
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The Meta-Generalized Delta Rule:
A New Algorithm for Learning in

Connectionist Networks

Dean A. Pomerleau
September 1987

CMU-CS-87-165 ,

Computer Science Dept.
Carnegie Mellon University

Pittsburgh, PA 15217

ARPA-NET: Pomerlea@F.CS.CMU.EDU

© 1987 Dean A. Pomerleau

mailto:Pomerlea@F.CS.CMU.EDU

Abstract

Currently the most popular learning algorithm for connectionist networks is the

generalized delta rule (GDR) developed by Rumelhart, Hinton & Williams (1986). The GDR

learns by performing gradient descent on the error surface in weight space whose height at any

point is equal to a measure of the network's error. The GDR is plagued by two major

problems. First, the progress towards a solution using the GDR is often quite slow. Second,

networks employing the GDR frequently become trapped in local minima on the error surface

and hence do not reach good solutions.

To solve the problems of the GDR, a new connectionist architecture and learning

algorithm is developed in this thesis. The new architectural components are called meta-

connections, which are connections from a unit to the connection between two other units.

Meta-connections are able to temporarily alter the weight of the connection to which they are

connected. In doing this, meta-connections are able to tailor the weights of individual

connections for particular input/output patterns. The new learning algorithm, called the meta-

generalized delta rule (MGDR), is an extension of the GDR to provide for learning the proper

weights for meta-connections.

Empirical tests show that the tailoring of weights using meta-connections allows the

MGDR to develop solutions more quickly and reliably than the GDR in a wide range of

problems.

ii

Acknowledgments

This report is a revised version of a thesis submitted to Williams College as partial

fulfillment of the requirements for the degree of Bachelor of Arts with honors in computer

science.

I thank Prof. Kim Bruce for his patience and support throughout this research.

Despite the fact that he was originally unfamiliar with the subject matter of this thesis, he

has willingly overseen my work and has constantly provided me with keen insights I

would have otherwise missed. I cannot hope to thank him sufficiently for the opportunity

he has provided me. I am also in debt to Prof. Donald House, who has selflessly shared

with me much of his time and expertise in the area of biological computation. I also thank

the professors for my other classes, especially Tom Murtagh and Pat Carroll, whose

understanding during the last few weeks of this thesis work has helped immensely.

At CMU, I thank Roni Rosenfeld, Barak Pearlmutter, Jay McClelland, Scott

Fahlman and especially Dave Touretzky for their help in revising this report.

My family and friends have given me warmth, support and for this I am grateful. I

cannot hope to thank them properly; thank goodness I don't need to.

Dean Pomerleau

iii

Table of Contents

Chapter 1. In t roduc t ion 1

Chapter 2. Connect ionis t Basics 6

Chapter 3. The Generalized Delta Rule 12

Chapter 4. The Meta-Generalized Delta Rule 25

Chapter 5. Simulat ion Results 33

Chapter 6. Analysis of the MGDR 45

Chapter 7. Conc lus ion 56

Re fe rences 59

iv

Chapter 1
Introduction

This thesis describes, demonstrates and analyzes a new method for learning in

connectionist systems called the meta-generalized delta rule (MGDR). The MGDR is an

extension of the generalized delta rule (GDR) (Rumelhart, Hinton & Williams, 1986), which

allows the present context of the network to affect the weights of individual connections. The

central claim of this thesis is that by allowing the weights of connections to be partially

determined by the state of their environment, the MGDR can offer dramatic improvements in

learning speed and reliability over the GDR.

This chapter describes the need for connectionist systems in general and provides a

general overview of the remainder of this thesis.

The goal of connectionism is to develop massively parallel computational networks.

Towards this end connectionist researchers have adopted a brain-like architecture for their

networks. The resemblance of connectionist systems to neural networks results from the fact

that there are a number of attributes inherent in neural networks that connectionists hope to

capture in their systems.

Some of the primary benefits of computing using a brain-like architecture result from

the highly parallel nature of these networks. For instance, the human brain can perform the

computations required to do visual object recognition in less than 200 msec, which allows for

the sequential firing of fewer than 100 neurons (Thompson, 1986). Serial computers,

performing many millions of sequential instructions, are still unable to approach the proficiency

of the brain at visual recognition tasks. Somehow the 100 step "program" the brain is using to

1

Introduction 2

perform visual analysis is very powerful. The power of the human visual system results from

the fact that during those 100 steps, the brain is performing a huge amount of parallel

computation. This parallel computational power is one aspect of neural networks that

connectionists hope to duplicate in their systems.

A second important property that emerges from the interaction of many processing units

is the tendency such systems have towards graceful degradation. The brain is in fact, an

amazingly resilient computational system. For example, it is not uncommon for stroke

patients, who have had large portions of their brains destroyed, to retain a large part of their

former capacities. It appears that either no one specific area of the brain is crucial for many of

our abilities or else the brain is able to reorganize itself to circumvent the loss of one of these

crucial areas. Either way, the resulting fault tolerance is a very desirable property missing from

most traditional computational systems.

The ability to spontaneously generalize in new situations is another aspect of neural

networks that connectionists hope to take advantage of in their systems. When we confront

something new, we are usually able to draw on analogous past experiences to guide us.

Computers are notoriously bad at reasoning by analogy, primarily because of their address

based memory scheme. Unless one is willing to contend with a time consuming search, one

must tell the computer exactly where to look in its memory for the information appropriate to

the situation. As a result, traditional computers are terrible at dealing with incomplete or

misleading information.

Perhaps the most important appeal the brain-like computational systems have is their

ability to learn. One of the major problems with traditional artificial intelligence is the emphasis

placed on the "blocks world approach". In the blocks world approach to developing artificial

intelligence, a researcher first chooses an environment or situation in which he would like his

computer to act "intelligently". Then the researcher compiles all the knowledge he considers

necessary for functioning in the environment or solving the particular problem at hand. The

Introduction 3

final steps of the process are to program this information into a model of intelligence and test

the model's performance to determine if it acts "intelligently".

The troubles with such an approach are twofold. First, a large part of intelligence

involves the ability to learn from one's mistakes. If you bump into a block in your blocks

world environment, you should learn that blocks are solid and not to run into them. The

traditional approach to AI however, has the model "in-born" with this kind of knowledge.

But a more important criticism of this technique concerns its practicality. While it is

possible to directly plug in the knowledge necessary for functioning in a toy environment like

blocks world, such an approach quickly becomes impossible as the complexity of the target

environment increases. In short, traditional artificial intelligence is faced with what has been

termed the knowledge bottleneck problem: how to get all the information necessary for

functioning in a complex environment into the computer in a usable form.

The hope of connectionism is to put together a relatively general network of

interconnecting neuron-like computational units, and by using a learning algorithm to alter the

pattern of interaction between these units, develop a system that can learn the knowledge

required for intelligent behavior through experience.

This introduction was meant to justify the work being done in connectionism. The

remainder of this thesis explores specific aspects of connectionism, and particularly learning in

connectionist networks. Chapter 2 presents the specific components of connectionist models,

including such aspects as the nature of the neuron-like computational units and the means of

communication between them.

Chapter 3 consists of two parts. In the first, a technique developed by Rumelhart,

Hinton & Williams (1986) for learning in connectionist networks, called the generalized delta

rule (GDR) is described. In the second part, the need for a better learning algorithm is justified

by pointing out the shortcomings of the GDR.

Introduction 4

Chapter 4 describes a new solution to some of these problems, the MGDR. In this

chapter, the modifications to the traditional network architecture needed by the MGDR are

described. Specifically, the concept of meta-connections, which are connections from one unit

to the connection between two other units, are illustrated. Next comes a mathematical

presentation of the means by which meta-connections interact with the traditional network

components. In addition, it is shown that the MGDR is really an extension of the GDR by

proving that in a traditional network, that is, one without meta-connections, the MGDR

behaves exactly like the GDR. Despite the fact that meta-connections alter the strength of what

may be considered the traditional weight of a connection, it is shown that the change to the

traditional weight of a connection on any given trial using the MGDR is identical to that in the

GDR.

Chapter 5 explores the MGDR in action. Specifically, the results of simulations

performed to test the learning ability of the MGDR are presented. Throughout chapter 5 the

MGDR and the GDR are compared in terms of how quickly and reliably they develop solutions

to problems. My major finding is that, relative to the GDR, the MGDR is more consistently

able to quickly develop a set of weights to solve a relatively wide range of problems. In

addition, preliminary results indicate that the solutions developed by the MGDR are more

generalizable in that when faced with an input pattern never encountered before, a network with

a solution developed using the MGDR more readily returns the correct "answer" than does a

network with a solution developed using the GDR.

In Chapter 6 the reasons for the performance difference between the GDR and the

MGDR are described. The MGDR's learning advantage is primarily due to the fact that meta-

connections allow the weights of individual "normal" connections to be tailored for individual

trials. Since the network can tailor connection weights for individual trials, it less frequently

encounters the problems inherent in trying to find a single set of weights which satisfies all

facets of a problem. Chapter 6 also contains a comparison between the MGDR and other

extensions of the traditional network architecture, including adding more units as a substitute

Introduction 5

for meta-connections and adding what Rumelhart, Hinton & McClelland (1986) call sigma-pi

units. The conclusion drawn in Chapter 6 is that meta-connections provide a combination of

attributes which is missing from these other extensions, namely a flexible architecture which

can learn quickly.

