
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Compiling cp(|, | ,&) on top of Prolog

Vijay A. S a r a s w a t
October 1987

CMU-CS-87-174c

Abstract
In this paper we present an implementation for the concurrent logic programming language cp(i

,!,&). The implementation compiles such programs into Prolog programs, which may further be com
piled and run on Prolog systems. The design differs significantly from [Ueda and Chikayama, 1985],

We present the implementation in a series of steps. We start with a design that compiles cp(i, I ,&)
programs into a cp(f, | t &; o), which corresponds closely to Prolog, enhanced with a 'geler' (or
f r e e z e) capability, ([Boizumault, 1986]). The design uses a concept of modes to partition the
clauses for a predicate into equivalence classes such that all the clauses in one class have identical
suspension conditions. Multiple modes are examined 'simultaneously' by invoking a 'mode-goal' for
each mode for that goal, and arranging for distributed commitment of these mode-goals using mutual
and single exclusion. Because of the static nature of cp's T-annotation (as opposed to Concurrent
Prolog's *?'), a number of important optimisations are possible.

Most implementations of Prolog, however, do not have a f r e e z e capability. We present a
meta-interpreter for cp(f, I o). By adding a 'suspension queue', we can obtain an interpreter for
cp(f, | ,&; o) in cp(I 0). The code generated by the cp(j, I ,&) compiler may be thought of as being
obtained by partially evaluating the output of the cp(|, I ,&) to cp(f, I 0) translator with respect to
this interpreter to obtain a cp(I ,&; o) program. cp(I 0) programs may be trivially implemented
in Prolog. Finally, we present a number of important optimisations for multi-mode predicates, and
compare the performance of this compiler with [Ueda and Chikayama, 1985].

This research was sponsored in part by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.
4976, monitored by the Air Force Avionics Laboratory Under Contract F33615-84-K-1520.

C o n t e n t s

1 Introduction 3

2 Background and related work 6
2.1 The language cp(| , I ,&) 6

2.1.1 Nomenclature for languages in the Cp family 6
2.1.2 Syntax 6

2.2 Informal semantics 7
2.2.1 ^-unification 8
2.2.2 Wait-free guards 9
2.2.3 Or-sequencing 10
2.2.4 Freeze 11

2.3 Shapiro's Concurrent Prolog interpreter 12
2.3.1 Scheduling policy 12

2.4 Ueda and Chikayama's Concurrent Prolog to Prolog compiler 13
2.4.1 Unsuitability for cp(| , | ,&) 14
2.4.2 Scheduling 14
2.4.3 Modes 15

2.5 Other work 15

3 Implementing cjJ(|,|, &) by translating into Prolog with freeze 17
3.1 Modes 17
3.2 Translation scheme 19
3.3 Discussion of the translation 20

3.3.1 Optimisation for single-mode predicates 21
3.3.2 Example of translated code 22

3.4 Translating cp(f, I ,&,o) programs into Prolog-with-freeze 22
3.4.1 Performance Considerations 24

3.5 On requirements from a freeze implementation 25
3.6 Performance figures 25

4 Compil ing into plain Prolog 27
4.1 A Deadlock-detecting interpreter for cp(f, | ,&,0) 28

4.1.1 Input language 28
4.1.2 Meta-interpreter for Cp(f, I ,&; o) 28
4.1.3 A cp(| ,&; 0) interpreter for cp(f, | ,&,0) 29
4.1.4 Properties of the interpreter 30

4.2 Translating cp(| 0) to Prolog 31
4.3 Code generated by compiler 31

4.3.1 Single mode predicates 31
4.3.2 Multi-mode predicates 33

4.4 Optimisations for multi-mode predicates 34
4.4.1 Allocating memory for mode lists 36
4.4.2 Interconversions between mode list types 36
4.4.3 Performance analysis 37
4.4.4 Actual Code generated 37

4.5 Run time system 39

4.5.1 Executing previously suspended goals 39
4.6 Performance Comparisons with the Ueda/Chikayama compiler 41

4.6.1 Performance numbers 43
4.6.2 Implementation Notes 43

5 Fu ture work and conclusions 45

A Appendix 46
A.l Sample code 4 6

A. 1.1 Some other benchmarks 47
A. 1.2 Data base query 48

2

1 I n t r o d u c t i o n

In this paper, we present an implementation of the language cp(| , | ,&), which is based on the concurrent
and non-deterministic interpretation of definite clause programs.

The cp family of programming languages originated in an attempt to understand Shapiro's Concurrent
Prolog, and to determine whether the two major language proposals contained therein — synchronisation
through read-only variables and determinate communication via don't care commitment - were necessary
for a useful concurrent interpretation of definite clause programs. In [Saraswat, 1986], I showed that
there were some problems with the definition of read-only annotation, particularly in the context of a
language with 'full' guards, and that a much simpler static wait annotation (' j ') was instead adequate
for sychronisation. I also showed that, through the notion of dorit know commitment ('&') there was a
conceptually very straightforward way to exploit the choice non-determinism inherent in the programming
language Prolog in particular and definite clause logic programming in general. In this framework, the
dorit care commitment (* | ') so central to the so-called 'committed choice concurrent logic programming
languages' (Concurrent Prolog, Parlog, GHC) reappears with the same status that the 'cut ' has in Prolog:
it is an important aid to the system in detecting determinate computations, which may be executed more
efficiently (choice points may be reclaimed,or not created in the first place.) But its use is not essential
in every clause! Indeed, the relationship between cp(| , I ,&) and Prolog is very close: the latter may
be regarded as a sequential (and impure — in a technical sense made precise in [Saraswat, 1987d])
approximation of the former.

The formal semantics of Cp(|, I ,&) has.been studied in [Saraswat, 1985] and [Saraswat, 1987b], and
several fundamental programming techniques presented in papers such as [Saraswat, 1987, Forthcoming]
and [Saraswat, 1987a]. [Saraswat, 1987c] presents cp(| , | ,&) as a programming language that strongly
supports the paradigm of concurrent, controllable constraint systems. Indeed, by exploiting concurrent
forward checking, local propagation and dynamic variable reordering, many of the problems of chrono
logical backtracking that plague the use of Prolog as a constraint language can be avoided, without having
to pay the computational overhead of such schemes as dependency directed backtracking.

In this paper we discuss an efficient implementation of the language via compilation into Prolog.
A number of ways of implementing concurrent logic programming (CLP) languages have been in

vestigated. In [Shapiro, 1983], Shapiro presents an interpreter for (a subset of) Concurrent Prolog on
top of Prolog (we discuss it briefly in the next section). While rather simple and quite portable, it was
unacceptably slow, sometimes about two orders of magnitude slower than the underlying Prolog system.
To remedy the situation, a compiler from Flat Concurrent Prolog to Prolog, with much better perfor
mance is presented in ([Ueda and Chikayama, 1985]). Since the compiler and the run-time system were
both written in Prolog, the advantages of portability were not lost. Similar efforts have been reported for
the programming language Parlog.

More serious implementations have been undertaken, including native mode code generators from
abstract machines designed to implement determinate computations efficiently ([Silverman, 1986]. See
also [Kliger, 1987].) However, the scale of effort involved here is of the order of man-years, and this
work is only now coming to fruition. Note that this work does not directly support non-deterministic
('backtrackable') choice: preliminary work on supporting even 'pure' non-determinism (much less a
language like cp(j , |,&)) on top of these implementations ([Ueda, 1986], [Shapiro, 1987]) seems only
mildly promising, at best.

In this paper, we choose to implement Cp(|, | ,&) by compiling into Prolog. In the long run, as
with other workers in the CLP field, our goal is to develop real implementations for the languages
we are concerned about, and to that extent, this work must be seen as preliminary in nature to work
relating to the design of abstract machines and processor architectures more directly supporting the Cp

3

model of computation. In the short term, however, we feel that it makes sense to take advantage of
the considerable research work that has been done, and is being done, related to the very efficient
implementation of Prolog on uni- and multi-processors. The last point takes on added significance, in the
present case. For cp (| , I ,&), through don't know choice, Or-parallelism plays a signficiant role. Recently
efficient Or-parallel implementations for Prolog have been devised ([Warren, 1987]): in so far as our
implementation produces Prolog programs which create and use choice points, the techniques employed
in their implementations are directly applicable.

Moreover, developing an implementation on top of Prolog usually involves a few man weeks of effort.
This is important because we expect to use the system, and various tools such as partial evaluators, to
experiment with the design of concurrent constraint based programming languages more directly tailored
to expressing user-constraints. Finally, building the system on top of Prolog makes it immediately
accessible to the logic programming community at large, and establishes links with the work of those
people who have been trying to (directly) use Prolog for constraint-based computations.

We have sought to provide an implementation in which as much work as possible is done by the
underlying Prolog implementation, and about whose correctness we can make convincing arguments. We
have also been concerned with structuring the implementation in such a way that the natural restriction
of the compilation scheme to Cp(J, I) programs produces efficient code. In other words, if a particular
program does not use don't know commitment, it does not have to pay any implementation overhead.
These efficient implementations immediately provide reasonably fast implementations of the concurrent
logic programming language in question.

The rest of this paper is as follows. For the sake of completeness, we present a brief discussion of
the syntax and semantics of the language Cp(J, I ,&). We discuss related implementation schemes, and
their unsuitability for our language. The design differs significantly from [Ueda and Chikayama, 1985].
It distinguishes between deadlock and failure, has different mechanisms for suspension-handling, uses
unbounded depth-first scheduling, implements 'don't know non-determinism' and also a well-defined
restricted subset of full guards called 'wait-free' guards, and has very different (and significantly better)
performance characteristics.

We present the implementation in a series of steps. We start with a design that compiles cp(l , I ,&)
programs into cp(f, I ,&,0) programs. The design uses a concept of modes to partition the clauses for
a predicate into equivalence classes such that all the clauses in one class have identical suspension
conditions. For a given goal, the suspension condition of a mode is checked at most once very time
the goal is scheduled. Multiple modes are examined 'simultaneously' by invoking a 'mode-goal' for
each mode for that goal, and arranging for distributed commitment of these mode-goals using mutual and
single exclusion techniques. An important benefit of this implementation technique is that 'wait-free' cp
programs (i.e. Cp(| ,&) programs) run at the speed of the Prolog program with identical clauses. Another
important optimization is that since single mode predicates can be detected at compile time (a property of
Cp not shared by 'dynamic annotation' languages such as Concurrent Prolog), code can be generated that
avoids the overhead of distributed commitment. Next, we show that with the additional assumption that
guards are wait-free, cp(f, I ,&,o) programs may be trivially translated into a Prolog (with 'cut ') enhanced
with a 'geler' (or f r e e z e) capability, ([Boizumault, 1986], [Carlsson, 1987]).

The correctness of the design given above, however, depends upon some delicate properties of
f r e e z e that do not obtain in some (most?) current Prolog implementations ([Carlsson, 1987]) that
support f r e e z e . A suitably designed f r e e z e capability has the potential for offering non-busy-wait
implementations of Cp(|, I ,&): a suspended goal is not scheduled for execution unless its suspension
conditions are satisfied. We discuss the drawbacks in the implementations of f r e e z e discussed above,
and offer alternative designs for f r e e z e .

Most implementations of Prolog, however, do not have a f r e e z e capability. We next provide a

4

simple meta-interpreter for cp(f, | ,&; o), and use it to implement an interpreter for cp(f, | ,&,o) in cp(I ,&;
0). This interpreter uses a global 'suspension queue' to implement the f r e e z e predicate. We observe
that, in principle, partially evaluating the Prolog-with-f r e e z e output of the Cp compiler with respect to
this enhanced meta-interpreter (for Prolog) should yield a Prolog program which directly implements the
original cp program. In this program the global suspension queue, and deadlock flag are passed around
as extra arguments to every (object-level) call instead of being maintained in the meta-interpreter state.
Our compiler may be thought of as implementing such a translation into Prolog code.

Quite importantly, a number of important optimizations are possible when compiling directly into
Prolog (and bypassing f r e e z e) . Instead of spawning goals for all the Or-candidates of a Cp goal, only
one goal may be spawned, and a list of modes with respect to which the goal is to be evaluated may
be passed to it. This results in a considerable saving in runtime and heap space. Another important
saving results from treating the case of the first invocation of a multi-mode predicate separately from
subsequent invocations. Instead of passing a fully constructed modelist as an argument to the first call,
the list is incrementally constructed as various modes are examined, and then too, only if necessary.
Another important optimization concerns multi-mode goals that are scheduled and suspended frequently:
their modelists are examined in such a way that a new modelist (for the goal to be suspended) is not
created unless the previous one is to be modified. This results in considerable space savings for some
programs.

We present examples of code generated by the compiler for some representative programs, and present
statistics for versions of the compiler that support different optimisations. We compare the performance
of our compiler with that reported in [Ueda and Chikayama, 198,5].

Finally, we discuss opportunities for further work. It seems clear that in some cases identical suspen
sion tests in different modes can be avoided. Designing a general scheme for detecting such duplications
and avoiding as many as possible should be interesting. It also seems quite feasible that these ideas can
be extended to design an abstract architecture that supports cp(| , I ,&), in the same way the WAM supports
Prolog.

Before presenting the implementation scheme I would like to offer a word of caution. Having an
implementation of a concurrent and non-deterministic programming language early in the course of its
development is not without its problems. It can sometimes encourage the adoption of programs as 'correct'
because their execution on a given implementation always seems to yield correct answers. All that an
implementation can guarantee is that if it is correct, then correct programs will run correctly; however it
may also be that faulty progams in fact seem to behave correctly because of some qirks in the scheduler!
Correctness of programs has to be proven with respect to an underlying formal semantics and, if there is
one, a correctness calculus.

Finally, it is worth noting that the speed of a sequential implementation may not be a very good
indicator of the speed of a parallel implementation. The analysis of programs should be done with
respect to the model of computation, and any information that the language implementer may provide
about the efficiency of implementation of the abstract model on the current architecture. The current
state of the art in writing performance efficient concurrent logic programs is not well developed.

5

2 B a c k g r o u n d a n d r e l a t e d w o r k

2 .1 T h e l a n g u a g e c p (| , | ,&)

The Cp family of languages is based on the concurrent interpretation of definite clause programs. The
discussion in the rest of the section is based on [Saraswat, 1987b], though the syntax here is newer.

2.1.1 Nomenclature for languages in the cp family

The name of a language in the cp family consists of the symbol ' c p ' prefixed with one or more qualifying
letters and suffixed with a delimiter separated list of indicators. For the purposes of this paper, the only
qualifying letter discussed is T : when present the language is said to be fiat. The delimiters are: ' ; '
(And-sequentiality) and 4 ; ; ' (Or-sequentiality). When neither are present in the language, or the name
has at least two more indicators than delimiters, V may be used to delimit the indicators. The indicators
are: 4 J/ (the wait annotation), T (the freeze construct), * | ' {dorit care commitment), {dorit know
commitment), and 4 0 ' (the otherwise construct). When more than one control construct is present, it is
listed in the name of the language in the above order.

The only other restrictions on constructing the name of a language (and hence on the combination of
control constructs allowed in the languages!) are: the name must have at least one commitment operation,
cannot contain both f and 4 j \ and cannot contain both 0 and 4 ; ; \ In the last two cases, the first is a
special case (more restrictive version) of the second, as we shall see.

We have chosen this systematic nomenclature to immediately make evident what are the control
constructs (deviations from pure definite clause programming) being discussed in the language at hand.
(We do not consider And- and Or-parallelism to be deviations from pure definite clause programming.)
This is particularly important in this paper because we shall present a number of translations from one
language to another. However, we shall not attempt to counsel the reader on how to pronounce these
names.

2.1.2 Syntax

We present the syntax of programs in the language incrementally. We assume as primitive the ideas
of variables, terms and atoms. We define the syntactic categories: Program, C l a u s e , Head and
G o a l S y s t e m . Each of these syntactic categories are ranged over by the (possibly subscipted) meta
variables P, c , h , g. Atoms for user-defined predicates are ranged over by the (possibly subscipted)
meta-variable a. Atoms constructed from a set of pre-defined (4built-in') predicates are ranged over by
the (possibly subscripted) meta-variables b.

