
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



A Parallel Algor i thm 
for Colouring Graphs. 

I.S. Bhandar i* C M . Krishna** 

D . P . S i e w i o r e k * + 

28 October 1987 CMU-CS-87-173 % 

* Department of Electrical & Computer Engineering, 
-+• Department of Computer Science, 

Carnegie-Mellon University, 
Pittsburgh, P A 15213. 

** Department of Electrical & Computer Engineering, 
University of Massachusetts at Amherst, 

Amherst, MA 01003. 
Arpa net [Bhandari] : isb@faraday.ece.cmu.edu 

Phone [Bhandari] : 412-268-6638. 

Abstrac t 

An efficient parallel/distributed algorithm to do vertex colouring is presented. The algorithm is 
probabilistic and allows a trade-off between the number of colours used and the expected run time. 

This research was supported in part by the National Science Foundation under contract CCR-8602143. 
The views and conclusions reported in this document are those of the authors and should not be 
interpreted as representing the official policies, either expressed or implied, of the National Science 
Foundation, the University of Massachusetts at Amherst or Carnegie-Mellon University. We would like to 
thank Charles Leiserson of MIT and Edmund Clarke of CMU for helpful discussion. 

mailto:isb@faraday.ece.cmu.edu


1 Introduction 

A very large number of resource-allocation problems can be cast into the form of the vertex-colouring 
problem. Examples are scheduling, register allocation for compilers, etc . Unfortunately, the problem 
of colouring the vertices of a graph with the minimum possible number of colours is NP-complete [1]. 
One has therefore to make do wi th subopt imal colouring algorithms. In this paper, we present a simple, 
parallel vertex-colouring algorithm. The algorithm is suitable for execution on parallel machines, such 
as the Connection Machine1, or on less massively parallel computers wi th two or more processors. The 
algorithm is easy to implement on a wide variety of sys tems, and is versatile: it is possible, by controlling 
one input parameter, to trade off execution t ime against the number of colours used. It is useful in 
two ways: first, as a good graph colouring algorithm, and all that that implies; second, as a vehicle to 
graphically i l lustrate tradeoffs between communicat ion delay and execution t ime in parallel algorithms. 

T h i s paper is organized as follows. Section 2 contains the model and the algorithm, and Section 3 
a s tudy of i ts performance in an abstract sett ing. Both analytical and s imulation techniques are used. 
In Sect ion 4 , we discuss detai ls of implementing this algorithm on the Connection Machine. The paper 
concludes w i th Sect ion 5. 

2 Model and Algorithm 

2.1 Model 

T h e basic comput ing element is referred to as a Processing Element ( P E ) . It is any computing 
e lement which has the capacity to perform the generic operations used in describing the algorithm 
below. These are fairly standard operations, and we therefore do not list them explicitly. 

Each vertex of the graph is associated wi th a P E . It will be seen that the PE's can finish the 
execut ion of the algorithm at different t imes. Thus , a P E can have two states: active or completed. A 
P E on entering the completed s tate does not participate further in the algorithm and is free to go its 
own way. 

T h e a lgori thm is written for a distinguished P E . It consists of a number of logical steps which are 
executed in synchronism by all active PE's . In practice, this does not pose a problem, since the sending 
or receiving of messages in these steps can be used for synchronization. 

T h e a lgori thm makes the implicit assumption that the user is prepared to tolerate A -j- 1 colours, 
where A is the m a x i m u m degree over all vertices in the graph. The algorithm may end up using far 
fewer colours than this , but this is a matter of chance. 

It is assumed that there exists a parameter, called identity, whose value may be used to completely 
order the PE' s . In practice, this is usually not a problem. A parallel sys tem will have different names 
or identity numbers for i ts individual PE's , which may be used to define an ordering on the PE's . 

1 "Connection Machine* is a trademark of Thinking Machines Incorporated. 



All data structures, variables, functions, and primitives used are local. These are: 

• adjacency J i s t - the adjacency list of the vertex represented by the P E . 

• degree - the degree of the vertex represented by the P E . 

