Shell Warp Programming Environment 2.6

users who have requested Waip and are waiting for it.

23 How to load a Customized Warp Programming Environment
The Waip shell can be customized in various ways, for example by use of the A L I A S command and by changing

the default values of environment variables in the initial command file warpshellinitxmd. This section is intended
for users who want to customize their shell even further.

The wpe and wpeg commands start up a core image of the Warp Programming Environment with a stable version
of the W2 compiler. If you need to load a customized environment, for example because you are working on an
experimental compiler, you have to load the whole environment from scratch. This can be done with the commands

$WPEbin/wpegl (for GNU Emacs)

$WPEbin/wpel (for Gosling's Emacs)
These commands "source" an environment file warprc (see Section 2.4.1) and invoke the editor function l o a d w s h
instead of pcwsh. When W P E is loaded, the version number is printed out, followed by the name of the editor and
the full pathname of the directory file wpe.slisp (see Section 2.4.4). In the following example W P E is read from
$WPEroot/ inside the GNU Emacs editor.

> "Warp Programming Environment 2.6, 08-Jan-88"
> "Gnu-Emacs"
> "$WPEroot/wpe.slisp"

The version number in the mode line in the Emacs buffer is postfixed by an L :
Warp Programming Environment 2.6L: Warp shall (Eost:warpm User:Implementor)

Loading the Waip Programming Environment this way takes about 5-15 minutes, depending on the main memory
configuration and the job load of your workstation and whether all the components are being loaded. The W2
compiler is not loaded by default. When a user types the W2-COMPILE command the first time, a W2 compiler will be
loaded automatically before the command is executed. This compiler is a "stable version" that has successfully
compiled a test suite of W2 programs. To load the stable version of the compiler at startup time, the Lisp-variable
•Load-Compiler* defined in the configuration file (Section 2.4.5) must be set to t. To load an experimental
compiler at startup time, change the setting of the environment variables W2root and W2compi ler (see Section
2.4.1).

2.4 Customizing the Initial Startup
Six files are initially looked up when loading a customized W P E :

• Environment file (warprc)
• Editor profile (.emacs for GNU Emacs or .emacs_pro for Gosling's Emacs)
• Boot file (warpshell.el for GNU Emacs or warpshelLml for Gosling's Emacs)

• Directory file (wpe.slisp)

• Configuration file (wpeprofilcslisp)

• Update file (bugfixes.slisp)

The update file is for temporary bug fixes that have not yet been incoiporated into the current release. The
configuration file wpeprofilcslisp specifies the initial software configuration as well as the default settings of
several Warp shell variables. The directory file wpe.slisp specifies the location of various directories and files
needed when loading W P E . The location of wpe.slisp is wired into the boot file warpsheU.ml or warpshell.el,

30

Warp Programming Environment 2.6 Warp SheU

whose location in turn is determined by your .emacs or .emacs_pro, respectively. The environment file defines the
Unix environment variables which specify the absolute path names of the locations of the W P E components.

The environment file is "sourced" first during a customized startup. The directory file is the first Common Lisp
file to be loaded, which loads the configuration file as its first action. Thus the names of all the directories and the
initial configuration are known before the rest of the directory file and the other files are executed.

2.4.1 The Environment File: warprc
The environment file defines several Unix environment variables needed by the various users of the Warp

Programming Environment warprc is looked up in two places: First in the current directory, then in the user's
home directory. If it is found, it is automatically "sourced" before W P E is invoked. If it is not found, it is assumed
that the user has already source the warprc file (for example in the .login file)).

Figure 2-1 is an example of a subset of the environment variable definitions in a typical a warprc file. Note, that
all directory names must be terminated with a "/" and that the names are case sensitive.

setenv WARP type
setenv WARPhost

setenv WARPbin
setenv WARPinclude
setenv WARPlib
setenv WPEhome
setenv WPEroot

setenv WARPserver
setenv WARPmisc
setenv WARPexternsrc
setenv WPEdoc
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv

WPEbin
WPEeditor
WPEwarpshell
WPElispshell
W2root
W2compiler
W2 debugger
W2 simulator
WPEexamples
WPEdemo
M4include
GIL
WindowManager

PCW
warpm

/usr/pcwarp/bin/
/us r/pcwarp/include/
/usr/pcwarp/lib/
/usr/wpe/
/usr/wpe/exp/

/usr/pcwarp/support/server/
/usr/pcwarp/misc/
/us r/pcwarp /ho s t / s r c / ext e m a l /
/usr/wpe/doc/
/usr/wpe/bin/
/usr/wpe/gnu-ext/
/usr/wpe/exp/warpshell/
/usr/wpe/exp/lispshell/
/usr/wpe/exp/compiler/common/
/usr/wpe/exp/compiler/pcw/
/usr/wpe/exp/debugger/
/usr/wpe/exp/simulator/
/usr/wpe/examples/
/usr/wpe/demo/
/usr/wpe/include/
/usr/vision/experimental/lib/
/usr/misc/.X/lib/

set path = ($WARPbin $WPEbin $path)

Figure 2-1: Example of a warprc file

If you maintain a private version for any of the W P E components, make your own copy of the warprc file and
copy it mto your working or home directory.

2.4.2 Editor Profiles
If you are using GNU Emacs, your .emacs file should contain at least the following lines:

(satq load-path (cons M$WPEeditor/" load-path))
(satq window-ruin-height 6)
(setq split-height-threshold 6)
(global-set-key "*X\AL" 'run-lisp)
(load '^WPEeditor/warpshell.el" nil t)

31

Warp Shell Warp Programming Environment 2.6

If you are using Gosling's Emacs, your .emacs_pro file should contain the following lines:
(load "$WPEhome/maclib/process .ml")
(setq split-height-threshhold 6)
(autoload "wsh" "$WPEhome/maclib/warpshell.ml")
(autoload "common-lisp-mode" "$WPEhome/maclib/common-lisp.ml")
(bind-to-Jcey "common-lisp" "\AX*L")

Note that common-lisp-mode rebinds the CTL Z key. To make the common-lisp-mode available when visiting files

with the extension ".slisp" or ".lisp", add the MLisp lines
(auto-eacecute w common-lisp-mode w slisp")
(auto-execute wcommon-lisp-mode w n*.lisp")

to your .emacsjpro.

2.4.3 The Boot File: warpshell
If you are using GNU Emacs, the default location of the boot file is $WPEeditor/warpshell.el. If you are using

Gosling's Emacs, the default location of the boot file is $WPEhome/maclib/warpshell.ml.

The boot file specifies the location of the directory file. This is done in the Lisp function loadwsh by setting the

variable *LoadingFromDi rectory*:
(setf *LoadingFromDirectory* (concat (getenv "WPEroot" "wpe.slisp")))

If you want to load the WPE version from /usr/foo/bar/, then change the environment variable WPEroot in your

warprc file:
setenv WPEroot /usr/foo/bar/

2.4.4 The Directory File: wpe.slisp
The directory file wpcslisp binds the environment variables defined in the environment file to the Common Lisp

names of files and directories used by W P E The directory file is located in $WPEhome/current/wpe.slisp and
$WPEhome/exp/wpe«slisp, respectively.

2.4.5 The Configuration File: wpeprofile.slisp
When loading a customized environment, the file wpeprofile.slisp determines the initial configuration of the

Warp Programming Environment For example, the file specifies whether the W2 compiler is initially loaded
(*load-compiler*), whether garbage collection is done noisy or silently (*gc-silence*), whether the core image can
be saved (*load-core-image*), etc. The configuration file is looked up in three places until a file is found: First in
the current directory, then in the user's home directory and finally in the directory $WPEhome/. The file
$WPEhome/wpeprofile.slisp contains the default configuration. If you want to specify your own configuration,
copy it into your home-directory or current directory and modify i t

2.4.6 The Update File: bugfixes.slisp
Sometimes a bug has already been fixed by the maintainer, but has not yet been incorporated into a released

version. The purpose of the update file is to deal with those bugs. In general, the update file will contain commands
to load some Lisp code that contains the bug fix. It can also be used to temporarily overwrite default settings of
environment variables. For example, it could contain a command to set the Warp host to "warpb", if the default
Waip host is down because of hardware problems. The update file is looked up in two places, the cuirent directory

32

Warp Programming Environment 2.6 Warp Shell

2 7 or $WPEhome/exp/ if you are using the experimental version, respectively, until it is found. If the update file is found in the current
directory, say /usr/foo/, the following message is printed at startup:

Raading bug fixas from fila "/usr/foo/bugfixas.slisp"...

The update file is executed after all wpe files have been read, but before the Warp shell initial command file warpshellinitcmd is executed. It
should not be used by any other person than the current maintainer of the Warp Programming Environment.

2.5 Special Warp Shell Commands
The following Warp shell commands are useful when you are programming and debugging the Warp shell.

2.5.1 HANDLE-ERRORS
HANDLE-ERRORS Handla arrors that occur within commands
SYNTAX: handla-arrors [no]

This command is automatically executed when you switch to implementor mode (see W2-SET
2 8 A more complete description is contained in Dario Giuse, "Programming the Lisp Shell", Carnegie Mellon University, October 1985.

33

or SWPEhome/current/ 2 7. It controls whether the Waip shell should handle all errors that occur during command
execution. If 'yes' (the default), the shell handles errors by printing out an error message and simply continuing. If
'no', no handling occurs and the Common Lisp debugger is called instead. This makes it possible to use the normal
Common Lisp debugging mechanisms to debug the Warp Programming Environment. Note that this command has
no effect when executing Common Lisp expressions inside the Warp shell. In this case the Common Lisp debugger
is always called if an error occurs.

2.5.2 LOAD
LOAD load a lisp fila
SYNTAX: load
OPTIONS:
-silant: Do not warn usar about radafinitions (Dafault) [Switch]
-varbosa: Warn usar about radafinitions [Switch]

EXAMPLES:
load foo.slisp -varbosa
load foo.lisp
load foo

This command can only be executed when you are in implementor mode (see W2-SET). L O A D permits the user to
load a Common Lisp file. It is equivalent to the Lisp 'load* function, except that one does not have to type any
parentheses or quotes. The extension is optional. If the extension is missing, the default extensions are looked up in
this order:*.slisp\ '*.lisp\

When a L O A D command is executed the first time, the. version number in the mode line of the Warp shell buffer is
extended by a version increment number (initially .1) and marked with a "*". For every following L O A D command
the version increment number is increased by 1.

2.6 Writing Warp Shell Commands
The functionality provided by the Warp shell might not be sufficient for the needs of the user. In the following I

give a rough idea of how to program the shell 2 8. WARNING:This section is written for users who want to
customize their shell. The description applies to the Lisp shell version 2.3.2 of November 2, 1987. Send mail to
wpe@sam before you start writing your own shell commands to find out about any changes in the Lisp shell. END
OF WARNING.

Warp Shell Warp Programming Environment 2.6

34

The implementation of a Warp shell command consists of two constructs: A definition which defines the
functionality of the command, and an entry in the command descriptor table which describes the command.

Let's say we want to write a Warp shell command that controls the echoing of all commands being executed by
the Warp shell. We would like to provide an option that restricts the echoing to noninteractive commands. The
Common Lisp code to achieve this is shown in figure 2-2 and we will now briefly discuss how that is done.

(in-package 'shall)
(dafun sh-Noisy (firest arguments)

(let ((BatchOnly (member .batchmode arguments))
(ON (string-equal (First arguments) "ON"))
(OFF (string-equal (First arguments) "OFF")))

;;;argument checking
(unless (or ON OFF)

(format t "argument must be ON or OFF~%")
(return-from sh-Noisy nil))

(setf Noisy-Switch
(and ON (not BatchOnly)))

(setf Batch-Noisy-Switch ON)
))

(creata-entry
•commands-table* "Noisy" 'sh-Noisy
"Controls echoing of shell commands before they are executed." "Noisy [on|off]"
" 'Noisy on' turns echoing on. 'Noisy off turns echoing off. Echoing
means that a shall command is echoed before it is executed.
(The expanded command itself is not printed. This is controlled by
the verbose command)."
'(options . ((:batchmode nil nil

"Echo only noninteractive commands ")))
'(see-also . (verbose))
'(examples . ("noisy on -batchmode"))
'(argument-count . (0 1)))

Figure 2-2: Warp Shell: Implementation of the Command N O I S Y

The shell command must be defined in package 'shell. The definition of the command consists of two parts: a
function definition, sh-Noisy, defining the functionality of the Noisy command, and a call to the function
create-entry which sets up a command descriptor for the Noisy command. sh-Noisy is passed a parameter
arguments from the Warp shell, arguments is determined from the user input as follows: The first complete word
of the user input is interpreted as the name of the command to be invoked. This first word is not passed in
arguments. Words that start with a minus sign are considered as options and are converted to keywords, i.e.
symbols interned in the Common Lisp KEYWORD package. The name of the symbol corresponds to the whole
option name, with the minus sign replaced by a colon sign. All remaining words are converted to strings, without
further interpretation. The result of this parsing is a list of elements, either strings or keywords, passed to the Lisp
function. For example, if the user types 'noisy on -batchmode', the Warp shell issues the call '(sh-noisy "on"
•.batchmode) \

The sh-Noisy function is implemented as follows. First it checks arguments for the occurrence of the keyword
:batchmode and stores the result in the local variable BatchOnly. Then it does some type checking on the
argument list (this is only necessary because the Lisp shell does not do any type checking yet). The remainder of
sh-noisy is very simple. Echoing of commands is controlled by the two global variables Noisy-Switch and
Batch-Noisy-Switch which are set accordingly to whether "ON" or "OFF 1 was passed in arguments.

The command descriptor provides the link between the Lisp function and what the user types. It also provides
information for the help facility type checking of arguments (the latter is not yet implemented). A command

Warp Programming Environment 2.6 Warp Shell

descriptor entry consists of several parts:
• * commands-table* is the name of the command descriptor table.