All languages share the following production rules defining the categories above:

P : : = = c . c : : = = c . c h : : = = a
g : : = = a g : ; = = b g : : = = q,g

Depending upon which commitment operation(s) are available in the language, to the table above add
the production(s):

c : :== h <— g & g
c : :== h <- g | g

If the language allows 4 J/-annotations, add the rule:

where a ranges over the syntactic category AnnAtom discussed below.
If it has And-sequentiality or Or-sequentiality, add the appropriate rule from:

g : : = = g ; g
C • • C ,, c

If the language name contains 4 f appears in the name of the language, then the set of built-in predicates
includes the predicates f r e e z e / 1 , f r e e z e / 2 and f r e e z e / 3 , discussed below. If the language name
contains '0' , then the set of built-in predicates includes the predicate o t h e r w i s e / 0 . In addition,
programs must satisfy the syntactic restiction that an o t h e r w i s e / 0 goal can occur only in the guard
of a clause, and then as the first goal in the guard. If the symbol in the language name is prefixed with
an 4f \ then only goals for built-in predicates may appear in the guards of clauses.

An annotated atom may contain terms which are annotated. There are two types of annotations: a
wait annotation *[\ and an equate annotation ' j T \ where T is some constant, called the marker for the
annotation. A term is annotated by sufffixing the appropriate annotation to the term. A term of the form
S i is said to be 4i '-annotated, and of the form S i T is said to be T-annotated. When the distinction is
not relevant, we shall simply speak of annotated terms.

Finally we discuss some shorthands. The set of built-ins contains the special predicate t r u e / 0 . If
the language provides the 41 '-commitment operation, then clauses on the left may be notated more simply
by the syntax on the right:

Verbose syntax: Shortlxand:
c <— t r u e I g . c <— g .

c <— t r u e . c .

(The second shorthand rule is applicable only after the first has been used once!)

2.2 Informal semantics

We now discuss informally the semantics of these control constructs. The discussion assumes a notion
of 'I'-unification, i.e. unification in the presence of annotations. This is discussed in detail below: at this
point, suffice to say that *i'-unifying a goal against the head of a clause may result in either success, or
failure or suspension.

In overview, computation is initiated by the presentation of a query Q = a<o... a n « i . Each goal ax

will try to find a proof by 4i'-unifying against the head of a clause, and finding proofs for the goals in
the guard and body of that clause. Unification results in bindings for the variables in the goal, which are
communicated (applied) to the other sibling goals of the committing goal. If the goal commits using a
don't care commit then the bindings it commits are irrevocable, and are directly applied to the sibling
goals. If the goal commits using a don't know commit, then the choice points for the goal are preserved,
the sibling goals are copied, and computation forks into two branches. In one branch the bindings being
committed by the goal are applied to the sibling goals; in the other they are not. Computation succeeds
when any branch finds a solution; it fails when all branches terminate in failure.

In more detail, each goal in Q tries to reduce itself to a goal-system by 4 i'-unifying against the head
of a clause, say, (C = a <— g i % g2-). If 0 = mgU|(<zt, a) (i < n) exists, then the goal-system 0 (g i) is
invoked as a guard system. Each a i may have more than one guard systems (called Or-siblings of each
other) executing concurrently. If the head-unifier produces more than one substitution, then an a i may
actually have more than one guard -system in the same clause: each guard system corresponds to one

7

substitution. Such 4internal' Or-siblings are to be thought of exactly as if there were multiple copies of
each clause, with one guard system in each clause. In what follows, then, we will discuss only the case
in which there is one guard system per clause.

Each of the guard systems is a goal-system containing goals, which, in turn, may invoke other clauses
(with guard systems) and hence a tree of goals can be built up in the guard. Bindings committed by
goals within the G o a l S y s t e m accumulate at the boundaries: they are not propagated further till the
goal-system is completely solved. Whatever bindings a guard goal commits during the process of its
execution are, therefore, not visible to its environment (sibling goals of the atom invoking the guard, or
body goals in the same clause). They are visible only to other sibling goals within the guard.

Assume that some guard system for some goal a i has been solved successfully with answer substi
tution 9. In the above example, if clause C has an empty guard system, it immediately terminates with
answer substitution 9 =the unifier of a i and a, the head of clause C. If more than one of the guard
systems terminate successfully at the 4same time', one of them is chosen to commit, by some mutual
exclusion algorithm.

Commitment involves three operations: the atomic publication of the answer bindings, action on other
Or-siblings and promotion of body goals.

Atomic publication of bindings means that the bindings are (conceptually) instantaneously applied
to all the goals in the body of the clause and to all And-sibling goals (and their Or-subsystems) of the
committing goal a ^ (If some And-sibling goal has an Or-subsystem which already has bindings for
variables that are incompatible with the bindings being published, the sub-system fails.)

Together with atomic publication, both the commit operations also cause the goals in the body goal-
system to be executed as And-siblings of the goals that were the siblings of the committing goal (i.e.
their uncles).

The commit operators differ in the actions they take with respect to other Or-siblings of the committing
guard system, either in the same clause or in other clauses. The don't care commit kills them all. The
don't know commit allows Or-siblings to keep on computing, in effect allowing a goal to commit multiple
bindings. Each of these bindings is, committed to a different copy of the rest of the goals. Thus, if a
goal 4&'-commits bindings 0, all the sibling goals in the GoalSystem are split into two at commit time.

Computation succeeds when any branch finds a solution; it fails when all branches terminate in failure.
We now discuss some crucial aspects of the operational semantics in more detail.

2.2.1 ^'-unification

Informally, ^-annotations in the head force the suspension of a goal until all the terms in the goal
corresponding to j-annotated terms in the head are instantiated, and all the terms in the goal corresponding
to the 4 1 m'-annotated terms in the head are equated, for every marker m. 4 j'-unification then succeeds iff
normal unification of the goal and the (unannotated) head succeeds.

We now define the blocking condition for a clause head more precisely. First, we review some
terminology, following [Courcelle, 1983]. 1

Let N denote the set of non-negative integers, N+ the set of positive integers, and NX the set of finite
sequences over positive integers (including the empty sequence, e). We indicate concatenation of finite
sequences by juxtaposition. A ranked alphabet is a pair (F, />), where F is a possibly infinite collection
of (function) symbols, and p : F -> N is a maping that defines the arity (rank) of symbols in F. We
consider sets F where the symbols of arity 0 are partitioned into variables and constants. A tree over a
ranked alphabet (briefly: tree) is a partial mapping t:N$^F, such that

exposition presented here is a slightly modified version of the presentation in [Saraswat, 1986].

8

• its domain is prefix-closed and non-empty,

• if a e N*, i,j G N+, I < i<j and aj 6 dom(r), then ai G dom(r), and,

• if t(a) = / , and / is of arity k > 0, then for i G N+, ai G dom(r) if and only if 1 < i < k.

We use the notation t/a for the subtree of t issued from node a , i.e. the tree i = X/3 G A^[./(a/3).
Two trees t\ and ti are said to be identical (notated t\ = p£) if their domains are identical, and for

each path in their domain, their values are identical.
A blocking condition is a pair (P, 0, where P is a finite set of paths and Q a finite set of finite sets

of paths. For a given clause, with head T, the blocking condition is the (P, Q) defined as follows. P is
the prefix-closure of the set of all paths a in the domain of T such that T(a) is ' j '-annotated, or a son of
T(a) is * j m'-annotated, for some marker m. Q is a set, indexed by the set M of all the markers occurring
in T, such that Qm is the set of all those paths a in the domain of T such that T(a) is *| m'-annotated,
for all m G M.

For a given goal G and blocking condition (P, Q), the blocking condition holds if

• P C dom(G) and if for all a G P , G(a) is a non-variable, and,

• for all elements { a i , . . . a*} G G/a\ = G/a2 = . . . = G/a*.

We will refer to thid definition when discussing how to generate code to implement * j'-unification.

2.2.2 Wait-free guards
Full guards are difficult to implement correctly and efficiently. For the purposes of this paper, we shall
confine our attention to a subset of user-definable guards called wait-free guards.

To prepare for their definition, we define 4global variables' to be variables that occur in the current
resolvent. Now a clause of the form

H e a d <— G u a r d % B o d y .

is said to be wait-free iff the following condition holds:

Execution of even a single branch of G u a r d should not suspend on global variable(s)
being instantiated or equated.

The condition is simple to state, but the reader is urged to comprehend it fully. Some examples follow.
Note that execution of G u a r d may produce multiple branches — the goals appearing in G u a r d

may be for predicates which have &-clauses. The definition above states that none of these branches
may suspend on global variables. Note also that execution of G u a r d is not disallowed from producing
bindings for global variables (cp is a 'multiple environment' family of languages).

This condition was chosen for two reasons: expressiveness and ease of implementation. Most exam
ples where usage of non-flat guards seems to be indicated are covered by this restriction. For instance, I
have found guards to be convenient to check some complicated predicate on user-defined data-structures,
before commitment. The above condition will allow such guards as long as the head checks for whatever
instantiatedness requirements the guard may have on the data-structure. 2

ĥere is one important and useful piece of functionality that such guards cannot provide: disjunctive waiting for global variables, as done, for example, in the head of merge/3 clauses.
9

Wait-free guards are rather straightforward to implement on sequential machines. The goals in the
guard are simply executed as a new (recursive) query in the current environment. Any deadlock that
occurs in the execution of this query is presumed to not be resolvable even if the sibling goals of the
invoking goal are scheduled for execution. Hence it is correct to treat this deadlock as failure, and cause it
to trigger the search for alternative computations (i.e. backtracking) to find a solution for the guard. The
sibling goals of the invoking goal are not scheduled for execution until the guard is completely solved
(either successfully or unsuccessfully).

Example 2.1 (Wait-free guards) As an illustration, consider the following program.

p r o d u c e r (a) .
p r o d u c e r (b) .
c o n s u m e r (Xj) .
p o s s - p r o d u c e r (X) <— c o n s u m e r (X) .
p o s s _ p r o d u c e r (a) .
n(X) <- p (X) .

q(X) <— p o s s . p r o d u c e r (X) | t r u e .
q(X) <— p o s s - p r o d u c e r (X) .
t (X) <- q (X) , p r o d u c e r (X) | t r u e .
r (X |) <— p o s s - p r o d u c e r (X) | t r u e ,
s (X) <— c o n s u m e r (Y) | t r u e .

The clauses for p r o d u c e r / l , n / 1 a n d p o s s . p r o d u c e r / 1 are (trivially) wait-free. However
the first clause for q / 1 is not wait-free: execution ofa query q (Y) may result in the goal c o n s u m e r (X)
suspending on global variable X. On the other hand the clause for t / 1 is wait-free. Even though q (X)
occurs in the guard, and X occurs in the head of the clause, X also occurs in another goal p r o d u c e r (X)
in the guard, execution of which will always generate a binding for X.

The clause for r / 1 is wait-free because X is guaranteed to be instantiated before the guard (which
could potentially wait on X) is invoked. The clause for s / 1 is wait-free because its guard can suspend
(in fact, deadlock!), but not on a global variable.

2.2.3 Or-sequencing

The operational interpretation of a clause group c i ; ; C2 is as follows. For any goal, clauses in c2 are not
considered as candidates until the clause group c i is determined not to contain even a potential candidate
clause.

This definition has the following implications. If all the clauses in c i fail to commit, then the clauses
in C2 may be considered as candidates. If even a single clause in c i blocks either on head-satisfaction or
guard-execution, and no clause in c i successfully commits, clauses in C2 are not considered as candidates
(because the clause that blocks is a potential candidate) until such time as (if ever) the clause unblocks
and either fails or commits.

If a * | '-clause in c i successfully commits, then the clauses in C2 are never tried. If a *& ,-clause
in c i successfully commits, then the clauses in C2 are retained in the uncommited branch of the split,
together with the remaining clauses in c i - As may be expected, in this branch the clauses in C2 may be
considered as candidates only when there are no remaining clauses in c i , or all of them are shown to be
non-candidates.

10

o t h e r w i s e . A special useage of Or-sequentiality deserves attention, and a special syntax. If all
the clauses for a predicate can be written in the form c i ; ; c 2 , where c i and c 2 are Or-parallel clause
groups, then the clauses C2 may alternatively be called the o t h e r w i s e clauses. Explicit useage of the
' ;; ' operator may be avoided with the following syntax. The program may be notated as the Or-parallel
combination c i . c 2 , where c 2 is the same as c 2 except that the first goal in the guard of each clause
in C2 is a call to the special 'predicate' o t h e r w i s e . This syntactic sugar allows the ' o t h e r w i s e '
clauses to be scattered in the body of the program.

2,2.4 Freeze

We introduce a special predicate f r e e z e as an alternate suspension mechanism the better to introduce
a smooth translation from cp(| , I ,&) to Prolog. The predicate is based on a well-known idea in logic
programming, apparently due to Colmerauer. See [Cohen, 1985,Boizumault, 1986,Carlsson, 1987] etc for
details.

The predicate comes in three flavors: f r e e z e / 1 , f r e e z e / 2 and f r e e z e / 3 . A goal of the form
f r e e z e (A, G o a l) suspends until such time as A is instantiated. It then reduces to the goal Goal .
Such a predicate may be defined in Cp(j, | ,&) quite simply:

f r e e z e (Aj, G o a l) <— G o a l .

A goal of the form f r e e z e (A, B, G o a l) suspends until such time as A has been equated to B.
It then reduces to the goal Goa l .

f r e e z e (Aj, a , Bj a , G o a l) «— G o a l .

Finally, a goal of the form f r e e z e (A) behaves as follows. The goal expects its argument to be
a list of f r e e z e / 2 or f r e e z e / 3 data-structures. If one of the members of the list is of the form
f r e e z e (A, G o a l) then the goal may, in one step, irrevocably reduce to the goal G o a l after A is
instantiated. Similarly, if one of the members of the list is of the form f r e e z e (A, B, G o a l) , then
the goal may, in one step irrevocably reduce to the goal G o a l after A and B are equated. Such a predicate
may be defined in cp(j, | ;&) as follows. (Recall that Cp(|, | ;&) programs may be directly translated into
Cp(I,l,&).)

f r e e z e (L) <— f r e e z e (1 , M, L) .
f r e e z e (K, M, N u l l j) .
f r e e z e (K, M, [f r e e z e (A , G o a l) | R]|) <-

(w a i t (A , M); commit (K, M, G o a l)) ,
f r e e z e (M , K + l , R) .

w a i t (W a i t , Mj) .
w a i t (Aj, M) .
w a i t (Aj a , B j a , M) .

commit (K, K, G o a l) <— G o a l ,
commit (K, Mj, G o a l) «- M ^ K I t r u e .

We now turn to a discussion of some other implementation schemes for CLP languages.

11

2.3 S h a p i r o ' s C o n c u r r e n t P r o l o g i n t e r p r e t e r

In [Shapiro, 1983], Shapiro presents an interpreter for Concurrent Prolog programs. The interpreter
accepts as input a database of Concurrent Prolog clauses. It maintains two data-structures: a queue
of processes yet to be executed, and a deadlock indicator. When invoked with a sequence of goals, the
interpreter enters them into the queue according to a scheduling policy, clears the deadlock indicator,
and appends a m a r k e r goal at the end of the queue. Subsequently, on each iteration, the interpreter
dequeues a process, and attempts to reduce it using the database of input Concurrent Prolog clauses.
If it succeeds, the deadlock indicator is set, and the new goals, if any, added to the queue according to
the scheduling policy. If it fails, the goal is added to the end of the queue. When the m a r k e r goal is
encountered, the interpreter checks to see if the current queue is empty. If it is, the interpreter succeeds,
and halts. If it isn't, then if the deadlock flag is still cleared, then it means that all the processes in the
queue have been examined once, and none can reduce. The interpreter declares deadlock and fails. If
the queue is not empty, and the deadlock flag is set, then a fresh marker is enqueued at the end of the
current queue, and the deadlock flag cleared.

The structure of this interpreter seems basic to sequential implementations of concurrent logic pro
gramming languages. Dimensions along which implementations may vary is the type of scheduling
policy used (discussed in detail below), and the extent to which part of the queue of suspended processes
can be maintained within the call-stack of the underlying implementation language, thereby improving
performance.