Finally, in Chapter 7, we conclude by recapping the major findings concerning the

MGDR, discussing some of its shortcomings and outlining some of the important questions

this thesis leaves unanswered.

Chapter 2
Connectionist Basics

According to Rumelhart, Hinton & McClelland (1986), there are at least six major

aspects of a connectionist computational network:

1) A set of processing units

2) An activation state for each unit

3) A connectivity pattern between the units

4) An activation rule for determining the activation state of a unit from the inputs
impinging on it from other units

5) A learning rule by which the pattern of connectivity is modified by experience

6) An overall system architecture

The components in connectionist networks which perform computation are neuron-like

elements called units. The Ith unit in a particular network is denoted with the notation uv

Associated with each unit ut is an activation state, or The activation state of a unit represents

how active that unit is, or from a neural standpoint, the neuron's rate of firing. The activation

level is usually represented by a real number between 0.0 and 1.0.

The pattern of connectivity of a network is composed of uni-direction links between

units called connections. These connections are similar in many ways to synapses in the brain,

in that it is through these connections that units communicate. The connection from wz- to Uj is

denoted Cfi. Each connection has associated with it a signed real number called its weight. The

weight from to Uj is denoted A positive weight signifies that the connection is excitatory

and a negative weight signifies that the connection is inhibitory. The magnitude of the weight

determines the degree to which a connection is excitatory or

6

Connectionist Basics 7

inhibitory. An excitatory connection from wf- to Uj (see Figure 2-1) means that if wf- has a

relatively high activation level then it will excite Up causing its activation level, Op to increase.

Conversely, if the connection from wt- to Uj is inhibitory, then if u-v has a high activation level it

will decrease Op The magnitude of the influence wx has on the activation level of uj at any

given time depends on oi9 wyv and the activation function / , which maps a unit's net input

from other units to an activation level for that unit.

©—^r<© <
Figure 2-1. Two connected units.

In all connectionist systems,

Oj = f(netj)

where
netj = ^Wji ob

i

for all Ui with connections to Up

The specific activation function / varies from model to model. Perhaps one of the most

popular activation functions, and the one used exclusively in this paper, is the logistic

activation function, represented mathematically by

1
°Pj = 7 r

^ i J

where 0 ; is a bias term similar in function to a threshold.

The logistic activation function has a number of advantages. First, the function mimics

the activation profile of actual neurons (House, personal communication) in that as the

magnitude of the net input to a unit gets large, the function asymptotically approaches its

boundary (see Figure 2-2). In addition, the logistic activation function is differentiable, which

will be seen to be a requirement for all interesting learning rules.

Connectionist Basics 8

Figure 2-2. The logistic activation function

Before discussing learning rules in connectionist models, it is important to understand

two more aspects of these networks. The first is the traditional network architecture employed

in connectionist systems. The most common architecture, and the one used almost exclusively

in this thesis, involves three layers of units; an input layer, a hidden layer and an output layer

(see Figure 2-3).

Output Layer

Hidden layer

Input layer

Figure 2-3. A three-layered connectionist network.

The input layer is comprised of units whose activation levels are determined externally

to the system. This layer can be thought of as providing the system with sensory input. The

input layer is generally connected only to the hidden layer. The hidden layer can be envisioned

Connectionist Basics 9

Figure 2-4. A network for computing XOR.

as the place at which input is processed and categorized. The hidden layer usually only has

connections to the output units, although in some networks there may be connections between

hidden units.

Finally, the output layer is the set of units to which the results of the processing of the

input by the hidden units is relayed. The general goal of this type of system is to transform a

given input pattern, represented by a vector of activation levels, into an output pattern

represented by another vector of activation levels.

For example, the network in Figure 2-4 might be used to compute the exclusive-or

(XOR) of the two input units. For this example, the desired activation level of the output unit

is the exclusive-or of the activation level of the two input units. The activation levels of the

input units would be externally set to one of the four XOR patterns (0 and 0, 0 and 1, 1 and 0,

or 1 and 1) and the goal would be to have the two hidden units transform this input into the

appropriate answer, (0, 1, 1 or 0, respectively, for each of the input patterns), represented by

the activation level of the output unit. The network in Figure 2-4 could be taught a proper set

of connection weights to compute the XOR function using a back propagation algorithm like

the Generalized Delta Rule. This learning rule will be discussed in detail in the next chapter.

Connectionist Basics 10

Because of the asymptotic nature of the activation function, it is obvious that the

activation level of the output unit can never reach a perfect "answer" (an activation level of 0.0

or 1.0). Therefore a means of measuring how close a network is to "solving" a problem is

needed.

Rumelhart, Hinton & Williams (1986) used the error function

P

where Ep is the measure of the networks error on input/output pattern p as given by

E P = j£(tpj - Op?
p

where tpj- is the "answer" activation level that Uj should have on input/output pattern p and opj-

is the level of activation that Uj actually has on input/output pattern p .

A useful way of conceptualizing the error in a given network is by considering the error

in the network as a function of weights of the network's connections. Figure 2-5 is an

illustration of such a conceptualization in which the height of the surface at any point in weight

space represents the value of the error function E. At point A in weight space, E is quite high,

so the network is far from a "correct" solution. At point B however, the network's error is

minimized, and hence the system is as close to the "correct" solution as possible. Note that at

point A, any changes made to the weights of the network's connections will decrease the

network's error, while at point 5 , any changes made to the weights of the network's

connections will increase the network's error.

The learning rules upon which this thesis will focus can be thought of as techniques for

changing the weights of connections in order to move efficiently from point A to point 5 .

Connectionist Basics

A

B

Figure 2 -5 . A sample error surface in weight space.

Chapter 3
The Generalized Delta Rule

This chapter describes the connectionist learning rule upon which this thesis is based.

It is called the generalized delta rule and it was developed by Rumelhart, Hinton & Williams

(1986). Conceptually, the GDR can be thought of as a technique for starting at point A and

getting to point B in Figure 2-5 by gradient descent. In other words, the GDR attempts to

reduce the error in a given network by altering the network's weights in the direction with the

steepest downward slope.

In this section, the GDR will be described mathematically and the proof developed by

Rumelhart et al. illustrating that the GDR does gradient descent in error space will be

presented. Finally, the problems with the GDR will be described as a lead-in to the MGDR.

The purpose of this section is twofold. It is intended to give the reader an idea of the work

others are doing in the area of connectionist learning systems. More importantly, an

understanding of the concepts behind the GDR is crucial if one is to understand the MGDR,

since the latter is a direct extension of the former.

The GDR is itself an extension of the perceptron learning rule developed by Minsky

and Papert (1969). The perceptron learning rule was originally developed for networks with

only two layers of units, input and output units. 1 In their classic book Perceptrons, Minsky

and Papert showed that there are severe limitations on the computational power of these simple

two-layered networks. In short, there is a large class of often trivial input/output mappings that

perceptrons cannot solve. The problem is that with only two layers, perceptrons are unable to

Actually, perceptrons had three layers, but since the weights between the first and the second
layers were fixed, it is easier to conceptualize them as two-layered networks.

12

The Generalized Delta Rule 13

recode the input pattern. Therefore, a perceptron can only make the correct mapping from

input to output pattern if the output pattern is linearly dependent on the input pattern. For a

more detailed description of perceptrons and their limitations see Minsky and Papert (1969).

Perhaps the best example of the limitations of perceptrons is the exclusive-or (XOR)

problem, in which the activation of the one output unit should be the XOR of the activation

level of the two input units (see Figure 3-1). A perceptron, with connections only from input

to output units cannot compute the XOR of the input units. To understand why, consider the

necessary mappings. When one of the two input units has an activation level of 1.0, then the

output unit should also have an activation level of 1.0. Therefore each of the input units should

have excitatory connections to the output unit. But when both of the input units have an

activation level of 1.0, these excitatory connections will cause the output units to have a high

activation level, when its activation level should really be 0.0. The problem with perceptrons is

that since they have no way of recoding the input pattern, they can only map similar input

patterns to similar output patterns. In other words, the output pattern must be a linear

combination of the input units. In the XOR case, since a high level of activation of either input

unit should produce a high output level, there is no way for the network to learn that when both

input units have a high activation level, the output unit should have a low activation level.

Output unit

Input units

Figure 3-1. A perceptron unable to compute XOR.

For our purposes, it is enough to know that hidden units are necessary so that a

network can recode the input pattern when the output pattern is not an obvious linear function

The Generalized Delta Rule 14

of the input pattern. The GDR is a generalization of Minsky & Papert's perception learning

rule to networks with hidden units.

The learning procedure for the GDR involves the presentation of a set of input and

output patterns. The rule initially uses the input pattern and the logistic activation function to

produce an output pattern in the output layer. If the output pattern produced is identical to the

pattern dictated by the target output pattern, then no weight changes take place. Otherwise, the

weights are changed to reduce the difference between the actual and target output pattern. The

rule for changing weights following the presentation of input/output pattern p is as follows:

ApWj^Ti b p j o p i (1)

where A^wy,- is the change in the weight of the connection from Uj to Uj following presentation

of input/output pattern p, Tt is a learning rate constant, opi is the actual activation level of u^

and 8pj is a measure of the distance the activation level of Uj is from its target.