• User string. This is the name of the command as typed by the user.

• Lisp Function Name. The name of the lisp function to be called if the command line input starts with
the user string.

• One-line command description. This is a short summary of the main function performed by the
command. This one-line help is printed by the generic help function as the only description of a
command; it is also printed by the extensive command-specific help as the header. This information is
also the only piece of information about a command (besides the command name) examined by the
K E Y W O R D command.

• Syntax. This is a one-line entry that describes the syntax for a given command. This entry follows the
same rules that are used in the UNIX manual; for instance, optional parameters are listed in square
brackets. This information is printed by the specific help for a command in the SYNTAX section.

• Help. This is an extensive, multi-line description of the command. This entry describes not only the
general behavior of the command, but also all the specific details about its unusual aspects or about
specific options.

• Options. This list of lists describes the options the command can take. Each option is a list consisting
of the full option name, followed by the number of parameters the option can take, followed by the
default value of the option (if any) and finally a short explanation of what the option does.

• See-Also. This is a list of other Shell commands that are related to the command being described, and
is printed by the extensive command help.

• Argument-Count. This is a list of two values specifying the minimum and maximum number of
parameters of the command.

• Examples. This is a set of examples that are meant to illustrate the usage of a command. If the shell
command is used within an editor, the example allow for easy exploration of the command language,
because they can be direcdy fed to the shell command interpreter.

For example, after the definition of the noisy command has been loaded into the Warp Shell and the user types help
noisy, the following output will appear on standard output:

NOISY Controls echoing of shall commands bafora thay ara executed.
SYNTAX: Noisy [on|off]
'Noisy on' turns achoing on. 'Noisy off turns achoing off. Echoing
moans that a shall command is achoad bafora it is axacutad.
(Tha axpandad command itsalf is not printad. This is controlled by
tha varbosa command).
OPTIONS:
-batchmoda: Echo only nonintaractiva commands

SEE ALSO: varbosa
EXAMPLES:
noisy on -batchmoda

2.7 Debugging the Warp Shell
If H A N D L E - E R R O R S N O has been issued and the Warp Shell encounters a bug, the Common Lisp debugger is

entered. The debugger can also be entered by a keyboard interrupt. If you are using Gosling's Emacs, call the
Mock Lisp command S E N D - I N T - S I G N A L . If you are using GNU Emacs, type CTL C twice.

2.8 Using the Warp Shell: An Example
In this section we walk through a session using W P E and explain the use of some of the Warp shell commands.

The session contains commands to set a breakpoint and inspect some variables.

35

Warp Shell Warp Programming Environment 2.6

2.8.1 Example Session
In this example we are starting W P E by typing wpeg to the U N I X shell. Various comments will appear on the

screen during the loading process:
> "Gnu-Emacs"
> "18.36.6"
> Warp Programming Environment 2.6, 08-Jan-88
Startup command fila "/usr/wpe/warpshellinit.cmd"...
Type help for help
@% w2-set -host warpm
Warp machine set to "Excalibur"
Warp host set to "warpm"
%

The @ sign in front of the prompt sign (@%) indicates that a command file - in this case warpshellinit.cmd - is
executed. The single prompt sign % indicates that we can start typing commands. Let us assume we want to
compile the W2-program poly.w2 shown in figure 2-3 and that the program is located in directory
/usr/wpe/hot/test/poly/.

% path /usr/wpe/hot/test/poly/
% w2-compile -file poly.w2 -debug
Compiling: poly.w2
Opt: Local - Off. Global - Off.
All addresses are computed locally on CELL
Parsing and semantic analysis
Compiling for cells 0 through 9
Processing function #0: INIT
Generating cell code

» Execution time on a cell = 1.22E-5 a (61 cycles)
Processing function #1: POLY
Generating cell code

» Execution time on a cell = 4.654E-4 s (2327 cycles)
Generating host and iu codes

Processing function #0: INIT for last cellprogram
Processing function #0: INIT for first cellprogram

» Execution time on IU • 2.3999999E-6 sec. [12 cycles]
Processing function #1: POLY for last cellprogram
Processing function #1: POLY for first cellprogram

» Execution time on IU = 4.1199997E-5 sec. [206 cycles]
Total W2 compilation time : 0 minutes 33 seconds
Post-Processing...
Post-processing completed successfully.
Compilation of /usr.WJVKP/wpe/hot/test/poly/poly.w2 finished.

When the w2-compiler has finished the compilation of the program we define two Warp shell types floatlO and

floatlOO:
% w2-type floatlO array[10] of float
Type "floatlO" created
% w2-type floatlOO array[100] of float
Type "floatlOO" created
% w2-show -types

Size(Bytes) Display
40
1
1
4
1
4
400
1
1
1
4

Name Basetype Bounds
floatlO float (10)
unsigned-byte byte
char char — — —

float float —-unsigned char char — — —

integer int — — —

floatlOO float (100)
signed-byte byte ——*"

signed char char -»——

byte byte —

int int —-*"*

36

Warp Programming Environment 2.6 Warp Shell

module polynomial (data in, polycoeffs in, results out)
float dataflOOJ, polycoeffs[10];
float results[100];

cellprogram(cid : 0 : 9)

begin

float coeff;

function init

begin

int i;
float temp;

/*Every cell saves the first coefficient that
reaches it, consumes the data and passes the
remaining coefficients. Every cell generates
an additional item at tha end to conserve the
number of receives and sends. */

receive(L, X, coeff, polycoeffs[0]);
for i:= 1 to 9 do
begin
receive(L, X, temp, polycoeffs[i]);
send(R, X, temp);
end;

send (R, X, 0.0);
end

function poly

begin

float xin, yin, ans[100]; /* temporaries */
int i;
int j;

/* Implementing Homer' a rule, each call
multiplies the accumulated result yin with
incoming data xin and adds the next
coefficient */

j := 0;
for i := 0 to 100 do begin

j:- j + 1;
receive (L, X, xin, data[i]);
receive (L, X, yin, 0.0);
send (R, X, xin);
*n*Cj] := coeff + yin*xin;
send (R, X, ans[j], results[i]);

end;
end

call init;
call poly;

end

Figure 2-3: W2 Example: Polynomial Evaluation using the Homer Scheme

Furthermore we define 3 Warp shell variables named data, polycoeffs and results:

37

Warp SheU Warp Programming Environment 2.6

% w2-var -nazn« data -type floatlOO -init -text /usr/wpe/hot/test/poly/data -coxnp c2m2
Connecting to Warp host "warpm" . . .
...initializing...
Variable "data" created in component "c2m2"
% w2-var -nam polycoeffs -ty floatlO -tex /usr/wpe/hot/test/poly/polycoeffs -comp c2m2
Variable "polycoeffs" created in component "c2m2"
% w2-var -name results -type floatlOO -text /usr/wpe/hot/test/poly/results
Variable "results" created
% w2-show -var
Warp Shell Variables:

Name Type Memory MDesc Mode Init'd File
polycoeffs floatlO c2m2 1 text no /usr/wpe/hot/test/poly/polycoeffs
results floatlOO d/c 2 text no /usr/wpe/hot/test/poly/results
data floatlOO c2m2 0 text yes /usr/wpe/hot/test/poly/data

We would like to set a breakpoint in function i n i t , but we do not exactly know where, so we ask the shell to

suggest some:
% w2-suggestbreaks -line 25 30 -function init
Possible breakpoints in function INIT (source line range 25 to 30):

Node:13 Line:25 Addr:(276) Type:$DYADIC$ Op:$I-PLUS
Node:14 Line:25 Addr:(278) Type:$STORE Name:INIT$I
Node:4 Line:25 Addr:(266) Type:$STORE Name:INIT$I
Node:7 Line:27 Addr:(272) Type:$STORE Name:INIT$TEMP
Node:6 Line:27 Addr:(270) Type:$M0NADIC$ Name:INIT$TEMP Type:FLOAT Op:$RECEIVE
Node:9 Line:28 Addr:(272) Type:$MONADIC$ Name:INIT$TEMP Type:FLOAT Op:$SEND

After deciding to break on line 28 we type:
% w2-break -line 28 -function init
Breakpoint 1 entered into break table:
Name: 1 ENABLED Source Line: 28 in Function: INIT

Condition: T
Action: ("w2-halt")
Calls: (0 1 2 3 4 5 6 7 8 9)
Node: 9 Name:INIT$TEMP Type:FLOAT 0p:$SEND
Wl-Address: (272)

Now the program can be executed on the Warp machine. We issue a W2-EXECUTE command which by default

locks the Warp machine 2 9:
% w2 -execute -parameters data polycoeffs results
Copying input parameters into cluster memory...
Trying to lock Warp Excalibur...
Warp server queue is empty.
Warp machine is yours:
Downloading cluster and micro code for poly.w2..
Starting execution of module...
Breakpoint 1 encountered in cell 0: Line 28 in "poly.w2tt

Executing breakpoint actions...
@breakl% w2-halt

Once Warp is allocated, the microcode for the clusters, the interface unit and for the Warp cells is automatically
downloaded. When the breakpoint is encountered in cell 1, the condition is checked. It evaluates to T (=TRUE) and
the action part of the breakpoint is executed, which is W2-HALT. Now the user types: W2-GET - L O C A L S -CELLS l to get
the values of the locals of the current function cells 1. The function INIT has just two locals I and TEMP:

*>Note that if the program was not compiled with the -debug option you would get the following error message:
? Warning: /usrw61/bob/wpe/test/poly/poly.w2 was not compiled with -debug option.
Breakpoints cannot be set.

and the execution would proceed without the breakpoints.

38

Warp Programming Environment 2.6 Warp Shell

breakl% w2-get -locals -calls 1
[Call 0]:
Locals in function INIT:

1 = 1
TEMP = 0.21

[Call 1]:
Locals in function INIT:

I - 1038174126
TEMP = 0.61

At this point we decide to delete the breakpoint and start the execution again:
breakl% w2-delete -break 1
Breakpoint 1 deleted
breakl% w2-unlock
Unlocking Warp Excalibur. . .
% w2-execute -parameters data polycoeffs results
Copying input parameters into cluster memory...
Downloading microcode from directory "/usrw61/bob/wpe/test/poly/"
Starting execution of module...

?User server: User server died.
Invalidating memory for all defined Warp shell variables.

Apparently there is a problem with one of the components of the Warp Programming environment. We use the
W2-SANITY command to find out that the Warp host "warpm" is down:

% w2-sanity
Checking state of Warp host "warpm", Warp server, WPE server and Warp array. . .

> Warp host is not up.

At this point we could wait until "warpm" is up again. Instead, we switch to the other Warp host ,Td2" and try the
execution once more:

% w2-sat -host d2
Warp machine set to "Galileo"
Warp host set to "d2"
% w2-execute -parameters data polycoeffs results
Reallocating memory for "data" in cluster "c2m2"...
Reallocating memory for "polycoeffs" in cluster "c2m2"...
Reallocating memory for "results" in cluster "dk"...
Copying input parameters into cluster memory. . .
Trying to lock Warp Galileo...
Warp server queue is empty.
Warp machine is yours:
Starting execution of module...
Execution completed.
Unlocking Warp GE...

We now look at the value of the Warp shell variable results:
% w2-show -var results -range 0:3

which will display the first four elements of the variable result in an editor buffer called results:
1023.000000 1023.000000 1023.000000 1023.000000

2.8.2 Example Command File

The following is a summary of all the commands we have typed in the previous example session:

39

Warp Shell Warp Programming Environment 2.6

path /usr/wpe/hot/test/poly/
w2-compile -file poly.w2 -debug
w2-type floatlO array[10] of float
w2-type floatlOO array[100] of float
w2-show -types
w2-var -name data -type floatlOO -init -text /usr/wpe/hot/test/poly/data -comp c2m2
w2-var -nam polycoeffs -ty floatlO -tax /usr/wpe/hot/test/poly/polycoeffs -comp c2m2
w2-var -name results -type floatlOO -text /usr/wpe/hot/test/poly/results
w2-show -var
w2-suggestbreaka -line 25 30 -function init
w2-break -line 28 -function init
w2-execute -parameters data polycoeffs results
w2-get -locals -calls 1
w2-delate -breaks 1
w2-unlock
w2-execute -parameters data polycoeffs results
w2-sanity
w2-set -host d2
w2-execute -parameters data polycoeffs results
w2-show -var results -range 0:3

40

Warp Programming Environment 2.6 Warp Monitor

3. The Warp Monitor

3.1 Introduction
The Warp monitor is intended as a building block for the implementation of tools such as the Warp shell or the

W2 debugger as well as for standalone applications using the Warp machine and its individual components.

The main goal of the Warp monitor is to shield the programmer from the complexity of the Warp array and yet
make the hardware accessible. The programmer can access the Warp array via a set of diagnostic routines
collectively called the Warp library and a set of routines called the Master Host Library. The Warp Library accesses
the interface unit and the cells of the Warp machine via serial chains. The Master Host Library provides control over
the cluster processors3 0. Both libraries assume that the Warp machine is used by only one user.

The abstractions provided by the Warp monitor are more complete and on a higher level than these libraries. The
Warp monitor provides access to the Warp array as well as to the cluster processors. The goal is to provide the
programmer with a "virtual Warp machine": The Warp monitor provides a set of functions to acquire and release
the Warp machine, to allocate memory in the Warp host and cluster memories, to download Warp micro code and
cluster code, to control the execution of Warp programs and to monitor their behavior.

Figure 3-1 shows the architecture of applications using the Warp monitor. The Warp machine level consists of
the Cluster Processors, Interface Unit and the Warp Array (see also Figure 1-1). Above the hardware level is the
first software level implemented by the Warp Library, the Master Host Library and the Warp Monitor. The
second software level implements the application programs. In the figure, Application 1 is a standalone program
calling the Warp monitor functions directly. Application 2 is an application program written in C built on top of the
Warp User Package. Application 3 is an application written in Common Lisp running on top of the Warp shell.
And as we can see, the Warp shell alone is also an example of an application program.