• total_no.of.colours.al lowed - this is never less than the degree of the vertex plus 1. 

• tentat ive .colour(v) - this is a variable used to store the colour chosen tentatively by the P E 
representing vertex v. 

• ident i ty(v) - a variable used to store the identity of the P E representing the vertex v. 

• gone-their .own-way - Each P E notes in this array which of i ts neighbours have finished colouring, 
and gone their own way. 

• S E N D - a primitive used by a P E to send messages to another P E . It is assumed that messages 
are sent asynchronously and buffered at the dest ination P E until it executes a R E C E I V E . 

• Lam-done - When a P E determines it has achieved an allowed colour, it sends out this signal to 
i ts neighbours. The actual value of this colour was contained in the tentative-colour broadcast of 
the previous loop iteration. 

• set-of .al lowed.colours - This is used to keep track of the set of colours which are still available. 

• random [set, bias] - A function which takes an ordered set as input and returns a randomly chosen 
element from that set . When bias is set to zero, each element has an equal probability of being 
chosen. A s the bias increases, the smaller-indexed elements have a greater probability of being 
chosen. 

2.2 Algorithm for Massively Parallel Machines 

This algorithm is used when the parallel machine has at least as many processors as there are nodes to 
colour. 

Each processor maintains a set of colours it can choose from. It makes the choice randomly, and 
then transmits it to i ts neighbours (as defined by the graph being coloured). If, at any cycle, a processor 
has chosen a colour that has not also been chosen by a neighbour wi th a higher priority, this becomes 
the final colour of the node associated wi th that particular processor. If there is a clash of colours, the 
processor corrects the s e t of _ a l l o w e d _ c o l o u r s , and tries again. 

••this procedure is written for the PE representing vertex i ** 
procedure(colour); 
set_of_allowed_colours:«{l,2,...,total_number_of.colours}; 
done:«0; 
gone_their_own_way:• O ; 
while (state * active) do 
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t e n t a t i v e . c o l o u r ( i ) : « r a n d o m [ s e t _ o f . c o l o u r s , a v a i l a b l e , b i a s ] ; 
i f ( d o n e « 0 ) t h e n 

b e g i n 
SEND t e n t a t i v e . c o l o u r ( i ) t o a l l n e i g h b o u r s b e l i e v e d s t i l l 
t o be a c t i v e ; 

end 
e l s e 

b e g i n 
SEND "I am done" s i g n a l t o a l l n e i g h b o u r s b e l i e v e d s t i l l 
t o be a c t i v e ( / * The p r o c e s s o r h a s c o m p l e t e d e x e c u t i o n , 
and i s now f r e e t o go i t s own w a y * / ) ; 

end 
end i f ; 

i f ( s t a t e • a c t i v e ) t h e n 
b e g i n 

RECEIVE t e n t a t i v e . c o l o u r ( j ) o r f f I am done" 
from a l l P E ' s j i n t h e a d j a c e n c y 
l i s t s u c h t h a t t h e PE r e p r e s e n t i n g j i s n o t i n t h e 
g o n e . t h e i r . o w n _ w a y l i s t ; 

end 
end i f 

i f ( ( t e n t a t i v e . c o l o u r ( i ) * t e n t a t i v e . c o l o u r ( j ) f o r a l l s u c h j ) OR 
( i d e n t i t y ( i ) < i d e n t i t y ( j ) f o r a l l j s . t . t e n t a t i v e . c o l o u r ( i ) • 
t e n t a t i v e . c o l o u r ( j ) ) ) t h e n 

d o n e : « l ; 
end 

e l s e 
b e g i n 

s e t . o f . a l l o w e d . c o l o u r s : - s e t . o f . a l l o w e d . c o l o u r s -
{k I k * c o l o u r ( j ) f o r a l l j from whom a "I am done" 
s i g n a l was r e c e i v e d i n t h i s i t e r a t i o n of t h e w h i l e 
l o o p } ; 

g o n e _ t h e i r . o w n . w a y : « g o n e . t h e i r . o w n _ w a y { k I k r e c e i v e d 
"I am done" s i g n a l i n t h i s i t e r a t i o n of 

t h e w h i l e l o o p } ; 
end; e l s e 

end; i f 
end; do w h i l e 

end; p r o c e d u r e c o l o u r . 
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2.3 Algorithm for Non-Massively Parallel Machines 