The value of 8^- in the GDR depends on whether Uj is an output unit or a hidden unit.

If Uj is an output unit:

Spj=(!pj-°Ppf)(netPj) (2)

where tpj is the target activation level for Uj on input/output presentation /?, and fj(netpj) is the

derivative of the activation function for Uj with respect to netpj, the net input to Uj for

input/output presentation p .

The major innovative aspect of the GDR is its formula for computing the delta value for

hidden units. The problem prior to the development of the GDR, with the perception learning

rule in particular, was that there was no good way to calculate the distance the activation level

of a hidden unit is from its "proper" level. The reason for this is simple; it is very difficult to

know the "proper" activation level for a hidden unit because there is no clear target activation

level for the hidden unit as there is for an output unit. Rumelhart, Hinton & Williams (1986)

solved this problem by using a recursive formula to compute the distance. The GDR's

mathematical formula for 8pj when Uj is a hidden unit is:

The Generalized Delta Rule 15

5p;- = f)(netpj)^5pk whj (3)
k

The concept behind the computation of the delta value for hidden units is relatively

straightforward. The value of 8 -̂ for hidden unit Uj is calculated recursively by determining

ujs influence on all units uk to which it is connected and for which we have already calculated

the value 3pk. For instance, if hidden unit Uj makes excitatory connections to output units

which should have a lower activation level and hence have a negative delta value, then

netpj = £ 5 M wkj

k

will be negative. Since the logistic activation function is a nondecreasing function of netpp the

value of 5 -̂ will be negative, indicating that the activation of Uj should be lower. Intuitively

this seems correct in that, if Uj is exciting output units which should have lower activation

levels, the activation level of Uj should be decreased.

Learning using the GDR involves two phases. First, activation is propagated forward

through the network from the input units to the hidden units and finally to the output units.

Then, in the second phase, error is propagated backward through the network using the

following procedure. First, Equation 2 is used to compute the delta value for each output unit

by comparing the actual activation levels of the output units with the desired levels. The

weights from hidden to output units are then altered using these delta values and Equation 1.

The delta value for each hidden unit is then calculated according to the formula in Equation 3

and the weights to the hidden units from the input units are altered using these delta values and

Equation 1.

So error propagation, the concept behind the generalized delta rule, is really quite

simple. The interesting aspect of the formulation for error propagation developed by

Rumelhart, Hinton & Williams (1986) is that it can be shown to perform gradient descent in the

error space which was described earlier. The proof goes as follows:

Since we want to prove that the GDR does gradient descent in error space, we have to

show that

The Generalized Delta Rule 16

APW* ~ " 8 V

where E is the sum-squared error function defined earlier. This equation mathematically

embodies the idea behind gradient descent in error space that the more changing a weight in a

given direction increases the system's error, the more that weight should be changed in the

opposite direction. This concept will be explained more fully after the derivation.

It is helpful to view the above derivative as the result of the product of two parts: one

reflecting the change in error as a function of the change in net input to the unit and the other

part reflecting the effect of changing a particular weight on the net input. Thus we can write

dEp dEp dnetpj
dwji dnetpj dwyt

Recall earlier we defined

n e t

P j = Hwjk °Pk
k

for all uk with connections to Uj. So

dnetpj 3

(4)

°vk = oDi (5) a w „ - dw..^jkupk-upi
uwJt uwJl k

Now for hidden units let us define

By substituting Equations 5 and 6 into Equation 4, we get

dEp

Therefore, to implement gradient descent, we should make changes in the network's weights

such that

ApWji = Tl 5^ o p i .

This is in fact, the exact formula the GDR uses to alter connection strengths. Now all

that remains to complete the proof is to show that Rumelhart's definition of dpj is such that

The Generalized Delta Rule \ 7

p
5PJ dnetp/

Again it is useful to consider the above derivative as the result of the chain rule. That is,

!>EP

is the product of a factor representing how much the activation level of Uj affects the network's

error on input/output pattern p and how much the net input to Uj affects the activation level of

Uj. In other words,

g — " _ P PJ /j\

pj dnetpj dopj dnetpj

The second factor is easy. The derivative of the effect the net input to Uj has on UjS

activation level is just the derivative of the activation function. That is,

^ - ^ • / " ^ <8>

where fj(netpj) is merely the derivative of the logistic activation function described earlier.

The first factor in Equation 7 must be considered in two cases. First, if Uj is an output

unit, the derivative of that unit's effect on the network's error is easy to compute because Uj

contributes directly to the network's error. Therefore, the derivative of UjS effect on the

network's error on input/output pattern p is merely the derivative of the error function with

respect to opj. In other words,

= -(tpj-opj) (9)

Substituting Equations 8 and 9 into Equation 7 results in

8PJ=(tpj-°PJ> f'MetPj)
when Uj is an output unit. Not surprisingly, this is the exact equation the GDR uses to

compute the delta value for output units.

The Generalized Delta Rule 18

The case in which Uj is a hidden unit is not so simple because the error function does

not depend directly on the activation level of Uj. This means the first factor in Equation 7 is

difficult to determine. But we do know that the error function depends directly on the

activation level of the units that the hidden unit Uj connects to, since in three-layered systems,

hidden units are only connected to output units. 2 We also know how each uj affects each of

the hidden units to which it is connected. Using these two pieces of knowledge the derivative

of hidden unit ujs effect on the network's error can be derived. Specifically,

dEp ^ dEp dnetpk

dopj " ydnetpk dopj

_ V dEp
~ \ d ^ k

w «

= -Jfipt "kj (10)
k

Therefore, substituting Equations 8 and 10 into Equation 7, results in the equation

*PJ = f)(netPj)2<Spk wkj-
k

Again this is the exact equation the GDR uses to calculate the delta value for a hidden

unit Uj. Since the formulas for computing dpj in the GDR are exactly those needed to

guarantee that

dEp

5PJ ~ ~Tmt^j

for both output and hidden units, we know that this equation holds true for all units in a

network employing the GDR.

2 This statement is somewhat misleading, since the recursive derivation of 8pj for hidden units
does not depend on the fact that a hidden unit is connected only to output units. The derivation
proves that the generalized delta rule will perform gradient descent in networks with more than
three layers, as long as units in each layer are only connected to units in the layer above, i.e. to
the layer one closer to the output units.

The Generalized Delta Rule 19

Therefore the GDR changes weights in accordance with the formula

with

Since it was proven earlier that if weights are changed in accordance with this formula, a

network will perform gradient descent in error space, we know that the GDR will perform

gradient descent in error space.

Actually this is not entirely correct. What has been proved is that the GDR will change

weights on each pattern in the direction of the steepest downward gradient in that pattern's

error space. If however, the network only makes small changes to weights after presentation

of each pattern p , then the GDR will closely approximate gradient descent in the total error

space defined earlier as

P

This point is very important in two respects. First of all, it is an important limitation on

the effectiveness of the GDR for reasons that will be discussed shortly. Second, the concept of

changing a network's weights after presentation of any one input/output pattern in the direction

of the steepest downward gradient on that pattern's error surface is a crucial idea that will have

major importance later in the discussion of the MGDR.

In fact, the idea of gradient descent on an error surface is of such importance that it

deserves a pictorial explanation. Consider Figure 2-5 to be a graphical representation of a

network's total error surface. In other words, consider Figure 2-5 to be £ , the summation of a

number of error surfaces from individual trials. Recall that in Figure 2-5 a method for getting

from point A, the global maximum on the total error surface, to point 5 , the global minimum

on the total error surface, was desired. The GDR is such a technique and it works in the

following manner. Starting at point A, after presentation of each input/output pattern the GDR

The Generalized Delta Rule 20

changes the weights in the network a small amount in the direction of the steepest downward

slope on the error surface for that individual input/output pattern.

Consider changing one of the two weights, call it weighty that define the x and y axes

of Figure 2-5. Changing weightj corresponds to moving along the error surface in the

direction of one of the two planar axes in weight space. If changing weight2 on a given

input/output presentation by a given amount in a given direction decreases the error by twice

the amount resulting from changing weight2 by the same amount, then the GDR dictates

changing weight2 by twice the amount weight2 is changed. In this way the system will change

the weights in proportion to each weight's ability to reduce the error, leaving unchanged the

weights that have little effect on the error for this particular input/output pattern. Intuitively,

this is an important attribute for a learning rule because if a rule made a relatively large change

to a weight which has little bearing on the error for this particular input/output pattern pair, the

learning rule would very likely disturb the delicate weight system developed to solve some

other input/output pairing in which this particular connection is very important. In short, if a

given connection is not important for a given input/output pattern pair, leave it alone because it

might be important for some other pair.