3.2 Classification of Warp Monitor Functions
The Warp monitor functions are grouped in several parts: Warp server control, error handling, Warp locking

mechanism, event flags, memory allocation, downloading, execution, debugging and miscellaneous functions.

The Warp server control functions provide control over the Warp server and the user servers. start_warpd
starts or restarts the Warp server. The openconn function supports multiple Warp machines. It permits the user to
select a particular Warp host on which to run the application and the type of user server to be used for the
application. There are four different types of user servers. Server type 0 provides only the Warp locking
mechanism functions (lock_warp, unlock_warp, l i s t _ _ q u e u e and n e x t _ e n t r y) needed to support
multiple users. Server type 1 provides all the Warp monitor functions documented in this section via TCP/IP to a
user server process. Server type 2 is an experimental server used for development purposes. Server type 3 is similar
to Server type 1, except that it knows whether the application is running in local or remote mode. If in remote mode,
a user server process is started up on the Warp host side and the communication between application and user server
will be via TCP/IP. If in local mode, only the Warp server is a separate process providing the Warp locking
mechanism functions. All the other Warp monitor functions are linked into the application program and are
executed directly. Note that in local mode the cluster memory, that is about 8 Mbytes, is mapped into the memory
space of the application program. This causes problems for the Lisp interpreter, because it should not be managed

S^£JZ3J!r ^ ^ ^ M a n U a l f ° r ^ H°St SOfMare< b W h * G - » ' E 1 " ' r i ' . ™« • Department,

41

Warp Monitor Warp Programming Environment 2.6

- User In te r face

Application 1

Application 2 Application 3

Warp User
Package

Warp Shell

Warp Shell

Vir tua l Warp Mach ine In ter face

Warp Library

Warp Monitor
Master Host

Library

Warp Mach ine In ter face

Interface Unit

Cluster Processors

Warp Array

Figure 3-1: Architecture of Applications using the Waip Monitor

by Lisp's memory manager. Thus, for Lisp applications, server type 1 should be used, whereas for real-time

applications server type 3 should be the preferred server.

Error handling is done by the functions s e r v e r _ e r r o r and g e t _ e r r o r _ s t r i n g . Most of the Warp
monitor functions return a 0 if the call was successful and a 1 if it was not successful. The function
s e r v e r _ e r r o r can be called which returns an index into a string table that stores all possible error messages.
g e t _ e r r o r _ s t r i n g returns the corresponding string.

The Warp Locking mechanism is provided by the functions lock_warp, unlock_warp, l i s t _ _ q u e u e and
n e x t _ e n t r y . These functions control the queue of users who have requested the use of the Warp machine. The
l o c k _ w a r p checks whether the queue is empty and if yes, it enters the user into the queue and locks the machine
for him. If it is not empty, the user is appended at the tail of the queue. The unlock_warp checks whether the
queue is empty and if yes, it takes the user from the head of the queue, therefore making the machine accessible for
the next queue entry. The functions l i s t _ q u e u e and n e x t _ e n t r y permit the inspection of the queue.

One of the purposes of the Warp monitor is to permit programmers to view the Warp machine as a sequential
machine. However, it is also possible to view the Warp machine as a set of five processors. The programmer can
execute concurrent tasks on the Warp array (s t a r t _ w a r p) , the two cluster processors and the support processor
(s t a r t _ c l u s t e r) and on the Waip host. Event flag functions control the execution of these tasks. a l l o c _ e f

42

Warp Programming Environment 2.6 Warp Monitor

43

and f r e e _ e f manage the allocation of event flags. The set__ef function sets an event flag to one of the
following states: PENDING, INPROGRESS, DONE, ERROR and UNUSED. Event flags states aie also set by the
processors. For example, when a processor starts a service associated with a specific event flag, it changes the status
to INPROGRESS. When the service has been completed, the status is changed to DONE. The w a i t _ e f function
permits the programmer to wait for an event flag to reach a certain state. An event flag is basically a small integer
which serves as an index into an event table. The event table is stored in the memory of the support processor.
Whenever the Warp machine is unlocked, the event table is swapped into the user server address space, and when
the Warp machine is locked again, the event table is swapped back into the support processor. Thus event flags are
valid across several locks/unlocks of the Warp machine.

The memory allocation functions provide the user with the ability to allocate and deallocate memory on the
cluster processors (ge t_unin i t__l lmem, a l l o c _ c l m e m , dealloc__clmem, f r e e _ b u f f e r) and copy data
between the application program's address space and the cluster memory (r e a d _ f rom_clmem,
w r i t e _ t o _ c l m e m) or between files and cluster memory (c o p y _ c t c , c o p y _ f t c , c o p y _ c t f) . User server
and cluster processor memory is represented by so called memory descriptors which are basically small positive
integers. File names are always interpreted in the naming context of the file system used by the Warp monitor, not
by the application.

Downloading functions load micro code into micro code memory (l o a d _ m i c r o) or load cluster code into
cluster processor memory (l o a d _ c l u s t e r , l o a d _ o n e _ c l u s t e r) . Downloading functions using event flags
are of advantage if a real-time application program makes use of more than one Warp program. Such applications
can cache the cluster code (m a k e _ c l u s t _ f unc) and microcode (cache_mic ro) for all Warp programs in Warp
host memory. When switching from one Warp program to another, microcode can be quickly downloaded into the
Warp array with f a s t _ l o a d _ m i c r o . Note that l o a d _ m i c r o or f a s t _ l o a d _ m i c r o have to be called every
time before a program is executed on Warp, even if the the Warp is kept locked during repeated executions of the
same program. The reason is that these routines also reset the Warp array.

Execution functions control the execution of the components of the Warp machine. The programmer has the
choice to execute the components as a unit or individually. execute__warp starts the execution of all the
components, that is, the cluster processors as well as the Warp array. s t a r t _ c l u s t e r starts a function
previously defined with m a k e _ c l u s t _ f u n c on an individual cluster processor. s t a r t__warp starts the
execution of a previously downloaded Waip program on the Warp array but does not touch the cluster processors.
c o n t i n u e _ w a r p resumes the execution of a Warp program after one or more cells have encountered a
breakpoint. e x e c u t i o n _ t i m e returns the time elapsed during the execution of the last W2 program.

Debugging functions permit the user to set breakpoints and to inspect various resources in the hardware. The
function u s e _ p r i n t f permits the user to enable print statements inserted in cluster code programs. All the other
debugging functions are concerned with debugging the Warp array. s e t _ b r e a k and c l e a r _ b r e a k set and
delete breakpoints in the micro code in one or more cells. s e t _ p c and get__pc manipulate the program counters
of the interface unit and the cells. There are functions to inspect and write the micro code (read_data_mem,
wr i t e_da ta_mem) , to read or write single registers (r e a d _ r e g i s t e r , w r i t e _ _ r e g i s t e r) , to read or write
serial chains (r e a d _ c h a i n , w r i t e _ c h a i n) or parts of it (g e t _ f i e l d , put__f i e l d) .

There are several miscellaneous functions: set__debug turns on a tracing mechanism to report the message
traffic between application and the Warp monitor. s e t _ t i m e o u t sets the length of time-out for Warp programs.
g e t _ v e r s i o n returns the version number of the Warp monitor. s e t _ d i r changes the current directory on the
Warp monitor side. The s a n i t y _ c h e c k checks the state of several components of the environment such as the
file system, the Warp host, the Waip and WPE servers and the Warp array. If there is any problem with the Warp

Warp Monitor Warp Programming Environment 2.6

array, it can be reset to a defined state with the reset_warp command.

The Warp monitor is written in C and therefore the following specifications are also in C. However, application
programs using the Warp monitor functions can be written in any language as long as its implementation supports
the call of C functions. For example, the Warp shell is written in Lucid Common Lisp, which contains a Common
Lisp extension to call C functions.

3.3 Warp Server Control Functions

3 3 . 1 START_WARPD
Start the Warp server.

Interface:
start_warpd ()

Parameters: None.
Returns: None.
Notes: Normally the Warp server can be assumed to be up and running. This function should be used

only if the Warp server is not running. start_warpd only attempts to restart the Warp server.
There is no guarantee (or indication) of success.

3 3.2 OPENCONN
Open a connection to a Warp host, that is, create a user server process or reconnect to it.

Interface:
openconn (host, mode)
char *host;
int mode;

Parameters:
host The name of the Warp host to (re)connect to, or 0 if a default host should be

used. The default host is determined as follows: First openconn checks
whether a UNIX environment variable W A R P host has been defined3 1. If
yes, the default host is the first string extracted from W A R P host
(WARPhost can be a list of strings separated by blanks). If not, a
hardwired name is used 3 2,

mode The type of server subprocess to use. Legal types are:
• 0 = No user server process (use Warp server for queueing only).

• 1 = Normal user server process (use server for all Warp monitor
operations).

• 2 = Experimental user server process (for development
purposes).

• 3 = If in remote mode, start up a user server process on the
Warp host side. In this case the communication between

"WkRBho.t is automatically defined if the environment file $WPEhome/warprc has been "sourced".

i.« « o" —A ' \ . , * r - r W The hardwired default is "warpm" unless the application is 3 2 A t c m ^ p o s s i b l c Warp host names are "warpb", "warp8 and warpm . The hardwired aeiaui v

running on workstation warpb, in which case "warpb" is the default

44

Warp Programming Environment 2.6 Warp Monitor

Returns:

Notes:

application and user server will be via TCP/IP. If in local
mode, only the Warp server is a separate process and provides
the Warp monitor functions lock__warp, unlock__warp,
l i s t_queue and next_entry. All the other Warp monitor
functions are linked into the application program and are called
as direct procedure calls. In this case the cluster memory, that is
about 8 Mbytes, is mapped into the memory space of the
application program.

Returns 0 if successful, 1 otherwise. If this call fails, the Warp Host does not exist or it was not
up.

The name of the Warp host must be in lower case. If successful, openconn connects to a
Warp host, that is, it creates a user server process, or it reconnects to it, if there is already an
open connection to that host, openconn automatically performs a set_ d i r call to the
current directory of the application program. A call to openconn does not close any previous
Warp connections. Therefore, if you wish to be greedy, you can have several open Warp
connections at once. If multiple connections are used, the Warp host mentioned in the last
openconn call determines the current Warp host. The connection to the current Warp host can
be closed with an unlock_warp (1) call.

3.4 Error Handling Functions
This section describes the functions that inspect the

server_error returns an index pointing to a position
that string. Both functions always refer to the last Warp
error strings are defined by the following C data structure:

error state after a previous Warp monitor function call,
in an array of strings and get_error_string returns
monitor call that was not an error handling function. The

45

Warp Monitor Warp Programming Environment 2.6

#ifdef GIL
char *WP_serv_«rr [] = {
#alae
char *serv_err[] = {
#endif

"No Error",
"Unknown Error",
"Garbled Command",
"Too Few Parameters",
"Queue Full",
"Can't Craata User Sarvar",
"Usar Sarvar Diad",
"Uaar Interrupt",
"Usar Intarrupt, Closed Connection",
"Can't Access Directory",
"Illegal Cluster Memory",
"Can't Allocate Mamory",
"No Such Mamory Descriptor",
"Mamory Daacriptor Too Small",
"Can't Opan Fila",
"Not Enough Data",
"WARP Not Locked",
"No PC Sat",
"Timaout During Evant Flag Wait",
"No Appropriate Clustar Coda",
"Breakpoint Encountered",
"No Procedure Running",
"Low Bound Is Larger Than High Bound",
"No Such Chain",
"No Such Register",
"No Such Field",
"No Such Operation",
"Field Is Larger Than 32 Bits",
"No Evant Flags Left",
"Bad Event Flag",
"Illegal Clustar Function",
"Error In Reading .param File",
"Illegal Cluster Memory Descriptor",

};

3.4.1 SERVERJERROR
Return error index of last Warp monitor call.

Interface:
int server_error()

Parameters: None.
Returns: the error index from the last Warp monitor function call. The error code is an index into the

data structure s e r v _ e r r defined above.
Notes: Successive calls to server_error don't change the error index.

3.4.2 GET_ERRORJSTRING
Get the error string from the last Warp monitor call.

Interface:
int get_error_string (buffer)
char *buffer;

Parameters:
b u f f e r A buffer in which to store a description of the last error.

Returns:

46

Warp Programming Environment 2.6 Warp Monitor

Notes:
0 if successful. 1 otherwise.

Successive calls to g e t _ e r r o r _ s t r i n g don't change the error index.

3.5 Warp Locking Mechanism

3.5.1 LOCK WARP
Lock the Warp machine so it cannot be accessed by other users.

Interface:

Parameters:

Returns:

Notes:

int lock_warp(delay, send_ok, comment)
int delay, send_ok;
char * comment;

delay

send_ok
comment

0 = don't wait for the lock, 1 = wait in the Warp server queue if somebody
else is currently using the Warp machine.

0 = don't send messages to the terminal, 1 = OK to notify.
An identifying string for the Warp server queue.

0 if lock was granted and 1 otherwise.

Users are treated in FIFO order by the Warp server. A message is sent to the current owner of
the Warp machine that is, the head of the Warp server queue, if delay is 1. l o T w ^ c n
also be used to double check if the Warp is locked. l o c ^ w a r p c a n

3.5.2 UNLOCKWARP
Unlock the Warp machine so it can be accessed by others.

Interface-

Parameters:

Returns:

Notes:

int unlock_warp (finish)
int finish;

finish 1 = close user server connection, 0 = leave user server connection open.

0 if connection is in expected state, 1 if connection had to be closed anyway.