The algorithm in Section 2.2 can be trivially modified for machines with fewer processors than there 
are nodes to colour. T h e only change is that there will be at least some processors which have more 
than one node to colour. The modification consists of having a processor colour its nodes one after the 
other; i.e. the processor concentrates on one node at a t ime, and only takes up another node when it 
has coloured the previous one on its list. The performance of this algorithm partially reflects, we will 
argue in Section 4, the cost of communicat ion between processors. 

3 Performance of the Massively Parallel Algorithm 

When carrying out the analytical derivation of mean colouring t ime (which we express for conve
nience in units of the number of iterations of the w h i l e loop) we must keep in mind that there is a 
delay in information transmission. When a node t finds that none of i ts higher-priority neighbours has 
the same colour that it has chosen, it s tops choosing colours. However, the neighbours of t do not have 
that information until the next iteration of the w h i l e loop, which is when t broadcasts its "I am done" 
signal. So, there can be one iteration of the w h i l e loop in which node t has been given its final colour 
(say c t ) , but in which the lower-priority neighbours of t do not have that information, and thus do not 
correct their colour sets (by deleting c, if it is in their colour se t ) . 

In some cases, the a I a m done" signal from a processor t may be redundant information to another 
processor j : in such cases, it is possible to modify the algorithm slightly so as to make the delay in 
receiving the "I a m done" signal less costly. The benefits of this are most apparent in densely-connected 
graphs. Denote by S(i, n) the nodes which are of higher priority than node t and which have not sent 
out their WI am done" signal up to and including the n'th iteration of the w h i l e loop. If every node 
in 5 ( t , n) is a neighbour of t , the complet ion signal is clearly redundant as far as node t is concerned. 
In such cases, node t can anticipate any complet ion signal to be generated by a node in 5 ( i , n) and 
can adjust i ts colour set in that iteration of the w h i l e loop. However, this modification increases the 
computat ional burden on the processing element, and does not seem to warrant implementat ion. 

Alternatively, the sending of the "I a m done" signal and its corresponding R e c e i v e may be intro
duced as a separate s tep . This will mean that two messages are exchanged wi th every neighbour for 
every execution of the w h i l e loop, the second message being the final colour (if any) chosen. This 
ensures that all colour sets are adjusted in the same interation in the w h i l e loop. We will call this 
the S1MD2 modification: it an implementat ion suitable for a SIMD computer such as the Connection 
Machine. 

In the subsections that follow, we present analytical results for complete graphs, and simulation 
results for random graphs. 

3SIMD = Single Instruction, Multiple Data Stream 

5 



3.1 Complete Graphs 

Since every pair of nodes is connected by an edge, the complete graph has the following properties: 

P I . All nodes have the same degree and thus the same colour set 

P 2 . A t every i teration of the w h i l e loop, the subgraph induced by the so-far-uncoloured nodes is also 
a complete graph, each node of which has the same colour set. 

Moreover, the exact numbers assigned to each node do not matter; what determines when a node will 
be coloured is the relative numbering. These properties of the completely connected graph make it 
possible to find the mean colouring t ime relatively simply when b i a s = 0 , i.e. when the colour choice is 
truly random and unbiased. 

There are two variables which describe the s tate of the sys tem at any iteration: the number of nodes 
which have not yet been coloured, and the number of nodes which are not known by their neighbours 
t o be coloured yet . Due t o the t ime lag that we mentioned above, the two variables are not necessarily 
equal. 