The fact that the GDR performs gradient descent in total error space is crucially

dependent on the fact that each weight is changed during each pattern presentation in proportion

to its ability to decrease the network's error for that particular pattern. In this way, if an

increase to a given weight reduces the error for a given pattern by a relatively large amount,

while a decrease in that same weight will decrease the error on another pattern by only a

relatively small amount, the net change in the weight of this particular connection over the two

input/output pattern pairs will be positive. This is exactly the result desired because it insures

that network's weights will be altered in proportion to how much a given alteration decreases

the error for the system as a whole over all patterns.

These are the appealing mathematical underpinnings of the GDR and gradient descent.

However this technique for minimizing error is not as effective as it might first appear. In fact

The Generalized Delta Rule 21

it has two major problems, one resulting from the particular implementation of gradient descent

by the GDR and one resulting from a limitation of gradient descent in general.

The first problem results from the fact mentioned earlier that the GDR does not perform

perfect gradient descent on the total error surface because weights in the network are altered

after each pattern presentation. Consider Figure 3-2 in which the steepest gradient in the total

error space from point A is toward point B. If upon presentation of the first pattern, the

gradient of that particular pattern's error space dictates changing the network's weights not in

the direction of point 5 , but instead in the direction of point C, the GDR is in trouble. The rule

is in trouble because by moving towards C after this first presentation, the network enters an

area of the error surface in which the steepest gradient is away from the global minimum, point

B, and towards a local minimum, point C. As a result the network will never reach point B\

but will remain stuck at C with a relatively large amount of error.

One possible solution to this problem is "off-line" learning in which the weight changes

dictated by each pattern are summed before any weight changes are actually made. Although

this method will guarantee gradient descent in the total error space, it is somewhat implausible

from a biological standpoint. Rumelhart, Hinton & Williams (1986) use a different method to

minimized this problem with the GDR. First, they insure that the changes made to weights on

any given pattern are relatively small by using small learning rate constants (the Tt in the

Equation ApWjt = TL dpj opi). This minimizes the likelihood of entering an area of error

space with a totally different gradient on a single pattern presentation, but at the same time it

greatly reduces the speed at which the network can move towards the solution. In order to

maintain a relatively rapid rate of progress down the gradient while avoiding wild weight

oscillations on each pattern presentation, Rumelhart, Hinton & Williams (1986) employed a

momentum term in their learning rule.

Momentum in the GDR was accomplished by altering the learning rule to:

Awjiip + 1) = n 6pjopi + a Awji(p),

The Generalized Delta Rule

Figure 3-2. Another sample error surface in weight space. If the network starts at
point A and on the first I/O pattern moves in the direction of point C, even though
the steepest gradient over all I/O patterns may be in the direction of 5, then the network
will continue in the direction of C and become trapped at this local minimum.

The Generalized Delta Rule 23

where the index p refers to the pattern presentation number and a is a constant which

determines the effect of past weight changes on the current change to be made. In the MGDR a

momentum term is also frequently used. In fact, unless otherwise noted, it can be assumed

that a momentum term was used with an a of 0.90. The findings in this research and in that

of Rumelhart's group have been that a momentum term brings the network much more quickly

to the same solution that is reached using no momentum term and a much smaller learning rate

constant.

Despite the fact that the small learning rate constant coupled with a momentum term

reduces the problem of wild oscillation while maintaining good progress towards the solution,

the GDR is still plagued by slow learning. Just how slowly Rumelhart's GDR learns will be

elaborated on in Chapter 5 where simulations using the MGDR are compared with the

simulations using the GDR.

The tendency of networks employing gradient descent to become stuck at local minima

is a problem that is not so easily avoided. The problem results from the fact that moving from

the present point on the error surface in the direction with the steepest downward slope does

not guarantee that the network is headed towards the point on the error surface with minimum

error. All that gradient descent insures is that by moving in the dictated direction the total error

in the network will be reduced from its current level. This concept is clearly illustrated in

Figure 3-3, where the steepest gradient from point A is in the direction of point C. The GDR

will cause the network to move in this direction until it reaches point C. At point C, all weight

changes in the network will stop because there is no longer a downward slope for the network

to follow. Thus the network will never reach point 5 , but will instead be stuck with a

relatively large amount of total error.

Rumelhart, Hinton & Williams (1986, pp. 324) suggest that "the apparently fatal

problem of local minima is irrelevant in a wide variety of learning tasks," but it will be seen that

the problems of slow learning and local minima are major shortcomings of the GDR which the

MGDR appears to effectively overcome.

The Generalized Delta Rule

Figure 3-3. Another sample error surface in weight space. If the network starts at
point A, gradient descent will move the network to point C, a local minimum, instead
of point 5.

Chapter 4
The Meta-Generalized Delta Rule

To solve the problems inherent in straight gradient descent and the generalized delta rule

we have developed the concept of a meta-connection. A meta-connection is a connection from

a unit to the connection between two other units. Meta-connections have the ability to alter the

weight of the connection to which they connect in a manner somewhat similar to that of sigma-

pi units 1 (Rumelhart, Hinton & McClelland, 1986). The interaction between meta-connections

and normal connections is most easily understood through an example.

Consider Figure 4-1. In this simple network, there is a normal connection between u-x

and Uj denoted Cy. There is also a meta-connection from uk to cy. Such a meta-connection

will be referenced as c^k. The underlying concept behind meta-connections involves treating

each normal connection as a unit, with the connection's "activation level" being the weight of

that connection at a given moment. The total weight of Cji on a given I/O pattern presentation,

denoted Wp^ is just the normal weight of the connection, wy plus a nondecreasing function,

/ , of the net input to Cy from meta-connections. Specifically,

k

for all uk with meta connections to Cy, where denotes the weight of the meta-connection

from uk to. Cy. The necessity of the root in the above equation will later be shown to result

from the desire to maintain a correspondence between the GDR and the MGDR.

lln chapter 6 an explicit comparison is made between meta-connections and sigma-pi units.

25

The Meta-Generalized Delta Rule 26

©
\Ca

&—7T<® <
Figure 4-1. A meta-connection to the connection between two units.

As a concrete example, compare the solution to the XOR problem in a network without

meta-connections in Figure 4-2 to the solution with meta-connections in Figure 4-3 . 2 The

solution without meta-connections involves two input units, one hidden unit and one output

unit. Either of the two input units, when firing alone, is able to activate the output unit, despite

the output unit's negative bias. The hidden unit in this network is basically a detector for the

situation in which the two input units are active, in which case it inhibits the output unit.

The solution using meta-connections depicted in Figure 4-3 is quite different.3 In this

solution, as in the solution without meta-connections, each input unit, is able to activate the

output unit when firing alone. But when both are firing, the meta-connections from unit A to

the "S-C" connection turns off the "5-C" connection by decreasing its weight. In this way,

when both input units are active, the net input to the output unit is zero, so the activation level

of the output unit, with its negative bias, remains around zero.

In the the MGDR, the activation function is the same as in the GDR except it takes into

account the new idea of the total weight of a connection Wp^9 being a function of the normal

weight of the connection H ^ , plus a factor to account for the influence of the meta-connections

to that connection. Specifically, the activation function, for a unit j , is

2 The actual networks depicted in Figures 4-2 and 4-3 are somewhat misleading in that neither
is in the 3-layer form discussed in the previous chapter since each has connections from input
units to output units.
3There is actually a solution to the XOR problem using a single meta-connection from one unit
to the connection between the other input unit and the output unit, but the solution in Figure 4-3
is easier to understand and is more analogous to the solution without meta-connections.

The Meta-Generalized Delta Rule

Input unit Input unit

Figure 4-2. A solution to the XOR problem without meta-connections.

Input unit A Input unit B

Figure 4-3. A solution to the XOR problem with meta-connections.

The Meta-Generalized Delta Rule 28

1 + e

where

°PJ = 7 " \ (D

^ i J

Wp(ji)
 = W^ + SW

 (/W*P* (2)

The delta values for units are computed using the method described by Rumelhart, Hinton &

Williams (1986) in their derivation of the generalized delta rule, except that again we use the

concept of total weight Wp^ where they used the normal weight wyv Specifically, when j is

an output unit,

5Pj = (tPj-°^f'MetPp 0)
where

netPj = yLwp(ji)°pi+dj (4)
i

and ffnetpj) is the derivative of the activation function for unit j with respect to its net input,

netpj. Therefore,

s^ttpj-opjiOpjQ-Opj) (5)

since

f)(netpj) = o p j (l - o p p . (6)

When j is not an output unit,

Spj = fjinetjYfipk Wpw (7)
k

In the MGDR, bp(ji), the deviation of the weight of from what it should be, is

5p(ji) = 8PJ °pi* (8)

The Meta-Generalized Delta Rule 29

The value of is proportional to the total weight change that Cy would have

experienced in the normal generalized delta rule. Therefore, S p (/ 7) can be thought of as the

desired change in the total connection strength, Wp^. This desired change in total connection

strength is distributed to both the pure weight of Cy and the meta-connections connecting to Cy

through the following equations:

and
V ^ = USP<,0^7r (9)

^m = ̂ ^^- do)
ncip(ji)

where
net

P(ji) = ° P i + lL°Pk
k

for all units k with meta-connections to Cy and TTL is the learning rate constant for meta-

connections.