When the Warp machine is unlocked, memory allocated with alloc_clmem is saved into the
user servery memory. After the Warp is unlocked, the following is true:

• The event table is swapped from support processor memory to the user server
memory.

• Cluster memory described by memory descriptors is swapped from cluster memory
to the user server memory.

• Cluster code loaded by load__cluster and load_one__cluster is
invalidated33.

• Micro code loaded into the Warp array with load__micro and
fas t__load_mi c r o is invalidated.

• Cluster code function ID's are invalidated.

^Invalidated means the user must load the cluster code everytime the Warp machine is locked.

47

Warp Monitor Warp Programming Environment 2.6

• ID's of micro code loaded with cache_micro are still valid.
The unlock_warp always succeeds in unlocking the Warp, regardless of the return code. The
Warp is automatically unlocked when the process that called lock_warp dies.

3.5.3 LIST_QUEUE
Determine the length of the Warp server queue, that is, the number of users that have issued a lock_warp call,

but not yet an unlock_warp call.

Interface:
int list_queue ()

Parameters: None.
Returns: the number of jobs in the queue, or -1 if this cannot be determined.

Notes: n e x t _ e n t r y must be called after list_queue was called.

3.5.4 NEXTENTRY
Get next entry from Warp server queue.

Interface:

Parameters:

Returns:

Notes:

int neact_entry (buf)
char *buf;

buf An array of characters in which the next queue entry will be stored. Each
entry has the form: user machine tty "comment"

0 if an entry was retrieved, 1 if not.
l i s t_queue must be called before this routine can be called. After l i s t_queue is called,
you must call n e x t _ e n t r y repeatedly until it returns 1 (no more queue entries).

3-6 Event Flag Functions
All event flag functions use a type EFLAG, which is defined in $WARPinclude/momtor.h or gilmonJi.

3.6-1 ALLOC JEF
Allocate event flag.

Interface:

Parameters:

Returns:
Notes:

EFLAG alloc_ef ()
None.
An event flag or 0 if no flags are available.
Obsolete event flags can be deallocated with f ree_ef. For efficiency reasons, the event flag
table is stored in the memory of the support processor. When unlocking the Warp machine, the
event flag table is copied into Warp host memory. Thus, event flags can also be used when the
Warp is not locked. When the Warp locked again, the event flag table is copied back from Warp
host memory to support processor memory.

48

Warp Programming Environment 2.6 Warp Monitor

3.6.2 FREE_EF
Free event flag.

Interface:

Parameters:

Returns:

int free_ef(flag)
EFLAG flag;

flag An event flag to be released.

An event flag or 0 if no flags are available.

3.6.3 READJEF
Read event flag.

Interface:

Parameters:

Returns:

Notes:

int read_ef(flag)
EFLAG flag;

flag An event flag to be read.

E , ? N T ^ (D T H E R (= 0) > P E N D I N G < = 1) > P R O G R E S S (=2), D O N E (=3)

A S Y N C D O N E (=4) or E R R O R (=128)) or -1 if there is an error.
E R R O R is a status from a successful read.

3.6.4 SETJEF
Set event flag to a certain value.

Interface:

Parameters:

Returns:

int set_ef(flag,event)
EFLAG flag;
int event;

flag
event

An event flag to be set.

The value of the flag (either UNUSED (=0), P E N D I N G (=1), INPROGRESS (=2)
D O N E (=3), A S Y N C D O N E (=4) or E R R O R (=128)).

0 if successful, 1 otherwise.

3.6.5 WAITJEF
Wait for event flag to be set to a certain value.

Interface:

int wait_ef (flag, event, timeout)
EFLAG flag;
int event, timeouts-

Parameters:

An event flag to wait for.

The value of the flag to wait for (either U N U S E D (=0), P E N D I N G (=1),

49

flag
event

Warp Monitor Warp Programming Environment 2.6

Returns:

Notes:

timeout

INPROGRESS (=2), DONE (=3), ASYNCDONE (=4) Or ERROR (=128)).

The timeout delay (0 = wait forever).

0 if successful, 1 otherwise.
If the event value is DONE, this call returns immediately. The timeout value is in no
recognizable units.

3.7 Memory Allocation
From the point of view of the programmer, there are three kinds of memory: application memory, user server

memory and cluster memory. If the application is in local mode, then application and user memory are identical.
Cluster memory is only accessible if the Warp machine is locked. Furthermore, cluster memory is reallocated every
time the Warp machine is locked. Thus pointers to cluster memory obtained by calling get_uninit_clmem are
only valid for the time the machine is locked. In order to maintain consistency between remote and local operations,
the following rules must be followed when dealing with buffer pointers in application or user server memory that
point to cluster memory:

• If the buffer is modified, the cluster memory is not automatically updated. Therefore,
write_to_clmem must be called to make the same change in the cluster memory.

• Before unlocking the Warp, the cluster memory pointed to by the buffer pointers should be saved into
user memory and then the buffer should be freed. Once the Warp machine is unlocked, the buffer
pointer are no longer valid (If Warp locked again, those buffer pointer would point to illegal memory
because of the reallocation of the cluster memory).

3.7.1 ALLOC J X M E M
Allocate memory in cluster memory.

Interface:
int alloc_clmem(type,
char *type;
int size;

size)

Parameters:

Returns:

type

size

Where the memory should be allocated (one of
"clm3", "c2ml", "c2m2", "c2m3", or "dk").
The number of bytes to be allocated.

"sun", "clml", "clm2",

Notes:

either a "memory descriptor" (a positive integer), or -1 if there is a problem.
Memory cannot be allocated in "clml" or "c2ml". When the Warp machine is already locked,
memory is allocated in the cluster memory of the Waip machine. If it is not yet locked, it is
allocated in the user server memory and downloaded automatically when the user gets the Warp
machine, "dk" stands for don't care. Certain errors such as "Server Process Died" invalidate all
memory descriptors.

Each cluster memory board contains 1 MByte of memory. Starting with Warp monitor version 4.13, it is possible to
allocate cluster memory of up to 2 MBytes in CI or C2. The cluster memory components clm2
+ clm3 and c2m2 + c2m3, respectively, have been merged into 2 Mbytes of consecutive
memory. The old naming scheme has been kept for compatibility purposes. However, when
calling a l l o c _ c l m e m with clm2 or clm3 (c2m2 or c2m3), the Warp monitor will always start
allocating memory in the clm2 (c2m2) memory board and allocate memory until it runs out of
memory in board clm3 (c2m3).

50

Warp Programming Environment 2.6 Warp Monitor

3.7.2 DEALLOC_CLMEM
Deallocate memory in cluster memory.

Interface:

Parameters:

Returns:

int dealloc_clmem(desc)
int desc;

d e s c A memory descriptor returned by A L L O C _ C L M E M .

0 if memory is freed, 1 if there was some problem.

3.7.3 GET JJNINIT CLMEM
Get uninitialized cluster memory.

Interface:

Parameters:

Returns:

Notes:

char *get_uninit_clmem(desc, offset, size)
int desc, offset, size;

d e s c
o f f s e t
s i z e

The memory descriptor to get a pointer to.
Where in the memory descriptor to point to.
How many bytes should be pointed to.

0 if there was a problem with the descriptor and a pointer to an uninitialized buffer for the
cluster memory otherwise.

When in local mode, then g e t _ u n i n i t _ c l m e m returns a pointer to the cluster memory
described by memory descriptor d e s c and o f f s e t . When in remote mode, then
g e t ^ u n i n i t _ c l m e m calls m a l l o c to create a buffer in the client address space that will be
used to hold the cluster memory described by memory descriptor d e s c and o f f s e t in the
server address space and returns a pointer to that buffer. As a result, don't expect to read
anything useful out of this buffer when in remote mode. When the Warp machine is already
locked, memory is allocated in the cluster memory of the Warp machine. If it is not yet locked, it
is allocated in the user server memory and downloaded automatically when the user gets the
Warp machine.

3.7.4 READJFROM_CLMEM
Copy from cluster memory into a buffer.

Interface-

Parameters:

Returns:

Notes:

char *read_f rom_clmem(desc, of f set, size, buf)
int desc, offset, size;
char *buf;

d e s c
o f f s e t
s i z e
buf

The memory descriptor to read from.

Where in the memory descriptor to start reading from.
How many bytes to read.

A buffer to hold the data or 0 if a buffer should be allocated.

0 if there was a problem with the read and a buffer pointer otherwise.

When in local mode and buf = 0, readJrom__clmem returns a pointer to the cluster

51

Warp Monitor Warp Programming Environment 2.6

memory described by memory descriptor d e s c and o f f s e t . When in remote mcxie and buf
To S a d from clmem calls malice to create a buffer and reads over the netw^k the
cluster memory described by memory descriptor d e s c and o f f s e t into that buffer. When in
e ! S Z^oXc* mode" and buf <> 0, read_f rom_clmem copies the cluster memory
described by d e s c and o f f s e t into the buffer desenbed by buf.

3.7.5 WRITE JTO_CLMEM
Copy from a buffer to cluster memory.

Interface:

Parameters:

Returns:

Notes:

int write_to_clxnem(desc, offset, size,buf)
int desc, offset, size;
char *buf;

The memory descriptor to write to.
Where in the memory descriptor to start writing.
How many bytes to write.
A buffer holding the data to be written.

d e s c
o f f s e t
s i z e
buf

0 if the write was successful, 1 if there was some problem.
When in local mode and buf is pointing to cluster memory, then wri te_to__clmem is a
NOOP. When in local mode and buf does not point into cluster memory, then the memory
contained pointed to by buf is copied to cluster memory described by d e s c and o f f s e t .
When in remote mode, then w r i t e _ t o _ c l m e m copies die buffer over the network from the
buffer described by buf to the cluster memory described by d e s c and o f f s e t .

3.7.6 FREE_BUFFER
Free memory allocated by r e a d _ f rom_clmem or g e t _ u n i n i t _ c l m e m .

Interface:

Parameters:

Notes:

freejbuffer(buf)
char *buf;

buf A buffer allocated by read J: rom_clmem or get_uninit_clmem.

When in local mode, a call to f ree.buf f er is a NOOP^because^ there is no buffer to free.
When in remote mode, the memory described by buf is freed (by calling free).

3.7.7 COPY_CTF
Copy cluster memory into a file

Interface:

Parameters:

int copy_ctf(desc,offset,size,filename,type)
int desc, offset, size;
char *filename, *type;

desc
offset

The memory descriptor to copy from.
Where in the memory descriptor to start copy from.

52

Warp Programming Environment 2.6 Warp Monitor

Returns:

Size
filename
type

How many bytes to copy.

The name of the file to store the data in.
The format to use, one of:

"Byte" 8 bit decimal integers.
"Char" Binary.
"Hex" 32 bit hexidecimal integers.
"Int" 32 bit decimal integers.
"Float" 32 bit floating point numbers.

0 if successful, 1 otherwise.

3.7.8 COPYFTC
Copy a file into cluster memory.

Interface:

Parameters:

Returns:

int copy_ftc(desc,offset,size,filename,type)
int desc, offset, size;
char *filename, *type;

desc
offset
size
filename
type

The memory descriptor to copy to.

Where in the memory descriptor to start writing.
How many bytes to copy.

The name of the file containing the data.
The format to use, one of:

"Byte"
"Char"
"Hex"
"Int"
"Float"

0 if successful, 1 otherwise.

8 bit decimal integers.
Binary.

32 bit hexidecimal integers.
32 bit decimal integers.
32 bit floating point numbers.

3.7.9 COPY_CTC
Copy cluster memory to cluster memory after event flag is done.

Interface:

EFLAG copy_ctc(from,to,size,proc,efnc)
int from, to, size, proc;
EFLAG efnc;

Parameters:

The source memory descriptor.
The destination memory descriptor.
How many bytes to copy.

Who should do the copy (0 = MASTER 1, 1 = CLUSTER 1, 2 = CLUSTER2,
and 3 = SUPPORT1).

from
to
size
proc

53

Warp Monitor Warp Programming Environment 2.6

efnc An event flag to be set to D O N E before the copy is done. In case there is
nothing to wait for, e f n c can be replaced with the constant NOWATT .

Returns: rt

An event flag if the function is started, 0 otherwise.

3.8 Downloading Functions

3.8.1 LOAD_MICRO
Load Waip micro code into the interface unit and the Waip array.

Interface:
int load micro(file)

Parameters:

Returns:

Notes:

char * file-

f i l e
The simple filename of the microcode (no pathname prefix, no extension) to
be loaded.

0 if successful, 1 otherwise.
load_micro has to be called every before executing a program on Warp. The filename is looked
up in the directory set by SET_DIR. Loading new microcode invalidates the result of the last
s e t _ p c call. This call also attempts to read the ".param" file to find the starting addresses of
the warp cells and the interface unit. If this is successful, the program counters are initialized to
these values. Note that l o a d j m i c r o or f a s t _ l o a d _ m i c r o have to be called every time
before a program is executed on Warp, even if the if the Warp is kept locked during repeated
executions of the same program. The reason is that these routines also reset the Warp array.
However, the routines are clever enough to check whether the micro code has already been
downloaded.

3.8.2 CACHE JVIICRO
Load Wl micro code file into Waip host memory.

Interface:

Parameters:

Returns:

Notes:

int cache_micro(file)
char *file;

The filename of the microcode (without extension) to be cached into the
Waip host memory.

A "microcode ID" (a positive integer) if successful, -1 otherwise.

This call doesn't touch the Waip machine.

f i l e

3*The constants MASTER1, CLUOTR1.CLUOT1 SUPPORT1 and NOWA* a* defined in the include file $WARPincludemconn g.h

(See page 69)

54

Warp Programming Environment 2.6 Warp Monitor

3.8.3 FAST_LOAD_MICRO
Download cached Wl micro code from Warp host into Warp array after event flag is done.

Interface:

EFLAG fast_load_micro(id,efnc)
int id;
EFLAG efnc;

Parameters:

Returns:
Notes:

id

efnc

A "microcode ID" returned from cache__micro identifying microcode to
be loaded into the Warp array.