In Section 4 .1 , we present an interpreter for Cp(f, | ,&,0), written in cp(I ,&; o), similar in spirit to this
interpreter (though of course the interpreter does not have to be concerned with read-only unification).

2.3.1 Scheduling policy

What scheduling policy to use for the sequential implementation of CLP languages has been a source of
some confusion in the literature. To my knowledge, neither Concurrent Prolog nor G H C nor Parlog
initially made a commitment to And-fairness at the language level. 3 It is our contention that unless
the language semantics specifies And-fairness, it is rather meaningless for a specific implementation to
attempt to provide some form of fairness (typically, by using either breadth-first scheduling or 'bounded
depth-first scheduling'). Usually, attempting to implement fairness involves some overhead: if nothing
else, then in keeping count of how big a slice of processor time a particular process has already consumed.
And, if the language does not specify fairness, but a program happens to terminate for a specific scheduler
that attempts some form of fairness, it still says nothing about the program: the program may still not
terminate on some other implementation perhaps employing a slightly different scheduling algorithm.
When attempting to reason about the behaviour of a program, and when attempting to prove properties
such as termination, one can only make those assumptions about the implementation which are codified
in the definition of the language semantics.

cp(| , I ,&) is not specified to be And-fair. Naturally, this means that if a system of processes contains
even a single unconstrained producer, the system of processes is not guaranteed to terminate. But usually
it is rather straightforward to harness such producers by means of dataflow synchronisation, and hence,
as a practical matter this is not an issue. Or, to put another perspective on this issue, rather than the
system providing some fixed scheduling policy such as '100-bounded depth-first scheduling', we feel
that the user usually knows enough about the data-flow in his problem to pick and choose what kind of
scheduling policy is appropriate in particular parts of his program, and to embed the scheduling policy

3Though, as we point out in [Saraswat, 1987e], it is rather difficult to make sense of GHC's suspension rules without
assuming a notion of And-faimess.

12

directly in his source-level code by using data-flow synchronisation (e.g. bounded buffers). We feel
that if such explicit control of resources eventually proves to be too cumbersome for the end-user, then
fairness can be supported adequately in a 'higher-level' language on top of Cp(l, I ,&) by providing a
suitable meta-interpreter, and a partial evaluator for cp.

For these reasons, we only consider depth-first scheduling in this paper.

2.4 U e d a a n d C h i k a y a m a ' s C o n c u r r e n t P r o l o g to P r o l o g c o m p i l e r

This implementation ([Ueda and Chikayama, 1985]) may, in retrospect, be viewed as partially evaluating
Shapiro's interpreter (a Prolog program), assuming a bounded depth-first scheduling policy, and giving it
a fixed Concurrent Prolog program as input.

The global queue of suspended goals (also called 'continuation') and the deadlock flag are now passed
to every goal in the system, instead of being state maintained by the interpreter. Hence corresponding to
every Concurrent Prolog predicate p / n , there is a Prolog predicate p / (n + 5) , where the 5 additional
arguments are, in order, a counter specifying the current bound B, the head (H) and tail (T) of the
suspension queue, the deadlock flag (D), and the maximum value of the counter (Bmax). There is one
Prolog clause for every Concurrent Prolog clause in the original program; in addition, the Prolog
predicate could have a prelude (one extra clause) and always has a postlude (another extra clause), both
of which are discussed below.

Each Concurrent Prolog clause of the form

Head <— Guard | B o d y .

is translated into a Prolog clause of the form

(r e c e i v i n g a r g u m e n t s) <—
(Head u n i f i c a t i o n) ,
(bound c h e c k) ,
(e x e c u t i n g G u a r d) , ! ,
(d e c r e m e n t i n g b o u n d) ,
(s c h e d u l i n g B o d y) .

The 'head unification' part has to call an explicit unification mechanism, because Concurrent Prolog's
read-only annotation is implemented as a Prolog functor. This is a source of some (perhaps unavoidable)
complexity and inefficiency in the system, and necessitates 'extra-linguistic' features, such as modes
(discussed below), for obtaining performance.

The 'scheduling Body' portion of the clause is responsible for deciding what to do next. When there
are no body goals in the clause, the first goal in the continuation is called. When there is exactly one goal
in the body, the goal is executed, after being given the current continuation. WTien there are two or more
goals in the body, the first one is called with a continuation that now has additional goals corresponding
to the rest of the body goals.

The postlude clause simply requeues the current goal (unconditionally!) on the suspension queue,
and calls the first goal in the continuation. This clause is invoked whenever the other clauses for the
goal fail, before the cut in their body is crossed. Failure can occur either because of actual failure to
unify, or because the suspension constraints were not satisfied. This means that even if a goal really fails
(i.e. head unification and guard execution fails for all clauses) it will still be enqueued on the suspension

13

queue. It also means that all guard executions — even if they have been executed and determined to
fail based upon the current bindings — will be retried each time the goal is rescheduled, and this failure
will be rediscovered each time. This could lead to considerable performance problems for some kinds of
programs, in particular, those with 'non-flat' guards.

This problem (rescheduling failed goals and reexecuting guard systems which are bound to fail 4)
cannot be fixed in this framework. In the Concurrent Prolog compiler, the authors would like to
implement a Concurrent Prolog goal's attempt to find a clause it can commit with by having the
corresponding Prolog goal attempt to find a clause such that the single cut in its body may be successfully
crossed. However, given a Concurrent Prolog clause, a Concurrent Prolog goal may either succeed or
fail or suspend; given a Prolog clause, a Prolog goal may either succeed or fail. Hence of necessity the
failure of a Prolog goal must correspond to either failure or suspension of the Concurrent Prolog goal. 5

We fix this problem in our system by ensuring that (groups of) normal clauses are called only when
there is no possibility of suspension for the goal and clauses in that group. Hence if control were ever to
reach the 'postlude* clause, it could only be because of a failure to unify.

2.4.1 Unsuitability for cp(| , | ,&)

Handling of suspended goals is an important reason why this scheme is not suitable for the implementation
of Cp(|, | ,&), without drastic modifications. In cp(j , I ,&), it may happen that some clauses for a predicate
are 4&'-clauses and some are 41 '-clauses. When a goal is invoked, it is possible that one of the ' & ' -
clauses is able to commit. Later, execution downstream may fail because of some other goal failing.
When computation 'backtracks' to this goal, alternate clauses must be examined. However, it is possible
that the goal suspends on some of those clauses, and hence needs to be requeued. When it is next
scheduled for execution, care needs to be taken to ensure that the *&'-clause which has already been tried
is not tried again; otherwise the semantics of the language would be violated.

In our implementation, this information is maintained (sometimes implicitly) as a modelisu which
specifies which modes (collections of clauses with identical suspension conditions) are still available for
the goal to reduce against.

2.4.2 Scheduling

The Ueda implementation provides IQO-bounded depth-first scheduling as the default strategy for the user.
N-bounded depth first scheduling means that each goal taken from the front of the queue is associated

with a bound N. If it can unify aganst the head of a clause and successfully reduce the guard, then the
goals in the body are all N— 1 reducible, and are pushed in front of the goal queue. If a goal is O-reducible
it is taken from the front of the queue and reenqueued at the end.

iV-bounded scheduling suffers from the obvious problem in a language with guards, namely, what
bound should the guards be given? A particular guard execution may make more reductions than a
constant bound, to terminate successfully. In their scheme, a call to a predicate with such a guard system

4pun not intended!
5There is one way out, which I once contemplated for cp(|, |), but gave up because it doesn't generalise to cp(|, |,&) When

control reaches the postlude clause, all that is needed is a single bit of information generated from the failed attempts to use the
preceding clauses: namely whether any of those failures were due to suspension conditions not holding. The problem is that
Prolog wipes out on backtracking, as it must, all the state it had generated on the failed branch. So I looked for some way in
which a single bit of information can be stored in a Prolog system, across backtracks. (Of course, retract and assert are too
costly.) It turns out that (in Dec-20 Prolog, and in most Prolog systems fashioned after it) prompt/2 can be used precisely for
this purpose, as can op/3 and current_op/3.

14

could erroneously fail,6 even though it should succeed, and would perhaps succeed with a higher bound.
Consequently, this scheduling policy is useable only with flat guards, in which only calls to built-in
predicates are allowed in guards. (Such calls are presumed to take unit time to execute.)

This is not a problem in our design because we adopt depth-first scheduling. This allows wait-free
guards of arbitrary (unbounded) run-time complexity.

2.4.3 Modes

The prelude is optional, and is generated from extra 'mode information' which may be supplied by the
user.

The user is allowed to declare one of three possible 'modes' for each top-level argument of a Con
current Prolog predicate. If the mode is '+ ' , the system generates code in two levels, so that any
structure-level indexing provided by the underlying Prolog implementation may be exploited. If the
mode is ' ? ' , no special processing is done. If the mode is ' - ' ('output'), the system takes that to be a
declaration that the goal argument in that position will always be an 'uninstantiated non-read-only vari
able'. The authors point out that addition of mode information always seems to help: declaration of output
mode seems particularly beneficial. In this case, calls to the general read-only-unification mechanism are
replaced by the usual Prolog head unification.

In our design, there is no notion of user-supplied mode information for cp programs, for two reasons:
it is not needed, and we have a different view of how such user-supplied declaration should be used. First,
our implementation transparently (and always) ensures that user programs take advantage of whatever
indexing scheme the underlying Prolog system provides. No declarations are necessary. Second, we feel
that such user supplied 'pragmas' (see also declarations in CommonLisp) should only be used to enhance
the performance of the implementation: in particular, their usage should not threaten the integrity of the
implementation. The implementation of 'output mode' in the Concurrent Prolog compiler is incorrect in
case the argument does turn out to have a read-only variable. 7 This can be a serious problem in practice
because of the dynamic nature of the read-only variable. The amount of (global) analysis the user would
have to do to guarantee that the output mode will not be violated could be quite prohibitive for reasonable
(as opposed to these toy benchmark) programs. (All usages of that predicate would have to be examined,
and for each usage an analysis of the possible bindings that can be generated at run-time would need to
be done.) In fact, it is impossible to provide such a guarantee if that argument could ever be bound to a
term supplied by the user at run-time in a query.

2.5 O t h e r w o r k

The related problem of compiling a non-flat language into a flat committed choice logic program
ming language has been examined in [Codish, 1985]. The notion of safety introduced there (see also
[Takeuchi and Furukawa, 1986] or [Gregory, 1987], for example) has nothing to do with the notion of
wait-free guards introduced in this paper. Safety as a concept seems important only to those languages

6In reality, it would suspend after it reaches its bound, and not set the deadlock flag. When all other goals have successfully
executed, and this is the only goal left, the system would (eventually) schedule this goal, find that the deadlock flag is not set,
declare deadlock and fail.

7It is incorrect for the following reasons: a query may deadlock when it should have succeeded, and a query may succeed
when it should have deadlocked. It may be argued that our implementation of guards suffers from the same problem. However,
if a guard turns out, in reality not to be wait-free, our implementation would only err on the safe side: a query might deadlock
where it should have succeeded.

15

which do not wish to allow guard computations to bind variables in the call, or to those implementa
tions concerned with compiling a language with non-flat guards into a flat language. Neither of these
considerations hold in this context. Codish's work, however, does contain ideas relevant to the current
paper, such as evaluating alternate clauses for a goal in an And-parallel environment, and using mutual
exclusion to arbitrate between them.

The implementation of Parlog has been discussed in [Gregory, 1984], [Clark and Gregory, 1985]
and most recently in [Gregory, 1987]. Like us, they present their implementation in a series of steps,
translating down to more primitive languages. Unlike us, they consider translations down to languages
more primitive than even Prolog. They do not have a notion of don't know commitment in the language.
(They have a separate set-constructor interface to interact with a Prolog style 'all solutions' mechanism.)
I am not aware of any published results on the performance of their implementation schemes.

[Miyazaki et al.9 1985] discusses an alternate sequential implementation of Concurrent Prolog, in
which the focus is on explicitly representing and manipulating the Or-parallel environments necessary for
an implementation of arbitrarily recursive guards in a CLP language with atomic commitment. We do
not face this problem, because of the restriction to wait-free guards, as discussed later.

Recendy, and independently, [Holmgren and Waem, 1987] propose a somewhat similar scheme for
implementing G H C in a Prolog with freze. (It really works only for FGHC.) The notion of wait-free
guards is more appropriate in the context of the Cp languages. In addition, we present a notion of modes,
and introduce single- and multi-mode optimisations. (They create a 'mode goal' for every clause in the
definition of the predicate, resulting in avoidable overhead.) Our simple notion of a single exclusion
chain provides a cleaner mechanism for ensuring that at least one mode goal commits. We also identify
certain problems with current implementations of freeze in Prolog implementations. Since they are
concerned with implementing GHC, they do not consider don't know commitment. We have also been
concerned with arguing for the correctness of our scheme, and presenting it using a series of translations
to more primitive languages. Also, they do not consider the related problem of compiling into a Prolog
without a f r e e z e primitive. Most Prolog implementations currently available do not have a built in
implementation for f r e e z e .

16

3 I m p l e m e n t i n g c p (| , | , &) b y t r a n s l a t i n g i n t o P r o l o g w i t h f r e e z e

We present the implementation in two steps. First we show how cp(| , I ,&) programs may be implemented
by translating them into cp(f, I ,&,0) programs. In overview, all the clauses of a cp(| , | ,&) predicate are
examined to determine the modes of the predicate. Informally, a mode is a collection of clauses which
impose identical 'instantiatedness' constraints on a goal. In order to solve a Cp(|, I ,&) goal, a number of
Cp(f, | ,&,0) goals are generated, one for each mode. Each cp(f, | ,&,0) goal is delayed (using f r e e z e)
until such time as it satisfies the instantiatedness constraints of its mode. Then the goal is reduced using a
set of cp(| ,&) clauses for the mode (obtained by forgetting the annotations in the corresponding cp(| , | ,&)
clauses), and an o t h e r w i s e clause.

Next we show that cp(f, I ,&,0) programs have a remarkably direct implementation in Prolog with
f r e e z e , provided that the 'wait-free' restriction is placed on guards. Don't know commitment is
implemented by exploiting Prolog's inherent backtracking ability: because we do not specify Or-faimess,
Prolog's sequential search of alternative clauses with chronlogical backtracking is a sound implementation.
Don't care commitment is implemented by using a cut. o t h e r w i s e is implemented using Prolog's clause
sequential search rule.

In the remainder of this section, we introduce the concept of modes, discuss the code that is generated
to implement the blocking condition of a mode, present the translation scheme and argue for its correctness,
and present some enhancements to f r e e z e functionality (in Prolog systems) motivated by the translation.

3.1 M o d e s

The starting point for the design is to identify the different modes for a-predicate. A mode is a collection
of clauses for a given predicate each of which have the same blocking condition.

Example 3.1 (Mode groups for r e v / 2) Consider the following Cp(|, I ,&) program:

r e v ([] | / []) .
r e v ([A | R e s t] j , Rev) <- r e v (R e s t , A R e v) , a p p e n d (ARev, [A], R e v) .

Both the clauses have the same mode: the blocking condition for the mode is ({e, l .e},0). Note that
the blocking condition does not contain any information about the terms in the head of a clause: only
the pattern of annotations.

Indeed, most programs written in a determinate data-flow style have a single mode, m e r g e / 3 is a
canonical example of a multi-mode predicate.

Next we consider how to generate code to check the blocking condition of a mode. The definition
of an annotated head allows mode-information to be generated top-down from a clause-head, by starting
from the root, and at each level examining only the immediate subterms that (perhaps eventually) contain
annotated subterms.

In the compiler, a blocking condition, generated by examining a clause head, is represented as a
m o d e / 2 structure. The predicates that generate the structure from a clause head are straightforward and
are omitted.