Denote by 7 k ( n ) the expected t ime to colour a completely connected graph, and by Tfc(n,m) the 
expected t ime to finish colouring a completely connected graph in which n nodes have not yet sent 
out their "I am done" signal, and in which m nodes have not yet reached their final colour. Clearly, 
n > m , and Tk(n) = 7fc(n ,n) . Let f3v{nym) denote the probability that in such a case, v of the m 
not-yet-coloured nodes achieve their final colour in the next iteration of the w h i l e loop. Then, we 
immediate ly have the following recursion: 

m 

7 * ( n , m) = Yl ™)r*(m, m - u) + 1 

where, clearly, T*(n ,0 ) = 1, and 7 * ( 1 , 1 ) = 2. 

/?„(n, m ) can be found by using a probabilistic urn model [4]. Each colour can be regarded as an urn, 
and each node as a ball. A s ta te of (n , m ) corresponds to the m balls being thrown at random, each into 
one of n urns. Of these n urns, balls that land in a predefined set of n - m "bad" urns (corresponding 
to the colours of nodes which have achieved colouring only in the previous iteration of the w h i l e loop 
and which have therefore not yet sent out their "I am done" signal) must be thrown again. The number 
of nodes which achieve colouring at this s tep is then the number of "good" (i.e. not "bad") urns that 
are occupied by a ball. 

/ ?„ (n ,m) is best calculated by the following recursion. Define the auxiliary function 7^(n, m , p ) 
recursively as follows. 

{ ( n - m ) / n } p if v = 0 

m/n if u = p = i 

{ n : ^ 7 4 n , m , p - l ) + ^ ^ 7 ^ 1 ( n , m , p - l ) elseifu,p>l 
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Consider a model in which the balls are thrown in one after the other. In that case, 7i / (n, m , p ) can be 
regarded as the probability that u out of the n — m "good" urns have been occupied after p of the m 
balls have been thrown in. From this argument, it follows that 

/ ? i / (n ,m) = 7 „ ( n , m , m ) . 

Bounding the expected t ime for a given node to finish executing is equally s imple. Clearly, the 
lowest-priority node has the m a x i m u m expected finishing t ime. Define 

where L ( n , 0 ) = 1. We leave it to the reader to show that the expected finishing t ime of the lowest-
priority node is L ( n , n ) . 

The computat ion of mean execution t ime for the SIMD algorithm is much easier. The recursion for 
the mean execut ion t ime is found first by ignoring the complet ion signal, and then adding 1 to the final 
result to account for it. Define the recursion 

Keep in mind that this is in units of the number of iterations of the w h i l e loop, which contains two 

transmissions in the SIMD case, while the original algorithm contains only one transmission per iteration. 

The bound on the expected finishing t ime of the lowest-priority node for the SIMD algorithm can be 
computed as follows. It is easy to show that if m nodes remain uncoloured at a particular iteration, the 
probability that the lowest-priority node gets coloured at the next iteration is given by { ( m - l ) / m } m " 1 , 
which decreases monotonical ly as m —• oo, converging to 1/e. As far as the lower-priority node is con
cerned, the process of colouring it is therefore a Bernoulli process wi th probability of success at each 
s tep at least 1 /e . It follows from this and elementary probability that the mean t ime to colour any 
particular node is upper-bounded by c, regardless of the size of the graph. 

R e m a r k 1: T h e perfect symmetry of the complete graph makes it possible to obtain exact results. 
Properties P I and P 2 make it sufficient to determine the probability that a certain number of nodes 
have been coloured in the first iteration of the w h i l e loop; it is not necessary to find the colouring 
probability of every set of distinguished points . Unfortunately, the complete graph is the only graph 
which has properties P I and P 2 . For most other graphs, we have to be content with approximate 
solutions. 

R e m a r k 2: Despi te the fact that the complet ion signal is always redundant, the algorithm cannot do 

0.0 if n = 0 
1.0 if n = 1 
Em=i *( n > m)fM{n - m) otherwise 

It is easy t o see that the mean execution t ime for the SIMD algorithm is given by 

Tj^(n) = t^(n) + 1.0 
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without it. This is because the nodes have no way of knowing that the graph is completely-connected: 
all each node knows is the set of nodes that it is connected to . 