An event flag to be set to D O N E before the micro code is loaded. In case
there is nothing to wait for, efnc can be replaced with the constant
N O W A I T .

An event flag if the load is started, 0 otherwise.

load__micro or fast__load_micro have to be called every time before a program is
executed on Warp, even if the if the Warp is kept locked during repeated executions of the same
program. The reason is that these routines also reset the Warp array. However, the routines are
clever enough to check whether the micro code has already been downloaded.

3.8.4 LOADCLUSTER
Load the files containing cluster code for the two cluster processors.

Interface:

Parameters:

int load_cluster(file)
char *file;

file
l S d e d e n a m e ° f ^ d U S t e r C 0 d 6 (D 0 p a t h n a m e P r e f i x > n o extension) to be

Returns:
0 if successful, 1 otherwise.

Notes: The filename is looked up in the directory set by set dir.

3.8.5 LOAD ONE CLUSTER
Load one file containing cluster code.

Interface:

Parameters:

Returns:

int load_one_cluster(file,proc)
char *file;
int proc;

file
proc

The filename of the cluster code (with extension!) to be loaded.
The processor to load it into:

• 0 = Cluster Processor 1

• 1 = Cluster Processor 2

• 2 = Support Processor

0 if successful, 1 otherwise.

55

Warp Monitor Warp Programming Environment 2.6

3.8.6 MAKE_CLUSTFUNC
Load cluster code, create function and return "function code ID".

Interface:

Parameters:

Returns:

int make_clust_func (file)

The filename of the cluster code (with extension!) to be loaded. file

This call returns a "function code ID" (a positive integer) if successful, or -1 otherwise.

3-9 Execution Functions

3.9.1 EXECUTE_WARP
Execute a Waip program by starting the cluster processors and the Warp machine.

Interface:

Parameters:

Returns:

Notes:

int execute_warp(cycles,nin,nout,parin,parout)
int cycles, nin, nout;
int parin[], parout[];

How many cycles to run (-1 = run to completion or until breakpoint is
encountered).
The number of input parameters. The maximum of input parameters is 30.

The number of output parameters. The maximum of input parameters is 30.

The input parameters (memory descriptors from a l l o c _ c l m e m) .

The output parameters (memory descriptors from a l i o c _ c l m e m) .

c y c l e s

n i n
n o u t
p a r i n
p a r o u t

0 if the execution completes, 1 otherwise.
e x e c u t e _ w a r p starts the execution of a Waip program consisting of cluster code for the

cluster processors and micro code for the Warp machine. If c y c l e s is not equal to - 1 ,
breakpoints will be ignored. It can only be called after the micro code and the cluster code have
been loaded and memory has been allocated for the input and output parameters. Each
parameter is assumed to be a memory descriptor returned by a l l o c _ c l m e m . However, 30 bit
integers may also be passed by encoding them using the p a r a m _ c o n s t function. (Two bits
are used as a tag.) These constants will be sign-extended to 32 bits when actually used.
e x e c u t e_warp expects the program counter for the warp cells and the interface unit to be set,
either automatically by calling l o a d _ m i c r o or explicidy by calling set_pc.

3.9.2 START_CLUSTER
Start cluster processor given a list of parameters after event flag is done.

Interface:
EFLAG start_cluster(proc,func,efnc,pi,p2 , . . . , - 1)
int proc, func, pi, p2 ,
EFLAG efnc;

Parameters:
p r o c The processor to start running: 1 = CLUSTER1, 2 = CLUSTER2, and 3 =

SUPPORT1.

56

Warp Programming Environment 2.6 Warp Monitor

Returns:

Notes:

f uric

efnc

P i / p 2 ,
- 1

The "function code ID" of the function to execute (may either be a built-in
function or the result of a make_clust_func call).

An event flag to be set to D O N E before the processor is started. In case there
is nothing to wait for, efnc can be replaced with the constant N O W AIT.
A list of parameters to the function.
Indicator to terminate the list of parameters.

An event flag if the function is started, 0 otherwise.

Each parameter is assumed to be a memory descriptor returned by alloc_clmem. However,
30 bit integers may also be passed by encoding them using the param_const function. (Two
bits are used as a tag.) These constants will be sign-extended to 32 bits when actually used.

3.9.3 START_CLUSTER_A
Start cluster processor given an array of parameters after event flag is done.

Interface:

EFLAG start_cluster_a(proc,func,efnc,params)
int proc, func, params[];
EFLAG efnc;

Parameters:

Returns:

Notes:

proc

func

efnc

params

The processor to start running: 1 = CLUSTER1, 2 = CLUSTER2, and 3 =
SUPPORT1.

The function to execute (may either be a built-in function or the result of a
m a k e _ c l u s t _ f unc call).

An event flag to be set to D O N E before the processor is started. In case there
is nothing to wait for, e f n c can be replaced with the constant N O W AIT.
A list of parameters to the function, terminated by -1 .

An event flag if the function is started, 0 otherwise.

When the function s t a r t _ c l u s t e r is executed, a message is sent from the calling program
to the appropriate cluster processor. The processor may or may not start the function it is told to
execute depending on the value of e fnc . However, after the message has been sent, the calling
program continues its execution. Each parameter is assumed to be a memory descriptor returned
by alloc_clmem. However, 30 bit integers may also be passed by encoding them using the
param_const() function. (Two bits are used as a tag.) These constants will be sign-extended to
32 bits when actually used.

3.9.4 STARTWARP
Start Warp machine after event flag is done.

Interface:

int start_warp (efnc)
EFLAG efnc;

Parameters:

e f n c An event flag to be set to D O N E before the Warp array is started. In case
there is nothing to wait for, e f n c can be replaced with the constant
N O W A I T .

Returns:
0 if the Warp is started, 1 otherwise.

57

Warp Monitor Warp Programming Environment 2.6

3.9.5 CONTINUEJVARP
Continue the execution of the cluster processors and the Waip array after a breakpoint was encountered.

Interface:
i n t c o n t i n u e _ w a r p (c y c l e s)
i n t c y c l e s ;

Parameters:
c y c l e s How many cycles to run (-1 = until breakpoint or completion).

Returns:
0 if the execution completes, 1 otherwise.

3.9.6 EXECUTIONTEVIE
Return number of clock ticks elapsed during execution of last W2 program.

Interface:
i n t e x e c u t i o n ^ t i m e ()

Parameters: None.
Returns: Return number of clock ticks elapsed during execution of last W2 program.
Notes: A clock tick is 100 microseconds. To get the time in milliseconds, divide by 10.

3.10 Debugging Functions

3.10.1 USE_PRINTF
When running standalone applications, it is possible to insert print statements of the form

p r i n t f (" f o r m a t s t r i n g " , p i , p 2 , . . . , p n) ;

into cluster code programs. The function u s e j p r i n t f enables or disables these print statements when execution

the application.

Interface:

Parameters:

Returns:

Notes:

i n t u s e _ p r i n t f (f l a g)
i n t f l a g ;

f l a g if f l a g = 1, printing is enabled. If f l a g = 0, printing is disabled. By
default, printing is disabled.

0 if successful, 1 otherwise.
openconn must have been called before use _ p r i n t f can be called. use _ p r i n t f can only
be issued in direct mode, that is, when running on a Warp host It is a NOOP when running in
remote mode. The implementation of p r i n t f is restricted: At most 8 arguments can be used
and the format string must be a literal with less than 128 characters (that is, statements like

{ char * s = " T e s t i n g . \ n " ; p r i n t f (s) ; }
won't work). When printing is enabled, a SIGALRM is periodically generated and caught to poll
the cluster processors. As a result, other uses of SIGALRM are prohibited. The cluster processois
do not queue multiple print requests, so execution speed is largely controlled by the frequency of
polling.

58

Warp Programming Environment 2.6 Warp Monitor

3.10.2 SETJBREAK
Set a breakpoint.

Interface:

Parameters:

int set_break(cell,cnt,brks)
int cell, cnt, brks[];

cell
cnt
brks

Returns:

Which cell to test (-1 = all Warp cells, 0 = IU).
How many breakpoints are to be set.

An array of addresses of micro-instructions in which to set the breakpoint
point bit. r

0 if successful, 1 otherwise.

3.10.3 CLEAR BREAK
Delete a previously set breakpoint.

Interface:

Parameters:

int clear_break(cell,cnt,brks)
int cell, cnt, brks[];

cell
cnt
brks

Returns:

Which cell to test (-1 = all Warp cells, 0 = IU).
How many breakpoints are to be cleared.

An array of addresses of micro-instructions in which to clear the breakpoint
bit. (An entry of -1 means clear all breakpoints for this cell).

0 if successful, 1 otherwise.

3.10.4 READ DAT AMEM
Read data memory from one or more Warp cells.

Interface:

Parameters:

Returns:

char *read_data_mem(cell,lo,hi,buf)
int cell, lo, hi;
char *buf;

cell
lo
hi
buf

Which cell (or cells) to read from (0 = IU, n = cell n, -n = cells 1 through n).
The lowest address to be read.
The highest address to be read.

A buffer to hold the data. If 0, a buffer will be allocated.

0 if there was a problem with the read and a buffer pointer otherwise.

59

Warp Monitor Warp Programming Environment 2.6

3.10.5 WRITE JD AT AJV1EM
Write data memory into one or more Warp cells.

Interface:
int write_data_mem (cell, lo, hi, buf)
int cell, lo, hi;
char *buf;

Parameters:

Returns:

Notes:

cell

lo
hi
buf

Which cell (or cells) to write from (0 = IU, n = cell n, -n = cells 1 through
n).
The lowest address to be written.
The highest address to be written.
A buffer that holds the data to be written.

0 if successful and 1 otherwise.
In the case of multiple cells, both read_data_mem and write_data_mem assume that all

the data for the first cell appears before any data from another cell.

3.10.6 SET_PC
Set the program counter for the Warp cells and the Interface Unit (IU).

Interface:
int setjpc(cnt,vector)

Parameters:

Returns:

Notes:

int cnt, vector [];

cnt
vector

The number of cells to be used.
An array of program counters for the IU and Warp cells.

0 if successful and 1 otherwise.
« n t - o r r 01 is the IU program counter, and v e c t o r [1] . . . vec to r [c n t] are the program

co^teS for^ ^ programs generated by the W2 compUer f nerally start
a S o c S i e address? 100. Loading new microcode invalidates the result of this call.

3.10.7 GET_PC
Get the program counter for the Waip cells and the Interface Unit (IU).

Interface:
int get_pc(vector)

Parameters:

Returns:

Notes:

v e c t o r

int vector[] ;

A buffer to store program counters for the IU and all Warp cells.

0 if successful and 1 otherwise.
v e c t o r has to be declared as an array of 11 integeis.

60

Warp Programming Environment 2.6 Warp Monitor

3.10.8 READMICROCODE
Read microcode from a Warp cell.

Interface:

Parameters:

Returns:

char *read_microcode(cell,start,end,data)
int cell, start, end;
char *data;

cell
start
end
data

Where to read the microcode from (0 = IU, n = cell n).
First address to read.
Last address to read.

A buffer to store the microcode in. If 0, a buffer will be allocated.

0 if there was a problem with the read and a buffer pointer otherwise.

3.10.9 WRITEJV1ICROCODE
Write microcode into a Warp cell.

Interface:

Parameters:

Returns:

int write_microcode(cell,start,end,data)
int cell, start, end;
char *data;

cell
start
end
data

Where to write the microcode to (0 = IU, n = cell n).

First address to write.

Last address to write.

A buffer containing the microcode.

0 if successful and 1 otherwise.

3.10.10 READ CHAIN
Read from a serial chain.

Interface:

char *read_chain(cell,chain,buf)
int cell;
char *chain, *buf;

Parameters:

cell
chain

What cell to examine.
Which chain to examine:

"cc" IU control chain.
"cd" IU data chaia
"ca" IU address chain.
"sc" Warp control chain.
"sd" Warp data chain.
"st" Warp status chain.

61

Warp Monitor Warp Programming Environment 2.6

Returns:

b u f A 40 byte buffer to store the chain in. If 0, a buffer will be allocated.

0 if there was a problem with the read and a buffer pointer otherwise.

3.10.11 WRITE_CHAIN
Write to a serial chain.

Interface:

Parameters:

Returns:

int write_chain (cell, chain, buf)
int cell;
char *chain, *buf;

cell
chain

buf

0 if successful and 1 otherwise

What cell to store into.
What chain to write into:
Mcc" IU control chain.

"cdM IU data chain
Mca" IU address chain,
"sc" Warp control chain,
"sd" Warp data chain,
"st" Warp status chain.
A 40 byte buffer containing the new chain data.

3.10.12 READ_REGISTER
Read from register.

Interface:

Parameters:

Returns:

Notes:

r e g

val
op

int reacMeegister (reg, val, op)
char *reg, *op;
int val;

The register to be read. The names of the registers can be found in
$WARPserver/MONITOR.SRC/hardwarex.

A bitmask.
An operation to be performed on the bitmask and the value read. (One of
the following: "NOP", "OR", "AND", "XOR", "TAG" , "BYPASS",
"CV16U", "CV16S", "CV8U", "CV8S")

0 if there is a problem, otherwise the register value.
The function s e r v e r _ e r r o r should be used to determine if a return value of 0 is an error or
the value of the register.

62

Warp Programming Environment 2.6 Warp Monitor

3.10.13 WRITEJREGISTER
Write a register.

Interface:

int write_register(reg,val,op)
char *reg
int val;

*op;

Parameters:

reg

val
op

Returns:

The register to be written. The names of the registers can be found in
$WARPserver/MONITOR.SRC/hardware.c.
A bitmask.