Definition 3.1 (The mode/2 data-structure) A valid m o d e / 2 structure is a finite tree, satisfying the
constraints imposed by the following grammar rules:

17

Mode : : == [I n s t *] | m o d e ([I n s t *] , [Equa +])
I n s t : : == ins t (Num, A r i t) | arg(Num, Var, A r i t)
A r i t : : == a r i t y (N u m , [I n s t +]) | []
Equa : : == [Var +]

Here the two terminals are Num, which stands for a natural number, and Varr which stands for a
variable. As usual for BNF formalisms, V denotes zero or more repetitions, and '+', one or more.
The data-structure i n s t (Num, A r i t) represents the information that the Numf/i son of the current
node must be instantiated. If A r i t is [], then the instantiated son does not contain any annotated
subterms; otherwise, A r i t is of the form a r i t y (Num, S u b t r e e) , where Num is the maximum of
the set of indices of annotated children of that node, and S u b t r e e represents the (recursive) annotation
specifications for that node. The data-structure a r g (Num, V a r , A r i t) represents the information
that the Numf/i son of the current node is to be equated (at run-time) to Var. A r i t is as above.

The suspension code generated for a blocking condition is best defined by structural induction over
the blocking condition. However, that is precisely how the actual program is structured. We feel that the
definition of the code corresponding to the blocking condition is sufficiently close to its implementation
as a definite clause program for us to present the program directly.

Definition 3 .2 (Suspens ion Code) In the following, we define a predicate c o d e / 3 such that c o d e (A,
B, C) holds iff for a (non-variable) goal B, blocking conditon A may be implemented by executing
cp(f, I ,&,0) code C at runtime. The cp(f, I ,&,o) 'builtin' predicates needed to construct the code are:
a r g / 3 , f u n c t o r / 3 and > = / 2 . (Their definitions are the same as in Dec -20 Prolog J In order
to construct a non-blocking version of the code that checks the instantiatedness conditions (i.e. this
code simply succeeds if the blocking condition is satisfied, and fails otherwise), calls to f r e e z e / 2 are
transformed into calls to n o n v a r / 1 , and calls to f r e e z e / 3 are transformed into calls to = = / 2 .

The following rules cover the three different types of modes:

c o d e (A , B, C) <- c c o d e (A , B, C \ t r u e) .
c c o d e ([] , Head , Code \ C o d e) .
c c o d e ([X | R e s t] , Head, C o d e \ C o d e _ l) <-

i c o d e (Head , [X | R e s t] , C o d e \ C o d e _ l) .
c c o d e (m o d e (I n s t , E n v) , Head, Code \Code_2) <—

i c o d e (I n s t , Head, C o d e \ C o d e . l) ,
e c o d e (E n v , C o d e l \ C o d e _ 2) .

The predicate e c o d e (A, B) holds iff A is a list of lists and B a goal, represented as a difference
structure. Each list in A must be a list of variables. The goal is obtained by nesting the code pro
duced from each each list in A. The code produced from a list [T _ l , . . . , T_n] is f r e e z e (T _ l , T_2,
f r e e z e (T _ 2 , T_3, f r e e z e (T _ (n - 1) , T_n, L) . . .)) . where L is the tail of the difference
structure. Note that n>0.

e c o d e ([] , C o d e \ C o d e) .
e c o d e ([L | R], C o d e \ T a i l) <-

e q u a t e (L, C o d e \ C o d e _ l) , e c o d e (R, C o d e _ l \ T a i l) .
e q u a t e ([L], Code \Code) .

e q u a t e ([A, B | R], f r e e z e (A, B, C o d e) \ T a i l) «-
e q u a t e ([B | R], C o d e \ T a i l) .

18

file:///Code

We distinguish between i c o d e / 3 called at the top-level and called recursively within itself. The
recursive calls are to i a c o d e / 3 . When it is called at the top-lveU we know that the goal itself {the
call's second argument) is instantiated. Hence code need not be generated to obtain the Kth org of the
head - rather we can execute this call right now, at compile time.

i c o d e ([] , Head, T a i l \ T a i l) .
i c o d e ([i n s t (A r g , S u b t r e e) | R e s t] , Head,

f r e e z e (S , C o d e) \ T a i l
) * -

a r g (A r g , Head, S) ,
i a c o d e (S u b t r e e S, C o d e \ C o d e l) ,
i c o d e (R e s t , Head, C o d e l \ T a i l) .

i c o d e ([arg(N, A, S u b t r e e) | R e s t] , Head, C o d e \ T a i l) <—
a r g (N , Head, A) ,
i a c o d e (S u b t r e e , A, C o d e \ T a i l l) ,
i c o d e (R e s t , Head, T a i l l \ T a i l) .

The definition of i a c o d e / 3 is just like i c o d e / 3 , except that all a r g / 3 tests on the first argument
must be made at run-time.

i a c o d e ([] , S , T a i l \ T a i l) .
i a c o d e ([i n s t (A r g , S u b t r e e) | R e s t] , S,

(a r g (A r g , S , S I) , f r e e z e (S I , C o d e)) \ T a i l
><-
i a c o d e (S u b t r e e , S I , C o d e \ C o d e l) ,
i a c o d e (R e s t , S , C o d e l \ T a i l) .

i a c o d e (a r i t y (N , S u b t r e e) , Head,
(f u n c t o r (Head, F , M) , M > N, C o d e) \ T a i l

)<-
i a c o d e (S u b t r e e , Head, C o d e \ T a i l) .

i a c o d e (a r g (N , A, S u b t r e e) , Head,
(a r g (N , Head, A) , C o d e) \ T a i l

)<-
i a c o d e (H e a d , S u b t r e e , C o d e \ T a i l) .

3 . 2 T r a n s l a t i o n s c h e m e

Given the previous section, we will now assume that the r clauses for a Cp(|, | ,&) predicate have been
partitioned into k mode groups. These clauses will be translated into (r +jfc+ 1) cp(f, I ,&,o) clauses: 1 of
Type I, r of Type II and k of Type III .

Type I cause. First, we introduce a clause for p / n. This will be the only clause for p / n in the cp(f, I, & ,0)
program:

p (X l 9 . . . , X n) <-

19

file:///Tail

f r e e z e ([f r e e z e (X , t r u e) , C i [p _ l (X i , . . . , X n , X, o f f \ Y X)]]) ,
f r e e z e ([f r e e z e (X , t r u e) , C 2 [p _ 2 (X i , . . . , X n , X, Y i \ Y 2)]]) ,

f r e e z e ([f r e e z e (X , t r u e) , C k [p J c (X i , . . . , X n , X, Y (k _ i) \ o n)]]) .

Here C i is the freeze code corresponding to the blocking condition for mode i : by the notation
Ci [G] we mean the term Ti , where T i \ G is the code difference structure generated from the
blocking condition for mode i .

The variables X and Yi will be used for 'arbitration' as discussed below. X is used for mutual
exclusion, and the Yi for 'single exclusion'. The predicates p _ i have arity (n + 2) and are 'new'
(they are assumed not to occur in the original cp(| , I ,&) program).

The clauses for p _ i / (n+2) are obtained as follows. The clauses consist of rrn cp(| ,&) clauses,
where mt is the number of clauses in the input program of (with?) mode U and one o t h e r w i s e
clause.

Type I I clauses. The mi cp(I ,&) clauses for p _ i / (n+2) are obtained from the rm Cp(|, I ,&) clauses for
mode-group i as follows: to each clause of the form

p (A i , . . . , A n) <- RHS.

corresponds a clause

p _ i (A i ' , . . . , A n ' , i , -) <- RHS.

in the translated program, where A j ' is the argument A j , with all annotations removed, for 1 < j < k.
Note that i is known at compile time: the actual code that is generated will have a small integer
constant in place of the 'meta-variable' i . (In what follows, each of the r such clauses will also
be called a 'normal' clause.)

Type HI clause. The single o t h e r w i s e clause for each mode is of the following form:

p _ i (X i , . . . , X n , _ , Y\Y) <- o t h e r w i s e | t r u e .

33 Discuss ion of t h e t r a n s l a t i o n

Here is how the translation works. The first clause (for p / n) invokes the freeze goals. The freeze goals
achieve 'Or-parallelism': they cause suspension until such time as the appropriate arguments for the mode
group are instantiated. When an p . i goal is unfrozen, all the clauses for that mode are tried. One of the
following cases must happen:

Case 1. Suppose some other sibling p . j goal 0' ¥ 0 has reduced via a normal clause. In this case X is
equated to j , and the only selectable clause for the p _ i goal is the last one.

20

Note that all the goals p_o (for o ^ j , \ < o < k)> which have been activated because their blocking
condition has now been met, will be able to reduce via their last clause, and only via their last
clause. This corresponds to allowing only one Or-sibling guard system to commit in any one
branch of the computation. Note also that once some p . j goal reduces via a normal clause, all
the f r e e z e / 1 goals corresponding to the other modes can be activated in that branch (resulting
from commitment) in which the results of commitment are published. For these goals the freezing
condition for the second alternative is met, even if the blocking condition for the mode is noi yet
met. Hence these goals will successfully terminate.

Case 2. Suppose no other sibling p.j goal (j ^ i) has reduced via a normal clause. In this case, the
goal may commit to one of its normal clauses. This commitment mirrors the commitment of the
corresponding goal to the corresponding clause in the original Cp(j, | ,&) program. One of the
following must happen:

Case 2.1. Suppose the goal commits to a 4 1 ' clause. If a failure is subsequently encountered this
branch of the computation will fail.

Case 2.2 Suppose the goal commits to a clause. In this case, the current resolvent is split
into two. As discussed above, because of mutual- and single-exclusion, the other mode goals
for the predicate cannot commit in the branch in which the results of the commitment are
published. In the other branch, note that the alternate choice points in guard computation, if
any, are preserved, exactly as needed, together with the alternate choice points (clauses) for
the committing goal if any, together with the other mode goals, that have not yet terminated,
if any. The alternate clauses for the p _ i goal will be tried in this alternate world at some
future point, depending upon the scheduling of Or-parallel computations.

Finally, suppose p _ i is not able to commit with any normal clause. Then the otherwise clause
becomes applicable. 8 This clause will succeed iff less than (k - 1) of the other sibling p . j goals
have succeeded with their last clause. (Only in this case will the Y\Y equating succeed; otherwise
it will fail on attempting to equate on with o f f .) This ensures that the original p / n goal is able to
reduce successfully in any Or-parallel world iff exactly one of the p_o goals reduces via a normal
clause.

3.3.1 Optimisation for single-mode predicates

Note that in case a predicate has only a single mode group, the overhead of distributed commitment
may be avoided. The single Type III clause will never be applicable, and can hence be omitted. But
then, so can the two extra arguments added for single and mutual exclusion. Consequently, for single
mode predicates, r cp(l I ,&) clauses for a predicate p / n translate into (r + 1) Cp(f, I ,&,0) clauses, one
for predicate p / n and r for predicate p . l / n .

This optimisation is important because in reality a large fraction of the code that is written seems
to involve singel mode predicates. Certainly, all deterministic programs writen in the data-flow style, as
transducers of streams of values (Kahn-style networks) will consist of single-mode fcp(|, |) programs.

If the input program is further a Cp(| ,&) program as well, then the blocking condition of the single
mode group will be (0,0) . Now the Type I clause may also be omitted. Only the r Type II clauses

8Note that head-unification cannot suspend for any clause for p j , and neither can guard computation, because of the wait-
free assumption. Hence all normal clauses will become non-candidates without having to wait for more information from the
environment.

21

corresponding to the r cp(| ,&) clauses are needed. This means that cp(I ,&) programs are translated into
identical Cp(f, I ,&,0) programs!

3.3.2 Example of translated code

Sample Cp(j, | ,&) code and its translation into cp(f, | ,&,0).
Consider a single mode cp(j , I) predicate. The code and its translation is given below.

r e v ([X | X s] l , Ys) <- r e v (X , Y) <-
r e v (X s , Z s) , f r e e z e (X, r e v _ l (X , Y)) .
a p p e n d (Z s , [X], Ys) .

r e v ([] j , []) . r e v _ l ([X | X s] , Ys) «-
r e v (X s , Z s) ,
a p p e n d (Z s , [X], Ys) .

r e v . l ([] , []) .

The translation of a Cp(I ,&) predicate is the identity translation, so an example should not be necessary.
The translation of a multi-mode predicate is as follows:

m e r g e (A , B , C) <—
f r e e z e ([f r e e z e (F l a g , t r u e) ,

f r e e z e (A , m e r g e . l (A, B, C, F l a g , o f f \ Y))])
f r e e z e ([f r e e z e (F l a g , t r u e) ,

m e r g e ([A | X] i , Y, [A| Z]) <- f r e e z e (B , m e r g e . 2 (A , B , C , F l a g , Y \ Y 1))]) ,
m e r g e (X , Y , Z) . f r e e z e ([f r e e z e (F l a g , t r u e) ,

m e r g e (X, [A| Y] | , [A| Z]) <- f r e e z e (A, f r e e z e (B , m e r g e _ 3 (A, B, C,
m e r g e (X , Y , Z) . F l a g , Y l \ o n)))]) .

m e r g e < [] | , [] | , []) . m e r g e - l ([A | X] , Y, [A | Z] , 1 , .) <-
m e r g e (X , Y, Z) .

m e r g e . 2 (X , [A | Y] , [A | Z] , 2 , _.) «-
m e r g e (X , Y, Z) .

m e r g e . 3 ([] , [] , [] , 3 , _) .
m e r g e . 2 (A, B, C, Y\Y) o t h e r w i s e | t r u e .
m e r g e . 1 (A, B, C, Y\Y) ±- o t h e r w i s e | t r u e .
m e r g e . 3 (A, B, C, Y\Y) o t h e r w i s e I t r u e .

3.4 T r a n s l a t i n g cp(f, I ,&,o) p r o g r a m s in to Pro log-wi th- f reeze

We now consider the implementation of Cp(f, I ,&,o) programs by translation into Prolog.
We proceed in a series of steps. First, it should be clear that any Cp(&) program may be implemented

as a pure Prolog program as follows:

Cp(&) program: Prolog program
Head «- Guard & B o d y . Head <— Guard, B o d y .

22

Since there is no possibility of suspension, a left-to-right, depth-first search strategy (as implemented
in Prolog) is an adequate implementation.

It should also be clear that any cp(| ,&) program may be implemented in pure Prolog-with-cut, by
translating 4 | '-clauses as follows:

Cp(|) program: Prolog program
H e a d <- G u a r d | B o d y . H e a d <— G u a r d , ! , B o d y .

Next, consider Cp(I ,&,0) programs. Suppose the clauses in the Cp(I,&,o) program have been rear
ranged so that all o t h e r w i s e clauses textually succeed all other clauses for the same predicate. Such
a cp(I ,&,0) program may be implemented in Prolog by using the two translation rules above, together
with the following clause defining the predicate o t h e r w i s e .

o t h e r w i s e .

Finally, consider cp(f, I ,&,0) programs. Unfortunately, in general, the obvious translation (i.e. translate
cp(f, | ,&,0) clauses according to the translation for cp (I ,&,0), and use the implementation of f r e e z e in
the host language) does not work, essentially because of the guard-isolation and deep-wait problems.

Recall that a c p clause can commit to a goal only when the guard has been fully solved. This means
that before the Prolog clause can 4commit' , it must ensure that no frozen goals generated during guard
execution are left to be executed. Also, it is incorrect to execute any siblings of the parent goal that might
be awakened because of bindings generated during guard execution, until guard execution has terminated
successfully. This is the guard-isolation problem.

This problem can be handled by two assumptions. First, we assume the implementation supplies a
primitive predicate, say p r o l o g / 1 such that a goal p r o l o g (X) suceeds iff its argument is a sequence
of goals, and execution of the goals succeeds, with no frozen goals remaining. The sequence of goals G
in the guard of a cp(f, | ,&,0) clause may then be executed as the goal p r o l o g (G) in the 'guard' of the
corresponding Prolog clause. Second, we must make some assumptions about when 'reawakened' goals
are scheduled for execution. 9 We assume that reawakened goals are scheduled 4as late as possible', i.e.
only after execution has terminated (perhaps with some frozen goals) at the current 4level', where each
nested invocation of a p r o l o g / 1 goal counts as a 'level'. The reawakened goals may be scheduled in
an arbitrary order.