These equations differ substantially from the weight changing equations for the GDR,

and hence they deserve further explanation. The driving factor behind the differences is the

goal that the total weight change to a given connection between units (Wp(ji)) on any given trial

equal the change dictated by the GDR. But in the MGDR this total change is divided between

alterations to the normal connection between two units and alterations to the meta-connections

to that normal connection. The quantity netp^ is a measure of the "total activation" projecting

to a connection between two units and it is used for this division process. In the next section it

will be shown that the root in Equation (10), when coupled with the root in Equation (2),

enables the MGDR to achieve the goal as stated above.

To demonstrate that the MGDR works towards a proper set of weights, it is useful to

show that it alters a network's weights in the direction of the steepest gradient of the surface in

The Meta-Generalized Delta Rule 30

weight space whose height at any point is equal to the error measure. To show the learning

system performs gradient descent, it is merely necessary show to that

since we showed earlier that if the weight changes are proportional to 8p;« opv using 5pj as

defined above, then the learning system will perform gradient descent. From Equation 2, we

know that

APWPW

 =
 APwji

 +
 XApwtfO* </V' (1 2)

k

But from Equations (9) and (10) we know that

and

•pm

Therefore,

If we let the two learning rate constants be equal, (that is T\, = TflJ we get

5p(/0
*Pwpm = (°pi + ̂ °pky\> netm

But since
net

P(ji) = + 1/V>
we know that

netn(ii)
ne:ip(ji)

The Meta-Generalized Delta Rule 31

Also, recall from Equation 8 that

Therefore,

A?WP(Ji)=^ Spj°pr

This means that the total change to the weight of a connection from unit i to unit j upon

the presentation of input-output pair p will equal the product of the learning rate constant, a

measure of the deviation of the activation of unit j from what it should be and the activation

level of unit i. This total weight change, TL 8p;- opi, is not only proportional to 8^- opi, but it is

in fact equal to the weight change the simple connection from unit i to unit j would have

experienced in Rumelhart's generalized delta rule. The only difference is that in the MGDR

this weight change is divided between the "normal weight" of the connection from unit i to unit

j and the meta-connections connecting to the connection from unit i to unit j . This completes

the proof that with equal learning rate constants for normal and meta-weights, the weight

alterations made to a network after presentation of a given I/O pattern pair using the MGDR

will move the network in the direction of the steepest downward gradient on that particular I/O

patterns error surface. How the MGDR performs in the total error space will be discussed

later in Chapter 6.

An important point to be proven is that, in a network with no meta-connections, the

MGDR will behave exactly like Rumelhart's GDR, making the identical weight changes. The

total change to a given weight on a given trial is

APWP(jd = APWJI + 2 A w

from Equation 12.

Since the network has no meta-connections, the equation simplifies to

AvWP(Ji) = APwji-

From Equation 9,

The Meta-Generalized Delta Rule 32

Therefore,

But recall,

W/0

APWPW = = ^ 5p(/0 —

"*rp(/0 = V + X*p*

for all units k with meta-connections to the connection from unit i to unit j .

Since there are no meta-connections,

netPW= °Pi
Therefore,

But recall from Equation 8,

8pc70 = 8p/ V

Therefore,

a p w p</0 = A p w ; / = ^ bPJ °pr

In other words, the weight change in the connection from unit i to unit j is TL 5p;- opi, which is

the exact change made by the GDR.

To summarize, two important theorems about the meta-generalized delta rule have been

proved in this chapter. First, its been shown that the MGDR is equivalent to the GDR in a

network without meta-connections. Second, we have shown that a network with meta-

connections employing the MGDR behaves in a manner somewhat analogous to a network

without meta-connections in that, for each I/O pattern pair, the weights in the network are

altered to move the network in the direction of the error surface's steepest gradient. In the next

two chapters, the important differences between the MGDR and the GDR are illustrated both

empirically and analytically.

Chapter 5
Simulation Results

The major goal behind the development of the meta-generalized delta rule was to create

a weight-learning scheme for connectionist networks which avoids or at least minimizes the

problems inherent in the generalized delta rule. Specifically, the MGDR was designed to reach

a solution more quickly and to become trapped in local minima less frequently. A second

important characteristic of the GDR that we hoped to maintain or expand upon in the MGDR

was the ability to develop solutions to problems which generalize to new situations. In other

words, it was hoped that the MGDR would develop solutions which produce the correct output

pattern for input patterns the network has never encountered before. Our results indicate that

the MGDR successfully accomplishes these goals. This section describes the simulation

results which support this claim.

All simulations were done using the rules described for the MGDR. When simulating

the GDR, the meta-connections were merely removed from the network. As proved in Chapter

4, this makes the MGDR equivalent to the GDR. The networks employed in the simulations

were all three-layered networks as described in Chapter 2. All the important parameters are

discussed in the results for each individual simulation except for the fact mentioned in Chapter

3 that a mpmentum term with an a value of 0.90 was used in all the simulations.

Also, recall that the logistic activation function prohibits activation levels of 0.0 or 1.0

without infinitely large weights. In the simulations where the desired outputs are binary (0 or

1), the system can never achieve these values. Therefore, the values 0.1 and 0.9 have been

used as the targets.

33

Simulation Results 34

Finally, since the networks used to test the MGDR involved varying degrees of

connectedness, it is important to understand the concept of meta-connectivity. In the networks

tested, meta-connections only originated from input units and terminated on normal (non-meta)

connections which did not originate from the same input unit as the meta-connection.

Therefore, a network with 100% meta-connectivity is a network with a meta-connection from

each input unit to every non-meta connection in the network except those originating from the

same input unit. Figure 5-1 illustrates a fully-connected network with two input units, one

hidden unit and one output unit. Notice there are no meta-connections originating from the

hidden unit. On the problems tested, these extra meta-connections only served to increase the

network's complexity and did not increase the network's learning speed or ability to avoid local

minima. In a network with 50% meta-connectivity, each meta-connection from the fully-

connected network has a 0.5 probability of being present.

Output unit

V

Hidden unit

Input unit Input unit

Figure 5-1. A fully-connected network with two input units,
one hidden unit and one output unit.

Simulation Results 35

The MGDR was first tested on the XOR problem discussed earlier. This is considered

by Rumelhart to be the "classic" problem for connectionist networks because it is one of the

simplest which requires hidden units (at least for the networks without meta-connections) and

because many other difficult problems include XOR as a subproblem (Rumelhart, Hinton &

McClelland 1986). The XOR problem was run many times, varying the number of hidden

units from 0 to 8, the normal learning rate constant from 0.1 to 1.0, the meta-learning rate

constant from 0.5 to 4.0 and the degree of meta-connectivity from 0% (the GDR) to 100%. A

representative sample of the results obtained on the XOR problem is depicted in Figure 5-2.

700 -|

0 2 5 5 0 7 5 1 0 0
% Meta-Connectivity

Figure 5-2, Trials to criterion on the XOR problem for networks of varying degrees of
meta-connectivity. This graph includes trials upon which the network became trapped in
local minima.

The way the values for the learning rate constants in this and all the examples in this

chapter were determined was through the following procedure. First, a particular network with

no meta-connections was tested to determine how quickly it could learn a solution to the

problem using a number of different normal learning rate constants and various random initial

weight configurations.1 Using these results, the optimum learning rate constant for the

network without meta-connections was determined. The optimum learning rate constant was

l rThe initial weights in all tests were randomly distributed between -0.5 and 0.5.

36

Simulation Results

defined to be the value at'which the network learned most quickly as averaged over all the

various random initial weight configurations.2

Then, using the optimum learning rate constant, the network was tested to determine

how quickly it could learn using a number of meta-learning rate constants and various degrees

of meta-connectivity. One interesting discovery was that networks with meta-connections

generally learned more quickly if the meta-learning rate constant, Tfl, was larger than the

normal learning rate constant, TV This finding, which seems to contradict the earlier idea that

1YL should be set equal to TL for the network to reach a solution quickly through gradient

descent, is discussed in more detail in Chapter 6. In tests with meta-connections, the initial

normal weight configurations were identical to the configurations used to test the network

without meta-connections. In addition, the meta-connection weights were initially set to 0.0.

The number of random initial weight configurations and random meta-connectivity

patterns on test configurations with partial meta-connectivity varied across test problems.

Solutions to the XOR problem were learned relatively quickly, and as a result, it was possible

to test a relatively large number of initial configurations. Each point in the graph of Figure 5-2

therefore represents the mean number of trials over 25 random initial configurations for a

network with two hidden units, a normal learning rate constant of 0.5 and a meta learning rate

constant of 2.0 to solve the XOR problem.

As will be seen in all the test problems, a network with meta-connections can reach a

solution much more quickly than a network without them. In the XOR problem in fact, the

network with 100% meta-connections was able reach a solution over 20 times faster than the

network employing the GDR and no meta-connections. This comparison is somewhat

misleading however, because the system with no meta-connections became stuck in local

minima more frequently than did networks with meta-connections, hence shifting upward the

Occasionally, especially in networks without meta-connections, the network would become
stuck in a local minimum. In these cases, a large, arbitrary cutoff point was used as the
number of trials to reach a solution. In the case of XOR, the cutoff point was 2000 trials.