An operation to be performed on the bitmask and the value read from the
register. The result is written back to the register. (One of the following:
"NOP", "OR", "AND", "XOR", "TAG", "BYPASS", "CV16U", "CV16S",
"CV8U", "CV8S")

0 if successful and 1 otherwise.

3.10.14 GETFIELD
Get a field from a serial chain.

Interface:

Parameters:

Returns:

Notes:

int get_field(chain,field,buf)
char *chain, *field, buf[40];

chain chain
The name of the chain containing the field

"cc"
"cd"
"ca"
"sc"
"sd"

field

IU control chain.
IU data chain.
IU address chain.
Warp control chain.
Warp data chain.
Warp status chain.

buf

The name of the field to be extracted. The names of the fields can be found
in $WARPserver/include/chain.h.

A buffer containing the chain data.

0 if there is a problem with the read and the value read otherwise.
The function server_error should be used to determine if a return value of 0 is an error or

the value of the register. Only fields that are 32 bits or less can be retrieved.

3.10.15 PUTFEELD
Put a value into a field of a serial chain.

Interface:

int put_field(chain,field,value,buf)
char *chain, *field, buf[40];
int value;

63

Warp Monitor Warp Programming Environment 2.6

Parameters:

Returns:

Notes:

c h a i n

f i e l d

v a l u e
buf

The name of the chain containing the field

"cc" IU control chain.

"cd" IU data chain.

"ca" IU address chain.

"sc" Warp control chain.

"sd" Warp data chain.

"st" Warp status chain.
J.11V IIOAAIS* vr* * * w

$WARPserver/include/chain.h.
The new value of the field.
A buffer containing the chain data.

0 if successful and 1 otherwise.
Tbii function does not modify the Warp machine only the < ^ ^ ^ ™ ^
w r i t e _ c h a i n must be used to actually make the change. Only fields that are 32 bits or less
can be set.

3.11 Miscellaneous Functions

" ^ - " c b e , ™ - applicauon aad Wa^/use, sen,e, I t . < n . of « . messages is described in

Section 4.3.

Interface:

Parameters:

Returns:

set_debug(flag)
int flag;

f l a g
0 = Don't print any debugging information.
1 = Trace network traffic between application and user server.
2 = Announce whenever microcode is actually being loaded as a result of

calling l o a d _ m i c r o or f a s t _ l o a d _ m i c r o .

3 = Do both options, 1 and 2.

None.

3.11.2 SETJTIMEOUT
Set length of time-out for the e x e c u t e _ w a r p call.

Interface:
set_timeout(sees)
int sees;

Parameters:
s e e s The time-out value in seconds. The default value is 15.

64

Warp Programming Environment 2.6 Warp Monitor

Returns:
0 if successful and 1 otherwise.

Notes:

! seconds defaults to 15.

3.11.3 GETJVERSION
Return the version number of the Warp monitor.

Interface:

get_yersion(buf, which)
char *buf;
int which;

Parameters:

buf A buffer that holds the version number,
which

0 = Version number of Warp monitor linked into the application.
1 = Version number of Warp monitor used by the user server.

Returns:
0 if successful and 1 otherwise.

Notes:
When running in local mode, the two version numbers are always identical, because the
application runs without a user server. In remote mode, the version numbers should also be
identical. Differing version numbers indicate that a new Warp monitor was installed after the
application program was compiled and linked. In this case, it is recommended to recompile the
application program.

3.11.4 PARAM_CONST
Create a constant that can be passed as parameter to e x e c u t e _ w a r p or s t a r t _ c l u s t e r .

Interface:

int param_const(const)
int const;

Parameters:

c o n s t Constant to be encoded. Constant must be 30 bits long.
Returns:

a 32 bit integer where the two high order bit indicate this to be a constant.

3.11.5 SETJDIR
Change the current directory for file lookups done by the user server.

Interface:

int set_dir (dirname)
char *dirname;

Parameters:

d i r n a m e The absolute pathname of the directory that the server should use.
Returns:

0 if directory was changed, 1 otherwise.

65

Warp Monitor

Notes:

Warp Programming Environment 2.6

3.11.6 SANTTY_CHECK
Check the state of the file server, Warp host, the Warp server, WPE server and Warp array..

Interface:

Parameters:
Returns:

Notes:

int sanity_check()
None.

1
2
4
8
16
32

Cannot execute a remote shell call.
Can't connect to Warp host.
Cannot find Warp server.
Cannot find WPE server.
Cannot fork off user server.
Warp array is not accessible (Not able to find the IU).

If sanity.check finds multiple errors , then the above return codes are added together.

3-11.7 RESET_WARP
Reset the Warp machine to a defined state.

Interface:

Parameters:
Returns:
Notes:

int reset warp()
None.
0 if the machine has been reset and 1 otherwise.
This function is the same as running $WARPbin/reset_warp.

3.12 Using the Warp Monitor
This section contains examples of standalone application programs. First we give a detailed discussion of two C

programs using the Warp monitor. We will explain the use of the Warp monitor functions and how to compile, link
and execute the programs. Then we show how the Warp monitor can be made available to the Common Lisp
programmer.

3.12.1 Pipe I: Using the Warp Monitor inside a C Program
The basic task of the C program in figure 3-2 is to create ten input data, call a Warp program p i p e which adds

the value 1 to each input value and to print the result on the terminal. The Warp program is located in directory
$WARPserver/W2/PIPE/.

Line 2 includes the file monitor.h which contains constant and variable definitions needed by the Warp monitor.

Line 7 declares the variables p a r i n and p a r o u t that will contain the memory descriptors of the input and
output parameters of the Warp Program. Line 8 declares a variable d a t a as a pointer to a float, d a t a holds a
buffer pointer returned by g e t _ u n i n i t _ c l m e m and read__f rom_clmem. In line 10 the Warp monitor function
openconn is called. The first parameter is the name of a Warp host and must passed from the C-shell to the C
program. The second parameter selects the server type 3: If the C application is in remote mode, all Warp monitor

66

openconn automatically performs a s e t _ d i r call to the current directory of the application.

Warp Programming Environment 2.6 Warp Monitor

calls are remote procedure calls, if it is in local mode, all Warp monitor calls are done by direct procedure calls. The
call set_debug in line 11 turns on tracing of the message traffic between Warp server and the C program (This
call can be omitted or changed into set_debug (0) after the program is debugged). Line 12 tells the user server
the directory for looking up the micro and cluster code for the pipe program.

In line 13 the Warp machine is locked. In lines 14 to 15 cluster memory is allocated for the input and output
parameter of the Warp program. If the memory allocation was successful, then parin [0] and parout [0]
contain memory descriptors for the allocated cluster memory areas. The call get_uninit__clmem in line 16
returns a buffer for the cluster memory described by parin [0] . lines 17 to 19 initialize data and in line 20 the
contents of data is copied into the cluster memory described by memory descriptor parin [0]. f ree_buf f er
in line 22 disposes of the input data pointer because it is no longer needed. Lines 23 to 24 load the micro code and
cluster code which will looked up in directory n $WARPserver/w2/PlPE/ " in our example.

In Line 25 the Warp program is called. Line 26 reads the result from the cluster memory described by memory
descriptor parout [0] into the variable data. Lines 27 to 28 print the result on the terminal. In line 29 the Warp
machine is released.

#includa <stdio.h> /* 1*/
#includa <monitor.h> /* 2*/
axtam char *gatanv() ; /* 3*/
xnain(argc, argv) /* 4*/

int argc; char ** argv; /* 5*/
{ char *axdir; char pipadir[256]; /* 6*/

int parin[1], parout[1], i; /* 7*/
float *data; /* 8*/

opanconn(argv[1], 3); /* 9*/
s«t_dabug(l); /*10*/
axdir « gatanv("WPEaxamplas"); sprintf(pipadir,"%s%s",axdir,"w2"); /*!!*/
•atjdir(pipadir); /*12*/
if (lock_warp(l, 1, "Tasting") = l) axit(O); /*13*/
parin[0] = alloc_clmam("dk", 10 * sizaof(float)); /*14*/
parout[0] • alloc_clmam("dx", 10 * sizaof(float)); /*15*/
data • (float *) gat_uninit_clmam(parin[0], 0, 10 * sizaof(float)); /*16*/
for (i = 0 ; i < 10; i++) data[i] = i; /*17*/
for (i = 0 ; i < 10; i++) printf("%4.If ", data[i]); /*18*/
printf("\n"); /*19*/
if (writa_to_clmam(parin[0], 0, 10 * sizaof(float), data)) /*20*/

axit(0); /*21*/
fraa—buffar(data); /*22*/
load_joicro ("pipa") ; /*23*/
load_j3lu«tar("pipa") ; /*24*/
if (*xacut*__warp(-l, 1, 1, parin, parout) < 0) axit(0); /*25*/
data = (float *) raad^f roin^clmam (parout [0] , 0, 10 * sizaof (float), 0); /*26*/
for (i = 0 ; i < 10; i++) printf("%4.If ", data[i]); /*21*/
printf("\n"); /*28*/
unlock__warp (1) ; /*29*/

}

Figure 3-2: A C Program Calling a W2 Program
/*30*/

3.12.2 Pipe II: Using Event Flags Functions
This section contains an example of an application using event flag functions. The program in figure 3-3

basically performs the same task as in figure 3-2. The main difference is that the cluster processors and the Warp
array are now treated as separate processors. Functions are explicitly started on each of these components and event
flags are used to synchronize their execution. In the following we discuss only those parts of the program that are
different from the previous example.

Line 3 includes the file Wconfig.h which contains constant and variable definitions needed by the event flag

67

Warp Monitor Warp Programming Environment 2.6

#includa <stdio.h>
#include <monitor.h>
#include <Wconfig.h>
#dafina SIZE 10
axtara char *gatanv()
main < argc, argv)
int argc;
char ** argv;
{ char

char
int
float
EFLAG
int
int

*axdir ;
pipadir[256J ;
parin[1], parout[1], i;
*data;
af, afl, af2;
mid;
fund, func2;

opanconn(argv[1], 3) ;
axdir = gatanv("WPEaxamplas");
sprintf(pipadir,"%s%s ",axdir,"w2 M) ;
sat__dir (pipadir);
if (lockjrarpd, 1, "Tasting") — 1) axit(0);
parin[0] • all©c_clmam(MClM3H, SIZE * sizaof(float));
parout [0] » alloc_clmam("C2M2,,

/ SIZE * sizaof(float));
mid = cacha__micro("pipa");
af = faat^JLoadjnicro (mid, NOWAIT) ;
fund * maJca_clust_func ("pipain.mam") ;
func2 *• maka_clust_func("pipaout .mam") ;
data « (float *) gat_uninit_clmam(parin[0], 0, SIZE * sizaof(float));
for (i - 0; i < SIZE; i++) data[i] • i;
printf("\nlnput:\n");
for (i m 0; i < SIZE; i++) printf("%S.If data[i]); printf("\n");
if (writa_to_clmam(parin[0], 0, SIZE * sizaof(float), data)) axit(0);
fraa_buf far (data) ;
start_warp(af);
afl = start_clustar(CLUSTERl, fund, af, parin [0], -1);
af2 = start__clustar (CLUSTEK2, func2, af, parout [0] , -1) ;
wait_af(af2, DONE, 0);
fraa_af(afl); fraa_af(af2); fraa_af(af);
data « (float *) raad_from_clmam(parout[0], 0, SIZE * sizaof(float),
printf(w\nOutput:\n");
for (i « 0; i < SIZE; i++) printf("%5.If data[i]); printf("\n");
unloclc_warp (1);

0)

/ * W
/* 2*/
/* 3*/
/* 4*/
/* 5*/
/* 6*/
/* 7*/
/* 8*/
/* 9*/
/*10*/
/*11*/
/*12*/
/*13*/
/*14*/
/*15*/
/*!€*/
/*17*/
/*18*/
/*19*/
/*20*/
/*21*/
/*22*/
/*23*/
/*24*/
/*25*/
/*26*/
/*27*/
/•28*/
/*29*/
/*30*/
/*31*/
/*32*/
/*33*/
/*34*/
/*35*/
/*36*/
/*37*/
/*38*/
/*39*/
/*40*/
/*41*/
/*42*/

Figure 3-3: A C Program Using Event Flag Functions
functions. Line 11 defines three event flag variables, line 12 a microcode ID variable, and line 13 two cluster code
function ID's. Lines 23 and 24 load the micro code. The primary use of c a c h e _ m i c r o and f a s t _ l o a d _ m i c r o
is to cache microcode into Warp host memory so it can be loaded more quickly into the Warp array. This is of
advantage for real-time application that switches between several Warp programs. If the micro code has to be loaded
only once, the l o a d j m i c r o function of the previous example is sufficient Lines 25 to 26 load two cluster code
functions into cluster processor memory. Two function code CD's are returned, which are stored in the variables

f u n d and func2 , respectively.

Lines 33 to 35 are equivalent to the function call e x e c u t e _ w a r p in line 25 of the example in figure 3-2. Line
33 starts the Warp array, line 34 starts function f u n d in cluster processor CLUSTER! and line 35 starts f unc2 in
CLUSTER2. All of these functions wait for the event flag e f to be set to DONE before they start their execution.
Line 36 waits for event flag e f 2 to be set to DONE, which means the output result of the Warp program is available
and can be printed. Line 37 deallocates the event flags ef, e f 1 and e f 2.