R e m a r k 3 : The analysis of less symmetric graphs than the completely connected is usually made 
impractical because of the amount of s tatus information that needs to be stored during the numerical 
computat ion of their mean colouring t ime. At each step of the recursion, one would have to calculate 
the joint probability of the sets iVi,iNT2, where N\ is the set of nodes which have achieved colouring, 
and N2 the set of nodes which have not yet sent out their complet ion signal. One would then have to 
calculate this for every one of the assignments of node priority, and average them. For graphs which 
are not very small , this procedure quickly becomes infeasible. 

Numerical results are presented in Figure 1 for completely connected graphs. This simple algorithm 
is surprisingly fast: for example , it takes fewer than 11 iterations on the average to colour a 200-node 
complete graph when b i a s = 0 . 

When the b i a s ^ 0, analytical results are impractical to obtain. The reason is that when the choice 
of colours (urns in our urn model) is biased, the s tate description of the underlying Markov chain has 
to contain the identites of the available and unavailable colours ("good" and "bad" urns in our urn 
model ) , not just their number. This results in a number of s tates that grows exponential ly with the 
number of available colours, and makes the analysis intractable. 

3.2 Random Graphs 

Any conceivable exact analytical model for random graphs would require an impractically large 
number of s tates . As far as approximations are concerned, it is not possible to apply the techniques 
of decomposit ion due to the t ight coupling between nodes connected together by an edge. We have 
therefore l imited ourselves here to a s imulation. 

A random graph is characterized by a 2-tuple ( n , p ) , where n is the number of nodes , and p is the 
probability that a pair of dist inct nodes is connected by an edge. 

In Figure 2, s imulat ion results are presented for random graphs of 100 nodes. The b i a s value was 
set at 0 .3 . 

The impact of the b i a s variable is shown in Figure 3. The probability that colour j is chosen by a 
processor is given by e x p ( - b i a s x j)/YX=\ e x p ( - b i a s x k) where c is the number of colours available 
to the processor in question. 

When the b i a s is increased, it is easy to see that the algorithm declines in speed because the 
chances of a collision are increased. However, because lower numbered colours are favoured by a high 
b i a s value, the number of colours used tends to decline, and approaches the number that would be 
used by a sequential algorithm. Indeed, as the b i a s tends to infinity, the number of colours used by this 
algorithm is exact ly the number of colours used by the well-known sequential algorithm of Grimmett 
and McDiarmid [2 ] . 3 We have therefore observed a tradeoff between the speed of the algorithm and the 

3 It was proved in [2] that the expected number of colours used in the Grimmett-McDiarmid algorithm does not exceed 
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number of colours used, controlled by the value of a single parameter. 

4 Performance of the Non-Massively Parallel Algorithm 

Unlike in the massively parallel case, it is impractical to analytically solve for the run t ime of even 
complete graphs. The reason is that any Markov-type analysis would have to include a s tate description 
which expressed the number of uncoloured nodes held by each processor at each step of the algorithm. 
The number of s tates will thus rise rapidly to an unmanageable amount . We have therefore contented 
ourselves here wi th a s imulation. 

Simulation results for the non-massively parallel case are provided in Figure 4. A s expected, the 
expected run t ime reduces when the number of processors is increased. T h e marginal gain in adding 
a processor is greatest when the number of processors is small . There are three reasons for this. The 
first is that when the number of processors is small , the addition of a processor represents a relatively 
large increasing in the available processing power. The second reason is that when there is a small 
number of processors, the chances of a collision, i.e. of two processors picking the same colour for nodes 
which are connected by an edge, is small . For this to occur, at least two processors will have to have 
chosen nodes from their lists that are connected by an edge and have picked the same tentat ive colour. 
The third reason is that there is no communicat ion delay within a processor, i.e. if two nodes a and 6, 
connected by an edge, are taken up by the same processor one after the other, the final colour of a is 
known when 6 begins to be coloured: there is no one-step information transmission delay. So, when a 
large number of nodes are allocated to the same processor, the effect of the communicat ion delay tends 
to decrease. To see this , we have Figure 5, in which we compare the performance of the algorithm with 
the performance it would exhibit if there was always a one-step delay in transmitt ing the fact that the 
final colour - even between nodes al located to the same processor. Figure 5 gives an idea of the impact 
of the information transmission delay between processors. Naturally, the impact is the greatest when 
the number of processors is small . 