The second, more important, problem has to do with the case in which execution of the goals in
the guard terminates, there are no reawakened goals, and some goals remain frozen. In c p , such a case
corresponds to one branch of the guard system being blocked. If the guard computation contains a goal
which &-committed to a clause, then there could be more than one disjunctive guard-system generated
from the same guard. It is possible that one of those guard-systems has a successful execution sequence,
and hence the Prolog implementation must make sure that it examines all the disjunctive guard systems
until it finds one that is successful. Since we implement don't know commit by backtracking, it becomes
necessary for the Prolog system to treat this case as failure and initiate backtracking.

During this backtracking the implementation may discover a successful execution of the guard system
and commit. However, if the clause (containing the guard) happened to be a *&'-clause, then computation
may later backtrack into the guard because of a deep failure encountered on scheduling some other (sibling
of the parent) goal. If no other successful guard executions for the clause remain, it now becomes necessary
to suspend the parent goal, since it is possible that its suspended guard-system branch could be reawakened

9Reawakened goals are freeze goals whose suspension condition has just been satisfied.

23

if some sibling of the parent goal is scheduled next. The parent goal must be suspended in such a way that
information is recorded that prevents it from committing to those guard system invocations (and within
an invocation, the specific branches!) to which it has already committed, if the semantics of &-splitting is
to be preserved. But suspending such a partially executed goal is exceedingly complicated, for a variety
of reasons. State (the frozen guard-system branch) would need to be stored across backtracks in the
Prolog system. The size of the state could be arbitrarily large (guard execution could have suspended at
an abitrary depth). This problem seems unsolvable in this framework. 1 0

For the purposes of this paper, we will deal with the deep-wait problem by restricting the input
language of the translator to Prolog-with-freeze to be Cp(f, I ,&,o) with wait-free guards (Section 2.1).
Such programs come with the assurance that the execution of no guard system can block on variables global
to the parent goal. Hence, when executing a guard system, if a branch terminates with no reawakened
goals but some frozen goals, it is safe to treat this as deadlock (i.e. a situation in which no progress is
possible because each goal is blocked on others, with no possibility of any goal being resumed), fail and
initiate backtracking to search for an alternative guard system branch, or alternative guard invocation.

This restriction implies that the cp(| , | ,&) compiler produces code that is guaranteed to work correctly
only for cp(J,, I,&) programs with wait-free guards. In essence, the blocking condition for the mode defines
the blocking condition for head unification and for guard execution for all the clauses in that mode. If a
cp(i , I >&) program that does not satisfy this condition is input to the compiler, then the resulting progam
is a potentially incomplete implementation. It is possible that some valid execution sequence for the
cp(| , I ,&) program is not discovered by the implementation.

To sum up. cp(f, I ,&,0) programs, with wait-free guards, may be implemented in a Prolog-with-freeze
by virtue of the following translation:

• Sort all the cp(f, I ,&,o) clauses so that, for every predicate, all the o t h e r w i s e clauses (if any)
appear after the other clauses.

• Translate every cp(f, I ,&,o) clause into a Prolog clause according to the following table:

cp(f, | ,& ,0) program: Prolog program
Head <- Guard & B o d y . Head *- p r o l o g (G u a r d) , B o d y .
Head «- Guard | B o d y . Head <- p r o l o g (G u a r d) , ! , B o d y .

The predicate o t h e r w i s e is trivially implemented as discussed above. The definition of p r o l o g / 1
is now summarised. A goal p r o l o g (X) suceeds iff its argument is a sequence of goals, and execution of
the goals succeeds, with no frozen goals remaining. If execution of goals terminates, and some goals are
left frozen, then the execution is to be regarded as terminating in failure, and backtracking is initiated. On
being backtracked into, the goal p r o l o g (X) succeeds as many times as there are alternative solutions
for X.

3.4.1 Performance Considerations

Note that according to the translation schemes given above, cp(I ,&) programs are translated to identical
cp(f, I ,&,o) programs, which are converted into Prolog clauses that are nearly identical to the original

1 0 A solution may, however, be possible for cp(|,|,o). In this language, since any goal can have at most one successful
execution, it would be sufficient to simply suspend the parent goal, and retry all the guard-systems for the goal again, at some
future instant, as in the Ueda and Chikayama scheme. This scheme would certainly be wasteful in run-time because an arbitrarily
large guard may need to be scheduled again and again. I have not explored this in detail.

24

cp(I ,&) clauses. The implementation for such programs pays no overhead for checking suspension condi
tions (because there are none), and runs essentially at the speed of the underlying Prolog implementation.
This is significant because there are many cp(| ,&) programs. If the computational model of a cp progams
is that of a network of cells performing local computation and communicating with other cells, then the
predicates which spawn the network to begin with are often cp(I ,&) programs.

It is not possible to take advantage of such syntactic properties of subsets of the language for languages
with 'dynamic annotations' such as Concurrent Prolog. Even if no clause for a predicate has any
occurrences o f ' ? ' , at run-time a read-only annotated variable may still be passed in. Hence it is impossible
to implement the program directly as a Prolog program, without including the general (and somewhat
cumbersome) machinery for read-only unification.

Another important advantage of the above translation scheme is that good use maybe made of the
underlying Prolog's indexing and/or determinacy detection and/or mode declaration facilties. In most
Prolog systems, the implementation of head unification is optimised: all these optimisations are directly
applicable for c p because Cp unification (without the annotations) gets implemented as Prolog head
unification. If the underlying Prolog system accepts it, nested mode declarations may also be generated
by the compiler. For example, from the clause

m e r g e ([A | | X] , B, [A |Y]) «- m e r g e (X, B, Y) .

the mode declaration

: - mode m e r g e . l (+ (+ , ?) , ? , ?) .

may automatically be generated. (As an aside, I have observed that it is not uncommon to write cp(| , |,&)
programs in which terms are nested to a depth of 3 — 4 in the head of a clause.)

3.5 O n requirements from a freeze implementat ion

I now discuss and summarize some requirement on the functionality of freeze (in Prolog systems) that
should have been apparent from the discussion above.

Activation of awakened freeze goals One of the basic problems with the current implementation of
freeze is the 'cut capture' problem. If a goal g is frozen on a variable X, and if X is bound during
resolution (head unification) of goal g l with clause c l , then g will be invoked immediately after head
unification. If c l has a cut in its body, then this cut will also cut away alternate solutions to the frozen
goal. This is unacceptable from our viewpoint: the solutions to the frozen goal have nothing to do with
the goals in the body of c l , and hence the proof of g l .

Finally, as discussed above, it should be possible to allow for goals to be frozen pending two terms be
coming equated, not just pending a variable becoming instantiated, (f r e e z e / 3 in cp(f, | ,&).) Similarly,
it would seem useful to have the equivalent of f r e e z e / 1 in Prolog.

3.6 Performance figures

Because of some of the above problems with f r e e z e , we have been unable to run cp(| , | ,&) programs
on top of a Prolog-with-freeze. However, the cut capture problem does not affect the implementation of
fcp(i, I) programs. Performance numbers for some such programs, running on Sicstus Prolog, Version

25

1.1 on a Vax-780 are presented below. These numbers are compared with the numbers for the Flat
Concurrent Prolog implementation (Logix), and Quintus Prolog running on a Vax-750, and for a plain
Sicstus Prolog version of the program running on a Vax-780. The numbers for Logix and Quintus are
from [Silverman, 1986]. (All times are in msec.)

Test Implementation]Machine Test
Logix/750 Quintus/750 FCP/780 SICS/780

nrev
(100 elems)

2850 717 3350 790

quicksort
(100 elems)

7570 5150/3 4040 1380

hanoi 5530 2716 1440 1440

26

4 C o m p i l i n g i n t o p l a i n P r o l o g

We now turn our attention to an implementation that compiles into pure Prolog.
As before, we proceed in a series of steps. We first present a meta-interpreter for cp(f, | ,&; o) with

wait-free guards, and show how it may be rewritten into a deadlock-detecting cp(f, | ,&; 0) interpreter,
written in cp(| ,&; 0), by introducing the notion of a suspension queue. (The interpreter itself has wait-free
guards.) In essence a goal can be solved by passing it a suspension list on which any f r e e z e subgoal
places itself when it must suspend because its blocking condition is not met. Hence if a goal returns
successfully, it may also return some suspended subgoals which need to be solved completely in order to
obtain a solution. At the top-level, these goals are then called in turn, until there are no more goals left
(success) or else a goal fails irrevocably or else no progress can be made (deadlock).

The translation from cp(f, | ,&; 0) programs with wait-free guards into Prolog-with-freeze given in the
previous section is applicable to the sublanguage Cp(| ,&; o) as well, giving a translation from cp(I
0) to Prolog. Altogether, we thus get a deadlock-detecting interpreter for cp(f, | ,&; o) written in Prolog.
Combined with the translation from cp(| , I ,&) to Cp(f, I,&,0) discussed in the previous section, this gives
us an interpreter for cp(j , I ,&) in Prolog. Given a particular Cp(|, | ,&) program, this interpreter may be
partially evaluated to produce a Prolog program that may be compiled and run by the Prolog system.
The cp(| , I ,&) compiler in fact produces the Prolog code directly.

27

4.1 A Deadlock-detect ing interpreter for cp(f, I ,&,o)

4.1.1 Input language

The input language for the interpreter is a collection of c l a u s e / l '&'-facts. The argument to each fact
is a cp(f, | ,&; 0) clause, with wait-free guards. Hence a c l a u s e / 1 assertion is of one of the following
types:

c l a u s e ((H e a d <— Guard | Body) : - t r u e & t r u e ,
c l a u s e ((H e a d <— Guard & Body) t r u e & t r u e ,
c l a u s e ((H e a d <— o t h e r w i s e I B o d y) : - t r u e & t r u e .

An 'empty' guard or body is represented by the goal t r u e .

4.1.2 Meta-interpreter for cp(f, I ,&; o)

The meta-interpreter is straightforward. It is an adaptation of the interpreter in [Saraswat, forthcoming].
Note that every object level operation is 'absorbed' at the meta-level, i.e. implemented by exactly the
same operation.1 1

c p (t r u e) .
c p ((G l , G 2)) «- c p (G l) , c p (G 2) .
c p ((G l ; G2)) <- c p (G l) ; c p (G 2) .
c p (G o a l) <— b u i l t i n (G o a l) | s y s t e m (G o a l) .
c p (G o a l) <— o t h e r w i s e | u s e r (G o a l) ,
u s e r (G o a l) <—

c l a u s e ((G o a l <— Guard | B o d y)) ,
Guard ^ o t h e r w i s e ; c p (G u a r d) | c p (B o d y) .

u s e r (G o a l) «—
c l a u s e ((G o a l «— Guard & Body)) ;
c p (G u a r d) & c p (B o d y) .

u s e r (G o a l) <—
o t h e r w i s e | c l a u s e ((G o a l : - o t h e r w i s e I B o d y)) ; c p (B o d y) .

b u i l t i n (f r e e z e (X)) .
b u i l t i n (f r e e z e (X , Y)) .
b u i l t i n (f r e e z e (X , Y, Z)) .
other builtins ...

s y s t e m (f r e e z e (X)) «- f r e e z e (X) .
s y s t e m (f r e e z e (X , Y)) «— f r e e z e (X , Y) .
s y s t e m (f r e e z e (X , Y, Z)) <— f r e e z e (X , Y,Z) .
other axioms

It is worth noting that the only control construct that has really been used in an essential way in the
meta-interpreter (i.e. to serve a purpose other than interpreting itself) is And-sequentiality: it is used to
ensure that all calls to c p / 1 from within the program have their argument instantiated to a goal(s).

1 1 For simplicity of presentation, we further impose the syntactic restriction that if an otherwise goal appears in a guard, then
it may be the only goal in the guard. This restriction is not computationally significant

28

4.1.3 A cp(| ,&; o) interpreter for cp(f, I ,&,o)

We now turn to the task of providing an implementation for f r e e z e in cp(I ,&; o). As in Section 2.3, it
becomes necessary to introduce extra state in the interpreter that corresponds to a suspension queue and
a deadlock flag. When a f r e e z e goal cannot be reduced because its blocking condition does not yet
hold, it is placed on the suspension queue. The deadlock flag is a variable that is initially unbound. Once
all goals have been reduced, the suspension queue is examined. If it is not empty, then the goals in the
queue are executed with a new deadlock flag. This flag is set if the current cycle causes any 'significant
event' to occur. For example, the reduction of a process in the current cycle would count as a significant
event. If at the end of the current cycle, when all the goals on the suspension queue have been examined
once, and no significant event has occurred, then it is safe to assume that no significant event will occur,
and deadlock may be declared, if the queue is not empty. Otherwise, the cycle repeats.

At the top-level, a G o a l S y s t e m is accepted.

c p (t r u e) .
c p (X) <— o t h e r w i s e | c p (X , S u s p , D) ; t e r m i n a t i o n (S u s p , D) .
c p ((G l , G 2) , H e a d \ T a i l , D) <-

c p (G l , H e a d \ M i d d l e , D) , c p (G 2 , M i d d l e \ T a i l , D) .
c p (G o a l , . S u s p , D) <— b u i l t i n (Goa l) I s y s t e m (G o a l , S u s p , D) .

c p (G o a l / S u s p , D) <- o t h e r w i s e | u s e r (G o a l , S u s p , D) .

u s e r (G o a l , S u s p , nd) «-
c l a u s e ((G o a l <— Guard | B o d y)) ,
Guard ¥ o t h e r w i s e ; c p (G u a r d) | c p (B o d y , S u s p , _) .

u s e r (G o a l , S u s p , nd) *-
c l a u s e ((G o a l <- Guard & B o d y)) ;
c p (G u a r d) & c p (B o d y , S u s p , _) .

u s e r (G o a l , S u s p , nd) <-
o t h e r w i s e |
c l a u s e ((G o a l <- o t h e r w i s e I B o d y)) ; c p (B o d y , S u s p , .) •

b u i l t i n (t r u e) .
b u i l t i n (f r e e z e (X)) .
b u i l t i n (f r e e z e (X , Y)) .
b u i l t i n (f r e e z e (X , Y, Z)) .
other builtins ...

s y s t e m (f r e e z e (X) , S u s p , D) <-
f r e e z e (X , f r e e z e (X) , S u s p , D) .

s y s t e m (f r e e z e (X , Y) , S u s p , D) <-
f r e e z e (X , Y, S u s p , D) .

s y s t e m (f r e e z e (X , Y, Z) , S u s p , D) <-
f r e e z e (X , Y, Z, f r e e z e (X , Y , Z) , S u s p , D) .

We now consider the implementation of the builtin predicates.

29

Freeze A call f r e e z e (X) is implemented by a call of the form f r e e z e (X, f r e e z e (X) , S u s p ,
D) } 2 If the blocking condition of any element in the list X is satisfied then the deadlock flag is set and
the corresponding goal executed, with the same suspension queue. When none of the branches succeed,
the goal is reenqueued on the suspension list. Note that only successful execution of a blocking condition
qualifies as a significant event. This is the only goal that places itself on the suspension queue.

f r e e z e ([] , G o a l , (G o a l , T a i l) \ T a i l , D) .
f r e e z e ([f r e e z e (C , G) | R], G o a l , S u s p , n d) <- n o n v a r (C) I c p (G , S u s p , _) .
f r e e z e ([f r e e z e (A , B , G) | R], G o a l , S u s p , n d) «- A == B | c p (G , S u s p , _) .
f r e e z e ([- | R], G o a l , S u s p , D) «— o t h e r w i s e I f r e e z e (R, G o a l , S u s p , D) .

Calls to f r e e z e / 2 and f r e e z e / 3 are implemented similarly. We illustrate f r e e z e / 2 :

f r e e z e (C, G o a l , S u s p , nd) <— n o n v a r (C) | c p (G o a l , S u s p , _) .
f r e e z e (C , G o a l , (f r e e z e (C , G o a l) , T a i l) \ T a i l , D) <- o t h e r w i s e I t r u e .