Simulation Results 37

averaging in trials upon which the GDR became trapped in local minima, the networks with

meta-connections were able to solve the problem much more quickly.

300 -i

0 2 5 5 0 7 5 1 0 0
% Meta-Connectivity

Figure 5-3. Trials to criterion on the XOR problem for networks of varying degrees of
meta-connectivity. This graph does not include trials upon which the network became
trapped in local minima.

In addition, the general trend in this and the other examples tested was that the higher

the degree of meta-connectivity, the more quickly the system could reach a solution, almost

entirely without regard to which meta-connections were present.

A second problem used to test the MGDR was the parity problem, in which the

activation level of the one output unit should be 1.0 if the input pattern contains an odd number

of active units and it should be 0.0 otherwise. The XOR problem is actually the parity problem

with two input units. The parity problem with 3 input units was run thousands of times using

the method for finding optimum learning rate constants described above. Figure 5-4 represents

the findings for the problem in the network with three hidden units. The results are quite

similar to those from the XOR problem: generally, the higher the meta-connectivity the faster

the learning, although there was a slight upturn in the graph from 75 to 100% meta-

connectivity. It is difficult to explain this slight decrease in learning speed in the 100% meta-

connectivity condition, because obviously all the meta-connections present in the 75% network

Simulation Results 38

were present in the 100% network. One possible reason for this anomaly results from the fact

that it is often the learning of weights for the normal connections, and especially biases, that

slows down learning in networks with meta-connections. 3 What might have happened as the

meta-connectivity increased from 75% to 100% was that the total weight change to a given

connection became distributed over more meta-connections, and hence the normal weight for

that connection changed more slowly. This decrease in learning speed of the normal weights

may have been more than enough to overcome any speed increases due to higher meta-

connectivity, since at 75% meta-connectivity the network has reached the point at which only

asymptotic increases in learning speed are possible with higher meta-connectivity.

1200 n

% Meta-Connectivity

Figure 5-4. Trials to criterion on the 3 unit parity problem for networks of varying degrees
of meta-connectivity.

We have also tested the MGDR on the parity problem with four input units.

Unfortunately, computational limits prohibited the detailed analysis afforded the three unit

3 In fact, it was almost always the case that networks with meta-connections were slowest to
learn the pattern in which no input units were active. On this pattern, no meta-connections
contribute to the weights of connections, and hence the system has to derive a solution using
only biases and normal connections.

Simulation Results 39

parity test. 4 However the general trend of increasing learning speed with increasing meta-

connectivity continued for the network configurations that were tested.

The third test of the MGDR involved determining whether the input pattern was

symmetric about its center. It is interesting that this problem can be solved for any number of

input units by a network without meta-connections using only two hidden units (see

Rumelhart, Hinton & Williams, 1986 for solution). Because of this simplicity, the network

with four input units was a manageable test case. 5 Figure 5-5 depicts the results of the four

unit symmetry tests. Again, the learning speed was an increasing function of the meta-

connectivity.

1500 -i

2 hidden units

Tl = 0.1

m = i.o

0 2 5 5 0 7 5 1 0 0
% Meta-Connectivity

Figure 5-5, Trials to criterion on the 4 unit symmetry problem for networks of varying
degrees of meta-connectivity.

One of the most interesting functions used to test the MGDR was the two bit addition

problem. In this test, there were four input units, representing two two-bit binary numbers.

The goal for the network was to activate the three output units such that, if interpreted as a three

4 The problem is that both the number of input/output patterns and the number of meta-
connections increases exponentially with the number of input units. These additions, when
coupled with the fact that problems with more input units generally take more trials to solve,
increased simulation running times at a prohibitively fast rate.
5 A similar learning curve was obtained for the three input units symmetry problem, which in
fact merely involves computing the AND of the two outside units and ignoring the middle one.

•c

J2

Simulation Results 40

bit binary number, the output pattern would represent the sum of the two two-bit input

numbers. The network required to learn the solution without meta-connections involves four

hidden units, so obviously this is a rather complex network. As a result, only limited tests

were computationally feasible for this problem. The results that were obtained are illustrated in

Figure 5-6. Each point in the figure represents the mean number of trials to learn a solution for

nine random network configurations at the given level of meta-connectivity. Again the graph

slopes downward, indicating an increase in learning speed with increased meta-connectivity.

The fact that this graph is somewhat more linear than those previous is probably a result of

testing limitations. The network's complexity necessitated placing a limit on the number of

trials during which each network configuration was allowed to learn to 2000. This resulted in

a relatively large percentage (33%) of configurations in the 0% meta-connectivity condition

being arbitrarily stopped after 2000 trials, when in fact they may have been able to develop a

solution given more trials.

1600 n

% Meta-Connectivity

Figure 5-6. Trials to criterion on the 2 bit addition problem for networks of varying degrees
of meta-connectivity.

The next problem tested using the MGDR was primarily done to explore the important

ability of developing solutions which will generalize to patterns never encountered previously.

The problem used to test this ability was the three unit encoder problem, in which the pattern in

Simulation Results 41

the input units must be encoded into two hidden units, which must in turn duplicate the input

pattern in the output units. This pattern was chosen to test the MGDR's ability to develop

generalizable representations, since intuitively it should be a problem amenable to such

generalization. Specifically, the network needs to develop a system of weights which causes

each input unit to activate the corresponding output unit. Such a network should easily

produce the correct output pattern for any new input pattern.

The way the test for generalizability worked was to first randomly select six of the eight

input/output pattern pairs and then train the network until it developed a solution for them.

Then the two other patterns were presented to the network to determine how well the

representation developed generalized to new patterns. The network's error in generalization

was defined to be the average distance the activation level of each output unit was from the

target level (LO or 0.0) upon presentation of the new input patterns.

The results are depicted in Figures 5-7 and 5-8. Figure 5-7 illustrates that the learning

speed again increased rapidly with increasing meta-connectivity. Figure 5-8 is the more

significant of the two graphs for the question at hand. Note that the ability of the GDR (the

0% meta-connectivity case) to develop representations for this problem which generalize was

quite poor. In fact, its solutions don't generalize at all, since the average difference in

activation level of the output units from their targets was 0.48 and one would expect a network

with merely random connections to have an average output unit activation error of only 0.50.

Note also that as the meta-connectivity increased, the output activation error decreased

to the point where, with 100% connectivity, the average error was less than 0.1, the level

which, as indicated earlier, was the criterion level used to determine if a system had reached a

solution. These findings indicate that, not only does the MGDR develop solutions more

quickly than the straight GDR, but the solutions that it does develop are in a sense more useful

since they can be used to solve problems not encountered previously.

Simulation Results 42

300 n

0 2 5 5 0 7 5 1 0 0

% Meta-Connectivity

Figure 5-7. Trials to criterion on the 3 unit encoder problem for networks of varying
degrees of meta-connectivity.

o.o H , , , ,
0 2 5 5 0 7 5 1 0 0

% Meta-Connectivity

Figure 5-8. Average error per unit on the 3 unit encoder problem for networks of varying
degrees of meta-connectivity. The average error was the mean distance the activation levels
of the output units were from their target levels.

Simulation Results 43

The final problem upon which we tested the MGDR was in direct contrast to the

abstract mathematical nature of most of the problems discussed earlier. It is called the T/C

problem and it involves learning to discriminate between the letters T and C, regardless of their

translation and rotation.

The architecture employed to learn the T/C problem is slightly different from that of

earlier models. In this problem, the input layer consisted of a 5 by 5 two-dimensional "retina".

The input units were connected to a layer of hidden units which in turn projected to a single

output unit. The input to the network consisted of a pattern representing either a T or a C with

some amount of translation and rotation. The eight possible rotations of the T figure and the C

figure are shown in Figure 5-9. A representative input pattern is depicted in Figure 5-10. The

dark squares in Figure 5-10 represent input units with an activation level of 1.0 for this

particular input pattern and the white squares represent input units with an activation level of

0.0 for this particular input pattern. The desired activation level of the output unit was 1.0 if

the input pattern represented a T and 0.0 if the input pattern represented a C

In total, the set of input patterns presented to the network on each trial consisted of the

84 possible retinal positions and rotations of Ts and Cs. Because of the large size of both the

input pattern set and the network itself, extensive comparisons between the learning done by

the MGDR and the GDR were impossible. 6 However Rumelhart, Hinton & Williams (1986)

reported that a network employing the GDR requires between 5000 and 10,000 trials to learn

the T/C problem.

Again the MGDR developed a solution to the problem in fewer trials than the GDR. In

this case, using arbitrary values for the number of hidden units (4), the normal learning rate

constant (0.5) and the meta-learning rate constant (1.0), a network with 100% meta-

connectivity was able to develop a solution to the problem in 1350 trials.

6 In fact, the solution alluded to using meta-connections required 27 hours of CPU time on a
Sun 3/50 to learn.

Simulation Results 44

In short, the findings in this and the earlier simulations suggest that the meta-

generalized delta rule can be successfully employed in a wide range of problems to develop

better solutions more quickly than with the generalized delta rule.

Figure 5-9. The eight rotations of the block letters T and C used as stimuli in the T/C problem.