68

file:///nlnput

Warp Programming Environment 2.6 Warp Monitor

3.12.3 Compiling. Linking and Executing C Programs
The Warp monitor is implemented such that there is no difference between the core image of an application

running in remote mode or in local mode. Thus, application programmers can compile, link and test their
applications in the familiar environment of their personal workstation before they download them to the Warp host
for local execution. Let us assume the C programs from Section 3.12.1 and 3.12.2 are called test.c and
tester*.c, respectively. The following Makefile compiles and links them into runfiles test and testef.
Compiling these files requires access to the directory $WARPlib/. In addition, the compilation of testef requires
access to the directory $WARPindude/ which contains the definition file Wconfig.h for the event flag functions:

LIBS a $WARPlib/mastar.a $WARPlib/warplib.a

tast: tast.c $WARPlib/monitor.a
cc -o tast tast.c $WARPlib/monitor.a $(LIBS)

tastaf: tastaf.c $WARPlib/monitor.a
cc -o tastaf tastaf.c -1$WARPinclude/ \
$WARPlib/monitor.a $(LXBS)

claan:
-rm Makafila.doc
-rm tast
-rm tastaf
-rm *.arr
-rm *.otl
-rm *~

Let us assume the runfile test resides in directory /usr/bob/wpe/test/C/ and we want to execute it on Warp host
warpm. Typing the command

% /usr/bob/wpa/tast/C/tast warpm
to the Warp shell on the workstation storch generates the following output:

» > 1000 bob storch /tmp/E_IPC_3145 "" 1
« < 2000 "Connaction Accaptad"
» > 1004 /usr/pcwarp/support/sarvar/W2/PIPE/
< « 2004 "Diractory Changad"
» > 1001 -1 1 "Tasting"
< « 2001 1 "Lock Grantad"
» > 1005 dk 40
« < 2005 0 "Mamory Allocatad"
» > 1005 dk 40
« < 2005 1 "Mamory Allocatad"
» > 1007 0 0 40 "" U
< « 2007 "Raad Dona"
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

» > 1008 0 0 40 "" C
« < 2008 "Writa Dona"
> » 1009 pipa
« < 2009 "Microcoda Loadad"
» > 1010 pipa
« < 2010 "Clustar Coda Loadad"
» > 1011 - 1 1 1 0 1
« < 2011 "Exacution Complatad" 0
» > 1007 1 0 40 "" C
« < 2007 "Raad Dona"
1.0 2.0 3.0 4.0 5.0 6.0

» > 1002
« < 2002 "Warp Ralaasad"
%

7.0 8.0 9.0 10.0

Executing testef yields the following output on the terminal:
Input:

0.0 l.o 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
Output:

1-0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

69

Warp Monitor Warp Programming Environment 2.6

3 5$WPEroot has to be replaced by its value.

70

3.12.4 Using the Warp Monitor inside Common Lisp Programs
The Warp monitor is also accessible for Lucid Common Lisp users. The Lisp interface to the Warp monitor

resides in the file $WPEroot / w a r p s h e l l / w 2 r p c . slisp and is defined in the package Shell. If you are
running the Warp shell, this file is already loaded by default. If you are mnning a standalone application, the Warp
monitor can be loaded with the following Common Lisp command 3 5:

(load M$WPEroot/warpshall/w2rpc.slispM)

The function S h e l l : : D e f i n e S e r v e r F u n c t i o n s defines the Common Lisp interface to the C functions. For

example, the line
(lucid::dafina-c-function load_micro (fila) :rasult-typa .intagar)

makes the Warp monitor function load_micro accessible within the package Shell and can be called like a

normally defined Lisp function. For example, the command
(satf ratumcoda (loadjaicro "/uar/bob/tast/pipa/pipa"))

downloads the microcode file pipe.wl stored in directory /usr/bob/test/pipe/ to the Warp machine.

Warp Programming Environment 2.6 When Things Go Wrong

4.1 Known Bugs
1. T M P - B U G : Currently it is not possible to allocate Warp shell variables on the /tmp file structure. The

reason is that two different /tmp's exist: /tmp on your workstation and /tmp on the Warp host. The
Warp shell evaluates all file names with respect to your workstation, and the user servers evaluate all
filenames with respect to the file structure used by the Warp host. Most of the file structures such
/usr/ are crossmounted and should not be a problem. However, /tmp/ is not crossmounted. For the
current time all file names should therefore be located in structure /usr/. BUG-FIX: A machine-wide
file naming system will fix this problem.

2. C O M P O S I T E c S H E L L C O M M A N D S : The pipe command (I) does not work for C-shell commands.
3. Bugs when using GNU Emacs:

• G O T O - S H E L L - B U G : The GNU Emacs command C T L X C T L w(write - f i l e) used to change
the name of the buffer to the name of the file being written. This has been changed in WPE 2.4:
The buffer name is not changed.

4. Bugs when using Gosling's Emacs:

• P R - D O T - B U G : Every now and then Gosling's Emacs gets confused which buffer to use for the
current output. In this case you will get the message "progn variable pr-dot has been unbound"
or "process output with no destination". Common to all appearances of the P R - D O T - B U G is that
everything seems to be frozen, but as soon as you move the cursor with CTL N or CTL P, you
get one of the above error messages. Please send mail to the system maintainer you run into this
problem. B U G - F I X : The command W2-SET - S H O W C O M M A N D F I L E O F F usually minimizes the
occurrence of the bug and is therefore currently automatically executed by
$ W P E h o m e / w a r p s h e l l i n i t . c m d .

5. su A N D L O G I N : When using the U N I X shell commands su (superuser) or L O G I N , the password is echoed.
And it is not possible to return to the Warp shell afterwards.

4.2 Error Messages
This section contains error messages issued by the W P E components. The list of error messages is by no means

exhaustive. We have selected those error messages that seem to be especially obscure for the first-time or casual
W P E user. Please send mail to the W P E maintainer, if you experience other error messages that deserve to be
included here.

Problems with $WPEbin/wpecoreimage
If you start too many W P E ' S on one workstation, you get the GNU Emacs error message

Couldn't exec the program $WPEbin/wpecore image
Process lisp exited abnormally with code 1

or the Gosling Emacs error message

$WPEbin/wpecoreimage: Not enough core
Exited Abnormally

Usually this occurs when an obsolete W P E core image has not been killed properly. Type p s aux | g r e p
wpe co r e image to determine the process id of the associated U N I X process and kill it with k i l l - 9.
Symbol's function definition is void

If you get the error message:

Error in init file: Symbol's function definition is void: wsh
then the boot file warpshell.el is not accessible. Check your ̂ /.emacs file, whether load-path is defined such that it
looks up files in the directory $WPEeditor/.

71

4. When Things Go Wrong

When Things Go Wrong Warp Programming Environment 2.6

Not enough memory
The error messsage

n o t enough memory! ! !
might occur during the compilation of a W2 program. It means that there are too many U N I X processes running on
your workstation while one of the W2 compiler utilities is trying to allocate memory. Kill some processes and retry
the compilation. If there are still problems, try to compile with a different -spicy option (see W2-COMPILE, section
2.2.8, page 16).

Lisp Errors
Messages of the form

» E r r o r :

are generated by a call to the Common Lisp function error. Many functions in the W2 compiler call error when
they encounter an unrecoverable error. Usually these error messages are self-explanatory. For example, if you try to
compile a nonexisting W2 program foo.w2, you will get the error mesage

» E r r o r : t h e f i l e f oo .w2 d o e s n o t e x i s t

If you are a "developer" or "user", the Warp shell will return back to the prompt. If you are an "implementor", the

Warp shell will invoke the Common l isp debugger.

XIO: Broken pipe
If you telnet to a remote workstation and you invoke W P E without having authorized the remote workstation to

invoke GNU Emacs on your local workstation, then you get the error message

XIO: Broken p i p e

Set the environment DISPLAY on the remote workstation to the name of your workstation and run xhost so the

remote workstation can display on your workstation.

Could not copy variable into cluster memory
If you try to initialize a Warp shell variable, you might get the following dialog:

% w 2 - t y p e f l o a t l O a r r a y [1 0] o f f l o a t
Type " f l o a t l O " c r e a t e d
% w 2 - v a r -name i n p u t -type f l o a t l O - i n i t - t e x t f i l e i n d a t a
A l l o c a t i n g memory f o r " i n p u t " . . . i n i t i a l i z i n g . . .
? Cou ld n o t copy v a r i a b l e " i n p u t " i n t o c l u s t e r memory
V a r i a b l e " i n p u t " c r e a t e d

Note that the variable has been created. The error message means that the variable was not initialized. There are
several possible reasons: The file might contain too few data. Maybe it is empty or it does not exist. Or the file is
in a protected directory.
gcc: Command not found

This error message might occur, when W P E is running in remote mode and you are trying to compile a W2
program. The problem is usually that your workstation does not have access to the Green Hills C compiler. The
Green Hills C compiler is invoked by the W2-COMPILE command to generate the code for the cluster processors.

Invoke W2-COMPILE with the -remote option and specify the name of the Warp host (see Section 2.2.8, page 16).

There is always a Green Hills compiler on the Warp host.

72

W a r p P r o g r a m m i n g E n v i r o n m e n t 2,6 W h e n T h i n g s G o W r o n g

73

Unexpected end-of-file
» E r r o r : U n e x p e c t e d e n d - o f - f i l e e n c o u n t e r e d d u r i n g r e a d .

READ:

O p t i o n a l a r g 0 (STREAM) : # < S t r e a m BUFFERED-STREAM 8 6 1 0 1 B >
O p t i o n a l a r g 1 (E O F - E R R O R - P) : T
O p t i o n a l a r g 2 (E O F - V A L U E) : N I L
O p t i o n a l a r g 3 (R E C U R S I V E - P) : N I L

: A A b o r t t o L i s p T o p L e v e l
- >

This error message occurs, if you load a Warp shell command file with multiple lines of Common Lisp code
where the individual lines are not terminated by semicolons (see Section 2.2.2).
Lisp process finished

If you get the message
L i s p p r o c e s s f i n i s h e d

right after invoking W P E , then the run file w p e c o r e i m a g e found by the w p e g command is not a lisp core image.
Check out whether you have a bad core image hanging around somewhere.
Problem Sending Command to Emacs

W P E communicates with E M A C S with the help of a file whose name is of the form "E_lPC_pid=", which is
allocated on the /tmp/ file structure when W P E is started up (pid is the U N I X process id number of W P E) .

Error messages of the form

? P r o b l e m s e n d i n g c o m m a n d n (f o o) " t o E m a c s

occur if you have deleted this file while W P E is running. This can happen if you clean / t m p too thoroughly.
GEL Error Messages

Error messages from the generalized image library are prefixed with the name of the routine (usually of the form
GIL: i_<foo>) followed by a short description of the error and an interrupt which causes a segmentation violation in
the Warp shell. Type :a to return to the command interpreter. The following is are typical GIL error messages:
ijiet: Read error on network. Connection timed out

You try to read an image over the network and the other site is down.
i_malloc: Warning: Called from IM_strcpy for 8022 bytes

Error messages of this form are used for debugging the GIL in its use of memory. They can be
ignored.

Could not open X display
If you are trying to create an X window on a workstation specified by the U N K environment variable D I S P L A Y you

must have access rights to this display. An error message like

G I L : i _ x w i n c r e a t : C o u l d n o t o p e n X d i s p l a y ' (d e f a u l t) '

occurs when you try to display an image on an X window and you don't have any display rights on that workstation.
You have to run x h o s t to add the workstation to the list of workstations allowed to open connections.

4 3 Monitoring The Warp and Users Servers
The Warp and user servers manage the Warp machine in a location-transparent way. Ideally, they should not be

visible to the user. Of course, sometimes this does not work. A problem occurs, for instance, if you have locked the
Warp machine and the Warp server crashes. Or the Warp server might be down when you try to lock the Warp
machine. In this case you will get the message

When Things Go Wrong Warp Programming Environment 2.6

?User server: User server died.
You can use the W 2 - S A N U Y command to check whether the Warp host or the Warp server is causing the problem.

Every now and then there will be less obvious problems. For example, the user server might tell you that it
cannot allocate memory in the cluster processor memory, cannot read a tile, cannot load micro code, or you might
get a message that the file system is full. In this case, turn on a tracing facility with the command W2-TRACE

- S E R V E R O N that allows you to watch the message traffic between the Warp shell and the user server. Messages
prefixed by a > » indicate a message from the Warp shell to the user server, and messages prefixed by a « <
indicate a message from the user server to the Warp shell. A summary of all error codes used by the Warp shell is
described below. The message tracing facility is enabled until you issue the command W 2 - T R A C E - S E R V E R O F F .

All messages to and from the user server are lines of text terminated with a newline. Each line consists of a
number of fields separated by spaces. (Spaces may be included in a field by quoting the entire field in double quotes
(")). The first field is always a four digit number that identifies the message. The most significant digit of this
number is the type of the message: 1 = Server command, 2 = command completed, 3 = command failed, 4 = fatal
command failure. The last three digits identify the command being performed. So for command N, 1000+N is the
client request, 2000+N is the success indicator, and 3000+N is the failure indicator. The possible commands are as
follows:

0 - Initialize connection to Warp server.
1 - Lock the Warp machine.
2 - Unlock the Warp machine.
3 - List the jobs in the queue.
4 - Change the current directory.
5 - Allocate memory.
6 - Deallocate memory.
7 - Read into memory allocated by command 5.
8 - Write from memory allocated by command 5.
9 - Load Warp microcode from a file.

10 - Load cluster code from a file.
11 - Start running the cluster processors and the Warp machine.
12 - Continue running the Warp machine (after a breakpoint).
13 - Read into Warp cell data memory.
14 - Write from Warp cell data memory.
15 - Set cell program counters.
16 - Read cell program counters.
17 - Set breakpoint(s).
18 - Clear breakpoint(s).
19 - Read into microcode memory.
20 - Write from microcode memory.
21 - Read serial chain.
22 - Write serial chain.
23 - Read from register.
24 - Write to register.
25 - Reset Warp machine.
26 - Allocate event flag.
27 - Set event flag.
28 - Wait for event flag.
29 - Cache microcode.
30 - Make cluster function.
31 - Load cached microcode.
32 - Start cluster function.
33 - Start Warp machine.
34 - Copy cluster to cluster.