5 Implementation on the Connection Machine 

5.1 Some Features of the Connection Machine 

We begin the discussion of the implementat ion wi th some remarks on the Connect ion Machine 
(CM) . Our description is very sketchy: more details can be found in the book by Hillis [3]. 

The CM is a massively parallel SIMD machine. It can have up to 64K processors, each of which 
have local memory. The communicat ion between processors is accomplished by using a hypercube 
interconnection network for message routing. 

Programming the C M is done using parallel variables. A parallel variable names a slot in memory 
for every processor. Thus , if we define a parallel variable a on an n—processor sys tem, each of the n 

twice the minimum number of colours needed. 
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processors will have a slot in memory that will be referred to as a. This allows the manipulation of 
mult iple d a t a using a single instruction. For the sake of clarity, the version of a in processor t will be 
referred t o as a^. 

T h e C M has a special class of operations that will be referred to as the S C A N operations. Using 

these al lows one t o conduct associative operations on parallel variables in an array of processors with 

t ime complex i ty log of length of the array. We will refer to this array of processors as the scan array. For 

example , P L U S is an associative operation. At the end of a P L U S - S C A N on a parallel variable p, over 

an array of k processors, and storing the results in p, p, = 2y=i Pj> As an illustration consider doing a 

P L U S - S C A N on the parallel variable a, and storing the results in parallel variable b. Consider an array 

of only five processors. Assume that a is 0,1,2,3 and 4 in the processors 1 to 5 respectively. Therefore b 

will become 0,1 ,3 ,6 and 10 in the processors 1 to 5 respectively. C O P Y - S C A N is essentially a broadcast 

to all processors in the scan array. It can easily be implemented using the P L U S - S C A N . The value to 

be broadcast is placed in processor 1, while all other processors have O's before the PLUS-SCAN. 

5.2 Implementation Results 

T h e S I M D modification of the algorithm was implemented on the CM. One difference between this 
modification and the algorithm in 2.2 has already been noted. Another difference that affects the result of 
the a lgor i thm is tha t all processors chose from the same colour set in the SIMD modification. The reason 
is that since the machine is single instruction, executing random[se t_o f . c o l o u r s - a v a i l a b l e . b i a s ] 
should be the same in all processors, or else the instruction will have to be executed as many t imes 
as there are dist inct colour sets . Hence the decision to have uniform colour sets . Thus the maximum 
degree of the graph plus one decides the cardinality of the colour set , rather than the local degree of 
the node . This should make the algorithm run faster. 

Pseudo-random graphs were generated using a random number generator. The results of colouring 
these graphs is shown in Table 1. Once again, the number of t imes the while loop is executed is small. 
In fact in all the examples presented it is never executed more than five t imes. Note that two messages 
are exchanged per neighbour in every iteration. Therefore, while it appears that the run t ime in Figure 
2b is greater, only one message is exchanged per neighbour per iteration. A fairer comparison can be 
made by doubl ing the number of iterations in Table l a . Therefore the average run t ime in Table 1 
may be said to be around 8, while for the algorithm in 2.2 it is around 5 for the edge probabilities 
that are used in Table l a . This reflects the saving that is made possible by not wait ing for the done 
message . Table 1 also shows the number of processors active in each iteration. It appears that the rate 
at which processors are done increases wi th the number of iterations where rate(i) is defined as the 
fraction n(i)/n(i — 1) for a particular row in the figure. Also, it is interesting to note that ra*e(2) is 
a lways around a third. T h e second observation is not as evident. Let us assume that entries in the table 
are indexable by row number (and in some cases along with the iteration number) . Define nratio(j\ k) 

to be the set of ratios r(i,j, k) where j and k are row numbers such that n(j\ l ) /n ( fc , 1) is an integer and 
edge probability (j) is equal to edge probability (k) and r(i,j,k) = n(j,i)/n(k,i) for all iteration numbers 

t . It appears that r(t,jf, k) is roughly equal to n(j, l ) /n ( fc , 1) for all t . These observations might provide 
hints as to how an approximate analytical model may be built for the random graph case. The effect of 
increasing the number of colours allowed in steps of the max imum degree of the graph is shown in Table 
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l b . It can be seen that this does not produce any dramatic changes in the number of iterations. We 
see two reasons for this . Firstly, this number is quite low already, and therefore there is not much room 
for improvement . Secondly, since all processors are using the same colour set , the number of available 
colours may be far more than the degree of many nodes. For these nodes increasing the number of 
colours will not make much difference. 