Figure 5-10. A sample input pattern from the T/C problem. The gray squares represent
input units with an activation level of 1.0 and the white squares represent input units with
an activation level of 0.0.

Chapter 6
Analysis of the MGDR

This chapter addresses two questions: "Why does the meta-generalized delta rule

develop solutions so much more quickly than the generalized delta rule?" and "How does the

meta-generalized delta rule compare with other extensions of the generalized delta rule?".

One way to conceptualize the advantages derived from meta-connections is by realizing

that meta-connections allow the network to tailor the total weights of its connections for

particular input/output patterns. Recall that the total weight of a particular connection depends

on the present activation level of the input units, since meta-connections from active input units

can influence the total weight of a connection. As a result, the network does not have to find a

single set of weights to solve all the input/output patterns.

To understand how the MGDR tailors the total weights of individual connections for

specific I/O patterns, consider the following situation. Suppose on a given I/O pattern, error

minimization dictates that the weight of connection c should be negative, and suppose that on

another pattern, the weight of c should be positive. In the GDR, this conflict will result in a

small net change to the connection's weight in the direction that minimizes the total error over

the two patterns. In a sense, the two I/O patterns fight against each other to determine the

weight of c. This rivalry between patterns results in slow gradient descent in total error space.

But with meta-connections, the network is in some sense able to "remember" the proper

weight of connection c for each input pattern. Since each I/O pattern has a different set of

active input units, a difference in the total weight of c on the two input patterns can be achieved

by altering the weights of meta-connections impinging on c from input units which are active in

one I/O pattern but not in the other.

45

Analysis of the MGDR 46

Perhaps the best way to understand how the MGDR tailors the weights of connections

for the individual input/output pattern pairs of a problem is to reconsider the concept of the

error surface discussed in Chapter 2. Recall that the error surface for a particular network is a

surface in weight space whose height at any point is equal to the error measure. Also recall that

the GDR develops a solution to a problem by performing gradient descent on the network's

total error surface in which the height at any point in weight space equals the sum of the error

from each input/output pattern. Gradient descent in total error space was guaranteed by the fact

that on each I/O pattern, the change to each weight was proportional to that weight's

contribution to that pattern's error. Therefore, across all patterns, the net change to a given

weight would be in the direction which minimizes the total error.

The MGDR behaves differently. Instead of performing gradient descent on the total

error surface, the MGDR performs a modified form of gradient descent in the error space for

each individual I/O pattern pair. Since meta-connections allow tailoring of the total weights of

connections in the network, they allow the network to explore different regions of the error

surface on different I/O patterns.

This phenomenon is best seen through an example. Suppose we had a very simple

network with two weights and a very simple problem with two I/O patterns. Suppose further

that planes depicted in Figures 6-la and 6-lb are the error surfaces for the two I/O patterns.

The resulting total error surface would be the plane shown in Figure 6-lc. Starting at point A

in weight space, the GDR dictates that on the first presentation of pattern 1, the network

weights should be changed so as to move the system in the direction depicted by vector vj in

Figure 6-la. After moving in this direction, the network will be at point B in weight space.

Upon presentation of pattern 2, the network will move in the direction of vector V2 to point C

(see Figure 6-lb). As can be seen from Figure 6-lc, the net result of these two pattern

presentations is a change to the network's weights in the direction of vector vj, the steepest

gradient in total error space.

Analysis of the MGDR 47

A
i i

•B

N t
c •

Figure 6-1. An illustration of gradient descent on an error surface in weight space. Starting
at point A, the network follows the steepest gradient on the first I/O pattern and moves in the
direction of v, to point B. Then, on the second I/O pattern, the steepest gradient is in the
direction of v 2 , so the network moves to point C. Notice that the movement in total error
space, illustrated in part c, is in the direction v3, the steepest gradient in total error space.

Analysis of the MGDR 48

The MGDR works somewhat differently. Upon presentation of input/output pattern 1,

the total change in the weights of the network's connections would be the same as in the GDR,

so the network would move from point A to point B in error space (see Figure 6-2a). But

some of that movement would result from changes in the weights of normal connections and

some of it would result from changes in the weights of meta-connections.

Therefore, upon presentation of VO pattern 2, which has a different set of active input

units and hence a different set of active meta-connections, the network will not be at point 5 .

Instead, the difference in meta-connection influence between the two patterns will place the

network at some other location in error space, call it point D (see Figure 6-2b). From here, the

MGDR dictates movement in the direction of vector v2, to point E. It is not appropriate to

determine the progress the network has made towards a solution by examining movement in

total error space, because there is no longer a single point in total error space corresponding to

the total weights of the current network. Instead, we have a network whose total weights, and

hence whose position in error space, depends on the pattern of activity in the input units.

The only way to determine progress towards a solution is to look at the network's new

position in error space on each of the individual input/output patterns. Upon the next

presentation of input pattern 1, the network will no longer be at point 5 , since the normal

weights and some of the meta-weights altered originally in moving from point A to point B

have been altered again during processing of input/output pattern 2. But some of the meta-

connections altered in moving from A to B may not have been active on pattern 2. It is

primarily through these non-overlapping meta-connections that the network can "remember"

some of the change made on the last presentation of I/O pattern 1. The net result will be that on

the second presentation of pattern 1, the network will be at a point in error space in the vicinity

of point 5 , call it point F (see Figure 6-2c). From this position, the network will again move

in the direction of the steepest gradient, vj, to point G.

Figure 6-2. An illustration of the path taken across the error space for a network employing
meta-connections. See text for explanation.

Analysis of the MGDR 50

When pattern 2 is presented again, the network will no longer be at point £ , because of

the reason given above. It should however, be in the vicinity of point £ , at a point like H (see

Figure 6-2d). From point / / , the network will again move in the direction of vector v 2 .

Although there are minor perturbations between each presentation of a given

input/output pattern, its clear that the overall pattern of movement in the network over a number

of presentations of the given input/output pattern pair is in the general direction of the steepest

gradient for that input/output pair. 1 In this manner, the MGDR performs gradient descent on

the error surface for each individual input/output pattern of a problem. A network employing

the MGDR need only continue this descent until it has found a system of normal and meta-

connection weights which maps each input pattern to the appropriate output pattern.

One possible argument against the significance of meta-connections is that a network

with meta-connections can be transformed into a network without meta-connections, but which

is computationally as powerful as the original by replacing each meta-connection with a

"hidden" unit as depicted in Figure 6-3. While the network without meta-connections can

perform any computation possible in the network with meta-connections, the asymmetry

inherent in the network with meta-connections makes learning much more feasible.

Figure 6-3. An example of the strategy for converting a network with meta-connections to a
network without them by adding extra hidden units.

lThc planar error surfaces in Figure 6-2 are somewhat misleading in that they suggest that the
MGDR consistently moves in a direction which is different from the direction of the steepest
gradient. In fact, if the error surface has a bowl shape, then the perturbations experienced
between presentations of an I/O pattern will be corrected for because the network will alter the
direction of its next step to head towards the bottom of the bowl.

Analysis of the MGDR 51

Specifically, in the network with meta-connections, the weight of the meta-connection

c(kj)i w ^ o n t y b e altered if both u{ and u} are active. This however is not true in the normal

network. The weight of the connection Cfc will be altered whenever unit ut is active,

regardless of unit UjS activation level. This decreased specificity results in a large decrease in

the learning speed of the network without meta-connections for two reasons. First, the

learning rate decreases because the rate of movement in the weight of towards its proper

level (dictated by the desired activation level of the output uk on the input pattern in which both

Ui and Uj are active) is decreased by the fluctuations in the weight of on the pattern in

which unit Ui is active but unit Uj is off.

But perhaps more importantly, the higher specificity of meta-connections means that

fewer I/O patterns are dependent on the weight of any given meta-connection, so larger

changes can be made in the weight of the given meta-connection on those trials that do depend

on it without seriously disrupting the solution developed for other I/O patterns. This increased

specificity of meta-connections translates into networks that perform well using a high meta-

learning rate constant and hence take large steps towards a solution upon presentation of each

I/O pattern. For this reason networks employing the MGDR can learn more quickly than

networks without meta-connections.

The learning speed advantage of a network employing meta-connections can in fact be

quite significant. For example, the network with meta-connections depicted in Figure 6-4 can

learn to solve the XOR problem in fewer than 20 presentations of the four input/output

patterns. The corresponding network without meta-connections, depicted in Figure 6-5,

requires an average of nearly 150 trials to reach a solution to the XOR problem. 2

2 This average is in fact misleadingly low because it does not take into account test runs on
which the network became stuck in a local minima.

Analysis of the MGDR 52

Output layer

Input layer

Figure 6-4. A network with meta-connections for computing XOR.

Output layer

Hidden layer

Input layer

Figure 6-5. A network without meta-connections for computing XOR.

A second modification of the normal network configuration with which meta-

connections may be compared is the concept of sigma-pi units developed by Rumelhart, Hinton

and McClelland (1986). Networks with sigma-pi units are somewhat similar to networks with

meta-connections, in that they use the pattern of activation over a set of units, called a sigma-pi

conjunct, to determine the net input to a given unit resulting from a given connection. A sigma-

pi connection is graphically represented in the network of Figure 6-6. Mathematically, the net

input to unit k from the sigma-pi connection in the figure is
n e t k = wk(ji) °i °j

Analysis of the MGDR 53

Figure 6-6. An example of a sigma-pi connections.