Checking termination When the marker is checked, it may result in the discovery of deadlock, termi
nation or that there are more goals to be solved. Deadlock occurs if all the goals in the current suspension
list have been exmined without any one reducing. Otherwise the remaining goals are executed.

t e r m i n a t i o n (S u s p \ t r u e , d e a d l o c k) <— d i s p l a y (d e a d l o c k (S u s p)) | f a i l ,
t e r m i n a t i o n (H e a d \ t r u e , nd) <— o t h e r w i s e | c p (H e a d) .

Other builtins Other 'built-in' goals are executed by simply invoking the corresponding primitive goals
in cp(| ,&; 0), wherever necessary. (This includes the goal t r u e .) For example:

s y s t e m (t r u e , Head \Head , n d) .
s y s t e m (A < B, Head \Head , nd) <- A < B .

Executing a builtin goal is always presumed to be a significant event. (Hence the third argument in
the goal is equated to nd.)

4.1.4 Properties of the interpreter

This interpreter satisfies the following propositions:

• The Cp query succeeds, and never loops iff (for this query) the implementation succeeds (with all
the same answers), and never loops.

• The Cp query always fails iff the implementation fails.

• The Cp query deadlocks iff the implementation reports deadlock.

'A similar implementation is described in [Cohen, 1985].

30

file:///Tail

4.2 Translating cp(| ,&; o) to Prolog

In Section 3.4, we showed how cp(I ,&,o) programs may be translated almost trivially into Prolog. The
translation is considerably simpler for cp(I ,&; 0), since there is now no possibility of suspension. A goal
system of the form Gl ; G2 may simply be translated into the (Prolog) goal system G l , G2. More
precisely:

• Sort all the Cp(| ,&; 0) clauses so that, for every predicate, all the o t h e r w i s e clauses (if any)
appear after the other clauses.

• Translate every cp(I 0) clause into a Prolog clause according to the following table:

4.3 Code generated by compiler

We now exhibit the Cp(| ,&; 0) code generated by (an early version of) the compiler. We contend that this
code may in principle be generated by partially evaluating the interpreter above, with an input cp(f, I ,&,0)
program in the form of a c l a u s e / 1 predicate, and then applying some conceptually straightforward
program transformation steps. However, even to present an informal derivation for a simple program
would require the presentation of program transformation rules for cp(I ,&; 0), which has to be beyond
the scope of this paper. We hope to present such rules, and revisit this example in future work.

In what follows, we mix object- and meta-level notation in the following way. Object-level code will
appear in t h i s font, and meta-level code in this font. We use this notation, for example, when we want
to talk of the different predicates, one for each mode, generated for a source predicate p / n : thus the
syntax p j (A, B) stands for an actual (object-level) call of the form p_2 (A, B) , or p_3 (A, B) , if the
meta-variable i ranges over the set { 2 , 3 } .

4.3.1 Single mode predicates

The following code is generated for a single mode predicate p / n :

Entry predicate. For a predicate p / n

P (A _ 1 , . . . , A_n, H, T, nd) <—
Code I p (A _ l , . . . , A_n, H, T) .

P (A _ 1 , . . . , A_n, p (A _ l , . . . , A_n, R) , R, D) <— o t h e r w i s e I t r u e .

In the above Code is the non-blocking version of the code that checks the instantiatedness conditions
for a mode. (Section 3.1.)

cp(| ,&; o) program: Prolog program
Head <- Guard & B o d y . Head <- T{Guard} , T { B o d y } .
Head <- Guard 1 B o d y . Head <- T{Guard} , i , T { B o d y } .

where

T{G1},T{G2} i f G = (G1,G2) o r G = (G1;G2)
G o t h e r w i s e

31

Real predicate. To every clause in the source program for p / n corresponds a clause in the object program
for p _ l / (n + 2) .

First, some definitions. Given a (possibly annotated term) T, the clean form of T, notated by T7, is
the term obtained by erasing all annotations in T. Given a conjunction

G = P i (A] ; , . . . , A ^ 1) , p 2 (A ? , . . . , A 2 2) , . . . , p k (A ^ . . . , A ^)

the (H, T, D) chained form of G, notated by G [H, T, D] , is the conjunction

G[H,T,D]= p 1 (A i , . . . , A ^ , H , M i , D) ,
p 2 (A ? , . . . , A 2 2 , M i , M 2 , D) , . . . ,
Pk(A{,...,A{5 k,M(k.i),T,D)

where Mi , . . . ,M(k _i) are presumed to be 'new' variables, i.e. they do not occur elsewhere in the
(enclosing) clause.

Each clause in the source program is translated according to the following scheme:

cp(l , \,&) program: cp(| ;&) program:
p (A _ l , . . . , A_n) <- P - l (A . l / , . . . , A . n /

/ H, T) +-
Guard % B o d y . Guard[Gh, t r u e , GD]; e x e c u t e (G h , G D) %

B o d y [H , T , D] .
p (A _ l , A_n) «- p . l (A . l , „ , . , A . n /

/ H, T) <-
Guard % B o d y . Guard% B o d y [H , T , D] .

The second form is a simpler version of the first, and can be chosen only when Guard consists
solely of calls to built-in predicates, calls to which cannot suspend. Note that the variable D does
not occur either in the head or the guard of the clause.

Single mode predicates, with vacuous mode. For such predicates the Entry predicate clause is omitted.
For the Real predicate clauses, the name of the actual predicate (instead of a subscripted variant) is used.
Further, note that the D e a d l o c k flag does not need to be passed to such goals since no goal for such a
predicate can ever be placed on the suspension queue. (Recall the D e a d l o c k flag is needed to enable
the detection of the situation in which all goals have been scheduled from the suspension queue, and none
is able to make any significant progress towards reduction.)

Wait-free predicates. The general scheme above may be specialised to the following important subcase.
Given a Cp(|, I ,&) program, a wait-free predicate is a single mode predicate with vacuous mode such

that for every clause for the predicate, every call in the body is, recursively, for a wait-free predicate.
Note that this class of programs is a superset of the set of Cp(| ,&) programs, since a guard may

contain calls to non-wait-free predicates. This is not a problem under the asusmption that the guard itself
is wait-free.

Wait-freeness of a predicate is a property that may be computed very simply at compile time as
follows. The call dependency graph for a program is a directed graph with nodes labelled by predicates,
and an edge from node p _ i to node p_ j iff there exists a clause for p . j which contains a call to p _ i
in its body. Consider a call dependency graph in which a node is coloured iff it corresponds to a built-in
predicate calls to which cannot suspend, or to a user-predicate which is not a single mode predicate with
vacuous mode. A predicate is wait-free iff its node is uncoloured in the transitive closure of this graph.

32

By definition, a wait-free predicate has the property that, on any call, neither the call (nor any subgoal
generated by the call) may suspend, regardless of the scheduling policy used to execute the call and its
subgoals. Hence, according to our depth-first scheduling strategy, a successful call to such a predicate
will always result in the Head and T a i l variables (which represent the suspension queue) becoming
equated. Hence for such predicates, in addition to the D e a d l o c k argument being omitted (as above) the
Head and T a i l arguments may also be omitted. In particular, this means that for such a source-predicate
p / n , the cp(| ;&) predicate that implements it is also p / n . If a call is made to p / n in some clause in
the source program, this call is translated into a call to p / n in the target program (i.e. it is not 'chained
into' the G o a l s y s t e m it occurs in).

Finally, note that the second form of the translation given above for the real clauses of the cp(j , | ,&)
program may be strengthened as follows. The c p (| , I ,&) program clause

p (A _ l , . . . , A_n) <- Guard % B o d y .

may be translated into the clause:

p_ l (A_ l ' , . . . ,A_n ' , H, T) <- Guard %Body[H,T,D] .

if every call to a predicate in Guard is either for a built-in predicate that does not suspend, or for a
wait-free predicate.

Whenever the two conditions discussed in this paragraph are satisfied, the predicate may be imple
mented by simply translating its clauses into the corresponding Prolog clauses. Not even extra arguments
are necessary. Extra arguments have been found, experimentally, to slow down execution by 30% in
some cases.

4.3.2 Multi-mode predicates

Entry predicate. The entry predicate for a source predicate p / n is a predicate p / (n + 3) . The three extra
arguments are the Head and T a i l of the susension queue and the D e a d l o c k flag. There is only
one clause for p / (n+3) (the Type I clause), whose body contains calls to k freeze predicates,
where k is the number of modes for p / n . These calls are strung on two chains: a suspension
chain terminating in Head and T a i l , and a single exclusion chain terminating in o f f and on. In
addition each call shares the D e a d l o c k flag, and also a mutual exclusion F l a g .

p (A _ l , . . . , A_n, Head, T a i l , D e a d l o c k) <—
p . f . l (A - l , . . . , A . n , Head, T_l , D e a d l o c k , F l a g , o f f , M _ l) ,
p . f - 2 (A _ l , . . . , A _ n , TJL, T_2, D e a d l o c k , F l a g , M . l , M_2),
. . . ,
p _ f J ; (A _ l , . . . , A _ n , T_(£-7,), T a i l , D e a d l o c k , F l a g , Mj(k-1), o n) .

Freeze Predicates. For each mode /, the following clauses are defined for the freeze predicate p . f J/ (n+ 6) .
The clauses can be thought of as being obtained by specialising a call to f r e e z e / 1 when its single
argument is known to be a list of two alternatives. We use explicit clause-sequencing in lieu of
nested o t h e r w i s e goals.

33

p _ f J (A _ l , . . . , A_n, Head, Head, D e a d l o c k , F l a g , M, M) <—
n o n v a r (F l a g) | t r u e ; ;

p_f J (A _ 1 , . . . , A_n, Head, T a i l , D e a d l o c k , F l a g , M_l, M_2) <-
C o d e J | p J (A _ l , . . . , A_n, Head, T a i l , F l a g , M_l, M _ 2) ; ;

p _ m J (A _ l , . . . , A_n,
p _ f _ / (A _ l , . . . , A_n, T a i l) , T a i l , D e a d l o c k , F l a g , M, M
) .

Real predicate. A freeze predicate for mode / contains a call to the real predicate for mode /. The clauses
for the real predicate are the Type I I and Type I I I clauses. The Type I I clauses are obtained by
a one-to-one translation of the clauses in the source program in mode group U for predicate p / n .
The translation is analogous to the translation for real predicates for single-mode predicates, except
that the extra argument in the head have to be handled correctly:

Cp(|, \ ,&) program:
p (A _ l , A_n) «-

Guard % Body,

p (A _ l , A_n) «-
Guard % Body .

cp(| ;&) program
p_l (A_l ' , . . . ,A- .n ; , Head, T a i l , i, _) <-

Guard[GH, t r u e , GD]; e x e c u t e (G H , GD)%
B o d y [H e a d , T a i l , D] .

p_ l (A . 1 7 , . . . , A_n', Head, T a i l , i, .) <-
Guard% B o d y [H e a d , T a i l , D] .

As before, the second form is a simpler version of the first, and can be chosen only when Guard
consists solely of calls to either those built-in predicates for which calls cannot suspend, or to
wait-free user-defined predicates. Note too that if the guard or body contains goals for wait-free
predicates, then these goals are not * chained in'. Also, goals for single mode predicates with vacuous
modes (which are not also wait-free) are called only with two extra arguments (the D e a d l o c k
flag is dropped).

In addition, there is one o t h e r w i s e clause for p J/ (n + 5) , corresponding to the Type i n clause:

p J (A « l , . . . , A_n, Head, Head, D e a d l o c k , F l a g , M, M)
o t h e r w i s e | t r u e .

4.4 O p t i m i s a t i o n s for m u l t i - m o d e p r e d i c a t e s

When attempting a translation from cp(| , I ,&) to a Prolog-with-freeze, some kind of distributed com
mitment operations is essential. Using f r e e z e results in non-busy waiting: a frozen goal is scheduled
for execution, by a constant-time operation, after its blocking condition is met. It is not touched if its
blocking condition is not met. However, the blocking conditions for different modes could be achieved
at different instants, during the course of execution, and hence it is necessary to coordinate commitment
of a goal to one of is clauses through shared variables. Moreover, it is necessary to spawn mode goals
for each mode, since it is not known a priori which mode is going to contain a clause that will commit
successfully.

Generating all the mode goals at once can be expensive in time and space, unavoidable as it seems
for a f r e e z e - b a s e d implementation. The amount of memory used may be calculated as follows: in the

34

worst case, when the goal is first scheduled, none of the blocking conditions for its modes is satisfied.
Hence k mode goals will be placed on the heap. Each mode goal will occupy at least (n + 7) words
(to store the goal for the real predicate) on a WAM-based Prolog implementation, discounting whatever
space is consumed by the mechanism for implementing disjunctive freeze. 1 3 Moreover, once a clause
commits, 0(k) time is necessary to unfreeze the other mode goals. This must happen on every clause
commitment for the goal (multiple clause commitments are possible with -clauses).

This overhead can be reduced when compiling into a (vanilla) Prolog. In this case, it is not possible
to implement non-busy waiting simply. 1 4 Hence the blocking condition of a mode goal has to be checked
blindly and periodically by the implementation. But advantage can be taken of this periodic checking by
checking the blocking conditions of all the remaining modes for the goal at the same time. This leads to
the idea of maintaining a single Prolog goal for every cp goal, and keeping within the goal, if necessary,
a data structure (the mode list) representing all the available modes for the goal. (The available modes
are those whose blocking condition has not yet been determined to hold.)

In overview the new scheme works as follows. To implement a multi-mode Cp predicate, three kinds
of Prolog predicates are needed: one Enter Freeze predicate, one Real Freeze predicate and k Normal
predicates, one for each mode. A c p predicate is invoked by executing the corresponding Enter Freeze
predicate. This predicate examines the blocking code for each mode sequentially, in alternate clauses.
If the blocking code for no mode holds, then the predicate places itself on the suspension queue. If
the blocking condition holds for any mode, the corresponding Normal predicate is invoked, with a data
structure that represents the the Past and Future modelists. The Past list is the (conceptual) list of all
those modes that have already been examined and for which the blocking condition does not yet hold.
In this case, the Past list contains the list of all the modes upto but not including the current mode. The
Future list is the (conceptual) list of available modes that have not yet been examined. In this case, the
Future list contains the list of all the modes succeeding the current mode and upto the highest mode for
the predicate.

The Normal predicate examines its Type II clauses in turn, searching for a clause that could be used
to commit. If no clause can commit (or if some &-clauses can commit, but fail due to subsequent deep
failure), the Type III clause for the Normal predicate is invoked. This clause invokes the Real Freeze
predicate, with, among other arguments, the Past and Future modelist it was invoked with.

The Real Freeze predicate examines the blocking conditions for all the modes in its Future list in turn,
using alternative clauses. If the blocking condition for a particular mode holds, it calls the corresponding
Normal predicate, passing it its current Past and Future lists. If the blocking condition of a mode does
not hold, the mode is stored in the Past list, and the next mode in the Future list is examined. If there
is none, and if the Past list contains at least one mode, the Real Freeze predicate places itself on the
suspension queue, with its Past list.

1 3The memory overhead could conceivably be brought down to 0(h) (from 0(k x n)) by sharing as much structure (e.g. the
n arguments) across the mode goals as possible. However, if for indexing purposes, it is desirable to maintain the same order
of arguments in the real predicate as in the source predicate p/n, then such sharing would involve a 'packing' and 'unpacking'
phase, which could be expensive in time.

1 4One could imagine a non-busy-waiting implementation in Prolog in which cp variables are represented by Prolog structures
that hold (for the unbound cp variables) the list of processes suspended on that variable. There are two major problems with
this. One, cp unification can no longer be implemented by Prolog unification. This is likely to cause a major performance
degradation. Second, Prolog structures, of course, are not mutable, only extensible. Hence when a new (cp) process needs to
suspend on a cp variable, this process must be added by instantiating a pre-existing variable in the structure. This variable can
at best be the leaf of a balanced binary tree, leading to non-constant cost just for suspending on a single variable. These two
considerations are enough to make the proposal not competitive.

35

4.4.1 Allocating memory for mode lists

Mode lists essentially represent choice points information. In a language such as Prolog, which has
only sequential search for clauses, with no possibility of suspension, the list of available clauses can be
stored as a single pointer. Furthermore choice points are created on the stack, and can be deallocated
inexpensively on backtracking.