5.3 Possible Enhancements to the Algorithm 

The special features of the C M may be used to speed up the algorithm. Since the number of executions 
of the w h i l e loop is small enough, we concentrate on improving the t ime for a single execution of the 
w h i l e loop. 

The following sub-algorithms exploit the scan capability by throwing more hardware into every (log
ical) P E . A s s u m e that every P E is made up of a number of processors organized as an array and one 
control processor. 

Sending a Message: Assume that processors 1 to d of a PE's processors are dedicated to sending 
messages to neighbours 1 t o d respectively. Thus the sending of a message to all neighbours may 
be accomplished in O ( l ) t ime plus interconnection network routing t ime after the contents have been 
broadcast t o the transmitt ing processors. Copy scan allows this to be done in 0(logd) t ime. 
Receiving a Message: The content of a message is always a colour in the SIMD modification, which is run 
on the C M . N o termination message is needed for the SIMD modification because the second message 
in a pair of messages is implicitly the "I a m done" message. Assume that processors 1 to c receive all 
messages w i th content colour 1 to c respectively. 

Detecting a Clash: Assume that the control processor chooses t as the t e n t a t i v e - c o l o u r . It then sends 
a message to processor t (in its group of processors) informing it about this choice. Processor t can 
detect a clash if it receives a t e n t a t i v e - c o l o u r from a neighbour and inform the control processor. 
Thus , this can be done in constant t ime. This assumes that multiple writes are allowed at a processor 
by neighbouring processors. There are ways to get around this: processor t can be replaced by d pro
cessors, each of which is dedicated to receiving messages from a particular neighbour. Then , the control 
processor could complete its broadcast of t e n t a t i v e - c o l o u r to these d processors in 0(logd) t ime. 
Choosing a Random Colour: Since processors 1 to c receive messages about colours 1 to c, they may also 
be used t o represent a dynamic set-of-allowed-colours set. After an iteration, some of the processors 
1 to c will know that "their" colours are no longer available. There is a parallel variable sum which 
is intiailized to 1 in processors whose colours are still available and to 0 in other processors after final 
colours are received in an iteration of the w h i l e loop. Aplus scan on this parallel variable will complete 
a new enumerat ion of the remaining colours. The value of the scan in processor c will contain the total 
number of colours still available. A random number is now generated between 1 and their value. This 
random number is used to index into the new enumeration, thereby deciding the t e n t a t i v e c o l o u r to 
be chosen. T h e algorithm is given below in pseudo-code, s e l f _id is a constant such that processor t 
has s e l f . i d t . Assume that the control processor has s e l f _ id c + 1. 
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pardo 
r e s u l t : * p l u s s c a n ( p r o c e s s o r s 1 t o c , sum, sum); 
p a r i f ( s e l l . i d * ( c + 1 ) ) t h e n 

b e g i n 

copy r e s u l t from p r o c e s s o r c ; 
s e n d ( r a n d o m [ r e s u i t ] ) t o p r o c e s s o r 1 s o t h a t i t i s a s s i g n e d 
t o n e w c o l o u r ; 

end; 

c o l o u r i n d e x : - c o p y s c a n ( p r o c e s s o r s 1 t o c , n e w c o l o u r . n e w c o l o u r ) ; 
p a r i f ( ( r e s u l t * c o l o u r i n d e x ) AND ( s u m * l ) ) t h e n 

t e n t a t i v e _ c o l o u r : - s e l f _ i d ; 
end i f ; 

end i f ; 

The t ime complexity is 0(logc). 