The following is an example of a message trace created during the successful execution of a w2 program:

74

Warp Programming Environment 2.6 When Things Go Wrong

% w2-trace -sarvar on
Massago traffic batwaan Warp server and Warp shall will ba tracad
% w2-execute -fila /usr/bob/wpe/test/pipe/pipe -paramatars input output
Copying input paramatars into clustar mamory...
» > 1004 /usrw61/bob/wpe/test/pipe/
« < 2004 "Directory changed."
Downloading microcode for module "pipe" from directory "/usrw61/bob/wpe/test/pipe/"
Locking Warp GE...
> » 1003
« < 2003 0 "Queue Follows."
« < .
Warp server queue is empty.
» > 1001 -1 1 "Running Warp Programming Environment"
< « 2001 "Lock Granted."
Warp machine is yours:
» > 1009 pipe
« < 2009 pipe "Loaded."
» > 1010 pipe
« < 2010 pipe "Loaded."
» > 1015 1 100 100
« < 2015 "PC set."
Starting execution of module...
> » 1011 - 1 1 1 0 1
« < 2011 1 "Execution complete."
Execution completed.
Copying output parameters from cluster memory...
Writing "output" into file "/usr/bob/wpe/test/pipe/outdata"...
» > 1008 1 0 40 /usr/bob/wpe/test/pipe/outdata float
« < 2008 "Elements written."
Unlocking Warp GE...
» > 1002
« < 2002 "Lock Released."
%

4.4 Creating Bug Reports
If you have found a bug in the Warp Shell, do the following steps:

1. Execute Warp shell command W2-SET - U S E R I M P L E M E N T O R (This will invoke the Common Lisp
debugger when the bug is repeated).

2. Repeat the last command and wait until the prompt of the Common Lisp debugger appears.

3. Get a trace of the call stack by typing :b to the Lisp debugger.

4. Save the session into a file and send it with other important files to the maintainer of the Warp
Programming Environment36.

If you suspect a bug in the W2 compiler, do the above steps and in addition

5. Save the buffer error-log or * compilation* and mail it as well.

3 6 If you are a C M U user, send the bug report to wpe@sam .cs.cmu.edu.

75

http://cs.cmu.edu

Shell Summary Warp Programming Environment 2.6

76

Warp Programming Environment 2.6 Warp Shell Summary

I. Summary of Warp Shell Commands
Any UNIX shell command is known by the Wazp shell. In addition, the following commands are implemented-
alias r i A ^ i « A • r

-arrors

alias
copy
data
dafcommand
dalata
directory
echo
edit
find
grep
handle-
help
history
keyword
load
make
Noisy
path
Pause
popdir
pushdir
Quit
rename
searchpath
setsearch
show
sort
time
touch
type
undefcommand
verbose
version
w2-break
w2-compile
w2-continue
w2-delete
w2-disable
w2-download
w2-edit
w2-enable
w2-execute
w2-get
w2-halt
w2-init
w2-load
w2-lockwarp
w2-printnodes
w2-reset
w2-restart
w2 -sanity
w2-set
w2-show

Define a new alias
Copy one or more files
Print the current date and time
Define a new command (as a Lisp function)

a pattern

or alias

Delete files
List files that match
Echo arguments
Edit a file in an editor window
Find all occurrences of a file name
Search a file for a pattern
Handle errors that occur within commands
Print this text, or help about a command
Print recently executed commands
Print all commands matching a given key
Load a lisp file
Maintain related sets of programs
Control the verbosity level of shell commands when thay are executed
Change the current directory
Pause the shell
Change the current directory to the one on top of the stack
Move to a new, or previous, directory
Quit the shell
Rename or move one or more files
Show the current search path
Set the default search path
Show the value of an environment variable
Sort lines from standard input
Time the execution of a Shell command
Change the creation date of a file
Type out a file
Remove an alias or a command (in that order)
Print expanded version of commands before executing them
Current Shell version
Set a source line break point
Compile a W2 program
Continue current W2 program
Delete a Warp shell object
Disable a breakpoint
Download micro code for W2 program onto Warp array
Edit a user defined Warp shell variable
Enable a breakpoint
Execute w2 module
Print all locals of the current function
Halt the Warp machine
Initialize a WPE component
Load a WPE component
Reserve the Warp machine
Pretty print the dags of the flow graph
Reset the W2 debugger or the Warp server to its initial state
Restart current W2 program
Check state of file server. Warp host. Warp server, WPE server and Warp.
Set a variable of the current environment of the debugger
Show the current environment

w2-suggestbreaks Suggest possible breakpoints
w2-targetToSource Get all w2 source lines for given wl address
W2-trace Turn on or off tracing information for Warp server and editor
w2-type Declare a Warp shell type
w2-unlockwarp Release the Warp machine
w2-var Declare a Warp shell variable
w2-warpqueue Show the users currently owning the Warp machine or waiting for it
wpeversion Print the version number of WPE

77

Warp Monitor Summary Warp Programming Environment 2.6

78

Warp Programming Environment 2.6 Warp Monitor Summary

II. Summary of Warp
The following functions are
alloc_ef
alloc_clmem
clear_break
cache_micro
continue_warp
copy_ctc
copy_ctf
copy_ftc
daal locjslmam
executa_warp
f as t_load__mi cro
free__buffer
free_ef
get_error_string
get_field
get_pc
get__uninit_clmem
get_yersion
list_queue
l©ad_cluster
load_one_cluster
load_micro
lock_warp
make_clust_func
next_entry
opanconn
put_field
param_const
raad___chain
read_dat a__mam
readmef
read__f rom_clmem
raadjnicrocoda
read_register
reset_warp
s ani t y_check
server_error
set_break
set_debug
set__dir
set_ef
set_pc
set__timeout
start_clustar

s t art__c lu s t er_a

start_warp
start_warpd
steps_done
unlock_warp
use__printf
wait_ef
write_chain
write_data_mem
write__microcode
write__register
write_to clmaxa

Monitor Functions
currently implemented:

Allocate event flag
Allocate memory in cluster memory
Delete a breakpoint
Cache micro code file into Warp host memory
Continue execution
Copy cluster memory to cluster memory after event flag is done
Copy cluster mamory into a file
Copy a fila into clustar memory
Deallocate memory in cluster memory
Start the cluster processors and the Warp machine
Download cached micro code after event flag is done
Free memory allocated by read__from_cImam or get-uninit__clmem
Free event flag
Get the error string from the last Warp monitor call
Get a field from a serial chain
Get program counter
Get uninitialized cluster memory
Return the version number of the Warp monitor
Return the number of jobs in the Warp server queue
Load cluster code for the two cluster processors
Load cluster code for one cluster processor
Load Warp microcode into interface unit and Warp array
Lock the Warp machine
Load cluster code, create function and return function code ID
Gat next entry from Warp server queue
Connect to a Warp host and select a Warp server type
Put a value into a field of a serial chain
Create constant parameter for execute__warp or start__cluster
Read from a serial chain
Read from Warp cell data memory
Read event flag
Copy from cluster memory into a buffer
Rarfd microcode from a Warp cell
Read from register
Reset the Warp machine to a defined state
Check state of file server. Warp host. Warp server
Return error index of last Warp monitor call
Set a breakpoint
Trace massage traffic between application and Warp/user server
Change current directory for file lookups done by user server
Set event flag
Set program counter
Set time-out for execute_warp call
Start clustar processor given a list of parameters
after event flag is dona
Start cluster processor given an array of parameters
after event flag is done.
Start the Warp machine after event flag is done
Start the Warp server (demon)
Number of steps executed
Unlock the Warp machine
Enable or disable printf statements in cluster code programs
Wait for event flag
Write to a serial chain
Write to Warp cell data memory
Write microcode
Write to register
Copy from a buffer to cluster memory

79

Warp Programming Environment 2.6

Topical Index

Beginner 10
Breakpoints 15
Bug fixes 32
Bugs 71

Known Bugs 71
Sending bug reports 75

C Shell 12
Cells 10
Cluster processor 4
Command file 13
Common l isp 13

Debugger 33
Loading files into WPE 33

Customization
Warp shell 12

Datacube Display 26
Demo 10
Developer 10
Display 10
Displaying Warp shell variables 10, 26

Editor 2, 6,10
Key bindings 2
Profile 31

Emacs 2,7,10
Error messages

General 71
Warp monitor 45

Examples
Common lisp in command file
Compiler options 17
Editing a breakpoint 19
GNU Emacs Profile 2
Gosling's Emacs Profile 2
Implementation of a Warp shell command
Makefile for C program 69
Pipe (C program) 66
Pipe with event flags (C program) 67
User server message trace 74
W2 program 36
Warp shell session 36
warprc file 31
warpshellinit.cmd 13

Experience 10
Expert 10
External host 4
File server 3

Generalized image library
Display of images 26
Initialization 21

Generalized image library 6,10
GNU Emacs 2,7,10
Gosling's Emacs 2,7,10

Half-toning 26

13

34

Implementor 10
Interrupting Warp shell Commands 12

Known Bugs 71

l isp shell 9,33
Local mode 4,5

Master processor 4
Memory allocation 43
Mouse Buttons 26

Prompt 11,12

Real-time applications 5, 6,42,43
Remote mode 4, 5

Standalone mode 3, 5
Support processor 4

TCP-IP 4

Unix shell commands to start up WPE
wpe 3
wpeg 3
wpegl 30
wpel 30
wsh 3

User 10
User server 4

Debugging 27
Different types 41
Local/remote mode 41

User type 10

W2 compiler 4
W2 debugger 4
W2 program

Compiling 16
Example 36
spicy option 17

W2 Simulator 11
Warp host 3,11

Opening a connection 25,44
Warp machine

Locking Functions 42
Overview 4
Warp server 4

Warp monitor 1,5,41
Classification of functions 41
Debugging 73
Debugging functions 58
Downloading functions 54
Error handling 45
Error messages 45
Event flags 48
Execution functions 56
Memory allocation 50
Miscellaneous functions 64
Warp locking 47

80

Warp Programming Environment 2.6

Warp server control 44
Warp server 4, 41
Warp shell 5

Command syntax 9
Commands 12
Customization 33
Debugging 35
Example 35
Execution of Unix commands 11
Features 1
Implementing a Warp shell command 33
Initial command file 12
Objects 10
Overview 9
Special commands 32
Types 26
Variables 26

Warp shell environment variables
Cells 10
Comment 11
Demo 10
Display 10
Editor 10
Experience 10
Function 11
Host 11
MaxSourceLine 11
MinSourceLine 11
Module 11
Prompt 11
SourceFile 11
SourceFileDirectory 11
User 10
Warp 11

Warp User Package 1,41
Window manager 2, 6

Suntools 2
X 2

Windows 10,26
WPE

Customization 30, 33
Debugging 27
Error messages 71
Getting it 2
Running it 3
Software components 4
System configuration 3

WPE server 4

X Window Manager 10,26
Creating a window 26
Using the mouse 26

81

Warp Programming Environment 2.6

alloc__clmem 50
a l l o c _ e f 48

c a c h e _ m i c r o 54
c l e a r _ b r e a k 59
c o n t i n u e _ w a r p 58
c o p y _ c t c 53
c o p y _ c t f 52
c o p y _ f t c 53

d e a l l o c _ c l m e m 51

EFLAG 48
e x e c u t e ^ w a r p 56
e x e c u t i o n _ t i m e 58

f a s t _ l o a d _ j m i c r o 55
f r e e _ b u f f e r 52
f r e e _ e f 49

ge t__e r ro r__s t r i ng 46
g e t _ f i e l d 63
g e t j p c 60
g e t _ u n i n i t _ c l m e m 51
g e t _ v e r s i o n 65

l i s t _ q u e u e 48
l o a d _ c l u s t e r 55
l o a d _ m i c r o 54
l o a d _ o n e _ c l u s t e r 55
l o c k _ w a r p 47

m a k e _ c l u s t _ f u n c 56

n e x t _ e n t r y 48

openconn 44

p a r a m _ c o n s t 65
p u t _ f i e l d 63

r e a d _ c h a i n 61
read__da ta_mem 59
r e a d _ e f 49
read__from^clmem 51
r e a d _ m i c r o c o d e 61
r e a d _ r e g i s t e r 62
r e s e t _ w a r p 66

s a n i t y _ c h e c k 66
s e r v e r _ e r r o r 46
s e t j b r e a k 59
s e t _ d e b u g 64
s e t _ d i r 65
s e t _ e f 49
s e t _ p c 60
s e t _ t i m e o u t 64
s t a r t _ c l u s t e r 56
s t a r t _ c l u s t e r _ a 57
s t a r t _ w a r p 57
s t a r t _ w a r p d 44

Warp Monitor Functions
un lock_warp 47
u s e _ p r i n t f 58

w a i t _ e f 49
w r i t e _ c h a i n 62
w r i t e _ d a t a _ m e m 60
w r i t e _ m i c r o c o d e 61
w r i t e _ r e g i s t e r 63
w r i t e to_clmem 52

82

Warp Programming Environment 2.6

83

Warp Shell Functions
@ Command 13
alias 9
handle-errors 32
load 33
pause 13
quit 14
record 14
w2-break 14
w2-compile 16
w2-continue 17
w2-delete 18
w2-download 18
w2-edit 18
w2-enable 19
w2-execute 19
w2-get 20
w2-halt 20
w2-init 21
w2-load 21
w2-lockwarp 21
w2-reset 22
w2-restart 22
w2-sanity 22
w2-set 24
w2-show 25
w2-suggestbreaks 27
w2-trace 27
w2-type 28
w2-unlockwarp 28
w2-var 28
w2-warpqueue 29
wpeversion 14

Warp Programming Environment 2.6

84