In the current context, however, it is necessary to allocate mode lists on the heap. It now becomes
quite important to avoid allocating more space than necessary because this space will usually become
garbage quickly. With a stop and go heap garbage collector, this would mean that the machine would
run out of space more quickly. With an ephemeral garbage collector, this would mean that computations
would run more slowly as garbage is collected at a fixed fraction of the rate at which memory is consumed.

Considerable space savings can be made by representing the Past and Future lists implicitly wherever
possible. We now discuss how to do this.

4.4.2 Interconversions between mode list types

A mode is represented as a constant drawn from the following set m l , 1112, m 3 , . . . , mk, where k is
an implementation dependent maximum limit. 1 5 The special mode n o a l t s is used as a sentinel. The
implementation maintains a database of s u c c j n o d e / 2 facts of the form:

succ jnaode (n o a l t s , m l) .
s u c c _ m o d e (m l , m2) .
s u c c - m o d e (m2, m3) .

s u c c - m o d e (m k , n o a l t s) .

The s u c c _ m o d e / 2 predicate essentially represents a shareable modelist in code. A single mode M
may be taken to stand for the (implicit) Past list of all the modes from ml upto (and not including) M.
It may also be taken to stand for the (implicit) Future list of all the modes from Ml to the highest mode
for the predicate, where s u c c j m o d e (M, Ml) holds.

This motivates representing modelists as a datastructure with three components: a mode list type, a
Past component and a Future component. The mode list type is a constant in the set { i i , i e , e i ,
e e } . The first letter indicates the type of representation for the Past list, and the second the type of
representation for the Future list, (i stands for implicit and e for explicit.)

When the mode list type is i i , the Future component contains a mode, which represents both the
Past and Future lists implicitly, as discussed above. (The Past component may contain anything and is
ignored.)

When the mode list type is i e , the Past component contains a list P of modes, and the Future
component a list Q such that Q is a tail of P. In this case, the Past list is represented implicitly (as a kind
of difference list): if P is of the form [A _ l , . . . , A-m, A . (m + 1) , A_ (m + 2) , . . . , A _ n] , and Q is of
the form [A . (m + 2) , . . . , A _ n] , then the Past list is the list [A _ l , . . . , A_m]. (A . (m+1) is the 'current
mode'.)

When the mode list type is e i , the Past component is a list of modes (the Past list) and the Future
component is a mode, M. The Future list is the Future list implicitly represented by M.

When the mode list type is e e , the Past and Future component both contain lists that are, respectively,
the Past and Future mode lists.

1 5 A mode is represented as a constant rather than as an integer for indexing purposes. See the syntax of Real Freeze clauses.

36

We now discuss when interconversions between these mode list types occur. The Enter Freeze goal
invokes the Normal predicate with a mode list of type i i . If the Normal goal was invoked with mode
list of type i i , it invokes the Real Freeze goal (when necessary) with a mode list of type e i , after
constructing the explicit Past list. If the Normal goal was invoked with mode list of type i e , it invokes
the Real Freeze goal (when necessary) with a mode list of type e e , after constructing the explicit Past list.
The Real Freeze goal, when taken off the suspension queue, is invoked with mode list type i e . (A Real
Freeze goal is always placed on the suspension queue with an explicitly constructed list of alternatives.)

In this way, all consing is avoided unless absolutely necessary: that is, unless the blocking condition
for an available mode has been discovered to hold, and no clause in that mode group can commit
irrevocably. In this case a new mode list has to be constructed which does not contain the mode that has
been checked and discarded.

4.4.3 Performance analysis

In the following important cases no fresh mode list consing is done: the Enter Freeze (or Real Freeze) goal
examines its (available) modes determines that the blocking condition for no mode holds, and suspends
and is scheduled a number of times, before finally finding a mode whose blocking condition holds and
committing irrevocably to a clause in that mode group. Furthermore, in the case of the Enter Freeze
predicate above, no mode list consing is done at all.

In the worst case, each time an Enter or a Real Freeze goal is scheduled it loses one mode. In this
case 0(k x k) space will be used up for mode list consing.

4.4.4 Actual Code generated

We now exhibit the actual code generated for multi-mode predicates by the version of the compiler that
optimises single- and multi-mode predicates. As before we assume that code is being generated for a
source predicate p / n which has k modes and r clauses.

Entry predicate. The five extra arguments in a call to a Normal predicate, are, successively, the Head and
Tail of the suspension list, the mode list type, the Past component and the Future component. We
use explicit clause sequencing here, in lieu of a nested chain of o t h e r w i s e clauses.

p<A_l , . . . , A_n, H, T, nd) <-
Code-1 | p _ l (A _ l , A_n, H, T, i i / - / -) ; ;

p (A _ l , . . . , A . n , H, T, nd) <-
Code J: | p_£(A_l , A_n, H, T, i i , _) ; ;

p (A _ l , . . . , A_n, p (A _ l , . . . A_n, R) , R, D) .

Real Freeze Predicate. There are actually two predicates. When the Real Freeze predicate is invoked
from the suspension queue, the predicate p_f (n+4) is called (for the source program predicate
p / n) . The four extra arguments are, in turn: the H e a d and T a i l of the suspension queue, the
D e a d l o c k flag, and the list of alternative modes for the clause. This predicate internally calls
the actual Real Freeze Mode predicate p_f / (n + 7) . The seven arguments are, in sequence, the
current mode M, the H e a d and T a i l of the suspension queue, the D e a d l o c k flag, and the three
fields of the mode list representation. In reality, the current mode argument is the first argument to
the call to take advantage of indexing on the first argument, provided by the underlying Prolog.

37

Header clause:
p _ f (A _ l , . . . , A_n, H, T, D, A l t s) <-

A l t s = [M | R A l t s]) ;
P - f (M , A _ l , . . . , A_n, H, T, D, i e . A l t s , R A l t s) .

p . f (n o a l t s , A . 1 , . . . , A_n, p_f (A - l , . . . , A _ n , T , F z) , T,
D, F l a g , F z , F u t u r e

) .

And for each mode, Mi G {ml, m 2 , . . . , mk}, where mk is the highest mode for p / n ;
p - f (Mi, A _ l , . . . , A_n, H, T, n d , F l a g , P a s t , F u t u r e) «—

C o d e J | p J (A - l , . . . , A_n, H,T, F l a g , P a s t , F u t u r e) .
• • •»

The following clause checks alternate modes.
MK+1 is the (compile-time known) highest mode for p / n :
p_f(M, A - l , . . . , A_n, H, T, D, T y p e , P a s t , F u t u r e) <—

g e t . n e x t . m o d e (T y p e , MK+1, F u t u r e , NewA, N e w F u t u r e) ,
push-mode (T y p e , A, P a s t , N e w P a s t) I
p_f (NewA, A _ l , . , . , A . n , H, T, D, T y p e , N e w P a s t , N e w F u t u r e) .

Normal Clauses. The clauses for each Normal predicate are of the form c i ; ; C2. The cp(I ,&) clauses
in c i are obtained by a one-to-one translation from the source program clauses for predicate p / n
in mode group U as discussed above. (The three extra arguments that represent the mode-list are
ignored.) C2 consists of the following two clauses, where, again, we use clause sequencing in lieu
of nested o t h e r w i s e clauses.

p _ i (A _ l , . . . , A«n, Head, T a i l , i i , .) <-
p . f (NewM, A . 1 , A . n , Head, T a i l ,

e i , NewPast, NewFuture) ; ;
p _ i (A . 1 , . . . , A_n, Head, T a i l , F l a g , P a s t , F u t u r e) «-

c o p y . p a s t (F l a g , P a s t , F u t u r e , N e w F l a g , N e w P a s t) ,
g e t . n e x t - j n o d e (F l a g , L a s t ^ - M o d e , F u t u r e , NewM, N e w F u t u r e) ;
p . f (NewM, A . 1 , A_n, Head, T a i l ,

N e w F l a g , N e w P a s t , N e w F u t u r e) .

The first clause above is interesting. A Normal clause is called by the Entry Freeze predicate, with
mode list type i i . However, the value of Future component of the mode list structure that will
be passed in at run-time is known at compile time, namely, mi. Hence, the calls to c o p y - p a s t
and g e t - n e x t j n o d e in the general clause (the second one above) may be executed at compile
time. Therefore the values for the metavariables in the first clause are obtained by executing the
following query at compile time:

<— s u c c (mi, M l) , c o p y - p a s t (i i , Ml , N e w F l a g , N e w P a s t) ,
g e t _ n e x t - m o d e (i i , LastJiMode, F u t u r e , NewM, N e w F u t u r e) .

38

http://get.next.mode

Here, mi is the zth mode, and LastJ^Mode is the (compile-time known) highest mode for the
predicate.

4.5 R u n t i m e s y s t e m

We omit the (straightforward) particulars of the implementation of the support predicates for mode lists,
i.e. c o p y - p a s t / 5 , g e t - n e x t _ m o d e / 5 etc.

4.5.1 Executing previously suspended goals

Once Enter Freeze or Real Freeze goals have been placed on the queue, and execution returns to the
top-level, it is necessary to invoke these goals.

In [Ueda and Chikayama, 1985] this is done as follows. Suppose a goal for p / n has to be suspended.
Place on the suspension queue the 'closure' g o a l (p (A - l , . . . , A«n, H, T, D) , H, T, D). At
runtime, the variables in the closure may be initialised by unifying them with actual arguments, and the
closure may be called indirectly: 1 6

e x e c u t e ([g o a l (G o a l , Head, H, D) | R e s t] , H, T, D) <-
i n c o r e (G o a l) ; e x e c u t e (R e s t , Head, T, D) .

The problem with this solution is that extra memory cells are used for each suspension. On a
WAM-based Prolog, storing one goal on the suspension queue would cost (n + 11) words: 2 words for
the cons cell on the suspension queue, 5 words for the g o a l / 4 structure and (n + 4) words for the
p / (n+3) structure.17 Also, the cost of one indirect invocation has to be incurred. This could be more
cosdy in Prolog implementations other than Prolog-20, in which the more general (and slower) c a l l / 1
mechanism has to be used.

Note that suspending and invoking a goal is a very basic step for the kinds of computations we are
considering, Hence it pays to be rather careful about space and time consumption for this step.

Another solution is possible, given that the predicates which can be placed on the suspension queue
are known at compile time. The solution corresponds to unfolding the above definition for e x e c u t e / 4
one step for these known predicates, and then stripping away the unnecessary information from the
suspended data-structure. Only (n + 2) words are needed for each suspension, and the overhead of the
indirect call is avoided.

The solution is as follows. At suspension time, place the goal p (A_l , . . . , A_n, R e s t) on the
suspension queue, (where the rest of the queue is R e s t) , e x e c u t e / 4 will now have as many clauses
as predicates for which goals can be placed on the suspension queue:

e x e c u t e (p (A - l , A_n, R e s t) , H, T, D) «—
p (A - l , A_n, Head, H, D) ; e x e c u t e (R e s t , Head, T, D) .

This solution is only viable if the implementation does indexing at least on the first argument: the
clauses then act as an efficient jump table for the suspended predicates. The disadvantage of this scheme

1 incore/l is a Prolog-20 built-in predicate that takes a term and invokes the compiled predicate corresponding to the prinicipal
functor of the term.

1 7 I am grateful to Fernando Pereira for help with this analysis.

39

is that code size increases; however, code should be allocated in static space and should not interfere with
the garbage collector. In fact, for some test programs, the code size actually decreased with this scheme
(compared to the previous one.) Runtime decreased by about 25% and heap consumption decreased by
about 20%.

A more complicated space analsysis is needed for structure-sharing implementations, such as Prolog-
20. Even in this case, though, the jump table scheme performs better than the closure scheme.

40

4.6 P e r f o r m a n c e C o m p a r i s o n s w i t h t h e U e d a / C h i k a y a m a c o m p i l e r

In this section we consider various performance tradeoffs with the Ueda/Chikayama compiler (henceforth
called the Concurrent Prolog compiler).

Unification. In our scheme, the code for checking the suspension condition for a mode group is executed
at most once for every mode group, when a goal is scheduled. In the other compiler, this code
is mixed in with the actual unification for every clause, and hence the same tests (for suspension)
may be repeated for every clause in the mode group. Further, in their scheme it is difficult to take
advantage of any head-unification optimisations (e.g. indexing) that the underlying Prolog may
provide. '?'-unification needs to be implemented with a special purpose, complicated unification
algorithm that slows down execution. In FGHC, terms in the head that could result in output
bindings being created must be textually moved out of the head and into the body of the clause.

Multiple Modes. By keeping a representation of the modes left to evaluate for a goal, we ensure that the
suspension tests for a mode succeeds at most once, and the Real Predicate clauses are executed
at most once, regardless of the number of times the goal is suspended. This is not true for the
Concurrent Prolog compiler. It may be the case that the blocking condition for a certain group
of clauses holds, but none of the clauses is a candidate clause, and the goal has to suspend. Now
each time the clause is executed from the suspension queue, these clauses will be reexamined, even
though head unification will continue to fail.

Multiple mode predicates seem to arise most naturally and frequently in the context of constraint-
based computation, for those predicates involved during constraint-propagation ([Saraswat, 1987c]).
If blind scheduling is used, then we have discovered that a goal may be scheduled and suspended
a large number of times before successfully executing. Hence it is important to restrict the amount
of work done when testing a mode, if possible.

Guard execution. As discussed earlier, the Concurrent Prolog compiler handles full guards either inef
ficiently, or incorrectly, depending upon the scheduling strategy used. If depth-first scheduling is
used, then it is possible that guard execution may suspend because of a deep freeze. In this case
guard computation is failed and posssibly retried every time the goal is scheduled from the suspen
sion queue. Worse, it is possible that the guard computation fails for legitimate reasons (i.e. there
is no solution, regardless of bindings that could be generated from And-sibling goals of the parent
goal). Even in this case, when the goal is rescheduled, the guard computation will be reinitiated
and the failure discovered afresh.

If bounded depth first scheduling is used, then, in addition to the above problems, if the guard
crosses the bound, then the implementation may never make any headway, and mistakenly report
deadlock or failure.

We introduce a notion of wait-free guards, and use that to justify treating a deadlock inside a guard
computation as a failure. Consequently a guard system is executed at most once, regardless of he
number of times a goal is dequeued/enqueued from/on the suspension queue.

Suspending and Reinvoking Goals. In our scheme, exactly those goals which have been suspended need
to be placed on the suspension queue, and executed via an indirect call. In the Concurrent Prolog
scheme, all goals other than the first one in the body are placed on the suspension queue and
invoked by an indirect call. Furthermore, we use a more space- and time-efficient way of invoking
goals from the suspension queue (jump-tables vs. closures). (In principle, the jump table scheme
could also be implemented in the Concurrent Prolog compiler.)

41

This results in considerable savings or those programs which have more than one goal in the body
of the clause, and for which the goals do not immediately suspend due to lack of bindings. If
the metaphor for computation used in writing programs is one of spawning a network of cells that
subsequently receive data across links, do local computation and transmit the data across (possibly
other) links, then at least the predicates that spawn the network have more than one goal in the body,
and usually these goals are runnable when they are first scheduled. Indeed, if goals are runnable
when first scheduled, then the performance of the Cp programs is very similar to the performance
of the Prolog programs using the same clauses (clauses in the same textual order, and goals in the
body of the clause in the same textual order, and heads are identical.) The only difference is that
suspension conditions are checked and some extra arguments are passed around.

We believe these issues account for the fact that execution time of the q s o r t and s i e v e bench
marks are closer to that of the Prolog-20 compiler than that of the Ueda/Chikayama compiler.

There are some differences in the functionality of the two compilers, that should have been appar
ent from the discussion. Namely, GHC and Concurrent Prolog are committed-choice CLP languages.
We present an efficient compiler for a language that has a well-defined semantics for don't know non-
determinsim in the context of concurrent computation. Also, as presented, our implementation is concep
tually similar to a mechanism for implementing cp(j , I ,&) in a Prolog-with-freeze.