6 Conclusions 

We have, in this paper, presented a simple parallel algorithm for graph colouring. The key features 
of the algorithm are (a) that it operates on purely local information (i.e. each node only concerns itself 
wi th its neighbours) , and (b) that it is conceptually very simple. In place of extensive interprocessor 
communicat ion, it uses a random choice of colours, and then repeats the process in the event of two 
connected nodes being coloured the same. 

There are many possible extensions of this work. We have conjectured that the expected t ime to 
colour complete graphs of order n ( n = 0 , l , . . . ) is an upper bound to the t ime to colour any other graph 
of order n. It would be interesting to prove this conjecture. Another extension would be to study the 
effect of providing more information about the graph to each processor. For example , each processor 
might spend t ime finding out the degree of the nodes which neighbour each of its neighbours. The 
result would throw some light on the value of structural information about the graph, and would be 
of interest from a theoretical s tandpoint . From a practical point of view, however, the algorithm as it 
s tands is sufficiently fast that significant improvements in its execution t ime are unlikely to be possible 
by such means; and such extra information might best be employed in reducing the number of colours 
used. 
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n(i) Nodes R e m a i n Before i th Execut ion of Whi le L o o p 
O r d e r edge probabi l i ty* maxdegree** n ( l ) 11(2) n(3) n(4) n(5) 

800 0.1 107 800 275 49 4 0 
800 0.02 29 800 247 41 4 0 
700 0.1 95 700 235 47 6 0 
700 0.02 26 700 222 29 1 0 
600 0.1 81 600 197 32 4 0 
600 0.02 25 600 189 25 2 0 
500 0.2 129 500 197 50 8 0 
500 0.1 71 500 177 41 10 2 
400 0.2 103 400 123 22 1 0 
400 0.1 62 400 140 27 2 0 
300 0.3 108 300 118 22 1 0 
300 0.2 81 300 99 11 0 0 
300 0.1 43 300 93 14 1 0 
200 0.5 119 200 75 12 2 0 
200 0.4 100 200 74 19 3 0 
200 0.3 79 200 67 11 1 0 
200 0.2 52 200 58 8 0 0 
200 0.1 31 200 72 10 0 0 
100 0.9 97 100 34 8 1 0 
100 0.8 89 100 35 7 0 0 
100 0.7 75 100 35 8 2 0 
100 0.6 69 100 33 8 1 0 
100 0.5 59 100 38 6 0 0 
100 0.4 51 100 35 9 0 0 
100 0.3 45 100 30 4 0 0 
100 0.2 32 100 33 5 1 0 
100 0.1 19 100 36 5 1 0 

• edge probability is the probability that there is an edge between any two nodes. 

** maxdegrcc is the maximum vertex degree to be found in the graph. 

Table la: Implementation on the Connection Machine 



Effect of Inc reas ing the N u m b e r of Co lours 

O r d e r = 8 0 0 . e d g e p r o b a b i l i t y = 0 .1 . m a x d e e r e e = 1 0 7 

N u m b e r o f colours u s e d N u m b e r o f I t e r a t i o n s 
1 0 8 4 
215 3 
322 3 
429 2 
536 2 

Orde r = 700,edRe probabi l i ty « O.l.maxdefcree = 95 

Number of colours u s e d Number of I tera t ions 
96 4 

191 3 
286 2 
381 2 
476 2 

Orde r « 600.ed*e probabi l i ty « O.l.maxdeRree « 81 

Number of colours used Number of I te ra t ions 
82 4 

163 3 
244 3 
325 2 
406 2 

Orde r = 5 0 0 . e d g e probabi l i ty = O.l.maxdefcree * 7 1 

Number of colours used Number of I te ra t ions 
72 5 

143 3 
214 2 
285 2 
356 2 

O r d e r « 400.ed*e probabi l i ty = O.l.maxdeffree « 62 

Number of colours used Number of I t e ra t ions 
63 4 

125 3 
187 2 
249 2 
311 2 

Table lb: Implementation on the Connection Machine (cont'd) 