In certain respects, a network with a normal connection between Uj and uk with a single

meta-connection projecting to it from ux can be considered similar to a network with a

connection between Uj and uk and a sigma-pi connection from wz- and Uj to uk (see Figure 6-7).

Figure 6-7. An example of analogous networks, one with a meta-connection
and the other with a sigma-pi connection.

Mathematically however, the behaviors of these two networks differ substantially. One

difference involves the forward propagation of information. In the MGDR network, the net

input to uk is

n<Xpk = (Wkj + W(kj)i 4°i) °j

while in the GDR network, the net input to itk is

netpk = WkiOj + wmojoi.

where ^k(Ji) l s ^ e weight of the sigma-pi connection from the conjunct of u-t and uj to uk.

More generally, the net input to a unit from a sigma-pi connection is the weight of the

connection times the product of the activation levels of the units in the sigma-pi conjunct.

Analysis of the MGDR 54

A second difference involves the formulas for changing a network's weights. In the

MGDR network, it has been shown that the total change in the weight of the connection from

Uj touk will be equal to the change dictated by the GDR. Therefore, when the network with

the meta-connection is presented with the pattern again, the change in net input to uk will be

equal in the MGDR and the GDR. Using the generalization of the GDR for sigma-pi units

developed by Rumelhart, Hinton & Williams (1986), the net change in wkj would equal that

dictated by the GDR and the change to the weight of the sigma-pi connection will be some

additional amount. Without even considering the specific formula for weight changes in the

sigma-pi GDR, it is clear that the change in the net input to uk when the given pattern is

presented again will be greater than that dictated by the GDR for the network with the sigma-pi

connection. Therefore, the change in the net input to uk in the sigma-pi network will be greater

than the change in the corresponding network with meta-connections.

This is not meant to be a thorough comparison of networks employing sigma-pi

connections and networks employing meta-connections. In particular, it only points out some

of the differences between the two architectures and algorithms, without addressing which is

more effective. We are now conducting a more complete theoretical and empirical comparison

between networks with meta-connections, sigma-pi networks, the Cascaded Networks of

Pollack (1987) and the higher order networks of Maxwell, Giles & Lee (1987).

There is a more general version of the MGDR which is interesting to consider. The

generalized equations are

Wp(ji) = wji + yLw(Ji]
k

and

A

P

w(ji)k = TTL 5y

where gi(x)- g2(x) = x for all x e [0, 1].

With these equations,

Analysis of the MGDR 55

APWp(ji) = APWji + HApW(ji)k S\{0pj^
k

=
 AP«>ji+2Jd sp (/ i) -j—gl{0pd.

k n^LP(ji)

In this paper we have chosen

£i(*) = S2(*) = ̂ *

but there are other possibilities. In the sigma-pi GDR, gx(x) = x and g2(x) = JC net^y Since

<?2W does not equal JC, the sigma-pi GDR does not keep the total weight change equal to

the change dictated by the GDR. Another example is to let gx(x) = x and g2(x) = 1. In this

case, the total weight change will equal the change dictated by the GDR, but the change in the

weight of a meta-connection will no longer depend on the activation level of the unit from

which it projects. Similiarly, if gx(x) = 1 and g200 = the total weight change will be

correct, but the influence of a meta-connection on the total weight of a connection will be

independent of the activation level of the unit from which the meta-connection projects. When

g^x) = xl® and g2(x) = JC 2 / 3 , both the desired total weight change and the desired

dependencies are maintained. Therefore this version of the MGDR might be an interesting one

to test.

In summary, networks with meta-connections can learn quickly because they allow the

weights of connections to be tailored for individual input/output patterns. This rapid learning

cannot easily be achieved by replacing meta-connections with hidden units. In addition, there

does not appear to be a simple equivalence relationship between networks with meta-

connections and networks with sigma-pi connections. Further comparisons are necessary with

sigma-pi networks and other complex architectures to determine the proper perspective for

viewing the MGDR.

Chapter 7
Conclusion

In review, this thesis is an exploration of a new architecture and learning algorithm for

connectionist networks involving meta-connections and the meta-generalized delta rule. Our

major finding is that by using meta-connections to sample the state of the network, individual

connection weights can be tailored for individual input/output patterns. Networks with meta-

connections not only learn more quickly and reliably than networks without, but also reach

solutions which appear to generalize more easily to new inputs.

However, the advantages of meta-connections do not come without costs. First, meta-

connections greatly increase the complexity of networks. In fact, the results in Chapter 6

suggest that there is a tradeoff between network complexity, in the form of increased meta-

connectivity, and the learning efficiency of a network. However, the tradeoff does not seem to

be linear. At least for the relatively simple problems tested here, a small number of meta-

connections usually results in a large increase in learning speed. Perhaps one of the most

important findings of this thesis is that there is a positive relationship between network

complexity and learning efficiency. Previously, it was very difficult to speed up learning in

connectionist networks, regardless of the complexity one was willing to introduce. 1

The added complexity introduced by meta-connections is troublesome in another

respect. The actual solutions derived by the MGDR have been described for only the very

simplest networks. In the other cases, only the theory underlying the means by which the

Rumelhart, Hinton & Williams (1986) found that exponential increases in the number of
hidden units were necessary to produce a linear increase in learning speed on the XOR
problem. Plaut, Nowlan & Hinton (1986) found that increasing either the number of hidden
layers or the number of units in a hidden layer actually decreased the rate of learning in the
random vector pairing problem.

56

Conclusion 57

MGDR reached a solution has been presented. The reason for this is simple: the MGDR

almost never develops solutions amenable to easy explanation. This solution complexity could

be viewed as a problem for two reasons. First, one can argue that if we knew exactly how a

network processed information, we might be able to recognize its shortcomings and improve it.

Second, it seems somewhat unsatisfying to develop a network which solves a problem without

understanding how the solution works. It is part of human nature to desire knowledge and

understanding.

But perhaps this is the direction in which work in artificial intelligence must head to

solve the knowledge bottleneck problem. The magnitude of the information required for

functioning in our complex world precludes a detailed understanding of its every aspect in man

or in any machine we construct to effectively function in man's environment. As was

mentioned in the introduction, the only way for a true artificially intelligent system to acquire

and process this mass of information may be to learn it from experience.

It remains to be seen whether the approach of connectionism in general, and the meta-

generalized delta rule specifically, will help the discipline in this direction. There remain

important conceptual questions concerning the meta-generalized delta rule left unanswered by

this thesis. Specifically, the behavior of networks employing the MGDR on the error surface

in the weight space of all connections, including meta-connections, is still largely unknown. It

would be interesting to know if the MGDR performs gradient descent on this higher-

dimensional error surface. If it doesn't, then an obvious extension of the MGDR would be a

learning algorithm with meta-connections which does.

In addition, major hurdles in general connectionist research need to be overcome before

the hopes of connectionism can become a reality. Among the hurdles are large scale tests of

systems like the meta-generalized delta rule to determine if the encouraging preliminary results

will generalize to more difficult problems.

It is my hope that the results of this thesis will have a twofold effect on connectionist

research. First, the positive results obtained using the meta-generalized delta rule should

Conclusion

encourage further research into networks with meta-connections. Second, the increased

learning rate and reliability of the meta-generalized delta rule should facilitate exploration of

more difficult tests of connectionist theory.

References

Hinton, G.E. & Anderson, LA. (1981). Parallel Models of Associative Memory.
Hillsdale, NJ: Erlbaum.

House, D. (1987). Williams College Dept. of Computer Science, Williamstown, MA.
Personal communication.

Maxwell, T., Giles, C.L., & Lee Y.C. (1987). Generalization in neural networks: The
contiguity problem. In Proc. IEEE Int. Conf. on Neural Networks. San Diego,

Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.

Pollack, LB. (1987) On connectionist models of natural language processing. PhD Thesis.
New Mexico State U. Dept. of Computer and Cognitive Science, MCCS-87-100.

Plaut, D.C., Nowlan S.L, Hinton, G.E. (1986). Experiments on learning by back
propagation. Carnegie-Mellon technical report # CMU-CS-86-126.

Rumelhart, D.E., Hinton, G.E., & McClelland, LL. (1986). A general framework for
parallel distributed processing. In D.E. Rumelhart & LL. McClelland (Eds.)
Parallel Distributed Processing: Explorations in the micro structures of cognition.
Volume 1: Foundations. Cambridge, MA: Bradford Books/MIT Press.

Rumelhart, D.E., Hinton, G.E. & Williams, R.L (1986). Learning internal
representations by error propagation. In D.E. Rumelhart & LL. McClelland (Eds.)
Parallel Distributed Processing: Explorations in the microstructures of cognition.
Volume 1: Foundations. Cambridge, MA: Bradford Books/MIT Press.

Thompson, R.F., (1986). A Conversation with Richard F. Thompson. In A.B. Crider,
G.R. Goethals, R.D. Kavanaugh, & P.R. Solomon, Psychology. Glenview
Illinois: Scott, Foresman & Co.

59