42

4.6.1 Performance numbers

We now present detailed timing results. The following factors must be kept in mind when making
the comparisons. The benchmarks run on the cp(| , I ,&) compiler and the Concurrent Prolog compiler
are identical. Both the compilers translated into Prolog, which was compiled by a Prolog-20 com
piler and the resulting code run on a Dec-20 processor. However, the machines were different: hence
we have included measurements of the performance of the corresponding Prolog programs, wherever
available, on both the machines. The Concurrent Prolog compiler numbers have been reported in
[Ueda and Chikayama, 1985].

All times are in msec.

Benchmark
Ueda/Chikayama compiler ICOT Dec-20

Prolog-20 cp(| , | ,&) compiler
CMU Dec-20

Prolog-20 Benchmark w/o mode w/ mode
ICOT Dec-20

Prolog-20 cp(| , | ,&) compiler
CMU Dec-20

Prolog-20
append
(500+0 elements) 79 43 12 33 13
nrev (N = 30) Not available. 30 12
merge
(100 + 100) 38 24 8 17 8
bounded buffer*
100 elements
(size=l)

143 119 XX* 78 XX

bounded buffer
100 elements
(size=10)

56 43 XX 41 XX

Primes
(2 to 300) 886 689 188 266 222
Qsort c

(50 elements) 119 91 17 32 21
Hanoi (N = 10) Not available 63 63
Serialise* Not available 25 10
Data Base query* 58 58

a A minor version of the same program, which avoided nested waits, took 29 msec and 57 msec respectively. This change
should not affect the performance of the code produced by the Concurrent Prolog compiler.

bNo corresponding Prolog program.
cTimes are for the 50-element sequence in [Warren, 1977].

''Program and example as in [Warren, 1977].

'Program and example as in [Warren, 1977].

^No corresponding Concurrent Prolog or GHC program.
The programs on which the tests were run are listed in the appendix.

4.6.2 Implementation Notes

The implementation cost about 3 man weeks to develop. It consists of approximately 250 clauses,
spread over approximately 80 predicates. The compiler is divided into 6 modules: the collector, the
mode-analyser, the emitter, utilities and output routines, and the run-time system. The compiler released
presently is Version 1.9: most of the previous versions had been concerned with examining various ways
to improve the time- and space-performance of mutli-mode predicates. It is currently written in Prolog,

43

but we hope to rewrite it in cp(| , I ,&), and bootstrap in the near future.

44

5 F u t u r e w o r k a n d c o n c l u s i o n s

As mentioned in the introduction, we feel that this work is the first step towards the design of more direct
implementations for languages in the Cp family. We hope to develop ideas related to partial evaluation and
program transformation rules for the basic control constructs involved so that programs may be efficiently
transformed at the source level before being compiled.

The present compilation scheme also bears further study. One obvious candidate is optimising the code
produced to check for the satisfaction of blocking conditions for multi-mode predicates. It seems clear
that reasonable algorithms can be devised that carefully order the tests to avoid redundancies. Similarly,
it seems clear that further program transformations may be done, keeping in mind the commitment to
depth-first scheduling. For example, guided by information available through a static (compile time)
data-flow analysis of the program, it may be possibly for some kinds of (singel mode) programs to avoid
completely the overhead of n o n v a r / 1 and = = / l tests at runtime, thereby generating, in effect, the
directly corresponding Prolog programs. The programs for q s o r t / 2 and n r e v / 2 , for example, seem
susceptible to such analysis.

Acknowledgements. I acknowledge useful discussions with Ken Kahn, Seif Haridi, Mats Carlsson and
Ehud Shapiro, Fred Holmgren and Annika Waern. I am thankful to Kazunori Ueda for providing me the
source code for the Ueda/Chikayama compiler, and for suggesting that we calibrate our Dec-20 machines
in order to compare performances meaningfully. Many thanks to Fernando Pereira for always having
the time to explain the intricacies of the Prolog-20 implementation. Thanks to Gene Rollins for making
available resources from the Ergo project to finish this work. This work is part of my dissertation
research, which is being carried out under Prof. Dana Scott's supervision.

This work would not have been possible without a research grant from Neeta Saraswat.

45

A A p p e n d i x

A . l S a m p l e c o d e

The following is a listing of the programs on which the benchmarks were run. Some of the programs are
taken from the suite of benchmarks on which the [Ueda and Chikayama, 1985] implementation was run.

c o n c a t ([A | X] j , Y, [A
c o n c a t { Y, Y) .

| W]) <- c o n c a t (X, Y, W) .

n r e v e r s e ([X | L 0] 1 , L)
n r e v e r s e ([] | , []) .

«— n r e v e r s e (L O , L I) , c o n c a t (L I , [X] , L) .

m e r g e ([A | X] | , Y, [A |
m e r g e (X, [A | Y] l , [A |
m e r g e ([U , Y, Y) .
m e r g e (X, [] [, Y) .

W]) <- m e r g e (Y, X, W) .
W]) <- m e r g e (Y, X, W) .

b b (S , N) <- b u f f e r (S , H, T) , i n t s (0 , N, H) , c o n s u m e (H , T, 0) •

b u f f e r (N , [_ 1 H I] , T)
b u f f e r (0 , H, H) .

<- N > 0 , N l i s N - l | b u f f e r (N l , HI , T) .

i n t s (M , Max, [M I L] |) «- M < Max, Ml i s M+1 I i n t s (M l ,
i n t s (M , Max, [e o s 1 _] |) <- M > Max | t r u e .

Max, L) .

c o n s u m e ([e o s j I H s] , [] , []) .
c o n s u m e ([H | | Hs] , [_ 1 T s] , [w r i t e (H) , p u t (3 2) , t t y f l u s h

H \ = e o s I c o n s u m e (Hs , T s , 0 2) .
1 0 2]) «-

The minor variation of the c o n s u m e / 3 predicate mentioned in the benchmark table is the program:

c o n s u m e ([H | R e s t] , T a i l , O u t p u t) <—
c o n s u m e (H , R e s t , T a i l , O u t p u t) ,

c o n s u m e (H j , [NewH | R e s t] , T a i l ,
[wr i t e (H) , p u t (3 2) , t t y f l u s h | 0]

H\==eos | consume(NewH, R e s t , T a i l , 0) .
c o n s u m e (e o s j , R e s t , [] , []) .

In principle this program could be obtained automatically from the program above, by means of some
simple unfolding/folding techniques, directed by the knowledge that it is useful to replace nested waits
by top-level waits, at the expense of introducing extra arguments.

The other programs are:

46

Sieve of Eratosthenes:

g e n (N , Max, [N | S I]) <- N < Max, M i s N+l | gen (M, Max, S I) .
g e n (N , Max, []) <— N > Max | t r u e .

s i f t ([P | L] | , [w r i t e (P) , p u t (3 2) , t t y f l u s h | S I])
f i l t e r (L , P , K) , s i f t (K , S I) .

s i f t a n , []) .

f i l t e r ([Q | L] | , P , K) <- (Q mod P) = : = 0 | f i l t e r (L, P , K) .
f i l t e r ([Q I L] | , P , [Q | K l]) «- Q mod P i 0 | f i l t e r (L, P , Kl) .
f i l t e r ([U , P , []) .

Quick Sorting:

q s o r t (X s , Ys) <- q s o r t (X s , Y s , []) .

q s o r t ([X | X s] | , YsO, Ys2) <-
p a r t (X s , X, S, L) , q s o r t (S , YsO, [X | Y s l]) , q s o r t (L , Y s l , Y s 2) .

q s o r t (Ul, Y, Y) .

p a r t ([X | X s] | , A, S, [X | L I]) <- A < X | p a r t (X s , A, S, LI)
p a r t ([X | X s] j , A, [X | S I] , L) <- A > = X | p a r t (Xs , A, S I , L) .
p a r t ([] I, A, [] , []) .

A.1.1 Some other benchmarks

The h a n o i / 2 program is a Cp(I) program: the translated program produced is a syntactic variant with
a cut in place of * I \

A Cp(|) program for the Towers of Hanoi:
h a n o i (N , Moves) <— h a n o i (N , a , b , c , M o v e s , s t o p) .

h a n o i (l , A, B, C, m o v e (A , B , M), M) .
h a n o i (N , A, B, C, Move, R e s t) <—

N > 1 , Nl i s N - l |
h a n o i (N l , A, C, B, Move, M l) ,
h a n o i (1 , A, B, C, Ml, M2) ,
h a n o i (N l , C, B, A, M2, R e s t) .

The following benchmark programs are taken from [Warren, 1977].

47

Serialising a List:
s e r i a l i s e (L , R) *-

p a i r l i s t s (L , R, A) , a r r a n g e (A , T) , n u m b e r e d (T , 1 , N) .

p a i r l i s t s ([X | L] j , [Y | R] , [p a i r (X , Y) | A]) «-
p a i r l i s t s (L , R, A) .

p a i r l i s t s ([] | , [] , []) .

a r r a n g e ([X | L] j , t r e e (T l , X, T2)) <-
s p l i t (L , X, L I , L 2) , a r r a n g e (L l , T l) , a r r a n g e (L 2 , T 2) .

a r r a n g e ([] i , v o i d) .

s p l i t ([X | L] | , X, L I , L2) «-
s p l i t (L , X, L I , L 2) .

s p l i t ([X | L] j , Y, [X | L I] , L2)
b e f o r e (X , Y) | s p l i t (L , Y, L I , L 2) .

s p l i t ([X | L] j , Y, L I , [X I L2]) <—
b e f o r e (Y , X) | s p l i t (L , Y, L I , L 2) .

s p l i t ([U , Y, [] , []) .

b e f o r e (p a i r (X I , Y I) , p a i r (X 2 , Y2)) «- XI < X 2 .

n u m b e r e d (t r e e (T l , p a i r (X , N l) , T 2) | , NO, N) <-
n u m b e r e d (T l , NO, N l) , i n c (N l , N 2) ,
n u m b e r e d (T 2 , N 2 , N) .

numbered (v o i d j , N, N) .

i n c (N | , N l) <- N l ' i s N + l .

A.1.2 Data base query

This program uses the sequencing obtained by commitment in order to ensure that bindings for variables
occuring in arithmetic goals are available before the goals are executed. Note that each of the predicates
in the program is wait-free, and that the guards contain calls only to wait-free predicates. Hence this
program is translated by the cp(| , | ,&) compiler into the Prolog program presented in [Warren, 1977],

q u e r y (X) <-
D2) & D 1 > D 2 , 2 0 X D K 2 1 X D 2 . d e n s i t y (C I , D l) , d e n s i t y (C 2 , D2) & D 1 > D 2 , 2 0 X D K 2 1 X D 2 .

d e n s i t y (C, D) <-
p o p (C , P) , a r e a (C A) & D i s (P * 1 0 0) / A .

The database used for the query is retained from Warren's thesis, even though it is hopelessly out of
date. We omit listing it here.

In reality a call to q u e r y / l should occur in the guard of a clause so that top-level computation is
not split unless a solution to the query is obtained. Hence for efficiency in a parallel implementation, the
following clause may be needed:

48

q u e r y 2 (X) <- q u e r y (X) S t r u e .

with all calls to q u e r y / 1 in the program being replaced by calls to q u e r y 2 / 1 . (This additional clause
does not affect the performance of the code produced by the cp(| , | ,&) compiler.)

49

R e f e r e n c e s

[Boizumault, 1986] R Boizumault. A general model to implement dif and freeze. In Proceeedings ofthe
3d International Conference on Logic Programming, London, pages 585-592, May 1986.

[Carlsson, 1987] Mats Carlsson. Freeze, indexing and other implementation issues in the warn. In
. Proceeedings of the 4th International Conference on Logic Programming, Melbourne, pages 40-58,

May 1987.

[Clark and Gregory, 1985] Keith Clark and Steve Gregory. Notes on the implementation of Parlog. / .
of Logic Programming, 1:17-42, 1985.

[Codish, 1985] Michael Codish. Compiling Or-parallelism into And-parallelism. Technical Report, Weiz-
mann Institute, Israel, December 1985. MSc thesis.

[Cohen, 1985] Jacques Cohen. Describing Prolog by its interpretation and compilation. Communications
of ACM, (12), December 1985.

[Courcelle, 1983] B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Scienc,
250:95-169, 1983.

[Gregory, 1984] S. Gregory. Implementing PARLOG on the abstract PROLOG machine. Technical
Report Res report DOC 84/23, Imperial College, August 1984.

[Gregory, 1987] Steve Gregory. Parallel Logic Programming in Parlog. International Series in Logic
Programming, Addison-Wesley, 1987.

[Holmgren and Waern, 1987] Fredrik Holmgren and Annika Wxrn. A scheme for compiling G H C to
Prolog using freeze. Technical Report SICS R87007, Swedish Institute for Computer Science, 1987.

[Kliger, 1987] Shmuel Kliger. Master's thesis. Technical Report, Weizmann Institute, Israel, 1987.

[Miyazaki et ai, 1985] T. Miyazaki, A. Takeuchi, and T Chikayama. A sequential implementation of
Concurrent Prolog based on the shallow binding scheme. In Symposium on Logic Programming,
IEEE, July 1985.

[Saraswat, 1985] Vijay A. Saraswat. Partial correctness semantics for cp (j t | ,&). FSTTCS Conference
proceedings, (206):347-368, 1985.

[Saraswat, 1986] Vijay A. Saraswat. Problems with Concurrent Prolog. Technical Report 86-100, CMU,
January 1986.

[Saraswat, 1987a] Vijay A. Saraswat. Detecting distributed termination efficiently: the short-circuit tech
nique in fcp(|, |) . February 1987. To be submitted.

[Saraswat, 1987b] Vijay A. Saraswat. The concurrent logic programming language cp : definition and
operational semantics. In Proceedings of the SIGACT-SIGPLAN Symposium on Principles of Pro
gramming Languages, pages 49-62, ACM, January 1987.

[Saraswat, 1987c] Vijay A. Saraswat. Cp as a general-purpose constraint language. In Proceedings of
the National Conference, Seattle, American Association for Artificial Intelligence, July 1987.

[Saraswat, 1987d] Vijay A. Saraswat. cp as a logic programming language. August 1987. Treats the
downward completeness results for CP.

50

[Saraswat, 1987e] Vijay A. Saraswat. The language GHC: operational semantics and comparison with
cp(j , I). In IEEE SLP Proceedings, San Francisco, September 1987.

[Saraswat, 1987, Forthcoming] V. A. Saraswat. Merging many streams efficiently: the importance of
atomic commitment. In Ehud Y. Shapiro, editor, Concurrent Prolog Collected Papers, MIT Press,
1987, Forthcoming.

[Saraswat, forthcoming] Vijay A. Saraswat. Concurrent Logic Programming Languages. PhD thesis,
Carnegie-Mellon University, forthcoming.

[Shapiro, 1983] E.Y.Shapiro. A subset ofConcurrent Prolog and its interpreter. Technical Report CS 83-
06, Weizmann Institute, 1983.

[Shapiro, 1987] Ehud Y. Shapiro. Implementing Prolog on Concurrent Prolog (??) In Proceedings of
the Fourth International Logic Programming Conference, May 1987.

[Silverman, 1986] Silverman. Logix system. Department of Computer Science, Weizmann Institute,
Israel, 1986.

[Takeuchi and Fumkawa, 1986] Takeuchi and Furukawa. Concurrent logic programming languages. In
Proceedings of the Third International Conference on Logic Programming, July 1986.

[Ueda, 1986] Kazunori Ueda. Making exhaustive search programs deterministic. In Proceedings of the
Third Internation Logic Programming Conference, July 1986. Also in New Generation Computing,
1987.

[Ueda and Chikayama, 1985] K. Ueda and T. Chikayama. A compiler for Concurrent Prolog. In
Proceedings of the second International Symposium on Logic Programming, IEEE, July 1985.

[Warren, 1977] D.H.D. Warren. Applied Logic — Its use and implementation as a programming tool.
PhD thesis, University of Edinburgh, 1977.

[Warren, 1987] D.H.D. Warren. The SRI model for or-parallel execution of Prolog — abstract design
and implementation issues. In Proceedings of the 1987 Symposium on Logic Programming, pages 92
- 103, IEEE, August 1987.

51

